Transition to Solid State QRO (Part 1)

Tino Zottola, VE2GCE

September 21, 2020

Agenda

Part 1: September 21, 2020 presentation

- Introduction
- Tube Amplifier Landscape
- Tube Amplifier Architecture
- Bipolar Amplifier
- MOSFET Amplifier
- LDMOS Amplifier
- Commercial Amplifiers
- Conclusion #1

Part 2: October 19, 2020 presentation

- Building your own SS Amplifier
- Amplifier Protection
- Sequencing & Monitor Circuits
- Automatic Band Selection
- Conclusion #2

Introduction (1/2)

90% of RF linear amplifiers in use by hams today are still tube based.

Advantages:

- Simplicity: can be repaired easily
- Robustness: forgiving of mistuning or mismatching
- Inexpensive and plenty of used tube amplifiers available

2. Disadvantages:

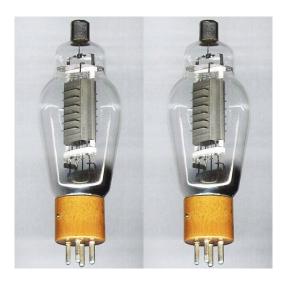
- Each band must be individually selected and tuned
- Tubes have limited life time (e.g. 5-10 yrs) and replacement set costs 250-500 US dollars
- Lethal Power Supply: same voltages & current used by electric chairs (+2000 volts, +1 amps)
- Warmup time needed

Introduction (2/2)

How do solid state amplifiers compare with 100 yr old proven tube technology?

1. Advantages:

- No components to replace, semiconductors can last forever
- No tuning needed, with some amps requiring band selection only.
- Lower voltages (i.e. relatively safer), typically 50 volts at 50 amps.
- No warm up time


2. Disadvantages:

- Expensive: can cost several thousand dollars for commercial units
- Less forgiving of mistuning and mismatching, if protective circuits not present
- More complicated to repair

RF Tube Amplifier Landscape (1/3)

- 1. 90% of tube amplifiers in use today have one of following three tube complements:
- 2 to 4 x 811A, 500 to 1000 watts output
 811A have thin and fragile plates
 → Recommendation: Replace with tubes more robust 572B (with thick graphite plates)
- 2 or 4 x **572B**, 500 or 1000 watts output
- 1 or 2 x **3-500Z**, 750 or 1500 watts output

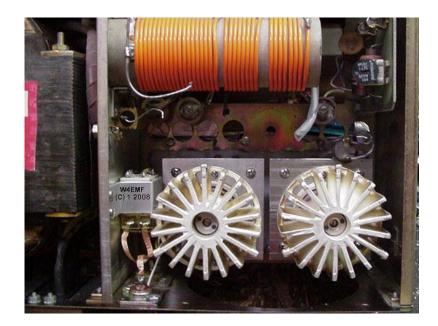
New production of these tubes from China. RF linear amplifiers using these tubes are very popular.

Tino Zottola, VE2GCE, Sept 21, 2020


RF Tube Amplifier Landscape (2/3)

10% of tube amplifiers use more obscure tube types:

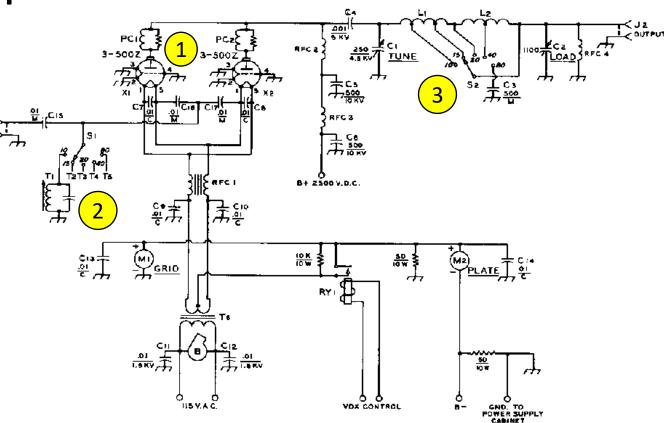
- 2. Amplifiers with following tube types should be avoided:
- Sweep tubes (6JE6, 6JSC, etc.)
 Used to be cheap and plentiful, once used in tube TV horizontal output stages
- 8877, 3CX800A7 : Expensive
- 8875: No longer produced


Tino Zottola, VE2GCE, Sept 21, 2020

RF Tube Amplifier Landscape (3/3)

Amplifiers using obsolete tubes (e.g. 8875) can be brought back to life economically.

- 3. Conversion to Russian VHF military tubes:
- Gi7B is the most popular tube used in conversions
- Cheap and readily available from Russia, Ukraine and Lithuania for \$25 USD each
- Involves major work for conversion (e.g. Dentron MLA2500)



3-500Z RF Amplifier Circuit

Typical features:

- 1. Grounded Grid:
 - Zero bias
 - No neutralization needed
- 2. Input circuit:
 - Low input impedance, easy match to exciter
 - Bandpass filter (older amps, pre-WARC)
 - Low pass filter (modern amps, WARC bands)
- 3. Pi output network:
 - Impedance matching of plate to antenna
 - Band select, tune and load controls
 - TVI filter

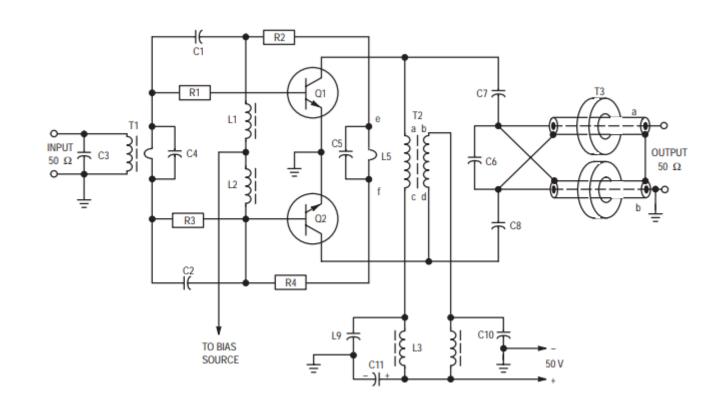
Solid State Amplifiers (1/3)

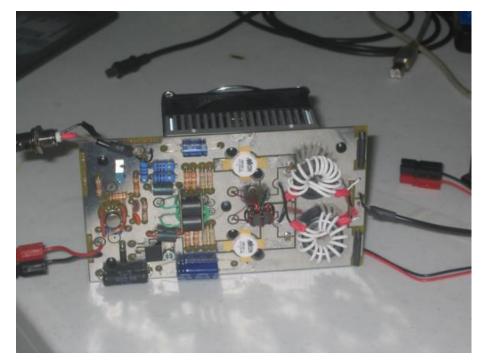
One of 1st KW solid state amplifier was designed (circa 1976)
 → by Motorola RF guru Helge O. Granberg, K7ES (SK)
 All his books, articles, ANs and EBs are highly recommended

Amp details in Motorola application note AN758.

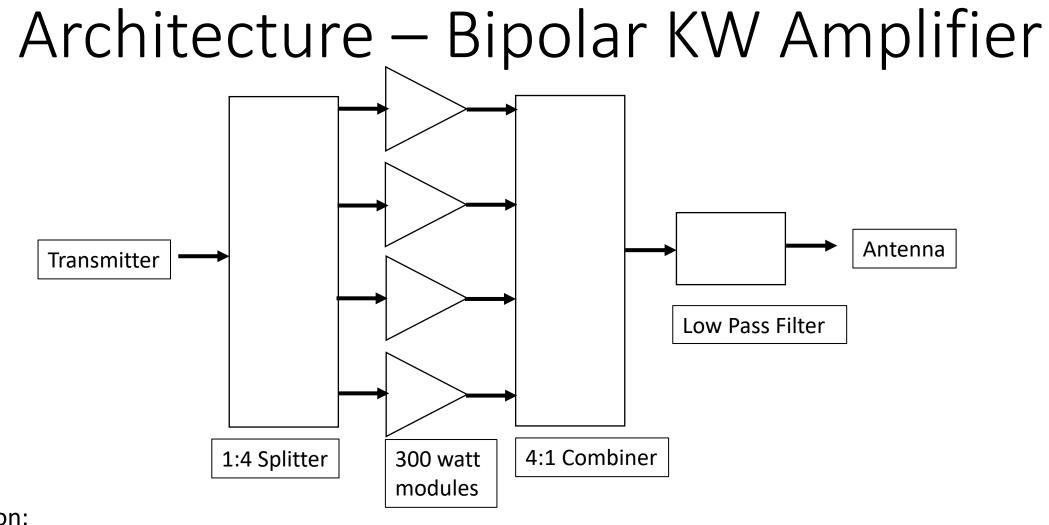
- Push-pull MRF428 bipolar transistors in module
- Module outputs 300 watts with 15 watts input
- 4 x modules in parallel for 1200 watts output

6) d

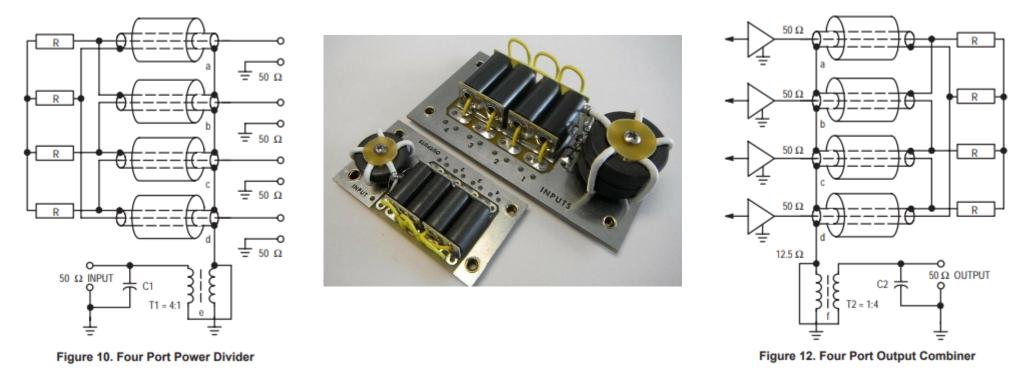

Advantages:


- 1.2 KW completely solid state amplifier
- Operates in broadband mode (1.8-30 MHz)

Disadvantages:


- Requires splitter and combiner to parallel modules together
- Broadband mode → harmonic suppression is weak and amplifier requires LPF

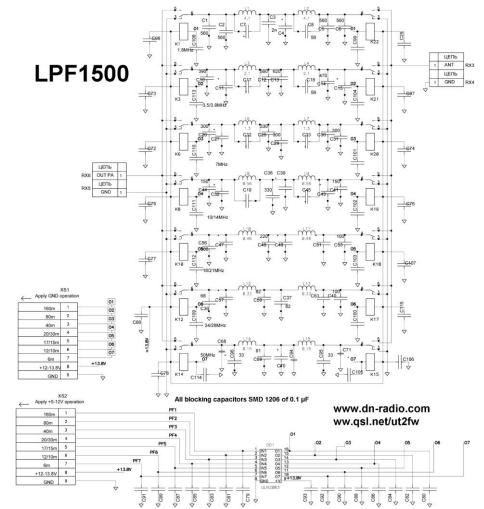
MRF428 Bipolar Amplifier



- Description:
- 4 x 300 watt modules in parallel to get 1200 watts
- Splitter used to divide and match transmitter output to module inputs
- Combiner used to aggregate module outputs and match to antenna
- LPF filter (switchable) suppresses unwanted harmonics

Power Divider & Combiner

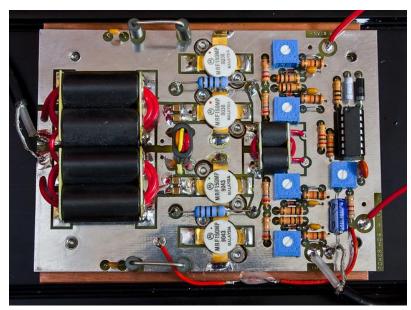
Description:


- Input transformer: 50 ohms to 12.5 ohms
- Balancing resistors dissipate excess power, if one of more module inputs are open (or have high SWR)
- Output transformer, same as input transformer, but in reverse order at high power levels

Low Pass Filter

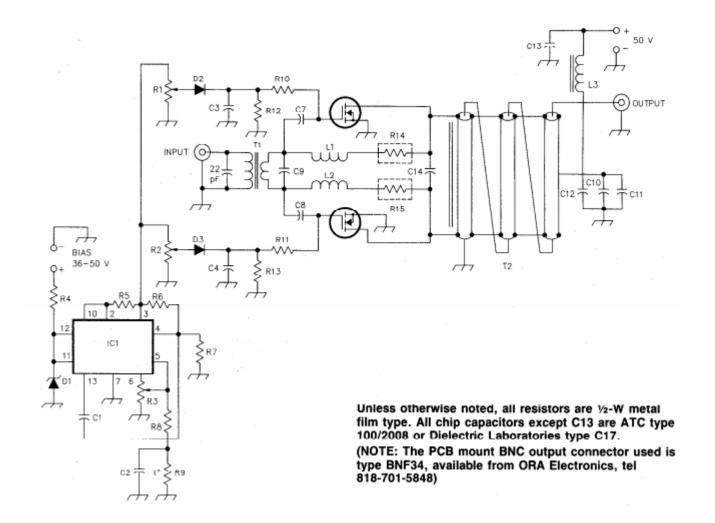
Typical features:

- LPF is 5 pole Chebyshev filter per band (rated at 1.5 KW)
- Bands electronically selected (160 through 6 meters)
- Neighbouring WARC bands share same setting 20/30, 15/17 and 10/12 meters


Solid State Amplifiers (2/3) 2nd Generation (circa 1982) of high power solid state amplifiers are MOSFET based.

Helge Granberg MOSFET amp designs are in the following Motorola bulletins:

- EB104: 600 watt amplifier with 4 x MOSFET (MRF150) •
- AR347: 1200 watt amplifier with 2 x MOSFET (MRF154) •


Advantages:

- More power with less devices
- Cheaper and more efficient (less toroidal losses) \rightarrow No input splitter or output combiner needed
- Better gain than bipolar amplifier \rightarrow Full output with only 6 watts drive •
- Better frequency bandwidth \rightarrow 1.8 to 54 MHz

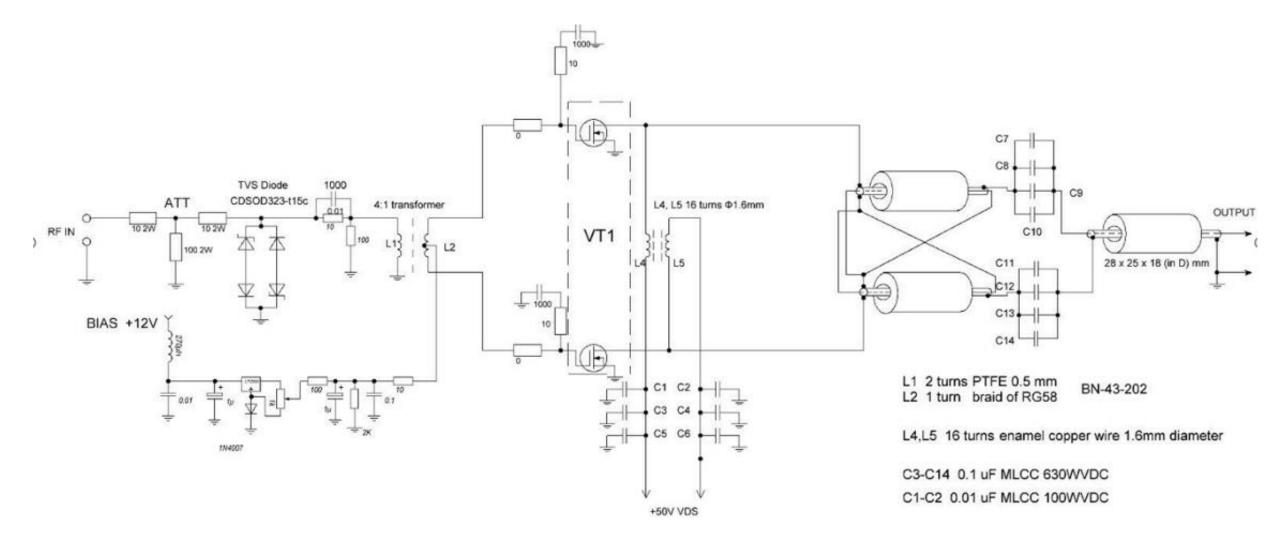
Tino Zottola, VE2GCE, Sept 21, 2020

MRF154 MOSFET Amplifier

Solid State Amplifiers (3/3)

- 3rd generation of solid state amplifiers featured *LDMOS technology introduced in 2000
- LDMOS package consist of two perfectly matched MOSFET devices on a single slab.

Advantages:


- Capable of up to 600 MHz
- 1200 watts output with 2 watts input
- Better linearity and efficiency
- Most economical approach: Watts / dollar

* Laterally Diffused Metal Oxide Semiconductor

LDMOS Amplifier

Commercial SS HF Amplifiers

1) Ameritron ALS 1300

- 8 x MRF150 MOSFET, 1200 watts
- 160 10 m
- \$3000 USD
- Made in USA

2) Palstar LA-1K

- 5600H LDMOS, 1000 watts, touch screen
- 160 6 m
- \$3500 USD
- Made in USA

3) Elecraft KPA1500

- 2 x BLF188, 1500 watts, built-in antenna tuner
- 160 6 m
- \$5995 USD
- Made in USA

Tino Zottola, VE2GCE, Sept 21, 2020

Commercial SS HF Amplifiers

4) Acom A1200S

- 2 x BLF188 LDMOS, 1200 watts
- 160 6 m
- \$3500 USD
- Made in Bulgaria

5) Burst 2000A

- 2 x BLF188 LDMOS, 2200 watts, water cooled
- 160 6 m
- \$4000 USD
- Made in Russia

6) RF-Kit RF2K-S

- 2 x BLF189XR LDMOS, 2000 watts, with antenna tuner
- 160 6 m
- \$4500 USD
- Made in Germany

Part 1: Conclusion

Why are tube amplifiers still dominating the Amateur Radio landscape ?

1) Commercial solid state amps are very expensive, costing between \$3000 to \$6000 USD.

2) Quality used tube amplifiers from 1970-80's are available for anywhere between \$300-600 USD.

- Heathkit SB200 series
- Dentron QRO, Clipperton
- Amp Supply LK500 series
- Most post-1980 amplifiers support WARC bands (30, 17 and 12 meters)
- Modern tube amplifiers to be avoided unless they are "Cadillac" brands like Alpha.
- 3) Alternative to options 1 and 2
- Homebrew SS amp by integrating pre-built modules ('Lego approach') as opposed to 'ground up' build.
- Can be made for under \$1000 USD
- Reliability and functionality of commercial amplifiers can be had.

Resources

Bipolar and MOSFET amplifier build descriptions:

AN758 Motorola Bipolar 1200 watt amplifier:

https://www.rf-microwave.com/app/resources/uploads/transistors/Motorola_AN758.pdf

EB104 Motorola FET 600 watt amplifier

https://www.ab4oj.com/dl/eb104.pdf

AR347 Motorola MOSFET 1200 watt amplifier

http://www.communication-concepts.com/content/AR347/AR347_Application_Note.pdf

Useful information with many details on LDMOS amplifier construction (1.8 to 1200 MHz) https://w6pql.com/

→SS amplifier builders users group Facebook: <u>RF SSPA Builders group</u>

LDMOS amplifiers controlled by Arduino https://www.qsl.net/on7eq/projects/arduino_sspa.htm https://www.qsl.net/yo4hfu/LDMOS_2M.html

Resources

- Amplifier component and kit supplier:
- https://w6pql.com/
- https://www.communication-concepts.com/
- https://eb104.ru/
- https://www.heatsinkusa.com/
- https://www.rf-microwave.com/
- Gi7B tube conversions:
- https://www.gi7b.com

Questions ?