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Translating Discrete Time SIMULINK to SIGNAL

Safa Messaoud

(ABSTRACT)

As Cyber Physical Systems (CPS) are getting more complex and safety critical, Model Based
Design (MBD), which consists of building formal models of a system in order to be used in
verification and correct-by-construction code generation, is becoming a promising method-
ology for the development of the embedded software of such systems. This design paradigm
significantly reduces the development cost and time while guaranteeing better robustness,
capability and correctness with respect to the original specifications, when compared with
the traditional ad-hoc design methods. SIMULINK has been the most popular tool for em-
bedded control design in research as well as in industry, for the last decades. As SIMULINK
does not have formal semantics, the application of the model based design methodology and
tools to its models is very limited. In this thesis, we present a semantic translator that
transform discrete time SIMULINK models into SIGNAL programs. The choice of SIGNAL
is motivated by its polychronous formalism that enhances synchronous programming with
asynchronous concurrency, as well as, by the ability of its compiler of generating determin-
istic multi thread code. Our translation involves three major steps: clock inference, type
inference and hierarchical top-down translation. We validate the semantic preservation of
our prototype tool by testing it on different SIMULINK models.
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Chapter 1

Introduction

Cyber Physical Systems (CPS) are engineering systems consisting of the integration of com-
putational control and physical components with continuous dynamics. CPS are omnipresent
in different sectors, such as agriculture, energy, transportation, building, healthcare and
manufactoring. As this systems are becoming more complex and their reliability, safety and
capability requirements are becoming more and more crucial, and harder to guarantee by
the traditional design tools and methodologies, new design paradigms are emerging.

Model Based Design is a much discussed approach for developing such systems. It con-
sists of building mathematical models that capture the specifications as well as the critical
design decisions for the system in the different stages of the development life cycle. The mod-
els have semantics derived from different theories such as finite state machines, tagged signal
models [2], synchronous languages[3][4] and Metropolis meta models[5]. Different tools have
been developed to generate correct by construction code from these models, as well as for
the verification of the system behavior in early design phases. Some of the most popular for-
mal verification techniques for embedded software include model checking and abstraction.
Model checking is used to exhaustively search through all behaviors of the finite abstraction.
Abstraction is used to reduce the infinite state space systems into a finite ones.

Despite the intensive research in the model based design, the Mathwork’s graphical environ-
ment SIMULINK[6] is still the most widely used tool for the design of embedded software.
Although it is very convenient to use and easy to learn, SIMULINK does not have published
and authentic formal semantics. Hence, its models can not be used with the Model Based
Design framework. Its generated diagrams are verified through numerical simulation and its
behavior is strongly correlated with the simulation configuration parameter. For example,
switching from a fixed to a variable simulation step alters the output traces as well. Although
simulation based analysis is a well accepted technique in industrial practice, it becomes im-
possible to exhaustively simulate the system for verification purposes, once it gets very
complex. Besides, little research work is done on quantifying the coverage obtained through

1
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multiple simulations. SIMULINK has commercial code generators (Real-Time Workshop
from Mathworks, TargetLink from dSpace). However, they have many restrictions. For
example, TargetLink, does not generate code for blocks for the discrete Library. The preser-
vation of semantic is another issue, since the behavior equivalence between the simulated
model and the generated code is unclear.

Despite these limitations, SIMULINK remains a de-facto tool in the embedded control de-
sign for its convenience. Formal models, on the other hand, are less applied as they are less
intuitive to use and harder to learn. In order to close the gap between formal methods and
industrial practices, researcher have attempted to either give SIMULINK formal semantics[7]
or translate it into formal models of computation[8][9][10]. In this thesis, we present a frame-
work for translating discrete time SIMULINK models to SIGNAL[11] programs. SIGNAL is
a data flow synchronous programming language which was developed by IRISA[12]. It does
not assume the existence of any external trigger or global clock for reacting to the inputs.
It is paced by the rate at which data arrives. Hence, each variable (Signal) within the soft-
ware has its own clock, giving us the multi-rate (polychronous) formalism of SIGNAL. This
timing model allows for streams to be computed asynchronously to one another which fits
very easily to a multi thread environment. This increases the embedded software reactivity
and capabilities. Moreover, a number of formal verification tools such as the model checker
SIGNALI[13] and the graphical developing interface SME[14] exist for Signal. These char-
acteristics make SIGNAL an interesting model of computation for embedded software design.

In this thesis, we develop a tool that only translate the discrete time blocks of SIMULINK.
This choice is justified by the fact that, controller should be modeled as discrete time systems,
so that they can be implemented on a computer.We follow the same translation methodology
proposed in [10], for translating LUSTRE to SIMULINK. The first two steps are clock infer-
ence and type inference. These steps provide us with information that will be needed in the
atomic blocks translation and their hierarchical composition, while preserving the informal
semantics of SIMULINK, given by the behavior of the simulator. The preservation of seman-
tics is checked by running with the same input sequence, both the SIMULINK simulation and
the corresponding SIGNAL program and obtaining in both cases the same output sequence.
The novelty in this work consists of bridging the gap between the almost synchronous model
of computation of SIMULINK into a polychronous model of computation. In the past work
by [10], the translation was straight forward due to the fact that the target language is syn-
chronous and a global clock driven, whereas in SIGNAL language there is no global clock per
se. A global clock may be calculated using the clock calculus if the translated SIMULINK
model has the endochrony property. If a single global clock driver does not emerge, a poly-
chronous model leading to multi-threaded behavior emerges. The other addition in this work
is the use of affine clock relations between SIGNAL subprocesses when multiple SIMULINK
blocks have sampled inputs with varying sampling rates but can be related by affine relations.

The rest of the thesis is organized as follows: Chapter 2 is an overview of SIMULINK
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and SIGNAL formalisms. Chapter 3 is a survey of the translation of SIMULINK to different
models of computation. In Chapter 4, we present the translation framework. The results
of applying our prototype tool on different SIMULINK models are shown in Chapter 5. We
close this thesis with some concluding remarks and suggested future work.



Chapter 2

Background

2.1 Model Based Design

Figure 2.1 shows a typical design cycle of an embedded system. Traditionally, engineers deal
with each stage of the process separately. Specification, design, coding, and testing are mostly
done independently. Engineers rely on design documents to provide the communication
between each of theses steps. This process suffers from a variety of drawbacks, including the
difficulty of keeping documentation updated. Another problem is that the coding process
is often removed from the general design process. These are two issues where model-based
design can greatly improve the design process. Model Based Design consists of using Models
of Computation that capture the specifications as well as the critical design decisions for the
system in the different stages of the development life cycle. A Model of Computation (MoC)
is defined as the manner in which computation and communication are being performed.
Examples of MoC are Petri-Nets [15], Kahn Process Networks[16], synchronous languages
(Esterel [3], Lustre[4]) and polychronous languages (SIGNAL).

Model driven software design tools are based on using a high level language/Model of Compu-
tation, that are translated into a lower level language (C, RTL, etc.). The advantages of this
design methodology are two fold. Since the code generation is based on precise mathematical
models, this code is said to be correct-by-construction. Besides, the verification can be done
at higher levels of abstraction, which will reduce the costs, as well as the time to market.
Table 2.1 gives an overview on the abstraction levels of the tools, programming languages
and their implementation paradigms. Properties of the synchronous and polychronous lan-
guages like reactivity, concurrency and deterministic execution fit the requirements of the
safety critical embedded software.

4
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Figure 2.1: The V Design Process. http://www.engineering.com/DesignSoftware. Used
under fair use, 2014

Table 2.1: Abstraction Levels of Software Languages, Directives, Utilities and Tools

Model Driven Tools Programming Languages Implementation Level

LabVIEW MATLAB Java
SIMULINK ESTEREL RTL
Polychrony SIGNAL C++
ESTEREL Studio LUSTRE C
SCADE

2.2 SIMULINK

SIMULINK[6] is a computer-aided model driven design tool for embedded systems. It pro-
vides an interactive graphical environment and a customizable set of block libraries for the
design, simulation, implementation, and test a variety of time-varying systems, including
communications, controls, signal, video and image processing. In SIMULINK, a system is
hierarchically modeled using a set of blocks that are interconnected by ports. The blocks
can be categorized into virtual and non virtual blocks. A virtual block only defines the
interconnections of signals and has no memory element. Examples of virtual blocks are the
multiplexer Mux, Outputport and subsystems. Non virtual Blocks represent a set of equa-
tions, called block methods, which define a relation between the block inputs , outputs and
the state variables. Examples of non virtual blocks are Gain and Sum. The signals are
the communication conduits through which the blocks communicate with each others. We
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distinguish between data ports, defining data flow connection endpoints, and control ports,
producing triggering or enabling events for the execution of subsystems. SIMULINK enables
to incorporate MATLAB algorithms into models and export simulation results to MATLAB
for further analysis. SIMULINK has a multitude of semantics which depend on the user
configuration. These semantics are only partially documented, mostly in natural language.
The absence of formal semantics, makes the application of the static analysis techniques
ineffective and restricts the verification of models to simulation based testing.

2.3 Synchronous Programming Languages

In order to better explain the motivation behind choosing SIGNAL for being the trans-
lation target language, we start by introducing the synchronous formalism. The essence
of synchronous model of computation is the synchrony hypothesis which assumes that the
computation and communication time are instantaneous. In other words, time is organized
as a sequence of instants. In each instant, input events possibly occur, computation take
place and control and data are propagated until an output is produced. This execution
cycle at each instant is called a reaction. Hence, the history of a system is a totally ordered
sequence of logical instants. Only the simultaneity or precedence between events matters.
Thus, synchronous systems can be characterized by a global clock that acts as a reference
for each round of the input-output events. The global clock has no relation to the hard-
ware clock, it only ticks at the different instants. This simple mathematical model makes it
easier to reason about the system, as it is deterministic (the output of the system entirely
depends on the inputs values and instants at which they occur) and predictable. Programs
for synchronous languages can be efficiently compiled into code for a finite state machine
that can be executed on a single processor. Although the synchrony assumption might seem
unrealistic at the beginning, it can be easily validated in the implementation phase, on an
actual execution platform on which the time of reactions is fully taken into account. Real
time constraints should be satisfied by the platform, so that satisfactory bounded delays of
the reactions are ensured. Examples of synchronous languages are Lustre[4] and Esterel [3].

2.4 The Multi-rate Synchronous Language SIGNAL

SIGNAL is a declarative multi-rate synchronous language. While the synchronous languages
have a totally ordered model of logical time, SIGNAL’s model of logical time is partially
ordered. As some variables are independent from each other until the end of the program,
their instants are incomparable, leading the notion of partial order of time. The semantics of
the language does not assume an a priori existence of a reference clock. Each variable (signal)
is characterized by its own clock. In the following section, we introduce some preliminaries
notions related to SIGNAL.
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2.4.1 Preliminaries

The basic entity in a polychronous language is an event.

Definition 2.1. (Event). An event is an occurrence of a new value. We denote the set of
all events in a system by Ξ.

The relative occurrences of events can then be represented using a binary relations, over Ξ.
Such relations define whether or not an event happened before, simultaneously to, or after
another event in the system, or if their relative occurrences do not matter. These relations
are defined below:

Definition 2.2. (Precedence, Preorder, Equivalence). Let ≺ be a precedence relation be-
tween events in Ξ. It is defined such that ∀a, b ∈ Ξ, a ≺ b if and only if a occurs before b.
The relation � defines a partial order on Ξ such that ∀a, b ∈ Ξ, a � b if and only if a occurs
before b or a, b occur logically simultaneously, or their order does not matter. Finally the
equivalence relation ∼, is defined on Ξ such that a ∼ b = a � b∧ b � a, meaning that a and
b are equivalent only if they occur simultaneously or their order does not matter. Thus ∼
represents synchronicity of events.

An instant can also be seen as a maximal set of events that occur in reaction to any one or
more events. A formal definition of instants follows:

Definition 2.3. (Logical Instant or Instant). The set of all instants is denoted by Υ. Each
instant in Υ can be seen as an equivalence partition obtained by taking the quotient of Ξ
with respect to ∼ such that Υ = Ξ/ ∼. For each set S ∈ Υ, all events in S will have the
property ∀a, b ∈ S, a ∼ b, and ∀a, b, (a ∈ S1 ∧ b ∈ S2 ∧ S1 6= S2 ∧ S1, S2 ∈ Υ→ a � b.

Because all instants are equivalence classes, a precedence relationship can be drawn between
instants. We define the relationship ≺ between two sets in Υ such that, S, T ∈ Υ, S ≺ T if
and only if ∀(s, t) ∈ S × T, s ≺ t. Each instant contains events on signals. If a signal has no
event in an instant then it is considered absent.

Definition 2.4. (Signal) Let T by the domain of values that a signal can take and let ⊥
denote a special absent value such that T⊥ = T∪ ⊥; then a signal can be defined as a total
function of type Υ→ T⊥. This means that for each instant in Υ, a value or absence of value
is implied on a signal x. We denote the set of all events in a signal x as E(x).

We denote a specific value of a signal x by function x(t) where t ∈ N and t represents the
tth instant in the totally ordered set of instants where signal x has a value different from ⊥.
x(t) thus returns the tth event value in the signal x.

Definition 2.5. (Epoch, Clock) The epoch, σ(x), of a signal x is the maximum set of instants
in Υ where for each instant in σ(x), x takes a value from T . The clock of the signal x is
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a characteristic function that tells whether or not an event in x is absent or is in the set
T . Clock is a function of type Υ → [true, false] such that for a signal x it returns another
signal x̂ defined by x̂(t) = true if x(t) ∈ T .

Note that not all inputs and outputs are present or computed during every instant in Υ
which means that not all signals have the same epoch or clock. This gives the multi-clocked
or polychronous behavior. Using the above definitions and characteristics, three possible
relationships can be drawn between any two clocks x and y: equivalent, sub-clocked, or
unrelated. If the clocks of x and y are true for the exactly the same set of instants, x̂ = ŷ,
then it is said that these two clocks are equivalent, and the corresponding signals are also
synchronous. If the clock of a signal x is true for a subset of instants where the clock of y is
true then it is said that x is a sub-clock of y. If the clocks of x and y are not equivalent or
subset or superset of the other then the clocks are said to be unrelated [17]. It is obvious
that some specific subsets of relationships may be drawn from clocks that are unrelated. One
type of relationship is mutual exclusion, meaning that x(t) = true if and only if y(t) =⊥
and y(t) = true if and only if x(t) =⊥. These relationships are stored in a structure called
a clock tree.

2.4.2 The SIGNAL Formalism

Primitive Signal operators are:

1. Function:
The function operator performs user defined operations on a set of signals x1,x2, . . .xn
that must be present simultaneously and produces an output y at the same logical
instant.

Operation: y:=f(x1,x2,. . . xn)
Clock Relation: ŷ = x̂1 = x̂2 =. . . x̂n

An example of an AND operation y:=AND(x,z) ,where a boolean signal is represented
by true (t) or a false (f) is shown below.
⊥ represents an absent event and each column represents an instant.

x: f ⊥ t t
z: t ⊥ f t
y: f ⊥ f t

2. Delay:
The delay operator in SIGNAL sends a previous value of the input to the output with
an initial value k as the first output. The original and delayed signals are synchronous
to each other.
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Operation: y:=x $ init k
Clock Relation: ŷ=x̂

An example of the delay operation is given below:

x: v1 v2 v3
y: k v1 v2

3. Under sampling:
The under sampling operator down samples an input signal x based on a given condi-
tion, namely the true occurrence of another input signal z. The output signal clock is
thus equal to the intersection of the clocks of x and z=true, noted [z].

Operation: y:=x when z
Clock Relation: ŷ=x̂ * [z]

An example of a sampler is shown below:

x: v1 v2 v3 v4
z: ⊥ t f t
y: ⊥ v2 ⊥ v4

4. Priority Merging:
This operator merges two signals x and z into one signal y. At any logical instant, if
x is present, then y will have the value present on x, else y will have the value present
on z. If neither x nor z are present, y is absent as well.

Operation: y:=x default z
Clock Relation: ŷ=x̂+ẑ

An example of a default operation is shown below:

x: ⊥ v2 v3 v4
z: w1 ⊥ w3 ⊥
y: w1 v2 v3 v4

The primitive SIGNAL operators and their corresponding clock relations are summarized in
the following table:
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Table 2.2: SIGNAL Primitive Operators and Clock Relations

Operator Expression Clock Relation

Function y:=f(x1,x2,. . . xn) ŷ = x̂1 = x̂2 =. . . x̂n
Delay y:=x $ init k ŷ=x̂
Sampler y:=x when z ŷ=x̂ * [z]
Merge y:=x default z ŷ=x̂ + ẑ

2.4.3 Advanced SIGNAL Constructs

Clock relations are not only inferred from the SIGNAL statement, they can be given explicitly[11]:

• The equation clk := when b implies that clk represents the set of instants at which b
holds true.

• The equation clk ˆ = s implies that clk is the clock of s.

• The equation s1 ˆ = s2 specifies that the signals s1 and s2 are synchronous

• The equation clk := s1 ˆ* s2 specifies the signal clk as the intersection of the clocks
of the signals s1 and s2.

• The equation clk := s1 ˆ+ s2 specifies the signal clk as the union of the clocks of the
signals s1 and s2.

• The equation clk := s1 ˆ- s2 specifies the signal clk as the difference of the clocks of
the signals s1 and s2.

Another useful construct is Cell : y := x cell z init k. In this case, the output signal contains
the values of the first input signal x for all its instants and retains the previous value of x
during the true instances of the second boolean input k. The clock of y is the union of the
clocks of x and z. An example of the Cell operator is shown below:

x: ⊥ v2 v3 ⊥
z: t t ⊥ f t
y: k v2 v3 v3

2.4.4 SIGNAL Processes

A process is set of signal definitions specifying relations between values on the one hand and
clocks on the other hand of involved signals [11]. A SIGNAL program is a process. The
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parallel composition of two Processes P and Q, noted P|Q is the union of equation systems
defined by both processes. P and Q communicate via their common signals. The template
of a SIGNAL process is:

%process interface%
process MODEL =
{ %parameters%}

( ? %inputs%;
! %outputs%; )
(|
%body of the process%
|)

where
%local declarations%

end;
%end of MODEL%

An example of a process is shown below:
Process Sum =

( ? integer s;
! integer sum;)
(| Sum := OldSum+s
| OldSum := Sum $ init 0
|)

where
integer OldSum;

end;

The process is named Sum. It accumulates the inputs s. the input-output ports are declared
using the symbol ? and ! respectively. Its input or output is associated with its type (event,
integer, boolean, real). Each SIGNAL statement consists of the four primitive operators.

2.4.5 Endochrony and Weak Endochrony

Endochrony and weak endochrony are properties of polychronous programs, describing the
schedulability of their computation. They determine whether a specification has determin-
istic order of execution, which is required by compilers for sequential or multi-threaded code
synthesis.

Definition 2.6. (Endochrony) A SIGNAL process is endochronous, if and only if the
scheduling of the computation based on the events arriving at the input signals can be
correctly inferred without any additional information from the environment during the run-
time of the process. This means that a correct scheduling of the internal computations to
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produce the correct sequence of output events can be statically scheduled.

In order to better illustrate the endochrony notion, we introduce Process ENDO [18]. The
inputs x and z are synchronous, since they have to be present at the same time, otherwise the
computation of val is not possible. The second equation tells that z and y are synchronous
as well. In this case the scheduling of the computation can be determined statically: first
read the inputs x and y, then evaluate z and val. So ENDO is an endochronous process.

Process ENDO =
( ? integer x, y;
! integer val;)
(| val := x + z $ init 0
| z := y + 1 $ init 0
|)

where
integer z;

end;

Definition 2.7. (Weak Endochrony) A SIGNAL process is weakly endochronous, if and
only if, it has the ’diamond property’ [19]. In other words, for such a process, even when
a complete static schedule of the computations is not possible, order of the computations
may dynamically depend on the occurrence of events on the input signals, the computation is
confluent. The confluence here means that irrespective of the dynamic order of computation,
the final state of a reaction is the same as the case where all input events occur synchronously.

WEAKENDO is an example of a weakly endochronous process [18]. The clocks of a and
b can not be inferred from the program. Hence, a static schedule can not be determined.
However, regardless of the order of occurrence of a and b, the final result after a pair a and
b is read, is the same.

Process WEAKENDO =
( ? boolean a, b;
! integer val1, val2;)
(| val1 := (x + 1) when a
| val2 := (z + 1) when b
| x := val1 $ init 0
| z := val2 $ init 0
|)

where
integer x, z;

end;
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2.4.6 Uses of SIGNAL

A great advantage of SIGNAL is its convenience for component based design approaches
that allow the incremental modular development of complex systems, since each component
has its own clock. SIGNAL is very adequate for modeling the globally synchronous locally
asynchronous systems (GALS). Besides, as multi-rate models do not have a global clock,
they give more freedom to compilers to chose from different schedules of computation. This
gives the opportunity for more optimized code synthesis. Also, contrary to the synchronous
languages, SIGNAL natively embraces the multi-clock version, and hence multi-threading is
easier to implement.

2.5 Comparison between SIMULINK and SIGNAL

Both SIMULINK and SIGNAL are data-flow languages. They both manipulate Signals. A
signal is a function of time. A system performs a specified operation on an input signal and
produces an output signal. In SIMULINK, signals correspond to the wires that connect the
blocks in a model. In SIGNAL, a signal is the program variable corresponding to a stream.
The systems in SIMULINK are library blocks that could be simple (e.g., Adder, Product)
or composed (subsystems). In SIGNAL, systems are built-in operators (e.g., when, default),
as well as user defined ones, called Processes.
Another similarity consists in the hierarchical composition of systems. In SIMULINK, the
subsystems are drawn graphically within their parent system, to form a tree structure. In
SIGNAL, as well, a parent process can contain multiple subprocesses.
Despite of this similarities, SIMULINK and SIGNAL are different is several major ways:
First, SIGNAL has a well defined formal semantic, whereas SIMULINK’s behavior strongly
depends on the choice of the simulation parameters. For example, some models are accepted
if we allow to handle rate change automatically, others are rejected if the automatic rate
change opting is unchecked.
Second, SIGNAL has a discrete time semantics, whereas SIMULINK has a continuous one[3].
Even the blocks belonging to the discrete library produce piece-wise constant continuous-
time signals.
Third, SIGNAL is a strongly typed language that explicitly specifies the type of each flow.
However, SIMULINK does not require the type specification for each block. This can be
done, using, for instance, a Data Type Converter Block. The typing mechanisms of both
languages are discussed more in details in Section 4.3.
Finally, SIGNAL is a multi-rate language, which means that two variables can be of different
rates and can remain unrelated throughout the program. However, SIMULINK, both in
sample-driven and event-driven cases, has a global clock, namely the simulation clock, that
is synchronous with every clock in the model. A more detailed description of the timing
mechanisms of both SIMULINK and SIGNAL will follow in Section 4.5.



Chapter 3

Related Work

In this section, we discuss the past research aimed at formalizing SIMULINK modeling
language. A hand full of research efforts in the past have tried to give formal semantics
to SIMULINK either by converting its models into a synchronous language like Lustre,
into hybrid automata, or I/O extended Finite Automata or into a system of mathematical
equations.

3.1 Translating SIMULINK to a Formal Language

Translating SIMULINK models to a formal langage is one of the most popular solutions for
dealing with the informal semantics of SIMULINK. The main motivation for this approach
lies in gaining access to the analysis and verification tools of the target language.

3.1.1 SIMULINK to LUSTRE

Lustre is a synchronous data flow language. A number of formal validation tools exist
for Lustre, such as the model checker Lesar [20], the tester [21] and the graphical design
environment commercialized by Esterel Technologies, SCADE [22]. SCADE also allows
C code generation. As Lustre has discrete semantics, while SIMULINK has hybrid one,
only a subset of the SIMULINK models, namely the discrete ones can be safely translated.
The translation flow, followed in [10] starts with clock and type inference, to derive useful
information to be used in the hierarchical bottom up, block by block translation. Basic
blocks like Addition or Multiplication are translated to primitive Lustre operators. Complex
nodes like Subsystems are translated to Lustre nodes, which are carefully named in order to
keep track of the original SIMULINK hierarchy.

14
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3.1.2 SIMULINK to Synchronous BIP

Synchronous BIP [23] is a subset of the BIP framework for data-flow modeling. BIP stands
for ”Behavior, Interation, Priority”. It is a component framework. Each component is the
superposition of three layers: Behavior, described by Automata extended with C Code,
Interaction specifying the relationship between behavioral actions and Priority, providing
scheduling rules for the component interactions. A system is then described as the compo-
sition of generic atomic components. Similar to Lustre, BIP has discrete semantics. It also
has a toolset for design verification and automatic code generation. The translation from
SIMULINK to BIP[8] is compositional: each SIMULINK component is translated into a
BIP component. Basic blocks are translated into their equivalent elementary blocks in BIP.
Structured blocks like subsystems are translated recursively.

The disadvantage of choosing the formal methods as a target language for the translation
lies in their restriction to discrete time semantics.

3.2 Translating SIMULINK to a Hybrid Automata

Unlike the formal languages, Hybrid Automata[24] (HA) are designed to describe systems
with both continuous and discrete semantics. HA is a nite state machine with a nite set of
continuous variables whose values are described by a set of ordinary differential equations.
A HA is characterized by a tuple (M,M0,Σ,X,∆,I,F,V0):

• M: is a finite set of control modes

• M0: is the initial state of control modes

• Σ: is a finite set of actions

• X: is a finite set of real valued variables

• ∆ ⊆ M × pred(X) × Σ × pred(X ∪ X́)

• I: M → is the mode invariant function

• F: M → pred(X ∪ X́) is the mode dependent flow function

• V0 ∈ pred(X) is the set of initial valuations

In [9], a semantic translator from SIMULINK to Hybrid System Interchange Format (HSIF)
was introduced. HSIF is a network of hybrid automata, which can interact with each other
using signals (single writer multiple reader variables) and shared variables. Signal propaga-
tion among automata follow the topological order of dependencies. HSI is characterized by
a tuple (HA, V, P, C).
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• HA: Hybrid Automata

• V: Finite Set of Variables(Inputs, Outputs, Shared Variables, Local Variables)

• P: Set of Parameters

• C: Input Constraint

Many simulation, verification and code generation tools have HSIF import or export ports.
The translation was limited to continuous blocks (Integrator, Zero-Pole, . . . ), Mathematial
Operators (excluding logical blocks), Sources (Constant, In), Sink (Out), Switch and STATE-
FLOW Diagrams. The translation from SIMULINK/STATEFLOW is based on graph trans-
formation. :

1. Enumeration of switching signals: Switching signals need to be identified, since
they change the structure of the dynamics.

2. Transformation of states to locations: The number of locations in HSIF is deter-
mined by the Stateflow machine, since all the switching signals originate from there.

3. Transformation of state transition to location transitions: One state transition
might be mapped to many transitions in HSIF.

4. Generation of equations: Differential and algebraic equations are generated for each
location based on the SIMULINK diagram.

5. Generation of invariants: Invariants are generated from transition conditions and
STATEFLOW variables.

6. Pruning unreachable locations: Unreachable locations are deleted.

Similar to the formal languages,HA have the advantage of available static analysis tools and
methods. They can also model both continuous and discrete systems. However, they have
not been formally standardized.

3.3 Translating SIMULINK to a System of Equations

Chapoutot et. al.[7] proposed to assign formal semantics to SIMULINK’s simulation engine,
solver and a subset of blocks that span discrete and continuous operations. The dynamical
SIMULINK system is represented as a State Space (3.1). Continuous time fx : R × Rnx ×
Rnd −→ Rnx as well as discrete time fd : R × Rnx × Rnd −→ Rnd state functions, are
considered to represent the fact that SIMULINK models are hybrid systems. The output
function is g : R×Rnx×Rnd −→ Rm. Here, x is the continuous state, d is the discrete state,
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nx is the number of continuous state variables, nd is the number of discrete state variables
and m is the number of outputs.

ẋ(t) = fx(t, x(t), d(t)) (3.1)

ḋ(t) = fd(t, x(t), d(t)) (3.2)

y = g(t, x(t), d(t)) (3.3)

d(0) = d0 (3.4)

x(0) = x0 (3.5)

The simulation goal consists of finding the solution for the set of equations (3.1). The
simulation algorithm can be formulated as follows:

Algorithm 1: Simulation Algorithm [7]

Data: Input: x0,d0,h0,t0
n=0;
while (tn > tend) do

Evaluate g(tn, xn, dn)
Compute ḋ(t) = fd(t, x(t), d(t))
Solve ẋ(t) = fx(t, x(t), d(t)) ∀ t ∈ [tn,tn + hn]
Check for zero-crossing
Compute hn+1, tn+1

end

t is the time and h is the integration step size. fd and fx are derived from the equations of
the single SIMULINK blocks by inspection of the .mdl file. The following BNF grammar is
used for the equation generation:

e ::= r|l|x|d|e1 � e2|e14e2|if(e1, e2, e3) (3.6)

eq ::= l :=s e|l := e|ẋ := e|ḋ :=s e (3.7)

p ::= eq|eq; p (3.8)

In this context, � represents the arithmetic operations, 4 represents the boolean operations,
x is the continuous state variable, d is the discrete state variable, r is a real constant and
l is the output of a given block. For the purpose of the simulation, the equations can be
categorized into four subsets:

• Major Step Equations: of the form l :=s e or l := e, are basically all equations
sampled and continuous

• Minor Step Equations: are the subset of Major Step Equations that are without
any time sampling

• Update Step Equations: of the form ḋ :=s e, correspond to discrete blocks
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• Solver Step Equations: of the form ẋ := e, correspond to continuous blocks

These subsets of equations evaluate one after the other during the simulation loop. Table
3.1 shows examples of the formulas derived for some blocks. This approach was validated by

Table 3.1: SIMULINK Blocks Equations Using the BNF grammar

Blocks Equations

Constant l1 = constant
Output out1 = l1

Add l3 = l1 + l2
Switch l4 = if(pr(l2), l1, l3)

Integrator l2 = x; ẋ = l1;x(0) = init

Unit Delay l2 = d; ḋ = l1; d(0) = init

comparing the outputs of the SIMULINK simulator and the simulator based on the system
of equations for three case studies. The system of equations approach is able to cover both
discrete and continuous blocks, similarly to the HA. However, this approach lacks tools for
the equation grammar verification and simulation.

3.4 Contribution of the Thesis

Since in safety critical systems, we are only interested in implementing the controller on a
digital computer, it is sufficient to use a model of computation with discrete semantics. In
order to take advantage of the high computing power resulting from Multi-core architectures,
multi threading is very desired. Due to its multi-rate formalism, the polychronous language
SIGNAL, leads naturally to multi-threaded code synthesis. This makes SIGNAL an inter-
esting candidate for the design of such systems. This justifies our motivation for choosing
SIGNAL as a target language.
Although we adopt a similar translation flow as in [10], the novelty in this thesis consists
in bridging the gap between the almost synchronous model of computation of SIMULINK
into a polychronous model of computation. Unlike Lustre, SIGNAL does not have an ex-
ternal global clock. However, if the SIMULINK model has the endochronous property, a
global clock can be derived using the clock calculus. If a global clock cannot be found, a
polychronous model leading to multi-threaded behavior emerges. We replace the sampling
mechanism in SIMULINK by the generation of affine clock relations between the subpro-
cesses of SIGNAL, which would guarantee the equivalence between the traces generated by
SIGNAL and the ones resulting from SIMULINK. If not used for the synthesis of SIGNAL,
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our tool can be utilized for type checking and clock inference, which detect errors in the
SIMULINK model.



Chapter 4

Translating discrete time SIMULINK
to SIGNAL

4.1 Translation Goals and Assumptions

The problem of semantic translation can be formulated as follows: Given a SIMULINK
model of a dynamic system, compute a flow equivalent dynamic system model in SIGNAL
which produces the same execution traces as the simulation output of the simulation mode.
Our tool rejects the models with typing or timing errors flagged by SIMULINK. We limit
our translation to the discrete time part of SIMULINK into Signal. This is justified by the
fact that only the controller in safety critical systems is implemented on the computer, hence
the controller must be designed in discrete time. The list of supported SIMULINK blocks is
(see Figure 4.1):

• Input/Output Blocks: From Workspace, To Workspace, Output, Input, Constant,
Pulse Generator

• Discrete Time Blocks: Difference, Unit Delay, Integer Delay, Zero-order Hold, Dis-
crete Filter, Discrete Transfer Function

• Math and Logic Operations: Add, Product, Gain, Saturation, Relational Operator.

• Virtual Blocks: Mux, Switch, Data Type Conversion, Subsystem, Enabled Subsys-
tem, Triggered Subsystem

As SIMULINK semantics depend on the simulation method, we limit our translation to one
method. We chose the solver to be discrete and fixed step, the simulation mode to be auto
and to automatically handle rate transition for data transfer deterministically. We also as-
sume that the boolean logic signals flag is on.

20
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Input/Output

Discrete

Math

Virtual/Subsystem

Figure 4.1: Supported SIMULINK Blocks
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We have developed our translation method based on MATLAB 7.12.01 (R2011a) and SIMULINK
block Library V7.7.

4.2 Translation Flow

Figure 4.2: Translation Framework

As it is shown in Figure 4.2, the translation involves in five steps:

• XML File Generation and Parsing: The SIMULINK model (.mdl) can be directly
saved as an XML file in the SIMULINK environment. Our tool parses the XML file
using a C++ XML parser called pugiXML and builds a data structure representing
the original SIMULINK model.

• Type Inference: In this step, type checking of the SIMULINK model is performed.
In case of type incompatibilities, the model is rejected. Otherwise, the types of signals
in SIMULINK are inferred and mapped to their corresponding ones in SIGNAL (See
Section 4.3).

• Clock Inference: In this step, timing rules for SIMULINK are checked and invalid
models are rejected. Otherwise, the sampling period and phase for each block are
inferred. From the generated timing information, affine clock relations between the
single blocks inferred and used to generate a semantically equivalent SIGNAL program
(See Section 4.5).
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• Translation: The translation is done in a hierarchical way, each subsystem is trans-
lated to a SIGNAL program, the blocks in the subsystem are translated into subpro-
cesses in the parent process. The clock relations and types from the previous step are
used for characterization and rate adaption between the processes (See Section 4.7 and
Section 4.8).

4.3 Type Inference

4.3.1 Types in SIMULINK

Unlike SIGNAL, variable types are not explicitly declared in SIMULINK. However, implic-
itly, SIMULINK has some typing rules. The simulation engine rejects some models because
of typing errors. The basic types for SIMULINK are: boolean, double, single, int8, uint8,
int16, uint16, int32, uint32. The main SIMULINK typing rules are:

1. By default, all signals are of type double, except when a block requires a defined type.
For example the inputs of Logical Operator blocks must be of type boolean.

2. The user can explicitly set the type of a signal to another type (e.g., by a Data Type
Converter Block)

3. An error type occurs when incompatible types are fed in one block, for example, when
a boolean and an integer are fed to the same Adder block. The typing rules for each
block are given by Table 4.1. We define T Num={double, single, int8, uint8, int16,
uint16, int32, uint32}, and T Bool={boolean}. Let {α, φ} ∈ T Num, θ ∈ TBool and
{γ,β} ∈ {TBool, TNum}

4.3.2 Types in SIGNAL

SIGNAL is a strongly typed language. This means that variables have a declared type
and operations have precise type signatures. The basic types for SIGNAL are integer, real
and boolean. Type casting can be performed similarly to C. For example, an integer x is
converted to a real y as follows: y = integer(x).
The array type allows grouping synchronous elements of the same type. The notation is as
follows: [inp1, . . . ,inpN ] element type. This means an array of size N with elements of type
element type.
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Table 4.1: Typing Rules for Some SIMULINK blocks

SIMULINK Block Typing Rule

Constant α
Adder α × . . .× α → α
Gain α → α

Relational Operator α × α → θ
Logical Operator θ × . . .× θ → θ

Discrete Transfer Function α → α
Unit Delay γ → γ

Data Type Converter γ → β
Switch α × φ × α → α

Inport, Outport γ → γ

4.3.3 Type Inference

The goal of this step consists of inferring the type of each signal in SIMULINK, so that its
corresponding type in SIGNAL can be used during the translation. For the type inference,
we use a fix-point algorithm on the lattice shown in Figure 4.3. ⊥ means undefined type
and error means typing error. We call xT ∈ TSim the type variable corresponding to the
variable x, with TSim={TNum,TBool}. We define a monotonic function sup: (TSim)n −→ TSim
in the type lattice, with n the number of blocks in the SIMULINK model. Sup(xT ,yT )=zT ,
denotes that zT is a least common upper bound of xT and yT . The fixed point is calculated
on the set of equations shown in Table 4.2.
To implement the type inference algorithm, we consider the Type Matrix corresponding to

Figure 4.3: The Type Lattice
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Table 4.2: Type Inference Equations. Stavros Tripakis, Christos Sofronis, Paul Caspi, and
Adrian Curic. Translating discretetime simulink to lustre. ACM Transactions on Embedded
Computing Systems (TECS), 4(4):779818, 2005. Used under fair use, 2014

SIMULINK Equation Type Equation

y = Adder(x1, . . . , xk) yT = xT1 = · · · = xTk = Sup(double, yT , xT1 , . . . , x
T
k )

y = Constantα yT=if yT 6 α then α else error
y = DataTypeConverterα(x) yT=if yT 6 α then α else error

y = UnitDelay(x) xT=yT

y = RelationalOperator(x1, x2) xT1 =xT2 =sup(double,xT1 ,xT2 ),yT=boolean
y = LogicalOperator(x1, . . . , xk) xT1 =xT2 =xT1 = . . . = xTk=yT=boolean

y = switch(x1, x2, x3) xT1 =xT1 =yT=sup(xT1 ,xT3 ,yT )

the SIMULINK Block. The Type Matrix for a model with three components A, B and C is:

TypeMatrixm,n =

tAA tAB tAC
tBA tBB tBC
tCA tCB tCC

 (4.1)

The corresponding Type Matrix for the SIMULINK model shown in Figure 4.4 is:

TypeMatrixm,n =


Undef Double Undef Undef Undef Undef
Double Undef Double Undef Undef Undef
Undef Double Undef Undef Double Double
Undef Undef Undef Undef Double Undef
Undef Undef Single Double Undef Undef
Undef Undef Double Undef Undef Undef

 (4.2)

Figure 4.4: The Type Matrix Generation Example

tij corresponds to the undefined type, if there is no connection between the components
i and j in the SMULINK model M , otherwise tij corresponds to the output type of the
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component i and tji is the input type of component j. The fixed point algorithm consists of
calculation T Matrixn+1 from (T Matrixn), so that the equations in Table 4.2 are satisfied,
until T Matrixn+1=T Matrixn. Each column i in T Matrixn+1 contains all the types of the
inputs and outputs of the block i. The inferred type of a given block bi inputs (T Inp) and
outputs (T Out), results from evaluating the function Sup over all the elements of the column
i. This is valid for most of the blocks whose inputs and outputs are from the same type (e.g,
Unit Delay, Adder). For the blocks, whose outputs and inputs are from a different types
(e.g, Logical Operator, Data Type Converter), we apply the Sup function separately on the
inputs and outputs. The types in T Matrixn are then replaced by the newly inferred type.
We repeat this process until T Matrix does not change between two successive iterations
(T Matrixn = T Matrixn+1). In each iteration, we check whether a type incompatibility
occurs, in which case the model is rejected. Our algorithm is slightly different from the
conventional fixed point ones, since the block input and output types are initialized with
the types double or boolean (not ⊥) according to the block type. In the first iteration we
check the T Matrix symmetry, this is equivalent to checking whether a signal is assigned
two different types. If the types are incompatible, the model is rejected, otherwise the signal
type is set to Sub(T Matrix 0[i][j],T Matrix 0[j][i]). The type inference algorithm is shown
in Alg 2.
To illustrate the discussed Algorithm, we consider two examples of SIMULINK models.
The First example (See Figure 4.5) illustrates the case, where a model is rejected because
of type incompatibility between the input type of B2 and the output type of B1, since
Sup(T Matrix[1][2],T Matrix[2][1])=Sup(bool, double)=error. The iteration steps are shown
in Table 4.3.3.

B1 B2

Figure 4.5: Type Inference (Example 1)

Iteration 1 Iteration 2(
Undefined Double
Boolean Undefined

)
TYPING ERROR!
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Algorithm 2: Type Inference Algorithm

Data: Input: T Matrix0
n=0;
forall the (blocks bi AND bj in M) do

if (T Matrix0[i][j] != T Matrix0[j][i]) then
Sp = Sup (T Matrix0[i][j],T Matrix0[j][i])
if (Sp = Error) then

return TYPING ERROR
else

T Matrix0[i][j] = Sp
T Matrix0[j][i] = Sp

end

end

end
while ((n==0) OR (T Matrixn+1 != T Matrixn)) do

if (n > 0) then
n++

end
forall the all blocks bi of M do

if ((bi.T ype = DataTyperConverter) OR (bi.T ype = RelationalOperator)) then
T Inp = Sup (T Matrixn[1][i],. . . ,T Matrixn[n][i],Inputs[i])
T Out = Sup (T Matrixn[1][i],. . . ,T Matrixn[n][i],Outputs[i])

else
T Inp = T Out = Sup(T Matrixn[1][i],. . . ,T Matrixn[n][i],Inputs[i],Outputs[i])

end
if (Sp = Error) then

return TYPING ERROR
else

T Matrixn+1 = Replace (T Inp,T Out,T Matrixn)
end

end

end

For the model shown in Figure 4.6, two iteration steps are performed (See Table 4.3.3). As
Sup(T Matrix[1][2],T Matrix[2][1])=Sup(int8, double)=int8, the inferred types are:

uT

xT

yT

zT

 =


Double

Int8
Int8
Int8

 (4.3)
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Figure 4.6: Type Inference (Example 2)

Iteration 1 Iteration 2(
Undefined Int8
Double Undefined

) (
Undefined Int8

Int8 Undefined

)

Hierarchical SIMULINK models are flattened, in order to generate a Type Matrix, where
only basic blocks are related to each others. For example, the Type Matrix of the model in
Figure 4.7 is the same as the one generated from the model in Figure 4.6

Figure 4.7: Type Inference (Example 3)

4.4 Type Translation

Once the type Inference step is completed, the obtained SIMULINK types are mapped to
their corresponding SIGNAL ones, as it is shown in Table 4.3.
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Table 4.3: SIGNAL Primitive Operators and Clock Relations

SIMULINK Type SIGNAL Type

bool Boolean
int8,uint8, int16, uint16, int32 or uint32 Integer

⊥,double,single Real

4.5 Clock Inference

4.5.1 Time in SIMULINK

SIMULINK has two different timing mechanisms, namely samples and triggers.

Sample Time

The discrete time SIMULINK signals are piecewise-constant continuous-time signals. Blocks
in SIMULINK can be assigned sample times, as configuration parameters. A sample time
equal to 2, means that the block should be evaluated every two ticks of the global simulation
clock. The sample time corresponds then to the period π of the block output signals. Some
blocks (e.g, Pulse Generator) can also be characterized by initial phase θ, which is propagated
to the neighboring blocks. Hence, in general, every block is characterized by a period π and
a phase θ. It is evaluated every kπ+θ (k=0,. . . ,n). By default blocks have their sample
time set to -1, which corresponds to an inherited (from the inputs or the parent subsystem)
value. We assume that the configuration option Automatically handle rate transition for
deterministic data transfer is chosen. SIMULINK has some timing rules, if violated, the
model is rejected:

• The inputs of a basic block B (apart from Subsystems) must have sample times that
are multiplier or divisor of the block sample time.
(πInp1...n = k πB) OR (πInp1...n = 1

k
πB) , with k = 0, . . . , n

• Enabled and Triggered Subsystems’ inputs should have the same sample times.
πInp1 = · · · = πInpn

Figure 4.8 shows an example of the execution flow of a SIMULINK model. In the Adder
block undersampling with a factor of 2 is performed .
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Figure 4.8: Timing Mechanism in SIMULINK (Sample Time)

Triggered Subsystem

The second timing mechanism of SIMULINK is the triggers. Only subsystems can be trig-
gered by a signal Trig. The triggered subsystem is evaluated if Trig has a rising or falling
transition. The sample time of the blocks inside a triggered subsystem are all equal to the
period T of the triggering signal. Figure 4.10 shows the execution flow of a triggered sub-
system. We assume that the triggered subsystem has no sub-blocks inside. The Subsystem’s
input is directly linked to its output. Only the inpu values happening at a rising trigger
signal (transition from 0 to 1) are emitted at the output.

Figure 4.9: Timing Mechanism in SIMULINK (Triggered Sub-System)

Enabled Subsystem

The timing mechanism of the enabled subsystem is ambiguous [10]. It cannot be understood
from a set of experiments. For the sake of the translation, we assume that the enabled
subsystems have the same timing mechanisms as the triggered ones. The only difference lies
in the block is evaluated if the Enable signal is equal to 1. Figure 4.9 shows the execution
flow of an enabled subsystem. We assume that the subsystem contains no sub-blocks. The
subsystem’s output is directly linked to its input.
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Figure 4.10: Timing Mechanism in SIMULINK (Enabled Sub-System)

4.5.2 Time in SIGNAL

SIGNAL has a partially ordered logical time. This means that the duration is abstracted
to a point, namely the logical instant, and the time instants are partially ordered. Similar
to the synchronous languages, SIGNAL also assumes the synchrony hypothesis (See 2.3).
However, SIGNAL does not have a global clock, as a reference for sampling all the signals at
each tick. Each SIGNAL flow x is characterized by a boolean flow bx, called the clock of x. If
x is present at instant i, bx(i) is equal to true, otherwise it is equal to false. The signal clocks
can be independent until the end of the program. In case of synchronization requirements,
extra timing constraints can be added. Epoch analysis is performed, in order to determine
whether a sequential program can be synthesized from the SIGNAL specifications. In other
words, it determines whether a Master Trigger can be found. If not, exogenous constrains
are required from the user to form a Master Trigger [? ]. We refer the reader to [? ] for
more detailed discussion on SIGNAL timing model.

4.5.3 Clock Inference

The blocks inside a triggered or enabled subsystem must have a sampling period and phase
equal to the ones of the enclosing Triggered/Enabled subsystem. Otherwise, we consider two
cases. In a first case, the sample time of a given block bi is defined (Periodes[i]!=-1). If it is
a multiplier or divisor of the input signals’periods, it is kept. If, however, the sample time of
the block is undefined (Periodes[i]==-1), it is inferred as the greatest common divisor of the
input signals’ periods[10] (See Formulas 4.4/4.5). The clock inference Algorithm is shown
below:

(πB, θB) = GCDrule((πi, θi)i=1...n) (4.4)

where:

πB =

{
gcd(π1, . . . , πn) if θ1 = · · · = θn

gcd(π1, . . . , πn, θ1, . . . , θn) otherwise
(4.5)



Safa Messaoud Chapter 4. Translating Discrete Time SIMULINK to SIGNAL 32

θB =

{
θ1modπ if θ1 = · · · = θn

0 otherwise
(4.6)

For Example:
GCDrule((4,0),(3,0)) = (1,0)
GCDrule((12,4),(12,0)) = (4,0)
GCDrule((12,4),(4,4)) = (4,4)
GCDrule((12,4),(12,3)) = (1,0)

Figure 4.11 and Figure 4.12 illustrate timing errors, because of which the SIMULINK model
is rejected. In Figure 4.11, the triggered Subsystem has three inputs with different periods.
In Figure 4.12, the adder has a sample time equal to 5, which is neither a multiplier nor a
divisor of the input periods 4 and 2. Figure 4.13 shows an example of clock inference. The
sample periods of the Adder and Multiplier are initially undefined. First, the Adder period
is set to the greatest common divisor of the periods of the Constant and Unit Delay blocks,
namely 2. Similarly, the sample time of the Multiplier is inferred to be 1.

Figure 4.11: Example 1: Clock Inference Timing Error

Figure 4.12: Example 2: Clock Inference Timing Error
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Algorithm 3: Clock Inference Algorithm

Data: Input: SIMULINK Model M
% Set the periods of the blocks enclosed in a Triggered or Enabled Subsystem
forall the (blocks bi in M) do

if ((bi.ParentBlockType=Enabled SubSystem) OR (bi.ParentBlockType=Triggered
SubSystem)) then

bi.Period=ParentBlockPeriod
bi.Phase=ParentBlockPhase
bi.IsFixedPeriod=true

else
bi.IsFixedPeriod=false

end
Periodes1[i]=bi.Period
Phases1[i]=bi.Phase

end
% Set the number of iterations to 0
n=0;
% Iterate until a fixed point is reached
while (n==0) OR(Periodesn!=Periodesn+1) do

if (n > 0) then
n++

end
forall the (blocks bi in M) do

if (bi.IsFixedPeriod==false) then
% Clock Inference
if (Periodesn[i]==-1) then

(Periodesn+1[i],Phasesn+1[i])=GCDRule(InputPeriodes[i],InputPhases[i])
else

% Detect Timing Errors
if (!IsMultOrDiv(Periodesn[j],Phasesn[j],InputPeriodes[i],InputPhases[i])
then

return TIMING ERROR
end
if ((bi.Type=Enabled Subsystem) OR (bi.Type=Triggered Subsystem) AND
AreDifferent(InputPeriodes[i])) then

return TIMING ERROR
end

end

end

end

end

Apart from SIGNAL code synthesis, our tool can be used for checking typing and timing
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Figure 4.13: Example 3: Clock Inference

errors in SIMULINK. Hence if the model is rejected in SIMULINK, our tool will reject it as
well.

4.6 Clock Translation

Once all the sample times are inferred from the previous step, we use these information to
reproduce the same traces of SIMULINK. The blocks inside a triggered or enabled subsystems
are assigned the periods and phases of the trigger/enable signal. For the rest of the blocks,
according to the ratio between the periods of the every connected blocks A and B, we
distinguish three cases:

Figure 4.14: Clock Translation

• Case 1: α = PeriodeA
PeriodeB

= 1
In this case, no extra timing constraints should be taken into account. The output
signal clock of A is equal to the output signal clock of B.

outputA ˆ = inputB ˆ = outputB

• Case 2: α = PeriodeA
PeriodeB

> 1
The clock of the output signal of A is faster than the one of B. In this case, Under-
sampling should be performed in B. The clock relation between the input and output
signals of B is:

ˆ outputB = α ˆ inputB + β
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β here is the phase difference between outputB and inputB: β = PhaseB-PhaseA
In order to implement the discussed affine clock relation, we consider a counter vari-
able cnt, that has the same clock as the input signal outputA. Hence, staring from the
initial phase, cnt is incremented every time a new input is read. When cnt reaches a
multiplier of α, the function f performed by the block is evaluated and the output is
produced. The following SIGNAL code illustrates how undersampling is performed, in
case of a Unit Delay block:

| cnt := (cnt+1) $ init (PHASEB-PHASEA);
| cnt2 := cnt modulo (PERIODEA/PERIODEB);
| cnt ˆ= inputB ;
| tmp := inputB $ init 1;
| outputB := tmp when (cnt2=0);

The flow of the output signal outputB for the Unit Delay block, with α=2 and β=0 and
initial value v0, is shown below. The obtained flow is equivalent to the one produced
by SIMULINK, when the sample time of B is double the one of A.

OutputA v1 v2 v3 v4 v5 v6
Cnt 0 1 2 3 4 5
Cnt2 0 1 0 1 0 1
tmp v0 v1 v2 v3 v4 v5
OutputB v0 · v2 · v4 ·

• Case 3: 1
α

= PeriodeA
PeriodeB

< 1
The clock of the output signal of B is faster than the one of A. In this case, Oversam-
pling should be performed in B.
Similarly to the Undersampling case, the clock relation between the input and output
signals of B is:

ˆ outputB = α ˆ inputB + β

β here is the phase difference between outputB and inputB: β = PhaseB-PhaseA
In order to implement the discussed affine clock relation, we consider a counter variable
cnt, that has the same clock as the output signal outputB. Hence, staring from the
initial phase, cnt is incremented. When cnt reaches a multiplier of α, a new input
is read, the function f performed by the block is evaluated and a new output is pro-
duced. Otherwise, the old output is emitted. The following SIGNAL code illustrates
how oversampling is performed, in case of a Unit Delay block:
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| cnt := (cnt+1)$ init (PHASEB-PHASEA);
| cnt2 := cnt modulo (PERIODEB/PERIODEA);
| cnt ˆ= outputB;
| inputB ˆ= when (cnt2=0);
| tmp := input $ 1 init 1;
| outputB := tmp cell ˆoutputB;

The flow of the output signal OutputB for the Unit Delay block, with α=2 and β=0 is
shown below. The obtained flow is equivalent to the one produced from SIMULINK,
where the sample time of A is double the one of B.

OutputA v1 · v2 · v3 · v4 · v5 · v6
Cnt 0 1 2 3 4 5 6 7 8 9 10
Cnt2 0 1 0 1 0 1 0 1 0 1 0
stmp v0 · v1 · v2 · v3 · v4 · v5
OutputB v0 v0 v1 v1 v2 v2 v3 v3 v4 v4 v5

4.7 Basic SIMULINK Blocks translation

• Sum Block
The Sum Block performs addition or substraction on its inputs. The operation of the
block is specified by the list of signs parameters ((+) and (-)), indicating the operations
to be performed on the inputs.

| out := inp1 + inp2 - inp3

• Product Block
The Product Block multiplies two inputs with each other.

| out := inp1 * inp2

• Difference Block
The Difference Block subtracts the old output from the new input.

| tmp := inp $ init INITVAL
| out := inp - tmp

• Gain Block
The Gain Block performs a multiplication of the input with a constant.
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| out := inp * GAIN

• Logical Operator Block
The Logical Operator block performs a boolean operation Op ∈ {AND,OR,NOT} on
its inputs.

| out := inp1 Op Inp2

• Relational Operator Block
The Relational Operator block performs a logical operation Op ∈ {<,>,=,≥,≤} on its
inputs.

| out := inp1 Op inp2

• Unit Delay and Integer Delay Block
The output of the Unit Delay/Integer Delay blocks is a delayed version of the input
by NB DELAY instants. NB DELAY is equal to 1, in case of a Unit Delay Block.
INIT VALUE is the initial value of the output.

| out := inp$ NB DELAY init INIT VALUE

• Data Type Conversion Block
The data type conversion is translated into a Type Casting operation. For example,
the following code translates a real input into an integer output.

| out := (integer) inp

• Zero-Order Hold Block
If the sample time of the Zero-Order Hold Block is set to -1, it is equivalent to the
identity function:

| out := inp;

Otherwise, the clock translation, as explained in Section 4.6 is performed.

• Constant Block
The Constant Block value is added in SIGNAL to the list of the parent process pa-
rameters.

• Saturation Block

The Saturation Block truncates its inputs according to an upper limit (UP LIM) and
a lower limit (LOW LIM) bounds given by the user.
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| out := (UP LIM when (inp>UP LIM)) default (LOW LIM when (inp< LOW LIM)))
default input

• Switch Block

The Switch Block has three inputs. It compares its middle input textitinp2 to a
THRES value. If it is greater than the THRESHOLD, the first input is passed to the
output, otherwise the third input is emitted as an output.

| out := (inp1 when (inp2 > THRES)) default (inp3 when (inp2 < THRES))

• Pulse Generator
The Pulse Generator with a period= 5, a phase= 2 and a pulse width=2 is translated
into the following SIGNAL code:

process PulseGeneratorL1=
{ real AMPLITUDE}
(? !real out;)
(| dpg1:= dpg2 $1 init AMPLITUDE
| dpg2:= dpg3 $1 init AMPLITUDE
| dpg3:= dpg4 $1 initreal(0)
| dpg4:= dpg5 $1 initreal(0)
| dpg5:= dpg1 $1 initreal(0)
| pha1 := dpg1 $1 initreal(0)
| pha2 := pha1 $1 initreal(0)
| out := pha2
|)

where
real dpg1,dpg2,dpg3,dpg4,dpg5,dpg6,dpg7,dpg8,dpg9,dpg10,pha0;

end;

• Discrete Filter and Discrete Transfer Function
The Discrete Filter/Discrete Transfer Function considered parameters during the trans-
lation are the nominator coefficients number NB COEFF N and values VAL COEFF N,
the denominator coefficients number NB COEFF D and values VAL COEFF D and
the initial state value INIT VAL. The transfer function 1

1+0.5z−1 is translated into the
following SIGNAL code:

Process Filter=
{ integer NB COEFF N;
integer NB COEFF D;
[ NB COEFF D ] real INIT VAL;
[ NB COEFF N ] real VAL COEFF N;
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[ NB COEFF D] real VAL COEFF D;}
(? real input;
! real output;
)
(| output := (input * VAL COEFF N[0]+tmp0)/VAL COEFF D[0]
| tmp0:=(- VAL COEFF D[1] * output )$1 init INIT VAL
|)

where
real tmp0;

end;

• Mux
The Mux block combines its inputs into a single vector output. It is generally used to
merge the output of different blocks. The SIGNAL code for a Multiplexer with three
inputs inp1, inp2 and inp3, with respectively N1, N2 and N3 elements is:

Process Mux=
{integer N1;
integer N2;
integer N3;}
(? [N1] integer inp1;
[N2] integer inp2;
[N3] integer inp3;
! [N1+N2+N3] integer out;)
(|out := [inp1,inp2,inp3]
|)

where
end;

• Combinatorial Logic
The Combinatorial Logic block implements a truth table. It reads a boolean number,
and outputs the row in the boolean table corresponding to the read input.

Process CombinatorialLogic =
{integer N;
integer M;
integer K;
[N] boolean TruthTab;
}
(? [M] boolean inp;
! [K] boolean out;

);
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(| array i to (M-1) of
(| Row:= Row[?]+ ((1 when inp[i]) default (0 when not inp[i]))|)
with
(| Row:=0 |)
end

| index0:= Row*K-K..Row*K
| output := TruthTab[index0]

• From Workspace
This block is translated into an input of the SIGNAL process.

• To Workspace
This block is translated into an output of the SIGNAL process.

• Trigger
The Trigger block takes a real/integer flow and transforms it into a boolean flow. We
distinguish between Rising Trigger, Falling Trigger or Either. The Rising Trigger gets
the value true when an input transition from a negative number to a positive one
happens. The Falling Trigger is true when an input transition from a positive to a
negative value occurs. The Either trigger is true, if either a rising or a falling transition
happens. The following example, illustrates better the trigger mechanism:

Input −1 0 1 2 −2 3 1 4 −1 5 6
Rising Trigger f t f f f t f f f t f
Falling Trigger f f f f t f f f t f f
Either Trigger f t f f t t f f t t f

The following SIGNAL code generates a Rising Trigger flow. The not before variable
ensures that no trigger is only produced, if no one happened in the previous time step.

| RiseTriggerold := Trig $ init false
| Trig := neg to nonneg OR (nonpos to pos and not before)
| neg to nonneg := ((inpold < 0) AND (inp ≥ 0))
| nonpos to pos := ((inpold ≤ 0) AND (inp > 0))
| not before := NOT (RiseTriggerold)

The Falling Trigger is defined in a similar way:

| FallTriggerold := Trig $ init false
| Trig := nonneg to neg OR (pos to nonpos AND not before)
| nonneg to neg := ((inpold ≤ 0)AND(inp < 0))
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| pos to nonpos := ((inpold > 0)AND(inp ≤ 0))
| not before := NOT(FallTriggerold)

• Enable
Similar to the Trigger, the Enable block transforms a real/integer input flow to a
boolean flow en. En has the value true, when the input inp is positive.

| en := (true when (inp > 0)) default (false when (inp ≤ 0)))

4.8 SubSystems translation

As the model increases in size, the complexity can be reduced by grouping the functionality
related blocks together into subsystems. A subsystem can be executed conditionally or
unconditionally. A conditionally executed subsystem may or may not execute depending on
a control signal. We distinguish between triggered and enabled subsystems.

4.8.1 Plain SubSystems Translation

Every block in SIMULINK is translated into a SIGNAL process. In the case of subsystems,
their enclosed blocks are translated into subprocesses. The subprocesses are declared in the
”where” part, as illustrated in the example below:
Process P=
{integer N;}
( ? integer inp;
boolean b;
! integer out;
)
(| tmp := QN(inp)
| out := tmp when b
|)

where
integer tmp;
process Q=

integer M;
(? integer s1;
! integer s2;)
(| s2:= s1 * M |);

end;
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A SIMULINK diagram can be constructed in SIGNAL by recursively translating subsystems
into processes and the enclosed atomic blocks into subprocesses. The model parameters are
read from the data structure obtained from the XML file and saved in the SIGNAL parameter
file Sim2Sig.PAR. The SIGNAL code is generated in Sim2Sig.SIG. The top down translation
algorithm is presented in Alg 4. First the parameter list for all the blocks is generated, then
the outputs and inputs are defined. After that, the subprocesses in the first hierarchy level
are called. Additional equations equation for the block connections are generated. In the
Where part, the intermediate variables, that are neither input nor output signals, are defined.
The subprocesses body is also implemented. In case one of the subprocesses is a SubSystem,
the described process is recursively repeated. For each block, type and clock translation
are performed as described is Section 4.4 and Section 4.6. Examples of SIMULINK model
translation are presented in Section 5.

4.8.2 Triggered SubSystems Translation

The Triggered SubSystem is a SubSystem with a control input, namely the trigger input.
The Subsystem executes, each time a trigger event occurs.If no trigger happens, the output
is either reset or it holds its old value. Figure 4.15 shows a Triggered SubSystem enclosing
a Unit Delay block. Below is the corresponding SIGNAL code. The parent Process Sim2Sig

Figure 4.15: Triggered SubSystems Translation

calls the subprocesses Trigger and SubSys. Trigger generates the rising trigger SubSystrig
from the input Y. SubSys is the Triggered Subsystem. It is only executed when SubSystrig is
true, otherwise it emits its old output, each time a new input with no trigger event comes.

Process Sim2Sig =
{integer NB DELAY;
integer INIT VALUE;
}
(? integer X;
integer Y;
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! integer Z;)
(| SubSystrig := Trigger(Y)
| Z := SubSys{NB DELAY,INIT VALUE}(X when SubSystrig) cell ˆX |)

Where
boolean SubSystrig;
process Trigger=

( ? real inp;
! boolean RiseTrigger;)
(| RiseTriggerold := Trig $ init false
| Trig := neg to nonneg OR (nonpos to pos and not before)
| neg to nonneg := ((inpold < 0) AND (inp ≥ 0))
| nonpos to pos := ((inpold ≤ 0) AND (inp > 0))
| not before := NOT (RiseTriggerold)|)

End;
Process SubSys=
{integer NB DELAY;
integer INIT VALUE;
}
(? integer in;
! integer out;)
(| UnitDelayout := UnitDelay{NB DELAY,INIT VALUE}(UnitDelayin)
| UnitDelayin := in
| out := UnitDelayout |)

Where
integer UnitDelayin;
integer UnitDelayout;
process UnitDelay=
{integer NB DELAY;
integer INIT VALUE;
}
(? real input;
! real output;)
(| output := input $ NB DELAY init INIT VALUE
|)

End;
End;

4.8.3 Enabled SubSystems Translation

The same translation method discussed for the case of a triggered subsystem, applies for the
enabled one. The only difference lies in replacing the Trigger block with an Enable one.
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Algorithm 4: Hierarchical Translation of SIMULINK into SIGNAL

Data: Input: SIMULINK Model M
% write the Process Name in Sim2Sig.SIG
WriteName(Sim2Sig.SIG,ProcessName)
% write the Process Parameters in Sim2Sig.SIG and their values in Sim2Sig.SIG
forall the (blocks bi in M) do

WriteParam.SIG(Sim2Sig.SIG,bi.Parameters)
WriteParam.PAR(Sim2Sig.SIG,bi.Parameters.Values)

end
% start with Level 1
Level=0
Recursiv Call:
Level++;
% write the input list in Leveli in Sim2Sig.SIG (the inputs are the signals connected to the
From Workspace or In Blocks )
WriteInputs(Sim2Sig.SIG,Leveli,bi.FromWorkspace)
% write the output list Leveli in Sim2Sig.SIG (the outputs are the signals connected to the
To Workspace or Out Blocks)
WriteOutputs(Sim2Sig.SIG,Leveli,bi.ToWorkspace)
% Call the SubProcesses in Leveli
forall the (For all blocks bj in Leveli ) do

bj.CallProcess()
end
% Create Block Connections in Leveli
forall the (blocks bi and bj ) do

if (bi is connected to bj) then
bi.output = bj.input

end

end
% write the ”Where” part of the process
% % define the internal signals of the process in Leveli
write(Sim2Sig.SIG,InternalSignals)
forall the (For all blocks bj in Leveli ) do

bj.ProcessBody()
if (bj.Type==Subsystem) then

Goto Recursiv Call
end

end



Chapter 5

Case Studies

In this section, we present three case studies. We use our tool to translate into SIGNAL
three SIMULINK models with increasing complexity. The first model, is a system composed
of a plant and a controller in the loop. The second example, is a discretized DC Motor. In
the last case study, we translate a system consisting of an input sampler and the discretized
Motor from the second case study in a loop with a PID controller.

5.1 Closed Loop Controller

In this case study, the goal is to better illustrate the translation flow on a simple system
composed of a plant in a loop with a controller. The naming convention for the signals is as
follows (the + operator denotes string concatenation):

• Input: Block Name + L + Level Number + in + Input Port Number
For example, the first input of an Adder block is: AddL1 in1

• Output: Block Name + L + Level Number + out + Output Port Number
For example, the output of an Adder block is: AddL1 out1

Similar to the signal names, each parameter name is preceded by the corresponding block
name and its level. Below is a snippet of the generated SIGNAL code. The full version is
attached in Index A.

Process Sim2Sig =
% Parameters
{real GainL1 GAIN;
integer UnitDelayL1 NB DELAY;
[UnitDelayL1 NB DELAY] real UnitDelayL1 INIT VALUE;

45
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real controllerL1 INIT VAL;
integer plantL1 NB COEFF N;
integer plantL1 NB COEFF D;
[plantL1 NB COEFF D] real plantL1 INIT VAL;
[plantL1 NB COEFF N] real plantL1 VAL COEFF N;
[plantL1 NB COEFF D] real plantL1 VAL COEFF D;
integer BUF}

% Inputs/Outputs
(? real AddL1 in1;
! real plantL1 out1;)

% Process Body
(| AddL1 out1 := AddL1(AddL1 in1,AddL1 in2)
| GainL1 out1 := GainL1{GainL1 GAIN}(GainL1 in1)
|UnitDelayL1 out1 :=UnitDelayL1{UnitDelayL1 NB DELAY,UnitDelayL1 INIT VALUE}
(UnitDelayL1 in1)
| controllerL1 out1 :=controllerL1{controllerL1 INIT VAL}(controllerL1 in1)
| plantL1 out1 := plantL1{plantL1 NB COEFF N,plantL1 NB COEFF D,plantL1 INIT VAL,
plantL1 VAL COEFF N,plantL1 VAL COEFF D}(plantL1 in1)
| GainL1 in1 := AddL1 out1
| controllerL1 in1 := GainL1 out1
| AddL1 in2 := UnitDelayL1 out1
| plantL1 in1 := controllerL1 out1
| UnitDelayL1 in1 := plantL1 out1
|)

Figure 5.1: Case Study 1: Closed Loop Controller
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5.2 Discretized DC-Motor

Figure 5.1 shows a three level discretized DC-Motor. The electrical and mechanical dynamics
of the model are represented by the following equations:

Vin −R · i−Ke · θ[n+ 1] = L · i[n+ 1] (5.1)

Kt · i− b · θ[n+ 1] = J · θ[n+ 2] (5.2)

R stands for the resistance, b for the damping factor L−1 is the inductance, J−1 is the inertia,
i is the current and θ is the angular frequency. Equation 5.1 is implemented in the SubSystem
S1. Equation 5.2 is implemented in the SubSystem S2. In oder to better illustrate how the
hierarchical translation is performed, a simplified version of the generated SIGNAL code is
presented below (The full version is attached in appendix B). We skip the body of the basic
processes, the listing of the signal connections and the intermediate signal definitions.

process Sim2Sig =
{Parameters}
(? real DCMotorL1 in1;
! real DCMotorL1 out1;)
(|DCMotorL1 out1:=DCMotorL1{Parameters}(DCMotorL1 in1)|)

where
Process DCMotorL1=
{% Parameters}
(? real in1;
!real out1;)
|Integrator3L2 out1:=Integrator3L2{Parameters}(Integrator3L2 in1)
|KeL2 out1 := KeL2{Parameters}(KeL2 in1)
|KtL2 out1 := KtL2{Parameters}(KtL2 in1)
|S1L2 out1:=S1L2{Parameters}(S1L2 in1,S1L2 in2)
|S2L2 out1:=S2L2{Parameters}(S2L2 in1)
% Create Signal connections |)

where
% Define Intermediate Signals
Process Integrator3L2= · · ·
Process KeL2= · · ·
Process KtL2= · · ·
Process S1L2=
{Parameters}
(? real in1;
real in2;
! real out1;)

(|AddL3 out1 := AddL3(AddL3 in1,AddL3 in2,AddL3 in3)
|InductanceL3 out1 := InductanceL3{Parameters}(InductanceL3 in1)
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|Integrator1L3 out1 :=Integrator1L3{Parameters}(Integrator1L3 in1)
|resistanceL3 out1 := resistanceL3{Parameters}(resistanceL3 in1)
% Create Signal connections
|)

where
% Define Intermediate Signals
Process AddL3= · · ·
Process InductanceL3= · · ·
Process Integrator1L3= · · ·
Process ResistanceL3= · · ·

end;
Process S2L2=
{Parameters}
(? real in1;
!real out1;)
(|Add1L3 out1 := Add1L3(Add1L3 in1,Add1L3 in2)
|InertiaL3 out1 := InertiaL3{Parameter}(InertiaL3 in1)
|Integrator2L3 out1 :=Integrator2L3{Parameter}(Integrator2L3 in1)
|resistance1L3 out1 := resistance1L3{Parameter}(resistance1L3 in1)

% Create Signal connections
where

% Define Intermediate Signals
Process Add1L3= · · ·
Process InertiaL3= · · ·
Process Integrator2L3= · · ·
Process resistance1L3= · · ·

end;
end

end

5.3 Discretized DC-Motor Closed Loop Controller

In this case study, we generate a system composed of the DC Motor from the second case
study, in a loop with a PID controller. The system inputs are sampled by the Input sampling
block. The goal of this case study is to show how the different SIMULINK Timing mecha-
nisms are translated into SIGNAL. The Adder Block in the PID SubSystem down-samples
the voltage with a factor of two. The Rate Adjustment block has a sampling rate equal to
1. Hence, the DC-Motor output is over-sampled with a factor of two. Below is a simplified
version of the code generated by our tool. We skip the body of the basic processes, the body
of the DC Motor SubSystem as it s presented in the previous case study, the listing of the sig-
nal connections and the intermediate signals definitions. The full code is attached in index C.
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Figure 5.2: Case Study 2: Discretized DC-Motor

process Sim2Sig =
{Parameters } (? real InputSamplingL1 in1;
! real DCMotorL1 out1;)
(|AddL1 out1 := AddL1(AddL1 in1,AddL1 in2)
|DCMotorL1 out1:=DCMotorL1{Parameters}(DCMotorL1 in1)
|InputSamplingL1 out1:=InputSamplingL1{Parameters}(InputSamplingL1 in1

when InputSamplingL1 en) cell ˆInputSamplingL1 in1
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|InputSamplingL1 en := EnableL2(InputSamplingL1 in en)
|PIDL1 out1:=PIDL1{Parameter}(PIDL1 in1)
|PulseGeneratorL1 out1:=PulseGeneratorL1{Parameter}()
|RateAdjustmentL1 out1 := RateAdjustmentL1{Parameter}(RateAdjustmentL1 in1)
% Signal Connections
|)

where
% Intermediate Signals Definition
Process AddL1= · · ·
Process PulseGeneratorL1= · · ·
Process RateAdjustmentL1=· · ·
Process DCMotorL1= · · ·
Process InputSamplingL1=
{Parameters }
(? in;
! out;)
(| UnitDelayL2 out1 :=UnitDelayL2{Parameters}(UnitDelayL2 in1)
% Signal Connections |)

where
% Intermediate Signals Definition
Process UnitDelayL2= · · ·
Process EnableL2= · · ·

end
Process process PIDL1=
{Parameters}
(? real in1;
! real out1)
(| AddL2 out1 := AddL2{Parameters}(AddL2 in1,AddL2 in2,AddL2 in3)
|Add1L2 out1 := Add1L2(Add1L2 in1,Add1L2 in2)
|DGainL2 out1 := DGainL2{Parameters}(DGainL2 in1)
|IGainL2 out1 := IGainL2{Parameters}(IGainL2 in1)
|IGain1L2 out1 := IGain1L2{Parameters}(IGain1L2 in1)
|PGainL2 out1 := PGainL2{Parameters}(PGainL2 in1)
|UnitDelay1L2 out1 :=UnitDelay1L2{Parameters}(UnitDelay1L2 in1)
|UnitDelay2L2 out1 :=UnitDelay2L2{Parameters}(UnitDelay2L2 in1)
% Define Signal Connections

where
% Define Intermediate Signals
process AddL2= · · ·
process Add1L2= · · ·
process DGainL2= · · ·
process IGainL2= · · ·
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process IGain1L2= · · ·
process PGainL2= · · ·
process UnitDelay1L2= · · ·
process UnitDelay2L2= · · ·

end
end

Figure 5.3: Case Study 3: Discretized DC-Motor Closed Loop Controller

The flow equivalence is validated by comparing the traces generated from the SIMULINK
model and its corresponding SIGNAL translation.



Chapter 6

Conclusion

6.1 Summary

In this thesis, we developed a tool that translates a discrete time subset of SIMULINK into
the polychronous formal language SIGNAL. The motivation behind this work, lies in the fact
that SIMULINK, despite of being the most popular tool in embedded software design, is,
however, not based on formal semantics (Section 2.2). Hence, the correctness of the generated
models can not be completely and efficiently verified. On the other hand, formal languages,
are less popular as they are harder to learn, but they have clear and precise semantics, that
allow the application of powerful design methodologies, like Model Based Design (Section
2.1). In Section 3, previous attempts of giving SIMULINK Formal semantics or translating it
into a formal model of computation like formal languages or hybrid automata are presented.
The choice of SIGNAl as a target language for this work, is justified by its multi-rate nature
that allows for signal streams to be computed asynchronously to one another which fits very
easily to a multi-threaded environment. Besides, the translation will allows engineers to
gain access to the SIGNAL formal toolset for code generation and design verification, which
will minimize the testing costs and time. The translation follows three major steps: type
inference, clock inference and hierarchical top-down translation (Section 4.2). In the type
inference step (Section 2), the type of each signal in SIMULINK is inferred and translated
into its corresponding type in SIGNAL. The clock inference’s (Section 4.5) goal is deriving the
phase and period of every SIMULINK block. From these information affine clock relations
between each block’s input and output clock are constructed. This bridges the gap between
synchronous and polychronous models of computation and allows the generation of flow
equivalent SIGNAL programs from the SIMULINK models (Section 4.6). After the type
and clock inference steps, the SIGNAL program is generated by recursively translating the
SIMULINK blocks. Subsystems are translated into SIGNAL processes and their enclosing
blocks are translated into subprocesses (Section 4.8). The tool is applied to three case studies
with increasing complexity, in order to better illustrate the translation flow (Section 5).
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6.2 Conclusion

Translating SIMULINK (almost-synchronous) to SIGNAL (polychronous) is challenging be-
cause of the different timing and typing semantics. The flow equivalence between SIMULINK
models and their corresponding SIGNAl programs was achieved by inferring the type of
each SIMULINK signal, mapping it to its corresponding SIGNAL type and generating affine
clock relations between each block inputs and outputs. These clock relations are then imple-
mented during the translation. Apart from SIGNAL code generation, our tool can be used
for checking typing and timing rules of the SIMULINK models. Models that are rejected in
SIMULINK are also rejected by our tool.

6.3 Limitations

The main drawback of this tool is its dependency on SIMULINK semantics, which keeps
changing from one version to another. Even for this version, we assumed some parameters to
be set to fixed options (For example, fixed step simulation and not variable step simulation).
Besides, this tool is still incomplete, as it does not translate all the SIMULINK blocks.
In fact, the behavior of many blocks is ambiguous, despite of the multiple experiments
performed to understand it. This is the case of the Enabled SubSystem. SIMULINK does
not impose the period of the blocks in an Enabled SubSystem to be inherited, as in the
case of Triggered SubSystems. The enclosed blocks can have different sampling times. This
results in a complicated behavior of the Enabled SubSystem. Figure 6.1 shows an Enabled
Subsystem that performs a substraction when triggered. The enable signal is created using
a Pulse Generator with an amplitude equal to 1, a pulse width equal to 3 and a sampling
time equal to 1 (see Figure 6.2a). The sample time of the enclosed Unit Delay block is set to
2. We expect the output signal y to be either equal to the sample time of the enable signal
e or to the sample time of the Adder block, which is the greatest common divisor of the
period of the Unit Delay block and the one of the input of the Enabled Subsystem. Hence
using the GCDrule, the Adder Block has a period equal to 1. In both cases, the sample time
of y is expected to be equal to 1. However, as it is shown in Figure 6.2b, every time a trigger
is received, it take two sample times to obtain a new output y. A clear timing behavior in
this case can not be captured and modeled. In order to be able to translate the Enabled
SubSystem block, we had to assume that its semantic is similar to the one of the triggered
subsystem, namely, the period of its enclosed blocks are all equal to the one of the enable
signal.
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e
y

Figure 6.1: Example of an Enabled SubSystem

6.4 Future Work

In the future, this work can be extended in different ways. One research direction would be
to translate STATEFLOW to SIGNAL, since, SIMULINK and STATEFLOW are comple-
mentary tools, that are used together in many applications.
Another interesting direction, would be to compare the concurrency of the SIGNAL pro-
duced C code, with the one generated from Lustre and the one provided by the SIMULINK
code generator. This would prove the advantage of choosing SIGNAL as a target language
instead of other synchronous languages.
Besides, the scalability of the tool can be further tested by applying the translation tool
to more complicated SIMULINK models from the industry. In this case, the fault coverage
obtained from using SIGNAL verification tools over the SIMULINK ones can be compared.
Finally, flow equivalence between the SIGNAL program and the SIMULINK model can be
proven, by formalizing the semantics of the SIMULINK blocks as operational semantic rules,
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1                  2                  3                  4                  5                   6                  7                 8                   9      

(a) Enable signal e 1                  2                  3                  4                  5                   6                  7                 8                   9      

(b) Output signal y

Figure 6.2: Ambiguous behavior of the enabled SubSystem

then defining a notion of behavior of the SIMULINK model in terms of traces. After that,
it should be shown, that the such semantic rules, uniquely determine the behavior of the
SIMULINK model. It remains to prove that the behavior computed by the SIMULINK
model matches the behavior of the SIGNAL program that we claim to be equivalent to the
original SIMULINK model.



Bibliography

[1] Mbdv. URL http://www.engineering.com/DesignSoftware.

[2] Edward A Lee and Alberto Sangiovanni-Vincentelli. The tagged signal model-a prelim-
inary version of a denotational framework for comparing models of computation.

[3] Gérard Berry and Laurent Cosserat. The esterel synchronous programming language
and its mathematical semantics. In Seminar on Concurrency, Carnegie-Mellon Uni-
versity, pages 389–448, London, UK, UK, 1985. Springer-Verlag. ISBN 3-540-15670-4.
URL http://dl.acm.org/citation.cfm?id=646723.702721.

[4] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991. ISSN
0018-9219. doi: 10.1109/5.97300.

[5] metropolis. URL http://embedded.eecs.berkeley.edu/metropolis/metamodel.html.

[6] Simulink: User’s Guide. The Mathworks.

[7] Olivier Bouissou and Alexandre Chapoutot. An operational semantics for simulink’s
simulation engine. ACM SIGPLAN Notices, 47(5):129–138, 2012.

[8] Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, and Joseph Sifakis.
Compositional translation of simulink models into synchronous bip. In Industrial Em-
bedded Systems (SIES), 2010 International Symposium on, pages 217–220. IEEE, 2010.

[9] Aditya Agrawal, Gyula Simon, and Gabor Karsai. Semantic translation of simulink/s-
tateflow models to hybrid automata using graph transformations. Electronic Notes in
Theoretical Computer Science, 109:43–56, 2004.

[10] Stavros Tripakis, Christos Sofronis, Paul Caspi, and Adrian Curic. Translating discrete-
time simulink to lustre. ACM Transactions on Embedded Computing Systems (TECS),
4(4):779–818, 2005.

[11] Abdoulaye Gamati. Designing Embedded Systems with the SIGNAL Programming Lan-
guage: Synchronous, Reactive Specification. Springer Publishing Company, Incorpo-
rated, 1st edition, 2009. ISBN 1441909400, 9781441909404.

56



Safa Messaoud Bibliography 57

[12] Irisa. URL http://www.irisa.fr/.

[13] Signali. URL http://www.irisa.fr/vertecs/Logiciels/sigali.html.

[14] Sme. URL http://www.irisa.fr/espresso/Polychrony/index.php.

[15] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[16] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis, and Ed Deprette.
System design using khan process networks: the compaan/laura approach. In Design,
Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, volume 1,
pages 340–345. IEEE, 2004.

[17] Julien Ouy Mahesh Nanjundappa, Matthew Kracht and Sandeep K. Shukla. A new
multi-threaded code synthesis methodology and tool for correct-by-construction syn-
thesis from polychronous specifications. 2013.

[18] Bijoy Antony Jose. Formal model driven software synthesis for embedded systems, 2011.
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Appendix A

Case Study 1

process Sim2Sig =
{real GainL1 GAIN;
integer UnitDelayL1 NB DELAY;
[UnitDelayL1 NB DELAY] real UnitDelayL1 INIT VALUE;
real controllerL1 INIT VAL;
integer plantL1 NB COEFF N;
integer plantL1 NB COEFF D;
[plantL1 NB COEFF D] real plantL1 INIT VAL;
[plantL1 NB COEFF N] real plantL1 VAL COEFF N;
[plantL1 NB COEFF D] real plantL1 VAL COEFF D;
integer BUF}
(? real AddL1 in1;
! real plantL1 out1;
)
(|AddL1 out1 := AddL1(AddL1 in1,AddL1 in2)
|GainL1 out1 := GainL1GainL1 GAIN(GainL1 in1)
|UnitDelayL1 out1 :=UnitDelayL1UnitDelayL1 NB DELAY,UnitDelayL1 INIT VALUE
(UnitDelayL1 in1)
|controllerL1 out1 :=controllerL1controllerL1 INIT VAL(controllerL1 in1)
|plantL1 out1 := plantL1plantL1 NB COEFF N,plantL1 NB COEFF D,plantL1 INIT VAL,
plantL1 VAL COEFF N,plantL1 VAL COEFF D(plantL1 in1)
|GainL1 in1 := AddL1 out1
|controllerL1 in1 := GainL1 out1
|AddL1 in2 := UnitDelayL1 out1
|plantL1 in1 := controllerL1 out1
|UnitDelayL1 in1 := plantL1 out1
|)
where
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real GainL1 in1;
real AddL1 out1;
real controllerL1 in1;
real GainL1 out1;
real AddL1 in2;
real UnitDelayL1 out1;
real plantL1 in1;
real controllerL1 out1;
real UnitDelayL1 in1;
process AddL1=
(? real input0;
real input1;
! real output;
)
(|tmp:=+input0 - input1
|output := tmp
|)
where
real tmp;
end;
process GainL1=
real GAIN;

(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
process UnitDelayL1=
integer NB DELAY;
[NB DELAY] real INIT VALUE;

(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE—)
where
end;
process controllerL1=
real INIT VAL;
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(? real input;
! real output;
)
(|output := input - tmp1
|tmp1 := input $ init INIT VAL
—)
where
real tmp1;
end;
process plantL1=
integer NB COEFF N;
integer NB COEFF D;
[NB COEFF D] real INIT VAL;
[NB COEFF N] real VAL COEFF N;
[NB COEFF D] real VAL COEFF D;
(? real input;
! real output;)
(|output := (input * VAL COEFF N[0]+tmp0)/VAL COEFF D[0]
|tmp0:=(- VAL COEFF D[1] * output ) $ 1 init INIT VAL
|)
where
real tmp0;
end;
end;



Appendix B

Case Study 2

process Sim2Sig =
{integer Integrator3L2 NB DELAY;
[Integrator3L2 NB DELAY] real Integrator3L2 INIT VALUE;
real KeL2 GAIN;
real KtL2 GAIN;
real InductanceL3 GAIN;
integer Integrator1L3 NB DELAY;
[Integrator1L3 NB DELAY] real Integrator1L3 INIT VALUE;
real resistanceL3 GAIN;
real InertiaL3 GAIN;
integer Integrator2L3 NB DELAY;
[Integrator2L3 NB DELAY] real Integrator2L3 INIT VALUE;
real resistance1L3 GAIN;
integer BUF}
(? real DCMotorL1 in1;
! real DCMotorL1 out1;
)
(|DCMotorL1 out1:=DCMotorL1{Integrator3L2 NB DELAY,Integrator3L2 INIT VALUE,
KeL2 GAIN,KtL2 GAIN,InductanceL3 GAIN,Integrator1L3 NB DELAY,
Integrator1L3 INIT VALUE,resistanceL3 GAIN,InertiaL3 GAIN,
Integrator2L3 NB DELAY,Integrator2L3 INIT VALUE,resistance1L3 GAIN,BUF}
(DCMotorL1 in1)|) where
process DCMotorL1=
{integer Integrator3L2 NB DELAY;
[Integrator3L2 NB DELAY] real Integrator3L2 INIT VALUE;
real KeL2 GAIN;
real KtL2 GAIN;
real InductanceL3 GAIN;
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integer Integrator1L3 NB DELAY;
[Integrator1L3 NB DELAY] real Integrator1L3 INIT VALUE;
real resistanceL3 GAIN;
real InertiaL3 GAIN;
integer Integrator2L3 NB DELAY;
[Integrator2L3 NB DELAY] real Integrator2L3 INIT VALUE;
real resistance1L3 GAIN;
integer BUF}
(? real in1;
!real out1;
)
(|Integrator3L2 out1
:=Integrator3L2{Integrator3L2 NB DELAY,Integrator3L2 INIT VALUE}(Integrator3L2 in1)
|KeL2 out1 := KeL2{KeL2 GAIN}(KeL2 in1)
|KtL2 out1 := KtL2{KtL2 GAIN}(KtL2 in1)
|S1L2 out1:=S1L2{InductanceL3 GAIN,Integrator1L3 NB DELAY,Integrator1L3 INIT VALUE,
resistanceL3 GAIN,BUF}(S1L2 in1,S1L2 in2)
|S2L2 out1:=S2L2{InertiaL3 GAIN,Integrator2L3 NB DELAY,Integrator2L3 INIT VALUE,
resistance1L3 GAIN,BUF}(S2L2 in1)
|S1L2 in1 := in1
|out1 := Integrator3L2 out1
|S1L2 in2 := KeL2 out1
|S2L2 in1 := KtL2 out1
|KtL2 in1 := S1L2 out1
|Integrator3L2 in1 := S2L2 out1
|KeL2 in1 := S2L2 out1
|)
where
real S1L2 in1;
real Integrator3L2 out1;
real S1L2 in2;
real KeL2 out1;
real S2L2 in1;
real KtL2 out1;
real KtL2 in1;
real S1L2 out1;
real Integrator3L2 in1;
real S2L2 out1;
real KeL2 in1;
process Integrator3L2=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
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}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE |)
where
end;
process KeL2=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN |)
where
end;
process KtL2=
{real GAIN;}
(? real input;
! real output;
) (|output := input * GAIN |)
where
end;
process S1L2=
{real InductanceL3 GAIN;
integer Integrator1L3 NB DELAY;
[Integrator1L3 NB DELAY] real Integrator1L3 INIT VALUE;
real resistanceL3 GAIN;
integer BUF}
(? real in1;
real in2;
!real out1;
)
(|AddL3 out1 := AddL3(AddL3 in1,AddL3 in2,AddL3 in3)
|InductanceL3 out1 := InductanceL3{InductanceL3 GAIN}(InductanceL3 in1)
|Integrator1L3 out1 :=Integrator1L3{Integrator1L3 NB DELAY,Integrator1L3 INIT VALUE}
(Integrator1L3 in1)
|resistanceL3 out1 := resistanceL3{resistanceL3 GAIN}(resistanceL3 in1)
|AddL3 in2 := in1
|AddL3 in3 := in2
|InductanceL3 in1 := AddL3 out1
|Integrator1L3 in1 := InductanceL3 out1
|resistanceL3 in1 := Integrator1L3 out1
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|out1 := Integrator1L3 out1
|AddL3 in1 := resistanceL3 out1
|)
where
real AddL3 in2;
real AddL3 in3;
real InductanceL3 in1;
real AddL3 out1;
real Integrator1L3 in1;
real InductanceL3 out1;
real resistanceL3 in1;
real Integrator1L3 out1;
real AddL3 in1;
real resistanceL3 out1;
process AddL3=
(? real input0;
real input1;
real input2;
! real output;
)
(|tmp:=-input0 +input1 - input2
|output := tmp |)
where
real tmp;
end;
process InductanceL3=
{real GAIN;
}
(? real input;
! real output;
)
(|output := input * GAIN |)
where
end;
process Integrator1L3=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE |)
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where
end;
process resistanceL3=
{real GAIN;
}
(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
end;
process S2L2=
{real InertiaL3 GAIN;
integer Integrator2L3 NB DELAY;
[Integrator2L3 NB DELAY] real Integrator2L3 INIT VALUE;
real resistance1L3 GAIN;
integer BUF}
(? real in1;
!real out1;
)
(|Add1L3 out1 := Add1L3(Add1L3 in1,Add1L3 in2)
|InertiaL3 out1 := InertiaL3{InertiaL3 GAIN}(InertiaL3 in1)
|Integrator2L3 out1 :=Integrator2L3{Integrator2L3 NB DELAY,Integrator2L3 INIT VALUE}
(Integrator2L3 in1)
|resistance1L3 out1 := resistance1L3{resistance1L3 GAIN}(resistance1L3 in1)
|Add1L3 in1 := in1
|InertiaL3 in1 := Add1L3 out1
|Integrator2L3 in1 := InertiaL3 out1
|resistance1L3 in1 := Integrator2L3 out1
|out1 := Integrator2L3 out1
|Add1L3 in2 := resistance1L3 out1
|)
where
real Add1L3 in1;
real InertiaL3 in1;
real Add1L3 out1;
real Integrator2L3 in1;
real InertiaL3 out1;
real resistance1L3 in1;
real Integrator2L3 out1;
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real Add1L3 in2;
real resistance1L3 out1;
process Add1L3=
(? real input0;
real input1;
! real output;
)
(|tmp:=+input0 - input1
|output := tmp
|)
where
real tmp;
end;
process InertiaL3=
{real GAIN;
}
(? real input;
! real output;
)
(|output := input * GAIN |)
where
end;
process Integrator2L3=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE |)
where
end;
process resistance1L3=
{real GAIN;}
(? real input;
! real output;)
(|output := input * GAIN |)
where
end;
end;
end;
end;



Appendix C

Case Study 3

process Sim2Sig =
{integer Integrator3L2 NB DELAY;
[Integrator3L2 NB DELAY] real Integrator3L2 INIT VALUE;
real KeL2 GAIN;
real KtL2 GAIN;
real InductanceL3 GAIN;
integer Integrator1L3 NB DELAY;
[Integrator1L3 NB DELAY] real Integrator1L3 INIT VALUE;
real resistanceL3 GAIN;
real InertiaL3 GAIN;
integer Integrator2L3 NB DELAY;
[Integrator2L3 NB DELAY] real Integrator2L3 INIT VALUE;
real resistance1L3 GAIN;
integer UnitDelayL2 NB DELAY;
[UnitDelayL2 NB DELAY] real UnitDelayL2 INIT VALUE;
integer AddL2 PERIODE;
integer AddL2 PHASE;
real DGainL2 GAIN;
real IGainL2 GAIN;
real IGain1L2 GAIN;
real PGainL2 GAIN;
integer UnitDelay1L2 NB DELAY;
[UnitDelay1L2 NB DELAY] real UnitDelay1L2 INIT VALUE;
integer UnitDelay2L2 NB DELAY;
[UnitDelay2L2 NB DELAY] real UnitDelay2L2 INIT VALUE;
real PulseGeneratorL1 Amplitude;
real RateAdjustmentL1 GAIN;
integer RateAdjustmentL1 PERIODE;
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integer RateAdjustmentL1 PHASE;
integer BUF}
(? real InputSamplingL1 in1;
! real DCMotorL1 out1;
)
(|AddL1 out1 := AddL1(AddL1 in1,AddL1 in2)
|DCMotorL1 out1:=DCMotorL1{Integrator3L2 NB DELAY,Integrator3L2 INIT VALUE,
KeL2 GAIN,KtL2 GAIN,InductanceL3 GAIN,Integrator1L3 NB DELAY,
Integrator1L3 INIT VALUE,resistanceL3 GAIN,InertiaL3 GAIN,
Integrator2L3 NB DELAY,Integrator2L3 INIT VALUE,resistance1L3 GAIN,BUF}
(DCMotorL1 in1)
|InputSamplingL1 out1:=InputSamplingL1{UnitDelayL2 NB DELAY,
UnitDelayL2 INIT VALUE,BUF}(InputSamplingL1 in1 when InputSamplingL1 en)
cell ˆInputSamplingL1 in1 | InputSamplingL1 en := EnableL2(InputSamplingL1 in en)
|PIDL1 out1:=PIDL1{AddL2 PERIODE,AddL2 PHASE,DGainL2 GAIN,IGainL2 GAIN,
IGain1L2 GAIN,PGainL2 GAIN,UnitDelay1L2 NB DELAY,UnitDelay1L2 INIT VALUE,
UnitDelay2L2 NB DELAY,UnitDelay2L2 INIT VALUE,BUF}(PIDL1 in1)
|PulseGeneratorL1 out1:=PulseGeneratorL1{PulseGeneratorL1 Amplitude}()
|RateAdjustmentL1 out1 := RateAdjustmentL1{RateAdjustmentL1 GAIN,
RateAdjustmentL1 PERIODE,RateAdjustmentL1 PHASE}(RateAdjustmentL1 in1)
|PIDL1 in1 := AddL1 out1
|RateAdjustmentL1 in1 := DCMotorL1 out1
|AddL1 in1 := InputSamplingL1 out1
|DCMotorL1 in1 := PIDL1 out1
|InputSamplingL1 in en := PulseGeneratorL1 out1
|AddL1 in2 := RateAdjustmentL1 out1
|)
where
real PIDL1 in1;
real AddL1 out1;
real RateAdjustmentL1 in1;
real DCMotorL1 out1;
real AddL1 in1;
real InputSamplingL1 out1;
real PIDL1 out1;
real DCMotorL1 in1;
real InputSamplingL1 in en,PulseGeneratorL1 out1;
boolean InputSamplingL1 en;
real AddL1 in2;
real RateAdjustmentL1 out1;
process AddL1=
(? real input0;
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real input1;
! real output;
)
(|tmp:=+input0 - input1
|output := tmp
|)
where
real tmp;
end;
process DCMotorL1=
{integer Integrator3L2 NB DELAY;
[Integrator3L2 NB DELAY] real Integrator3L2 INIT VALUE;
real KeL2 GAIN;
real KtL2 GAIN;
real InductanceL3 GAIN;
integer Integrator1L3 NB DELAY;
[Integrator1L3 NB DELAY] real Integrator1L3 INIT VALUE;
real resistanceL3 GAIN;
real InertiaL3 GAIN;
integer Integrator2L3 NB DELAY;
[Integrator2L3 NB DELAY] real Integrator2L3 INIT VALUE;
real resistance1L3 GAIN;
integer BUF}
(? real in1;
!real out1;
)
(|Integrator3L2 out1 :=Integrator3L2{Integrator3L2 NB DELAY,Integrator3L2 INIT VALUE}
(Integrator3L2 in1)
|KeL2 out1 := KeL2{KeL2 GAIN}(KeL2 in1)
|KtL2 out1 := KtL2{KtL2 GAIN}(KtL2 in1)
|S1L2 out1:=S1L2{InductanceL3 GAIN,Integrator1L3 NB DELAY,
Integrator1L3 INIT VALUE,resistanceL3 GAIN,BUF}(S1L2 in1,S1L2 in2)
|S2L2 out1:=S2L2{InertiaL3 GAIN,Integrator2L3 NB DELAY,
Integrator2L3 INIT VALUE,resistance1L3 GAIN,BUF}(S2L2 in1)
|S1L2 in1 := in1
|out1 := Integrator3L2 out1
|S1L2 in2 := KeL2 out1
|S2L2 in1 := KtL2 out1
|KtL2 in1 := S1L2 out1
|Integrator3L2 in1 := S2L2 out1
|KeL2 in1 := S2L2 out1
|)
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where
real S1L2 in1;
real Integrator3L2 out1;
real S1L2 in2;
real KeL2 out1;
real S2L2 in1;
real KtL2 out1;
real KtL2 in1;
real S1L2 out1;
real Integrator3L2 in1;
real S2L2 out1;
real KeL2 in1;
process Integrator3L2=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE
|)
where
end;
process KeL2=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
process KtL2=
{real GAIN;
}
(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
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process S1L2=
{real InductanceL3 GAIN;
integer Integrator1L3 NB DELAY;
[Integrator1L3 NB DELAY] real Integrator1L3 INIT VALUE;
real resistanceL3 GAIN;
integer BUF}
(? real in1;
real in2;
!real out1;
)
(|AddL3 out1 := AddL3(AddL3 in1,AddL3 in2,AddL3 in3)
|InductanceL3 out1 := InductanceL3{InductanceL3 GAIN}(InductanceL3 in1)
|Integrator1L3 out1 :=Integrator1L3{Integrator1L3 NB DELAY,Integrator1L3 INIT VALUE}
(Integrator1L3 in1)
|resistanceL3 out1 := resistanceL3{resistanceL3 GAIN}(resistanceL3 in1)
|AddL3 in2 := in1
|AddL3 in3 := in2
|InductanceL3 in1 := AddL3 out1
|Integrator1L3 in1 := InductanceL3 out1
|resistanceL3 in1 := Integrator1L3 out1
|out1 := Integrator1L3 out1
|AddL3 in1 := resistanceL3 out1
|)
where
real AddL3 in2;
real AddL3 in3;
real InductanceL3 in1;
real AddL3 out1;
real Integrator1L3 in1;
real InductanceL3 out1;
real resistanceL3 in1;
real Integrator1L3 out1;
real AddL3 in1;
real resistanceL3 out1;
process AddL3=
(? real input0;
real input1;
real input2;
! real output;
)
(|tmp:=-input0 + input1 - input2
|output := tmp
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|)
where
real tmp;
end;
process InductanceL3=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN|)
where
end;
process Integrator1L3=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE
|)
where
end;
process resistanceL3=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
end;
process S2L2=
{real InertiaL3 GAIN;
integer Integrator2L3 NB DELAY;
[Integrator2L3 NB DELAY] real Integrator2L3 INIT VALUE;
real resistance1L3 GAIN;
integer BUF}
(? real in1;
!real out1;
)



Safa Messaoud Appendix C 73

(|Add1L3 out1 := Add1L3(Add1L3 in1,Add1L3 in2)
|InertiaL3 out1 := InertiaL3{InertiaL3 GAIN}(InertiaL3 in1)
|Integrator2L3 out1 :=Integrator2L3{Integrator2L3 NB DELAY,Integrator2L3 INIT VALUE}
(Integrator2L3 in1)
|resistance1L3 out1 := resistance1L3{resistance1L3 GAIN}(resistance1L3 in1)
|Add1L3 in1 := in1
|InertiaL3 in1 := Add1L3 out1
|Integrator2L3 in1 := InertiaL3 out1
|resistance1L3 in1 := Integrator2L3 out1
|out1 := Integrator2L3 out1
|Add1L3 in2 := resistance1L3 out1
|)
where
real Add1L3 in1;
real InertiaL3 in1;
real Add1L3 out1;
real Integrator2L3 in1;
real InertiaL3 out1;
real resistance1L3 in1;
real Integrator2L3 out1;
real Add1L3 in2;
real resistance1L3 out1;
process Add1L3=
(? real input0;
real input1;
! real output;
)
(|tmp:=+input0 - input1
|output := tmp
|)
where
real tmp;
end;
process InertiaL3=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
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process Integrator2L3=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE|)
where
end;
process resistance1L3=
{real GAIN;}
(? real input;
! real output;)
(|output := input * GAIN|)
where
end;
end;
end;
process InputSamplingL1=
{integer UnitDelayL2 NB DELAY;
[UnitDelayL2 NB DELAY] real UnitDelayL2 INIT VALUE;
integer BUF}
(? real in1;
!real out1;
)
(|UnitDelayL2 out1 :=UnitDelayL2{UnitDelayL2 NB DELAY,UnitDelayL2 INIT VALUE}
(UnitDelayL2 in1)
|UnitDelayL2 in1 := in1
|out1 := UnitDelayL2 out1
|)
where
real UnitDelayL2 in1;
real UnitDelayL2 out1;
process UnitDelayL2=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE|)
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where
end;
end;
process EnableL2=
( ? real input;
! boolean en;)
(|en := (true when (input¿real(0))) default (false when (input¡=real(0)))|)
where
end;
process PIDL1=
{integer AddL2 PERIODE;
integer AddL2 PHASE;
real DGainL2 GAIN;
real IGainL2 GAIN;
real IGain1L2 GAIN;
real PGainL2 GAIN;
integer UnitDelay1L2 NB DELAY;
[UnitDelay1L2 NB DELAY] real UnitDelay1L2 INIT VALUE;
integer UnitDelay2L2 NB DELAY;
[UnitDelay2L2 NB DELAY] real UnitDelay2L2 INIT VALUE;
integer BUF}
(? real in1;
!real out1;
)
(|AddL2 out1 := AddL2{AddL2 PERIODE,AddL2 PHASE}(AddL2 in1,AddL2 in2,AddL2 in3)
|Add1L2 out1 := Add1L2(Add1L2 in1,Add1L2 in2)
|DGainL2 out1 := DGainL2{DGainL2 GAIN}(DGainL2 in1)
|IGainL2 out1 := IGainL2{IGainL2 GAIN}(IGainL2 in1)
|IGain1L2 out1 := IGain1L2{IGain1L2 GAIN}(IGain1L2 in1)
|PGainL2 out1 := PGainL2{PGainL2 GAIN}(PGainL2 in1)
|UnitDelay1L2 out1 :=UnitDelay1L2{UnitDelay1L2 NB DELAY,
UnitDelay1L2 INIT VALUE}
(UnitDelay1L2 in1)
|UnitDelay2L2 out1 :=UnitDelay2L2{UnitDelay2L2 NB DELAY,UnitDelay2L2 INIT VALUE}
(UnitDelay2L2 in1)
|DGainL2 in1 := in1
|IGainL2 in1 := in1
|PGainL2 in1 := in1
|out1 := AddL2 out1
|IGain1L2 in1 := Add1L2 out1
|Add1L2 in1 := DGainL2 out1
|UnitDelay2L2 in1 := IGainL2 out1
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|AddL2 in3 := IGain1L2 out1
|UnitDelay1L2 in1 := IGain1L2 out1
|AddL2 in1 := PGainL2 out1
|Add1L2 in2 := UnitDelay1L2 out1
|AddL2 in2 := UnitDelay2L2 out1
|)
where
real DGainL2 in1;
real IGainL2 in1;
real PGainL2 in1;
real AddL2 out1;
real IGain1L2 in1;
real Add1L2 out1;
real Add1L2 in1;
real DGainL2 out1;
real UnitDelay2L2 in1;
real IGainL2 out1;
real AddL2 in3;
real IGain1L2 out1;
real UnitDelay1L2 in1;
real AddL2 in1;
real PGainL2 out1;
real Add1L2 in2;
real UnitDelay1L2 out1;
real AddL2 in2;
real UnitDelay2L2 out1;
process AddL2=
{integer PERIODE;
integer PHASE;}
(? real input0;
real input1;
real input2;
! real output;
)
(|tmp:=+input0 + input1 + input2
|cnt := (cnt+1) $ init PHASE
|cnt2 := cnt modulo PERIODE
|cnt ˆ = input1
|output := tmp when (cnt2=0)
|)
where
real tmp;
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integer cnt, cnt2;
end;
process Add1L2=
(? real input0;
real input1;
! real output;
)
(|tmp:=+input0 - input1
|output := tmp
|)
where
real tmp;
end;
process DGainL2=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN
|)
where
end;
process IGainL2=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN|)
where
end;
process IGain1L2=
{real GAIN;}
(? real input;
! real output;
)
(|output := input * GAIN|)
where
end;
process PGainL2=
{real GAIN;}
(? real input;
! real output;
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)
(|output := input * GAIN|)
where
end;
process UnitDelay1L2=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE|)
where
end;
process UnitDelay2L2=
{integer NB DELAY;
[NB DELAY] real INIT VALUE;
}
(? real input;
! real output;
)
(|output := input $ NB DELAY init INIT VALUE|)
where
end;
end;
process PulseGeneratorL1=
{real AMPLITUDE}
(? !real out;)
(| dpg1:= dpg2 $ 1 init AMPLITUDE
| dpg2:= dpg3 $ 1 init AMPLITUDE
| dpg3:= dpg4 $ 1 init AMPLITUDE
| dpg4:= dpg5 $ 1 init AMPLITUDE
| dpg5:= dpg6 $ 1 init AMPLITUDE
| dpg6:= dpg7 $ 1 init real(0)
| dpg7:= dpg8 $ 1 init real(0)
| dpg8:= dpg9 $ 1 init real(0)
| dpg9:= dpg10 $ 1 init real(0)
| dpg10:= dpg1 $ 1 init real(0)
| out := dpg1
|)
where
real dpg1,dpg2,dpg3,dpg4,dpg5,dpg6,dpg7,dpg8,dpg9,dpg10;
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end;
process RateAdjustmentL1=
{real GAIN;
integer PERIODE;
integer PHASE;
}
(? real input;
! real output;
)
(|cnt := (cnt+1) $ init PHASE
|cnt2 := cnt modulo PERIODE
|cnt ˆ= output
|input ˆ= when (cnt2=0)
|tmp := input * GAIN
|output := tmp cell ˆ output|)
where
integer cnt, cnt2;
real tmp;
end;
end;


