

Hormones

- Cytokinins (CTKs) stimulate stomatal opening
- Abscisic Acic (ABA) stimulates stomatal closing
- Both affect overall solute concentration in the guard cells, causing water to move in or out

Factors affecting rate of transpiration Many factors affect this water vapor concentration gradient Affect overall rate of transpiration

Temperature

 Plants transpire more rapidly at higher temperatures because water evaporates more rapidly as the temperature rises.

Humidity

• When the surrounding air is dry, diffusion of water out of the leaf goes on more rapidly.

Soil Water

- A plant cannot continue to transpire rapidly if its water loss is not made up by replacement from the soil.
- If absorption of water by the roots is < the rate of transpiration...</p>
 - loss of <u>turgor</u> occurs
 - stomata close.
 - Reduces the rate of transpiration.
 - + If this extends to the rest of the leaf and
 - stem, the plant wilts.

