

Homeostasis of Plants

Transport, Reproduction, and <u>Respon</u>ses

Plant Diversity

First land plants

- Bryophytes: mosses & liverworts
 - non-vascular

mosses live?

- no water transport system
- no true roots
- swimming sperm
 - flagellated sperm
- lifecycle dominated by

Where must haploid gametophyte stage

- fuzzy moss plant you are familiar with is <u>haploid</u>
- <u>spores</u> for reproduction
 - haploid cells which sprout to form gametophyte

First vascular plants

- Pteridophytes: ferns
 - vascular
 - water transport system
 - xylem, phloem, roots, leaves
 - swimming sperm
 - flagellated sperm
 - <u>life cycle dominated by</u>
 <u>sporophyte stage</u>

Where must leafy fern plant you are ferns live? familiar with is diploid

- fragile independent gametophyte (prothallus)
- spores for reproduction
 - haploid cells which sprout to form gametophyte

First seed plants

- Gymnosperm: conifers
 - vascular
 - heterospory
 - male vs. female gametophytes
 - ♦ seeds
 - naked seeds (no fruit)
 - pollen
 - contain male gametophyte
 - If cycle dominated by sporophyte stage
 - coniferous trees you are familiar with are diploid
 - reduced (microscopic) gametophyte
 - reduction of gametophyte protects delicate egg & embryo in protective sporophyte
 - protected from drought & UV radiation

Pollen

Pollen

 eliminated the
 requirement for
 water for
 fertilization

spread
 through wind
 & animal

First flowering plants

- Angiosperm: flowering plants
 - vascular
 - heterospory
 - male vs. female gametophytes
 - flower

- specialized structure for sexual reproduction
- seeds within fruit
- pollen
- life cycle dominated by sporophyte stage
 - trees & bushes you are familiar with are diploid
 - reduced (microscopic) gametophyte

Antheridia (male) Archegonia (female)

Moss Archegonium

Moss Antheridium

*Alternation of generations

Alternation of Generation in Mosses

Alternation of Generation in

Gymnosperms

Alternation of Generation in Angiosperms

Flower

Modified shoot with 4 rings of modified leaves

Stigma

Identify the flower structures...

Double Fertilization

- Each pollen grain contains two male gametes: one combines with egg to form diploid <u>zygote</u>.
- The other combines with two other haploid nuclei of the female gametophyte to form a triploid cell.
- Triploid cell gives rise to the <u>endosperm</u>, which nourishes the embryo during its early development.

Double Fertilization

https://www.youtube.com/watch?v=bUjVHUf4d1l&feature=share_email

Double Fertilization

Angiosperm: fruiting plants

AP Bi

Seed & Plant embryo

- Seed offers...
 - protection for embryo
 - stored nutrients for growth of embryo

cotyledons = "seed" leaves, first leaves of new plant

Monocots & dicots

- Angiosperm are divide into 2 classes
 - dicots (eudicot)
 - 2 cotyledons (seed leaves)
 - leaves with network of veins
 - woody plants, trees, shrubs, beans
 - monocots
 - 1 cotyledon
 - leaves with parallel veins
 - grasses, palms, lilies

Plant TISSUES

- Dermal
 - <u>epidermis</u> ("skin" of plant)
 - single layer of tightly packed cells that covers & protects plant
- Ground
 - bulk of plant tissue
 - photosynthetic <u>mesophyll</u>, storage

Vascular

tissue

Ground tissue

Dermal tissue

- Vascular
 - transport system in shoots & roots
 - xylem & phloem

*Transport in plants

- H₂O & minerals
 - transport in <u>xylem</u>
 - transpiration
 - evaporation, adhesion & cohesion
 - negative pressure
- Sugars
 - transport in <u>phloem</u>
 - bulk flow
 - Calvin cycle in leaves loads sucrose into phloem

 CO_2

H₂O

H₂O

Minera

Light

Sugar

Why does

over-watering

kill a plant?

positive pressure

Gas exchange

- photosynthesis
 - CO_2 in; O_2 out
 - stomates
- respiration
 - \mathbf{O}_2 in; \mathbf{CO}_2 out

roots exchange gases within air spaces in soil

vessel elements

Vascular tissue

(c)Tracheids and vessels (colorized SEM)

Water & mineral absorption

- Water absorption from soil
 - osmosis
 - aquaporins
- Mineral absorption
 - active transport
 - proton pumps
 - active transport of H⁺

Mineral absorption

Proton pumps

active transport of H⁺ ions out of cell

- chemiosmosis
- H⁺ gradient
- creates membrane potential
 - difference in charge
 - drives cation uptake
- creates gradient

AP Biology

 cotransport of other solutes against their gradient

(a) Membrane potential and cation uptake

(b) Cotransport of anions

Water flow through root

Porous cell wall

- water can flow through cell wall route & not enter cells
- In plant needs to force water into cells

Controlling the route of water in root

Endodermis

- cell layer surrounding vascular cylinder of root
- lined with impermeable <u>Casparian strip</u>
- forces fluid through selective cell membrane
 - filtered & forced into xylem cells Casparian strip

Monocots vs Dicots

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Mycorrhizae increase absorption

- Symbiotic relationship between fungi & plant
 - The fungi colonize the root system of a host plant, providing increased water and nutrient absorption capabilities
 - The plant provides the fungus with carbohydrates formed from photosynthesis.

Phloem

- Living cells at functional maturity
 - cell membrane, cytoplasm
 - control of diffusion
 - Iose their nucleus, ribosomes & vacuole
 - more room for specialized transport of liquid food (sucrose)
- Cells
 - sieve tubes
 - sieve plates end walls have pores to facilitate flow of fluid between cells

Aaaah... Structure–Function

again!

- <u>companion cells</u>
 - nucleated cells connected to the sieve-tube
 - help sieve tubes

(a) Longitudinal view

Phloem: food-conducting cells

sieve tube elements & companion cells

Pressure flow: http://bcs.whfreeman.com/thelifewire/content/chp 36/36020.html Transport of sugars in phloem Loading of sucrose into phloem flow through cells via plasmodesmata proton pumps cotransport of sucrose into cells down proton gradient High H⁺ concentration Companion Cotransporter Mesophyll cell (transfer) cell Proton Sieve-tube Cell walls (apoplast) pump member Plasma membrane Plasmodesmata Key Sucrose H⁺ Apoplast **Bundle-**Phloem Low H⁺ concentration Symplast Mesophyll cell sheath cell parenchyma cell

Control of transpiration

- Balancing stomate function
 - always a compromise between photosynthesis & transpiration
 - leaf may transpire more than its weight in water in a day...this loss must be balanced with plant's need for CO₂ for photosynthesis

Chloroplasts

20 µm

Plant Growth

2007-2008

Plant hormones

- auxin
- gibberellins
- abscisic acid
- ethylene
- and more...

Auxin (IAA)

Effects

- controls cell division
 & differentiation
- phototropism
 - growth towards light
 - asymmetrical distribution of auxin
 - cells on darker side elongate faster than cells on brighter side
- apical dominance

(a) Intact plant

(b) Plant with apical bud removed

Gibberellins

Family of hormones

over 100 different <u>gibberellins</u> identified

Effects

- stem elongation
- fruit growth
- seed germination

plump grapes in grocery stores have been treated with gibberellin hormones while on the vine

Abscisic acid (ABA)

Effects

- slows growth
- seed dormancy
 - high concentrations of <u>abscisic acid</u>
 - germination only after ABA is inactivated or leeched out
 - survival value: seed will germinate only under optimal conditions
 - light, temperature, moisture

Ethylene

- Hormone gas released by plant cells
- Effects
 - fruit ripening
 - Ieaf drop
 - like in Autumn
 - apoptosis

Fruit ripening

- Adaptation
 - hard, tart fruit protects developing seed from herbivores
 - ripe, sweet, soft fruit attracts animals to disperse seed
- Mechanism
 - triggers ripening process
 - breakdown of cell wall
 - softening
 - conversion of starch to sugar
 - sweetening
 - positive feedback system
 - ethylene triggers ripening
 - ripening stimulates more ethylene production

Apoptosis in plants

- Many events in plants involve apoptosis
 - response to hormones
 - ethylene
 - auxin
 - death of annual plant after flowering
 - senescence
 - differentiation of xylem vessels
 - Ioss of cytoplasm
 - shedding of autumn leaves

What is the evolutionary advantage of loss of leaves in autumn?

0.5 mm

	Protective layer	Abscission layer	
	Stem	Petiole	

Responses in Plants Phototropism (Auxin involved)

 Auxin will accumulate in the cells that are NOT in the light causing the plant to bend toward the light.

Gravitropism (involves Auxin)

 Amyloplasts (starch-containing organelles) sink to the bottom of the cell and auxin builds up causing growth

© 2011 Pearson Education, Inc

Thigmotropism- a response to touch

@ 2011 Pearson Education, Inc.

Photoperiodism

A response of plants due to changes in the photoperiod or relative length of daylight and night.

Short Day Plants (aka Long Night)

Plants that flower when a light period is shorter than a critical length.

Long Day Plants (aka Short Night)

Plants that flower when a light period is longer than a certain number of hours

Day- Neutral Plants

- Flowering is controlled by plant maturity, NOT photoperiod
 - Temperature
 - Water
 - Other nutrients

Circadian Rhythms

Phytochrome- light absorbing protein

- When Pr is exposed to red light (sunlight) it is converted to Pfr (active form)
- When Pfr is exposed to far-red light it is converted back to Pr

