Transportation Cost Index: A New Comprehensive Performance Measure for Transportation and Land Use

Liming Wang, Portland State University

In Collaboration with Jenny Liu, Huajie Yang, Wei Shi (PSU) Bud Reiff (Metro), Brian Gregor (Oregon System Analytics)

Outline

- Why we need yet another performance measure (YAPM)?
- Transportation Cost Index: the idea and implementations
- Demo applications
- Ongoing and future work

Performance Measures: Mobility vs Accessibility

Need for Accessibility
Measures

- As a supplement/replacement of traffic-centric measures: LOS, travel delays
- MAP-21 emphasizes use of performance measures in transportation planning \& operation
- State legislations: Oregon Job and Transportation Act (OJTA)

Existing Accessibility Measures

- Handy and Niemeier, 1997
- Geurs and van Wee, 2004
- NCHRP Report 446, 618, 694, 708 ...

Market Potential Measures

Employment accessible within 30 minutes by public transit during a.m. peak

- Easy to interpret/understand
- Opportunities, mode, time-ofday and time budget specific

Source: University of Minnesota, Accessibility Observatory

Utility-based Measures

$$
\mathrm{E}(\mathrm{CS})=\ln \left(\sum_{m^{\prime}} \exp \left(U_{m^{\prime} k j}\right)\right)+C
$$

Logsum as an accessibility measure

- Elegant, composite measures for all modes; possible to derive net user benefit between scenarios
- Hard to interpret by itself; unable to compare across regions/times (benchmarking)

Generalized Costs Indicator

Table 4
Generalised costs indicator, for private car, $2007(2000=100)$ by type of trip.

Location:	Randstad	107
Time of day	Outside Randstad	105
	Rush hour	109
Trip purpose	Outside rush hour	105
	Business	102
	Commuter	110
Distance (km)	Other	106
	Up to 15	105
	15 to 30	110
	30 to 50	108
	More than 50	104

Per distance generalized costs for motorized trips

- Easy to interpret/ understand; able to monitor trends and compare scenarios
- ignores land use system; mode, time-of-day specific

Source: Koopmans, et al, 2013

H+T® Affordability Index

Municipality: Portland, OR
Traditional measures of housing affordability ignore transportation costs. Typically a household's second-largest expenditure, transportation costs are largely a function of the characteristics of the neighborhood in which a household chooses to live. Location Matters. Compact and dynamic neighborhoods with walkable streets and high access to jobs, transit, and a wide variety of businesses are more efficient, affordable, and sustainable.

Map of Transportation Costs \% Income

Location Efficient Areas
$\square<8 \% \quad 8$-12\% $\square 12$-15\% ■ 15-18\% ■ 18-22\% ■ $\quad 22 \cdot 26 \%$ - $26-29 \%$ ■ $29 \%+$

Average Housing + Transportation Costs \% Income Factoring in both housing and transportation costs provides a more comprehensive way of thinking about the cost of housing and true affordability.

Location Efficiency Metrics

Places that are compact, close to iobs and sevices, with avariety of transportation choicess allow people to spend lesst time, enerery, and money on transportation.

6\%

Percent of focation efficient neighborhoods

Neighborhood Characteristic Scores (1-10)
As compared toneighborhoods in all 955 U. . regions in the Index

Transportation Costs
In dispersed areas, people need to own more vehicles and rely upon In dispersed areas, people need to own more vehicles and rely upon
driving them farther distances which also drives up the cost of living.

\$10,959

Annual Transportation Costs
1.53

Autos Per Household
17,121
Average Household VMT

- Tracks out-of-pocket monetary costs of transportation and adds them to housing costs as a location efficiency measure;
- Ignores time costs; does not track the performance of transportation system except for Auto/Transit mode split and VMT.
Source: Center for Neighborhood Technology (CNT)

Wish List for YAPM

- A comprehensive measure able to present an overall picture of transportation and land use;
- Fill gaps in policy areas not adequately covered by existing performance measures, such as the equity and compatibility aspects (Reiff and Gregor, 2005)
- Easy to interpret/understand;
- Applicable to use cases ranging from prioritization, scenario evaluation/comparison, to benchmarking and standard;

Applicability of Performance Measures

Application	Prioritization	Comparison	Long-term Benchmark	Near-team Standard or Threshold
Transportation System Planning / Subarea Plans / Multi-jurisdictional Corridor Planning				
Project / Corridor Planning				
Plan Amendments / Zone changes subject to TPR				
Development Review				

Selection Criteria:

- Easy to apply
- Objective quantitive measure
- Good data availability
- Easy to understand

Source: Kittleson \& Associations, Washington County Multimodal Performance Measures and Standards

TCI: the idea and implementations

Consumer Price Index (CPI)

United States Consumer Price Index 1913-2014

From CPI to Transportation Cost Index (TCI)

Measures changes in the "price level" of a market basket of trips/destinations meeting households' daily needs:

1. Identify a basket of trips/destinations based on pre-defined groups (e.g. trip purpose categories);
2. Track the costs of accessing trips/ destinations in the basket.

Transportation Cost Index (TCI)

- Comprehensive measure of transportation and land use;
- Able to serve as a performance measure for policy areas including equity, transportation and land use compatibility and balance;
- Easy to interpret/understand;
- Based on widely available data sources, possible for all uses, esp. benchmarking and scenario evaluation/comparison

Implementation A: Travel Survey-based Method

Relies primarily on input from household activity survey, e.g. Oregon Travel \& Activity Survey (OTAS)

1. Construct travel baskets based on activity diaries or a sample of trips/tours that are representative of regional travel pattern, potentially by trip purpose, household size, income group and geography;
2. Track the time and monetary costs of making these trips/tours.
Suitable for prioritization and benchmarking applications.

Implementation B: TDMbased Method

Relies on inputs from travel demand model

- Data readily available for regions w/ TDM;
- Theoretically can calculate the transportation cost for every income group and for every TAZ;
Suitable for scenario evaluation/comparison.

Implementation B: TDM-based Method

Origin Employment Density

Calculate Travel Costs: Cost Estimate by Mode

$$
C=C_{0}+k \cdot T D+w \cdot T T
$$

C_{0} - Constant
$k \cdot T D$ - Monetary costs (Fuel and tire costs,
Ownership costs, insurance, etc) of travel
$w \cdot T T$ - Time costs of travel

Applications and Demonstration

Generalized Costs by Household Income Level (Portland, 2011)

Generalized Costs by Household Size (Portland, 2011)

Household Size
$\square 2 \left\lvert\, \begin{aligned} & 1 \\ & 2 \\ & 3+\end{aligned}\right.$

Generalized Costs by Purpose \& Income Level (Portland, 2011)

Generalized Costs by Household Income Level (Portland)

2011

1994
Household-level trip cost by trip purposes income groups

Generalized Costs by Household Size (Portland)

2011
1994
Household-level travel cost by household size

Generalized Costs by Purpose and Income Level (Portland)

2011

1994
Household-level travel cost by trip purposes income groups

Transportation Costs by MSA (All households)

Transportation Costs by MSA (Low Income)

Ongoing and Future Work

- Adopted by the Accessibility Indicator Development Team (IDT) as one of indicators for the Oregon Mosaic project mandated by OJTA

Ongoing and Future Work

- Test TCI usage in public engagement and policy making process
- Reconcile TCls from the two methods;
- Verify patterns of transportation costs with information from alternative data sources, such as CES;
- Should external costs be included?

Code and Working Papers

- Code (under active development/testing) available at http://github.com/cities-lab/tci
- Working Papers:

1. Wang, Liming, Bud Reiff, Brian Gregor, Huajie Yang, and Jenny Liu, 2015. Transportation Cost Index: A Comprehensive Multimodal Performance Measure of Transportation and Land Use Systems, presented at the 94th Annual Meeting of Transportation Research Board, Washington, DC, January 11-15, 2015.
2. Wang, Liming, Huajie Yang and Jenny Liu, Transportation Cost Index as a Performance Measure for Transportation and Land Use Systems: New Approaches and Application in Portland, OR, to be presented at the 95th Annual Meeting of Transportation Research Board, Washington, DC, January 10-14, 2016.

Acknowledgements

National Institute for Transportation and Communities

Oregon DOT

Extra Slides

Income Levels

To be consistent with the classification used in Metro's TDM, household income levels are classified with this scale (1994 dollars):

- < \$25K: Low Income
- \$25-50K: Mid Income
- > \$50K: High Income

Identify Activity Centers (Travel Market Basket)

Steps (Giulinao, 1991)

1. Calculate employment/size term density;
2. Identify TAZs with densities greater than density cutoff D and group contiguous TAZs identified into preliminary centers;
3. Calculate total employment or size terms for each center identified in step 2 and eliminate centers with total employment or size terms below total cutoff E from centers identified in step 2 . The remaining are activity centers.

Determine Cutoffs

- Giulinao (1991) provides no guidance in selecting density cutoff (D) or total cutoff (E). They relied on expert knowledge
- Sensitivity Tests to determine cutoffs

Sensitivity Tests: HBW

Density cutoff 60

Density cutoff 70

Density cutoff 80

Density cutoff 90

Sensitivity Tests: HBS

Density percentile 60

Density percentile 70

Density percentile 80

Density percentile 90

Density percentile 95

Sensitivity Tests: HBS

Density percentile 60

Density percentile 70

Density percentile 80

Density percentile 90

Density percentile 95

Sensitivity Tests: HBO

Density percentile 60

Density percentile 70

Density percentile 80

Density percentile 90

Density percentile 95

Travel Costs Calculation: Cost Estimate by Mode

- Auto

$$
C_{\text {auto }}=C_{\text {auto } 0}+k_{\text {auto }} \cdot T D_{\text {auto }}+w_{\text {auto }} \cdot T T_{\text {auto }}
$$

- $C_{m 0}$-Constant
- $k_{\text {auto }} \cdot T D_{\text {auto }}$ - Monetary costs (Fuel and tire costs, Ownership costs, insurance, etc) of driving
- $w_{\text {auto }} \cdot T T_{\text {auto }}-$ Time costs of driving

Travel Costs Calculation: Cost Estimate by Mode

- Public Transit:

$$
C_{\text {public }}=\text { fare }+w_{\text {public }} \cdot T T_{\text {public }}
$$

- Fare: Transit fares
$-w_{m} \cdot T T_{\text {public }}$: Time costs of riding transit
- Non-motorized modes (bicycling and walking)

$$
\begin{gathered}
C_{\text {bicycle }}=C_{\text {bicycle } 0}+w_{\text {bicycle }} \cdot T T_{\text {bicycle }} \\
C_{\text {walk }}=w_{\text {walk }} \cdot T T_{\text {walk }}
\end{gathered}
$$

- Time costs of Bicycling and Walking

Parameters

VOT (ratio to hourly wage): walk=0.5 bike=0.5
auto / van/ truck driver=0.5
auto / van / truck passenger=0.35
bus=0.35 rail=0.35
dial-a-ride/paratransit=0.35
taxi=0.35 school bus=0.35
carpool / vanpool=0.35
other (specify) $=0.5$
driveAlone $=0.5$
drivePass $=0.5$
pass=0.35 busWalk=0.35
parkAndRideBus=0.35

Monetary costs per mile:

walk=0 bike=0
auto / van/ truck driver=\$0.592
auto / van / truck passenger=\$0.592
bus=\$1.01 rail=\$1.38
dial-a-ride/paratransit=0
taxi=\$2.6 school bus=0
carpool / vanpool=0
other (specify)=\$0.296
driveAlone=\$0.592
drivePass=\$0.592
pass=\$0.592 busWalk=\$1.01 parkAndRideBus=\$1.01

