Transportation, Transshipment, and Assignment Problems

Chapter 6

Copyright © 2016 Pearson Education, Inc.

Chapter Topics

- The Transportation Model
- Computer Solution of a Transportation Problem
- The Transshipment Model
- The Assignment Model
- Computer Solution of an Assignment Problem

Overview

2016 D

- Part of a class of LP problems known as *network flow models*.
- Special mathematical features that permit very efficient, unique solution methods (variations of traditional simplex procedure).
- Detailed description of methods is contained on the companion website
- Text focuses on model formulation and solution with Excel and QM for windows.
- Web site Module B addresses transportation and assignment solution methods

- A product is transported from a number of sources to a number of destinations at the *minimum possible cost*.
- Each *source is able to supply a fixed number* of units of the product, and *each destination has a fixed demand* for the product.
- The linear programming model has *constraints for supply* at each source *and demand* at each destination.
- All constraints are equalities in a balanced transportation model where supply equals demand.
- Constraints contain inequalities in unbalanced models where supply does not equal demand.

Copyright © 2016 Pearson Education, Inc.

sportation		1	
How many ton	s of whea	t to transport	from each grain
elevator to each	n mill on a	monthly basi	s in order to
ninimize the to	otal cost of	f transportatio	on?
Grain Elevator	Supply	Mill	Demand
1. Kansas City	150	A. Chicago	220
2. Omaha	175	B. St. Louis	100
3. Des Moines	275	C. Cincinnati	300
Total	600 tons	Total	600 tons
Transpa	rt Cost from	n Grain Elevator	to Mill (\$/top)
Grain Elevator	A. Chicag		
1. Kansas City	\$6	\$ 8	\$ 10
2. Omaha 3. Des Moines	7	11	11 12

Shipping list				
	The Wheat Shippin	g Example Solut	ion	
From	То	Shipment	Cost per unit	Shipment cost
Kansas City	Cincinnati	150	10	1,500
Omaha	Chicago	25	7	175
Omaha	Cincinnati	150	11	1,650
Des Moines	Chicago	175	4	700
Des Moines	St. Louis	100	5	500

The Transshipment Model Characteristics

- Extension of the transportation model.
- Intermediate transshipment points are added between the sources and destinations.
- Items may be transported from:
 - Sources through transshipment points to destinations
 - One source to another
 - One transshipment point to another
 - One destination to another
 - Directly from sources to destinations
 - Some combination of these

The Assignment Model Characteristics

- Special form of linear programming model similar to the transportation model.
- Supply at each source and demand at each destination limited to one unit.
- In a balanced model supply equals demand.
- In an unbalanced model supply does not equal demand.

Assignment Model Example Problem Definition and Data

Problem: Assign four teams of officials to four games in a way that will minimize total distance traveled by the officials. Supply is always one team of officials, demand is for only one team of officials at each game.

	Game Sites					
Officials	RALEIGH	Atlanta	Durham	CLEMSON		
А	210	90	180	160		
В	100	70	130	200		
С	175	105	140	170		
D	80	65	105	120		

Elle Edit View Mor		hs ∭indow] Tra 甘甜		E 210	▲ % []	হা ।	Solve			
ASH		• B / U						<u>Δ-δ-</u>		
Dijective © Maximize © Minimize					Enter the	cost o	l accignin	g dito clemoon. Any real value	is permissible.	
	_									ACC Basketbal
	Raleigh	Atlanta	Durham	Clemson						
	210	90	180	160						
	100	70	130	200						
	80	65	140	120						

A concrete com		*		
1			1	oply capacities of
the three plants,				
sites, and the tra	1		1	are as follows:
-	Cor	nstructio		_
Plant	Α	В	С	Supply (tons)
1	\$8	\$5	\$6	120
2	15	10	12	80
3	3	9	10	80
	150	70	100	

