Transportation, Transshipment, and Assignment Problems

Chapter 6

\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Topics

- The Transportation Model \qquad
- Computer Solution of a Transportation Problem
- The Transshipment Model
- The Assignment Model
- Computer Solution of an Assignment Problem

Overview

- Part of a class of LP problems known as network flow models.
- Special mathematical features that permit very efficient, unique solution methods (variations of traditional simplex procedure).
- Detailed description of methods is contained on the companion website
- Text focuses on model formulation and solution with Excel and QM for windows.
- Web site Module B addresses transportation and assignment solution methods

The Transportation Model: Characteristics

- A product is transported from a number of sources to a number of destinations at the minimum possible cost. \qquad
- Each source is able to supply a fixed number of units of the product, and each destination has a fixed demand for the product.
- The linear programming model has constraints for supply at each source and demand at each destination.
- All constraints are equalities in a balanced transportation model where supply equals demand. \qquad
- Constraints contain inequalities in unbalanced models where supply does not equal demand.
\qquad
\qquad
\qquad Copright© 2016 Pearson Education, Inc \qquad

Transportation Model Example Problem Definition and Data			
How many tons of wheat to transport from each grain elevator to each mill on a monthly basis in order to minimize the total cost of transportation?			
Grain Elevator			
1. Kansas City	150	A. Chicago	
2. Omaha	175	B. St. Louis	
3. Des Moines	275	C. Cincinnati	
Total	600 tons	Total	tons
Transport Cost from Grain Elevator to Mill (\$/ton)			
Grain Elevator	A. Chica	B. St. Louis	C. Cincinnati
1. Kansas City	\$ 6	\$8	\$ 10
2. Omaha	7	11	11
3. Des Moines	4	5	12
Coprright: 2016 Parson Edacaion, Inc			

Figure 6.1 Network of transportation routes for wheat shipments Copyright $\mathbf{2} 2016$ Parson Edacation, Inc

Transportation Model Example

 Model Formulation$$
\begin{aligned}
\text { Minimize } Z= & \$ 6 x_{1 A}+8 x_{1 B}+10 x_{1 C}+7 x_{2 A}+11 x_{2 B}+11 x_{2 C}+ \\
& 4 x_{3 A}+5 x_{3 B}+12 x_{3 C}
\end{aligned}
$$

\qquad
subject to:
$x_{1 A}+x_{1 B}+x_{1 C}=150$
$\mathrm{x}_{2 \mathrm{~A}}+\mathrm{x}_{2 \mathrm{~B}}+\mathrm{x}_{2 \mathrm{C}}=175$
$x_{3 A}+x_{3 B}+x_{3 C}=275$
$\mathrm{x}_{1 \mathrm{~A}}+\mathrm{x}_{2 \mathrm{~A}}+\mathrm{x}_{3 \mathrm{~A}}=200$
$x_{1 B}+x_{2 B}+x_{3 B}=100$
$x_{1 C}+x_{2 C}+x_{3 C}=300$
$\mathrm{x}_{\mathrm{ij}} \geq 0$
$\mathrm{x}_{\mathrm{ij}}=$ tons of wheat from each grain elevator, $\mathrm{i}, \mathrm{i}=1,2,3$,
to each mill $j, j=A, B, C$
\qquad
\qquad
\qquad
\qquad
\qquad

The Transshipment Model

Characteristics

- Extension of the transportation model.
- Intermediate transshipment points are added between the sources and destinations.
- Items may be transported from:
- Sources through transshipment points to destinations
- One source to another
- One transshipment point to another
- One destination to another
- Directly from sources to destinations
- Some combination of these

Transshipment Model Example

Problem Definition and Data
Extension of the transportation model in which intermediate transshipment points are added between sources and destinations.

Transshipment Model Example
Transshipment Network Routes

Figure 6.3 Network of transshipment routes
\qquad

| Transshipment Model Example |
| :--- | :--- |
| Model Formulation |

Transshipment Model Example
Computer Solution with Excel (2 of 3)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Assignment Model Characteristics

Special form of linear programming model similar to the transportation model.

- Supply at each source and demand at each destination limited to one unit.
- In a balanced model supply equals demand.
- In an unbalanced model supply does not equal demand.

Assignment Model Example Problem Definition and Data				
Problem: Assign four teams of officials to four games in a way that will minimize total distance traveled by the officials. Supply is always one team of officials, demand is for only one team of officials at each game.				
	Game Sites			
Officials	Raleigh	Atlanta	Durham	Clemson
A	210	90	180	160
B	100	70	130	200
C	175	105	140	170
D	80	65	105	120

Assignment Model Example Model Formulation	
$\begin{aligned} \text { Minimize } \mathrm{Z}= & 210 \mathrm{x}_{\mathrm{AR}}+90 \mathrm{x}_{\mathrm{AA}}+180 \mathrm{x}_{\mathrm{AD}}+160 \mathrm{x}_{\mathrm{AC}}+100 \mathrm{x}_{\mathrm{BR}}+70 \mathrm{x}_{\mathrm{BA}} \\ & +130 \mathrm{x}_{\mathrm{BD}}+200 \mathrm{x}_{\mathrm{BC}}+175 \mathrm{x}_{\mathrm{CR}}+105 \mathrm{x}_{\mathrm{CA}}+140 \mathrm{x}_{\mathrm{CD}} \\ & +170 \mathrm{x}_{\mathrm{CC}}+80 \mathrm{x}_{\mathrm{DR}}+65 \mathrm{x}_{\mathrm{DA}}+105 \mathrm{x}_{\mathrm{DD}}+120 \mathrm{x}_{\mathrm{DC}} \end{aligned}$	
subject to:	
$\mathrm{x}_{\mathrm{BR}}+\mathrm{x}_{\mathrm{BA}}+\mathrm{x}_{\mathrm{BD}}+\mathrm{x}_{\mathrm{BC}}=1 \quad \mathrm{x}_{\text {di }} \geq 0$	
$\mathrm{x}_{\mathrm{CR}}+\mathrm{x}_{\mathrm{CA}}+\mathrm{x}_{\mathrm{CD}}+\mathrm{x}_{\mathrm{CC}}=1$	
$\mathrm{x}_{\mathrm{DR}}+\mathrm{x}_{\mathrm{DA}}+\mathrm{x}_{\mathrm{DD}}+\mathrm{x}_{\mathrm{DC}}=1$	
$\mathrm{x}_{\mathrm{AR}}+\mathrm{x}_{\mathrm{BR}}+\mathrm{x}_{\mathrm{CR}}+\mathrm{x}_{\mathrm{DR}}=1$	
$\mathrm{x}_{\mathrm{AA}}+\mathrm{x}_{\mathrm{BA}}+\mathrm{x}_{\mathrm{CA}}+\mathrm{x}_{\mathrm{DA}}=1$	
$\mathrm{x}_{\mathrm{AD}}+\mathrm{x}_{\mathrm{BD}}+\mathrm{x}_{\mathrm{CD}}+\mathrm{x}_{\mathrm{DD}}=1$	
$\mathrm{x}_{\mathrm{AC}}+\mathrm{x}_{\mathrm{BC}}+\mathrm{x}_{\mathrm{CC}}+\mathrm{x}_{\mathrm{DC}}=1$	

Example Problem Solution

Transportation Problem Statement
A concrete company transports concrete from three plants to three construction sites. The supply capacities of the three plants, the demand requirements at the three sites, and the transportation costs per ton are as follows: \qquad
\qquad
\qquad
\qquad
Determine the linear programming model formulation and solve using Excel.
\qquad

Example Problem Solution

Model Formulation

$$
\begin{aligned}
\text { Minimize } Z= & \$ 8 x_{1 A}+5 x_{1 B}+6 x_{1 C}+15 x_{2 A}+10 x_{2 B}+12 x_{2 C} \\
& +3 x_{3 A}+9 x_{3 B}+10 x_{3 C}
\end{aligned}
$$

subject to:
$\mathrm{x}_{1 \mathrm{~A}}+\mathrm{x}_{1 \mathrm{~B}}+\mathrm{x}_{1 \mathrm{C}}=120$
$x_{2 A}+x_{2 B}+x_{2 C}=80$
$\mathrm{x}_{3 \mathrm{~A}}+\mathrm{x}_{3 \mathrm{~B}}+\mathrm{x}_{3 \mathrm{C}}=80$
$x_{1 A}+x_{2 A}+x_{3 A} \leq 150$
$\mathrm{x}_{1 \mathrm{~B}}+\mathrm{x}_{2 \mathrm{~B}}+\mathrm{x}_{3 \mathrm{~B}} \leq 70$
$x_{1 C}+x_{2 C}+x_{3 C} \leq 100$
$\mathrm{x}_{\mathrm{ij}} \geq 0$

Example Problem Solution
Computer Solution with Excel

