SOLUTIONS MANUAL

Wastewater Engineering: Treatment and Resource Recovery Fifth Edition

CONTENTS

1. Wastewater Engineering: An Overview 1-1
2. Constituents in Wastewater 2-1
3. Wastewater Flowrates and Constituent Loadings 3-1
4. Process Selection and Design Considerations 4-1
5. Physical Processes 5-1
6. Chemical Processes 6-1
7. Fundamentals of Biological Treatment 7-1
8. Suspended Growth Biological Treatment Processes 8-1
9. Attached Growth and Combined Biological Treatment 9-1Processes
10. Anaerobic Suspended and Attached Growth Biological 10-1 Treatment Processes
11. Separation Processes for Removal of Residual Constituents 11-1
12. Disinfection Processes 12-1
13. Processing and Treatment of Sludges 13-1
14. Ultimate and Reuse of Biosolids 14-1
15. Treatment of Return Flows and Nutrient Recovery 15-1
16. Treatment Plant Emissions and Their Control 16-1
17. Energy Considerations in Wastewater Management 17-1
18. Wastewater Management: Future Challenges and 18-1 Opportunities

INTRODUCTION TO WASTEWATER TREATMENT

PROBLEM 1-1

Instructors Note: The first six problems are designed to illustrate the application of the mass balance principle using examples from hydraulics with which the students should be familiar.

Problem Statement - See text, page 53

Solution

1. Write a materials balance on the water in the tank

Accumulation $=$ inflow - outflow + generation

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=\mathrm{Q}_{\mathrm{in}}-\mathrm{Q}_{\mathrm{out}}+0
$$

2. Substitute given values for variable items and solve for h

$$
\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.2 \mathrm{~m}^{3} / \mathrm{s}-0.2\left(1-\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{m}^{3} / \mathrm{s}
$$

$A=1000 \mathrm{~m}^{2}$
3. $\mathrm{dh}=2 \times 10^{-4}\left(\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{dt}$

Integrating the above expression yields:

$$
h-h_{0}=\left[\frac{(43,200)\left(2 \times 10^{-4}\right)}{\pi}\right]\left(\sin \frac{\pi t}{43,200}\right)
$$

4. Determine h as a function of time for a 24 hour cycle

t, hr	t, s	h, m	t, hr	t, s	h, m
0	0	5.00	14	50,400	3.62
2	7200	6.38	16	57,600	2.62
4	14,400	7.38	18	64,800	2.25
6	21,600	7.75	20	72,000	2.62
8	28,800	7.38	22	79,200	3.62
10	36,000	6.38	24	84,400	5.00
12	43,200	5.00			

5. Plot the water depth versus time

PROBLEM 1-2

Instructors Note: The first six problems are designed to illustrate the application of the mass balance principle using examples from hydraulics with which the students should be familiar.

Problem Statement - See text, page 53

Solution

1. Write a materials balance on the water in the tank

Accumulation = inflow - outflow + generation

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=\mathrm{Q}_{\text {in }}-\mathrm{Q}_{\text {out }}+0
$$

2. Substitute given values for variable items and solve for h

$$
\begin{aligned}
& \frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.33 \mathrm{~m}^{3} / \mathrm{s}-0.2\left(1-\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{m}^{3} / \mathrm{s} \\
& \frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.13 \mathrm{~m}^{3} / \mathrm{s}+0.2\left(\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{m}^{3} / \mathrm{s} \\
& \mathrm{~A}=1600 \mathrm{~m}^{2} \\
& \frac{\mathrm{dh}}{\mathrm{dt}}(1600)=0.13 \mathrm{~m}^{3} / \mathrm{s}+0.2\left(\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{m}^{3} / \mathrm{s}
\end{aligned}
$$

3. Integrating the above expression yields:

$$
h-h_{o}=\frac{\left(0.13 \mathrm{~m}^{3} / \mathrm{s}\right) \mathrm{t}}{1600}+\frac{(0.2)(43,200)}{\pi 1600}\left(\sin \frac{\pi t}{43,200}\right) \mathrm{m}^{3} / \mathrm{s}
$$

Determine h as a function of time for a 24 hour cycle

t, hr	t, s	h, m	t, hr	t, s	h, m
0	0	5.00	14	50,400	8.24
2	7200	6.44	16	57,600	8.19
4	14,400	7.66	18	64,800	8.55
6	21,600	8.47	20	72,000	9.36
8	28,800	8.83	22	79,200	10.58
10	36,000	8.78	24	84,400	12.02
12	43,200	8.51			

4. Plot the water depth versus time

PROBLEM 1-3

Instructors Note: The first six problems are designed to illustrate the application of the mass balance principle using examples from hydraulics with which the students should be familiar.

Problem Statement - See text, page 53

Solution

1. Write a materials balance on the water in the tank
Accumulation = inflow - outflow + generation

$$
\frac{d V}{d t}=\frac{d h}{d t} A=Q_{\text {in }}-Q_{\text {out }}+0
$$

2. Substitute given values for variable items and solve for h

$$
\begin{aligned}
& \frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.3\left(1+\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{m}^{3} / \mathrm{s}-0.3 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{~A}=1000 \mathrm{~m}^{2} \\
& \mathrm{dh}=3 \times 10^{-4}\left(\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{dt}
\end{aligned}
$$

3. Integrating the above expression yields:

$$
h-h_{o}=\left[\frac{(43,200)\left(3 \times 10^{-4}\right)}{\pi}\right]\left(\sin \frac{\pi t}{43,200}\right)
$$

1. Determine h as a function of time for a 24 hour cycle

t, hr	t, s	h, m	t, hr	t, s	h, m
0	0	5.00	14	50,400	2.94
2	7200	7.06	16	57,600	1.43
4	14,400	8.57	18	64,800	0.87
6	21,600	9.13	20	72,000	1.43
8	28,800	8.57	22	79,200	2.94
10	36,000	7.06	24	84,400	5.00
12	43,200	5.00			

5. Plot the water depth versus time

PROBLEM 1-4
Instructors Note: The first six problems are designed to illustrate the application of the mass balance principle using examples from hydraulics with which the students should be familiar.

Problem Statement - See text, page 53

Solution

1. Write a materials balance on the water in the tank

Accumulation $=$ inflow - outflow + generation

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=\mathrm{Q}_{\mathrm{in}}-\mathrm{Q}_{\mathrm{out}}+0
$$

2. Substitute given values for variable items and solve for h

$$
\begin{aligned}
& \frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.35\left(1+\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{m}^{3} / \mathrm{s}-0.35 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{~A}=2000 \mathrm{~m}^{2} \\
& \mathrm{dh}=1.75 \times 10^{-4}\left(\cos \frac{\pi \mathrm{t}}{43,200}\right) \mathrm{dt}
\end{aligned}
$$

3. Integrating the above expression yields:

$$
h-h_{o}=\left[\frac{\left(0.35 \mathrm{~m}^{3} / \mathrm{s}\right)(43,200)}{\pi 2000 \mathrm{~m}^{2}}\right]\left(\sin \frac{\pi \mathrm{t}}{43,200}\right)
$$

4. Determine h as a function of time for a 24 hour cycle

t, hr	t, s	h, m	t, hr	t, s	h, m
0	0	2.00	14	50,400	0.80
2	7200	3.20	16	57,600	-0.08
4	14,400	4.08	18	64,800	-0.41
6	21,600	4.41	20	72,000	-0.08
8	28,800	4.08	22	79,200	0.80
10	36,000	3.20	24	84,400	2.00
12	43,200	2.00			

5. Plot the water depth versus time

PROBLEM 1-5

Instructors Note: The first six problems are designed to illustrate the application of the mass balance principle using examples from hydraulics with which the students should be familiar.

Problem Statement - See text, page 53

Solution

1. Write a materials balance on the water in the tank

Accumulation $=$ inflow - outflow + generation

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=\mathrm{Q}_{\mathrm{in}}-\mathrm{Q}_{\mathrm{out}}+0
$$

2. Substitute given values for variable items and solve for h

$$
\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.5 \mathrm{~m}^{3} / \mathrm{min}-\left[\left(2.1 \mathrm{~m}^{2} / \mathrm{min}\right)(\mathrm{h}, \mathrm{~m})\right]
$$

Integrating the above expression yields
$\int_{0}^{\mathrm{h}} \frac{\mathrm{dh}}{0.5-2.1 \mathrm{~h}}=\frac{1}{\mathrm{~A}} \mathrm{dt}$
$-\frac{1}{2.1}\left(\ln \frac{0.5-2.1 \mathrm{~h}}{0.5}\right)=\frac{\mathrm{t}}{\mathrm{A}}$
Solving for h yields
$h=\frac{1}{2.1}(0.5)\left(1-e^{-2.1 t / A}\right)$
$h=0.24\left(1-e^{-2.1 t / A}\right)$
Area $=(\pi / 4)(4.2)^{2}=13.85 \mathrm{~m}^{2}$
$h=0.24\left(1-e^{-2.1 t / 13.85}\right)=0.24\left(1-e^{-0.152 t}\right)$
3. Determine the steady-state value of h

As $t \rightarrow \infty$
$\mathrm{h} \rightarrow 0.24 \mathrm{~m}$

PROBLEM 1-6

Instructors Note: The first six problems are designed to illustrate the application of the mass balance principle using examples from hydraulics with which the students should be familiar.

Problem Statement - See text, page 53

Solution

1. Write a materials balance on the water in the tank

Accumulation $=$ inflow - outflow + generation

$$
\frac{d V}{d t}=\frac{d h}{d t} A=Q_{\text {in }}-Q_{\text {out }}+0
$$

2. Substitute given values for variable items and solve for h

$$
\frac{\mathrm{dh}}{\mathrm{dt}} \mathrm{~A}=0.75 \mathrm{~m}^{3} / \mathrm{min}-\left[\left(2.7 \mathrm{~m}^{2} / \mathrm{min}\right) \times \mathrm{h}(\mathrm{~m})\right]
$$

Integrating the above expression yields

$$
\int_{0}^{\mathrm{h}} \frac{\mathrm{dh}}{0.75-2.7 \mathrm{~h}}=\frac{1}{\mathrm{~A}} \mathrm{dt}
$$

$$
-\frac{1}{2.7}\left(\ln \frac{0.75-2.7 \mathrm{~h}}{0.75}\right)=\frac{\mathrm{t}}{\mathrm{~A}}
$$

Solving for h yields
$h=\frac{1}{2.7}(0.75)\left(1-e^{-2.7 t / A}\right)$
$\mathrm{h}=0.28\left(1-\mathrm{e}^{-2.7 \mathrm{t} / \mathrm{A}}\right)$
Area $=(\pi / 4)(4.2)^{2}=13.85 \mathrm{~m}^{2}$
$h=0.28\left(1-e^{-2.7 t / 13.85}\right)=0.28\left(1-e^{-0.195 t}\right)$
3. Determine the steady-state value of h

As $t \rightarrow \infty$
$\mathrm{h} \rightarrow 0.28 \mathrm{~m}$

PROBLEM 1-7

Problem Statement - See text, page 53

Solution: Graphical Approach

1. Determine the reaction order and the reaction rate constant using the integration method. Develop the data needed to plot the experimental data functionally for reactant 1 , assuming the reaction is either first or second order.

Time, \min	$\mathrm{C}, \mathrm{mg} / \mathrm{L}$	$-\ln \left(\mathrm{C} / \mathrm{C}_{\mathrm{o}}\right)$	$1 / \mathrm{C}$
0	90	0.000	0.011
10	72	0.223	0.014

20	57	0.457	0.018
40	36	0.916	0.028
60	23	1.364	0.043

2. To determine whether the reaction is first- or second-order, plot $-\ln \left(\mathrm{C} / \mathrm{C}_{0}\right)$ and $1 / C$ versus t as shown below. Because the plot of $-\ln (\mathrm{C} / \mathrm{Co})$ versus t is a straight line, the reaction is first order with respect to the concentration C .

3. Determine the reaction rate coefficient.

Slope $=k$
The slope from the plot $=\frac{1.364-0.223}{60 \mathrm{~min}-10 \mathrm{~min}}=0.023 / \mathrm{min}$
$\mathrm{k}=0.023 / \mathrm{min}$
Summary of results for Problem 1-7

Reactant	Order	$\mathrm{k}, \mathrm{min}^{-1}$	$\mathrm{k}, \mathrm{m}^{3} / \mathrm{g} \cdot \mathrm{min}$
1	First	0.023	
2	Second		0.0121
3	Second		0.0003
4	First	0.035	

Solution: Mathematical Approach

1. The following analysis is based on reactant 1
2. For zero order kinetics the substrate utilization rate would remain constant.

Because the utilization rate is not constant for reactant 1, the reaction rate is not zero order.
3. Assume first order kinetics are applicable and compute the value of the rate constant at various times.

Time, min	$\mathrm{C}^{2} \mathrm{C}_{\mathrm{o}}$	$\ln \mathrm{C} / \mathrm{C}_{\mathrm{o}}$	$\mathrm{k}, \mathrm{min}^{-1}$
0	1.00	0.000	
10	0.80	-0.223	0.022
20	0.63	-0.457	0.023
40	0.40	-0.916	0.023
60	0.26	-1.364	0.023

3. Because the reaction rate constant is essentially constant, it can be concluded that the reaction is first order with respect to the utilization of reactant 1.

PROBLEM 1-8

Problem Statement - See text, page 53

Solution

1. Write a materials balance for the batch reactor

Accumulation = inflow - outflow + generation
$\frac{d[A]}{d t}=0-0+(-k[A][B])$
However, because $[\mathrm{A}]=[\mathrm{B}]$
$\frac{d[A]}{d t}=-k[A]^{2}$
2. Integrate the above expression
$\int_{A_{o}}^{A} \frac{d[A]}{[A]^{2}}=-k \int_{0}^{t} d t$
$-\left(\frac{1}{\mathrm{~A}}-\frac{1}{\mathrm{~A}_{0}}\right)=-\mathrm{kt}$
3. Determine the reaction rate constant k

$$
-\left[\frac{1}{0.9(1)}-\frac{1}{1}\right]=-k(10)
$$

$\mathrm{k}=0.011 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{min}$
4. Determine the time at which the reaction will be 90 percent complete

$$
-\left[\frac{1}{0.1(1)}-\frac{1}{1}\right]=-0.011(\mathrm{t})
$$

$t=818 \mathrm{~min}$

PROBLEM 1-9

Problem Statement - See text, page 53

Solution

1. Write a materials balance for the batch reactor

Accumulation $=$ inflow - outflow + generation
$\frac{d[A]}{d t}=0-0+(-k[A][B])$
However, because $[A]=[B]$

$$
\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=-\mathrm{k}[\mathrm{~A}]^{2}
$$

2. Integrate the above expression

$$
\begin{aligned}
& \int_{A_{o}}^{A} \frac{d[A]}{[A]^{2}}=-k \int_{0}^{t} d t \\
& -\left(\frac{1}{A}-\frac{1}{A_{o}}\right)=-k t
\end{aligned}
$$

3. Determine the reaction rate constant k

$$
-\left[\frac{1}{0.92(1.33)}-\frac{1}{1.33}\right]=-k(12)
$$

$\mathrm{k}=0.00545 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{min}$
4. Determine the time at which the reaction will be 96 percent complete

$$
-\left[\frac{1}{0.04(1.33)}-\frac{1}{1.33}\right]=-0.00545(t)
$$

$t=3313$ min

PROBLEM 1-10

Problem Statement - See text, page 53

Solution

1. Solve Eq. (1-41) for activation energy. The required equation is:

$$
E=\frac{R T_{1} T_{2}}{\left(T_{2}-T_{1}\right)}\left(\ln \frac{k_{2}}{k_{1}}\right)=\frac{R \ln \left(k_{2} / k_{1}\right)}{\left(1 / T_{1}-1 / T_{2}\right)}
$$

where $\quad k_{2} / k_{1}=2.75$

$$
\begin{aligned}
\mathrm{T}_{1} & =10^{\circ} \mathrm{C}=283.15 \mathrm{~K} \\
\mathrm{~T}_{2} & =25^{\circ} \mathrm{C}=298.15 \mathrm{~K} \\
\mathrm{R} & =8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K}
\end{aligned}
$$

2. Solve for E given the above values:
$E=\frac{(8.314)[\ln (2.75)]}{(1 / 298.15-1 / 283.15)}=47,335 \mathrm{~J} / \mathrm{mole}$

PROBLEM 1-11

Problem Statement - See text, page 53

Solution

1. Determine the activation energy using Eq. (1-41):
$\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{E\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{R T_{1} \mathrm{~T}_{2}}=\frac{E}{R T_{1} T_{2}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
where

$$
\mathrm{k}_{2} / \mathrm{k}_{1}=2.4
$$

$$
E=58,000 \mathrm{~J} / \mathrm{mole}
$$

$$
\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K}
$$

2. Given $\mathrm{k}_{2}>\mathrm{k}_{1}$, the lowest reaction rate is observed at k_{1}. Therefore, $\mathrm{T}_{1}=$ $15^{\circ} \mathrm{C}$. Insert know values into Eq. (1-41) and solve for T_{2} to determine the temperature difference between T_{1} and T_{2} :

$$
\begin{aligned}
\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}= & 0.8755=\frac{\mathrm{E}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{R \mathrm{RT}_{1} \mathrm{~T}_{2}}=\frac{(58,000 \mathrm{~J} / \mathrm{mole})\left(\mathrm{T}_{2}-288.15 \mathrm{~K}\right)}{(8.314 \mathrm{~J} / \mathrm{mole} \mathrm{~K})(288.15 \mathrm{~K}) \mathrm{T}_{2}} \\
= & \frac{58,000 \mathrm{~T}_{2}}{2395.68 \mathrm{~T}_{2}}-\frac{16,712,700}{2395.68 \mathrm{~T}_{2}} \\
= & 24.21-6976.18 / \mathrm{T}_{2}
\end{aligned}
$$

$$
\frac{1}{T_{2}}=\frac{24.21-0.8755}{6976.18}=0.003345
$$

$$
\mathrm{T}_{2}=298.96 \mathrm{~K}=26^{\circ} \mathrm{C}
$$

3. The temperature difference is therefore $11^{\circ} \mathrm{C}$.

PROBLEM 1-12

Problem Statement - See text, page 53

Solution

1. Use Eq. (1-41) to determine $\operatorname{In}\left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)$:

$$
\begin{aligned}
& \ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{RT}_{1} \mathrm{~T}_{2}}=\frac{\mathrm{E}}{R \mathrm{R}_{1} \mathrm{~T}_{2}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& \text { where } \quad \mathrm{T}_{1}=27^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}=12^{\circ} \mathrm{C}=285.15 \mathrm{~K} \\
& \\
& \mathrm{~T}_{2}=27^{\circ} \mathrm{C}=300.15 \mathrm{~K} \\
& \mathrm{E}=52,000 \mathrm{~J} / \mathrm{mole} \\
& \\
& \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K}
\end{aligned}
$$

2. Solve for $\ln \left(k_{2} / k_{1}\right)$ given the above values:

$$
\begin{aligned}
\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}} & =\frac{(52,000 \mathrm{~J} / \mathrm{mole})}{(8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K})(285.15 \mathrm{~K})(300.15 \mathrm{~K})}(285.15 \mathrm{~K}-300.15 \mathrm{~K}) \\
& =1.0962
\end{aligned}
$$

3. The difference in the reaction rates is:

$$
\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\ln \left(\mathrm{k}_{2}\right)-\ln \left(\mathrm{k}_{1}\right)=1.0962
$$

PROBLEM 1-13

Problem Statement - See text, page 54

Solution

1. Determine the activation energy using Eq. (1-41)
$\ln \frac{k_{2}}{k_{1}}=\frac{E\left(T_{2}-T_{1}\right)}{R T_{1} T_{2}}=\frac{E}{R T_{1} T_{2}}\left(T_{2}-T_{1}\right)$
where $\quad \mathrm{k}_{25^{\circ} \mathrm{C}}=1.5 \times 10^{-2} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{min}$
$\mathrm{k}_{45^{\circ} \mathrm{C}}=4.5 \times 10^{-2} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{min}$
$\mathrm{T}_{1}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$

$$
\mathrm{T}_{2}=45^{\circ} \mathrm{C}=318.15 \mathrm{~K}
$$

$$
\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K}
$$

2. Solve the above expression for E

$$
E=\frac{R T_{1} T_{2}}{\left(T_{2}-T_{1}\right)}\left(\ln \frac{k_{2}}{k_{1}}\right)
$$

$$
E=\frac{(8.314)(298.15)(318.15)}{(318.15-298.15)}\left(\ln \frac{4.5 \times 10^{-2}}{1.5 \times 10^{-2}}\right)=43,320 \mathrm{~J} / \mathrm{mole}
$$

3. Determine the rate constant at $15^{\circ} \mathrm{C}$
$\ln \frac{k_{2}}{k_{1}}=\frac{E}{R T_{1} T_{2}}\left(T_{2}-T_{1}\right)$
where $\mathrm{k}_{15^{\circ} \mathrm{C}}=$? $\mathrm{L} / \mathrm{mole} \cdot \mathrm{min}$

$$
\begin{aligned}
\mathrm{k}_{25^{\circ} \mathrm{C}} & =1.5 \times 10^{-2} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~min} \\
\mathrm{~T}_{1} & =25^{\circ} \mathrm{C}=298.15 \mathrm{~K} \\
\mathrm{~T}_{2} & =15^{\circ} \mathrm{C}=288.15 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K} \\
& \ln \frac{\mathrm{k}_{15^{\circ} \mathrm{C}}}{1.5 \times 10^{-2}}=\frac{43,320}{(8.314)(298.15)(288.15)}(288.15-298.15) \\
& \ln \frac{\mathrm{k}_{15^{\circ} \mathrm{C}}}{1.5 \times 10^{-2}}=-0.6065 \\
& \mathrm{k}_{15^{\circ} \mathrm{C}}=\left(1.5 \times 10^{-2}\right)(0.5453)=0.818 \times 10^{-2}
\end{aligned}
$$

PROBLEM 1-14

Problem Statement - See text, page 54

Solution

1. Determine the activation energy using Eq. (1-41)

$$
\begin{aligned}
\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{RT} T_{1} T_{2}}=\frac{\mathrm{E}}{\mathrm{RT} T_{1} \mathrm{~T}_{2}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
\text { where } \quad \mathrm{k}_{20^{\circ} \mathrm{C}}=1.25 \times 10^{-2} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~min} \\
\mathrm{k}_{35^{\circ} \mathrm{C}}=3.55 \times 10^{-2} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~min} \\
\mathrm{~T}_{1}=20^{\circ} \mathrm{C}=293.15 \mathrm{~K} \\
\mathrm{~T}_{2}=35^{\circ} \mathrm{C}=308.15 \mathrm{~K} \\
\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K}
\end{aligned}
$$

2. Solve the above expression for E

$$
\begin{aligned}
& E=\frac{R T_{1} T_{2}}{\left(T_{2}-T_{1}\right)}\left(\ln \frac{k_{2}}{k_{1}}\right) \\
& E=\frac{(8.314)(293.15)(308.15)}{(308.15-293.15)}\left(\ln \frac{3.55 \times 10^{-2}}{1.25 \times 10^{-2}}\right)=52,262 \mathrm{~J} / \mathrm{mole}
\end{aligned}
$$

3. Determine the rate constant at $15^{\circ} \mathrm{C}$
$\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{E}{R T_{1} T_{2}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
where $\mathrm{k}_{15^{\circ} \mathrm{C}}=$? L/mole•min

$$
\begin{aligned}
& \mathrm{k}_{20^{\circ} \mathrm{C}}=1.25 \times 10^{-2} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~min} \\
& \mathrm{~T}_{1}=20^{\circ} \mathrm{C}=293.15 \mathrm{~K} \\
& \mathrm{~T}_{2}=15^{\circ} \mathrm{C}=288.15 \mathrm{~K} \\
& \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K} \\
& \ln \frac{\mathrm{k}_{15^{\circ} \mathrm{C}}}{1.25 \times 10^{-2}}= \frac{52,262}{(8.314)(293.15)(288.15)}(288.15-293.15) \\
& \ln \frac{\mathrm{k}_{15^{\circ} \mathrm{C}}}{1.25 \times 10^{-2}}=-0.372 \\
& \mathrm{k}_{15^{\circ} \mathrm{C}}=\left(1.25 \times 10^{-2}\right)(0.689)=0.862 \times 10^{-2}
\end{aligned}
$$

PROBLEM 1-15

Problem Statement - See text, page 53

Solution

1. Write a materials balance for a complete-mix reactor. Use the generic rate expression for chemical reactions given in Table 1-11.

Accumulation $=$ inflow - outflow + generation
$\frac{\mathrm{dC}}{\mathrm{dt}} \mathrm{V}=\mathrm{QC}_{\mathrm{o}}-\mathrm{QC}+\left(-k C^{\mathrm{n}}\right) \mathrm{V}$
2. Solve the mass balance at steady-state for kC^{n}

From stoichiometry, $C=C_{0}-1 / 2 C_{R}$
Substituting for C yields:

$$
\begin{aligned}
& 0=Q C_{o}-Q\left(C_{o}-\frac{1}{2} C_{R}\right)+\left(-k C^{n}\right) V \\
& 0=\frac{1}{2} Q C_{R}-k C^{n} V \\
& k C^{n}=\frac{Q C_{R}}{2 V}
\end{aligned}
$$

3. Determine the reaction order and the reaction rate constant at $13^{\circ} \mathrm{C}$
a. Consider Run 1

$$
\mathrm{k}_{13^{\circ} \mathrm{C}}[1-1 / 2(1.8)]^{\mathrm{n}}=\frac{(2 \mathrm{~cm} / \mathrm{s})(1.8 \mathrm{~mole} / \mathrm{L})}{2(5 \mathrm{~L})\left(10^{3} \mathrm{~cm}^{3} / \mathrm{L}\right)}=3.6 \times 10^{-4} \mathrm{~mole} / \mathrm{L} \cdot \mathrm{~s}
$$

b. Consider Run 2

$$
\mathrm{k}_{13^{\circ} \mathrm{C}}[1-1 / 2(1.5)]^{\mathrm{n}}=\frac{(15 \mathrm{~cm} / \mathrm{s})(1.5 \mathrm{~mole} / \mathrm{L})}{2(5 \mathrm{~L})\left(10^{3} \mathrm{~cm}^{3} / \mathrm{L}\right)}=2.25 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \cdot \mathrm{~s}
$$

c. Divide a by b

$$
\begin{aligned}
& \frac{\mathrm{k}_{13^{\circ} \mathrm{C}}(0.1)^{\mathrm{n}}}{\mathrm{k}_{13^{\circ} \mathrm{C}}(0.25)^{\mathrm{n}}}=\frac{3.6 \times 10^{-4}}{2.25 \times 10^{-3}} \\
& \left(\frac{0.1}{0.25}\right)^{\mathrm{n}}=0.16 \\
& \mathrm{n}=2
\end{aligned}
$$

4. Determine the reaction rate constant at $84^{\circ} \mathrm{C}$

$$
\mathrm{k}_{84^{\circ} \mathrm{C}}=\frac{\mathrm{QC}_{\mathrm{R}}}{2 \mathrm{VC}^{2}}=\frac{(15 \mathrm{~cm} / \mathrm{s})(1.8 \mathrm{~mole} / \mathrm{L})}{2(5 \mathrm{~L})\left(10^{3} \mathrm{~cm}^{3} / \mathrm{L}\right)(0.1)^{2}}=2.7 \times 10^{-1} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~s}
$$

5. Determine the temperature coefficient θ using Eq. (1-44)

$$
\begin{aligned}
& \frac{\mathrm{k}_{84^{\circ} \mathrm{C}}}{\mathrm{k}_{13^{\circ} \mathrm{C}}}=\theta^{\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)} \\
& \quad \text { where } \mathrm{k}_{13^{\circ} \mathrm{C}}=\left(\mathrm{k}_{13^{\circ} \mathrm{C}} \mathrm{C}^{2}\right) / \mathrm{C}^{2}=3.6 \times 10^{-2}
\end{aligned}
$$

$$
\frac{2.7 \times 10^{-1}}{3.6 \times 10^{-2}}=\theta^{(357.15-286.15)}
$$

$\ln (7.5)=71 \ln \theta$
$\ln \theta=2.015 / 71=0.0284$
$\theta=1.029$

PROBLEM 1-16

Problem Statement - See text, page 53

Solution

1. Write a materials balance for the batch reactor

$$
\begin{aligned}
& \text { Accumulation }=\text { inflow }- \text { outflow }+ \text { generation } \\
& \frac{\mathrm{dC}}{\mathrm{dt}} \mathrm{~V}=0-0+\left(-\frac{\mathrm{kC}}{\mathrm{~K}+\mathrm{C}}\right) \mathrm{V}
\end{aligned}
$$

2. Solve the mass balance for t

$$
\begin{aligned}
& \left(\frac{K+C}{C}\right) d C=-k d t \\
& \int_{C_{0}}^{C}\left[\left(\frac{K}{C}\right)+1\right] d C=-k \int_{0}^{t} d t \\
& K \ln \left(C_{0} / C\right)+\left(C_{0}-C\right)=k t \\
& t=\frac{K \ln \left(C_{0} / C\right)+C_{0}-C}{k}
\end{aligned}
$$

3. Compute t for the given data:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{O}}=1000 \mathrm{mg} / \mathrm{m}^{3} \\
& \mathrm{C}=100 \mathrm{mg} / \mathrm{m}^{3} \\
& \mathrm{k}=40 \mathrm{mg} / \mathrm{m}^{3} \cdot \mathrm{~min} \\
& \mathrm{~K}=100 \mathrm{mg} / \mathrm{m}^{3} \\
& \mathrm{t}=\frac{100 \ln (1000 / 100)+(1000-100)}{40}=28.3 \mathrm{~min}
\end{aligned}
$$

Comment
An explicit expression for the concentration C cannot be obtained as a function of time. The concentration C at any time t must be obtained by successive trials.

PROBLEM 1-17

Problem Statement - See text, page 54

Solution

1. Write a materials balance for the batch reactor

Accumulation $=$ inflow - outflow + generation

$$
\frac{\mathrm{dC}}{\mathrm{dt}} \mathrm{~V}=0-0+\left(-\frac{\mathrm{kC}}{\mathrm{~K}+\mathrm{C}}\right) \mathrm{V}
$$

2. Solve the mass balance for t

$$
\begin{aligned}
& \left(\frac{K+C}{C}\right) d C=-k d t \\
& \int_{C_{0}}^{C}\left[\left(\frac{K}{C}\right)+1\right] d C=-k \int_{0}^{t} d t \\
& K \ln \left(C_{0} / C\right)+C_{0}-C=k t \\
& t=\frac{K \ln \left(C_{0} / C\right)+C_{0}-C}{k}
\end{aligned}
$$

3. Compute t for the given data:
$\mathrm{C}_{0}=1000 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{C}=100 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{k}=28 \mathrm{~g} / \mathrm{m}^{3} \cdot \mathrm{~min}$
$\mathrm{K}=116 \mathrm{~g} / \mathrm{m}^{3}$
$t=\frac{116 \ln (1000 / 100)+(1000-100)}{28}=41.7 \mathrm{~min}$

Comment

An explicit expression for the concentration C cannot be obtained as a function of time. The concentration C at any time t must be obtained by successive trials.

PROBLEM 1-18

Problem Statement - See text, page 54

Solution

1. Write a materials balance on the water in the complete-mix reactor

Accumulation $=$ inflow - outflow + generation

$$
\frac{\mathrm{dC}}{\mathrm{dt}}=\mathrm{QC}_{\mathrm{o}}-\mathrm{QC}+(-\mathrm{kC}) \mathrm{V}
$$

2. Determine the flowrate at steady state
$0=Q C_{0}-Q C+(-k C) V$
solve for $\mathrm{C} / \mathrm{C}_{0}$
$\frac{C}{C_{0}}=\frac{Q}{Q+k V}$
Substitute known values and solve for Q at 98 percent conversion
$\left(C / C_{o}=0.02\right)$
$0.02=\frac{Q}{Q+(0.15 / d)\left(20 m^{3}\right)}$
$Q=0.02 Q+0.06$
$Q=0.0612 \mathrm{~m}^{3} / \mathrm{d}$
3. Determine the corresponding reactor volume required for 92 percent conversion at a flowrate of $0.0612 \mathrm{~m}^{3} / \mathrm{d}$
$0.08=\frac{\left(0.0612 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.0612 \mathrm{~m}^{3} / \mathrm{d}\right)+(0.15 / \mathrm{d}) V}$
$V=4.7 \mathrm{~m}^{3}$

PROBLEM 1-19

Problem Statement - See text, page 54

Solution

1. The general expression for reactors in series for first order kinetics is:
a. For reactors of the same size the expression [Eq. (1-75)] is:

$$
C_{n}=\frac{C_{0}}{[1+(k V / n Q)]^{n}}=\frac{C_{0}}{[1+(k \tau)]^{n}}
$$

where $\tau=$ hydraulic detention time of individual reactors
b. For reactors of unequal size the expression is:

$$
C_{n}=\left[\frac{C_{0}}{1+\left(k \tau_{1}\right)}\right]\left[\frac{C_{0}}{1+\left(k \tau_{2}\right)}\right] \cdots\left[\frac{C_{0}}{1+\left(k \tau_{n}\right)}\right]
$$

where $\tau_{1}, \tau_{2}, \ldots \tau_{\mathrm{n}}=$ hydraulic detention of individual reactors
2. Demonstrate that the maximum treatment efficiency in a series of completemix reactors occurs when all the reactors are the same size.
a. Determine efficiency for three reactors in series when the reactors are of the same size.

$$
\text { Assume } \mathrm{C}_{0}=1, \mathrm{~V}_{\mathrm{T}}=3, \tau=1, \mathrm{k}=1 \text {, and } \mathrm{n}=3
$$

$$
\frac{\mathrm{C}_{3}}{\mathrm{C}_{0}}=\frac{1}{[1+(\mathrm{k} \tau)]^{n}}=\frac{1}{[1+(1 \times 1)]^{3}}=0.125
$$

b. Determine efficiency for three reactors in series when the reactors are not of the same size.
Assume $\mathrm{C}_{0}=1, \mathrm{~V}_{\mathrm{T}}=3, \tau_{1}=2, \tau_{2}=0.5, \tau_{3}=0.5$, and $\mathrm{k}=1$

$$
\frac{C_{3}}{C_{0}}=\left[\frac{1}{1+(1 \times 2)}\right]\left[\frac{1}{1+(1 \times 0.5)}\right]\left[\frac{1}{1+(1 \times 0.5)}\right]=0.148
$$

c. Determine efficiency for three reactors in series when the reactors are not of the same size and are of a different configuration from b Assume $\mathrm{C}_{0}=1, \mathrm{~V}_{\mathrm{T}}=3, \tau_{1}=1, \tau_{2}=1.5, \tau_{3}=0.5, \mathrm{k}=1$, and $\mathrm{n}=3$

$$
\frac{C_{3}}{C_{0}}=\left[\frac{1}{1+(1 \times 1)}\right]\left[\frac{1}{1+(1 \times 1.5)}\right]\left[\frac{1}{1+(1 \times 0.5)}\right]=0.133
$$

3. Demonstrate mathematically that the maximum treatment efficiency in a series of complete-mix reactors occurs when all the reactors are the same size.
a. For two reactors in series

$$
\frac{C_{0}}{C_{2}}=\left(1+k \tau_{1}\right)\left(1+\left(k \tau_{2}\right)\right.
$$

b. Determine τ_{1} and τ_{2} such that $\mathrm{C}_{0} / \mathrm{C}_{2}$ will be maximized

$$
\nabla\left(C_{0} / C_{2}\right)=\left(1+k^{2} \tau_{1}\right) \hat{i}+\left(1+k^{2} \tau_{2}\right) \hat{j}
$$

c. To maximize the above expression let $\nabla\left(\mathrm{C}_{0} / \mathrm{C}_{2}\right)=0$

$$
0=\left(1+k^{2} \tau_{1}\right) \hat{i}+\left(1+k^{2} \tau_{2}\right) \hat{j}
$$

$1+\mathrm{k}^{2} \tau_{1}=0$
$1+\mathrm{k}^{2} \tau_{2}=0$
thus, $\tau_{1}=\tau_{2}$ for $k \neq 0$
d. Check to identify maximum or minimum

Let $\tau_{1}+\tau_{2}=2$ and $k=1$
If $\tau_{1}=\tau_{2}=1$
Then $\frac{\mathrm{C}_{0}}{\mathrm{C}_{2}}=\left(1+\mathrm{k} \tau_{1}\right)\left(1+\left(\mathrm{k} \tau_{2}\right)=[1+(1 \times 1)][1+(1 \times 1)]=4\right.$
e. For any other combination of $\tau_{1}+\tau_{2}, C_{0} / C_{2}$ will be less than 4 . Thus, C_{0} / C_{2} will be maximized when $\tau_{1}=\tau_{2}$.
f. By extension it can be shown that the maximum treatment efficiency in a series of complete-mix reactors occurs when all of the reactors are of the same size.

PROBLEM 1-20

Problem Statement - See text, page 54

Solution

1. For n complete-mix reactors in series the corresponding expression is given by Eq. (1-75)

$$
\frac{C_{n}}{C_{0}}=\frac{1}{[1+(k V / n Q)]^{n}}=\frac{1}{[1+(k / \tau)]^{n}}
$$

where $\tau=$ hydraulic detention time for individual reactors
2. Determine the number of reactors in series

$$
[1+(k / \tau)]^{n}=\frac{C_{0}}{C_{n}}
$$

Substitute the given values and solve for n, the number of reactors in series $[1+(6.1 / h) /(0.5 h)]^{n}=\frac{10^{6}}{14.5}$
$n \log [1+(6.1 / \mathrm{h}) /(0.5 \mathrm{~h})]=\log \left(\frac{10^{6}}{14.5}\right)$
$n \approx 10.2$, Use 10 reactors

PROBLEM 1-21

Problem Statement - See text, page 54

Solution

1. The expression for an ideal plug flow reator is given in Eq. (1-21)
$\frac{\partial C}{\partial t}=-v \frac{\partial C}{\partial \mathrm{x}}$
The influent concentration must be equal to the effluent concentration and the change with respect to distance is equal to zero by definition.
2. The rate of reaction is defined as retarded first order given in Eq. (1-53),

$$
\frac{\mathrm{d} C}{\mathrm{~d} t}=-\frac{k \mathrm{C}}{\left(1+r_{t} t\right)^{n}}
$$

Bringing like terms together, integrate between the limits $C=C_{0}$ and $C=C$
and $t=0$ and $t=t$,
$\int_{C=C_{0}}^{C=C} \frac{\mathrm{~d} C}{C}=-\int_{\mathrm{t}=0}^{t=t} \frac{k}{\left(1+r_{t} t\right)^{n}} \mathrm{~d} t$
3. For $\mathrm{n}=1$,
$\ln \left(\frac{C}{C_{o}}\right)=-\frac{k}{r_{t}} \ln \left(1+r_{t} t\right)$
$C=C_{o} \exp \left[-\frac{k}{r_{t}} \ln \left(1+r_{t} t\right)\right]$
4. For $n \neq 1$,
$\ln \left(\frac{C}{C_{o}}\right)=-\frac{k}{r_{t}(n-1)}\left[1-\frac{1}{\left(1-r_{t} t\right)^{n-1}}\right]$
$C=C_{0} \exp \left\{-\frac{k}{r_{t}(n-1)}\left[1-\frac{1}{\left(1-r_{t} t\right)^{n-1}}\right]\right\}$

PROBLEM 1-22

Problem Statement - See text, page 54

Solution

1. Develop basic materials balance formulations for a complete-mix reactor (CMR) and a plug-flow reactor (PFR).
a. CMR

Accumulation $=$ inflow - outflow + generation
$\frac{d C}{d t} V=Q C_{o}-Q C+r_{c} V$
At steady state
$0=Q C_{o}-Q C+r_{c} V$
b. PFR

Accumulation $=$ inflow - outflow + generation

$$
\begin{equation*}
\frac{\partial \mathrm{C}}{\partial \mathrm{t}} \Delta \mathrm{~V}=\left.\mathrm{QC}\right|_{\mathrm{x}}-\left.\mathrm{QC}\right|_{\mathrm{x}+\Delta \mathrm{x}}+\mathrm{r}_{\mathrm{C}} \mathrm{dV} \tag{1-79}
\end{equation*}
$$

Taking the limit as Δx goes to zero and considering steady-state yields

$$
0=-\frac{Q}{A} \frac{d C}{d x}+r_{C}
$$

For a rate of reaction defined as $r_{C}=-k C^{n}$ the above expression can be written as follows. See.

$$
\begin{equation*}
\int_{C_{0}}^{C} \frac{d C}{C^{n}}=-k \frac{A}{Q} \int_{0}^{L} d x=-k \frac{A L}{Q}=-k \frac{V}{Q}=-k \tau \tag{1-83}
\end{equation*}
$$

2. Solve the complete-mix and plug-flow expressions for $r=-k$ and determine ratio of volumes
a. Complete-mix reactor

$$
\begin{aligned}
& 0=Q C_{0}-Q C-k V \\
& V_{C M R}=\frac{Q\left(C_{0}-C\right)}{k}
\end{aligned}
$$

b. Plug-flow reactor

$$
\int_{C_{0}}^{c} d C=-k \frac{V}{Q}=C-C_{0}
$$

$$
V_{\text {PFR }}=\frac{Q\left(C_{0}-C\right)}{k}
$$

c. Ratio of volumes

$$
\frac{V_{P F R}}{V_{C M R}}=\frac{\left[\frac{Q\left(C_{0}-C\right)}{k}\right]}{\left[\frac{Q\left(C_{0}-C\right)}{k}\right]}=1
$$

3. Solve the complete-mix and plug-flow expressions for $\mathrm{r}=-\mathrm{kC} \mathrm{C}^{0.5}$ and determine ratio of volumes
a. Complete-mix reactor

$$
\begin{aligned}
& 0=Q C_{0}-Q C-k C^{0.5} V \\
& V_{C M R}=\frac{Q}{k}\left(\frac{C_{0}}{C^{0.5}}-C^{0.5}\right)
\end{aligned}
$$

b. Plug-flow reactor

$$
\begin{aligned}
& \int_{C_{0}}^{C} \frac{d C}{C^{0.5}}=-k \frac{V}{Q} \\
& V_{\text {PFR }}=\frac{2 Q}{k}\left(C_{o}^{0.5}-C^{0.5}\right)
\end{aligned}
$$

c. Ratio of volumes

$$
\frac{V_{\text {PFR }}}{V_{\mathrm{CMR}}}=\frac{2 C^{0.5}\left(\mathrm{C}_{0}^{0.5}-C^{0.5}\right)}{\left(C_{0}-C\right)}
$$

4. Solve the complete-mix and plug-flow expressions for $r=-k C$ and determine ratio of volumes
a. Complete-mix reactor

$$
\begin{aligned}
& 0=Q C_{o}-Q C-k C V \\
& V_{C M R}=\frac{Q\left(C_{0}-C\right)}{k C}
\end{aligned}
$$

b. Plug-flow reactor

$$
\int_{C_{0}}^{C} \frac{d C}{C}=-k \frac{V}{Q}
$$

$$
V_{\text {PFR }}=\frac{Q}{k} \ln \left(C_{0} / C\right)
$$

c. ratio of volumes

$$
\frac{V_{\text {PFR }}}{V_{C M R}}=\frac{C\left[\ln \left(C_{0} / C\right)\right]}{\left(C_{0}-C\right)}
$$

5. Solve the complete-mix and plug-flow expressions for $r=-k C^{2}$ and determine ratio of volumes
a. Complete-mix reactor

$$
\begin{aligned}
& 0=Q C_{0}-Q C-k C^{2} V \\
& V_{C M R}=\frac{Q\left(C_{0}-C\right)}{k C^{2}}
\end{aligned}
$$

b. Plug-flow reactor

$$
\begin{aligned}
& \int_{C_{0}}^{C} \frac{d C}{C^{2}}=-k \frac{V}{Q} \\
& V_{P F R}=\frac{Q}{k}\left(\frac{1}{C}-\frac{1}{C_{0}}\right)
\end{aligned}
$$

c. Ratio of volumes

$$
\frac{V_{\text {PFR }}}{V_{\mathrm{CMR}}}=\frac{\mathrm{C}}{\mathrm{C}_{0}}
$$

6. Set up computation table to determine the ratio of volumes ($\mathrm{V}_{\mathrm{PFR}} / \mathrm{V}_{\mathrm{CMR}}$) versus the fraction of the original substrate that is converted

Fraction converted	$V_{P F R} / V_{C M R}$			
	$r=-k$	$r=-k C 0.5$	$r=-k C$	$r=-k C^{2}$
0.1	1	0.97	0.95	0.90
0.3	1	0.91	0.83	0.70
0.5	1	0.83	0.69	0.50
0.7	1	0.71	0.52	0.30
0.9	1	0.48	0.26	0.10
0.95	1	0.37	0.16	0.05
0.99	1	0.18	0.05	0.01

7. Plot the ratio of volumes versus the fraction of the original substrate that is converted.

8. Determine the ratio of volumes for each rate when $C=0.25 \mathrm{~g} / \mathrm{m}^{3}$ and $\mathrm{C}_{0}=$ $1.0 \mathrm{~g} / \mathrm{m}^{3}$ (fraction converted $=0.75$). From the plot in Step 7 the required values are:

Rate	$V_{\text {PFR }} / V_{\text {CMR }}$
$r=-k$	1.00
$r=-k C^{0.5}$	0.67
$r=-k C$	0.46
$r=-\mathrm{kC}^{2}$	0.25

PROBLEM 1-23

Problem Statement - See text, page 54

Solution

1. The ratio of volumes $\left(\mathrm{V}_{\mathrm{PFR}} / \mathrm{V}_{\mathrm{CMR}}\right)$ versus the fraction of the original substrate converted is given in the following plot (see Problem 1-22).

2. Determine the ratio of volumes for each rate when $C=0.17 \mathrm{~g} / \mathrm{m}^{3}$ and $C_{0}=$ $1.25 \mathrm{~g} / \mathrm{m}^{3}$ (fraction converted $=0.86$). From the plot in Step 7 the required values are:

Rate	$\mathrm{V}_{\mathrm{PFR}} / \mathrm{V}_{\mathrm{CMR}}$
$\mathrm{r}=-\mathrm{k}$	1.00
$\mathrm{r}=-\mathrm{kC} 0.5$	0.54
$r=-\mathrm{kC}$	0.31
$r=-\mathrm{kC}^{2}$	0.14

PROBLEM 1-24

Problem Statement - See text, page 54
Solution: Part 1 ($\mathrm{r}=-\mathrm{kC}{ }^{2}$)

1. Solve the complete-mix and plug-flow expressions for C for $r=-k C^{2}$
a. Complete-mix reactor

$$
C^{2}-\frac{Q}{k V} C-\frac{Q}{k V} C_{0}=0
$$

$C_{C M R}=\frac{Q / k V\left[\sqrt{1+4(k V / Q) C_{o}}-1\right]}{2}$
b. Plug-flow reactor

$$
\begin{aligned}
& \int_{C_{0}}^{C} \frac{d C}{C^{2}}=-k \frac{V}{Q} \\
& V_{P F R}=\frac{Q}{k}\left(\frac{1}{C}-\frac{1}{C_{0}}\right) \\
& C_{P F R}=\left(\frac{k V}{Q}+\frac{1}{C_{0}}\right)^{-1}
\end{aligned}
$$

2. Determine the effluent concentration from the combined reactor systems
a. PFR-CMR

$$
\begin{aligned}
& C_{P F R}=\left(\frac{k Q}{V}+\frac{1}{C_{0}}\right)^{-1}=\left(\frac{1 \times 1}{1}+\frac{1}{1}\right)^{-1}=0.5 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{C}_{\mathrm{CMR}}=\frac{\mathrm{Q} / \mathrm{kV}\left[\sqrt{1+4(\mathrm{kV} / \mathrm{Q}) \mathrm{C}_{0}}-1\right]}{2}=\frac{(1 / 1 \times 1)[\sqrt{1+4(1 \times 1 / 1)(0.5)}-1]}{2} \\
&=0.366 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

b. CMR-PFR

$$
\begin{aligned}
\mathrm{C}_{\mathrm{CMR}} & =\frac{\mathrm{Q} / \mathrm{kV}\left[\sqrt{1+4(\mathrm{kV} / \mathrm{Q}) \mathrm{C}_{0}}-1\right]}{2}=\frac{(1 / 1 \times 1)[\sqrt{1+4(1 \times 1 / 1)(1)}-1]}{2} \\
& =0.618 \mathrm{~kg} / \mathrm{m}^{3} \\
& C_{\text {PFR }}=\left(\frac{\mathrm{kQ}}{\mathrm{~V}}+\frac{1}{\mathrm{C}_{0}}\right)^{-1}=\left(\frac{1 \times 1}{1}+\frac{1}{0.618}\right)^{-1}=0.382 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

c. Because the effluent concentration C is not directly proportional to C_{o} for second order kinetics, the final concentrations are different

Solution: Part 2 ($\mathrm{r}=-\mathrm{kC}$)

1. Solve the complete-mix and plug-flow expressions for C for $\mathrm{r}=-\mathrm{kC}$
a. Complete-mix reactor

$$
\begin{aligned}
& 0=Q C_{0}-Q C-k C V \\
& C=\frac{C_{0}}{(1+k V / Q)}
\end{aligned}
$$

b. Plug-flow reactor

$$
\begin{aligned}
& \int_{C_{0}}^{c} \frac{d C}{C}=-k \frac{V}{Q} \\
& C=C_{0} e^{-k V / Q}
\end{aligned}
$$

2. Determine the effluent concentration from the combined reactor systems
a. PFR-CMR

$$
\begin{aligned}
& C_{P F R}=C_{0} e^{-k V / Q}=(1) e^{-(1 \times 1) / 1}=0.368 \mathrm{~kg} / \mathrm{m}^{3} \\
& C_{C M R}=\frac{C_{0}}{(1+\mathrm{kV} / Q)}=\frac{0.368}{[1+(1 \times 1) / 1]}=0.184 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

b. CMR-PFR

$$
\begin{aligned}
& C_{C M R}=\frac{C_{0}}{(1+\mathrm{kV} / \mathrm{Q})}=\frac{1}{[1+(1 \times 1) / 1]}=0.5 \mathrm{~kg} / \mathrm{m}^{3} \\
& C_{\text {PFR }}=C_{0} \mathrm{e}^{-\mathrm{kV} / Q}=(0.5) \mathrm{e}^{-(1 \times 1) / 1}=0.184 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

c. Because the effluent concentration C is directly proportional to C_{0} for first order kinetics, the final concentrations are the same

Solution: Part 3 ($r=-k$)

1. Solve the complete-mix and plug-flow expressions for C for $\mathrm{r}=-\mathrm{k}$
a. Complete-mix reactor

$$
\begin{aligned}
& 0=Q C_{0}-Q C-k V \\
& C=C_{0}-k(V / Q)
\end{aligned}
$$

b. Plug-flow reactor

$$
\begin{aligned}
& \int_{C_{0}}^{c} d C=-k \frac{V}{Q} \\
& C=C_{0}-k(V / Q)
\end{aligned}
$$

2. Determine the effluent concentration from the combined reactor systems
a. The two expressions derived above are identical.
b. Because the two expressions are identical, for the given data the concentration in the second reactor is equal to zero.

PROBLEM 1-25

Problem Statement - See text, page 54

Solution

1. Develop basic mass balance formulation for plug-flow reactor with recycle Accumulation $=$ inflow - outflow + generation

$$
\begin{equation*}
\frac{\partial C}{\partial t} \Delta V=\left.Q^{\prime} C_{0}^{\prime}\right|_{x}-\left.Q^{\prime} C_{o}^{\prime}\right|_{x+\Delta x}+r_{c} d V \tag{1-18}
\end{equation*}
$$

where $Q^{\prime}=Q(1+\alpha)$

$$
\begin{aligned}
& C_{o}^{\prime}=\frac{\alpha C+C_{0}}{1+\alpha} \\
& \alpha=\text { recycle ratio }=Q / Q_{R}
\end{aligned}
$$

2. Solve the mass balance equation for $\mathrm{C} / \mathrm{C}_{0}$
$\int_{C^{\prime}}^{C} \frac{d C}{C}=-k \frac{V}{Q^{\prime}}$
$\ln C / C^{\prime}{ }_{0}=-k \frac{V}{Q}$
$C=C_{o}^{\prime} e^{-k V / Q^{\prime}}=\frac{\alpha C+C_{0}}{1+\alpha} e^{-k \frac{V}{Q}\left(\frac{1}{1+\alpha}\right)}$
With some manipulation,
$C / C_{0}=\frac{e^{-k \frac{V}{Q}\left(\frac{1}{1+\alpha}\right)}}{1+\alpha\left[1-e^{-k \frac{V}{Q}\left(\frac{1}{1+\alpha}\right)}\right]}$
Remembering that $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots$
$C / C_{0}=\frac{1+\left(-k \frac{V}{Q} \frac{1}{1+\alpha}\right)}{1+\alpha\left(1-1+k \frac{V}{Q} \frac{1}{1+\alpha}\right)}=\frac{\left(1-k \frac{V}{Q} \frac{1}{1+\alpha}\right)}{\left(1+k \frac{V}{Q} \frac{\alpha}{1+\alpha}\right)}$
Thus when $\alpha \rightarrow \infty$, the above expression is approximately equal to
$C / C_{0} \approx \frac{1}{1+k \frac{V}{Q}}$
which is the expression for a complete-mix reactor
3. Sketch the generalized curve of conversion versus the recycle ratio.
a. At $\alpha=0$

$$
1-C / C_{0}=1-e^{-k V / Q}
$$

b. As $\alpha \rightarrow \infty$
$1-\mathrm{C} / \mathrm{C}_{0} \rightarrow$ the conversion of a CMR

4. Sketch a family of curves to illustrate the effect of the recycle rato on the longitudinal concentration gradient.
a. From Step 2
$C / C_{o}^{\prime}=e^{-k \frac{V}{Q}\left(\frac{1}{1+\alpha}\right)}$
b. The relative conversion is:

$$
1-C / C_{o}^{\prime}=1-e^{-k \frac{V}{Q}\left(\frac{1}{1+\alpha}\right)}
$$

c. When $\alpha=0$, the longitudinal concentration gradient is given by

$$
1-C / C_{0}=1-e^{-k \frac{V}{Q}}
$$

d. When $\alpha \rightarrow \infty$, the longitudinal concentration gradient is given by

$$
1-C / C_{0}=1-1=0
$$

5. Write a materials balance for a complete mix-reactor with recycle

Accumulation $=$ inflow - outflow + generation
$\frac{d C}{d t}=Q C_{0}+Q_{R} C-\left(Q+Q_{R}\right) C+\left(-r_{C}\right) V$
At steady-state
$0=Q C_{o}+Q_{R} C-\left(Q+Q_{R}\right) C+\left(-r_{C}\right) V$
Because Q_{R} drops out of the above expression, recycle flow has no effect.

PROBLEM 1-26

Problem Statement - See text, page 54

Solution

1. Write a materials balance for a complete mix-reactor with effluent recycle with first order reaction kinetics

Accumulation $=$ inflow - outflow + generation

$$
\frac{d C}{d t}=Q C_{o}+Q_{R} C-\left(Q+Q_{R}\right) C+\left(-r_{C}\right) V
$$

2. At steady-state

$$
0=Q C_{o}+Q_{R} C-\left(Q+Q_{R}\right) C+\left(-r_{C}\right) V
$$

Because Q_{R} drops out of the above expression, recycle flow has no effect for first or second order reactions.

PROBLEM 1-27

Problem Statement - See text, page 54

Solution

1. Starting with Eq. (1-53), derive an expression that can be used to compute the effluent concentration assuming a retarded second order removal rate coefficient.

$$
\int_{C=C_{o}}^{\mathrm{C}=\mathrm{C}} \frac{\mathrm{dC}}{\mathrm{C}^{2}}=-\int_{\mathrm{t}=0}^{\mathrm{t}=\mathrm{t}} \frac{\mathrm{k}}{\left(1+\mathrm{r}_{\mathrm{t}} \mathrm{t}\right)} \mathrm{dt}
$$

a. Integrating the above expression yields

$$
\left.\frac{1}{C}\right|_{C=C_{0}} ^{C=C}=\left.\frac{k}{r_{t}} \ln \left(1+r_{t} t\right)\right|_{t=0} ^{t=t}
$$

b. Carrying out the above substitutions and solving for C yields

$$
C=\frac{r_{t} C_{0}}{r_{t}+k C_{0} \ln \left(1+r_{t} t\right)}
$$

2. Determine the effect of retardation.
a. The expression for the effluent concentration for second-order removal kinetics without retardation is (see Problem 1-24, Part 1 for plug-flow reactor):

$$
C=\frac{1}{\left(k \tau+\frac{1}{C_{0}}\right)}
$$

b. Compare effluent concentrations for the following conditions

$$
\begin{aligned}
C_{0} & =1.0 \\
k & =0.1
\end{aligned}
$$

$$
\begin{aligned}
& r_{t}=0.2 \\
& \tau=1.0 \\
& C_{\text {eff }(\text { retarded })}=\frac{0.2(1.0)}{0.2+0.1(1.0) \ln [1+0.2(1.0)]}=0.92 \\
& C_{\text {eff }(\text { unretarded })}=\frac{1}{\left[0.1(1.0)+\frac{1}{(1.0)}\right]}=0.91
\end{aligned}
$$

3. From the above computations it can be seen that the effect of retardation is not as significant for a second order reaction. The impact is much greater for first order reactions.

2

CONSTITUENTS IN WASTEWATER

PROBLEM 2-1

Problem Statement - See text, page 171

Solution

1. Set up a computation table to determine the sum of milliequivalents per liter for both cations and anions for Sample 3, for example.

	Concentration						Concentration	
Cation	$\mathrm{mg} / \mathrm{meq}$	mg / L	$\mathrm{meq} / \mathrm{L}$	Anion	$\mathrm{mg} / \mathrm{meq}$	mg / L	$\mathrm{meq} / \mathrm{L}$	
Ca^{2+}	20.04	190.2	9.49	$\mathrm{HCO}_{3}{ }^{-}$	61.02	260.0	4.26	
Mg^{2+}	12.15	84.1	6.92	$\mathrm{SO}_{4}{ }^{2-}$	48.03	64.0	1.33	
Na^{+}	23.00	75.2	3.27	Cl^{-}	35.45	440.4	12.41	
$\mathrm{~K}^{+}$	39.10	5.1	0.13	$\mathrm{NO}_{3}{ }^{-}$	62.01	35.1	0.58	
Fe^{2+}		0.2	0.01	$\mathrm{CO}_{3}{ }^{2-}$		30.0	1.00	
Sum	-	-	19.82	Sum_{n}	-	-	19.58	

2. Check the accuracy of the cation-anion balance using Eq. (2-5).

Percent difference $=100 \times\left(\frac{\Sigma \text { cations }-\Sigma \text { anions }}{\Sigma \text { cations }+\Sigma \text { anions }}\right)$

Percent difference $=100 \times\left(\frac{19.82-19.58}{19.82+19.58}\right)=-0.6 \%$ (ok)

PROBLEM 2-2

Problem Statement - See text, page 171

Solution

1. Determine the mole fraction of each cation and anion in Sample 1 using Eq. (2-2) written as follows:

$$
\mathrm{X}_{\mathrm{Ca}^{2+}}=\frac{\mathrm{n}_{\mathrm{Ca}^{2+}}}{\mathrm{n}_{\mathrm{Ca}^{2+}}+\mathrm{n}_{\mathrm{Mg}^{2+}}+\mathrm{n}_{\mathrm{Na}^{+}}+\mathrm{n}_{\mathrm{K}^{+}}+\mathrm{n}_{\mathrm{HCO}_{3}^{-}}+\mathrm{n}_{\mathrm{SO}_{4}^{2-}}+\mathrm{n}_{\mathrm{Cl}^{-}}+\mathrm{n}_{\mathrm{NO}_{3}^{-}}+\mathrm{n}_{\mathrm{w}}}
$$

a. Determine the moles of the solutes.

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{Ca}^{2+}}=\frac{(206.6 \mathrm{mg} / \mathrm{L})}{\left(40.08 \times 10^{3} \mathrm{mg} / \mathrm{mole} \mathrm{Ca}^{2+}\right)}=5.155 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{Mg}^{2+}}=\frac{(95.3 \mathrm{mg} / \mathrm{L})}{\left(24.305 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{Mg}^{2+}\right)}=3.921 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{Na}^{+}}=\frac{(82.3 \mathrm{mg} / \mathrm{L})}{\left(23.000 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{Na}^{+}\right)}=3.578 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{K}^{+}}=\frac{(5.9 \mathrm{mg} / \mathrm{L})}{\left(39.098 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{K}^{+}\right)}=1.509 \times 10^{-4} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{HCO}_{3}^{-}}=\frac{(525.4 \mathrm{mg} / \mathrm{L})}{\left(61.017 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{HCO}_{3}^{-}\right)}=8.611 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{SO}_{4}^{2-}}=\frac{(219.0 \mathrm{mg} / \mathrm{L})}{\left(96.058 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{SO}_{4}^{2-}\right)}=2.280 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{C}-}=\frac{(303.8 \mathrm{mg} / \mathrm{L})}{\left(35.453 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{Cl}^{-}\right)}=8.569 \times 10^{-3} \mathrm{~mole} / \mathrm{L} \\
& \mathrm{n}_{\mathrm{NO}_{3}^{-}}=\frac{(19.2 \mathrm{mg} / \mathrm{L})}{\left(62.005 \times 10^{3} \mathrm{mg} / \mathrm{mole} \text { of } \mathrm{NO}_{3}^{-}\right)}=3.097 \times 10^{-4} \mathrm{~mole} / \mathrm{L}
\end{aligned}
$$

c. Determine the moles of the water.

$$
\mathrm{n}_{\mathrm{w}}=\frac{(1000 \mathrm{~g} / \mathrm{L})}{(18 \mathrm{~g} / \mathrm{mole} \text { of water })}=55.556 \mathrm{~mole} / \mathrm{L}
$$

d. The mole fraction of calcium in Sample 1 is:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{Ca}^{2+}} & =\frac{5.16 \times 10^{-3}}{(5.16+3.92+3.58+0.151+8.61+2.28+8.57+3.10) \times 10^{-3}+55.56} \\
& =9.28 \times 10^{-5}
\end{aligned}
$$

2. Similarly, the mole fractions of Mg^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ in Sample $\mathbf{1}$ are:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{Mg}^{2+}} & =\frac{3.92 \times 10^{-3}}{(5.16+3.92+3.58+0.151+8.61+2.28+8.57+3.10) \times 10^{-3}+55.56} \\
& =7.05 \times 10^{-5} \\
\mathrm{X}_{\mathrm{SO}_{4}^{2-}} & =\frac{2.28 \times 10^{-3}}{(5.16+3.92+3.58+0.151+8.61+2.28+8.57+3.10) \times 10^{-3}+55.56} \\
& =4.10 \times 10^{-5}
\end{aligned}
$$

PROBLEM 2-3

Problem Statement - See text, page 171

Solution

1. Determine the ionic strength of the wastewater using Eq. (2-11)
a. Prepare a computation table to determine the summation term in Eq.
(2-11) using the data for Sample 3 in Problem 2-1

lon	Conc., C, mg / L,	$\mathrm{C} \times 10^{3}$, $\mathrm{mole} / \mathrm{L}$	Z^{2}	$\mathrm{CZ}^{2} \mathrm{x}$ 10^{3}
Ca^{2+}	190.2	4.75	4	19.00
Mg^{2+}	84.1	3.46	4	13.84
Na^{+}	75.2	3.27	1	3.27
$\mathrm{~K}^{+}$	5.1	0.13	1	0.13
Fe^{2+}	0.2	-	4	-
$\mathrm{HCO}_{3}{ }^{-}$	260.0	4.26	1	4.26
$\mathrm{SO}_{4}{ }^{2-}$	64.0	0.67	4	2.68
Cl^{-}	440.4	12.42	1	12.42
$\mathrm{NO}_{3}{ }^{-}$	35.1	0.57	1	0.57
$\mathrm{CO}_{3}{ }^{2-}$	30.0	0.50	4	2.00

b. Determine the ionic strength for the concentration C using Eq. (2-10)

$$
I=\frac{1}{2} \Sigma C_{i} Z_{i}^{2}=\frac{1}{2}\left(58.17 \times 10^{-3}\right)=29.09 \times 10^{-3}
$$

2. Determine the activity coefficients for monovalent and divalent ions using Eq. (2-12)
a. For monovalent ions

$$
\begin{aligned}
\log \gamma & =-0.5\left(Z_{i}\right)^{2}\left(\frac{\sqrt{1}}{1+\sqrt{1}}-0.3 I\right)=-0.5(1)^{2}\left[\frac{\sqrt{29.09 \times 10^{-3}}}{1+\sqrt{29.09 \times 10^{-3}}}-0.3\left(29.09 \times 10^{-3}\right)\right] \\
& =-0.0685 \\
\gamma & =0.8541
\end{aligned}
$$

b. For divalent ions

$$
\begin{aligned}
\log \gamma & =-0.5\left(Z_{i}\right)^{2}\left(\frac{\sqrt{1}}{1+\sqrt{l}}-0.31\right)=-0.5(2)^{2}\left[\frac{\sqrt{29.09 \times 10^{-3}}}{1+\sqrt{29.09 \times 10^{-3}}}-0.3\left(29.09 \times 10^{-3}\right)\right] \\
& =-0.2739 \\
\gamma & =0.5322
\end{aligned}
$$

2. Continue the computation table from Part 1 to determine the activity for each ion using Eq. (2-8)

	$C \times 10^{3}$, mole/L	Activity a_{i}, mole $/ \mathrm{L}$

Ca^{2+}	4.75	2.53
Mg^{2+}	3.46	1.84
Na^{+}	3.27	2.79
$\mathrm{~K}^{+}$	0.13	0.11
Fe^{2+}	-	-
$\mathrm{HCO}_{3}{ }^{-}$	4.26	3.64
$\mathrm{SO}_{4}{ }^{2-}$	0.67	0.36
Cl^{-}	12.42	10.61
$\mathrm{NO}_{3}{ }^{-}$	0.57	0.49
$\mathrm{CO}_{3}{ }^{2-}$	0.50	0.27

PROBLEM 2-4

Problem Statement - See text, page 171

Solution

1. Estimate the TDS for Sample 3 from Problem 2-1 using Eq. (2-11)
$\mathrm{I}=2.5 \times 10^{-5} \times \mathrm{TDS}$
where TDS = total dissolved solids, mg / L or $\mathrm{g} / \mathrm{m}^{3}$

TDS $=\frac{1 \times 10^{5}}{2.5}=\frac{(0.02909) \times 10^{5}}{2.5}=1163 \mathrm{mg} / \mathrm{L}$
2. Estimate the TDS for Sample 3 from by summing the solids concentrations

lon	Conc., C, mg / L
Ca^{2+}	190.2
Mg^{2+}	84.1
Na^{+}	75.2
$\mathrm{~K}^{+}$	5.1
Fe^{2+}	0.2

$\mathrm{HCO}_{3}{ }^{-}$	260.0
$\mathrm{SO}_{4}{ }^{2-}$	64.0
Cl^{-}	440.4
$\mathrm{NO}_{3}{ }^{-}$	35.1
$\mathrm{CO}_{3}{ }^{2-}$	30.0
Sum	1184.3

The results from the two methods are remarkably close.

PROBLEM 2-5

Problem Statement - See text, page 171

Solution

1. Determine total solids for Sample 2.

$$
\begin{aligned}
& \mathrm{TS}=\frac{\left[\binom{\text { mass of evaporating }}{\text { dish plus residue, } \mathrm{g}}-\binom{\text { mass of evaporating }}{\text { dish, } \mathrm{g}}\right]\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)}{\text { sample size, } \mathrm{L}} \\
& \mathrm{TS}=\frac{[(22.6832-22.6445) \mathrm{g}]\left(10^{3} \mathrm{mg} / \mathrm{g}\right)}{0.10 \mathrm{~L}}=387 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. Determine total volatile solids for Sample 2.

$$
\begin{aligned}
& \text { TVS }=\frac{\left[\binom{\text { mass of evaporating }}{\text { dish plus residue, } g}-\binom{\text { mass of evaporating dish }}{\text { plus residue after ignition, } \mathrm{g}}\right]\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)}{\text { sample size, } \mathrm{L}} \\
& \text { TVS }=\frac{[(22.6832-22.6795) \mathrm{g}]\left(10^{3} \mathrm{mg} / \mathrm{g}\right)}{0.10 \mathrm{~L}}=37 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

PROBLEM 2-6

Problem Statement - See text, page 172

Solution

1. Determine total solids for Sample 2

$$
\begin{aligned}
& \mathrm{TS}=\frac{\left[\binom{\text { mass of evaporating }}{\text { dish plus residue, } \mathrm{g}}-\binom{\text { mass of evaporating }}{\text { dish, } \mathrm{g}}\right]\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)}{\text { sample size, } \mathrm{L}} \\
& \mathrm{TS}=\frac{[(53.5693-53.5434) \mathrm{g}]\left(10^{3} \mathrm{mg} / \mathrm{g}\right)}{0.05 \mathrm{~L}}=518 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. Determine total volatile solids for Sample 2.

$$
\begin{aligned}
& \text { TVS }=\frac{\left[\binom{\text { mass of evaporating }}{\text { dish plus residue, } \mathrm{g}}-\binom{\text { mass of evaporating dish }}{\text { plus residue after ignition, } \mathrm{g}}\right]\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)}{\text { sample size, } \mathrm{L}} \\
& \text { TVS }=\frac{[(53.5693-53.5489) \mathrm{g}]\left(10^{3} \mathrm{mg} / \mathrm{g}\right)}{0.05 \mathrm{~L}}=408 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

3. Determine the total suspended solids for Sample 2.

$$
\begin{gathered}
\mathrm{TSS}=\frac{\left[\binom{\text { mass of filter plus }}{\text { residue after drying, } \mathrm{g}}-\binom{\text { tare mass of filter }}{\text { after drying, } \mathrm{g}}\right]\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)}{\text { sample size, } \mathrm{L}} \\
\mathrm{TSS}=\frac{[(1.5521-1.5435) \mathrm{g}]\left(10^{3} \mathrm{mg} / \mathrm{g}\right)}{0.05 \mathrm{~L}}=172 \mathrm{mg} / \mathrm{L}
\end{gathered}
$$

4. Determine the volatile suspended solids for Sample 2.

$$
\begin{aligned}
& \mathrm{VSS}\left.\left.=\frac{\left[\binom{\text { residue plus filter }}{\text { after drying, } \mathrm{g}}-\binom{\text { residue plus filter }}{\text { after ignition, } \mathrm{g}}\right.}{}\right)\right]\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right) \\
& \text { sample size, } \mathrm{L} \\
& \mathrm{VSS}=\frac{[(1.5455-1.5521) \mathrm{g}]\left(10^{3} \mathrm{mg} / \mathrm{g}\right)}{0.05 \mathrm{~L}}=132 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

5. Determine the total dissolved solids for Sample 2.

TDS $=\mathrm{TS}-\mathrm{TSS}=(518-172) \mathrm{mg} / \mathrm{L}=346 \mathrm{mg} / \mathrm{L}$

PROBLEM 2-7

Problem Statement - See text, page 172

Solution

1. Prepare a plot of the suspended solids removed by a filter after passing through the next largest size.

2. Determine the total suspended solids for Sample 1, based on a filter with a pore size of $0.1 \mu \mathrm{~m}$.

Nominal pore size, $\mu \mathrm{m}$	Suspended solids, mg / L	Cumulative suspended solids, mg / L
12	20.2	20.2
8	8.8	29.0
5	4.1	33.1
3	7.5	40.6
1	15.1	55.7
0.1	9.9	65.6

3. Prepare a cumulative plot of the suspended solids data to estimate the amount of suspended solids that would have been removed using a filter with a nominal pore size of $1.2 \mu \mathrm{~m}$.

From the above plot, about $54 \mathrm{mg} / \mathrm{L}$ would have been measured with a pore size of $1.2 \mu \mathrm{~m}$. The corresponding error would have been about:

Percent error $=\left[\frac{(65.6-54) \mathrm{g}}{65.6 \mathrm{~g}}\right] \times 100=17.7 \%$

PROBLEM 2-8

Problem Statement - See text, page 172

Solution

1. Set up a table to determine the information needed to plot the data for Sample 3.

	Mean Channel diameter	ΔN, $d_{p}, \mu \mathrm{~m}$	Channel size interval, number $/ \mathrm{mL}$	$\Delta\left(\mathrm{d}_{\mathrm{pi}}\right)$	$\log \left(\mathrm{d}_{\mathrm{p}}\right)$	$\log \left[\Delta \mathrm{N} / \Delta\left(\mathrm{d}_{\mathrm{pi}}\right)\right]$
$1-2$	1.5	20,000	1	0.18	4.30	

$2-5$	3.5	6,688	3	0.54	3.35
$5-10$	7.5	3000	5	0.88	2.78
$10-15$	12.5	1050	5	1.1	2.32
$15-20$	17.5	300	5	1.24	1.78
$20-30$	25.0	150	10	1.4	1.18
$30-40$	35.0	27	10	1.54	0.43
$40-60$	50.0	12	20	1.7	-0.22
$60-80$	70	6	20	1.85	-0.52
$80-100$	90	4	20	1.95	-0.70
$100-140$	120	3	40	2.08	-1.12

2. Prepare a plot of the log of the arithmetic mean particle diameter, d_{p}, versus the normalized number of particles for the corresponding bin size, $\log \left[\Delta \mathrm{N} / \Delta\left(\mathrm{d}_{\mathrm{pi}}\right)\right]$.

3. Determine A and β in Eq. (2-17)
a. Determine A is defined as the intercept of the $\log \left[\Delta N / \Delta\left(d_{\mathrm{pi}}\right)\right]$ axis when $\log \left(d_{p}\right)=0$, (i.e., $d_{p}=1$).

The intercept value for Sample 3 is 5.0 .
Thus $\log A=5.0$ and $A=10^{5.0}$
b. Determine the value of β which corresponds to the slope of the line.
$-\beta=\frac{5.0-(-1.0)}{0-2.5}=-2.4$
$\beta=2.4$

PROBLEM 2-9

Problem Statement - See text, page 173

Solution

1. Use Beers-Lambert Law [Eq. (2-19)] to develop the required equation for average intensity. See definition sketch given in Example 2-5.
$\left.I_{a v g} \times d=\int_{0}^{d} I_{0} e^{-k x} d x=-\frac{I_{0}}{k} e^{-k x}\right]_{0}^{d}=-\frac{I_{0}}{k} e^{-k d}+\frac{I_{0}}{k}=\frac{I_{0}}{k}\left(1-e^{-k d}\right)$
$l_{\text {avg }}=\frac{\mathrm{I}_{0}}{\mathrm{kd}}\left(1-\mathrm{e}^{-\mathrm{kd}}\right)$
2. Solve the above equation for measured intensity at the water surface, I_{0}.
a. Using an average intensity $5 \mathrm{~mW} / \mathrm{cm}^{2}$ and a water depth of 8 mm and the given absorptivity, $\mathrm{k},=1.25 \mathrm{~cm}^{-1}$:

$$
\mathrm{I}_{\mathrm{o}}=\frac{\mathrm{l}_{\mathrm{avg}} \times \mathrm{kd}}{1-\mathrm{e}^{-\mathrm{kd}}}=\frac{\left(5 \mathrm{~mW} / \mathrm{cm}^{2}\right)\left(1.25 \mathrm{~cm}^{-1}\right)(0.8 \mathrm{~cm})}{1-\mathrm{e}^{\left(-1.25 \mathrm{~cm}^{-1}\right)(0.8 \mathrm{~cm})}}=7.91 \mathrm{~mW} / \mathrm{cm}^{2}
$$

PROBLEM 2-10

Problem Statement - See text, page 2-117

Solution

1. The definition of alkalinity in molar quantities is

Alk, eq $/ \mathrm{m}^{3}=\mathrm{meq} / \mathrm{L}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
The corresponding expression in terms of equivalents is:

Alk, eq $/ \mathrm{m}^{3}=\left(\mathrm{HCO}_{3}^{-}\right)+\left(\mathrm{CO}_{3}^{2-}\right)+\left(\mathrm{OH}^{-}\right)-\left(\mathrm{H}^{+}\right)$

For Sample 3 from Problem 2-1, the alkalinity in meq/L is
$\mathrm{Alk}, \mathrm{meq} / \mathrm{L}=\left(\mathrm{HCO}_{3}{ }^{-}=4.26\right)+\left(\mathrm{CO}_{3}{ }^{2-}=1\right)=5.26$
Milliequivalent mass of $\mathrm{CaCO}_{3}=50 \mathrm{mg} / \mathrm{meq}$ [Eq. (2-34)]
2. The alkalinity, expressed as CaCO_{3}, is:

Alkalinity water $\mathrm{C}=\left(\frac{5.26 \mathrm{meq}}{\mathrm{L}}\right)\left(\frac{50 \mathrm{mg} \mathrm{CaCO}_{3}}{\mathrm{meq} \mathrm{CaCO}} 33\right)=263 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

PROBLEM 2-11

Problem Statement - See text, page 173

Solution

1. Determine the molar mass of a gas at $20^{\circ} \mathrm{C}$ assuming the gas has a density of $0.68 \mathrm{~g} / \mathrm{L}$ at standard temperature and pressure (STP) using the following relationship from Appendix B-3.

$$
\rho_{\mathrm{a}}=\frac{\mathrm{PM}}{\mathrm{RT}}
$$

where $P=$ atmospheric pressure $=1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \mathrm{M}=\text { mole of air }(\text { see Table } \mathrm{B}-1)=28.97 \mathrm{~kg} / \mathrm{kg} \text { mole } \\
& \mathrm{R}=\text { universal gas constant }=[8314 \mathrm{~N} \cdot \mathrm{~m} /(\mathrm{kg} \text { mole air }) \cdot \mathrm{K}] \\
& \mathrm{T} \text { = temperature, } \mathrm{K}(\text { Kelvin })=\left(273.15+{ }^{\circ} \mathrm{C}\right) \\
& \text { Mole of gas }=\frac{[8314 \mathrm{Nm} /(\mathrm{kg}-\mathrm{mole} \text { air }) \cdot \mathrm{K}][(273.15+20) \mathrm{K}]\left(0.68 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)} \\
& \quad=16.36 \mathrm{~kg} / \mathrm{kg} \text {-mole }
\end{aligned}
$$

PROBLEM 2-12

Problem Statement - See text, page 173

2-12. At what pH would 95 percent of NH_{3} be present as gas. Apply Eq. 2-40 and give the acid ionization (dissociation) constant at $25^{\circ} \mathrm{C}$.

Solution

1 Rearrange Eq. (2-40) to solve for the hydrogen ion concentration
a. Given K_{a} at $25^{\circ} \mathrm{C}=5.62 \times 10^{-10}$

$$
\left[\mathrm{H}^{+}\right]=\left[\left(\frac{100}{\mathrm{NH}_{3}, \%}\right)-1\right]\left(\mathrm{K}_{\mathrm{a}}\right)=\left[\left(\frac{100}{95}\right)-1\right]\left(5.62 \times 10^{-10}\right)=2.96 \times 10^{-11}
$$

b. Solve for pH using Eq. (2-27)

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]=-\log _{10}\left(2.96 \times 10^{-11}\right)=10.53
$$

PROBLEM 2-13

Problem Statement - See text, page 173

Solution

1 Compare the saturation concentrations of $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and CO_{2} between San Francisco (sea level) and La Paz Bolivia (elevation 4,270 m) using the following relationship from Appendix B-4 which can be used to compute the change in atmospheric pressure with elevation.

$$
\frac{P_{b}}{P_{a}}=\exp \left[-\frac{g M\left(z_{b}-z_{a}\right)}{R T}\right]
$$

where $P=$ pressure, $1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

$M=$ mole of air (see Table B-1) $=28.97 \mathrm{~kg} / \mathrm{kg}$ mole

$$
\begin{aligned}
& z=\text { elevation, } m \\
& R=\text { universal gas constant }=[8314 \mathrm{~N} \cdot \mathrm{~m} /(\mathrm{kg} \text { mole air }) \cdot \mathrm{K}] \\
& T=\text { temperature, } K(\text { Kelvin })=\left(273.15+{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

a. For oxygen

$$
\frac{P_{b}}{P_{a}}=\exp \left[-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(32 \mathrm{~kg} / \mathrm{kg} \pm \text { mole })(4,270-0)}{[8314 \mathrm{Nm} /(\mathrm{kg} \text { mole air }) \mathrm{K}](273.15+20) \mathrm{T}}\right]=0.58
$$

b. For nitrogen

$$
\frac{P_{b}}{P_{a}}=\exp \left[-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(28 \mathrm{~kg} / \mathrm{kg} \pm \mathrm{mole})(4,270-0)}{[8314 \mathrm{Nm} /(\mathrm{kg} \text { mole air }) \mathrm{K}](273.15+20) \mathrm{T}}\right]=0.61
$$

c. For carbon dioxide

$$
\frac{P_{b}}{P_{\mathrm{a}}}=\exp \left[-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(44 \mathrm{~kg} / \mathrm{kg} \pm \text { mole })(4,270-0)}{[8314 \mathrm{Nm} /(\mathrm{kg} \text { mole air }) \mathrm{K}](273.15+20) \mathrm{T}}\right]=0.47
$$

PROBLEM 2-14

Problem Statement - See text, page 173

Solution

1. Determine the value of Henry's constant using Eq. (2-48) $\log _{10} \mathrm{H}=\frac{-\mathrm{A}}{\mathrm{T}}+\mathrm{B}$
From Table 2-7, for oxygen $A=595.27$ and $B=6.644$

Temperature		
${ }^{\circ} \mathrm{C}$	K	H, atm/mole fraction
0	273.15	29,155
10	283.15	34,808
20	293.15	41,058

30	303.15	47,905
40	313.15	55,346
50	323.15	63,374

The required plot is given below

PROBLEM 2-15

Problem Statement - See text, page 173

Solution

1. The gas in the head space contains 80 percent oxygen by volume.

Therefore, $\mathrm{pg}_{\mathrm{g}}=0.80{\text { mole } \mathrm{O}_{2} / \text { mole air }}$
2. Determine the concentration of the gas using Henry's law
a. From Table 2-7, at $20^{\circ} \mathrm{C}$, Henry's constant is:

$$
\mathrm{H}=4.11 \times 10^{4} \frac{\mathrm{~atm}(\text { mole gas } / \text { mole air })}{(\mathrm{mole} \text { gas } / \text { mole water })}
$$

b. Using Eq (2-46), the value of X_{g} is:

$$
\begin{aligned}
X_{g} & =\frac{P_{T}}{H} p_{g} \\
& =\frac{3.0 \mathrm{~atm}}{4.11 \times 10^{4} \frac{\mathrm{~atm}(\mathrm{~mole} \text { gas } / \mathrm{mole} \text { air })}{(\mathrm{mole} \text { gas } / \mathrm{mole} \text { water })}}(0.80 \mathrm{~mole} \text { gas } / \mathrm{mole} \mathrm{air})
\end{aligned}
$$

$$
=0.584 \times 10^{-4} \mathrm{~mole} \text { gas } / \mathrm{mole} \text { water }
$$

3. One liter of water contains $1000 \mathrm{~g} /(18 \mathrm{~g} /$ mole $)=55.6$ mole, thus

$$
\begin{aligned}
& \frac{n_{g}}{n_{g}+n_{w}}=0.584 \times 10^{-4} \\
& \frac{n_{g}}{n_{g}+55.6}=0.584 \times 10^{-4}
\end{aligned}
$$

Because the number of moles of dissolved gas in a liter of water is much less than the number of moles of water,

$$
\begin{aligned}
& n_{g}+55.6 \approx 55.6 \text { and } \\
& n_{g} \approx(55.6) 0.584 \times 10^{-4} \\
& n_{g} \approx 32.47 \times 10^{-4} \mathrm{~mole} \mathrm{O}_{2} / \mathrm{L}
\end{aligned}
$$

4. Determine the saturation concentration of oxygen.

$$
\mathrm{C}_{\mathrm{s}} \approx\left(\frac{32.47 \times 10^{-4} \mathrm{~mole} \mathrm{O}_{2}}{\mathrm{~L}}\right)\left(\frac{32 \mathrm{~g}}{\mathrm{~mole} \mathrm{O}_{2}}\right)\left(\frac{10^{3} \mathrm{mg}}{1 \mathrm{~g}}\right)=103.9 \mathrm{mg} / \mathrm{L}
$$

PROBLEM 2-16

Problem Statement - See text, page 173

Solution

1. The gas in the head space contains 95 percent carbon dioxide by volume.

Therefore, $\mathrm{pg}_{\mathrm{g}}=0.95{\text { mole } \mathrm{CO}_{2} / \text { mole air }}^{2}$
3. Determine the concentration of the gas using Henry's law
a. From Table 2-7, at $25^{\circ} \mathrm{C}$, and using Eq. (2-48) Henry's constant is:

$$
\mathrm{H}=1.42 \times 10^{3} \frac{\mathrm{~atm}(\text { mole gas } / \mathrm{mole} \text { air })}{(\mathrm{mole} \text { gas } / \mathrm{mole} \text { water })}
$$

b. Using Eq (2-46), the value of X_{g} is:

$$
\begin{aligned}
X_{g} & =\frac{P_{T}}{H} p_{g} \\
& \left.=\frac{2.0 \mathrm{~atm}}{1.42 \times 10^{3}\left[\frac{\text { atm (mole gas } / \mathrm{mole} \text { air })}{(\text { mole gas } / \mathrm{mole} \text { water })}\right.}\right] \\
& (0.95 \mathrm{~mole} \text { gas } / \mathrm{mole} \text { air }) \\
& =0.134 \times 10^{-2} \text { mole gas } / \text { mole water }
\end{aligned}
$$

3. One liter of water contains $1000 \mathrm{~g} /(18 \mathrm{~g} / \mathrm{mole})=55.6$ mole, thus

$$
\begin{aligned}
& \frac{n_{g}}{n_{g}+n_{w}}=0.134 \times 10^{-2} \\
& \frac{n_{g}}{n_{g}+55.6}=0.134 \times 10^{-2}
\end{aligned}
$$

Because the number of moles of dissolved gas in a liter of water is much less than the number of moles of water,

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{g}}+55.6 \approx 55.6 \text { and } \\
& \mathrm{n}_{\mathrm{g}} \approx(55.6) 0.134 \times 10^{-2} \\
& \mathrm{n}_{\mathrm{g}} \approx 74.39 \times 10^{-3}{\text { mole } \mathrm{CO}_{2} / \mathrm{L}}^{2}
\end{aligned}
$$

Given the above liquid concentration of carbon dioxide, $\left[\mathrm{CO}^{2}\right]_{\text {aq }}$, we can now use the properties of the carbonate equilibrium to determine pH .
4. Determine the molar concentration of $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ (see Appendix F, Eq. F-2).

$$
\begin{aligned}
\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]_{\mathrm{aq}}} & =K_{m} \\
{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] } & =K_{m}\left[\mathrm{CO}_{2}\right]_{\mathrm{aq}}=\left(1.58 \times 10^{-3}\right)\left(74.39 \times 10^{-3}\right) \\
& =1.18 \times 10^{-4}
\end{aligned}
$$

5. Determine molar concentration of $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]$.

$$
\begin{aligned}
{\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right] } & =\left[\mathrm{CO}_{2}\right]_{\mathrm{aq}}+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \\
& =\left(74.39 \times 10^{-3}\right)+\left(1.18 \times 10^{-4}\right) \\
& =74.51 \times 10^{-3}
\end{aligned}
$$

6. Determine the pH of the soda water.
a. The equilibrium expression for $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]$ is

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]}=K_{1}
$$

b. Consider electron neutrality, Σ cations $=\Sigma$ anions. In this example the hydrogen ion concentration must be balanced by negative ions. In the case of soda water, bicarbonate, carbonate, and hydroxide will be assumed to be the only sources of negative ions. Thus,
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+2\left[\mathrm{CO}^{2-}\right]+\left[\mathrm{HCO}_{3}^{-}\right]$
Soda water is acidic ($\mathrm{pH}<7.0$), therefore the values of $[\mathrm{OH}-]$ and $\left[\mathrm{CO}^{2}\right]$ will be negligible and $[\mathrm{H}+] \approx\left[\mathrm{HCO}_{3}\right]$. Substituting $[\mathrm{H}+]$ for $\left[\mathrm{HCO}_{3}\right]$ into the equilibrium expression for $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]$ yields,

$$
\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]}=K_{\mathrm{a} 1}
$$

Substitute for Ka_{1} from Appendix F and $\left[\mathrm{HCO}_{3}\right]$ from step 5 and solve for $\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]^{2}=\left(4.47 \times 10^{-7}\right)\left(74.51 \times 10^{-3}\right)} \\
& {\left[\mathrm{H}^{+}\right]=1.83 \times 10^{-4}} \\
& \mathrm{pH}=3.74
\end{aligned}
$$

PROBLEM 2-17

Problem Statement - See text, page 173

Solution

1. Linearize Eq. 2-54 and log transform the given data
a. The linearized form of Eq. 2-54 is:

$$
\log I=\log k+n \log C
$$

b. The log transformed data are:

	$\log \mathrm{D} / \mathrm{T}$	
Log I	Sample 1	Sample 2
3	0	0
2	1.4	0.5
1	2.5	1.0
0	3.5	1.5

3. Plot log I versus $\log \mathrm{C}$ and determine the slope n to determine which sample is more persistent
a. The required plot is given below

b. The slopes for the two samples are

Sample A $=-0.84$
Sample B = -2.0
c. Based on the slopes, Sample A is more persistent than Sample B.

PROBLEM 2-18

Problem Statement - See text, page 173

Solution

1. Solve for the threshold odor number, TON, as defined in Eq. 2-53:
$\mathrm{TON}=\frac{\mathrm{A}+\mathrm{B}}{\mathrm{A}}=\frac{25 \mathrm{~mL}+175 \mathrm{~mL}}{25 \mathrm{~mL}}=8$
2. Solve for the dilutions-to-threshold, D/T, as defined in Eq. 2-52:
$\mathrm{D} / \mathrm{T}=\frac{\text { volume of odor free air }}{\text { volume of odorous air }}=\frac{\text { volume of dilution water }}{\text { volume of sample }}=\frac{175 \mathrm{~mL}}{25 \mathrm{~mL}}=7$
3. First, find the threshold odor concentration of hydrogen sulfide in Table 2-8:
$\mathrm{C}_{\mathrm{TH}, \mathrm{H}_{2} \mathrm{~S}}=0.0003 \mathrm{ppm}_{\mathrm{v}}$
Assuming the odor is comprised entirely of $\mathrm{H}_{2} \mathrm{~S}, \mathrm{TON}$ and D / T values can be calculated using either the water volume or the air volume ratio of the sample fluid to dilution fluid because Henry's law is a linear relation. As a proof, Henry's law can again be applied to the undiluted sample (answer to Part 3) to calculate the D / T.

Find the concentration of hydrogen sulfide in the diluted sample using Henry's law (Eq. 2-46). (The unitless form of Henry's Law (Eq. 2-49) can also be applied, see Alternative Solution below.) Henry's constant for hydrogen sulfide at $20^{\circ} \mathrm{C}$ is given in Table 2-7.

Find the mole fraction, x_{g}, of $\mathrm{H}_{2} \mathrm{~S}$ in the sample as defined in Eq. 2-46:
$\mathrm{x}_{\mathrm{g}}=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{H}} \mathrm{p}_{\mathrm{g}}=\frac{(1 \mathrm{~atm})}{(483 \mathrm{~atm})}\left(0.0003 \mathrm{ppm}_{\mathrm{v}}\right)=6.21 \times 10^{-7} \mathrm{ppm}_{\mathrm{v}}$
Using the definition for x_{g} and given that $n_{w} \gg n_{g}$ (see Example 2-7):
$\mathrm{n}_{\mathrm{g}} \simeq \mathrm{n}_{\mathrm{w}} \cdot \mathrm{x}_{\mathrm{g}}=(55.6 \mathrm{~mole} / \mathrm{L})\left(6.21 \times 10^{-7} \mathrm{ppm}_{\mathrm{v}}\right)=3.45 \times 10^{-5} \mathrm{~mole} / \mathrm{L}$

Convert to mass concentration:

$$
\mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}, \text { diluted }}=3.45 \times 10^{-5} \frac{\mathrm{~mole} \mathrm{H}_{2} \mathrm{~S}}{\mathrm{~L}} \times 34.06 \frac{\mathrm{~g}}{\mathrm{~mole} \mathrm{H}_{2} \mathrm{~S}} \times 10^{3} \frac{\mathrm{mg}}{\mathrm{~g}}=1.18 \mathrm{mg} / \mathrm{L}
$$

Next, find the initial concentration of hydrogen sulfide in the treated wastewater sample, based on the dilution of 175 mL odor free dilution water for 25 mL odorous sample:
$\mathrm{C}_{\mathrm{H}_{2} \mathrm{~S}, \text { sample }}=1.18 \mathrm{mg} / \mathrm{L} \times \frac{175 \mathrm{~mL}}{25 \mathrm{~mL}}=8.23 \mathrm{mg} / \mathrm{L}$

Alternative solution

To use Eq. 2-49, you first must convert the hydrogen sulfide threshold odor concentration from $\mathrm{ppm}_{\mathrm{v}}$ to mg / L. Employ the ideal gas law to find the volume of an ideal gas:

$$
\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(1 \mathrm{~mole})(0.082057 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~K})[(273.15+20) \mathrm{K}]}{1.0 \mathrm{~atm}}=24.055 \mathrm{~L}
$$

The gas volume calculated above and Eq. 2-44 are then used to convert the hydrogen sulfide threshold odor concentration from $\mathrm{ppm}_{\mathrm{v}}$ to mg / L :

$$
\begin{aligned}
\mathrm{g} / \mathrm{m}^{3}= & \mathrm{mg} / \mathrm{L}=\frac{\left(\text { concentration }, \mathrm{ppm}_{\mathrm{v}}\right)(\mathrm{mw}, \mathrm{~g} / \mathrm{mole} \text { of gas })}{\left(\text { volume }, \mathrm{m}^{3} / \mathrm{mole} \text { of gas }\right)} \\
= & \frac{\left(4.7 \times 10^{-3} \mathrm{ppm}_{\mathrm{v}}\right)\left(34.06 \mathrm{~g} / \mathrm{mole} \mathrm{H}_{2} \mathrm{~S}\right)}{\left(24.053 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{mole} \text { of gas }\right)}=0.67 \mathrm{mg} / \mathrm{L} \\
\mathrm{C}_{\mathrm{s}}=\frac{\mathrm{C}_{\mathrm{g}}}{\mathrm{H}_{\mathrm{u}}} & =\frac{(0.67 \mathrm{mg} / \mathrm{L})}{(0.36)}=1.85 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

Find the initial concentration of hydrogen sulfide as above:
$\mathrm{C}_{\mathrm{H} 2 \mathrm{~S}, \text { sample }}=1.85 \mathrm{mg} / \mathrm{L} \times \frac{175 \mathrm{~mL}}{25 \mathrm{~mL}}=12.9 \mathrm{mg} / \mathrm{L}$
Note: For the more realistic case where an odor is comprised of a mix of gases, it would not be known how Henry's law applies.

PROBLEM 2-19

Problem Statement - See text, page 173

Solution

1. The plant manager has probably adapted to the plant's odor and is insensitive to low concentrations of the odor. Downwind residents are not adapted and, therefore, more sensitive. Because the Barneyby and Sutcliffe olfactometer does not account for odors to which a person's olfactory system may be adapted to, the readings are erroneous due to subject adaptation.
2. To resolve the differences, a new set of measurements should be taken using non-adapted subjects. The new tests should be free of measurement errors resulting from adaptation and sample modification. The new test results can then be compared with the original values. Based on this analysis, appropriate corrective measures can be taken to reduce or eliminate the odor if it is a real problem.

PROBLEM 2-20

Problem Statement - See text, page 174

Solution

Answers to this problem will tend to be subjective and many answers are possible. The specified answers will depend on the background of each student. Some of the items to be considered are given below.

1. Possible reasons:
a. Increase in sludge dewatering room odor emissions. These emissions are unlikely to be 100 times the maximum value observed by the odor consultant.
b. Faulty Direct Reading Olfactometer (DRO). The instrument has been checked and found to be quite reproducible.
c. Faulty sampling techniques. Using glass cylinders, it is found that there is a rapid decay of the odor concentration within the container. Decay within the usual one-hour period between sample collection and sample measurement may be significant.
d. Faulty measurement technique. In the ASTM procedure, lower odor concentration values are specified for high concentration samples. Lower values can occur because of the lack of control over the odor concentrations in the samples placed below the nose when using this method.
e. It can be concluded that reasons c . and d. could provide sufficient margin of error to explain the discrepancy.
2. Resolution:
a. The odor consultant is not likely to accept the DRO results as his reputation is based on his work with the ASTM method.
b. The agency, your client, will not like having to add additional odor control equipment and will probably sue the odor consultant or fire you.
c. The engineering contractor wants to get paid. He will want to use your results to substantiate his claim of poor specifications.
d. You conclude that the best compromise will involve discussing the differences between the ASTM and DRO techniques and negotiating a contract change order to expand the present odor control system as per your findings.

PROBLEM 2-21

Problem Statement - See text, page 174

Solution

1. First calculate the initial dissolved oxygen concentration of the mixture.
$\left(9.1 \mathrm{~g} / \mathrm{m}^{3}\right) \times(294 \mathrm{~mL} / 300 \mathrm{~mL})=8.92 \mathrm{~g} / \mathrm{m}^{3}$
2. Now calculate the BOD as defined in Eq. (2-56).

$$
\mathrm{BOD}=\frac{\mathrm{D}_{1}-\mathrm{D}_{2}}{\mathrm{P}}=\frac{\left[(8.92-2.8) \mathrm{g} / \mathrm{m}^{3}\right]}{[(6 \mathrm{~mL}) /(300 \mathrm{~mL})]}=306.0 \mathrm{~g} / \mathrm{m}^{3}
$$

3. An alternative approach for calculating the BOD is

$$
\mathrm{BOD}=\left\{\left[(9.1-2.8) \mathrm{g} / \mathrm{m}^{3}\right] \times[(300 \mathrm{~mL}) /(6 \mathrm{~mL})]\right\}-\left[(9.1-0) \mathrm{g} / \mathrm{m}^{3}\right]=305.9 \mathrm{~g} / \mathrm{m}^{3}
$$

PROBLEM 2-22

Problem Statement - See text, page 174

Solution

1. First calculate, for Sample 1, the initial dissolved oxygen concentration of the mixture.

$$
\left(9.0 \mathrm{~g} / \mathrm{m}^{3}\right) \times(292 \mathrm{~mL} / 300 \mathrm{~mL})=8.76 \mathrm{~g} / \mathrm{m}^{3}
$$

2. Now use Eq. (2-56) to calculate the BOD_{7}

$$
\mathrm{BOD}_{7}=\frac{\mathrm{D}_{1}-\mathrm{D}_{2}}{\mathrm{P}}=\frac{\left[(8.76-1.8) \mathrm{g} / \mathrm{m}^{3}\right]}{[(8 \mathrm{~m} \mathrm{~L}) /(300 \mathrm{~mL})]}=261.0 \mathrm{~g} / \mathrm{m}^{3}
$$

3. Determine the 5 -day BOD by inputting known values into Eq. (2-60) and solving the two resulting equations simultaneously.

$$
\begin{aligned}
\mathrm{BOD}_{5} & =\text { UBOD }\left[1-\mathrm{e}^{-\mathrm{k}_{1}(5)}\right] \\
261 & =\text { UBOD }\left[1-\mathrm{e}^{-k_{1}(7)}\right]
\end{aligned}
$$

Solving the above simultaneous equations for BOD_{5} :
$\mathrm{BOD}_{5}=326 \mathrm{~g} / \mathrm{m}^{3}$

PROBLEM

Solution

1. Write balanced oxidation reactions
a. For glucose

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

180192
b. For glutamic acid

$$
\begin{gathered}
\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}+4.5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \\
146
\end{gathered}
$$

2. Determine the UBOD for the mixture
a. For glucose

$$
\mathrm{UBOD}=\left(\frac{192}{180}\right)(150 \mathrm{mg} / \mathrm{L})=160.0 \mathrm{mg} / \mathrm{L}
$$

b. For glutamic acid

$$
\mathrm{UBOD}=\left(\frac{144}{146}\right)(150 \mathrm{mg} / \mathrm{L})=147.9 \mathrm{mg} / \mathrm{L}
$$

c. \quad Total UBOD $=(147.9+160) \mathrm{mg} / \mathrm{L}=207.9 \mathrm{mg} / \mathrm{L}$
3. Determine the 5-day BOD
$B O D=U B O D\left[1-e^{-k_{1}(t)}\right]$
$B O D=207.9\left[1-e^{-\left(0.23 d^{-1}\right)(5 d)}\right]=142.1 \mathrm{mg} / \mathrm{L}$

PROBLEM 2-24

Problem Statement - See text, page 174

Solution

1. The 5-day BOD is the amount of oxygen demand that has been exerted at five days. The ultimate $B O D$ (UBOD) is the amount of BOD initially present. To determine UBOD, given the BOD_{5}, use Eq. (2-60).
$\mathrm{BOD}_{5}=\mathrm{UBOD}\left[1-\mathrm{e}^{-\mathrm{k}_{1}(5 \mathrm{~d})}\right]$
It is given that $\mathrm{k}_{1}=0.23 \mathrm{~d}^{-1}$, and for Sample 1, $\mathrm{BOD}_{5}=185 \mathrm{mg} / \mathrm{L}$, thus
$185=$ UBOD $\left[1-\mathrm{e}^{-(0.23 / \mathrm{d})(5 \mathrm{~d})}\right]$
UBOD $=270.7 \mathrm{mg} / \mathrm{L}$
2. Solve for the BOD_{10} using Eq. (2-60).
$\mathrm{BOD}_{10}=270.7\left[1-\mathrm{e}^{-(0.23 / \mathrm{d})(10 \mathrm{~d})}\right]=243.6 \mathrm{mg} / \mathrm{L}$
3. Solve for $\mathrm{k}_{1,15^{\circ} \mathrm{C}}$ using Eq. (1-44).
$k_{1,15^{\circ} \mathrm{C}}=\mathrm{k}_{1,20^{\circ} \mathrm{C}} \theta^{(15-20)}$
Assume θ at $15^{\circ} \mathrm{C}$ is equal to about 1.056 (see Text page 119).
$\mathrm{k}_{1,15^{\circ} \mathrm{C}}=\left(0.23 \mathrm{~d}^{-1}\right) 1.056^{(15-20)}=0.175 \mathrm{~d}^{-1}$
4. The BOD_{5} at $15^{\circ} \mathrm{C}$ is.
$\mathrm{BOD}_{5,15^{\circ} \mathrm{C}}=270.7\left[1-\mathrm{e}^{-(0.175 / \mathrm{d})(10 \mathrm{~d})}\right]=223.7 \mathrm{mg} / \mathrm{L}$

PROBLEM 2-25

Problem Statement - See text, page 174

Solution

1. Solve for k_{1} by successive trials using Eq. (2-60) for $t=2 d$ and $8 d$. Other solutions are similar.
$B O D_{t}=\operatorname{UBOD}\left[1-e^{-k_{1}(t, d)}\right]$
$125=\operatorname{UBOD}\left(1-\mathrm{e}^{-2 \mathrm{k}_{1}}\right)$
$225=\operatorname{UBOD}\left(1-\mathrm{e}^{-8} \mathrm{k}_{1}\right.$
$125 / 225=\left(1-e^{-2 k_{1}}\right) /\left(1-e^{-8} k_{1}\right)$
$\mathrm{k}_{1}=0.375 \mathrm{~d}^{-1}$
2. The UBOD using the 2 d value is:
$125=\operatorname{UBOD}\left[1-\mathrm{e}^{-0.375 \mathrm{~d}^{-1}(2 \mathrm{~d})}\right]$
UBOD $=236.9 \mathrm{mg} / \mathrm{L}$
3. Compute the 5-day BOD.
$B O D=236.9\left[1-\mathrm{e}^{-0.375 \mathrm{~d}^{-1}(5 \mathrm{~d})}\right]=200.6 \mathrm{mg} / \mathrm{L}$

PROBLEM 2-26

Problem Statement - See text, page 175

Solution

1. Plot the given data (Sample 1) to estimate UBOD and NOD, the ultimate carbonaceous and nitrogenous oxygen demand.

a. From the plot,

$$
\begin{aligned}
& \mathrm{UBOD} \cong 42 \mathrm{mg} / \mathrm{L} \\
& \mathrm{NOD} \cong(95-42) \mathrm{mg} / \mathrm{L}=53 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

b. The nitrogenous demand begins at $t=8 \mathrm{~d}$
2. Determine the carbonaceous BOD rate constant using Eq. (2-60)

$$
\begin{gathered}
\mathrm{BOD}_{\mathrm{t}}=\operatorname{UBOD}\left(1-\mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}}\right) \\
28=42\left[1-\mathrm{e}^{-\mathrm{k}_{1}(5)}\right] \\
\ln \left(1-\frac{28}{42}\right)=-\mathrm{k}_{1}(5) \\
\mathrm{k}_{1}=0.22 \mathrm{~d}^{-1}
\end{gathered}
$$

3. Determine the nitrogenous rate constant using Eq. (2-60)

$$
\operatorname{NOD}_{t}=\operatorname{UNOD}\left(1-e^{-k_{n} t}\right)
$$

At day 16, the nitrogenous demand is $43 \mathrm{mg} / \mathrm{L}(82-39) \mathrm{mg} / \mathrm{L}$, thus

$$
\begin{aligned}
& \ln \left(1-\frac{43}{53}\right)=-k_{n}(8) \\
& k_{n}=0.21 d^{-1}
\end{aligned}
$$

4. Determine the corresponding k values at $25^{\circ} \mathrm{C}$ using Eq. (1-44).
a. For k_{1}

$$
k_{25}=k_{20} \theta^{\left(T_{2}-20\right)}=0.22(1.05)^{25-20}=0.28 \mathrm{~d}^{-1}
$$

b. For k_{n}

$$
k_{n_{25}}=k_{n_{20}} \theta^{\left(T_{2}-20\right)}=0.21(1.08)^{25-20}=0.30 d^{-1}
$$

Comment

Another solution approach to this problem is to use the method of least squares (or the Thomas method) to solve for UBOD and k_{1}.

PROBLEM 2-27

Problem Statement - See text, page 176

Solution

1. Solve Eq. (1-41) for activation energy. The required equation is:
$E=\frac{R \ln \left(k_{2} / k_{1}\right)}{1 / T_{2}-1 / T_{1}}$
2. Substitute the known values and solve for E . The selected values are $\mathrm{k} 1=$ $0.15, \mathrm{k} 2=0.30 \mathrm{~d}-1, \mathrm{~T} 1=10$ and $\mathrm{T} 2=20^{\circ} \mathrm{C}$.
$\mathrm{T}_{1}=\left(273+10^{\circ} \mathrm{C}\right)=283 \mathrm{~K}$
$\mathrm{T}_{2}=\left(273+20^{\circ} \mathrm{C}\right)=293 \mathrm{~K}$
$\mathrm{K}_{1}=0.15$
$k_{2}=0.30$
$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{K}$
$E=\frac{(8.314 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{K})[\ln (0.30 / 0.15)]}{(1 / 283 \mathrm{~K}-1 / 293 \mathrm{~K})}=47,785 \mathrm{~J} / \mathrm{mole}$

PROBLEM 2-28

Problem Statement - See text, page 176

Solution

1. Write balanced reaction for the carbonaceous oxygen demand.
$\mathrm{C}_{9} \mathrm{~N}_{2} \mathrm{H}_{6} \mathrm{O}_{2}+8 \mathrm{O}_{2} \rightarrow 2 \mathrm{NH}_{3}+9 \mathrm{CO}_{2}$
2. Write balanced reactions for the nitrogenous oxygen demand.
a. $\mathrm{NH}_{3}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{HNO}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}$
$\mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
3. Determine the carbonaceous oxygen demand

$$
\begin{aligned}
& \mathrm{UBOD}=(8) \text { mole } \mathrm{O}_{2} / \text { mole } \mathrm{C}_{9} \mathrm{~N}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \\
& =3-1 / 2 \mathrm{~mole} \mathrm{O}_{2} /\left(\text { mole glycine } \times 32 \mathrm{~g} / \mathrm{mole}_{2}\right) \\
& =112 \mathrm{~g} \mathrm{O}_{2} / \mathrm{mole} \text { glycine }
\end{aligned}
$$

PROBLEM 2-29

Problem Statement - See text, page 176

Solution

To completely stabilize the water, oxygen must be supplied to meet the ultimate carbonaceous and nitrogenous oxygen demands.

1. Determine the ultimate biochemical oxygen demand, which also corresponds to the COD, utilizing Eq. (2-60),
$B O D=U B O D\left(1-e^{-k_{1} 5}\right)$
$400 \mathrm{mg} / \mathrm{L}=\operatorname{UBOD}\left(1-e^{-0.29 \times 5}\right)=0.765$ (UBOD)
$\mathrm{UBOD}=\mathrm{COD}=523 \mathrm{mg} / \mathrm{L}$
2. Determine the nitrogenous oxygen demand.
$\mathrm{NH}_{3}+2 \mathrm{O}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\left[\frac{\left(80 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{3}\right)}{\left(17 \mathrm{~g} / \mathrm{mole} \mathrm{NH}_{3}\right)}\right]\left(\frac{2 \mathrm{moleO}_{2}}{\mathrm{~mole} \mathrm{NH}_{3}}\right)\left(\frac{32 \mathrm{~g}}{\mathrm{moleO}_{2}}\right)=301 \mathrm{mg} / \mathrm{L}$
3. The total amount of oxygen needed, which also corresponds to the ThOD, is:
$(523+301) \mathrm{mg} / \mathrm{L}=824 \mathrm{mg} / \mathrm{L}$

PROBLEM 2-30

Problem Statement - See text, page 176

Solution

1. Determine the number of moles of nitrogen, carbon and oxygen, that are present in a $100,000 \mathrm{~L}$ of the industrial wastewater (note a $100,000 \mathrm{~L}$ is used so that the mole numbers are greater than I)
$\left[\frac{(11 \mathrm{mg} / \mathrm{L})}{\left(28 \mathrm{~g} / \mathrm{mole} \mathrm{N}_{2}\right)}\right]\left(\frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}}\right)\left(10^{5} \mathrm{~L}\right)=39.3 \mathrm{~mole}_{2}$
$\left[\frac{(130 \mathrm{mg} / \mathrm{L})}{(12 \mathrm{~g} / \mathrm{mole} \mathrm{C})}\right]\left(\frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}}\right)\left(10^{5} \mathrm{~L}\right)=1083$ mole C
$\left[\frac{(425 \mathrm{mg} / \mathrm{L})}{\left(32 \mathrm{~g} / \mathrm{mole} \mathrm{O}_{2}\right)}\right]\left(\frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}}\right)\left(10^{5} \mathrm{~L}\right)=1328$ mole O_{2}
2. Now write the chemical equations. The COD does not include the nitrogenous oxygen demand.

$$
\begin{aligned}
& \text { glucose }+ \text { glycine }+ \text { stearic acid }+ \text { oxygen } \rightarrow \\
& \qquad \begin{array}{r}
\text { water }+ \text { ammonia }+ \text { carbon dioxide }
\end{array} \\
& \begin{array}{r}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{b} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}+\mathrm{c} \mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}+1328 \mathrm{O}_{2} \rightarrow \\
d \mathrm{H}_{2} \mathrm{O}+39.3 \mathrm{NH}_{3}+1083 \mathrm{CO}_{2}
\end{array}
\end{aligned}
$$

Determine the value of b by balancing the nitrogen
b $=39.3$ mole $/ 100,000 \mathrm{~L}$
Now write and solve a series of simultaneous equations for carbon, hydrogen, and oxygen.
$6(a)+2(39.3)+18(c)=1083$
$12(\mathrm{a})+5(39.3)+36(\mathrm{c})=2(\mathrm{~d})+3(39.3)$
$6(a)+2(39.3)+2(c)+2(1328)=d+2(1083)$
Solving the above equations yields:
$\mathrm{a}=68.16$ mole $/ 100,000 \mathrm{~L}$
$c=33.08$ mole/100,000L

$$
\mathrm{d}=1043.7 \text { mole/100,000L }
$$

3. Convert these values to mg / L.
a. For glucose.

$$
\left(\frac{68.16 \text { mole }}{100,000 \mathrm{~L}}\right)\left(\frac{(72+12+96) \mathrm{g}}{\mathrm{~mole}}\right)\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)=79.1 \mathrm{mg} / \mathrm{L}
$$

b. For glycine acid.

$$
\left(\frac{39.3 \text { mole }}{100,000 \mathrm{~L}}\right)\left(\frac{(24+5+32+14) \mathrm{g}}{\mathrm{~mole}}\right)\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)=75.0 \mathrm{mg} / \mathrm{L}
$$

b. For stearic acid.

$$
\left(\frac{33.08 \text { mole }}{100,000 \mathrm{~L}}\right)\left(\frac{(216+36.1+32) \mathrm{g}}{\mathrm{~mole}}\right)\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)=93.9 \mathrm{mg} / \mathrm{L}
$$

PROBLEM 2-31

Problem Statement - See text, page 176

Solution

1. Write the chemical equations for sample of $\mathbf{4 5 0} \mathrm{mg} / \mathrm{L}$ COD.

Organic matter $+450 \mathrm{mg} / \mathrm{L} \mathrm{O}_{2}=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Organic matter $+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}+=\mathrm{Cr}{ }^{3+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

The amount of organic matter used and the amount of carbon dioxide produced is the same for either condition. The number of moles of oxygen is
$450 \mathrm{mg} / \mathrm{L} \mathrm{O}_{2} \times 1 \mathrm{~mole} / 32 \mathrm{~g} \times 1 \mathrm{~g} / 1000 \mathrm{mg}=0.0141 \mathrm{~mole} / \mathrm{L}$
2. The subtraction of the two equations then gives:
0.0141 mole $/ \mathrm{L} \mathrm{O}_{2}-\mathrm{aCr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{b} \mathrm{H}^{+}=\mathrm{c} \mathrm{Cr}^{3+}+\mathrm{d} \mathrm{H}_{2} \mathrm{O}$
3. Balance elements and charges, and solve for the constants.
$2(0.0141)-7(a)=d$
$2(a)=c$
$b=2(d)$
$-2(a)+b=+3(c)$
$a=0.00313$ mole $/ \mathrm{L} \quad b=0.0125 \mathrm{~mole} / \mathrm{L}$
$c=0.00625 \mathrm{~mole} / \mathrm{L} \quad \mathrm{d}=0.00625 \mathrm{~mole} / \mathrm{L}$
4. Convert the answer to mg / L of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$.

$$
\left(\frac{0.00313 \text { mole }}{\mathrm{L}}\right)\left\{\frac{[(2 \times 52)+(7 \times 16) \mathrm{g}]}{\mathrm{mole}}\right\}\left(\frac{10^{3} \mathrm{mg}}{\mathrm{~g}}\right)=676 \mathrm{mg} / \mathrm{L}
$$

PROBLEM 2-32

Problem Statement - See text, page 176

Solution

1. Determine the energy content of the food waste using Eq. 2-66
a. Determine the weight fractions of the elements and ash comprising the wastewater using a computation table

Component	Coefficient	Molecular weight	Molecular mass	Weight fraction
Carbon	21.53	12	258.36	0.48
Hydrogen	34.21	1	34.21	0.06

Oxygen	12.66	16	202.56	0.38
Nitrogen	1	14	14	0.03
Sulfur	0.07	32	2.24	0.004
Ash	0	0		0.05
			511.37	1.00

b. The energy content of the organic fraction using Eq. 2-66 is:

HHV $(\mathrm{MJ} / \mathrm{kg}$ organic fraction $)=34.91(0.48)+117.83(0.06)-10.34(0.38)$
$-1.51(0.03)+10.05(0.004)-2.11(0.05)$
HHV $(\mathrm{MJ} / \mathrm{kg}$ organic fraction $)=16.76+7.49-3.89-0.04+0.04-0.11=20.25$
2. Determine the COD of the organic fraction
a. Write a balanced reaction for the chemical oxidation of the food waste neglecting sulfur

$$
\begin{aligned}
& \mathrm{C}_{21.53} \mathrm{H}_{34.21} \mathrm{O}_{12.66} \mathrm{~N}_{1.00}+23.00 \mathrm{O}_{2} \rightarrow 21.53 \mathrm{CO}_{2}+\mathrm{NH}_{3}+15.61 \mathrm{H}_{2} \mathrm{O} \\
& 511.37 \quad 23.00(32)
\end{aligned}
$$

b. The COD of the organic fraction is:

$$
\begin{aligned}
\mathrm{COD} & =23.00\left(32 \mathrm{~g} \mathrm{O}_{2} / \text { mole }\right) /(511.37 \mathrm{~g} \text { organic fraction/ mole }) \\
& =1.44 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \text { organic fraction }
\end{aligned}
$$

3. Determine the energy content of the biomass in terms of $\mathrm{MJ} / \mathrm{kg}$ biosolids COD

HHV $(\mathrm{MJ} / \mathrm{kg}$ organic fraction COD $)=\frac{(20.25 \mathrm{MJ} / \mathrm{kg} \text { of organic fraction })}{\left(1.44 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \text { of organic fraction }\right)}$
$=14.1 \mathrm{MJ} / \mathrm{kg}$ of organic fraction COD
4. Food waste has $1 \mathrm{MJ} / \mathrm{kg}$ of organic fraction COD less than wastewater. The greater HHV of wastewater can be explained by the other organic compounds that enter into the wastewater stream including oil and grease.

PROBLEM 2-33

Problem Statement - See text, page

Solution

1. If two bacteria will exist in 30 minutes, and four in 60 minutes, etc., the general formula is:

Number of organisms $=N=2^{(\mathrm{t} / 30 \mathrm{~min})}=2^{(\mathrm{t} / 0.5 \mathrm{~h})}$

Solve for N .
$\mathrm{N}=2(72 \mathrm{~h} / 0.5 \mathrm{~h})=2^{144}=2.23 \times 10^{43}$ organisms
2. Find the volume per organism, assuming a spherical shape.

$$
\begin{aligned}
\text { Volume of one organism } & =(4 / 3)(\pi)\left[\left(2 \times 10^{-6} \mu \mathrm{~m} / 2\right)^{3}\right]\left(1 \mathrm{~m} / 10^{6} \mu \mathrm{~m}\right) \\
& =4.19 \times 10^{-12} \mathrm{~m}^{3}
\end{aligned}
$$

1. Find the theoretical mass of the accumulated organisms.

$$
\left(2.23 \times 10^{43} \text { organisms }\right)\left(\frac{4.19 \times 10^{-12} \mathrm{~m}^{3}}{\text { organism }}\right)\left(\frac{1 \mathrm{~kg}}{\mathrm{~L}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)=9.34 \times 10^{34} \mathrm{~kg}
$$

4. The computed number of organisms cannot occur, because the bacteria will not always be under optimal growth conditions. Nutrient supplies and oxygen supplies will be depleted, and the bacteria will begin to compete with one another. The transport of nutrients and oxygen into the cell and waste out of the cell will also limit growth. Some bacteria will die, and others will not reproduce. In terms of sheer volume, the bacteria must also fit in the space available.

PROBLEM 2-34

Problem Statement - See text, page 176

Solution

1. The volume of $2.0 \mu \mathrm{~m}^{3}$ includes water, which bacteria are mostly made of. To calculate the suspended solids, the mass of water must be accounted for. The volume of organisms per liter is:

$$
\left(\frac{2.0 \mu \mathrm{~m}^{3}}{\text { organism }}\right)\left(\frac{10^{8} \text { organisms }}{\mathrm{mL}}\right)\left(\frac{10^{3} \mathrm{~mL}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~m}}{10^{6} \mu \mathrm{~m}}\right)^{3}=2 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{L}
$$

2. Determine the corresponding mass of organisms per liter, not including water.
$\mathrm{TSS}=\left(\frac{2 \times 10^{-7} \mathrm{~m}^{3}}{\mathrm{~L}}\right)\left(\frac{1.005 \mathrm{~kg}}{\mathrm{~L}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(\frac{10^{6} \mathrm{mg}}{\mathrm{kg}}\right)=201 \mathrm{mg} / \mathrm{L}$

PROBLEM 2-35

Problem Statement - See text, page 176

Solution

1. To maximize the given equation, set the derivative of the joint probability equation equal to zero.
$y=1 / a\left[\left(1-e^{-n \lambda}\right)^{p}\left(e^{-n \lambda}\right)^{q}\right]$
$y^{\prime}=0=1 / a\left[p\left(1-e^{-n \lambda}\right)^{p-1}(-n)\left(-e^{-n \lambda}\right)\left(e^{-n \lambda}\right)^{q}+(-n q)\left(e^{-n q \lambda}\right)\left(1-e^{-n \lambda}\right)^{p}\right]$
$0=\left(1-e^{-n \lambda}\right)^{p}\left(e^{-n q \lambda}\right)\left[\left(n p\left(e^{-n \lambda}\right) /\left(1-e^{-n \lambda}\right)-n q\right]\right.$
$0=n p\left(e^{-n \lambda}\right) /\left(1-e^{-n \lambda}\right)-n q$
2. Solve the above expression for λ.

$$
\begin{aligned}
& 1-e^{-n \lambda}=n p / n q\left(e^{-n \lambda}\right)=p / q\left(e^{-n \lambda}\right) \\
& e^{n \lambda}=1+p / q \\
& \ln \left(e^{-n \lambda}\right)=n \lambda=\ln [1+p / q]
\end{aligned}
$$

$\lambda=M P N / m L=\frac{\ln [1+(p / q)]}{n}$
MPN / $100 \mathrm{~mL}=\frac{100 \ln [1+(\mathrm{p} / \mathrm{q})]}{\mathrm{n}}$
$\mathrm{n}=$ sample size
$p=$ number of positive tubes
$q=$ number of negative tubes $=5-p$
3. For the given sample:

$$
\begin{gathered}
\text { MPN / } 100 \mathrm{~mL}=\frac{100\{\ln [1+(3 / 2)]\}}{0.1 \mathrm{~mL}} \\
=916 \mathrm{MPN} / 100 \mathrm{~mL}
\end{gathered}
$$

PROBLEM 2-36

Problem Statement - See text, page 176

Solution

2. Using the MPN tables:

Sample	Series Used	MPN/100 mL
1	$4-3-1$	330
2	$4-5-5$	81
3	$5-4-5$	43
4	$5-2-3$	120
5	$5-1-2$	63
6	$5-2-3$	120
7	$5-5-1$	350

PROBLEM 2-37

Problem Statement - See text, page 177

Solution

1. The fecal coliform test has been used for many years as an indication of the bacteriological safety of surface waters and of the disinfection efficiency of
water and wastewater treatment plants. For the latter use, the test is excellent as a low coliform count in a treated effluent is also indicative of a low count of pathogenic bacterial species.
2. The use of the fecal coliform test for sampling drinking water sources is not as straightforward, however. This is because the fecal coliform group of organisms is not unique to man but is present in the gut of cattle, sheep, dogs, and other warm blooded animals. Thus, a high coliform count in a stream or lake might be due to animal contamination and not human sources.

PROBLEM 2-38

Problem Statement - See text, page 177

Solution

1. Average the counts from the 10^{-10} plates, use original and duplicates.

Average count $=\left(\frac{60+51+38+43+56}{5}\right)=49.6 \mathrm{PFU} / \mathrm{mL}$
2. Multiply the count by the reciprocal of the dilution

Titer $=49.6 \mathrm{PFU} / \mathrm{mL} \times 10^{10}=4.96 \times 10^{11}$

PROBLEM 2-39

Problem Statement - See text, page 177

Solution

1. Plot the concentration of wastewater in percent by volume (log scale) against test animals surviving in percent (probability scale), as shown below.

2. Fit a line to the data points by eye, giving most consideration to the points lying between 16 and 84 percent mortality.
3. Find the wastewater concentrations causing 50 percent mortality. The estimated LC_{50} values, as shown in the above figure, are 42 percent for 48 h and 19 percent for 96 h .

PROBLEM 2-40

Problem Statement - See text, page 177

Solution

1. Plot the concentration of wastewater in percent by volume (log scale) against test animals surviving in percent (probability scale), as shown below.

2. Find the wastewater concentrations causing 50 percent mortality. The estimated LC_{50} values, as shown in the above figure, are 10.2 percent for 48 h and 7.0 percent for 96 h .

3

WASTEWATER FLOWRATES AND CONSTITUENT LOADINGS

PROBLEM 3-1

Problem Statement - See text, page 254

Solution

1. In determining what level of water conservation is realistic, an evaluation of the components of the wastewater is necessary, especially in determining if interior water use in the community is excessive. The average residential flowrate of $320 \mathrm{~L} / \mathrm{d}$ given in the problem statement represents nonexcessive domestic water use and the presence of relatively low flowrates from other sources into the sewer system. This conclusion is based on unit flowrates given in Table 3-2 that indicate for an average household size of 3 to 4 persons, a domestic flowrate of 168 to $180 \mathrm{~L} /$ capita $\cdot \mathrm{d}$ might be expected. As reported in Table 3-9, installation of water conservation devices will reduce an average residential flowrate from about 246 to 154 L/capita•d, or a maximum reduction of 37 percent.
2. An aggressive water conservation program based on installing flow reduction devices might reasonably accomplish a flow reduction of 25 to 40 percent over time. Implementation would require the ultimate replacement of clothes washers, which would be very expensive to implement all at once.

PROBLEM 3-2

Problem Statement - See text, page 254
Instructors Note: It is suggested that flowrates be developed for more that one alternative so that alternative proposals can be compared.

Solution

1. Prepare a table of all sources of wastewater and the amount of flow expected from each of the four proposals. In the below table, flowrates for Developers 1 and 2 are given.

			Developer 1		Developer 2	
Facility	Units	Flow/unit, L/user	No. of units	Total flow, L/d	No. of units	Total flow, L/d
Hotel	Guest rooms	190	120	22,800	80	15,200
	Employees	40	25	1000	16	640
Department store	Toilet rooms	1500	8	12,000	12	18,000
Employees	40	40	1600	60	2400	
Self-service laundry	Machines	1700			20	34,000
Restaurant, no bar	Seats	35	125	4375	100	3500
Restaurant, with bar	Seats	40	100	4000	125	5000
Theatre	Seats	10	500	5000	400	4000
Totals				50,775		82,740

PROBLEM 3-3

Problem Statement - See text, page 254

Solution

1. Prepare a table of all sources of wastewater and the amount of flow expected. Use typical flowrate factors from Tables 3-3 and 3-5. For the automotive service station, estimate the number of employees and include flowrate contributions.

Facility	Units	Flow/unit, L/user	Area 1		Area 2	
			No. of units	Total flow, L/d	No. of units	Total flow, L/d
Visitor center	Visitors	15	250	3750	300	4500
Motel	Guests	230			60	13,800
Resort cabins	Guests	150			100	15,000
Cottages	Guests	190	60	11,400		
Campground	Persons	95	140	13,300	120	11,400
RV park	Connections	380	40	15,200	50	19,000
Laundry	Machines	1700	8	13,600	10	17,000
Shopping center	Employees	40	10	400	15	600
	Parking spaces	8	30	240	40	320
Service station	Vehicles	40	80	3200	120	4800
	Employees	50	2	100	3	150
Restaurant	Customers	40	200	8000	300	12,000
Totals				69,190		98,570

PROBLEM 3-4

Problem Statement - See text, pages 255

Solution

1. Analyze values for data set 1. Assume the dormitory is fully occupied.
2. Compute the per capita wastewater generation =
$\frac{(125,000 \mathrm{~L} / \mathrm{d})}{300 \text { persons }}=417 \mathrm{~L} /$ capita d
3. Allocate sources of wastewater based on given data

a.	Toilets (assume 6 uses/capita $\cdot \mathrm{d})=6 \times 9 \mathrm{~L} /$ use $=$	$54 \mathrm{~L} / \mathrm{d}$
b.	Faucets $=$	$10 \mathrm{~L} / \mathrm{d}$
c.	Showers $(417-64) \mathrm{L} /$ capita $\bullet \mathrm{d}=$	$353 \mathrm{~L} / \mathrm{d}$

Average duration of shower $=\frac{(353 \mathrm{~L} / \mathrm{d})}{(18 \mathrm{~L} / \mathrm{min} \cdot \mathrm{use})}=19.6 \mathrm{~min} / \mathrm{use}$
4. Compute water savings using low-flush toilets ($6 \mathrm{~L} / \mathrm{use}$) and low-flow showerheads (11 L/min•use). (Note: data are from Table 3-6).

a.	Toilets (assume 6 uses/capita $\cdot d$ d $=6 \times 6 \mathrm{~L} /$ use $=$	$36 \mathrm{~L} / \mathrm{d}$
b.	Faucets $=$	$10 \mathrm{~L} / \mathrm{d}$
c.	Showers $=11 \mathrm{~min} /$ use $\times 19.6 \mathrm{~min}=$	$216 \mathrm{~L} / \mathrm{d}$
Total		$262 \mathrm{~L} / \mathrm{d}$

$$
\text { Percent reduction }=\frac{[(417-262) \mathrm{L} / \mathrm{d}]}{(417 \mathrm{~L} / \mathrm{d})}(100)=37.2
$$

The percent reduction achieved by the water conservation devices greatly exceeds the flow reduction goal (15\%), without affecting a life-style change, i.e., reducing the length of showers. Further flow reductions can be achieved by installing timer activated shutoff valves to limit the duration of the showers.

PROBLEM 3-5

Problem Statement - See text, pages 255

Solution

1. Prepare a table and calculate flow-weighted values for BOD and TSS.

Time	Flowrate 1	BOD		TSS	
	$\mathrm{m}^{3} / \mathrm{d}$	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{~g} / \mathrm{d} \times 1000$	$\mathrm{~g} / \mathrm{m}^{3}$	$\mathrm{~g} / \mathrm{d} \times 1000$
02:00	8000	130	1040	150	1200
$04: 00$	6000	110	660	135	810
$06: 00$	9400	160	1504	150	1410
$08: 00$	12,800	220	2816	205	2624
10:00	13,000	230	2990	210	2730
12:00	14,400	245	3528	220	3168
14:00	12,000	225	2700	210	2520
16:00	9600	220	2112	200	1920
18:00	11,000	210	2310	205	2255
$20: 00$	8000	200	1600	210	1680
22:00	9000	180	1620	185	1665
24:00	8400	160	1344	175	1470
Totals	121,600		24,224		23,452
Flow weighted values	199.2		192.9		

PROBLEM 3-6

Problem Statement - See text, pages 255

Solution

1. Arrange the measured data in an order of increasing magnitude, assign a rank serial number, and compute a plotting position using Eqs. (D-10).

	Plotting	Flowrates, $\mathrm{m}^{3} / \mathrm{d}$			
Number		2007	2008	2009	2010
1		2000	1500	2800	2200
2		2400	2000	3300	3100
3	23.1	2800	2600	3800	3800
4	30.8	3200	3200	4400	4400
5	38.5	3600	3600	4800	4600
6	46.2	4000	4200	5300	5000
7	53.8	4000	4800	6000	6500
8	61.5	4800	5700	6500	7600
9	69.2	5200	6700	7300	8600
10	76.9	6200	8100	8300	10,000
11	84.6	6800	9900	9400	13,000
12	92.3	8800	13,900	11,800	18,400

2. Plot the data in the above table on both arithmetic- and log-probability paper. Note for this problem, a log-probability plot is more appropriate. For clarity, two separate plots have been prepared as shown below: one for 2007-2008 data and one for 2009-2010 data.
a. The data are log-normally distributed.
b. Determine the average annual flowrate, average dry weather flowrate, and average wet weather flowrate.
i. The average (mean) annual flowrates from the following plots are:

$$
\begin{aligned}
2007 & =4700 \mathrm{~m}^{3} / \mathrm{d} \\
2008 & =4000 \mathrm{~m}^{3} / \mathrm{d} \\
2009 & =5900 \mathrm{~m}^{3} / \mathrm{d} \\
2010 & =6500 \mathrm{~m}^{3} / \mathrm{d} .
\end{aligned}
$$

ii. Compute the AWWF. Compute the AWWF based on the highest seven months of flow records. The data are log normally distributed and the plotting positions and plots are shown below.

Number	Plotting position, $\%$	Wet weather flowrates, $\mathrm{m}^{3} / \mathrm{d}$			
	\%	2007	2008	2009	2010
	12.5	4000	4200	5300	5000
2	25	4000	4800	6000	6500
3	37.5	4800	5700	6500	7600
4	50	5200	6700	7300	8600
5	62.5	6200	8100	8300	10,000
6	75	6800	9900	9400	13,000
7	87.5	8800	13,900	11,800	18,400

iii. Plot wet weather data for 2007 and 2008.

iv. Plot wet weather data for 2009 and 2010.

v. Compute the ADWF. Compute the AWWF based on the lowest five months of flow records. The plotting positions and plots are shown below.

	Plotting	Wet weather flowrates, $\mathrm{m}^{3} / \mathrm{d}$			
Number	position, $\%$	2007	2008	2009	2010
1	16.7	2000	1500	2800	2200
2	33.3	2400	2000	3300	3100
3	50	2800	2600	3800	3800
4	66.7	3200	3200	4400	4400
5	83.3	3600	3600	4800	4600

vi. Plot dry weather data for 2007 and 2008.

Percent of values equal to or less than indicated value
vii. Plot dry weather data for 2009 and 2010.

Percent of values equal to or less than indicated value
viii. Summarize data.

Year	ADWF, $\mathrm{m}^{3} / \mathrm{d}$	AWWF, $\mathrm{m}^{3} / \mathrm{d}$
1996	2800	5100
1997	2580	6900
1998	3820	7200
1999	3620	9100

3. Set up a table to compute the commercial and industrial flow.

	Year			
Item	2007	2008	2009	2010
ADWF, $\mathrm{m}^{3} / \mathrm{d}$	2800	2580	3820	3620
Population	8690	9400	11,030	12,280
Unit flowrate, L/capita	260	260	260	260
Domestic flowrate, $\mathrm{m}^{3} / \mathrm{d}$	2259	2444	2868	3193
Commercial and industrial	541	136	952	427
flowrate, $\mathrm{m}^{3} / \mathrm{d}$				

4. Set up a table using the above flowrate data and compute the infiltration/inflow.

	Year			
Item	2007	2008	2009	2010
AWWF, m3/d	5100	6900	7200	9100
ADWF, m3$/ \mathrm{d}$	2800	2580	3820	3620
I/I = AWWF - ADWF, m3/d	2300	4320	3380	5480
Population	8690	9400	11,030	12,280
Unit I/I flowrate, L/capita•d	265	460	306	446

PROBLEM 3-7

Problem Statement - See text, pages 256
Solution

1. Estimate the average annual flowrate at buildout with an I / I contribution of 200L/capita•d.
a. Residential flowrate $=16,000 \times 300 \mathrm{~L} /$ capita $\times 1 \mathrm{~m}^{3} / 1000 \mathrm{~L}=4800 \mathrm{~m}^{3} / \mathrm{d}$
b. Commercial flowrate $=\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right) / 0.80=$

1250 m³/d
6050 m³/d
3200 m³/d
9250 m³/d
8183 m³/d
2. None of the stated flowrates is acceptable for selecting the maximum design capacity. The design flowrate should also include allowances for peak flowrates. The design capacity should consist of the following, assuming a residential peaking factor of 3.4 (from Fig. 3-18):
a. Residential flowrate $=4800 \mathrm{~m}^{3} / \mathrm{d} \times 3.4=$
b. Commercial flowrate $=$
c. $\quad \mathrm{I} / \mathrm{I}=$

Total $=$
$16,320 \mathrm{~m}^{3} / \mathrm{d}$
1250 m³/d
3200 m³/d
20,770 m³/d

PROBLEM 3-8

Problem Statement - See text, pages 256

Solution

1. See the probability plots for Problem 3-6. The wettest year of record was 2010. Using the plot for 2010, construct a line parallel to the plotted line at the 50 percentile point. The peak month (at the 92 percentile) is approximately $23,000 \mathrm{~m}^{3} / \mathrm{d}$.

PROBLEM 3-9

Problem Statement - See text, page 256-257
Solution

1. Arrange the data in order of increasing magnitude, assign a rank serial number, and compute a plotting position using Eq. (D-10).

Number	Plotting position, $\%$	Flowrates, $\mathrm{m}^{3} / \mathrm{d}$			
		1996	1997	1998	1999
1	7.7	6880	6720	7040	7200
2	15.4	6960	6800	7200	7200
3	23.1	7040	6800	7280	7280
4	30.8	7120	6880	7280	7280
5	38.5	7120	6880	7360	7360
6	46.2	7200	6960	7520	7440
7	53.8	7360	6960	7680	7440
8	61.5	7440	7120	7680	7600
9	69.2	7840	7200	7920	7680
10	76.9	8640	7280	8080	7680
11	84.6	8800	7600	8800	7840
12	92.3	9440	7760	9360	8000

2. As noted in Problem 3-6, a log-probability plot is more appropriate. For clarity, two separate plots have been prepared as shown below: one for 2007-2008 data and one for 2009-2010 data.
a. Determine the mean annual flowrates from the probability plots.

Percent of values equal to or less than indicated values

The data are log-normally distributed.
The average (mean) annual flowrates are:

$$
\begin{aligned}
& 2007=7500 \mathrm{~m}^{3} / \mathrm{d} \\
& 2008=7000 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

$$
\begin{aligned}
& 2009=7700 \mathrm{~m}^{3} / \mathrm{d} \\
& 2010=7400 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

b. Compute the AWWF and ADWF. Assume the wet season occurs from November to April and the dry season occurs from May to October.
i. Compute the AWWF based on the highest seven months of flow records. The plotting positions and plots are shown below.

	Plotting	Wet weather flowrates, $\mathrm{m}^{3} / \mathrm{d}$			
Number		2007	2008	2009	2010
1		7200	6960	7520	7440
2		7360	6960	7680	7440
3		7440	7120	7680	7600
4	50	7840	7200	7920	7680
5	62.5	8640	7280	8080	7680
6	75	8800	7600	8800	7840
7	87.5	9440	7760	9360	8000

ii. Plot wet weather data.

iii. Compute and plot ADWF flowrate data in a similar manner.
iv. Summarize the mean values. (Average dry weather flowrates may be averaged as the monthly variation is small).

Year	$A D W F, m^{3} / \mathrm{d}$	$A W W F, \mathrm{~m}^{3} / \mathrm{d}$
2007	7000	8000
2008	6800	7300
2009	7200	8100
2010	7300	7700

5. Set up a table to compute the commercial and industrial flow. Domestic unit flowrate $=260 \mathrm{~L} /$ capita $\cdot d$ (same as Problem 3-6).

	Year			
Item	2007	2008	2009	2010
ADWF, m³/d	7000	6800	7200	7300
Population	17,040	17,210	17,380	17,630
Unit flowrate, L/capita	260	260	260	260
Domestic flowrate, m³/d	4430	4475	4519	4584
Commercial and industrial flowrate, $\mathrm{m}^{3} / \mathrm{d}$	2570	2325	2681	2716

6. Set up a table using the above flowrate data and compute the infiltration/inflow.

	Year			
Item	2007	2008	2009	2010
AWWF, $\mathrm{m}^{3} / \mathrm{d}$	8000	7300	8100	7700
ADWF, $\mathrm{m}^{3} / \mathrm{d}$	7000	6800	7200	7300
I/I = AWWF - ADWF, m³$/ \mathrm{d}$	1000	500	900	400
Population	17,040	17,210	17,380	17,630
Unit I/I flowrate, L/capita•d	59	29	52	23

PROBLEM 3-10

Problem Statement - See text, page 257

Solution

1. Prepare a table of all wastewater sources and the amount of flow expected to be generated by each source. Assume 300 vehicles per day use the automobile service station and the station employs six persons per day.

Source	Number of units	Units	Flow/user, L/unit•d	Total flow, L/d
Campground (with toilets only $)$	200	Persons	95	19,000
Lodges and cabins	100	Persons	150	15,000
Apartments	150	Persons	230	34,500
Dining hall	$300(100 \times 3)$	Meals	25	7500
Cafeteria	200	Customers	10	2000
	4	Employees	40	160
Visitor center	500	Visitors	15	7500
Laundry	10	Machines	1700	17,000
Cocktail lounge	20	Seat	80	1600
Service station	300	Vehicles	40	12,000
	6	Employees	50	300
Total flow				116,560

PROBLEMS 3-11 to 3-12

Problem Statement - See text, pages 257

Instructors Note: The solutions to these problems obviously vary depending upon the location. Instructors may want to provide their students with the necessary data to use for solving these problems.

PROBLEM 3-13

Problem Statement - See text, pages 257-258

Solution

1. Calculate the base (dry weather flow) for flowrate regime $\mathbf{1}$ by averaging the flowrates for the lowest months, in this case June, July, August, and September.

Base flowrate $=\frac{(108,000+95,000+89,000+93,000) \mathrm{m}^{3} / \mathrm{d}}{4}=96,250 \mathrm{~m}^{3} / \mathrm{d}$
2. Calculate the average wet weather flowrate for the remaining months.

WW Flowrate $=\frac{(293,000+328,000+279,000+212,000+146,000+111,000+132,000+154,000) \mathrm{m}^{3} / \mathrm{d}}{8}$

$$
=206,875 \mathrm{~m}^{3} / \mathrm{d}
$$

3. Calculate the excess flowrate by subtracting the base flow from the WW flowrate.

Excess flow $=(206,875-96,250) \mathrm{m}^{3} / \mathrm{d}=110,625 \mathrm{~m}^{3} / \mathrm{d}$
4. Infiltration is estimated to be 67 percent of excess flow.

Infiltration $=(0.67 \times 110,625) \mathrm{m}^{3} / \mathrm{d}=74,119 \mathrm{~m}^{3} / \mathrm{d}$
5. Infiltration will be reduced by 30 percent.

Reduction in flow $=(0.30 \times 74,119) \mathrm{m}^{3} / \mathrm{d}=22,236 \mathrm{~m}^{3} / \mathrm{d}$
The reduction in flow is assumed to be approximately 10 percent per year for the first three years.
6. Estimate the value of the repair cost.

Repair cost $=\$ 200,000 / \mathrm{km} \times 300 \mathrm{~km}=\$ 60,000,000$
7. The savings in treatment for the first year is:
$\left(\$ 1.50 / \mathrm{m}^{3}\right)\left[\frac{\left(22,236 \mathrm{~m}^{3} / \mathrm{d}\right)}{3}\right](8 \mathrm{mo})(30 \mathrm{~d} / \mathrm{mo})=\$ 2,668,320$
8. The number of years it will take to pay back the construction cost by savings in treatment costs can be calculated by using a spreadsheet.

	Treatment	Flow reduction			Cumulative
Year		$\mathrm{~m}^{3} / \mathrm{d}$	$\mathrm{m}^{3} / \mathrm{y}$	Savings, $\$ / \mathrm{y}$	savings, $\$$
1		7412	$1,778,880$	$1,778,880$	$1,778,880$
2	1.06	14,824	3,557760	$3,771,226$	$5,550,106$
3	1.12	22,236	$5,336,640$	$5,977,037$	$11,527,143$
4	1.19	22,236	$5,336,640$	$6,350,602$	$17,877,745$
5	1.26	22,236	$5,336,640$	$6,724,166$	$24,601,911$
6	1.34	22,236	$5,336,640$	$7,151,098$	$31,753,009$
7	1.42	22,236	$5,336,640$	$7,578,029$	$39,331,038$
8	1.50	22,236	$5,336,640$	$8,004,960$	$47,335,998$
9	1.59	22,236	$5,336,640$	$8,485,258$	$55,821,256$
10	1.69	22,236	$5,336,640$	$9,018,922$	$64,840,178$

As shown in the above table, the cost of the sewer repair will be paid for in less than 10 years by the savings in treatment costs.

PROBLEM 3-14

Problem Statement - See text, pages 258-259

Solution

1. Using the data for flowrate regime 1, develop a table, compute plotting positions, and plot data.

		Flowrate regime 1	
Number	Plotting position, \%	Weekday average flowrate, $\mathrm{m}^{3} / \mathrm{d} \times 10^{3}$	Weekend average flowrate, $\mathrm{m}^{3} / \mathrm{d} \times 10^{3}$
1	2.70	39.7	42.8
2	5.41	40.5	43.1
3	8.11	40.9	43.5
4	10.81	41.3	43.9
5	13.51	42.0	44.3
6	16.22	42.1	44.7
7	18.92	42.2	45.0
8	21.62	42.4	45.4
9	24.32	42.9	45.8
10	27.03	43.5	46.2
11	29.73	43.9	46.6
12	32.43	44.3	46.7
13	35.14	44.7	46.9

1. The data are log-normal distributed.
2. Higher flowrates occur on the weekend.
3. The mean and 95 percentile values for weekdays are 47 and 57×10^{3} $\mathrm{m}^{3} / \mathrm{d}$.
4. The mean and 95 percentile values for weekends are 51 and 63×10^{3} $\mathrm{m}^{3} / \mathrm{d}$.
5. The probable one day maximum flowrate (99.7 percentile) is 72×10^{3} $\mathrm{m}^{3} / \mathrm{d}$, which occurs on a weekend.

PROBLEM 3-15

Problem Statement - See text, page 259-260

Solution for Area 1

1. Solve the problem by use of a computation table, as follows.

Type of development	Units	Number of units	Flow, $\mathrm{m}^{3} /$ unit•d	Average flow, $\mathrm{m}^{3} / \mathrm{d}$	Peaking Factor	Peak flow, $\mathrm{m}^{3} / \mathrm{d}$
Residential	ha	125	40	5000	3.0	15,000
Commercial	ha	11	20	220	2.0	440
Industrial	ha	6	30	180	2.5	600
School	students	1500	75 L student	113	4.0	450
Total						16,490

PROBLEM 3-16

Problem Statement - See text, page 260

Solution for City 1

1. Set up a spreadsheet and calculate the average flowrate for the 24 h period (see below). The average flowrate is $0.328 \mathrm{~m}^{3} / \mathrm{s}$.
2. Select a peak flowrate not to be exceeded; select $1.25 \times$ avg for this example. The peak flowrate being discharged is $0.410 \mathrm{~m}^{3} / \mathrm{s}$.
3. Calculate the excess flow that has to be stored (flowrate $-0.410 \mathrm{~m}^{3} / \mathrm{s}$).
4. Compute the hourly volume to be stored (excess flowrate $\times 3600 \mathrm{~s} / \mathrm{h}$).
5. Compute the cumulative volume in storage. Consider the amount leaving storage when the average flowrate is less than $0.410 \mathrm{~m}^{3} / \mathrm{s}$. The peak volume in storage is the offline storage and is $819.6 \mathrm{~m}^{3}$.

Time	Avg Flowrate $\mathrm{m}^{3} / \mathrm{s}$	$\begin{aligned} & \text { To storage } \\ & \text { (peak-0.410) } \\ & \mathrm{m}^{3} / \mathrm{s} \end{aligned}$	Filling Volume m^{3}	From storage $\begin{gathered} \text { (0.410-peak) } \\ \mathrm{m}^{3} / \mathrm{s} \end{gathered}$	Emptying volume m^{3}	Cumulative storage m^{3}
M-1	0.300					
1-2	0.220					
2-3	0.180					
3-4	0.160					
4-5	0.160					

$5-6$	0.185					
$6-7$	0.240					
$7-8$	0.300					
$8-9$	0.385					
$9-10$	0.440	0.030	106.3		356.6	
$10-11$	0.480	0.070	250.3		606.9	
$11-\mathrm{N}$	0.480	0.070	250.3		785.2	
$\mathrm{~N}-1$	0.460	0.050	178.3			819.6
$1-2$	0.420	0.010	34.3			
$2-3$	0.390			-0.020	-73.7	745.9
$3-4$	0.355			-0.055	-199.7	546.2
$4-5$	0.331		-0.079	-286.1	260.1	
$5-6$	0.315		-0.095	-343.7	0.0	
$6-7$	0.320		-0.090	-325.7		
$7-8$	0.346		-0.064	-232.1		
$8-9$	0.362		-0.048	-174.5		
$9-10$	0.392		-0.018	-66.5		
$10-11$	0.360			-0.050	-181.7	
$11-\mathrm{M}$	0.300		-0.110	-397.7		
Total	7.881					
Avg	0.328					
Avg $\times 1.25$	0.410					

PROBLEM 3-17

Problem Statement - See text, page 260

Solution

1. Determine the off-line storage volume needed to equalize the flowrate

The off-line volume required to equalize the flow is that same as the in-line volume given in Example 3-10.
2. Determine the effect of flow equalization on the BOD mass loading to the wastewater treatment plant. The computation table required to determine the BOD mass loadings is presented below.
a. The average flowrate over the 24 h period is $0.307 \mathrm{~m}^{3} / \mathrm{s}=1,106 \mathrm{~m}^{3} / \mathrm{h}$
b. The volume diverted to the storage basin is equal to:

Diverted volume $=$ inflow volume during a 1 h time period $-1,106 \mathrm{~m}^{3}$
For the time period 8-9:
$V_{d}=1278 m^{3}-1106 m^{3}=172$ rage basin during the current time period, $\mathrm{g} / \mathrm{m}^{3}$ (mg / L)
$\mathrm{V}_{\text {ic }}=$ volume of wastewater diverted to storage basin during the current period, m^{3}
$X_{\text {ic }}=$ average concentration of BOD in the inflow wastewater volume during the current period, $\mathrm{g} / \mathrm{m}^{3}$
$\mathrm{V}_{\mathrm{sp}}=$ volume of wastewater in storage basin at the end of the previous time period, m^{3}
$X_{s p}=$ concentration of BOD in wastewater in storage basin at the end of the previous time period, $\mathrm{g} / \mathrm{m}^{3}$

For the time period 8-9:

$$
X_{e c}=\frac{\left(172 \mathrm{~m}^{3}\right)\left(175 \mathrm{~g} / \mathrm{m}^{3}\right)+(0)(0)}{172 \mathrm{~m}^{3}+0}=175 \mathrm{~g} / \mathrm{m}^{3}
$$

For the time period 9-10:

$$
X_{e c}=\frac{\left(370 \mathrm{~m}^{3}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(172 \mathrm{~m}^{3}\right)\left(175 \mathrm{~g} / \mathrm{m}^{3}\right)}{(370+172) \mathrm{m}^{3}}=192 \mathrm{~g} / \mathrm{m}^{3}
$$

All the concentration values computed in a similar manner are reported in the computation table.
d. The third step is to compute the hourly mass loading rate using the following expression:
i. Mass loading to the plant for treatment while the storage basin is filling:
Mass loading rate to plant, $\mathrm{kg} / \mathrm{h}=\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{ic}}, \mathrm{m}^{3} / \mathrm{h}\right)\left(\mathrm{X}, \mathrm{g} / \mathrm{m}^{3}\right)$
where V_{T} = total influent flowrate
For example, for the time period $8-9$, the mass loading rate is

$$
\begin{aligned}
& \left.=\left[(1278-172) \mathrm{m}^{3}\right]\left(175 \mathrm{~g} / \mathrm{m}^{3}\right) / 10^{3} \mathrm{~g} / \mathrm{kg}\right) \\
& =194 \mathrm{~kg} / \mathrm{h} \text { (rounded) }
\end{aligned}
$$

ii. Mass loading to the plant for treatment while drawing from storage:

Mass loading to plant, $\left.\mathrm{kg} / \mathrm{h}=\left[\left(\mathrm{V}_{\mathrm{T}}\right)\left(\mathrm{X}_{\mathrm{ic}}\right)+\left(\mathrm{V}_{\mathrm{sp}}\right)\left(\mathrm{X}_{\text {sp }}\right)\right] / 10^{3} \mathrm{~g} / \mathrm{kg}\right)$
For example, for the time period $\mathrm{M}-1$, the mass loading rate is
$\left.=\left[\left(990 \mathrm{~m}^{3}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(116 \mathrm{~m}^{3}\right)\left(214 \mathrm{~g} / \mathrm{m}^{3}\right)\right] / 10^{3} \mathrm{~g} / \mathrm{kg}\right)$
$=174 \mathrm{~kg} / \mathrm{h}$ (rounded)
e. Set up a spreadsheet and computation table similar to that below.

Time period	Volume of flow during time period, m^{3}	Influent BOD, $\mathrm{g} / \mathrm{m}^{3}$	Volume diverted to (+) or from (-) storage, m^{3}	Cumulative volume in storage, m^{3}	Average BOD concentration in storage, $\mathrm{g} / \mathrm{m}^{3}$	BOD to plant, $\mathrm{g} / \mathrm{m}^{3}$	BOD mass loading to plant, kg/h
8-9	1278	175	172	172	175	175	194
9-10	1476	200	370	542	192	200	221
10-11	1530	215	424	966	202	215	238
11-N	1548	220	442	1408	208	220	243
N-1	1530	220	424	1832	211	220	243
1-2	1458	210	352	2184	210	210	232
2-3	1386	200	280	2464	209	200	221
3-4	1260	190	154	2618	208	190	210
4-5	1170	180	64	2682	207	180	199
5-6	1170	170	64	2746	207	170	188
6-7	1188	175	82	2828	206	175	194
7-8	1314	210	208	3036	206	210	232
8-9	1440	280	334	3370	213	280	310
9-10	1440	305	334	3704	222	305	337
10-11	1368	245	262	3966	223	245	271
11-M	1242	180	136	4102	222	180	199
M-1	990	150	-116	3986	222	158	174
1-2	792	115	-314	3672	222	145	161
2-3	594	75	-512	3160	222	143	158
3-4	468	50	-638	2522	222	149	165
4-5	378	45	-728	1794	222	162	179
5-6	360	60	-746	1048	222	169	187
6-7	432	90	-674	374	222	170	189
7-8	738	130	-368	6	222	161	178
Average							213

3. Does the difference in the mass loading rate justify the cost of the larger basin required for in-line storage?
a. If flow is to be equalized, the size of the basin required is the same for in-line and off-line storage
b. Comparing the BOD mass loading values given in the above table for offline storage to the corresponding values given in Example 3-10 for inline storage (see computation table given on page 250), the benefits of using in-line storage with respect to BOD mass loadings is apparent.

	BOD Mass loading	
Ratio	In-line	Off-line
Peak/averqge	$271 / 213=1.27$	$337 / 213=1.58$
Minimum/average	$132 / 213=0.62$	$158 / 213=0.74$
Peak/minimum	$271 / 132=2.05$	$337 / 158=2.13$

PROBLEM 3-18

Problem Statement - See text, page 260

Instructional Guidelines

Because an iterative solution is necessary to obtain an answer to this problem, a considerable amount of time is required to obtain a precise answer; however, a spreadsheet can facilitate the computations. It is suggested, therefore, that the students be advised that an approximate answer is acceptable.

Solution

1. Determine the required storage volume and peak-to minimum BOD loading ratio for equalized flow.

From Example 3-10, a basin with a volume of $4110 \mathrm{~m}^{3}$ (max. volume in storage), a peak-to-minimum BOD loading ratio of 2.05 is obtained.
2. Determine the peak-to minimum $B O D$ loading ratio for a storage volume of \approx $3,000 \mathrm{~m}^{3}$ using the same procedure outlined in Example 3-10. The computations are summarized in the following computation table.

Computation Table, Basin Volume $=3000 \mathrm{~m}^{3}$

Time period	Volume of flow in during time period, m^{3}	Influent BOD, $\mathrm{g} / \mathrm{m}^{3}$	Volume of flow out, m^{3}	Volume to storage, m^{3}	Volume in storage at end of time period, m^{3}	Equalized BOD during time period, $\mathrm{g} / \mathrm{m}^{3}$	Equalized BOD mass loading to plant, kg/h
8-9	1278	175	1106	172	172	175	194
9-10	1476	200	1106	370	542	197	218
10-11	1530	215	1106	424	966	210	233
11-N	1548	220	1106	442	1408	216	239
N-1	1530	220	1106	424	1832	218	241
1-2	1458	210	1106	352	2184	215	237
2-3	1386	200	1106	280	2464	209	231
3-4	1260	190	1106	154	2618	203	224
4-5	1170	180	1106	64	2682	196	216
5-6	1170	170	1106	64	2746	188	208
6-7	1188	175	1106	82	2828	184	203
7-8	1314	210	1142	172	3000	192	219
8-9	1440	280	1440	0	3000	221	318
9-10	1440	305	1440	0	3000	248	357
10-11	1368	245	1368	0	3000	247	338
11-M	1242	180	1242	0	3000	227	282
M-1	990	150	1106	-116	2884	208	230
1-2	792	115	1106	-314	2570	188	208
2-3	594	75	1106	-512	2058	167	185
3-4	468	50	1106	-638	1420	145	161
4-5	378	45	1106	-728	692	124	137
5-6	360	60	1052	-692	0	102	108
6-7	432	90	432	0	0	90	39
7-8	738	130	738	0	0	130	96

For a storage basin volume of $3000 \mathrm{~m}^{3}$, the peak-to minimum BOD_{5} loading ratio is:

$$
\frac{\text { Peak }}{\operatorname{Min}}=\frac{357}{39}=9.15
$$

3. Using the spreadsheet, the maximum basin volume can be changed and the volumes, mass loadings, and concentrations can be recalculated. For
example, if the basin volume is increased to $3,300 \mathrm{~m}^{3}$, the following results will be obtained:

Time period	Volume of flow in during time period, m^{3}	Influent BOD, $\mathrm{g} / \mathrm{m}^{3}$	Volume of flow out, m^{3}	Volume to storage, m^{3}	Volume in storage at end of time period, m^{3}	Equalized BOD during time period, $\mathrm{g} / \mathrm{m}^{3}$	Equalized BOD mass loading to plant, kg/h
8-9	1278	175	1106	172	172	175	194
9-10	1476	200	1106	370	542	197	218
10-11	1530	215	1106	424	966	210	233
11-N	1548	220	1106	442	1408	216	239
N-1	1530	220	1106	424	1832	218	241
1-2	1458	210	1106	352	2184	215	237
2-3	1386	200	1106	280	2464	209	231
3-4	1260	190	1106	154	2618	203	224
4-5	1170	180	1106	64	2682	196	216
5-6	1170	170	1106	64	2746	188	208
6-7	1188	175	1106	82	2828	184	203
7-8	1314	210	1106	208	3036	192	213
8-9	1440	280	1176	264	3300	220	259
9-10	1440	305	1440	0	3300	246	354
10-11	1368	245	1368	0	3300	246	336
11-M	1242	180	1242	0	3300	228	283
M-1	990	150	1106	-116	3184	210	232
1-2	792	115	1106	-314	2870	191	211
2-3	594	75	1106	-512	2358	171	189
3-4	468	50	1106	-638	1720	151	167
4-5	378	45	1106	-728	992	132	146
5-6	360	60	1052	-692	300	113	119
6-7	432	90	732	-300	0	99	73
7-8	738	130	738	0	0	130	96

For a storage basin volume of $3000 \mathrm{~m}^{3}$, the peak-to minimum BOD loading ratio is:

$$
\frac{\text { Peak }}{\operatorname{Min}}=\frac{354}{73}=4.85
$$

The ratio is close to the desired ratio of $5: 1$ indicated in the problem statement thus the equalization volume of $3300 \mathrm{~m}^{3}$ is adequate.

WASTEWATER TREATMENT PROCESS SELECTION, DESIGN, AND IMPLEMENTATION

PROBLEM 4-1

Problem Statement - See text, page 300

Instructional Guidelines

If consulting engineering or other reports are available, it would be helpful to put them on reserve in the library. To avoid having each member of the class contact the local wastewater management agency individually, it would be best to organize the class into study groups. . One person can then be selected from each study group to go together to obtain the necessary information from the appropriate city or regional agency.

PROBLEM 4-2

Problem Statement - See text, page 301

Instructional Guidelines

The purpose of this problem is to expose students to the significance and importance of properly prepared environmental impact reports. It would, therefore, be appropriate if the instructor spent at least one class period discussing what is involved in the preparation of such reports. The learning value of this problem can be enhanced if example copies of both well and poorly prepared reports are available or the students to review.

PROBLEM 4-3

Problem Statement - See text, page 301

Solution

1. From Equation 4-2,

$$
\text { Future cost }=\frac{\text { Projected future value of index }}{\text { Current value of index }} \times \text { Current cost }
$$

Note: Construction cost indices (CCl) are available from Engineering News Record (ENR). If the ENRCCI historical and forecasted CCI are not available through your local library, check with your state transportation agency. In lieu of
forecasted values, the student can make a linear projection based on historical and current values.

The most recent (2012) end-of-year national CCI value was approximately 99,412 . Projected future end-of-year CCI value projecting 5 years is approximately 196,107 .

$$
\begin{aligned}
\text { Future cost } & =\frac{196,107}{99,412} \times \$ 5 \times 10^{6} \\
& =\$ 9.86 \times 10^{6}
\end{aligned}
$$

PROBLEM 4-4

Problem Statement - See text, page 301

Instructional Guidelines

It may be appropriate for the instructor to provide the construction cost and the year the project was completed.

Solution

1. The solution to this problem involves the application of Eq. (4-1).

$$
\text { Current } \cos t=\frac{\text { Current value of index }}{\text { Value of index at time of estimate }} \times \text { Estimated cost }
$$

Although published cost indexes used to track historic cost trends are a useful tool for adjusting costs to a common past or current date, judgment is still required in selecting the appropriate index and in assuming inflation rates for future costs.
2. The average rate of inflation can be obtained from a variety of web sources including the following:
http://inflationdata.com/Inflation/Inflation/Decadelnflation.asp
http://inflationdata.com/Inflation/Inflation Rate/Historicallnflation.aspx
http://inflationdata.com/Inflation/Inflation Rate/Long Term Inflation.asp
Although published cost indexes used to track historic cost trends are a useful tool for adjusting costs to a common past or current date, judgment is still required in selecting the appropriate index and in assuming inflation rates for future costs.

PROBLEM 4-5

Problem Statement - See text, page 301

Solution

1. Convert the treatment plant flow rate to $\mathrm{Mgal} / \mathrm{d}$:

Flow $=\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2.642 \times 10^{-4} \mathrm{Mgal} / \mathrm{m}^{3}\right)$

$$
=1.057 \mathrm{Mgal} / \mathrm{d}
$$

2. Calculate daily energy use:

$$
\begin{aligned}
\text { Energy use } & =(2500 \mathrm{kWh} / \mathrm{Mgal})(1.057 \mathrm{Mgal} / \mathrm{d}) \\
& =2642 \mathrm{kWh} / \mathrm{d}
\end{aligned}
$$

3. Estimate annual energy cost
a. Energy costs paid by wastewater treatment facilities will vary based on fees, tariffs, and electric utility rate structures including seasonal variability, tiered pricing, and time of use (TOU) periods (peak, part peak, off peak, etc.). For the purpose of this problem, an average total rate of $\$ 0.17 / \mathrm{kWh}$ was used. Most utilities utilize units of kWh .
b. Calculate energy cost

$$
\begin{aligned}
\text { Energy cost } & =(2642 \mathrm{kWh} / \mathrm{d})(\$ 0.17 / \mathrm{kWh})(365 \mathrm{~d} / \mathrm{y}) \\
& =\$ 163,937 \text { annually }
\end{aligned}
$$

PROBLEM 4-6

Problem Statement - See text, page 301

Instructional Guidelines

As a starting point, suggest that students search the net by typing "Wastewater probability plots,"
The following references contain probability plots
Melcer, H., P.L. Dold, R.M. Jones, C.M. Bye, I. Takacs, H.D. Stensel, A.W. Wilson, P. Sun, and S. Bury (2003) Methods for Wastewater Characterization in Activated Sludge Modeling. WERF Final Report, Project 99-WWF-3, Water Environment Research Foundation, Alexandria, VA.
Mines, R.O., L.W. Lackey, and G.R. Behrend (2006) "Performance Assessment of Major Wastewater Treatment Plants (WWTPs) in the State of Georgia," J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng., 41, 10, 21752198.

Problem Analysis

1. For arithmetic-probability plots, the following relationship is used to obtain the arithmetic standard deviation (see Appendix D)
$s=P_{84.1}-\bar{x}$ or $P_{15.9}+\bar{x}$
2. For logarithmic-probability plots the following relationship is used to obtain the geometric standard deviation (see Appendix D)
$s_{g}=\frac{P_{84.1}}{M_{g}}=\frac{M_{g}}{P_{15.9}}$

PROBLEM
 4-7

Problem Statement - See text, page 301

Solution

1. Because the not-to-exceed value was set at the highest value from six effluent samples, the probability plot concept can be applied to estimate the frequency that the process effluent will exceed the permit requirements.
a. The plotting position on probability paper can be determined using Blom's transformation (Eq. D-11, Appendix D, page 1917).
Plotting position, $\%=\left(\frac{m-3 / 8}{n+1 / 4}\right) \times 100$
Where $m=$ rank of the value when arranged from lowest to highest
$\mathrm{n}=$ number of samples
b. Determine the plotting position for the maximum value of six samples.

Plotting position of maximum value $=\left(\frac{6-3 / 8}{6+1 / 4}\right) \times 100=90 \%$
c. Determine the frequency that the effluent constituent concentration can be expected to exceed the not-to-exceed value.
Frequency of exceeding discharge limit $=99.9 \%-90 \%=9.9 \%$
2. Clearly, the superintended should have collected more samples or negotiated with the Regulatory Agency for a more lienient effluent standard.

PROBLEM
 4-8

Instructors Note: While Table 4-5, referenced in the problem statement, does provide ranges of coliphage concentrations for untreated wastewater and
activated sludge effluent, more information is needed. Fig. 11-15 can be utilized to obtain distributions for primary influent and activated sludge (secondary) effluent coliphage concentrations. The geometric standard deviations, s_{g}, for the influent wastewater, activated sludge and reverse osmosis coliphage concentrations are 1.67, 1.67 and 1.15 pfu/ 100 mL , respectively.

Problem Statement - See text, page 301

Solution

1. Use the data from Fig. 11-15 to construct a plot including the reverse osmosis process. To facilitate plotting on log probability paper, use the geometric mean and standard deviation values for typical log removal of coliphage in the reverse osmosis process.
a. From Fig. 11-15, the P_{50} can be estimated to be $2.1 \times 10^{4} \mathrm{pfu} / 100 \mathrm{~mL}$ for primary influent coliphage concentration and 300 for the activated sludge process. Therefore, the log removal for the activated sludge process is

$$
-\log \left(\frac{N}{N_{0}}\right)=-\log \left(\frac{300}{21,000}\right)=1.85
$$

b. The reverse osmosis process performance value of $\mathbf{2} \log$ removal (given in problem statement) and a geometric standard deviation (given in instructors note) will be used to determine the final effluent quality.
2. The plot and values shown on Fig. 11-15 can be used to for the activated sludge and reverse osmosis process.
a. The P_{50} value for the influent coliphage concentration of $\mathbf{2 0 , 0 0 0} \mathbf{~ p f u / 1 0 0}$ mL is drawn on the plot with a slope determined using the geometric standard deviation of 1.67 (given in instructors note).
b. The activated sludge performance is determined by drawing a line on the same plot with a P_{50} value at $283 \mathrm{pfu} / 100 \mathrm{~mL}[\log (20,000)-1.85=$ $2.45 ; 10^{2.45}=283$] with a slope determined using the geometric standard deviation of 1.67 (given in instructors note).
c. The reverse osmosis performance of $\mathbf{2 . 0}$ log removal is also plotted with a P_{50} value of 2.83 pfu/ $100 \mathrm{~mL}\left(\log (283)-2=0.45 ; 11^{0.45}=2.82\right)$, with a slope determined using the geometric standard deviation of 1.15 (given in instructors note).

3. The removal achieved at 99 and 99.9 percent reliability is 7.5 and 6 pfu/ 100 mL , respectively.

PROBLEM 4-9

Problem Statement - See text, page 301

Solution

1. Plot the BOD and TSS values on log-probability paper. The required plots for Plant 1 are shown below.
a. BOD and TSS $=15 \mathrm{mg} / \mathrm{L}$ at 99 and 99.9 percent reliability

Percent of values equal to or
less than indicated value

Percent of values equal to or less than indicated value

The mean design values for a BOD limit of $15 \mathrm{mg} / \mathrm{L}$ at 99 and 99.9 percent reliability are 6 and $4.2 \mathrm{mg} / \mathrm{L}$, respectively. The mean design values for TSS at 99 and 99.9 percent reliability are 10 and $8.2 \mathrm{mg} / \mathrm{L}$, respectively.
b. BOD and TSS $=10 \mathrm{mg} / \mathrm{L}$ at 99 and 99.9 percent reliability

The mean design values for a BOD limit of $10 \mathrm{mg} / \mathrm{L}$ at 99 and 99.9 percent reliability are 4.1 and $3.1 \mathrm{mg} / \mathrm{L}$, respectively. The mean design values for TSS at 99 and 99.9 percent reliability are 5.8 and $4.8 \mathrm{mg} / \mathrm{L}$, respectively.
c. $\mathrm{BOD}=5 \mathrm{mg} / \mathrm{L}$ and $T S S=8 \mathrm{mg} / \mathrm{L}$ at 99 and 99.9 percent reliability

Percent of values equal to or
less than indicated value
 less than indicated value

The mean design values for a BOD limit of $5 \mathrm{mg} / \mathrm{L}$ at 99 and 99.9 percent reliability are 2 and $1.8 \mathrm{mg} / \mathrm{L}$, respectively. The mean design values for TSS at 99 and 99.9 percent reliability are 4.5 and $3.8 \mathrm{mg} / \mathrm{L}$, respectively.
2. The results for Treatment Plant 1 are summarized in the following table. concentration, improvementa)

mg / L	$\%$	BOD	TSS
5	99	$2(355)$	
	99.9	$1.8(406)$	$4.5(122)$
8	99		$3.8(163)$
	99.9		$5.8(72)$
10	99	$4.1(122)$	$4.8(108)$
	99.9	$3.1(194)$	$10(0)$
15	99	$6(52)$	$8.2(22)$

PROBLEM 4-10

Problem Statement - See text, page 302
Instructors Note: The problem statement should include the following additional question. What would be the expected constituent concentrations that could be achieved 99 and 99.9% of the time?

Solution

1. Plot the percent removals for each process on probability paper, the required plot is shown below.

Percent of values equal to or less than the indicated value
2. Use the plot constructed in step 1 to determine the process performance values at 1 and 0.1 percent (99 and 99.9 percent performance, respectively). Assuming a geometric average removal for the biological
treatment process (i.e., 87 percent removal), the 99 and 99.9 percent performance for depth filter $\mathbf{2}$ is computed as follows.
a. For the influent concentration of $\mathbf{1 5 0} \mathbf{~ m g} / \mathbf{L}$, the average effluent concentration from the biological process is $150(1-0.87)=19.5$.
b. The 99 percent performance value (1 percent) for filter 2 is 35% removal, and an effluent concentration of $19.5(1-0.35)=12.68$.
c. The 99.9 percent performance value (0.1 percent) for filter 2 is 27% removal, and an effluent concentration of $19.5(1-0.27)=14.24$.

3. Summary of results for Problem 4-10.

Reliability of treatment process	Effluent concentration at indicated reliability, mg/L			
	Influent constituent concentration, mg/L			
	150	200	275	300
Mean biological treatment effluent	19.5	26	35.8	39
Depth filter A				
50\%	12.68	16.90	23.24	25.35
99\%	6.83	9.10	12.51	13.65
99.9\%	6.83	9.10	12.51	13.65
Depth filter B				
50\%	10.73	14.30	19.66	21.45
99\%	12.68	16.90	23.24	25.35
99.9\%	14.24	18.98	26.10	28.47
Depth filter C				
50\%	8.78	11.70	16.09	17.55
99\%	11.90	15.86	21.81	23.79
99.9\%	12.48	16.64	22.88	24.96

PROBLEM 4-11

Problem Statement - See text, page 302

Solution

Instructional Guidelines

Some important design considerations are summarized in the table given below. Many of the design considerations may be found in Chap. 14.

Solution

The design considerations are summarized in the table below, Most of the design considerations given below may be found in Chaps. 13, 14, and 15. The reason for presenting this homework problem in this chapter before the assignment of Chaps. 13, 14, and 15 is to get students to think about what might be important. It is not expected that student would produce a list such as the one given in the table, but would identify a few of the considerations. In the classroom, the instructor could then discuss how to begin to think about the many issues involved.

Parameter	Design consideration
Process selection	For plant sizes less than 15,00 to18,000 $\mathrm{m}^{3} / \mathrm{d}$, aerobic digestion is used more commonly than anaerobic digestion, however, the selection should be compatible with existing processes in the expansion and upgrading of an existing plant.
Feed solids concentration	Low feed solids (less than 3 percent) can adversely affect performance of anaerobic digesters. High feed solids (over 4 percent) may affect the ability of the mixing and aeration system.
ThickeningThickening may be needed to optimize performance (see feed solids concentration above).	
Volatile solids destructionVolatile solids destruction on the order of 56 to 65 percent may be achieved by anaerobic digestion compared to 38 to 50 percent by aerobic digestion.	
In colder climates, performance of aerobic digesters will be affected	
by changing temperatures, especially if the aerobic digestion tanks	
are uninsulated and open to the atmosphere. At colder	
temperatures, the reaction rates decrease. For colder climates, the	
use of the ATAD process might be a more appropriate alternative for	
aerobic digestion as the process generates heat. Anaerobic	
digesters are relatively unaffected by ambient temperature changes.	

Phosphorus removal	If phosphorus removal is included in the treatment process, anaerobic digestion should be avoided, as anaerobic decomposition will release the bound phosphorus.
	Continued on following page
Continued from previous page	
Energy requirements	The requirement for electric energy for aerobic digestion for mixing and aeration will be considerably higher than the requirement for mixing in anaerobic digestion. The energy required for mixing in egg-shaped digesters will be less than that for conventional cylindrical digesters. The cost of electric power is an important consideration in evaluating the operating cost for aerobic digestion.
Energy recovery	The methane gas produced in the anaerobic digestion process can be recovered for use in digester heating, power generation, and cogeneration. Energy recovery from aerobic digestion is only possible in the ATAD process where the heat produced in oxidation of volatile solids is utilized to heat the reactor.
Operability	Operationally, conventional aerobic digestion is a somewhat less complex process to operate than anaerobic digestion. However, aerobic digester performance may be variable, especially due to seasonal effects. The ATAD process is more complex than conventional aerobic digestion, but better volatile solids destruction may be achieved.
Cost evaluation	The construction costs for anaerobic digesters are higher than aerobic digesters. The operating costs, principally for electric energy, are significantly higher for aerobic digestion. A life cycle cost analysis should be done so all of the cost factors can be evaluated in making an appropriate economic decision.

PROBLEM 4-12

Problem Statement - See text, page 302

Solution

Instructor's note: The purpose of this problem is to illustrate to junior and senior students the application of undergraduate hydraulics in the preparation of hydraulic profiles. The material needed to solve this problem was not specifically covered in this chapter. Use of hydraulic control points such as effluent weirs, for the preparation of hydraulic profiles should be discussed by the instructor before the problem is assigned. Although not stated, assume there are one primary clarifier, one secondary clarifier and one aeration tank.

Conditions:
$Q_{a v g}=4000 \mathrm{~m}^{3} /$ d plus 100 percent sludge recycle
$Q_{\text {peak }}=8000 \mathrm{~m}^{3} / \mathrm{d}$ plus 50 percent sludge recycle
$Q_{\text {low }}=2000 \mathrm{~m}^{3} / \mathrm{d}$ plus 100 percent sludge recycle
Spacing of v-notch weirs $=600 \mathrm{~mm}$
Width of aeration-tank effluent weir $=1400 \mathrm{~mm}$
Number of primary and secondary clarifiers = 1 each

Problem Analysis

1. List basic assumptions.
a. The given weir height is at the bottom of the V-notch.
b. Concrete piping with an absolute roughness, $\varepsilon=0.5 \times 10^{-3} \mathrm{~m}$ is to be used to interconnect treatment units.
c. Recycled flow enters at head of aeration tanks.
2. Determine the liquid level in the secondary clarifiers.
a. The number of V -notch weirs is:

No. of V-notch weirs $=\frac{\text { Perimeter }}{0.60 \mathrm{~m}}=\frac{\pi \cdot \mathrm{d}}{0.60 \mathrm{~m}}=\frac{\pi(15 \mathrm{~m})}{0.60 \mathrm{~m}}=79$
b. Find the head on the weirs
i. Flow per weir

$$
\begin{aligned}
& Q_{\mathrm{avg}}=\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86,400 \mathrm{~s} / \mathrm{d})(79)}=5.895 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{\text {peak }}=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86,400 \mathrm{~s} / \mathrm{d})(79)}=1.179 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

ii. The V-notch weir equation is:

$$
\begin{aligned}
& \mathrm{Q}_{\text {weir }}=\frac{8}{15} \sqrt{2 \mathrm{~g}} \cdot \mathrm{C}_{\mathrm{D}} \cdot \tan \phi / 2 \cdot \mathrm{H}^{5 / 2} \\
& \text { where } C_{D}=\text { discharge coefficient } \\
& =0.585 \text { for } 90^{\circ} \mathrm{V} \text {-notch } \\
& \phi=\text { angle of } \mathrm{V}=90^{\circ} \\
& \mathrm{Q}_{\text {weir }}=\frac{8}{15} \sqrt{2(9.8)} \cdot 0.585 \cdot \tan 90^{\circ} / 2 \cdot \mathrm{H}^{5 / 2} \\
& =1.38 \mathrm{H}^{5 / 2}
\end{aligned}
$$

iii. Head on weir:
a. Compute H for average and peak flow conditions:

$$
\text { At } \begin{aligned}
Q_{a v g}: & H=\left(\frac{Q}{1.38}\right)^{2 / 5} \\
& =\left(\frac{5.895 \times 10^{-4}}{1.38}\right)^{2 / 5}=0.045 \mathrm{~m}
\end{aligned}
$$

$$
\text { At } Q_{\text {peak }}: H=\left(\frac{Q}{1.38}\right)^{2 / 5}
$$

$$
=\left(\frac{1.179 \times 10^{-3}}{1.38}\right)^{2 / 5}=0.059 \mathrm{~m}
$$

b. Compute the liquid level in the secondary clarifiers:
i) At $Q_{\text {avg }}$, Elev $=518.260+0.045=518.305 \mathrm{~m}$
ii) At $Q_{\text {peak }}, E l e v=518.260+0.059=518.319 \mathrm{~m}$
3. Determine liquid level in effluent channel from the aeration tank.
a. At $Q_{a v g}$:
i. Minor losses
a) $2,90^{\circ}$ elbows
$h_{L}=K_{b} \cdot \frac{v^{2}}{2 g}$
where $K_{b}=0.3$ (varies with source)

$$
\begin{aligned}
& v=\frac{Q_{\text {avg }}+Q_{\text {recycle }}}{A_{\text {pipe }}} \\
&=\frac{4000+4000}{\frac{\pi}{4}(0.48)^{2} \cdot(86,400 \mathrm{~s} / \mathrm{d})}=0.51 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}_{\mathrm{L}}=(0.3) \cdot \frac{(0.51)^{2}}{2(9.8)}=0.0040 \mathrm{~m}
\end{aligned}
$$

b) Entrance

$$
h_{L}=K_{e} \cdot \frac{v^{2}}{2 g}
$$

where $K_{e}=0.5$

$$
\begin{gathered}
v=0.51 \mathrm{~m} / \mathrm{s} \\
h_{L}=0.5 \cdot \frac{(0.51)^{2}}{2(9.8)}=0.0067 \mathrm{~m}
\end{gathered}
$$

c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.51)^{2}}{2(9.8)}=0.0134 \mathrm{~m}
$$

ii. Friction losses

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g} \text { (Darcy-Weisbach) }
$$

$$
\text { where } L=38 \mathrm{~m}
$$

$$
v=0.51 \mathrm{~m} / \mathrm{s}
$$

$$
D=0.48 \mathrm{~m}
$$

$$
f=0.020 \text { for } \varepsilon / D=1.04 \times 10^{-3}
$$

from Moody diagram

$$
\mathrm{h}_{\mathrm{L}}=0.020 \frac{(38)}{(0.48)} \frac{(0.51)^{2}}{2(9.8)}=0.0212 \mathrm{~m}
$$

ii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0040+0.0067+0.0134+0.0212 \\
& =0.0452 \mathrm{~m}
\end{aligned}
$$

b. At $Q_{\text {peak }}$:
i. Minor losses
a) $2,90^{\circ}$ elbows

$$
h_{L}=0.3 \cdot \frac{v^{2}}{2 g}
$$

$$
\text { where } v=\frac{Q_{\text {peak }}+Q_{\text {recycle }}}{A_{\text {pipe }}}
$$

$$
=\frac{8000+4000}{\frac{\pi}{4}(0.48)^{2} \cdot(86,400 \mathrm{~s} / \mathrm{d})}=0.77 \mathrm{~m} / \mathrm{s}
$$

$$
h_{L}=(0.3) \cdot \frac{(0.77)^{2}}{2(9.8)}=0.0090 \mathrm{~m}
$$

b) Entrance

$$
h_{L}=K_{e} \cdot \frac{v^{2}}{2 g}
$$

$$
\text { where } v=0.77 \mathrm{~m} / \mathrm{s}
$$

$$
h_{L}=0.5 \cdot \frac{(0.77)^{2}}{2(9.8)}=0.0150 \mathrm{~m}
$$

c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.77)^{2}}{2(9.8)}=0.0301 \mathrm{~m}
$$

ii. Friction losses

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g} \text { (Darcy-Weisbach) }
$$

where $v=0.77 \mathrm{~m} / \mathrm{s}$

$$
h_{\mathrm{L}}=0.020 \frac{(38)}{(0.48)} \frac{(0.77)^{2}}{2(9.8)}=0.0476 \mathrm{~m}
$$

iii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0090+0.0150+0.0301+0.0476 \\
& =0.1017 \mathrm{~m}
\end{aligned}
$$

c. The liquid level in the aeration tank effluent channel is:
i) At $Q_{a v g}=518.305+0.0452=518.350$
ii) At $Q_{\text {avg }}=518.319+0.1017=518.421$
4. Determine liquid level in the aeration tank.
a. Francis type weir (contracted, rectangular, sharp-crested) equation:

$$
\mathrm{Q}, \mathrm{~m}^{3} / \mathrm{s}=1.84(\mathrm{~L}-0.1 \cdot \mathrm{n} \cdot \mathrm{H}) \mathrm{H}^{3 / 2}
$$

where 1.84 = experimentally-determined constant (metric)
$L=$ width of weir, m
$n=$ number of end contractions
$H=$ head above weir, m
Given unknown head above weir, solve Francis equation for H by substituting the term $L-0.1 n H$ by L :
$Q=1.84 \cdot L \cdot H^{3 / 2}$
$H=\left(\frac{Q}{1.84 \cdot L}\right)^{2 / 3}$
b. At $Q_{\text {avg }}$:

$$
\begin{aligned}
& H=\left[\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}+4000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86,400 \mathrm{~s} / \mathrm{d}) 1.84(1.4 \mathrm{~m})}\right]^{2 / 3}=0.1089 \mathrm{~m} \\
& \text { recomputing } \mathrm{L}=1.4-0.2(0.1089)=1.378 \\
& H=\left[\frac{8000}{(86,400) 1.84(1.386)}\right]^{2 / 3}=0.1101 \mathrm{~m} \\
& \text { recomputing } L=1.4-0.2(0.1101)=1.378
\end{aligned}
$$

(converges after 1 iteration)

$$
\mathrm{H}=0.1101 \mathrm{~m}
$$

c. At $Q_{\text {peak }}$:

$$
\begin{aligned}
& \mathrm{H}= {\left[\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}+4000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86,400 \mathrm{~s} / \mathrm{d}) 1.84(1.4 \mathrm{~m})}\right]^{2 / 3}=0.1427 \mathrm{~m} } \\
& \text { recomputing } \mathrm{L}=1.4-0.2(0.1427)=1.371 \\
& \mathrm{H}= {\left[\frac{12,000}{(86,400) 1.84(1.382)}\right]^{2 / 3}=0.1447 \mathrm{~m} } \\
& \text { recomputing L=1.4-0.2(0.1447)=1.371} \\
& \mathrm{H}= 0.1447 \mathrm{~m} \\
& \text { (converges after } 1 \text { iteration) }
\end{aligned}
$$

Note: More accurate methods of determining the head requirement for a sharpcrested weir with end contractions have been developed by the following references:

Kindsvater, C.E., and R.W. Carter, "Discharge Characteristics of Rectangular Thin-Plate Weirs," Paper No. 3001, Transactions, American Society of Civil Engineers, vol. 124, 1959.

Ackers, W.R., J.A. Perkins, and A.J.M. Harrison, Weirs and Flumes for Flow Measurement, John Wiley \& Sons, New York, 1978.

King, H.W., and E.F. Brater, Handbook of Hydraulics, fifth edition, McGraw-Hill Book Company, Inc., New York, 1963.
d. The liquid level in the aeration tank is:
i. At $Q_{\mathrm{avg}}=519.10+0.1101=519.210 \mathrm{~m}$
ii. At $Q_{\text {peak }}=519.10+0.1447=519.245 \mathrm{~m}$
5. Determine liquid level in the primary clarifier effluent channel.
a. At Q_{avg} :
i. Minor losses
(a) $2,90^{\circ}$ elbows
$h_{L}=0.3 \cdot \frac{v^{2}}{2 g}$
where $v=\frac{Q_{\text {avg }}}{A_{\text {pipe }}}$
$=\frac{4000}{(86,400) \frac{\pi}{4}(0.40)^{2}}=0.37 \mathrm{~m} / \mathrm{s}$
$h_{L}=(0.3) \cdot \frac{(0.37)^{2}}{2(9.8)}=0.0021 \mathrm{~m}$
(b) Entrance

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{L}}=\mathrm{K}_{\mathrm{e}} \cdot \frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \\
& \text { where } K_{e}=0.5 \\
& \quad \mathrm{v}=0.37 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}_{\mathrm{L}}=0.5 \cdot \frac{(0.37)^{2}}{2(9.8)}=0.0035 \mathrm{~m}
\end{aligned}
$$

(c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.37)^{2}}{2(9.8)}=0.0069 \mathrm{~m}
$$

ii. Friction losses

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g} \text { (Darcy-Weisbach) }
$$

$$
\begin{aligned}
& \text { where } L=46.5 \mathrm{~m} \\
& V=0.37 \mathrm{~m} / \mathrm{s} \\
& D=0.40 \mathrm{~m} \\
& f=0.021 \mathrm{for} \varepsilon / D=1.25 \times 10^{-3} \\
& \quad \text { from Moody diagram }
\end{aligned} \quad \begin{aligned}
& \text { (46.5) } \frac{(0.37)^{2}}{2(9.8)}=0.0169 \mathrm{~m}
\end{aligned}
$$

ii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0021+0.0035+0.0069+0.0169 \\
& =0.0294 \mathrm{~m}
\end{aligned}
$$

b. At $Q_{\text {peak }}$:
i. Minor losses
(a) $2,90^{\circ}$ elbows

$$
h_{L}=0.3 \cdot \frac{v^{2}}{2 g}
$$

where $v=\frac{Q_{\text {peak }}}{A_{\text {pipe }}}$
$=\frac{8000}{(86,400) \frac{\pi}{4}(0.40)^{2}}=0.74 \mathrm{~m} / \mathrm{s}$
$h_{L}=(0.3) \cdot \frac{(0.74)^{2}}{2(9.8)}=0.0083 \mathrm{~m}$
(b) Entrance

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{L}}=\mathrm{K}_{\mathrm{e}} \cdot \frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \\
& \text { where } v=0.74 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}_{\mathrm{L}}=0.5 \cdot \frac{(0.74)^{2}}{2(9.8)}=0.0138 \mathrm{~m}
\end{aligned}
$$

(c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.74)^{2}}{2(9.8)}=0.0277 \mathrm{~m}
$$

ii. Friction losses

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g} \text { (Darcy-Weisbach) }
$$

where $v=0.74 \mathrm{~m} / \mathrm{s}$

$$
h_{L}=0.021 \frac{(46.5)}{(0.40)} \frac{(0.74)^{2}}{2(9.8)}=0.0676 \mathrm{~m}
$$

iii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0083+0.0138+0.0277+0.0676 \\
& =0.1175 \mathrm{~m}
\end{aligned}
$$

c. The liquid level in the primary clarifier effluent channel is:
i) At $Q_{a v g}=519.210+0.0294=519.239 \mathrm{~m}$
ii) At $Q_{\text {peak }}=519.245+0.1175=519.362 \mathrm{~m}$
6. Determine liquid level in the primary clarifier.
a. Determine the number of weirs.

No. of weirs $=\frac{\text { Perimeter }}{0.60 \mathrm{~m}}=\frac{\pi \cdot \mathrm{d}}{0.60 \mathrm{~m}}=\frac{\pi(13.75 \mathrm{~m})}{0.60 \mathrm{~m}}=72$
b. Find the head on the weirs
i. Flow per weir

$$
\begin{aligned}
& Q_{\text {avg }}=\frac{4000 \mathrm{~m}^{3} / \mathrm{d}}{(86,400 \mathrm{~s} / \mathrm{d})(72)}=6.431 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{\text {peak }}=\frac{8000 \mathrm{~m}^{3} / \mathrm{d}}{(86,400 \mathrm{~s} / \mathrm{d})(72)}=1.286 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

ii. Head on weir:
c. Compute H for average and peak flow conditions using the V notch weir equation given in Part 2 above:

$$
\text { At } \begin{aligned}
Q_{\text {avg }}: & H=\left(\frac{Q}{1.38}\right)^{2 / 5} \\
& =\left(\frac{6.431 \times 10^{-4}}{1.38}\right)^{2 / 5}=0.047 \mathrm{~m}
\end{aligned}
$$

$$
\text { At } \begin{aligned}
Q_{\text {peak }}: H & =\left(\frac{Q}{1.38}\right)^{2 / 5} \\
& =\left(\frac{1.286 \times 10^{-3}}{1.38}\right)^{2 / 5}=0.061 \mathrm{~m}
\end{aligned}
$$

d. Compute the liquid level in the primary clarifiers:
i. At $Q_{\text {avg }}$, Elev $=519.50+0.047=519.546 \mathrm{~m}$
ii. At $Q_{\text {peak }}, E l e v=519.50+0.061=519.561 \mathrm{~m}$
7. Summary of results

Location along hydraulic profile	Liquid Level Elevation, m	
	$Q_{\text {avg }}$	$Q_{\text {peak }}$
Primary clarifiers	519.546	519.561
Primary clarifier effluent channel	519.239	519.362
Aeration tank	519.210	519.245
Aeration tank effluent channel	518.350	518.421
Secondary clarifiers	518.305	518.319

PROBLEM 4-13

Problem Statement - See text, page 303
Instructor's note: The purpose of this problem is to illustrate to junior and senior students the application of undergraduate hydraulics in the preparation of hydraulic profiles. The material needed to solve this problem was not specifically covered in this chapter. Use of hydraulic control points such as effluent weirs, for the preparation of hydraulic profiles should be discussed by the instructor before the problem is assigned. Although not stated, assume there are two aeration tanks.

Solution

Conditions:
$Q_{\text {avg }}=7500 \mathrm{~m}^{3} /$ d plus 100 percent sludge recycle
$Q_{\text {peak }}=15,000 \mathrm{~m}^{3} / \mathrm{d}$ plus 50 percent sludge recycle
$Q_{\text {low }}=2500 \mathrm{~m}^{3} / \mathrm{d}$ plus 100 percent sludge recycle

Number of primary and secondary clarifiers = 2
Diameter of line from aeration tank to each clarifier $=400 \mathrm{~mm}$
Spacing of v-notch weirs $=600 \mathrm{~mm}$
Width of aeration-tank effluent weir $=1400 \mathrm{~mm}$

Problem Analysis

1. List basic assumptions.
a. The given weir height is at the bottom of the V-notch.
b. Concrete piping with an absolute roughness, $\varepsilon=0.5 \times 10^{-3} \mathrm{~m}$ is to be used to interconnect treatment units.
c. Recycled flow enters at head of aeration tanks.
2. Determine the liquid level in the secondary clarifiers.
a. The number of V-notch weirs is 79 as calculated in Problem 4-12 above.
b. Find the head on the weirs
i. Flow per weir

$$
\begin{aligned}
& Q_{\text {peak }}=\frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{2(86,400 \mathrm{~s} / \mathrm{d})(79)}=1.105 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& Q_{\text {low }}=\frac{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)}{2(86,400 \mathrm{~s} / \mathrm{d})(79)}=1.842 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

ii. Head on weir:
e. Compute H for average and peak flow conditions using the Vnotch weir equation given in Problem 4-12, Part 2 above:

$$
\begin{aligned}
\text { At } Q_{\text {peak }}: H & =\left(\frac{Q}{1.38}\right)^{2 / 5} \\
& =\left(\frac{1.105 \times 10^{-3}}{1.38}\right)^{2 / 5}=0.058 \mathrm{~m} \\
\text { At } Q_{\text {low }}: H & =\left(\frac{Q}{1.38}\right)^{2 / 5} \\
& =\left(\frac{1.842 \times 10^{-4}}{1.38}\right)^{2 / 5}=0.028 \mathrm{~m}
\end{aligned}
$$

f. Compute the liquid level in the secondary clarifiers:
i) At $Q_{\text {peak }}, \mathrm{Elev}=518.26+0.058=518.318 \mathrm{~m}$
ii) At $Q_{l o w}, E l e v=518.26+0.028=518.288 \mathrm{~m}$
3. Determine liquid level in effluent channel from the aeration tank.
a. At $Q_{\text {peak }}$:
i. Minor losses
a) $2,90^{\circ}$ elbows

$$
\begin{aligned}
& h_{L}=(0.3) \cdot \frac{v^{2}}{2 g} \\
& \text { where } v=\frac{Q_{\text {peak }}+Q_{\text {recycle }}}{2 \cdot A_{\text {pipe }}} \\
& \qquad=\frac{15,000+7500}{2 \cdot \frac{\pi}{4}(0.40)^{2} \cdot(86,400 \mathrm{~s} / \mathrm{d})}=1.036 \mathrm{~m} / \mathrm{s} \\
& h_{L}=(0.3) \cdot \frac{(1.036)^{2}}{2(9.8)}=0.0164 \mathrm{~m}
\end{aligned}
$$

b) Entrance

$$
h_{L}=(0.5) \cdot \frac{v^{2}}{2 g}
$$

where $v=1.036 \mathrm{~m} / \mathrm{s}$

$$
h_{L}=0.5 \cdot \frac{(1.036)^{2}}{2(9.8)}=0.0274 \mathrm{~m}
$$

c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(1.036)^{2}}{2(9.8)}=0.0548 \mathrm{~m}
$$

ii. Friction losses

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{h}_{\mathrm{L}}=\mathrm{f} \frac{\mathrm{~L}}{\mathrm{~L}} \frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \text { (Darcy-Weisbach) } \\
\text { where } v=0.26 \mathrm{~m} / \mathrm{s} \\
\qquad \begin{array}{l}
D=0.40 \mathrm{~m} \\
f
\end{array}=0.021 \text { for } \varepsilon / D=1.25 \times 10^{-3} \\
\quad \text { from Moody diagram }
\end{array} \\
& \mathrm{h}_{\mathrm{L}}=0.021 \frac{(38)}{(0.40)} \frac{(1.036)^{2}}{2(9.8)}=0.1093 \mathrm{~m}
\end{aligned}
$$

ii. Total headloss

$$
\text { Total } \begin{aligned}
h_{L} & =0.0164+0.0274+0.0548+0.1093 \\
& =0.2079 \mathrm{~m}
\end{aligned}
$$

b. At $Q_{l o w}$:
i. Minor losses
a) $2,90^{\circ}$ elbows

$$
h_{L}=(0.3) \frac{v^{2}}{2 g}
$$

$$
\text { where } v=\frac{Q_{\text {low }}+Q_{\text {recycle }}}{2 \cdot A_{\text {pipe }}}
$$

$$
=\frac{2500+2500}{2 \cdot \frac{\pi}{4}(0.40)^{2} \cdot(86,400 \mathrm{~s} / \mathrm{d})}=0.173 \mathrm{~m} / \mathrm{s}
$$

$$
h_{L}=(0.3) \cdot \frac{(0.173)^{2}}{2(9.8)}=0.0005 \mathrm{~m}
$$

b) Entrance

$$
h_{L}=(0.5) \cdot \frac{v^{2}}{2 g}
$$

where $v=0.173 \mathrm{~m} / \mathrm{s}$

$$
h_{L}=(0.5) \cdot \frac{(0.173)^{2}}{2(9.8)}=0.0008 \mathrm{~m}
$$

c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.173)^{2}}{2(9.8)}=0.0015 \mathrm{~m}
$$

ii. Friction losses

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g} \text { (Darcy-Weisbach) }
$$

where $v=0.173 \mathrm{~m} / \mathrm{s}$

$$
h_{L}=0.021 \frac{(38)}{(0.40)} \frac{(0.173)^{2}}{2(9.8)}=0.0030 \mathrm{~m}
$$

iii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0005+0.0008+0.0015+0.0030 \\
& =0.0058 \mathrm{~m}
\end{aligned}
$$

c. The liquid level in the aeration tank effluent channel is:
i) At $Q_{\text {peak }}=518.318+0.2079=518.526$
ii) At $Q_{\text {low }}=518.288+0.0058=518.294$
4. Determine liquid level in the aeration tank.
a. Use Francis type weir (contracted, rectangular, sharp-crested) equation solved for H as described in Problem 4-12, Part 4 above.
b. At $Q_{\text {peak: }}$

$$
\begin{aligned}
& H=\left[\frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}+7500 \mathrm{~m}^{3} / \mathrm{d}\right)}{2(86,400 \mathrm{~s} / \mathrm{d}) 1.84(1.4 \mathrm{~m})}\right]^{2 / 3}=0.1367 \mathrm{~m} \\
& \text { recomputing } \mathrm{L}=1.4-0.2(0.1367)=1.373
\end{aligned}
$$

$$
H=\left[\frac{22,500}{2(86,400) 1.84(1.373)}\right]^{2 / 3}=0.1385 \mathrm{~m}
$$

$$
\text { recomputing } L=1.4-0.2(0.1385)=1.372
$$

$$
\mathrm{H}=0.1385 \mathrm{~m}
$$

c. At $\mathrm{Q}_{\mathrm{low}}$:

$$
\begin{aligned}
& H=\left[\frac{\left(2500 \mathrm{~m}^{3} / \mathrm{d}+2500 \mathrm{~m}^{3} / \mathrm{d}\right)}{2(86,400 \mathrm{~s} / \mathrm{d}) 1.84(1.4 \mathrm{~m})}\right]^{2 / 3}=0.0502 \mathrm{~m} \\
& \text { recomputing } \mathrm{L}=1.4-0.2(0.0502)=1.390 \\
& H=\left[\frac{12,000}{2(86,400) 1.84(1.390)}\right]^{2 / 3}=0.0504 \mathrm{~m} \\
& \text { recomputing L }=1.4-0.2(0.0504)=1.390 \\
& H=0.0504 \mathrm{~m}
\end{aligned}
$$

d. The liquid level in the aeration tank is:
i) At $Q_{\text {peak }}=519.10+0.1385=519.239 \mathrm{~m}$
ii) At $Q_{\text {low }}=519.10+0.0504=519.150 \mathrm{~m}$
5. Determine liquid level in the primary clarifier effluent channel.
a. At $Q_{\text {peak: }}$
i. Minor losses
a) $2,90^{\circ}$ elbows

$$
\begin{aligned}
& \begin{array}{l}
h_{L}=(0.3) \cdot \frac{v^{2}}{2 g} \\
\text { where } v \\
\begin{aligned}
& =\frac{Q_{\text {peak }}}{A_{\text {pipe }}} \\
& =\frac{15,000}{2 \cdot(86,400) \frac{\pi}{4}(0.40)^{2}}=0.69 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
h_{L}=(0.3) \cdot \frac{(0.69)^{2}}{2(9.8)}=0.0073 \mathrm{~m}
\end{array}
\end{aligned}
$$

b) Entrance

$$
\mathrm{h}_{\mathrm{L}}=(0.5) \cdot \frac{\mathrm{v}^{2}}{2 \mathrm{~g}}
$$

$$
\text { where } v=0.69 \mathrm{~m} / \mathrm{s}
$$

$$
h_{L}=(0.5) \cdot \frac{(0.69)^{2}}{2(9.8)}=0.0122 \mathrm{~m}
$$

c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.69)^{2}}{2(9.8)}=0.0243 \mathrm{~m}
$$

ii. Friction losses

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{h}_{\mathrm{L}}=\mathrm{f} \frac{\mathrm{~L}}{\mathrm{D}} \frac{\mathrm{v}^{2}}{2 \mathrm{~g}} \text { (Darcy-Weisbach) } \\
\text { where } L=46.5 \mathrm{~m} \\
\quad V=0.69 \mathrm{~m} / \mathrm{s} \\
D=0.40 \mathrm{~m} \\
f
\end{array} \quad \begin{array}{l}
0.021 \text { for } \varepsilon / D=1.25 \times 10^{-3} \\
\quad \text { from Moody diagram }
\end{array} \\
& \mathrm{h}_{\mathrm{L}}=0.021 \frac{(46.5)}{(0.40)} \frac{(0.69)^{2}}{2(9.8)}=0.0594 \mathrm{~m}
\end{aligned}
$$

ii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0073+0.0122+0.0243+0.0594 \\
& =0.1033 \mathrm{~m}
\end{aligned}
$$

b. At $Q_{l o w}$:
i. Minor losses
a) $2,90^{\circ}$ elbows
$h_{L}=(0.3) \cdot \frac{v^{2}}{2 g}$
where $\mathrm{v}=\frac{\mathrm{Q}_{\text {low }}}{\mathrm{A}_{\text {pipe }}}$

$$
\begin{array}{r}
=\frac{2500}{2 \cdot(86,400) \frac{\pi}{4}(0.40)^{2}}=0.12 \mathrm{~m} / \mathrm{s} \\
\mathrm{~h}_{\mathrm{L}}=(0.3) \cdot \frac{(0.12)^{2}}{2(9.8)}=0.0002 \mathrm{~m}
\end{array}
$$

b) Entrance

$$
h_{L}=(0.5) \cdot \frac{v^{2}}{2 g}
$$

$$
\text { where } v=0.12 \mathrm{~m} / \mathrm{s}
$$

$$
h_{L}=(0.5) \cdot \frac{(0.12)^{2}}{2(9.8)}=0.0003 \mathrm{~m}
$$

c) Exit

$$
h_{L}=\frac{v^{2}}{2 g}=\frac{(0.12)^{2}}{2(9.8)}=0.0007 \mathrm{~m}
$$

ii. Friction losses

$$
h_{L}=f \frac{L}{D} \frac{v^{2}}{2 g} \text { (Darcy-Weisbach) }
$$

where $v=0.12 \mathrm{~m} / \mathrm{s}$

$$
h_{L}=0.021 \frac{(46.5)}{(0.40)} \frac{(0.12)^{2}}{2(9.8)}=0.0017 \mathrm{~m}
$$

iii. Total headloss

$$
\begin{aligned}
\text { Total } h_{L} & =0.0002+0.0003+0.0007+0.0017 \\
& =0.0029 \mathrm{~m}
\end{aligned}
$$

c. The liquid level in the primary clarifier effluent channel is:
i) At $Q_{\text {peak }}=519.239+0.1033=519.342 \mathrm{~m}$
ii) At $Q_{\text {low }}=519.150+0.0029=519.123 \mathrm{~m}$
6. Determine liquid level in the primary clarifier.
a. Determine the number of weirs.

No. of weirs $=72$ (from Problem 4-12, Part 6 above)
b. Find the head on the weirs
i. Flow per weir

$$
\begin{aligned}
& \mathrm{Q}_{\text {peak }}=\frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{2(86,400 \mathrm{~s} / \mathrm{d})(72)}=1.206 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{Q}_{\text {low }}=\frac{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)}{2(86,400 \mathrm{~s} / \mathrm{d})(72)}=2.010 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

ii. Head on weir:
g. Compute H for average and peak flow conditions using the vnotch weir equation given in Part 2 above:

$$
\text { At } \begin{aligned}
Q_{\text {peak }} & : H=\left(\frac{Q}{1.38}\right)^{2 / 5} \\
& =\left(\frac{1.206 \times 10^{-3}}{1.38}\right)^{2 / 5}=0.060 \mathrm{~m}
\end{aligned}
$$

$$
\text { At } \mathrm{Q}_{\text {low }}: \mathrm{H}=\left(\frac{\mathrm{Q}}{1.38}\right)^{2 / 5}
$$

$$
=\left(\frac{2.010 \times 10^{-4}}{1.38}\right)^{2 / 5}=0.029 \mathrm{~m}
$$

h. Compute the liquid level in the primary clarifiers:
i) At $Q_{\text {peak }}, E l e v=519.50+0.060=519.560 \mathrm{~m}$
ii) At Qlow, Elev $=519.50+0.029=519.529 \mathrm{~m}$
7. Summary of results

Location along hydraulic profile	Liquid Level Elevation, m	
	$\mathrm{Q}_{\text {peak }}$	$\mathrm{Q}_{\text {low }}$
Primary clarifiers	519.560	519.529
Primary clarifier effluent channel	519.342	519.123
Aeration tank	519.239	519.150
Aeration tank effluent channel	518.526	518.294
Secondary clarifiers	518.318	518.288

PROBLEM 4-14

Problem Statement - See text, page 303

Instructional Guidelines

Before going on the tour, it would be helpful to discuss with the students some things to look for as the tour the plant such as:

1. Obtain information about the treatment process (flowrate, type of treatment, major unit processes, etc.) prior to the visit. If possible, obtain a plant-wide plan drawing and process flow diagram.
2. Identify major equipment driven by electric motors in the treatment plant (see Table 17-2 in Chap. 17)
3. Have the students look at the free fall at the primary and secondary sedimentation tanks and between processes.
4. What type of aeration system is being used? How long has it been used? How often is it cleaned? Has the oxygen transfer efficiency been evaluated?
5. What levels of oxygen are maintained in the process and in the effluent? How is the dissolved oxygen level controlled in the bioreactor? (If possible, ask the plant operator to show the students the SCADA monitor system during the tour and what they look for in the operation of the treatment plant.)
6. If digesters are employed, what is done with the gas? Is the gas used for heating, cogeneration, or flared?
7. Have the digesters been cleaned recently? If so, was it a grit accumulation problem?

5
 PHYSICAL UNIT OPERATIONS

PROBLEM 5-1

Problem Statement - See text, page 448

Solution

Following values were given in the problem statement:
$U_{c}=$ channel velocity $=1 \mathrm{~m} / \mathrm{s}$
BW = bar width $=20 \mathrm{~mm}$
$C S$ = clear spacing $=25 \mathrm{~mm}$
$\Theta=$ screen angle $=50^{\circ}, 55^{\circ}, 60^{\circ}$

Definition Sketch:

$H_{L}=$ headloss
D = water depth
SL = slot length
$\mathrm{U}_{\mathrm{s}}=$ velocity through the screen

Following steps are taken to find the headloss, H_{L}. and velocity, v_{s}

1. Find velocity through screen, v_{s}, for one screen opening.

Water occupying the cross section area of one bar and one opening space, Q, will approach the screen, and pass through the area of one opening. Approaching velocity can be expressed as:
$v_{c}=1 \mathrm{~m} / \mathrm{s}=\frac{(\text { Volume of water passing one opening })}{(\text { Area for one screen bar }+ \text { one opening })}=\frac{Q}{(B W+C S)(D)}$
Through the opening, velocity through the slot can be written as:
$v_{s}=\frac{Q}{(C S)(S L)}$
Solve the two equations for Q to yield:
$v_{c}(B W+C S) D=Q=v_{s}(C S)(S L)$, or
$v_{s}=\frac{(B W+C S) D}{(C S)(S L)} v_{c}$
Given BW $=25 \mathrm{~mm}, \mathrm{CS}=20 \mathrm{~mm}$
$v_{s}=\frac{(20+25) D}{(25) S L} v_{c}$
Where $S L=\frac{D}{(S M) \theta}$
$v_{s}=\frac{45 \mathrm{D}}{(25)\left[\left(\frac{D}{\sin \theta}\right)\right]} v_{c}$
$v_{s}=\frac{45 \sin \theta}{25} v_{c}$, and $v_{c}=1.0 \mathrm{~m} / \mathrm{s}$

For the $\theta=50,55$ and $60^{\circ}, v_{s}$ is calculated (see the following table). As a reference, the result for $\theta=90^{\circ}$ is also shown.

	$\theta,{ }^{\circ}$	$v_{\mathrm{s},} \mathrm{m} / \mathrm{s}$
A	50	1.38
B	55	1.47
C	60	1.56
D	90	1.80

2. Find headloss through screen:

From Eq. 5-1 (page 317),

$$
H_{L}=\frac{1}{C}\left(\frac{v_{s}^{2}-v_{c}^{2}}{2 g}\right)
$$

Where $C=$ discharge coefficient (from table) $=0.7$ (assumed)

$$
H_{L}=\frac{1}{0.7}\left(\frac{v_{s}^{2}-(1.0)^{2}}{(2)(9.81)}\right)
$$

The results are summarized below.

	$\Theta,{ }^{\circ}$	$v_{\mathrm{s},} \mathrm{m} / \mathrm{s}$	$\mathrm{H}_{\mathrm{L}, \mathrm{m}}$
A	50	1.38	0.066
B	55	1.47	0.084
C	60	1.56	0.10
D	90	1.80	0.16

PROBLEM 5-2

Problem Statement - See text, page 448

Solution

Following values were given in the problem statement:
$Q=$ flow $=40,000 \mathrm{~m}^{3} /$ day $=0.463 \mathrm{~m}^{3} / \mathrm{s}$
$v_{c}=$ upstream channel velocity $>0.4 \mathrm{~m} / \mathrm{s}$
$\mathrm{BW}=$ bar width $=12 \mathrm{~mm}=0.012 \mathrm{~m}$
$C S=$ clear spacing $=12 \mathrm{~mm}=0.012 \mathrm{~m}$
$\theta=$ screen angle $=75^{\circ}$

1. Find $H_{L}=$ headloss through clean screen and through 50% clogged screen.

Design Sketch

D = water depth
SL = screen length
a. Find channel dimensions

Assume $v_{c}=0.4 \mathrm{~m} / \mathrm{s}$

$$
Q=v_{c} A
$$

$$
A=\frac{Q}{v_{c}}=\frac{\left(0.463 \mathrm{~m}^{3} / \mathrm{s}\right)}{(0.4 \mathrm{~m} / \mathrm{s})}=1.1574 \mathrm{~m}^{2}
$$

Where $A=$ area of the channel
Assume channel width (w) upstream of the screen $=0.5 \mathrm{~m}$
$D=\frac{1.1574 \mathrm{~m}^{2}}{0.5 \mathrm{~m}}=2.3148 \mathrm{~m}$
b. Find screen length (SL)

$\sin 75^{\circ}=\frac{D}{S L}$
$\mathrm{SL}=\frac{\mathrm{D}}{\sin 75^{\circ}}=\frac{2.3148 \mathrm{~m}}{0.9659}=2.3965 \mathrm{~m}$
c. Find velocity through screen $\left(v_{s}\right)$ for clean screen

The bars are 12 mm wide and the clear spacing between bars is 12
mm . Therefore, the area of flow through the screen, A_{s}, is 50% of the screen area.

$$
\begin{aligned}
& A_{s}=(S L)(w)(0.50)=(2.3965 \mathrm{~m})(0.50 \mathrm{~m})(0.50)=0.5991 \mathrm{~m}^{2} \\
& v_{s}=\frac{\left(0.463 \mathrm{~m}^{3} / \mathrm{s}\right)}{0.5991 \mathrm{~m}^{2}}=0.7727 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

d. Find headloss through clean screen

Equation 5-1 (page 317):

$$
H_{L}=\frac{1}{C}\left(\frac{v_{s}^{2}-v_{C}^{2}}{2 g}\right)
$$

Assume C (for a clean screen) $=0.70$

$$
H_{L}=\frac{1}{0.7}\left[\frac{(0.7727 \mathrm{~m} / \mathrm{s})^{2}-(0.4 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\right]=0.0318 \mathrm{~m}
$$

e. Find headloss through screen that is 50% clogged

Equation 5-1 (page 317)

$$
H_{L}=\frac{1}{C}\left(\frac{v_{s}^{2}-v_{C}^{2}}{2 g}\right)
$$

Assume C for a clogged screen $=0.60$
If the screen is 50% clogged, then the velocity will double. Therefore,

$$
V_{\mathrm{s}}=2(0.7727 \mathrm{~m} / \mathrm{s})=1.5455 \mathrm{~m} / \mathrm{s}
$$

$$
H_{L}=\frac{1}{0.6}\left[\frac{(1.5455 \mathrm{~m} / \mathrm{s})^{2}-(0.4 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\right]=0.1893 \mathrm{~m}
$$

PROBLEM 5-3

Problem Statement - See text, page 448

Solution

1. Compute the Reynolds number $\left(N_{R}\right)$ using Eq. (5-11) in p 337 .
$N_{R}=\frac{D^{2} n \rho}{\mu}$
Required data:
$D=3 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{n}=30 \mathrm{r} / \mathrm{min}=0.5 \mathrm{r} / \mathrm{s} \\
& \rho=995.7 \mathrm{~kg} / \mathrm{m}^{3}(\text { Table C-1) } \\
& \mu=0.798 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}(\text { Table C-1) } \\
& \mathrm{N}_{\mathrm{R}}=\frac{(3 \mathrm{~m})^{2}(0.5 \mathrm{r} / \mathrm{s})\left(995.7 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(0.798 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)}=5.6 \times 10^{6} \quad \text { (turbulent mixing) }
\end{aligned}
$$

2. Compute the power consumption using Eq. (5-9) in p336.

$$
P=N_{P} \rho n^{3} D^{5}
$$

Required data: $\mathrm{N}_{\mathrm{P}}=3.5$ (see Table $5-11$ in p 338).

$$
P=(3.5)\left(995.7 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.5 \mathrm{r} / \mathrm{s})^{3}(3 \mathrm{~m})^{5}=105,855 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}(\mathrm{~W})
$$

PROBLEM 5-4

Problem Statement - See text, page 448

Solution

1. Determine the speed of rotation when the Reynolds number is 100,000 using Eq. (5-11) in p337.

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{R}}=\frac{\mathrm{D}^{2} \mathrm{n} \rho}{\mu} \\
& \mathrm{n}=\frac{\mathrm{N}_{\mathrm{R}} \mu}{\mathrm{D}^{2} \rho}
\end{aligned}
$$

Pertinent data: $D=500 \mathrm{~mm}=0.5 \mathrm{~m}$

$$
\begin{gathered}
\mathrm{N}_{\mathrm{R}}=100,000 \\
\mu=1.307 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}(\text { Table C-1 in Appendix C, p1915) } \\
\rho=999.7 \mathrm{~kg} / \mathrm{m}^{3}(\text { Table C-1 in Appendix C, p1915) } \\
\mathrm{n}=\frac{(100,000)\left(1.307 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)}{(0.5 \mathrm{~m})^{2}\left(999.7 \mathrm{~kg} / \mathrm{m}^{3}\right)}=0.52 \mathrm{r} / \mathrm{s}=31.4 \mathrm{r} / \mathrm{min}
\end{gathered}
$$

2. The Reynolds number is related to both turbulence and velocity. Higher Reynolds numbers are indicative of greater turbulence and velocity. As a general rule, the greater the turbulence and the higher the velocity, the more
efficient the mixing operation will be. However, high Reynolds numbers lead to high power requirements. Rearranging Eq. (5-9) and substituting n to include the Reynolds number yields:
$\mathrm{P}=\mathrm{N}_{\mathrm{P}} \mathrm{pn} \mathrm{n}^{3} \mathrm{D}^{5}$
$\mathrm{n}=\frac{\mathrm{N}_{\mathrm{R}} \mu}{\mathrm{D}^{2} \rho}$
$P=\frac{N_{p} \mu^{3}\left(N_{R}\right)^{3}}{\rho^{2} D}$
As shown, the power varies directly with the cube of the Reynolds number.
3. Determine the required motor size using the rearranged form of Eq. (5-9) derived above and the pertinent data from the problem statement and step 1.
a. Compute theoretical power, first converting newtons to $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& \left(1.307 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)\left[\frac{\left(1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right)}{\mathrm{N}}\right]=1.307 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} \\
P= & \frac{\left[(1.7)\left(1.307 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}\right)^{3}(100,000)^{3}\right]}{\left[\left(999.7 \mathrm{~kg} / \mathrm{m}^{3}\right)^{2}(0.5 \mathrm{~m})\right]} \\
= & 4.44 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}(\mathrm{~W})
\end{aligned}
$$

b. Compute electric motor power requirements
$\mathrm{P}_{\text {motor }}=\mathrm{P} / \mathrm{e}=4.44 \mathrm{~W} / 0.2=22.2 \mathrm{~W}$

PROBLEM 5-5

Problem Statement - See text, page 448

Solution

1. Solve the problem for a plug flow reactor. Let $\mathrm{N}=$ number of particles
a. Write the mass balance equation for a plug flow reactor (PFR).

$$
d V \frac{d N}{d t}=Q N_{o}-Q\left(N_{o}+\frac{d N}{d t} d x\right)+(-k N) d V
$$

assume steady state $\left(\frac{d N}{d t}=0\right)$

$$
0=-\mathrm{QdN}-\mathrm{kN} \mathrm{dV}
$$

b. Solve the mass balance equation for N
$\frac{d N}{N}=\frac{k}{Q} d V$
$\ln \frac{N}{N_{o}}=-k \frac{V}{Q}$
$N=N_{0} e^{-k V / Q}$
let $\mathrm{t}=\mathrm{V} / \mathrm{Q}$
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\mathrm{kt}}$
c. Compute k at $\mathrm{t}=10$
$\ln \frac{N}{N_{0}}=-k \frac{V}{Q}$
$\ln \frac{N}{N_{0}}=-k t$
Data: $\quad \mathrm{N}=3$

$$
N_{0}=10
$$

$$
\mathrm{t}=10 \mathrm{~min}
$$

$\ln \frac{3}{10}=-\mathrm{k}(10)$
$\mathrm{k}=0.12 \mathrm{~min}^{-1}$
d. Compute N at $\mathrm{t}=\mathrm{V} / \mathrm{Q}=5 \mathrm{~min}$
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\mathrm{kt}}$
$\mathrm{N}=10 \mathrm{e}^{0.12(5)}$
$\mathrm{N}=5.49$ particles/unit volume
2. Solve the problem for a batch reactor.
a. Write the mass balance equation for a batch reactor

$$
\begin{aligned}
& \mathrm{V} \frac{\mathrm{dN}}{\mathrm{dt}}=-\mathrm{kNV} \\
& \frac{\mathrm{dN}}{\mathrm{dt}}=-\mathrm{kN}
\end{aligned}
$$

b. Solve the mass balance equation for N .

$$
\begin{aligned}
& \frac{d N}{N}=-k d t \\
& \ln \frac{N}{N_{o}}=-k t \\
& \quad N=N_{0} e^{-k t}
\end{aligned}
$$

C. Compute N at $\mathrm{t}=5 \mathrm{~min}$.
$\mathrm{N}=10 \mathrm{e}^{-0.12(5)}$
$\mathrm{N}=5.49$ particles/unit volume

PROBLEM 5-6

Problem Statement - See text, page 448

Solution

1. Write the mass balance for a complete mix reactor.

$$
\begin{aligned}
& V \frac{d N}{d t}=Q N_{o}-Q N+(-k N) V \\
& \frac{d N}{d t}=\frac{Q}{V}\left(N_{o}\right)-\frac{Q}{V}(N)+(-k N) \\
& \frac{d N}{d t}+N\left(\frac{Q}{V}+k\right)=N_{o} \frac{Q}{V}
\end{aligned}
$$

2. Solve the mass balance equation for N

$$
\frac{d N}{d t}+N\left(\frac{Q}{V}+k\right)=N_{o} \frac{Q}{V}
$$

This is a first-order linear differential equation and can be solved easily using the integrating factor, $e^{(Q / v+k) t .}$
The final result is:
$N=\frac{Q}{V} \frac{N_{0}}{(k+Q / V)}\left[1-e^{-(k+Q / V) t}\right]+N_{0} e^{-(k+Q / v) t}$
3. Determine k at the steady state condition.

Pertinent data:
$t=\infty$
$Q / V=1 / Q=0.1 \mathrm{~min}^{-1}$
$N_{0}=10$
$\mathrm{N}=3$
$\mathrm{N}=0.1 \frac{10}{(\mathrm{k}+0.1)}(1-0)+10(0)$
$N=\frac{1}{(k+0.1)}$
$\mathrm{k}=0.233 \mathrm{~min}^{-1}$
4. Determine N at $\mathrm{t}=5 \mathrm{~min}$
$\mathrm{N}=0.1 \frac{10}{(0.233+0.1)}\left[1-\mathrm{e}^{-(0.233+0.1) 5}\right]+10 \mathrm{e}^{-(0.233+0.1) 5}$
$\mathrm{N}=2.43+1.89=4.32$ particles/unit volume

PROBLEM 5-7

Problem Statement - See text, page 449.
Instructors Note: Assume air is released 0.25 m above the tank bottom.

Solution

1. Find the power requirement, using Eq. (5-3), page 330.
$G=\sqrt{\frac{P}{\mu V}}$
$\mathrm{P}=\mu \mathrm{VG}{ }^{2}$
Pertinent data: μ at $60^{\circ} \mathrm{C}=0.466 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$ (Table C-1)
$\mathrm{G}=60 \mathrm{~s}^{-1}$

$$
\begin{aligned}
V & =200 \mathrm{~m}^{3} \\
P & =\left(0.466 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right)\left(200 \mathrm{~m}^{3}\right)\left(60 \mathrm{~s}^{-1}\right)^{2} \\
& =335.5 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}=0.336 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{s}(\mathrm{~kW})
\end{aligned}
$$

2. Find the required air flowrate using Eq. (5-14), page 343.

$$
\begin{aligned}
& P=p_{a} V_{a} \ln \frac{p_{c}}{p_{a}} \\
& V_{a}=\frac{P}{p_{a} \ln \frac{p_{c}}{p_{a}}}
\end{aligned}
$$

Pertinent data:

$$
\gamma \text { at } 60^{\circ} \mathrm{C}=9.642 \mathrm{kN} / \mathrm{m}^{3} \text { (Table C-1) }
$$

$$
\begin{aligned}
\mathrm{p}_{\mathrm{a}}=\text { atmospheric pressure } & =\left(10.33 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}\right)\left(9.642 \mathrm{kN} / \mathrm{m}^{3}\right) \\
& =99.60 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$$
p_{c}=\left(p_{a}+\text { depth of water above release point }\right) \cdot \mu
$$

$$
=(10.33+3.5) \mathrm{m} \mathrm{H}_{2} \mathrm{O} \times \gamma=\left(13.83 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}\right)\left(9.642 \mathrm{kN} / \mathrm{m}^{3}\right)
$$

$$
=133.35 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
V_{a}=\frac{(0.336 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{s})}{\left(99.60 \mathrm{kN} / \mathrm{m}^{2}\right)\left[\ln \left(\frac{133.35}{99.60}\right)\right]}=0.011 .5 \mathrm{~m}^{3} / \mathrm{s}=0.69 \mathrm{~m}^{3} / \mathrm{min}
$$

PROBLEM 5-8

Problem Statement - See text, page 449

Solution

1. Find the required air flowrate using Eq. (5-14), p. 343.

$$
\begin{aligned}
& P=p_{a} V_{\mathrm{a}} \ln \frac{p_{c}}{p_{a}} \\
& V_{a}=\frac{P}{p_{a} \ln \frac{p_{c}}{p_{a}}}
\end{aligned}
$$

Pertinent data: $\mathrm{P}=8543 \mathrm{~W}=8.543 \mathrm{kN} \cdot \mathrm{m} / \mathrm{s}$

$$
\begin{aligned}
& \gamma \text { at } 15^{\circ} \mathrm{C}=9.798 \mathrm{kN} / \mathrm{m}^{3} \text { (Table C-1 in Appendix C) } \\
& \mathrm{p}_{\mathrm{a}}=\text { atmospheric pressure }\left(10.33 \mathrm{~m} \mathrm{H}_{2} \mathrm{O} \times 9.798 \mathrm{kN} / \mathrm{m}^{3}\right) \\
&=101.21 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{p}_{\mathrm{c}}=\left(\mathrm{p}_{\mathrm{a}}+\text { depth of water above release point }\right) \gamma \\
&=(10.33+3) \mathrm{m} \mathrm{H}_{2} \mathrm{O}=13.33 \mathrm{~m} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \times 9.798 \mathrm{kN} / \mathrm{m}^{3} \\
&=130.61 \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{~V}_{\mathrm{a}}=\frac{(8.543 \mathrm{kN} \cdot \mathrm{~m} / \mathrm{s})}{\left(101.21 \mathrm{kN} / \mathrm{m}^{2}\right)\left[\ln \left(\frac{130.61}{101.21}\right)\right]}=0.331 \mathrm{~m}^{3} / \mathrm{s}=19.86 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

PROBLEM 5-9

Problem Statement - See text, page 449

Solution

1. Derive Stokes' Law by equating Eqs. (5-16) and (5-23).

Note: Laminar flow conditions apply
The gravitational force on a particle is expressed by Eq. (5-16) in p. 346:

$$
F_{G}=\left(\rho_{p}-\rho_{w}\right) g V_{p}
$$

The frictional drag force on a particle as expressed by Eq. (5-23) in p. 346 for laminar flow conditions is:
$F_{D}=3 \pi \mu v_{p} d_{p}$
The drag force is equal to the gravitational force when
$\left(\rho_{s}-\rho\right) g V_{p}=3 \pi \mu v_{p} d_{p}$
But $V_{p}=(1 / 6) \pi d_{p}^{3}$
$\left[\left(\rho_{s}-\rho\right) g V_{p}\right]\left[(1 / 6) \pi d_{p}^{3}=3 \pi \mu v_{p} d_{p}\right.$
$v_{p}=\frac{\left(\rho_{s}-\rho\right) d_{p}^{2}}{18 \mu}$

PROBLEM 5-10

Problem Statement - See text, pages 449

Solution

1. Determine the drag coefficient using Eq. (5-19).

$$
C_{d}=\frac{24}{275}+\frac{3}{\sqrt{275}}+0.34=0.608
$$

2. Determine the particle settling velocity using Eq. (5-18) and assuming the particle is spherical.

$$
\begin{aligned}
& v_{r(t)}=\sqrt{\frac{4 g\left(s g_{p}-1\right) d_{p}}{3 C_{d} \phi}} \\
& v_{r(t)}=\sqrt{\frac{4\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(2.65-1)(1 \mathrm{~mm})\left(1 \mathrm{~m} / 10^{3} \mathrm{~mm}\right)}{(3)(0.604)(1.0)}}=0.19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

PROBLEM 5-11

Problem Statement - See text, page 449

Solution

1. Establish a spreadsheet for determining the final settling velocity. Compute N_{R} using Eq. (5-21) as determined in Step 2 of Example 5-4. Use a sphericity factor of 1.0 for a spherical particle.

$$
\begin{aligned}
N_{R} & =\frac{v_{p} d_{p} \psi}{v}=\frac{(0.224 \mathrm{~m} / \mathrm{s})\left(0.5 \times 10^{-3} \mathrm{~m}\right)(1.0)}{\left(1.003 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)} \\
& =111.7
\end{aligned}
$$

2. Use Eq. $(5-19)$ as shown in Step 3 of Example 5-4 and assume a settling velocity for each iteration to reach closure.
3. Calculate the drag coefficient, C_{d}

$$
\begin{aligned}
C_{d} & =\frac{24}{N_{R}}+\frac{3}{\sqrt{N_{R}}}+0.34=\frac{24}{111.7}+\frac{3}{\sqrt{111.7}}+0.34 \\
& =0.839
\end{aligned}
$$

4. Calculate the particle settling velocity

$$
\begin{aligned}
v_{p} & =\sqrt{\frac{4 g(s g-1) \mathrm{d}}{3 C_{d}}}=\sqrt{\frac{4\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(2.65-1)\left(0.5 \times 10^{-3}\right)}{3 \times 0.839}} \\
& =0.113 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

5. Set up a spreadsheet as follows

v_{p}	N_{R}	$24 / N_{R}$	$\sqrt{N_{R}}$	$3 / \sqrt{N_{R}}$	0.34	C_{d}	$\left(v_{p}\right)^{2}$	v_{p}
0.088	43.868	0.55	6.623	0.45	0.34	1.34	0.00805	0.0897
0.090	44.865	0.53	6.698	0.45	0.34	1.32	0.00816	0.0903

Closure has been achieved.
6. The Reynolds number, N_{R}, is 44.865 and coefficient of drag, C_{d}, is 1.32 .

PROBLEM 5-12

Problem Statement - See text, page 449

Solution

Following conditions are specified in the problem statement:
Peak flow $=40,000 \mathrm{~m}^{3} / \mathrm{d}$ Design SES $=106 \mu \mathrm{~m}$

1. Find size of vortex grit removal units.
a. Find surface loading rate. Use Fig. 5-34(b) to determine surface loading rate for SES $=106 \mu \mathrm{~m}$.

Select surface loading rate $=30 \mathrm{~m}^{3} / \mathrm{h} \cdot \mathrm{m}^{2}$
b. Find area (A) required

$$
\begin{aligned}
& A=\frac{\text { Peak flow }}{\text { Surface loading rate }} \\
& \text { Peak flow }=40,000 \mathrm{~m}^{3} / \mathrm{d}=1667 \mathrm{~m}^{3} / \mathrm{h} \\
& A=\frac{\left(1667 \mathrm{~m}^{3} / \mathrm{h}\right)}{\left(30 \mathrm{~m}^{3} / \mathrm{h}^{2}\right)}=55.5 \mathrm{~m}^{2}
\end{aligned}
$$

In actual practice, it is necessary to review manufacturers' catalog information to determine number of units and model size to provide required settling area.
2. Determine the expected grit removal if the facility is located in an area that is known to have fine grit.

Use Fig. 5-31

The range of particle sizes for various US treatment plants is illustrated on
Figure 5-31. For $106 \mu \mathrm{~m}$ SBS and fine grit (upper limit of range), about 30% of the particles will be $\leq 106 \mu \mathrm{~m}$. Therefore, expected grit removal $=$ ($100-30$) \% = 70%.
3. To achieve 90% removal, find the Design SBS.

Use Fig. 5-31 (see Step 2)
To achieve 90% removal, 10% of the particles must be $\leq 80 \mu \mathrm{~m}$.
4. Find surface loading rate for $\mathrm{SBS}=80 \mu \mathrm{~m}$.

Use Fig 5-34(b)
For SBS $=80 \mu \mathrm{~m}$

Surface loading rate $=20 \mathrm{~m}^{3} / \mathrm{h} \cdot \mathrm{m}^{2}$
5. Fine area required for $\operatorname{SBS}=80 \mu \mathrm{~m}$.

$$
A=\frac{\left(1667 \mathrm{~m}^{3} / \mathrm{h}\right)}{\left(20 \mathrm{~m}^{3} / \mathrm{h}^{\circ} \mathrm{m}^{2}\right)}=83.35 \mathrm{~m}^{2}
$$

To get 90% removal, the surface area has to be increased from $55.5 \mathrm{~m}^{2}$ to $83.35 \mathrm{~m}^{3}$ (50% increase).

PROBLEM 5-13

Problem Statement - See text, page 449

Solution

A variety of solutions are possible. The following data have been assumed (see Table 5-17, page 374).

Detention time at $Q_{\max }=3$ min
Water depth $=4 \mathrm{~m}$
Diffuser submergence $=3 \mathrm{~m}$
Number of chambers = 2 (each channel can service 75% of the peak flow with one channel out of service)

Air supply rate $=0.3 \mathrm{~m}^{3} / \mathrm{m} \bullet \mathrm{min}$ of length
Length to width ratio $=4: 1$

1. Using the data given above, determine the tank dimensions.

$$
\begin{aligned}
& \mathrm{V} / \mathrm{Q}=3 \mathrm{~min} \text { at peak flowrate }\left(20,000 \mathrm{~m}^{3} / \mathrm{d} \text { per channel }\right) \\
& \mathrm{V}=\frac{(3 \mathrm{~min})\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(60 \mathrm{~min} / \mathrm{h})(24 \mathrm{~h} / \mathrm{d})}=41.7 \mathrm{~m}^{3} \\
& \mathrm{~A}_{\mathrm{s}}=\frac{41.7 \mathrm{~m}^{3}}{4 \mathrm{~m}}=10.4 \mathrm{~m}^{2} \\
& \text { Length } \times \text { width }=4 \mathrm{w} \times \mathrm{w}=4 \mathrm{w}^{2}=10.4 \mathrm{~m}^{2} \\
& \text { Width }=1.6 \mathrm{~m} \\
& \text { Length }=6.4 \mathrm{~m}
\end{aligned}
$$

2. Determine the maximum air requirement.

$$
\mathrm{Q}_{\mathrm{air}}=\left(\frac{0.3 \mathrm{~m}^{3}}{\mathrm{~m} \cdot \mathrm{~min}}\right)(6.4 \mathrm{~m})(2 \text { channels })=3.84 \mathrm{~m}^{3} / \mathrm{min}
$$

3. Determine the horsepower requirements. Assume the blower efficiency is 70%. The specific weight of water is $9.81 \mathrm{kN} / \mathrm{m}^{3}\left(9,810 \mathrm{~N} / \mathrm{m}^{3}\right)$ (Appendix C). $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$ or $1 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}$ (Table 2 in Front section) Thus, $1 \mathrm{~kW}=1000 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}$.
$h=0.250 \mathrm{~m}$ (diffusers) +3 m (submergence) $+0.40 \mathrm{~m}=3.65 \mathrm{~m}$
$\mathrm{h}=(3.65 \mathrm{~m})\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right)=35,806 \mathrm{~N} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \text { Power }=\left(\frac{Q_{\text {air }} h}{\text { efficiency }}\right) \\
& \text { Power }=\left\lfloor\frac{\left(3.84 \mathrm{~m}^{3} / \mathrm{min}\right)\left(35,806 \mathrm{~N} / \mathrm{m}^{2}\right)}{(0.70)(60 \mathrm{~s} / \mathrm{min})}\right\rfloor\left(\frac{1 \mathrm{~kW}}{1000 \mathrm{Ngm} / \mathrm{s}}\right)=3.274 \mathrm{~kW}
\end{aligned}
$$

4. Determine the power cost. Assume the electric motor efficiency is 92%.

$$
\text { Power cost }=\left[\frac{(3.724 \mathrm{~kW})(24 \mathrm{~h} / \mathrm{d})}{(0.9)}\right](\$ 0.12 / \mathrm{kWh})=\$ 10.48 / \mathrm{d}
$$

Note: In the above computation, it was assumed that the blower operates at maximum capacity regardless of average flow or peak flow conditions. In small plants, this situation is often the case. Under actual operating
conditions in other plants, the blower capacity is adjusted to maintain an optimum air rate, thus the power consumption may be less than that calculated in the above example.

PROBLEM 5-14

Problem Statement - See text, page 449

Solution

The given data are:
Detention time at $Q_{\max }=3.5 \mathrm{~min}$
Width to depth ratio $=1.5: 1$
Air supply rate $=0.4 \mathrm{~m}^{3} / \mathrm{m} \bullet \mathrm{min}$ of tank length
Water depth $=3 \mathrm{~m}$
Average flowrate $=0.3 \mathrm{~m}^{3} / \mathrm{s}$
Peak flowrate $=1 \mathrm{~m}^{3} / \mathrm{s}$

1. Using the data given above, determine the tank dimensions.
$\mathrm{V} / \mathrm{Q}_{\max }=3.5 \mathrm{~min}$ at peak flow

$$
\begin{aligned}
& V=(3.5 \mathrm{~min})\left(1 \mathrm{~m}^{3} / \mathrm{s}\right)(60 \mathrm{~s} / \mathrm{min})=210 \mathrm{~m}^{3} \\
& \text { Depth }=3 \mathrm{~m} \\
& \text { Width }=1.5 \times 3 \mathrm{~m}=4.5 \mathrm{~m} \\
& \text { Length }=\frac{210 \mathrm{~m}^{3}}{3 \mathrm{~m} \mathrm{x} \mathrm{4m}}=15.6 \mathrm{~m}
\end{aligned}
$$

2. Determine the air requirement assuming $0.4 \mathrm{~m}^{3} / \mathrm{m} \cdot \min$ (see Table $5-17$ on page 374).

$$
\mathrm{Q}_{\mathrm{air}}=\frac{0.4 \mathrm{~m}^{3}}{\mathrm{~m} \cdot \min }(15.6 \mathrm{~m})=6.2 \mathrm{~m}^{3} / \mathrm{min}
$$

PROBLEM 5-15

Problem Statement - See text, page 449

Solution

1. The advantages and disadvantages of an aerated grit chamber as compared to a vortex grit chamber are:

- Air flowrate can be adjusted to optimize grit removal over a wide range of wastewater flowrates
- Grit contains relatively low amounts of organic matter, therefore, the unit does not require an external grit washer
- Aeration may freshen wastewater and improve performance of downstream processes, however, aeration may release volatile organic compounds (VOCs) and odors, thus covering of the tanks may be required.
- Can be used for chemical mixing and flocculation
- No maximum size limit
- Some short circuiting may occur thus requiring installation of internal baffling in the tanks to enhance grit removal

2. The advantages and disadvantages of a vortex grit chamber as compared to an aerated grit chamber are:

- Unit has shorter detention time (30 s), and is compact, therefore, requires less space
- No submerged diffusers or parts that require maintenance
- Turbulence in the vortex may release odors and VOCs, but the area requiring covering is smaller than an aerated grit chamber.
- Lower construction cost
- Proprietary design; deviations from manufacturer's recommended design may void performance guarantee
- Unit does not require an external blower system, but may require an air lift pump to remove grit
- Air lift pumps are often not effective in removing grit from sump
- Lower power consumption as compared to an aerated grit chamber

Reference:,

WEF (1998) Design of Municipal Wastewater Treatment Plants, 4th ed., vol. 2, Water Environment Federation, Alexandria, VA.

PROBLEM 5-16

Problem Statement - See text, page 449

Solution

1. Prepare a computation table to determine the particle distribution in the effluent.

No. of particles in influent	$\mathrm{V}_{\mathrm{avg}}, \mathrm{m} / \mathrm{h}$	$\mathrm{V}_{\mathrm{avg},} / \mathrm{V}_{\mathrm{C}}$	No. of particles removed, $\left(\mathrm{V}_{\mathrm{avg}} / \mathrm{V}_{\mathrm{C}} \times \mathrm{N}_{\mathrm{o}}\right)$	No. of particles in effluent $\left(\mathrm{N}_{\mathrm{o}}-\mathrm{N}\right)$
20	0.25	0.125	2.5	17.5
40	0.75	0.375	15	25
80	1.25	0.625	50	30
120	1.75	0.875	105	15
100	2.25	>1	100	0
70	2.75	>1	70	0
20	3.25	>1	20	0
10	3.75	>1	10	0
$\Sigma=460$			372.5	87.5

2. Determine the removal efficiency.

$$
\text { Percent removal }=\left(\frac{372.5}{460}\right) 100=81.0 \%
$$

3. Plot the particle histogram for the influent and effluent wastewater.

PROBLEM 5-17

Problem Statement - See text, page 450

Solution

1. Determine the removal efficiency for particles with an average settling velocity of $1 \mathrm{~m} / \mathrm{hr}$ and a tray depth of 1 m .
a. The percent removal of the particles above the tray is:

$$
\begin{aligned}
& V_{\text {critical }}=1 \mathrm{~m} / 1 \mathrm{~h}=1 \mathrm{~m} / \mathrm{h} \\
& \% \text { removal }=\frac{V_{\text {solids }}}{V_{\text {critical }}} \times 100=\frac{(1 \mathrm{~m} / \mathrm{h})}{(1 \mathrm{~m} / \mathrm{h})}(100)=100 \%
\end{aligned}
$$

b. The percent removal of the particles below the tray is:
$V_{\text {critical }}=2 \mathrm{~m} / 1 \mathrm{~h}=2 \mathrm{~m} / \mathrm{h}$
$\%$ removal $=\frac{\mathrm{V}_{\text {solids }}}{\mathrm{V}_{\text {critical }}} \times 100=\frac{(1 \mathrm{~m} / \mathrm{h})}{(2 \mathrm{~m} / \mathrm{h})}(100)=50 \%$
c. Assuming all particles are evenly distributed, the overall removal efficiency is:

$$
\% \text { removal }=\frac{(100)(1 \mathrm{~m})+(50)(2 \mathrm{~m})}{3 \mathrm{~m}}=67 \%
$$

2. Determine the effect of tray depth, d, on removal efficiency for particles with an average settling velocity of $1 \mathrm{~m} / \mathrm{h}$.
a. For $d \leq 1 \mathrm{~m}$

$$
\% \text { removal }=\left[(1)\left(\frac{d}{3}\right)+\left(\frac{1}{3-d}\right)\left(\frac{3-d}{3}\right)\right](100)=[(d / 3)+(1 / 3)](100)
$$

b. For $1 \mathrm{~m} \leq \mathrm{d} \leq 2 \mathrm{~m}$

$$
\begin{aligned}
& \text { \%removal }=\left[\left(\frac{1}{d}\right)\left(\frac{d}{3}\right)+\left(\frac{1}{3-d}\right)\left(\frac{3-d}{3}\right)\right](100)=[(1 / 3)+(1 / 3)](100) \\
& =(2 / 3)(100 \%)
\end{aligned}
$$

c. For $2 m \geq d \geq 3 m$

$$
\begin{aligned}
& \text { \% removal }=\left[\left(\frac{1}{d}\right)\left(\frac{d}{3}\right)+(1)\left(\frac{3-d}{3}\right)\right](100)=[(1 / 3)+1-(d / 3)](100) \\
& \quad=[(4-d) / 3](100)
\end{aligned}
$$

The maximum removal efficiency is achieved by placing the tray anywhere between 1 m and 2 m . For particles with settling velocities of $1 \mathrm{~m} / \mathrm{h}, 66.7$ percent removal efficiency is achieved. Therefore, by moving the tray from 1.0 m , the efficiency cannot be improved.
3. Determine the overall efficiency as a function of the depth of the tray for particles with a settling velocity of $0.3 \mathrm{~m} / \mathrm{h}$.
a. For $d \geq 0.3 \mathrm{~m}$

$$
\begin{aligned}
& \text { \% removal }=\left[\left(\frac{1}{d}\right)\left(\frac{d}{3}\right)+\left(\frac{0.3}{3-d}\right)\left(\frac{3-d}{3}\right)\right](100) \\
&=[(d / 3)+(0.3 / 3)](100)=[(d / 3)+0.1](100)
\end{aligned}
$$

b. For $0.3 \mathrm{~m} \geq \mathrm{d} \geq 2.7 \mathrm{~m}$

$$
\begin{aligned}
\% \text { removal } & =\left[\left(\frac{0.3}{d}\right)\left(\frac{d}{3}\right)+\left(\frac{0.3}{3-d}\right)\left(\frac{3-d}{3}\right)\right](100) \\
& =[(0.3 / 3)+(0.3 / 3)](100)=20 \%
\end{aligned}
$$

c. For $2.7 \mathrm{~m} \geq \mathrm{d} \geq 3.0 \mathrm{~m}$

$$
\begin{aligned}
\text { \%removal } & =\left[\left(\frac{0.3}{d}\right)\left(\frac{d}{3}\right)+(1)\left(\frac{3-d}{3}\right)\right](100) \\
= & {[0.1+1-(d / 3)](100)=[1.1-(d / 3)](100) }
\end{aligned}
$$

PROBLEM 5-18

Problem Statement - See text, page 450

Solution

1. Try a settling velocity of $0.085 \mathrm{~m} / \mathrm{s}$ and calculate the Reynolds number. Use the Reynolds number to determine the drag coefficient, and use the drag coefficient in Newton's equation to find the settling velocity.
$N_{R}=\frac{0.85(0.085 \mathrm{~m} / \mathrm{s})\left(0.5 \times 10^{-3} \mathrm{~m}\right)}{\left(1.003 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)}=36.0$
$C_{d}=\frac{24}{36.0}+\frac{3}{\sqrt{36.0}}+0.34=1.507$
$v_{p}=\sqrt{\frac{4\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(2.65-1)\left(0.5 \times 10^{-3} \mathrm{~m}\right)}{3 \times 1.507}}=0.085 \mathrm{~m} / \mathrm{s}$
Closure has been achieved.

PROBLEM 5-19

Problem Statement - See text, page 450

Solution

1. Plot the percent suspended solids removed versus time for each increment of depthas shown below.

2. From the above plot, pick off the data points at intervals of percent removal to create a particle settling curve similar to Fig. 5-234 as shown below.

3. Calculate the detention time for the basin using Eq. (5-26).

Detention time $=\operatorname{depth} / \mathrm{v}_{\mathrm{C}}$
Detention time $=3 \mathrm{~m} /(3 \mathrm{~m} / \mathrm{h})=1 \mathrm{~h}(60 \mathrm{~min})$
5 Determine the efficiency of removal using Eq. (5-32) and data points from the plot in step 2 at $\mathrm{t}=60 \mathrm{~min}$. Set up a table as shown below.
$\frac{\Delta h_{n}}{h_{t}} \times \frac{R_{n}+R_{n+1}}{2}=$ percent removal

$\frac{0.9}{3} \times \frac{100+90}{2}=$	28.5
$\frac{0.4}{3} \times \frac{90+80}{2}=$	11.3
$\frac{1.2}{3} \times \frac{80+70}{2}=$	30.0
Total	69.8

PROBLEM 5-20

Problem Statement - See text, page 450

Solution

1. Assuming water velocity $u=1 \mathrm{~m} / \mathrm{s}$, calculate the settling velocity for countercurrent and cocurrent conditions. As stated in the problem statement, the inclined plates length is 2.0 m , plate specing is 75 mm .
a. Calculate us for countercurrent using Eq. (5-35):

$$
v_{s}=\frac{u q d}{L \cos \theta+d \sin \theta}
$$

For $\theta=40^{\circ}$
$v_{\mathrm{s}}=\frac{(1.0 \mathrm{~m} / \mathrm{s})(75 \mathrm{~mm})\left(1 \mathrm{~m} / 10^{3} \mathrm{~mm}\right)}{(2 \mathrm{~m}) \cos \left(40^{\circ}\right)+(75 \mathrm{~mm})\left(1 \mathrm{~m} / 10^{3} \mathrm{~mm}\right) \sin \left(40^{\circ}\right)}$
$v_{\mathrm{s}}=0.047 \mathrm{~m} / \mathrm{s}$
b. Calculate v_{s} for cocurrent using Eq. (5-38):
$v_{s}=\frac{u^{\circ} d}{L \cos \theta-d \sin \theta}$
For $\theta=40^{\circ}$

$$
v_{\mathrm{s}}=\frac{(1.0 \mathrm{~m} / \mathrm{s})(75 \mathrm{~mm})\left(1 \mathrm{~m} / 10^{3} \mathrm{~mm}\right)}{(2 \mathrm{~m}) \cos \left(40^{\circ}\right)-(75 \mathrm{~mm})\left(1 \mathrm{~m} / 10^{3} \mathrm{~mm}\right) \sin \left(40^{\circ}\right)}
$$

$$
v_{\mathrm{s}}=0.051 \mathrm{~m} / \mathrm{s}
$$

2. Similarly, calculate the settling velocity for 50 and 60 degrees. The results are summarized in the table below. As shown, the cocurrent arrangement results in greater settling velocities.

		Countercurrent flow				Cocurrent flow		
			Inclination angle, ${ }^{\circ}$		Inclination angle, ${ }^{\circ}$			

PROBLEM 5-21

Problem Statement - See text, page 450

Solution

1. Determine the area required for thickening using Eq. (5-41).
a. Determine the value of H_{u}
$H_{u}=\frac{C_{0} H_{0}}{C_{u}}$
$H_{u}=\frac{\left(3600 \mathrm{~g} / \mathrm{m}^{3}\right)(3.0 \mathrm{~m})}{\left(12,000 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.9 \mathrm{~m}$
b. Determine t_{u} from the plot using the procedure described in Example 5-7.

c. Determine the thickening area.

$$
\begin{aligned}
A & =\frac{Q t_{u}}{H_{o}}=\left[\frac{\left(1500 \mathrm{~m}^{3} / \mathrm{d}\right)(24.5 \mathrm{~min})}{(24 \mathrm{~h} / \mathrm{d})(60 \mathrm{~min} / \mathrm{h})(3 \mathrm{~m})}\right] \\
& =8.5 \mathrm{~m}^{2}
\end{aligned}
$$

PROBLEM 5-22

Problem Statement - See text, pages 450

Solution

1. Assumptions and design criteria:
a. Assume primary tank is followed by secondary treatment and waste activated sludge is not returned to primary settIng tank
b. Overflow rate at average flow $=40 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$
2. Determine the required surface area and volume.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{s}}=\frac{(45,000 \text { persons })(400 \mathrm{~L} / \text { capita } \cdot \mathrm{d})\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)}{\left(40 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=450 \mathrm{~m}^{2} \\
& \mathrm{~V}=\frac{(45,000 \text { persons })(400 \mathrm{~L} / \text { capita } \cdot \mathrm{d})\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)(2 \mathrm{~h})}{(24 \mathrm{~h} / \mathrm{d})}=1500 \mathrm{~m}^{3}
\end{aligned}
$$

3. Determine diameter and depth

Diameter $=\sqrt{\frac{450 \mathrm{~m}^{2}}{(\pi / 4)}}=23.94 \mathrm{~m}$
Use a diameter of 24 m
Depth $=\frac{1500 \mathrm{~m}^{3}}{(\pi / 4)(24 \mathrm{~m})^{2}}=3.3 \mathrm{~m}$
Use a depth of 3.5 m
Comment: The depth is within the range of depths (3-4.9 m) given in Table 5-20. Consideration should be given to increasing the depth to $4-4.5 \mathrm{~m}$ if the tank is used for thickening primary sludge.

PROBLEM 5-23

Problem Statement - See text, page 450-451

Solution

1. Determine the horizontal settling velocity in the tank.

$$
\begin{aligned}
V_{\text {horiz }} & =\frac{Q}{A_{\text {horiz }}}=\frac{(\text { Overflow rate })\left(A_{s}\right)}{A_{\text {horiz }}}=\frac{\left(30 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(6 \mathrm{~m} \times 15 \mathrm{~m})}{(2.75 \mathrm{~m} \times 6 \mathrm{~m})(24 \mathrm{~h} / \mathrm{d})(3600 \mathrm{~s} / \mathrm{h})} \\
& =0.0019 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. Determine the scour velocity V_{H} using Eq. (5-46) on page 396.

$$
\begin{aligned}
& V_{H}=\left[\frac{8 k(s-1) g d}{f}\right]^{1 / 2} \\
& V_{H}=\left[\frac{(8)(0.04)(2.5-1)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.1 \mathrm{~mm})}{(0.03)\left(10^{3} \mathrm{~mm} / 1 \mathrm{~m}\right)}\right]^{1 / 2}=0.125 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Because the horizontal velocity in the tank is less than the scour velocity, the particles will not be scoured.

PROBLEM 5-24

Problem Statement - See text, page 451

Solution

1. Determine the percentage increase in hydraulic loading.

$$
\text { Increase, } \%=\left[\frac{\left(200 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}\right](100)=1 \%
$$

2. Determine the percentage increase in organic loading.

$$
\text { Increase, } \%=\left[\frac{\left(200 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(350 \mathrm{~g} / \mathrm{m}^{3}\right)}\right](100)=5.7 \%
$$

3. Discuss the effect of the incremental loadings on the performance of the settling facilities.

The design overflow rate of $32 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot d$ specified in the problem is at the upper end of the design overflow rate specified in Table 5-19 for primary settling with waste sludge return at the average flowrate. The increase in hydraulic loading of 1 percent resulting from the return sludge flow is small and in itself is not significant. The overflow rate at peak hourly flow should be checked to ensure adequate settling occurs.

An additional piece of data given in the problem is the 2.8 h detention time in the clarifier, for the average flowrate. The detention time is longer than the typical value of 2.0 h given in Table 5-19. The value of the detention time in this problem is that additional clarifier depth is provided. The increased depth will provide an increased safety factor in short circuiting and sludge blanket carryover. Based on the information in the example, the probable effect on primary clarifier performance of adding the return waste activated sludge is negligible during average flow periods. During peak hourly flows, some increase in solids carryover from the primary clarifier might be expected.

In actuality, if the waste activated sludge has poor settling characteristics, performance of the primary clarifier may suffer at average flows as well as during the peak flow periods. The addition of a baffle as shown on Fig. 8-56 may retard the carryover of waste activated sludge solids. A disadvantage of not providing separate thickening for waste activated sludge is the lack of
control for managing the sludge during upset or poor performance conditions.

PROBLEM 5-25

Problem Statement - See text, page 451

Instructional Guidelines

The purpose of this problem is two-fold: (1) to familiarize students with some of the additional sources of information that are available and (2) to provide insight into the range of values that will be found in the literature for a given design parameter. It will be helpful to the students if some of the standard reference publications, especially those from the Water Environment Federation, are made available or placed on reserve in the library.

PROBLEM 5-26

Problem Statement - See text, page 451

Solution

1. The advantages of circular primary sedimentation tanks are:

- More economical to construct than rectangular tanks where site constraints are not a problem
- Simplest mechanical equipment for sludge and scum removal
- Collector equipment requires less maintenance than chain-and-flight mechanisms
- Center flocculation compartment can be incorporated if combined flocculation-clarification feature is required
- Less sensitive to rag accumulations on collector mechanisms
- Less sensitive to flowrate surges provided tank inlet is properly baffled

2. The advantages of rectangular primary sedimentation tanks are:

- Less space (area) required when multiple units are used
- On large installations, common-wall construction can be used that saves construction costs
- Common pipe galleries can be used that facilitate pipe installation and equipment maintenance
- Longer travel distance for settling to occur
- Performance less affected by high winds
- Covering easier if required for odor control or VOC containment

References

Examples of references used are listed below.
AWWA/ASCE (2012): Water Treatment Plant Design, 5th ed., American Water Works Association/American Society of Civil Engineers McGraw-Hill, New York.
Parker, D.S., M. Sequer, M. Hetherington, A.Z. Malik, D. Robison, E.J. Wahlberg, J. Wang (2000) "Assessment and Optimization of a Chemically Enhanced Primary Treatment System," Proceedings of the WEF 73rd ACE, Anaheim, CA.

WEF (2005) Clarifier Design, Manual of Practice FD-8, 2nd ed., Water Environment Federation, Alexandria, VA.

WEF (2009) Design of Municipal Wastewater Treatment Plants, 5th ed., WEF Manual of Practice No. 8, ASCE Manual and Report on Engineering Practice No. 76, Water Environment Federation, Alexandria, VA.

WEF/IWA (2003) Wastewater Treatment Plant Design, Student Workbook, Water Environment Federation, Alexandria, VA.

PROBLEM 5-27

Problem Statement - See text, page 451
Instructors Note: There are many possible solutions to this problem; a range of typical values is presented below. The student should be advised that other reference sources would have to be consulted, as some of the required information cannot be found in this text.

Problem Analysis

	Operation		
Parameter	Unit	Sedimentation	Dissolved air flotation

Detention time		$1-3 \mathrm{~h}$	$10-40 \mathrm{~min}$
Surface loading,	$\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$	$25-30$	$60-240$
Removal efficiency			
BOD	$\%$	$25-40$	$20-35$
TSS	$\%$	$40-60$	$40-60$
Power input,	$\mathrm{kWh} / 10^{3} \mathrm{~m}^{3} \cdot \mathrm{~d}$	$0.35-0.70$	$2.1-3.5$
Application		Removal of settleable solids	Removal of finely divided suspended solids, oil and grease, and scum

PROBLEM 5-28

Problem Statement - See text, page 451
Instructors Note: The detailed solution is provided for mixed liquor. Values calculated for settled activated sludge and primary sludge with activated sludge are summarized in the table.

Solution

1. Using Eq. (5-47) compute required pressure. Assume a typical fraction of air dissolved, $f=0.5$. Air solubility at temperature $=20^{\circ} \mathrm{C}$ is $18.7 \mathrm{mg} / \mathrm{L}$ (see page 407).
$\frac{A}{S}=\frac{(1.3)\left[S_{a}(f \circ P-1)\right]}{S_{a}}$
$0.02=\frac{(1.3 \times 18.7 \mathrm{~mL} / \mathrm{L})[0.5(\mathrm{P}-1)]}{(2500 \mathrm{mg} / \mathrm{L})}$
$P=6.1 \mathrm{~atm}$
Gauge Pressure: $P=6.1 \mathrm{~atm}=\frac{\rho+101.35}{101.35}$
$\rho=518 \mathrm{kPa}$
2. Determine the required surface area.

$$
A=\frac{\left(1200 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)}{\left(10 \mathrm{~L} / \mathrm{m}^{2} \mathrm{~min}\right)(1440 \mathrm{~min} / \mathrm{d})}=83.3 \mathrm{~m}^{2}
$$

3. Check the solids loading rate:

Typical range is 1.2 to $3.0 \rightarrow \mathrm{OK}$

Item	Unit	Data Set		
		1	2	3
		Mixed liquor	Settled activated sludge	Primary + activated sludge
Solids concentration	mg / L, \% solids	2500	0.75	1.00
Optimum A/S Ratio	ratio	0.02	0.03	0.03
Temperature	${ }^{\circ} \mathrm{C}$	20	20	20
Surface loading rate	$\mathrm{L} / \mathrm{m}^{2} \cdot \mathrm{~min}$	10	15	8
Flow rate	$\mathrm{m}^{3} / \mathrm{d}$	1200	400	800
Fraction of saturation assumed		0.5	0.5	0.5
Solution (See Example 5-11)				
Required pressure, P	atm	6.11	20.51	26.68
Gage pressure, p	kPa	518	1977	2603
Gage pressure, p	$\mathrm{lb} / \mathrm{in} .{ }^{2}$	75.2	286.8	377.5
Required surface area, A	m^{2}	83.3	18.5	69.4
Solids loading rate, SLR	$\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~d}$	36	162	115
Solids loading rate, SLR	$\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$	1.5	6.75	4.8
Typical SLR (Table 14-20)	$\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$	1.2-3.0	2.4-4.0	3.0-6.0
Check the loading rate		OK!	Too high, consider chemical addition	OK!

PROBLEM 5-29

Problem Statement - See text, page 451

Solution

1. Determine K_{L} and C_{S} at $24^{\circ} \mathrm{C}$. To determine K_{L} a by graphical analysis, rearrange Eq. (5-61) in a linear form. Eq. (5-61) is equivalent to Eq. (5-71), except the oxygen uptake term r_{M} is zero.

$$
\begin{aligned}
& r_{c}=\frac{d C}{d t}=K_{L} a\left(C_{s}-C\right) \\
& \frac{d C}{d t}=-K_{L} a(C)+K_{L} a\left(C_{s}\right)
\end{aligned}
$$

2. Plot $\mathrm{dC} / \mathrm{dt}$ versus C

The slope is equal to -KLa, so
$-\mathrm{K}_{\mathrm{L}} \mathrm{a}=\frac{-5.8}{6}, \mathrm{~K}_{\mathrm{L}} \mathrm{a}=0.97 \mathrm{~h}^{-1}$
The y -intercept is equal to $\mathrm{KLa}\left(\mathrm{C}_{\mathrm{S}}\right)$, Thus C_{s}
$C_{s}=\frac{9.7}{0.97}=10.0 \mathrm{mg} / \mathrm{L}$ at $24^{\circ} \mathrm{C}$
C_{s} is the equilibrium dissolved-oxygen concentration in the test tank.
2. Determine K_{La} at $20^{\circ} \mathrm{C}$. Use Eq. (5-74)
$\left(K_{L} a\right)_{T}=\left(K_{L} a\right)_{20^{\circ} \mathrm{C}} \theta^{\top-20^{\circ} \mathrm{C}}$
$\mathrm{K}_{\mathrm{L}} \mathrm{a}_{20^{\circ} \mathrm{C}}=0.91 \mathrm{~h}^{-1}$

PROBLEM 5-30

Problem Statement - See text, page 452

Solution

1. The oxygen transfer efficiency is the amount of oxygen transferred divided by the amount of oxygen delivered to the system. At $\mathrm{T}=20^{\circ} \mathrm{C}$ and $\mathrm{C}=0$, the oxygen transfer rate is at its maximum.
$r_{C}=\frac{d C}{d t}=K_{L} a\left(C_{S}-C\right)=K_{L} a\left(C_{S}\right)$
The saturation concentration of oxygen in water at $20^{\circ} \mathrm{C}$ and 1 atmosphere can be found in Appendix D.
$C_{s}=9.08 \mathrm{mg} / \mathrm{L}$
The maximum rate of oxygen transfer, then, is
$r_{c}=\frac{d C}{d t}=K_{L} a\left(C_{s}\right)=(0.91 / \mathrm{h})(9.08 \mathrm{mg} / \mathrm{L} \cdot \mathrm{h})$
2. The mass of oxygen delivered can be calculated by using the ideal gas law.

Mass O_{2} transfered $=\left(\frac{2 \mathrm{~m}^{3}}{\mathrm{~min}}\right)(0.21)\left(\frac{1 \text { mole }}{22.4 \mathrm{~L}}\right)\left(\frac{32 \mathrm{~g}}{\mathrm{~mole}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)=600 \mathrm{~g} / \mathrm{min}$
3. For a volume of $100 \mathrm{~m}^{3}$ and a flowrate of $2 \mathrm{~m}^{3} / \mathrm{min}$, the maximum oxygen-transfer efficiency can be determined using the following expression derived in Example 5-15:
$\mathrm{E}=\frac{(\mathrm{dm} / \mathrm{dt})_{20^{\circ} \mathrm{C}, \mathrm{C}=0}}{\mathrm{M}}$
where $\quad E=o x y g e n$ transfer efficiency
$(\mathrm{dm} / \mathrm{dt}) 20^{\circ} \mathrm{C}, \mathrm{C}=0=0 x y g e n-$ solution rate at $20^{\circ} \mathrm{C}$ and zero dissolved oxygen

$$
M=\text { mass rate at which oxygen is introduced }
$$

Translating the above equation into practical terms yields
$E=\frac{V\left(K_{L} a\right)\left(C_{S}-C\right)}{\left(Q_{\text {air }}\right)\left(\rho_{\text {air }}\right)(0.23)}$
The pertinent data are:
$V=100 \mathrm{~m}^{3}$
$\mathrm{K} \mathrm{La}=0.91 / \mathrm{h}$ at $20^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{s}}=9.08 \mathrm{mg} / \mathrm{L}$
$Q_{\text {air }}=2 \mathrm{~m}^{3} / \mathrm{min}$
$\rho_{\text {air }}=1.2047 \mathrm{~g} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$ and 760 mm Hg
$\mathrm{E}, \%=\frac{\left(100 \mathrm{~m}^{3}\right)(0.91 / \mathrm{h})(9.08 \mathrm{mg} / \mathrm{L})(100)}{\left(2 \mathrm{~m}^{3} / \mathrm{min}\right)(1.2047 \mathrm{~g} / \mathrm{L})(0.23)\left(10^{3} \mathrm{mg} / \mathrm{g}\right)(60 \mathrm{~min} / \mathrm{h})}=2.49 \%$

PROBLEM 5-31

Problem Statement - See text, page 452

Solution

1. Use the equation developed in Example 5-15.

$$
\mathrm{Q}_{\mathrm{a}}=3.53 \times 10^{-3} \frac{\mathrm{Q}\left(\mathrm{C}_{\mathrm{s}}\right)_{20^{\circ} \mathrm{C}}}{\mathrm{E}(1.024)^{\mathrm{T}-20)}}\left[\ln \left(\frac{\mathrm{C}_{\mathrm{s}}-\mathrm{C}}{\mathrm{C}_{\mathrm{s}}-\mathrm{C}_{0}}\right)\right]
$$

where:
$\mathrm{Q}_{\mathrm{a}}=$ required air flowrate, $\mathrm{m}^{3} / \mathrm{s}$
$Q=$ wastewater flowrate, $\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{C}_{\mathrm{s}}=$ saturation concentration of oxygen at $20^{\circ} \mathrm{C}, \mathrm{g} / \mathrm{m}^{3}$
$C=$ initial dissolved oxygen concentration, $\mathrm{g} / \mathrm{m}^{3}$
$\mathrm{C}_{0}=$ dissolved oxygen concentration at outlet, $\mathrm{g} / \mathrm{m}^{3}$
$\mathrm{E}=0 \times y g e n$ transfer efficiency
$\mathrm{T}=$ water temperature, ${ }^{\circ} \mathrm{C}$
2. Determine the required flowrate at $15^{\circ} \mathrm{C}$.

From Appendix D , the saturation concentration of oxygen in water at 1 atm is $9.08 \mathrm{mg} / \mathrm{L}$ at $20^{\circ} \mathrm{C}, 10.07 \mathrm{mg} / \mathrm{L}$ at $15^{\circ} \mathrm{C}$, and $8.24 \mathrm{mg} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$.

Other pertinent data are:
$\mathrm{Q}=20,000 \mathrm{~m}^{3} / \mathrm{d}=13.89 \mathrm{~m}^{3} / \mathrm{min}$
$\mathrm{E}=0.06$
$Q_{\mathrm{a}}=3.53 \times 10^{-3} \frac{\left(13.89 \mathrm{~m}^{3} / \mathrm{min}\right)\left(9.08 \mathrm{~g} / \mathrm{m}^{3}\right)}{0.06(1.024)^{(15-20)}}\left[\ln \left(\frac{10.07-0}{10.07-4.0}\right)\right]=4.22 \mathrm{~m}^{3} / \mathrm{min}$
3. The required flowrate at $25^{\circ} \mathrm{C}$ is:

$$
\mathrm{Q}_{\mathrm{a}}=3.53 \times 10^{-3} \frac{\left(13.89 \mathrm{~m}^{3} / \mathrm{min}\right)\left(9.08 \mathrm{~g} / \mathrm{m}^{3}\right)}{0.06(1.024)^{(25-20)}}\left[\ln \left(\frac{8.24-0}{8.24-4.0}\right)\right]=4.35 \mathrm{~m}^{3} / \mathrm{min}
$$

PROBLEM 5-32

Problem Statement - See text, page 452

Solution

1. Determine the actual oxygen transfer rate under field conditions using Eq.

$$
\begin{equation*}
\operatorname{AOTR}=\operatorname{SOTR}\left(\frac{\beta \mathrm{C}_{\overline{\mathrm{s}}, \mathrm{~T}, \mathrm{H}^{-}} \mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{s}, 20}}\right)\left(1.024^{\mathrm{T}-20}\right)(\alpha)(\mathrm{F}) \tag{5-70}
\end{equation*}
$$

Neglecting the biological oxygen uptake, the average dissolved oxygen saturation concentration in clean water in aeration tank at temperature T and altitude H can be estimated using the following expression.

$$
\mathrm{C}_{\overline{\mathrm{s}}, \mathrm{~T}, \mathrm{H}}=\left(\mathrm{C}_{\mathrm{s}, \mathrm{~T}, \mathrm{H}}\right)\left(\frac{\mathrm{P}_{\mathrm{d}}+\mathrm{P}_{\mathrm{w}, \text { mid depth }}}{\mathrm{P}_{\mathrm{atm}, \mathrm{H}}}\right)
$$

From Appendix D, the saturation concentration of oxygen in water at 1 atm is $9.08 \mathrm{mg} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$. One atmosphere of pressure is equal to 10.333 m of water (see inside of back cover). Thus, the saturation concentration at the tank mid depth is:

$$
\mathrm{C}_{\overline{\mathrm{s}}, \mathrm{~T}, \mathrm{H}}=(9.08 \mathrm{mg} / \mathrm{L})\left[\frac{10.333 \mathrm{~m}+0.5(4.5 \mathrm{~m})}{10.333 \mathrm{~m}}\right]=11.06 \mathrm{mg} / \mathrm{L}
$$

2. Determine the standard oxygen transfer rate for the ceramic domes $(\alpha=$ 0.64):

Assume $\beta=0.95, C_{L}=2.0 \mathrm{mg} / \mathrm{L}$, and $F=1.0$.
$7000 \mathrm{~kg} / \mathrm{d}=\operatorname{SOTR}\left(\frac{0.95(11.06)-2.0}{9.08}\right)\left(1.024^{20-20}\right)(0.64)(1)$
SOTR $=11,674 \mathrm{~kg} / \mathrm{d}$
3. Determine the standard oxygen transfer rate for the non porous diffusers (α $=0.75$):
Assume $\beta=0.95, C_{L}=2.0 \mathrm{mg} / \mathrm{L}$, and $F=1.0$.
$7000 \mathrm{~kg} / \mathrm{d}=\operatorname{SOTR}\left(\frac{0.95(11.06)-2.0}{9.08}\right)\left(1.024^{20-20}\right)(0.75)(1)$
SOTR $=9,962 \mathrm{~kg} / \mathrm{d}$
4. Estimate the air required.

From Table 5-28, use the following oxygen transfer efficiency values
Ceramic domes (grid pattern) $=\quad 27 \%$
Nonporous diffusers (dual spiral roll) $=12 \%$
From Appendix B, the density of air at $20^{\circ} \mathrm{C}$ and 1.0 atmosphere equals $1.204 \mathrm{~g} / \mathrm{L}$. Also air contains 23 percent oxygen by mass.
a. Air requirement for ceramic domes

$$
\text { Air required }=\frac{(11,674 \mathrm{~kg} / \mathrm{d})}{\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.23)(0.27)}=156,135 \mathrm{~m}^{3} / \mathrm{d}
$$

b. Air requirement for nonporous diffusers

$$
\text { Air required }=\frac{(9,962 \mathrm{~kg} / \mathrm{d})}{\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.23)(0.12)}=299,786 \mathrm{~m}^{3} / \mathrm{d}
$$

PROBLEM 5-33

Problem Statement - See text, page 452

Solution

1. Determine oxygen saturation concentration at mid-depth for winter conditions.

From Appendix D, the saturation concentration of oxygen in water at 1 atm is $11.28 \mathrm{mg} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$. One atmosphere of pressure is equal to 10.333 m of water (see inside of back cover). Thus the saturation concentration at the tank mid-depth is:

$$
\mathrm{C}_{\overline{\mathrm{s}}, \mathrm{~T}, \mathrm{H}}=(11.28 \mathrm{mg} / \mathrm{L})\left[\frac{10.333 \mathrm{~m}+0.5(4.5 \mathrm{~m})}{10.333 \mathrm{~m}}\right]=13.74 \mathrm{mg} / \mathrm{L}
$$

2. Determine the standard oxygen transfer rate for the ceramic domes $(\alpha=$ 0.64):

Assume $\beta=0.95, C_{L}=2.0 \mathrm{mg} / \mathrm{L}$, and $F=1.0$.
$7000 \mathrm{~kg} / \mathrm{d}=\operatorname{SOTR}\left(\frac{0.95(13.74)-2.0}{9.08}\right)\left(1.024^{20-20}\right)(0.64)(1)$
SOTR $=8,985 \mathrm{~kg} / \mathrm{d}$
3. Determine the standard oxygen transfer rate for the non porous diffusers (\square $=0.75$):

Assume $\beta=0.95, C_{L}=2.0 \mathrm{mg} / \mathrm{L}$, and $F=1.0$.
$7000 \mathrm{~kg} / \mathrm{d}=\operatorname{SOTR}\left[\frac{0.95(13.74)-2.0}{9.08}\right]\left(1.024^{20-20}\right)(0.75)(1)$
SOTR $=7,667 \mathrm{~kg} / \mathrm{d}$
4. Estimate the air required.

From Table 5-28, use the following oxygen transfer efficiency values
Ceramic domes (grid pattern) $=\quad 27 \%$
Nonporous diffusers (dual spiral roll) $=12 \%$
From Appendix B, the density of air at $10^{\circ} \mathrm{C}$ and 1.0 atmosphere is:

$$
\rho_{\mathrm{a}, 20^{\circ} \mathrm{C}}=\frac{\left(1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)(28.97 \mathrm{~kg} / \mathrm{kg} \text { mole })}{=[8314 \mathrm{Nm} /(\mathrm{kg} \mathrm{~mole} \text { air }) \cdot \mathrm{K}][(273.15+10) \mathrm{K}]}=1.247 \mathrm{~kg} / \mathrm{m}^{3}
$$

a. Air requirement for ceramic domes

$$
\text { Air required }=\frac{(8985 \mathrm{~kg} / \mathrm{d})}{\left(1.247 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.23)(0.27)}=116,027 \mathrm{~m}^{3} / \mathrm{d}
$$

b. Air requirement for nonporous diffusers

$$
\text { Air required }=\frac{(7667 \mathrm{~kg} / \mathrm{d})}{\left(1.247 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.23)(0.12)}=222,767 \mathrm{~m}^{3} / \mathrm{d}
$$

5. Summer/winter operation

Because there is about a 20 percent difference between the summer and winter air requirements, four blowers and a standby could used. During the winter operation, only three of the blowers would be used.

6

CHEMICAL UNIT PROCESSES

PROBLEM
 6-1

Problem Statement - See text, page 544

Solution

1. Determine the minimum alkalinity required for a ferrous sulfate dose of 25 $\mathrm{g} / \mathrm{m}^{3}$ using Eq. (6-12).
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$
$278 \quad 100$ as $\mathrm{CaCO}_{3} 178$
Required alkalinity as CaCO_{3}
$=\frac{100}{278} \times 25 \mathrm{~g} / \mathrm{m}^{3}=9.0 \mathrm{~g} / \mathrm{m}^{3}$
2. Determine the amount of lime required as CaO using Eq. (6-14).
$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
1782×56 as $\mathrm{CaO} \quad 89.9$
Required lime as $\mathrm{CaO}=\frac{178}{278} \times\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{2 \times 56}{178}\right)=10.1 \mathrm{~g} / \mathrm{m}^{3}$
3. Determine the amount of dissolved oxygen required using Eq. (6-15).
$4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 4 \mathrm{Fe}(\mathrm{OH})_{3}$
$4 \times 89.9 \quad 32 \quad 2 \times 18$
Required DO $=\frac{89.9}{278} \times\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{32}{4 \times 89.9}\right)=0.72 \mathrm{~g} / \mathrm{m}^{3}$

PROBLEM 6-2

Problem Statement - See text, page 544
Instructors Note: As a practical matter in discussing precipitation in wastewater it should be noted that about $15 \mathrm{~g} / \mathrm{m}^{3}$ of CaCO_{3} will remain in solution to satisfy the solubility product for CaCO_{3}. It should also be noted that the theoretical value calcium in solution computed using the solubility product given in Table 621 will be considerably lower.

Solution

1. Determine the amount of lime required as CaO for a ferrous sulfate dose of $30 \mathrm{~g} / \mathrm{m}^{3}$ using Eqs. (6-12) and (6-14).
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$
$278 \quad 100$ as $\mathrm{CaCO}_{3} \quad 178$
$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
1782×56 as $\mathrm{CaO} \quad 89.9$
Required lime as CaO (based on a $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ dose of $30 \mathrm{~g} / \mathrm{m}^{3}$) $=$

$$
=\left[\frac{(178 \mathrm{~g} / \text { mole })}{(278 \mathrm{~g} / \text { mole })}\right]\left[\frac{2(56 \mathrm{~g} / \text { mole })}{(178 \mathrm{~g} / \text { mole })}\right]\left(30 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)=12.1 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
$$

2. Determine the amount of dissolved oxygen required using Eq. (6-15).
$4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 4 \mathrm{Fe}(\mathrm{OH})_{3}$

$$
4 \times 89.9 \quad 32 \quad 2 \times 18
$$

Required DO $=\left[\frac{(89.9 \mathrm{~g} / \text { mole })}{(278 \mathrm{~g} / \text { mole })}\right]\left[\frac{(32 \mathrm{~g} / \mathrm{mole})}{4(89.9 \mathrm{~g} / \mathrm{mole})}\right]\left(30 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)$
$=0.9 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
3. Determine the amount of sludge produced per $10^{3} \mathrm{~m}^{3}$.
a. Determine the amount of $\mathrm{Fe}(\mathrm{OH})_{3}$ formed using Eqs. (6-12), (6-14), and (6-15).

$$
\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

$178 \quad 2 \times 56$ as $\mathrm{CaO} \quad 89.9$

$$
4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 4 \mathrm{Fe}(\mathrm{OH})_{3}
$$

4×89.9
4×106.9
Amount of $\mathrm{Fe}(\mathrm{OH})_{3}$ formed $=$

$$
\begin{aligned}
& =\left[\frac{4(106.9 \mathrm{~g} / \text { mole })}{4(89.9 \mathrm{~g} / \text { mole })}\right]\left[\frac{(89.9 \mathrm{~g} / \text { mole })}{(178 \mathrm{~g} / \text { mole })}\right]\left[\frac{(178 \mathrm{~g} / \text { mole })}{(278 \mathrm{~g} / \text { mole })}\right]\left(30 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right) \\
& =11.5 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
\end{aligned}
$$

b. Determine the amount of CaCO_{3} formed.

$$
\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

1782×56 as $\mathrm{CaO} \quad 89.9 \quad 2 \times 100$

Amount of CaCO_{3} formed $=$

$$
=\left[\frac{2(100 \mathrm{~g} / \mathrm{mole})}{(178 \mathrm{~g} / \mathrm{mole})}\right]\left[\frac{(178 \mathrm{~g} / \mathrm{mole})}{(278 \mathrm{~g} / \mathrm{mole})}\right]\left(30 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)=21.6 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
$$

Assume that about $15 \mathrm{~g} / \mathrm{m}^{3}$ of CaCO_{3} will remain in solution to satisfy the solubility product for CaCO_{3}. It should be noted that the theoretical value computed for calcium using the solubility product given in Table 621 will be considerably lower.
c. Determine the total amount of sludge produced

Sludge produced $=\mathrm{Fe}(\mathrm{OH})_{3}+$ excess CaCO_{3}
Sludge produced $=[11.5+(21.6-15)] \mathrm{kg} / 10^{3} \mathrm{~m}^{3}=18.1 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
4. Determine the amount of alum needed (X) to obtain this same quantity of sludge using Eq. (6-9), assuming that $\mathrm{Al}(\mathrm{OH})_{3}$ is the precipitate formed.
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows 2 \mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{CO}_{2}+3 \mathrm{CaSO}_{4}+18 \mathrm{H}_{2} \mathrm{O}$
$666.5 \quad 3 \times 100$ as $\mathrm{CaCO}_{3} \quad 2 \times 78$
$\left[\frac{2(78 \mathrm{~g} / \mathrm{mole})}{(666.5 \mathrm{~g} / \mathrm{mole})}\right]\left(\mathrm{X} \mathrm{kg} / 10^{3} \mathrm{~m}^{3}\right)=18.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
$X \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}=\left(18.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)\left[\frac{(666.5 \mathrm{~g} / \text { mole })}{2(78 \mathrm{~g} / \mathrm{mole})}\right]$
Alum required $=76.9 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$

PROBLEM 6-3

Problem Statement - See text, page 544

Solution - Part a

1. Determine the amount of $\mathrm{Al}(\mathrm{OH})_{2}$ sludge produced for an alum dose of 50 $\mathrm{kg} / 4000 \mathrm{~m}^{3}\left(=12.5 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)$ using Eq. (6-9)

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows 2 \mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{CO}_{2}+3 \mathrm{CaSO}_{4}+18 \mathrm{H}_{2} \mathrm{O}
$$

$$
666.5 \quad 3 \times 100 \text { as } \mathrm{CaCO}_{3} \quad 2 \times 78
$$

$\mathrm{Al}(\mathrm{OH})_{3}$ sludge produced $=\left[\frac{2(78 \mathrm{~g} / \text { mole })}{(666.5 \mathrm{~g} / \mathrm{mole})}\right]\left[\frac{\left(12.5 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}\right]$

$$
=2.9 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
$$

Solution - Part b

1. Determine the amount of $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}$ formed using Eq. (6-12) assuming a dose of $50 \mathrm{~kg} / 4000 \mathrm{~m}^{3}\left(=12.5 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)$ of ferrous sulfate and lime
$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows \mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{CaSO}_{4}+7 \mathrm{H}_{2} \mathrm{O}$
$278 \quad 100$ as $\mathrm{CaCO}_{3} \quad 178$
$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}$ produced $=\frac{(178 \mathrm{~g} / \mathrm{mole})}{(278 \mathrm{~g} / \mathrm{mole})} \times \frac{\left(12.5 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=8.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
2. Determine the amount of CaCO_{3} and $\mathrm{Fe}(\mathrm{OH})_{2}$ formed using Eq. (6-14).
$\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$ $178 \quad 2 \times 74 \quad 89.9 \quad 2 \times 100$
CaCO_{3} produced $=\frac{2(100 \mathrm{~g} / \mathrm{mole})\left(8.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(178 \mathrm{~g} / \mathrm{mole})}=9.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
$\mathrm{Fe}(\mathrm{OH})_{2}$ formed $=\frac{(89.9 \mathrm{~g} / \mathrm{mole})\left(8.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(178 \mathrm{~g} / \mathrm{mole})}=4.1 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
3. Determine the amount of lime $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ consumed in the reaction with $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}$.

Lime used $=\frac{2(74 \mathrm{~g} / \mathrm{mole})\left(8.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(178 \mathrm{~g} / \mathrm{mole})}=6.7 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
4. Determine the amount of lime remaining.

Lime remaining $=(12.5-6.7) \mathrm{kg} / 10^{3} \mathrm{~m}^{3}=5.8 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
5. Using Eq. (6-11) determine the amount of CaCO_{3} formed when the remaining lime reacts with the alkalinity.

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows 2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \\
& 74 \quad 2 \times 100 \\
& \mathrm{CaCO}_{3} \text { produced }=\frac{2(100 \mathrm{~g} / \mathrm{mole})\left(5.8 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(74 \mathrm{~g} / \mathrm{mole})}=15.7 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
\end{aligned}
$$

6. Determine the amount of $\mathrm{Fe}(\mathrm{OH})_{3}$ formed using Eq. (6-15).

$$
\begin{aligned}
& \begin{array}{l}
4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 4 \mathrm{Fe}(\mathrm{OH})_{3} \\
4 \times 89.9 \quad 4 \times 106.9
\end{array} \\
& \mathrm{Fe}(\mathrm{OH})_{3} \text { formed }=\frac{4(106.9 \mathrm{~g} / \mathrm{mole})\left(4.1 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{4(89.9 \mathrm{~g} / \mathrm{mole})}=4.9 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
\end{aligned}
$$

7. Determine the total amount of sludge produced.

Sludge produced =
$=\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{CaCO}_{3}+\mathrm{CaCO}_{3}-15 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$ dissolved CaCO_{3}
step 6 step 2 step 5
Sludge produced $=(4.9+9.0+15.7-15) \mathrm{kg} / 10^{3} \mathrm{~m}^{3}=14.6 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$

PROBLEM 6-4

Problem Statement - See text, page 544-545

Solution - Part a

1. Determine the amount of AIPO_{4} formed, and the amount of alum which reacts to form AlPO_{4} using Eq. (6-19).
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 14.3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{PO}_{4}{ }^{3-} \rightleftarrows 2 \mathrm{AlPO}_{4}+3 \mathrm{SO}_{4}^{-}+14.3 \mathrm{H}_{2} \mathrm{O}$
$599.7 \quad 2 \times 31$ as $\mathrm{P} \quad 2 \times 122$
AlPO_{4} formed $=\frac{2(122 \mathrm{~g} / \mathrm{mole})\left(10 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{2(31.0 \mathrm{~g} / \mathrm{mole})}=39.5 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
Amount of alum reacting with P
Alum reacting with $P=\frac{(599.7 \mathrm{~g} / \mathrm{mole})\left(10 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{2(31.0 \mathrm{~g} / \mathrm{mole})}=96.7 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
2. Determine the amount of alum which reacts with alkalinity to form $\mathrm{Al}(\mathrm{OH})_{3}$ and the amount of $\mathrm{Al}(\mathrm{OH})_{3}$ formed using Eq. (6-9). Assume an alum dosage of $150 \mathrm{~g} / \mathrm{m}^{3}$

Amount of alum remaining $=(150-96.7) \mathrm{g} / \mathrm{m}^{3}=53.3 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 14.3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows 2 \mathrm{Al}(\mathrm{OH})_{3}+6 \mathrm{CO}_{2}+3 \mathrm{CaSO}_{4}+18 \mathrm{H}_{2} \mathrm{O}$
$599.7 \quad 3 \times 100$ as $\mathrm{CaCO}_{3} \quad 2 \times 78$
$\mathrm{Al}(\mathrm{OH})_{3}$ formed $=\frac{2(78 \mathrm{~g} / \text { mole })\left(53.3 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(599.7 \mathrm{~g} / \mathrm{mole})}=13.9 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
3. Determine the amount of sludge produced.

Sludge produced $=\left[\mathrm{AlPO}_{4}+\mathrm{Al}(\mathrm{OH})_{3}+0.95 \times \mathrm{TSS}\right) \mathrm{Q}$
$Q=\left(0.75 \mathrm{~m}^{3} / \mathrm{s} \times 86,400 \mathrm{~s} / \mathrm{d}\right)=64.8 \times 10^{3} \mathrm{~m}^{3} / \mathrm{d}$
Sludge produced =
$\left.=(39.5+13.9+0.95 \times 220) \mathrm{g} / \mathrm{m}^{3}\right]\left(64.8 \times 10^{3} \mathrm{~m}^{3} / \mathrm{d}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)$
$=17,004 \mathrm{~kg} / \mathrm{d}$
If sludge has a specific gravity of 1.04 and a water content of 93%, then the

Volume of sludge produced
Sludge volume $=\frac{(17,004 \mathrm{~kg} / \mathrm{d})}{(0.07)(1.04)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=233.6 \mathrm{~m}^{3} / \mathrm{d}$

Solution - Part b

1. Determine the amount of hydroxylapatite formed, the amount of lime which reacts with the phosphorus and the amount of lime remaining after the precipitation of phosphorus. The amount of hydroxylapatite formed can be determined using Eq. (6-22).
```
\(10 \mathrm{Ca}(\mathrm{OH})_{2}+6 \mathrm{PO}_{4}{ }^{3-}+2 \mathrm{OH} \rightleftarrows \mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{2}+18 \mathrm{OH}^{-}\)
```

$10 \times 74 \quad 6 \times 31$ as P
as $\mathrm{Ca}(\mathrm{OH})_{2}$ lime

Hydroxylapatite formed $=\frac{(1004 \mathrm{~g} / \mathrm{mole})\left(10 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{6(31 \mathrm{~g} / \mathrm{mole})}=54.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
Lime reacting with $P=\frac{10(74 \mathrm{~g} / \mathrm{mole})\left(10 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{6(31 \mathrm{~g} / \mathrm{mole})}=39.8 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
Lime remaining $+(450-39.8) \mathrm{kg} / 10^{3} \mathrm{~m}^{3}=410.2 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
2. Determine the amount of lime $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$ which reacts with alkalinity to form CaCO_{3} and the amount of CaCO_{3} which precipitates.

The amount of alkalinity present is $200 \mathrm{~g} / \mathrm{m}^{3}$ as CaCO_{3}.
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \rightleftarrows 2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
$74 \quad 100 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3} \quad 2 \times 100$
CaCO_{3} formed $=\frac{2(100 \mathrm{~g} / \mathrm{mole})\left(200 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(100 \mathrm{~g} / \mathrm{mole})}=400 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
Amount of CaCO_{3} that precipitates $=(400-20) \mathrm{kg} / 10^{3} \mathrm{~m}^{3}=380 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
3. Determine the amount of $\mathrm{Ca}(\mathrm{OH})_{2}$ that remains in solution. The amount of $\mathrm{Ca}(\mathrm{OH})_{2}$ that reacts with alkalinity is:
$\mathrm{Ca}(\mathrm{OH})_{2}$ utilized $=\frac{(74 \mathrm{~g} / \mathrm{mole})\left(200 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}\right)}{(100 \mathrm{~g} / \mathrm{mole})}=148.0 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}$
Amount of $\mathrm{Ca}(\mathrm{OH})_{2}$ that remains in solution $=$:

$$
=(410.2-148.0) \mathrm{kg} / 10^{3} \mathrm{~m}^{3}=262.2 \mathrm{~kg} / 10^{3} \mathrm{~m}^{3}
$$

4. Determine the amount of sludge produced.

Sludge produced $=\left[\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{2}+\mathrm{CaCO}_{3}+0.95 \times\right.$ TSS $) \mathrm{Q}$
Sludge produced $\left.=[54.0+380+0.95 \times 220) \mathrm{g} / \mathrm{m}^{3}\right]\left(64.8 \times 10^{3} \mathrm{~m}^{3}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)$

$$
=41,666 \mathrm{~kg} / \mathrm{d}
$$

If sludge has a specific gravity of 1.05 and a water content of 92%, then the
Volume of sludge produced

Sludge volume $=\frac{(41,666 \mathrm{~kg} / \mathrm{d})}{(0.08)(1.05)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=496 \mathrm{~m}^{3} / \mathrm{d}$

Solution - Part c

1. Determine the net increase in hardness for the treatment specified in part b. Assume calcium hardness is equal to the alkalinity

Amount of lime remaining in solution $=262.2 \mathrm{~g} / \mathrm{m}^{3}$ as CaCO_{3} (see Part b, Step 3)

Hardness of lime remaining expressed as $\mathrm{CaCO}_{3}=$

$$
=\frac{(100 \mathrm{~g} / \mathrm{mole})\left(262.2 \mathrm{~g} / \mathrm{m}^{3}\right)}{(74 \mathrm{~g} / \mathrm{mole})}=354.3 \mathrm{~g} / \mathrm{m}^{3} \text { as } \mathrm{CaCO}_{3}
$$

Total hardness remaining $=354.3+20) \mathrm{g} / \mathrm{m}^{3}=374.3 \mathrm{~g} / \mathrm{m}^{3}$ as CaCO_{3}
Net increase in hardness $=(374.3-200) \mathrm{g} / \mathrm{m}^{3}=174.3 \mathrm{~g} / \mathrm{m}^{3}$ as CaCO_{3}

PROBLEM 6-5

Problem Statement - See text, page 545
Instructors Note: The purpose of Problem 6-5 is to introduce students to the computational procedures used to produce graphical solubility diagrams

PROBLEM 6-6

Problem Statement - See text, page 545
Instructors Note: The purpose of Problem 6-6, is to introduce the students to the computational procedures used to produce curves of residual soluble metal concentrations as function of pH .

Sources for chemical equilibrium data are:
Benefield, L. D., J. F. Judkins, Jr., and B. L. Weand (1982) Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Benjamin, M. M. (2001) Water Chemistry, McGraw-Hill, New York

Morel, F. M. M., and J. G. Hering. (199) Principles and Applications of Aquatic Chemistry, A Wiley-Interscience publication, New York, NY.

Pankow, J. F. (1991) Aquatic Chemistry Concepts, Lewis Publishers, Chelesa, MI.

Sawyer, C. N., P. L. McCarty, and G. F. Parkin (2001) Chemistry For Environmental Engineering, 5th ed., McGraw-Hill, Inc., New York, NY.

Snoeyink, V. L., and D. Jenkins (1980) Water Chemistry, John Wiley \& Sons, New York, NY.

PROBLEM 6-7

Problem Statement - See text, page 545
Instructors Note: The purpose of Problem 6-7, is to introduce the students to the computational procedures used to produce curves of residual soluble metal concentrations as function of pH .

Sources for chemical equilibrium data are:
Benefield, L. D., J. F. Judkins, Jr., and B. L. Weand (1982) Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Benjamin, M. M. (2001) Water Chemistry, McGraw-Hill, New York
Morel, F. M. M., and J. G. Hering. (199) Principles and Applications of Aquatic Chemistry, A Wiley-Interscience publication, New York, NY.

Pankow, J. F. (1991) Aquatic Chemistry Concepts, Lewis Publishers, Chelesa, MI.

Sawyer, C. N., P. L. McCarty, and G. F. Parkin (2001) Chemistry For Environmental Engineering, 5th ed., McGraw-Hill, Inc., New York, NY.

Snoeyink, V. L., and D. Jenkins (1980) Water Chemistry, John Wiley \& Sons, New York, NY.

PROBLEM 6-8

Problem Statement - See text, page 545

Solution

1. Determine the overall reaction by adding the two half reactions

$$
\begin{array}{ll}
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} & \mathrm{E}^{\circ}=0.00 \\
\frac{\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}}{2 \mathrm{H}^{+}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}} & \mathrm{E}^{\circ}=0.828
\end{array}
$$

2. Determine the $E_{\text {reaction }}^{\circ}$ for overall reaction

$$
\begin{aligned}
& E_{\text {reaction }}^{\circ}=E_{\text {reduction }}^{\circ}-E_{\text {oxxidation }}^{\circ} \\
& E_{\text {reaction }}^{\circ}=(0.828)-(0.00)=+0.828 \text { volts }
\end{aligned}
$$

3. Determine the equilibrium constant at $25^{\circ} \mathrm{C}$ using Eq. (6-42)
$\log K=\frac{n E_{\text {reaction }}^{\circ}}{0.0592}=\frac{1(0.828)}{0.0592}=13.99$
$K=10^{13.99}$
The computed value is the same as the value reported in most texts at $25^{\circ} \mathrm{C}$

PROBLEM 6-9

Problem Statement - See text, page 545

Instructors Note:

1. The purpose of Problems 6-9 through 6-12 is to illustrate to students why reactions used commonly in environmental engineering do occur

Solution

1. Determine the overall reaction by adding the two half reactions

$$
\begin{array}{cl}
2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-} & \mathrm{E}^{\circ}=-0.771 \\
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} & \mathrm{E}^{\circ}=1.776
\end{array}
$$

2. Determine the $E_{\text {reaction }}^{\circ}$ for overall reaction

$$
\begin{aligned}
& \mathrm{E}_{\text {reaction }}^{0}=\mathrm{E}_{\text {reduction }}^{0}-\mathrm{E}_{\text {oxidation }}^{0} \\
& \mathrm{E}_{\text {reaction }}^{0}=(1.776)-(-0.771)=+2.547 \text { volts }
\end{aligned}
$$

Because the $E_{\text {reaction }}^{\circ}$ for the reaction is positive, the reaction will proceed as written.

PROBLEM 6-10

Problem Statement - See text, page 545

Solution

1. Determine the overall reaction by adding the two half reactions

$$
\begin{array}{cl}
2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-} & \mathrm{E}^{\circ}=-0.771 \\
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} & \mathrm{E}^{\circ}=1.36
\end{array}
$$

2. Determine the $E_{\text {reaction }}^{\circ}$ for overall reaction

$$
\begin{aligned}
& \mathrm{E}_{\text {reaction }}^{\circ}=\mathrm{E}_{\text {reduction }}^{\circ}-\mathrm{E}_{\text {oxidation }}^{\circ} \\
& \mathrm{E}_{\text {reaction }}^{\circ}=(1.360)-(-0.771)=+2.131 \text { volts }
\end{aligned}
$$

Because the $E_{\text {reaction }}^{\circ}$ for the reaction is positive, the reaction will proceed as written.

PROBLEM 6-11

Problem Statement - See text, page 545

Solution

1. Determine the overall reaction by adding the two half reactions

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{~S} & \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} & \mathrm{E}^{\circ}=+0.14 \\
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} & \rightarrow 2 \mathrm{Cl}^{-} & \mathrm{E}^{\circ}=1.36
\end{aligned}
$$

2. Determine the $\mathrm{E}_{\text {reaction }}^{0}$ for overall reaction

$$
\begin{aligned}
& \mathrm{E}_{\text {reaction }}^{\circ}=\mathrm{E}_{\text {reduction }}^{\circ}-\mathrm{E}_{\text {oxidation }}^{\circ} \\
& \mathrm{E}_{\text {reaction }}^{\circ}=(1.36)-(0.14)=+1.22 \text { volts }
\end{aligned}
$$

Because the $E_{\text {reaction }}^{\circ}$ for the reaction is positive, the reaction will proceed as written.

PROBLEM 6-12

Problem Statement - See text, page 545

Solution

1. Determine the overall reaction by adding the two half reactions

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} & \mathrm{E}^{\circ}=+0.14 \\
\mathrm{O}_{3}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} & \mathrm{E}^{\circ}=2.07
\end{aligned}
$$

2. Determine the $\mathrm{E}_{\text {reacion }}^{\circ}$ for overall reaction

$$
\begin{aligned}
& \mathrm{E}_{\text {reacion }}^{\circ}=\mathrm{E}_{\text {reduction }}^{\circ}-\mathrm{E}_{\text {oxidation }}^{\circ} \\
& \mathrm{E}_{\text {reacion }}^{\circ}=(2.07)-(0.14)=+1.93 \text { volts }
\end{aligned}
$$

Because the $\mathrm{E}_{\text {reaction }}^{\circ}$ for the reaction is positive, the reaction will proceed as written.

PROBLEM 6-13

Problem Statement - See text, page 545

Solution

1. Convert the given data for Sample $\mathbf{3}$ for use in determinng the Langelier and Ryzner indexes
a.. Given data

Constituent	Unit	Sample 3
Ca^{2+}	mg / L as CaCO_{3}	245
$\mathrm{HCO}_{3}{ }^{-}$	mg / L as CaCO_{3}	200
TDS	mg / L	600
pH	unitless	6.9

b. Converted data

Constituent	mg / L	$\mathrm{mole} / \mathrm{L}$
Ca^{2+}	98.20	2.45×10^{-3}
$\mathrm{HCO}_{3}{ }^{-}$	244.0	4.07×10^{-3}

2. Determine the ionic strength of the treated water using Eq. (2-11)
$\mathrm{I}=2.5 \times 10^{-5} \times$ TDS
$\mathrm{I}=2.5 \times 10^{-5} \times 600 \mathrm{mg} / \mathrm{L}=1.5 \times 10^{-2}$
3. Determine the activity coefficients for calcium and bicarbonate using Eq. (2-12).
a. For calcium

$$
\begin{aligned}
& \begin{aligned}
& \log \gamma_{\mathrm{Ca}^{2+}}=-0.5\left(Z_{i}\right)^{2}\left(\frac{\sqrt{1}}{1+\sqrt{I}}-0.3 I\right) \\
&=-0.5(2)^{2}\left[\frac{\sqrt{1.5 \times 10^{-2}}}{1+\sqrt{1.5 \times 10^{-2}}}-0.3\left(1.5 \times 10^{-2}\right)\right] \\
&=-0.2092
\end{aligned} \\
& \gamma_{\mathrm{Ca}^{2+}}=0.6177
\end{aligned}
$$

b. For bicarbonate

$$
\begin{aligned}
& \log \gamma_{\mathrm{HCO}_{3}}=-0.5\left(Z_{i}\right)^{2}\left(\frac{\sqrt{I}}{1+\sqrt{I}}-0.3 I\right) \\
&=-0.5(1)^{2}\left[\frac{\sqrt{1.5 \times 10^{-2}}}{1+\sqrt{1.5 \times 10^{-2}}}-0.3\left(1.5 \times 10^{-2}\right)\right] \\
&=-0.0523
\end{aligned}
$$

$$
\gamma_{\mathrm{HCO}_{3}}=0.8865
$$

4. Determine the saturation pH_{s} at $20^{\circ} \mathrm{C}$ using Eq. (6-73).

$$
\begin{aligned}
& \mathrm{pH}_{\mathrm{s}}=-\log \left(\frac{\mathrm{K}_{\mathrm{a} 2} \gamma_{\mathrm{Ca}^{2+}}\left[\mathrm{Ca}^{2+}\right] \gamma_{\mathrm{HCO}_{3}^{-}}\left[\mathrm{HCO}_{3}^{-}\right]}{\mathrm{K}_{\mathrm{sp}}}\right) \\
& \mathrm{pH}_{\mathrm{s}}=-\log \left[\frac{\left(4.17 \times 10^{-11}\right)(0.6177)\left(2.45 \times 10^{-3}\right)(0.8865)\left(4.07 \times 10^{-3}\right)}{5.25 \times 10^{-9}}\right] \\
& \mathrm{pH}_{\mathrm{s}}=-\log \left(4.89 \times 10^{-8}\right)=7.31
\end{aligned}
$$

5. Determine the Langelier and Ryzner indexes using Eqs. (6-71) and (6-72)
a. Langelier Saturation Index

$$
\mathrm{LSI}=\mathrm{pH}-\mathrm{pH}_{\mathrm{s}}=6.9-7.31=-0.41
$$

LSI < 0 (Water is undersaturated with respect to calcium carbonate)
b. Ryzner Stability Index

$$
\mathrm{RSI}=2 \mathrm{pH}_{\mathrm{s}}-\mathrm{pH}=2(7.31)-6.9=7.72
$$

$$
6.8<(\mathrm{RSI}=7.72)<8.5 \text { (Water is aggressive) }
$$

Comment

Although both indexes are used, the Langelier Saturation Index is used most commonly in the water and wastewater field while the Ryzner Stability Index is used most commonly in industrial applications.

PROBLEM 6-14

Problem Statement - See text, page 545

Solution

1. Determine the ionic strength of Sample 1 using Eq. (2-10)
a. Prepare a computation table to determine the summation term in Eq.
(2-10).

Ion	Conc., C, mg / L	$\mathrm{C} \times 10^{3}$, $\mathrm{mole} / \mathrm{L}$	Z^{2}	$\mathrm{CZ}^{2} \times 10^{3}$
Ca^{2+}	121.3	3.026	4	12.104
Mg^{2+}	36.2	1.489	4	5.956
Na^{+}	8.1	0.352	1	0.352
$\mathrm{~K}^{+}$	12	0.307	1	0.307
$\mathrm{HCO}_{3}{ }^{-}$	280	4.590	1	4.590
$\mathrm{SO}_{4}{ }^{2-}$	116	1.208	4	4.832
Cl^{-}	61	1.721	1	1.721
$\mathrm{NO}_{3}{ }^{-}$	15.6	0.252	1	0.252
Sum^{-}				30.114

b. Determine the ionic strength for the concentration C

$$
\mathrm{I}=\frac{1}{2} \sum \mathrm{C}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}^{2}=\frac{1}{2}\left(30.114 \times 10^{-3}\right)=15.057 \times 10^{-3}
$$

2. Determine the activity coefficients for the monovalent and divalent ions using Eq. (2-12).
a. For monovalent ions

$$
\begin{aligned}
& \begin{aligned}
& \log \gamma=-0.5\left(Z_{i}\right)^{2}\left(\frac{\sqrt{I}}{1+\sqrt{l}}-0.3 I\right) \\
&=-0.5(1)^{2}\left[\frac{\sqrt{15.057 \times 10^{-3}}}{1+\sqrt{15.057 \times 10^{-3}}}-0.3\left(15.057 \times 10^{-3}\right)\right] \\
&=-0.0524
\end{aligned} \\
& \gamma=0.8864
\end{aligned}
$$

b. For divalent ions

$$
\begin{aligned}
& \begin{aligned}
& \log \gamma=-0.5\left(Z_{i}\right)^{2}\left(\frac{\sqrt{1}}{1+\sqrt{l}}-0.3 I\right) \\
&=-0.5(2)^{2}\left[\frac{\sqrt{15.057 \times 10^{-3}}}{1+\sqrt{15.057 \times 10^{-3}}}-0.3\left(15.057 \times 10^{-3}\right)\right] \\
&=-0.2096
\end{aligned} \\
& \gamma=0.6172
\end{aligned}
$$

3. Determine the saturation pH_{s} at $20^{\circ} \mathrm{C}$ using Eq. (6-73).

$$
\begin{aligned}
& \mathrm{pH}_{\mathrm{s}}=-\log \left(\frac{\mathrm{K}_{\mathrm{a} 2} \gamma_{\mathrm{Ca}^{2+}}\left[\mathrm{Ca}^{2+}\right] \gamma_{\mathrm{HCO}_{3}^{-}}\left[\mathrm{HCO}_{3}^{-}\right]}{\mathrm{K}_{\mathrm{sp}}}\right) \\
& \mathrm{pH}_{\mathrm{s}}=-\log \left[\frac{\left(4.17 \times 10^{-11}\right)(0.8864)\left(3.026 \times 10^{-3}\right)(0.6172)\left(4.590 \times 10^{-3}\right)}{5.25 \times 10^{-9}}\right] \\
& \mathrm{pH}_{\mathrm{s}}=-\log \left(6.80 \times 10^{-8}\right)=7.17
\end{aligned}
$$

4. Determine the Langelier and Ryzner indexes
a. Langelier Saturation Index
$\mathrm{LSI}=\mathrm{pH}-\mathrm{pH}_{\mathrm{s}}=7.2-7.17=-0.0327$
$\mathrm{LSI} \approx 0$ Water is essentially neutral (i.e., neither scale forming or scale removing with respect to calcium carbonate)
b. Ryzner Stability Index
$\mathrm{RSI}=2 \mathrm{pH}_{\mathrm{s}}-\mathrm{pH}=2(7.17)-7.2=7.13$
$6.8<(\mathrm{RSI}=7.13)<8.5$ (Water is aggressive)

Comment

Although both indexes are used, the Langelier index is used most commonly in the water and wastewater field while the Ryzner index is used most commonly in industrial applications.

PROBLEM 6-15

Problem Statement - See text, page 546

Solution

1. Langelier Saturation Index
$\mathrm{LSI}=\mathrm{pH}-\mathrm{pH}_{\mathrm{s}}$
The Langelier Saturation Index was developed from a consideration of carbonate equilibrium (i.e., the effect of pH on the precipitation of calcium carbonate). The pH value at which CaCO_{3} will neither be deposited or dissolved is defined as the pH_{s} value. Thus, if the LSI value is positive, the water is supersatured with respect to CaCO_{3} and scale formation may occur. Similarly if the LSI value is negative, the water is undersaturated and existing to CaCO_{3} coatings may be dissolved.
2. Ryzner Stability Index

$$
\mathrm{RSI}=2 \mathrm{pH}_{\mathrm{s}}-\mathrm{pH}
$$

The Ryzner Stability Index was developed from empirical observations of the dissolution or formation of film in heated water pipes and glass coils.
3. An excellent discussion of the relative merits of the two indexes may be found in:

Schock, M R. (1999) Chapter 17: "Internal Corrosion and Deposition Control," in R. D. Letterman, ed., Water Quality And Treatment: A Handbook of Community Water Supplies, 5th ed., American Water Works Association, McGraw-Hill, New York, NY.

PROBLEM 6-16

Problem Statement - See text, page 546

Instructors Note: Students will need to research and find, or be provided with the required molecular weight and hydroxyl radical rate constant for the compound of interest. If desired, the compounds and concentrations may be varied to demonstrate processes that may not be feasible due to insufficient concentrations of HO - (i.e., concentrations which fall outside of the range that can be transferred to water).

Solution

1. Develop a relationship to find the required reaction rate for the given reaction time. A sample computation for chlorobenzene is shown below.

$$
\begin{aligned}
& r_{R}=\frac{\text { moles of } R \text { lost or gained due to reaction }}{\text { volume } \times \text { time }} \\
& r_{R}=\frac{(0.095 \mathrm{mg} / \mathrm{L}) /(112560 \mathrm{mg} / \mathrm{mole})}{10 \mathrm{~s}}=8.44 \times 10^{-8} \mathrm{~mole} / \mathrm{L} \cdot \mathrm{~s}
\end{aligned}
$$

2. Rearrange Eq. (6-57) to solve for the hydroxyl radical concentration required to carry out the reaction.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{HO}^{\circ}}=\frac{\mathrm{r}_{\mathrm{R}}}{\mathrm{k}_{\mathrm{R}} \mathrm{C}_{\mathrm{R}}}=\frac{\left(8.44 \times 10^{-8} \mathrm{~mole} / \mathrm{L} \cdot \mathrm{~s}\right)}{\left(4.5 \times 10^{9} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~s}\right)\left(8.88 \times 10^{-7} \mathrm{~mole} / \mathrm{L}\right)} \\
& =2.1 \times 10^{-11} \mathrm{~mole} / \mathrm{L}
\end{aligned}
$$

3. Evaluate the feasibility of the reaction.

Because the required hydroxyl radical concentration is within the range attainable using current technology (e.g., 109 to 1011), the process is considered to be feasible. A summary table of hydroxyl radical concentrations for other compounds given in the problem statement are given below. As stated, all of the processes are considered feasible, however, interferences and other non-idealities may inhibit a given process. Pilot testing is recommended to evaluate an AOP process for a given water.
Compound \quad Molecular Rate constant, $\mathrm{HO} \cdot$ concentration, mole/L

	weight, g/mole	$\mathrm{L} / \mathrm{mole} \cdot \mathrm{s}$	Water A	Water B
Clorobenzene	112.56	$4.50 \mathrm{E}+09$	$2.1 \mathrm{E}-11$	$2.1 \mathrm{E}-11$
Chloroethene	62.498	$1.20 \mathrm{E}+10$	$7.9 \mathrm{E}-12$	$8.1 \mathrm{E}-12$
TCE	131.39	$4.20 \mathrm{E}+09$	$2.3 \mathrm{E}-11$	$2.2 \mathrm{E}-11$
Toluene	92.14	$3.00 \mathrm{E}+09$	$3.2 \mathrm{E}-11$	$3.1 \mathrm{E}-11$

PROBLEM 6-17

Problem Statement - See text, page 546
Instructors Note: Students should be assigned a constituent from Table 6-17 for purposes of solving the problem.

Solution

1. Develop an expression for the concentration of the constituent as a function of time in a completely mixed batch reactor (CMBR). Note that the residence time for an ideal plug flow reactor is equivalent to the residence time in a completely mixed batch reactor. The required computation for chlorobenzene is given below.
a. Using Eq. (6-58), the rate expression for a CMBR, where C_{R} represents the concentration of the selected constituent is given by

$$
r_{R}=\frac{d C_{R}}{d t}=-k_{R} C_{H O} \cdot C_{R}=-k^{\prime} C_{R}
$$

where $\mathrm{k}^{\prime}=\mathrm{k}_{\mathrm{R}} \mathrm{C}_{\text {но }}$.
b. The integrated form of the rate expression for a CMBR is:

$$
\begin{aligned}
& \int_{C_{R 0}}^{C_{R}} \frac{{d C_{R}}_{C_{R}}=-\int_{0}^{t} k^{\prime} t}{} \\
& C_{R}=C_{R 0} e^{-k^{\prime} t}
\end{aligned}
$$

2. Calculate the time it would take to achieve a concentration of $1.25 \mu \mathrm{~g} / \mathrm{L}(25$ $\mu \mathrm{g} / \mathrm{L} \times 0.05)$ using the equation developed in step 1.
a. Rearrange the above equation to solve for t.

$$
t=\frac{1}{k^{\prime}} \ln \frac{C_{R 0}}{C_{R}}
$$

b. Solve for the reaction time. The reaction time is given below for several hydroxyl radical concentrations that may be attained using different reactor designs.

Using the value of k ' from step 1 and an $\mathrm{HO} \cdot$ concentration of 10^{-9} mole/L, the reaction time is calculated for the selected constituent (chloride ion):

$$
\begin{aligned}
& \mathrm{k}^{\prime}=\mathrm{k}_{\mathrm{R}} \mathrm{C}_{\text {но. }}=\left(4.30 \times 10^{9} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~s}\right)\left(10^{-9} \mathrm{~mole} / \mathrm{L}\right)=4.31 / \mathrm{s} \\
& \mathrm{t}=\frac{1}{(4.3)} \ln \left(\frac{25}{1.25}\right)=0.70 \mathrm{~s}
\end{aligned}
$$

For an $\mathrm{HO} \cdot$ concentration of 10^{-10} mole/L, the reaction time is

$$
\begin{aligned}
& \mathrm{k}^{\prime}=\mathrm{k}_{\mathrm{R}} \mathrm{C}_{\mathrm{HO} \cdot}=\left(4.3 \times 10^{9} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~s}\right)\left(10^{-10} \mathrm{~mole} / \mathrm{L}\right)=0.431 / \mathrm{s} \\
& \mathrm{t}=\frac{1}{(0.43)} \ln \left(\frac{25}{1.25}\right)=7.0 \mathrm{~s}
\end{aligned}
$$

For an $\mathrm{HO} \cdot$ concentration of 10^{-11} mole/L, the reaction time is

$$
\begin{aligned}
& \mathrm{k}^{\prime}=\mathrm{k}_{\mathrm{R}} \mathrm{C}_{\text {но. }}=\left(4.3 \times 10^{9} \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~s}\right)\left(10^{-11} \mathrm{~mole} / \mathrm{L}\right)=0.0431 / \mathrm{s} \\
& \mathrm{t}=\frac{1}{(0.043)} \ln \left(\frac{25}{1.25}\right)=70 \mathrm{~s}
\end{aligned}
$$

3. Size the reactor for a flowrate of $3800 \mathrm{~m}^{3} / \mathrm{d}$.
a. For the $\mathrm{HO} \cdot$ concentration of 10^{-9} mole/L, the reactor size (assuming ideal hydraulics) would be

$$
V=Q \cdot t=\frac{\left(3800 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86400 \mathrm{~s} / \mathrm{d})}(0.70 \mathrm{~s})=0.03 \mathrm{~m}^{3} \text { or } 30 \mathrm{~L}
$$

b. For the HO . concentration of 10^{-10} mole/L, the reactor size would be

$$
\mathrm{V}=\mathrm{Q} \cdot \mathrm{t}=\frac{\left(3800 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86400 \mathrm{~s} / \mathrm{d})}(7.0 \mathrm{~s})=0.3 \mathrm{~m}^{3} \text { or } 300 \mathrm{~L}
$$

c. For the $\mathrm{HO} \cdot$ concentration of 10^{-11} mole/L, the reactor size would be

$$
\mathrm{V}=\mathrm{Q} \cdot \mathrm{t}=\frac{\left(3800 \mathrm{~m}^{3} / \mathrm{d}\right)}{(86400 \mathrm{~s} / \mathrm{d})}(70 \mathrm{~s})=3 \mathrm{~m}^{3} \text { or } 3000 \mathrm{~L}
$$

PROBLEM 6-18

Problem Statement - See text, page 546

Solution

1. Calculate the photonic energy input per unit volume of the reactor.
a. Calculate the total lamp power:

$$
P=(25 \text { lamps } \times 500 \mathrm{~W} / \mathrm{lamp})=12,500 \mathrm{~W}=12,500 \mathrm{~J} / \mathrm{s}
$$

b. Calculate the photonic energy input for the reactor using Eq. (6-63)

$$
\begin{aligned}
P_{R} & =\frac{(12,500 \mathrm{~J} / \mathrm{s})(0.3)\left(254 \times 10^{-9} \mathrm{~m}\right)}{\left(6.023 \times 10^{23} 1 / \text { einstein }\right)\left(6.62 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(250 \mathrm{~L})} \\
& =3.185 \times 10^{-5} \text { einstein } / \mathrm{L} \cdot \mathrm{~s}
\end{aligned}
$$

2. Calculate the rate constant for NDMA.
a. The extinction coefficient of NDMA at 254 nm can be obtained from Table 6-18

$$
\begin{aligned}
& \varepsilon(254)=1974 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~cm} \\
& \varepsilon^{\prime}(254)=2.303 \varepsilon(254)=2.303 \times 1974=4546 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~cm}
\end{aligned}
$$

b. The quantum yield for NDMA can be obtained from Table 6-18.
$\phi(\lambda)_{\text {NDMA }}=0.3$ mole/einstein
c. Compute $\mathrm{k}_{\text {NDMA }}$ using Eq. (6-66).

$$
\begin{aligned}
\mathrm{k}_{\mathrm{NDMA}} & =\phi(\lambda)_{\mathrm{NDMA}} \mathrm{P}_{\mathrm{R}} \frac{\varepsilon^{\prime}(\lambda)_{\mathrm{NDMA}}}{\mathrm{k}^{\prime}(\lambda)} \\
& =(0.3 \text { mole } / \text { einstein })\left(3.185 \times 10^{-5} \text { einstein } / \mathrm{L} \cdot \mathrm{~s}\right)\left[\frac{(4546 \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~cm})}{(0.01 / \mathrm{cm})}\right] \\
& =4.341 / \mathrm{s}
\end{aligned}
$$

3. Calculate the flow rate that can be treated per reactor.
a. Calculate hydraulic detention time for the reactor.

$$
\tau=\frac{\mathrm{n}\left[\left(\mathrm{C}_{\text {NDMA }, \mathrm{O}} / \mathrm{C}_{\text {NDMA } \mathrm{e}}\right)^{1 / \mathrm{n}}-1\right]}{\mathrm{k}_{\text {NDMA }}}=\frac{4\left[(100 / 10)^{1 / 4}-1\right]}{4.341 / \mathrm{s}}=0.717 \mathrm{~s}
$$

b. Calculate the flow rate that can be processed by one reactor.

$$
\mathrm{Q}=\frac{\mathrm{V}}{\tau}=\frac{250 \mathrm{~L}}{0.717 \mathrm{~s}}=349 \mathrm{~L} / \mathrm{s}
$$

4. Determine the number of reactors needed to treat the full flow.
a. The total flow to be treated is $1 \times 10^{5} \mathrm{~m}^{3} / \mathrm{d}=1157 \mathrm{~L} / \mathrm{s}$
b. The number of reactors needed is $(1157 \mathrm{~L} / \mathrm{s}) /(349 \mathrm{~L} / \mathrm{s})=3.3$ (use 4)
c. The actual number of reactors needed will be greater than the computed value to compensate for lamp failure, fouling, and so that one or more reactors can be taken off line for lamp maintenance without interrupting the flow. It should be noted that the extra reactors will not be in continuous operation, but will only be used when needed or in a service rotation to reduce costs.
5. Calculate the EE/O for the photolysis process.
$E E / O=\frac{P}{\operatorname{Qlog}\left(\frac{C_{i}}{C_{f}}\right)}$

$$
=\frac{(12.5 \mathrm{~kW})\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}{(349 \mathrm{~L} / \mathrm{s})\left[\log \left(\frac{100 \mathrm{ng} / \mathrm{L}}{10 \mathrm{ng} / \mathrm{L}}\right)\right](3600 \mathrm{~s} / \mathrm{h})}=0.01 \mathrm{kWh} / \mathrm{m}^{3}
$$

The computed EE/O value is low compared to the typical range for ground and surface waters because of the high quality effluent from the RO process. Reverse osmosis removes or reduces many of the constituents that would interfere with photolysis of specific constituents and can produce effluent with low absorbance, improving the efficiency of the photolysis process.
6. Estimate the overall daily energy usage for the process.

For the two operational reactors, the estimated energy usage is
$(4$ reactors $)(12.5 \mathrm{~kW})(24 \mathrm{~h} / \mathrm{d})=1200 \mathrm{kWh} / \mathrm{d}$
7. Prepare a summary table of results for various absorptivity values.

As shown in the following table, absorptivity has a significant effect on the number of reactors and energy required for photolysis.

Absorptivity, cm^{-1}	$\mathrm{K}_{\text {NDMA, }}$, $1 / \mathrm{s}$	$\mathrm{Q}_{\text {Reactor, }} \mathrm{L}$,	Number of reactors (rounded up)	EE / O, $\mathrm{kWh} / \mathrm{m}^{3}$	Energy usage, $\mathrm{kWh} / \mathrm{d}$
0.01	4.34	349	4	0.01	1200
0.05	0.869	70	17	0.05	5100
0.1	0.434	35	34	0.1	10,200

PROBLEM 6-19

Problem Statement - See text, page 546
Instructors Note: Students will need to make assumptions about the process, including the absorptivity coefficient and reactor characteristics. Thus, responses
will be dependant on the various assumptions made and degree of process optimization.

Solution

1. Calculate the amount of energy required using the procedure outlined in Example 6-8. Assuming that three reactors (as described in Example 6-8) are needed to accomplish the required treatment, the resulting EE/O value is computed as follows:

$$
\begin{gathered}
Q=\frac{V}{\tau}=\frac{242 \mathrm{~L}}{4.22 \mathrm{~s}}=57.4 \mathrm{~L} / \mathrm{s} \\
\mathrm{EE} / \mathrm{O}=\frac{\mathrm{P}}{\operatorname{Qlog}\left(\frac{\mathrm{C}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{f}}}\right)}=\frac{(14.4 \mathrm{~kW})\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}{(57.4 \mathrm{~L} / \mathrm{s})\left\{\log \left[\frac{(100 \mathrm{ng} / \mathrm{L})}{(1 \mathrm{ng} / \mathrm{L})}\right]\right\}(3600 \mathrm{~s} / \mathrm{h})}=0.035 \mathrm{kWh} / \mathrm{m}^{3}
\end{gathered}
$$

Using an electricity cost of $\$ 0.13 / \mathrm{kWh}$, the cost is computed as follows.

$$
(\$ 0.13 / \mathrm{kWh})\left(0.035 \mathrm{kWh} / \mathrm{m}^{3}\right)\left(3800 \mathrm{~m}^{3} / \mathrm{d}\right)=\$ 17.22 / \mathrm{d}
$$

PROBLEM 6-20

Problem Statement - See text, page 546

Solution

1. Prepare a table to summarize the chemical properties of importance for determining the advanced treatment process that should be considered. For some of the compounds to be investigated, Table 16-12, page 1769, may be used to find chemical properties, other compounds will require review of other literature references.

Compound	Formula	mw	H, m^{3}-atm/mole	Solubility, mg / L
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.1	$5.5 \mathrm{E}-3$	1,780
Chloroform	CHCl_{3}	119.4	$3.1 \mathrm{E}-3$	7,840

Dieldrin	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{O}$	380.9	$1.0 \mathrm{E}-5$	0.195
Heptachlor	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Cl}_{7}$	373.3	$2.9 \mathrm{E}-4$	0.18
N-Nitrosodi- methylamine	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$	74.1	$2.63 \mathrm{E}-7$	$1,000,000$
Trichloroethylene	$\mathrm{C}_{2} \mathrm{HCl}_{3}$	131.4	$9.9 \mathrm{E}-3$	1,280
Vinyl chloride	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	62.5	$2.8 \mathrm{E}-2$	8,800

2. Prepare a table to summarize the compounds and the treatment processes that are expected to be effective for removal of that compound. The information in Table 6-1 may be useful as a guide in process selection.

	Advanced treatment processes for removal of specified compound
Benzenend	Advanced oxidation, ozonation
Chloroform	Advanced oxidation
Dieldrin	Advanced oxidation
Heptachlor	Advanced oxidation
N-Nitrosodi- methylamine	Advanced oxidation, photolysis
Trichloroethylene	Advanced oxidation
Vinyl chloride	Advanced oxidation
a Descriptions of the various processes are presented in the following table	

Note: The problem statement as written refers to treatment methods discussed in Chap. 6 only (e.g., advanced oxidation, chemical oxidation, chemical coagulation, and chemical precipitation). An identical question is provided in Chap. 11 for separation processes (i.e., filtration processes, reverse osmosis, electrodialysis, ion exchange and adsorption).

Advanced treatment process discussed in Chap. 6 and their applications.

Advanced treatment process	Typical applications
Conventional chemical oxidation	Removal of trace organic compunds using ozone $\left(\mathrm{O}_{3}\right)$
Advanced oxidation	Removal of dissolved organic compounds using hydroxyl radicals for oxidation.
Photolysis	Removal of trace organic constituents using exposure to UV light

7

FUNDAMENTALS OF BIOLOGICAL TREATMENT

Instructors Note: In many of the problems where constituent concentrations are used, the units mg / L and $\mathrm{g} / \mathrm{m}^{3}$ are used interchangeably to facilitate computations without introducing additional conversion factors.

PROBLEM 7-1

Problem Statement - see text, page 674

Solution

1. Determine the amount of biomass in $\mathbf{~ m g ~ T S S / d ~ f o r ~} \mathbf{5 0 0} \mathbf{~ m g ~ V S S} / \mathrm{d}$ and then use Table 7-3, which gives fraction of inorganic constituents on a dry weight basis, to compute the required amounts of the essential elements.
a. From page 557, about 90 percent of the biomass is organic. The total
biomass production $=\frac{(500 \mathrm{mg} \mathrm{VSS} / \mathrm{d})}{(0.9 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS})}=555.6 \mathrm{mg} \mathrm{TSS} / \mathrm{d}$
b. From Table 7-3, the required amounts of essential inorganic elements are as follows:

Element	Fraction of dry weight	Biomass dry weight as mg / d	Required amount of essential element, mg / d
Nitrogen	0.12	555.6	66.7
Phosphorus	0.02	555.6	11.1
Sulfur	0.01	555.6	5.6
Potassium	0.01	555.6	5.6
Sodium	0.01	555.6	5.6
Calcium	0.005	555.6	2.8
Magnesium	0.005	555.6	2.8
Chloride	0.005	555.6	2.8
Iron	0.002	555.6	1.1

2. Prepare the recipe for the inorganic medium using stoichiometric relationships between the element and compound used and a feed rate of 1 L/d. The calculations for the results shown in the table are provided below the table.

Element	Required recipe concentration, mg / L	Required compound	Compound concentration, mg / L
Nitrogen	66.7	$\mathrm{NH}_{4} \mathrm{Cl}$	254.8
Phosphorus	11.1	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	48.7
Sulfur	5.6	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	24.9
Potassium	5.6	Sufficient in $\mathrm{KH}_{2} \mathrm{PO}_{4}$	
Sodium	5.6	Sufficient in $\mathrm{Na}_{2} \mathrm{SO}_{4}$	
Calcium	2.8	CaCl_{2}	7.8
Magnesium	2.8	MgCl_{2}	11.0
Chloride	2.8	$\mathrm{Sufficient} ,\mathrm{other} \mathrm{compounds}^{\text {Iron }}$	1.1

(N) MW: $\quad \mathrm{NH}_{4} \mathrm{Cl}=14+4(1)+35.5=53.5$
$\mathrm{NH}_{4} \mathrm{Cl}=(53.5 / 14)(66.7 \mathrm{mg} / \mathrm{L})=254.8 \mathrm{mg} / \mathrm{L}$
(P) MW: $\mathrm{KH}_{2} \mathrm{PO}_{4}=39.1+2+31+4(16)=136.1$
$\mathrm{KH}_{2} \mathrm{PO}_{4}=(136.1 / 31)(11.1 \mathrm{mg} / \mathrm{L})=48.7 \mathrm{mg} / \mathrm{L}$
(S) MW: $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}=2(23)+32+4(16)=142$
$\mathrm{Na}_{2} \mathrm{SO}_{4}=(142 / 32)(5.6 \mathrm{mg} / \mathrm{L})=24.9 \mathrm{mg} / \mathrm{L}$
(K) Check potassium in $\mathrm{KH}_{2} \mathrm{PO}_{4}$

MW: K = 39.1
$K=(39.1 / 136.1)(48.7 \mathrm{mg} / \mathrm{L})=14.0 \mathrm{mg} / \mathrm{L}$ (amount is sufficient)
(Na) Check sodium in $\mathrm{Na}_{2} \mathrm{SO}_{4}$
MW: $\mathrm{Na}=23$
$\mathrm{Na}=(46 / 142)(24.9 \mathrm{mg} / \mathrm{L})=8.1 \mathrm{mg} / \mathrm{L}$ (amount is sufficient)
(Ca) MW: $\mathrm{CaCl}_{2}=40.1+2(35.5)=111.1$
$\mathrm{CaCl}_{2}=(111.1 / 40.1)(2.8 \mathrm{mg} / \mathrm{L})=7.8 \mathrm{mg} / \mathrm{L}$
$(\mathrm{Mg}) \mathrm{MW}: \mathrm{MgCl}_{2}=24.3+2(35.5)=95.3$

$$
\mathrm{MgCl}_{2}=(95.3 / 24.3)(2.8 \mathrm{mg} / \mathrm{L})=11.0 \mathrm{mg} / \mathrm{L}
$$

(Fe) MW: $\mathrm{FeCl}_{3}=55.8+3(35.5)=162.3$;

$$
\mathrm{FeCl}_{3}=(162.3 / 55.8)(1.1 \mathrm{mg} / \mathrm{L})=3.2 \mathrm{mg} / \mathrm{L}
$$

PROBLEM 7-2

Problem Statement - see text, page 675

Solution

1. The key cell components involved in protein production for enzyme synthesis are:

Component	Role
DNA	Genetic information
Messenger (m) RNA	Copies and transfers segment (gene) of DNA
Transfer (t) RNA	Translates mRNA information
Ribosome	Site where protein is produced

A relatively small segment (gene) of the cell DNA is unraveled to form a single strand. Through complementary base-pairing of nucleic acids (adenine with uracil, quanine with cytosine), mRNA is produced. In the ribosome, the mRNA is matched and translated by tRNA. For every three nucleotide sequence in the tRNA, an amino is produced. The three nucleotide sequence is termed a codon and each codon selects for a specific one of the 21 amino acids. A series of amino acids is formed and the amino acids are termed peptides, and polypeptides are formed. The polypeptides fold and connect at various locations to form the protein structure.

PROBLEM 7-3

Problem Statement - see text, page 675
Instructors Note: The purpose of this problem is to have the students familiarize themselves with appropriate literature for developing responses to the problem statement.

PROBLEM 7-4

Problem Statement - see text, page 675
Instructors Note: The purpose of this problem is to have the students familiarize themselves with appropriate literature for developing responses to the problem statement.

PROBLEM 7-5

Problem Statement - see text, page 675

Solution

1. Prepare a COD balance to determine the amount of casein COD oxidized $\left(\mathrm{O}_{2}\right.$ consumed)
g COD cells + g COD oxidized $=$ g COD removed
2. Determine COD of $\mathbf{2 2} \mathbf{g}$ casein removed
a. Basic equation for casein oxidation:

$$
\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}
$$

b. Balance equation

$$
\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2}+8.0 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NH}_{3}
$$

8.0 moles O_{2} / mole casein
c. Compute g COD removed

MW casein: $8(12)+12(1)+3(16)+2(14)=184$
$\mathrm{g} \mathrm{COD} / \mathrm{g}$ casein $=\frac{8.0(32)}{184}=1.39$
g COD removed $=(1.39 \mathrm{~g} \mathrm{COD} / \mathrm{g}$ casein $)(22 \mathrm{~g})=30.6 \mathrm{~g}$
3. Compute the amount of oxygen required
a. Compute g COD in cells:

Given: 18 g cells $/ 50 \mathrm{~g}$ casein $=0.36 \mathrm{~g}$ cells $/ \mathrm{g}$ casein g cells $=(0.36 \mathrm{~g} / \mathrm{g})(22 \mathrm{~g}$ casein $)=7.92 \mathrm{~g}$ cells

From Eq. (7-5), 1.42 g COD/g cells
g COD in cells $=(1.42 \mathrm{~g} / \mathrm{g})(7.92 \mathrm{~g}$ cells $)=11.25 \mathrm{~g}$ COD into cells
b. g COD oxidized $=\mathrm{g}$ COD removed -g COD cells

$$
=(30.6-11.25) \mathrm{g}=19.35 \mathrm{~g}
$$

b. Oxygen required $=19.4 \mathrm{~g}$

Alternative solution approach using substrate use and biomass production mass balance equation.

1. Determine stoichiometry of oxygen used and biomass produced during casein metabolism.

Note: Casein + oxygen = biomass + carbon dioxide + ammonia + water
a. General for reactions and products:
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2}+\mathrm{O}_{2}=\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+\mathrm{CO}_{2}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
Given: 18 g biomass produced per 50 g of casein used, determine the molar ratios

$$
\begin{aligned}
\frac{50 \mathrm{~g} \text { casein }}{(184 \mathrm{~g} / \mathrm{mole})} & =0.272 \text { mole casein used, } \frac{18 \mathrm{~g} \text { biomass }}{(113 \mathrm{~g} / \mathrm{mole})} \\
& =0.159 \text { mole biomass }
\end{aligned}
$$

Thus, 0159 mole biomass produced per 0.272 mole casein used. Balance above reaction equation:

$$
\begin{aligned}
& 0.272 \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2}+1.381 \mathrm{O}_{2}= \\
& \quad 0.159 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+1.381 \mathrm{CO}_{2}+0.385 \mathrm{NH}_{3}+0.495 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

From balanced equation the ratio of g oxygen used per g casein
consumed is determined: $\frac{1.381(32)}{0.272(184)}=0.883 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g}$ casein
2. Determine oxygen used for 22 g of casein biodegradation

$$
\mathrm{O}_{2} \text { used }=(22 \mathrm{~g})\left(0.883 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \text { casein }\right)=19.4 \mathrm{~g}
$$

PROBLEM 7-6

Problem Statement - see text, page 675

Solution

1. Determine amount of BOD removed and calculate yield for wastewater A
a. Calculate $B O D$ removed $\left(B O D_{R}\right)$
$B O D_{R}=(200-2.5) \mathrm{mg} / \mathrm{L}=197.5 \mathrm{mg} / \mathrm{L}$
b. Calculate observed yield for BOD removal

VSS produced $=100 \mathrm{mg} / \mathrm{L}$
$\mathrm{g} \mathrm{VSS} / \mathrm{g} \mathrm{BOD} \mathrm{R}=100 / 197.5=0.51$
From text, use 0.85 g VSS/g TSS for biomass:

$$
\mathrm{g} \mathrm{TSS} / \mathrm{g} \mathrm{BOD}_{\mathrm{R}}=\frac{\left(0.51 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{BOD}_{\mathrm{R}}\right)}{(0.85 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS})}=0.60
$$

c. Calculate observed yield for COD removal.

Influent is all soluble COD $=450 \mathrm{mg} / \mathrm{L}$
Effluent COD = (Influent COD - 1.6(BOD ${ }_{R}$) + COD biomass produced Effluent COD $=[450.0-1.6(200-2.5)]+1.42(100 \mathrm{mg}$ VSS/L) $=276.0$ mg / L
Observed COD removed $=450-276=174 \mathrm{mg} / \mathrm{L}$
Observed yield $=100 / 174=0.57 \mathrm{~g} \mathrm{VSS} / \mathrm{g}$ COD $_{\mathrm{R}}$
2. Determine effluent $S C O D$ from nonbiodegradable COD (nbsCOD) and biodegradable COD (bsCOD) using BOD and COD information provided: Influent nbsCOD $=[450-(1.6 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{BOD})(200)] \mathrm{mg} / \mathrm{L}=130 \mathrm{mg} / \mathrm{L}$ Effluent bsCOD $=(1.6 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{BOD})(2.5 \mathrm{mg}$ BOD $/ \mathrm{L})=4.0 \mathrm{mg} / \mathrm{L}$
Total effluent sCOD $=130+4.0=134.0 \mathrm{mg} / \mathrm{L}$
3. The fraction of influent BOD oxidized is the difference between the amount of BOD or degradable COD removed and the amount that is incorporated into biomass:
Influent biodegradable COD $(b C O D)=1.6(200 \mathrm{mg} / \mathrm{L})=320 \mathrm{mg} / \mathrm{L}$
g bCOD removed $=\mathrm{g} \mathrm{COD}$ oxidized +g COD cells
g COD oxidized $=\mathrm{g}$ COD removed -g COD cells
g bCOD removed $=(320-4.0) \mathrm{mg} / \mathrm{L}=316 \mathrm{mg} / \mathrm{L}$
g COD cells $=\left(100 \mathrm{mg}\right.$ VSS/L) $\left(1.42 \mathrm{~g} \mathrm{O} \mathrm{O}_{2} / \mathrm{g}\right.$ VSS $)=142 \mathrm{mg} / \mathrm{L}$
g COD oxidized $=(316-142) \mathrm{mg} / \mathrm{L}=174 \mathrm{mg} / \mathrm{L}$
Fraction of influent degradable COD or BOD oxidized $=174 / 320=0.54$

PROBLEM 7-7

Problem Statement - see text, page 675

Solution

1. Compute hydraulic retention time, τ
$\tau=\mathrm{V} / \mathrm{Q}=(1000 \mathrm{~L}) /(500 \mathrm{~L} / \mathrm{d})=2.0 \mathrm{~d}$
2. Compute oxygen used per d for wastewater \mathbf{A}, which is equal to the g COD oxidized,
O_{2} used/d = (oxygen uptake rate)(volume)

$$
\begin{aligned}
& =(10 \mathrm{mg} / \mathrm{L} \cdot \mathrm{~h})(24 \mathrm{~h} / \mathrm{d})(1000 \mathrm{~L})\left(1 \mathrm{~g} / 10^{3} \mathrm{mg}\right) \\
& =240 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

3. Compute the effluent VSS concentration.

The soluble COD removed is equal to the amount of oxygen used plus the COD of the biomass produced. The influent flow contained no VSS, so the biomass produced is observed here as the effluent VSS concentration. For a completely mixed reactor with no recycle, effluent VSS concentration is equal to the reactor concentration.
g COD removed $=\mathrm{g}$ COD oxidized +g COD cells g COD cells $=$ gCOD removed +g COD oxidized g COD removed $/ \mathrm{d}=[(1000-10) \mathrm{mg} / \mathrm{L}](500 \mathrm{~L} / \mathrm{d})\left(1 \mathrm{~g} / 10^{3} \mathrm{mg}\right)=495 \mathrm{~g} / \mathrm{d}$ g COD cells $/ \mathrm{d}=(495-240) \mathrm{g} / \mathrm{d}=255 \mathrm{~g} / \mathrm{d}$
g cells as $\mathrm{VSS} / \mathrm{d}=\frac{(255 \mathrm{~g} \mathrm{COD} \text { cells } / \mathrm{d})}{(1.42 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS})}=179.6 \mathrm{~g} \mathrm{VSS} / \mathrm{d}$
All the biomass will be in the effluent flow (no settling and no recycle)

Effluent VSS $=\frac{(179.6 \mathrm{~g} \mathrm{VSS} / \mathrm{d})}{(500 \mathrm{~L} / \mathrm{d})}=0.359 \mathrm{~g} / \mathrm{L}=359.2 \mathrm{mg} / \mathrm{L}$
4. The observed yield in this example is based on the COD removed and the amount of oxygen consumed. For an actual real system, one would simply measure the effluent VSS concentration to determine the observed yield.

Observed yield $=\mathrm{g}$ VSS/g COD removed
??

$$
=\frac{179.6 \mathrm{~g} \mathrm{VSS} / \mathrm{d}}{495 \mathrm{~g} \mathrm{COD} / \mathrm{d}}=0.363 \mathrm{gVSS} / \mathrm{g} \mathrm{COD} \text { removed }
$$

Based on effluent VSS measurement,

$$
\begin{aligned}
\text { Observed yield } & =\frac{359.2 \mathrm{~g} \mathrm{VSS} / \mathrm{L}}{[(1000-10) \mathrm{mg} \mathrm{COD} / \mathrm{d}]} \\
& =0.363 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD} \text { removed }
\end{aligned}
$$

PROBLEM 7-8

Problem Statement - see text, page 675, solve for methanol

Solution

Use half-reaction equations and free energy values in Table 7-6.

1. Solve for the energy produced and captured by methanol. Methanol is electron donor and oxygen is the electron acceptor. Use reaction No. 14 for methanol and reaction No. 4 for oxygen in Table 7-6 to obtain energy produced.

			$\Delta \mathrm{G} \mathrm{kJ} / \mathrm{mole} \mathrm{e}^{-}$
No. 14	$\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{6} \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\frac{1}{6} \mathrm{CO}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
No. 4	$\frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$	$\rightarrow \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	-37.51
	$\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{4} \mathrm{O}_{2}$	\rightarrow	$\frac{1}{6} \mathrm{CO}_{2}+\frac{1}{3} \mathrm{H}_{2} \mathrm{O}$

Energy captured by cell:
$K\left(\Delta G_{R}\right)=0.60(-115.65)=-69.39 \mathrm{KJ} /$ mole $^{-}$
2. Solve for the energy needed per electron mole of cell growth ($\Delta \mathrm{G}_{\mathrm{S}}$)
$\Delta G_{C}=31.4 \mathrm{~kJ} / \mathrm{mole}^{-}$cells
$\Delta G_{N}=0\left(\mathrm{NH}_{3}\right.$ is available $)$
ΔG_{p} from methanol (reaction No. 14) to pyruvate (reaction No. 15)
$\Delta \mathrm{G} \mathrm{kJ}^{\mathrm{mole}} \mathrm{e}^{-}$
No. $14 \quad \frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1}{6} \mathrm{CO}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
No. $15 \frac{1}{5} \mathrm{CO}_{2}+\frac{1}{10} \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \frac{1}{10} \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\frac{2}{5} \mathrm{H}_{2} \mathrm{O}$

$$
\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{30} \mathrm{CO}_{2}+\frac{1}{10} \mathrm{HCO}_{3}^{-} \rightarrow \frac{1}{10} \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\frac{7}{30} \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{GP}_{\mathrm{P}}=-1.73
$$

Because $\Delta G p$ is negative, the exponent $m=-1$ in Eq. (7-8)
$\Delta G_{S}=\left[\frac{-1.73}{(0.6)^{-1}}+31.41+0\right]=30.37 \mathrm{KJ} / \mathrm{mole} \mathrm{e}^{-}$
3. Determine f_{e} and f_{s} using Eq. (7-9)
$\frac{f_{e}}{f_{S}}=\frac{-\Delta G_{S}}{K \Delta G_{R}}=\frac{-30.37}{-69.39}$
$\frac{f_{e}}{f_{s}}=0.438$
$\mathrm{f}_{\mathrm{e}}+\mathrm{f}_{\mathrm{s}}=1.0$
Solving for f_{e} and $f_{s}: f_{e}=0.31$ and $f_{s}=0.69 \frac{\mathrm{~g} \text { cell COD }}{\mathrm{g} \text { COD used }}$
??Thus, yield $=\frac{0.69 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{COD}}{1.42 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS}}=0.49 \frac{\mathrm{~g} \mathrm{VSS}}{\mathrm{g} \mathrm{COD}}$
4. With nitrate as electron acceptor, the same calculation steps follow with the change that reaction No. 5 in Table 7-6 is used in the first step above to calculate ΔG_{R}.

		$\Delta \mathrm{GkJ} / \mathrm{mole} \mathrm{e}$	
No. 14	$\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{6} \mathrm{H}_{2} \mathrm{O}$	\rightarrow	$\frac{1}{6} \mathrm{CO}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
No. 5	$\frac{1}{5} \mathrm{NO}_{3}^{-}+\frac{6}{5} \mathrm{H}^{+}+\mathrm{e}^{-}$	\rightarrow	$\frac{1}{10} \mathrm{~N}_{2}+\frac{3}{5} \mathrm{H}_{2} \mathrm{O}$
$\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{5} \mathrm{NO}_{3}^{-}+\frac{1}{5} \mathrm{H}^{+}$	\rightarrow	$\frac{1}{6} \mathrm{CO}_{2}+\frac{1}{10} \mathrm{~N}_{2}+13 \mathrm{H}_{2} \mathrm{O}$	$\Delta \mathrm{G}_{\mathrm{R}}=-109.18$

$K \Delta G_{R}=0.60(-109.18)=-65.50 \mathrm{KJ} /$ mole e
$\Delta G_{p}=-1.73 \mathrm{KJ} / \mathrm{mole} \mathrm{e}^{-}$cell (same as with O_{2} as e acceptor)
Using Eq. $(7-8), \Delta \mathrm{G}_{\mathrm{S}}=30.37 \mathrm{KJ} / \mathrm{mole} \mathrm{e}^{-}$
$\frac{f_{e}}{f_{s}}=\frac{-30.37}{-65.50}=0.46 \quad\left(f_{e}+f_{s}=1.0\right)$

$$
\begin{aligned}
& f_{e}=0.32 \quad f_{s}=0.68 \frac{\mathrm{~g} \text { cell COD }}{\mathrm{g} \mathrm{COD} \text { used }} \\
& \text { Yield }=\frac{0.68}{1.42}=0.48 \frac{\mathrm{gVSS}}{\mathrm{gCOD}}
\end{aligned}
$$

5. Comparison: The yields using oxygen and nitrate as the electron acceptors are similar because the energy production values from organic substrate oxidation are very close. However, literature suggests that much lower yields are observed for nitrate reduction versus oxygen respiration (about $2 / 3$ of that for oxygen). The difference between the theoretical yield and actual yields observed may be due to the actual energy capture efficiency (K) of the nitrate reducing bacteria.

PROBLEM 7-9

Problem Statement - see text, page 676, solve for methanol.
Use half-reaction equations and free energy values in Table 7-6.
Note that the biomass yield with nitrate as the electron acceptor has been determined in Problem 7-8.

Yield with nitrate $=0.48 \frac{\mathrm{~g} \mathrm{VSS}}{\mathrm{gCOD}}$
Solve for the biomass yield using nitrite as the electron acceptor.
2. Solve for the energy produced and captured by methanol. Methanol is electron donor and nitrite is the electron acceptor. Use reaction No. 14 for methanol and reaction No. 3 for nitrite in Table 7-6 to obtain energy produced.
$\Delta \mathrm{GkJ} / \mathrm{mole} \mathrm{e}$
No. $14 \frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1}{6} \mathrm{CO}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
No. $3 \quad \frac{1}{3} \mathrm{NO}_{2}^{2-}+\frac{4}{3} \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \frac{1}{6} \mathrm{~N}_{2}+\frac{2}{3} \mathrm{H}_{2} \mathrm{O}$
-92.23

$$
\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{3} \mathrm{NO}_{2}^{2-}+\frac{1}{3} \mathrm{H}^{+} \rightarrow \frac{1}{6} \mathrm{~N}_{2}+\frac{1}{6} \mathrm{CO}_{2}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{G}_{\mathrm{R}}=-129.74
$$

Energy captured by cell:
$\mathrm{K}\left(\Delta \mathrm{G}_{\mathrm{R}}\right)=0.60(-129.74)=-77.84 \mathrm{KJ} /$ mole e ${ }^{-}$
2. Solve for the energy needed per electron mole of cell growth ($\Delta \mathrm{G}_{\mathrm{S}}$)
$\Delta G_{C}=31.4 \mathrm{~kJ} / \mathrm{mole}^{-} \mathrm{e}^{\text {cells }}$
$\Delta G_{N}=0\left(\mathrm{NH}_{3}\right.$ is available $)$
ΔG_{p} from methanol (reaction No. 14) to pyruvate (reaction No. 15)
$\Delta \mathrm{GkJ} / \mathrm{mole}^{-}$
No. $14 \quad \frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{6} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1}{6} \mathrm{CO}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
No. $15 \frac{1}{5} \mathrm{CO}_{2}+\frac{1}{10} \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \frac{1}{10} \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\frac{2}{5} \mathrm{H}_{2} \mathrm{O} \quad+35.78$

$$
\frac{1}{6} \mathrm{CH}_{3} \mathrm{OH}+\frac{1}{30} \mathrm{CO}_{2}+\frac{1}{10} \mathrm{HCO}_{3}^{-} \rightarrow \frac{1}{10} \mathrm{CH}_{3} \mathrm{COCOO}^{-}+\frac{7}{30} \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{GP}=-1.73
$$

Because ΔG_{p} is negative, the exponent $m=-1$ in Eq. (7-8)
$\Delta G_{S}=\left[\frac{-1.73}{(0.6)^{-1}}+31.41+0\right]=30.37 \mathrm{KJ} / \mathrm{mole} \mathrm{e}^{-}$
3. Determine f_{e} and f_{s} using Eq. (7-9)
$\frac{f_{e}}{f_{s}}=\frac{-\Delta G_{s}}{K \Delta G_{R}}=\frac{-30.37}{-77.84}$
$\frac{f_{e}}{f_{s}}=0.39$
$f_{e}+f_{s}=1.0$
Solving for f_{e} and $f_{s}: f_{e}=0.28$ and $f_{s}=0.72 \frac{g \text { cell COD }}{g \text { COD used }}$
Thus, yield with nitrite $=\frac{0.72 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{COD}}{1.42 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS}}=0.507 \frac{\mathrm{~g} \mathrm{VSS}}{\mathrm{g} \mathrm{COD}}$

From above, yield with nitrate $=0.48 \frac{\mathrm{gVSS}}{\mathrm{gCOD}}$
The biomass yield with nitrite is higher because of the higher energy production with nitrite as an electron acceptor.
4. Determine the amount of COD needed per $\mathrm{g} \mathrm{NO}_{2}-\mathrm{N}$ reduced
a. Determine the amount of oxygen equivalent needed per g COD used with nitrite as the electron acceptor.
From above $f_{e}=0.28$ e-mole of substrate oxidized per e^{-}mole of substrate used $=\frac{0.28 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{COD} \mathrm{used}}$
b. Determine the oxygen equivalent of $\mathrm{NO}_{2}-\mathrm{N}$

From electron acceptor equations in Table 7-6, Equate reactions 3 and 4 for one mole of electron transfer:
$\frac{1}{3} \mathrm{NO}_{2}^{-}+\frac{4}{3} \mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
$1 / 3$ mole $\mathrm{N}=1 / 4$ mole of O_{2}
$\frac{1}{3}$ mole $\mathrm{N}\left(\frac{14 \mathrm{~g} \mathrm{NO}_{2}^{-}-\mathrm{N}}{\mathrm{mole} \mathrm{NO}_{2}^{-}}\right)=\frac{1}{4}$ mole Oxygen $\left(\frac{32 \mathrm{~g} \mathrm{O}}{\mathrm{mole}_{2}}\right)$
$1 \mathrm{~g} \mathrm{NO}_{2}^{-}-\mathrm{N}=1.71 \mathrm{~g}$ Oxygen
c. Determine the g COD used per $\mathrm{g} \mathrm{NO}_{2}-\mathrm{N}$ removed

From steps 4 and 5:

$$
\begin{aligned}
& \left(\frac{0.28 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{COD} \text { used }}\right)\left(\frac{\mathrm{g} \mathrm{NO}_{2}^{-}-\mathrm{N}}{1.71 \mathrm{~g} \mathrm{O}_{2}}\right)=0.164 \frac{\mathrm{~g} \mathrm{NO}_{2}^{-}-\mathrm{N}}{\mathrm{~g} \mathrm{COD} \text { used }} \\
& \frac{\mathrm{g} \mathrm{COD} \text { used }}{\mathrm{g} \mathrm{NO}_{2}^{-}-\mathrm{N}}=6.1
\end{aligned}
$$

5. For nitrate as the electron acceptor, determine the amount of COD needed per $\mathrm{g} \mathrm{NO}_{3}-\mathrm{N}$ reduced
b. Determine the amount of oxygen equivalent needed per g COD used with nitrite as the electron acceptor.

From Problem 7-8, $f_{e}=0.32 e^{-}$mole of substrate oxidized per e^{-}mole of substrate used $=\frac{0.32 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{COD} \mathrm{used}}$
b. Determine the oxygen equivalent of $\mathrm{NO}_{2}-\mathrm{N}$

From electron acceptor equations in Table 7-6, Equate reactions 5 and 4 for one mole of electron transfer:
$\frac{1}{5} \mathrm{NO}_{3}^{-}+\frac{6}{5} \mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}$
$1 / 5$ mole $\mathrm{N}=1 / 4$ mole of O_{2}
$\frac{1}{5}$ mole $\mathrm{N}\left(\frac{14 \mathrm{~g} \mathrm{~N}}{\mathrm{~mole} \mathrm{NO}_{3}^{-}}\right)=\frac{1}{4}$ mole Oxygen $\left(\frac{32 \mathrm{~g} \mathrm{O}}{\mathrm{mole} \mathrm{O}_{2}}\right)$
$1 \mathrm{~g} \mathrm{NO}_{3}^{-}-\mathrm{N}=2.86 \mathrm{~g} \mathrm{Oxygen}$
c. Determine the g COD used per $\mathrm{g} \mathrm{NO}_{2}-\mathrm{N}$ removed

From steps 4 and 5:

$$
\begin{aligned}
& \left(\frac{0.32 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{COD} \text { used }}\right)\left(\frac{\mathrm{g} \mathrm{NO}_{3}^{-}-\mathrm{N}}{2.86 \mathrm{~g} \mathrm{O}_{2}}\right)=0.11 \frac{\mathrm{~g} \mathrm{NO}_{3}^{-}-\mathrm{N}}{\mathrm{~g} \mathrm{COD} \text { used }} \\
& \frac{\mathrm{g} \mathrm{COD} \text { used }^{\mathrm{g} \mathrm{NO}_{3}^{-}-\mathrm{N}}}{}=9.1
\end{aligned}
$$

The methanol need in g COD per g N reduced is higher for nitrate as the electron acceptor due to the higher synthesis yield with nitrate. The amount of COD needed for nitrogen removal by denitrification is lower if nitrite is reduced instead of nitrate by about 33 percent based on the calculations (6.1 g COD/g N versus 9.1 g COD/g N).
In actual measurements the biomass yields are lower than determined by these energetic calculations and thus the g COD needed per g N reduced is lower. For methanol with nitrate reduction the COD/N ratio is typically about $5.5 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{N}$ instead of 9.1 .

PROBLEM 7-10

Problem Statement - see text, page 676

Solution

1. From Table 7-6, it is clear that the energy production for bacteria using nitrate as the electron acceptor is much greater than that for bacteria using sulfate as an electron acceptor ($\Delta \mathrm{G}=-78.14$ versus $+21.27 \mathrm{KJ} /$ mole e ${ }^{-}$). With more energy available, the cell yield for the bacteria using nitrate will be greater so that with time the proportion of nitrate-reducing biomass will continue to increase. The biomass will continue to consume an everincreasing proportion of the feed substrate, with the result that the sulfatereducing bacteria will receive a decreasing portion of the substrate. Because the sulfate-reducing bacteria will lose the competition for substrate, their population will diminish by endogenous decay and lack of growth.

PROBLEM 7-11

Problem Statement - see text, page 676

Solution

1. Apply the stoichiometric relationship for electron acceptors, donor and biomass growth [Eq. (7-11)]
$R=f_{e} R_{a}+f_{s} R_{c s}-R_{d}$
From Example 7-3, $\mathrm{f}_{\mathrm{e}}=0.954$ and $\mathrm{f}_{\mathrm{s}}=0.046$
$R_{a}=$ Reaction No. 8, $R_{d}=$ Reaction No. 18, and $R_{c s}=$ Reaction No. 1, assuming NH_{3} as the nitrogen source

Thus, the equations are listed as follows:
$R=0.954$ (No. 8) +0.046 (No. 1) - No. 18
$0.954($ No. 8$)=0.1193 \mathrm{CO}_{2}+0.954 \mathrm{H}^{+}+0.954 \mathrm{e}^{-} \rightarrow 0.1193 \mathrm{CH}_{4}+0.2385 \mathrm{H}_{2} \mathrm{O}$
$0.046($ No. 1$)=0.0092 \mathrm{CO}_{2}+0.0023 \mathrm{HCO}_{3}^{-}+0.0023 \mathrm{NH}_{4}^{+}+0.046 \mathrm{H}^{+}+0.046 \mathrm{e}^{-}$
$\rightarrow 0.0023 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}+0.0207 \mathrm{H}_{2} \mathrm{O}$

- No. $18=0.125 \mathrm{CH}_{3} \mathrm{COO}^{-}+0.375 \mathrm{H}_{2} \mathrm{O} \rightarrow 0.125 \mathrm{CO}_{2}+0.125 \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+}+\mathrm{e}^{-}$

$$
\begin{aligned}
\mathrm{R}=0.125 \mathrm{CH}_{3} \mathrm{COO}^{-} & +0.0023 \mathrm{NH}_{4}^{+}+0.0035 \mathrm{CO}_{2}+0.3543 \mathrm{H}_{2} \mathrm{O} \\
& \rightarrow 0.0023 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}+0.1227 \mathrm{HCO}_{3}^{-}+0.1193 \mathrm{CH}_{4}
\end{aligned}
$$

PROBLEM 7-12

Problem statement - see text, page 676

Solution

Table 7-7

Growth condition	Electron donor	Electron acceptor	Synthesis yield
Aerobic	Organic compound	Oxygen	$0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$
Aerobic	Ammonia	Oxygen	$0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH} 44$
-N			
Anoxic	Organic compound	Nitrate	$0.30 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$
Anaerobic	Organic compound	Organic compound	$0.06 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$
Anaerobic	Acetate	Carbon dioxide	$0.05 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$

1. Use the definition of f_{s} with yields given for organic compound degradation to obtain the f_{s} values
a. Aerobic growth, organic compound

$$
\mathrm{y}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \text { COD used }
$$

From Eq. (7-10), $\mathrm{f}_{\mathrm{s}}=\mathrm{e}^{-}$mole of substrate used for cells per e^{-}mole substrate consumed or on COD basis, $\mathrm{f}_{\mathrm{s}}=\frac{\mathrm{g} \text { COD cell }}{\mathrm{g} \text { COD used }}$
From Eq (7-5), 1.42 g COD/g cell VSS

$$
\begin{aligned}
& f_{s}=y\left(1.42 \frac{\mathrm{~g} \mathrm{COD}}{\mathrm{gVSS}}\right)=\left(0.45 \frac{\mathrm{~g} \mathrm{VSS}}{\mathrm{~g} \mathrm{COD}}\right)\left(1.42 \frac{\mathrm{~g} \mathrm{COD}}{\mathrm{~g} \mathrm{VSS}}\right) \\
& \mathrm{f}_{\mathrm{s}}=0.64 \frac{\mathrm{~g} \mathrm{COD} \mathrm{cells}}{\mathrm{gCOD} \text { used }} \\
& \quad \mathrm{f}_{\mathrm{e}}+\mathrm{f}_{\mathrm{s}}=1.0, \mathrm{f}_{\mathrm{e}}=1.0-0.64=0.36 \frac{\mathrm{~g} \mathrm{COD} \text { oxidized }}{\mathrm{g} \mathrm{COD} \mathrm{used}}
\end{aligned}
$$

b. Anoxic, organic compound

$$
\begin{aligned}
& f_{s}=y\left(1.42 \frac{g \text { COD }}{g \text { VSS }}\right)=\left(0.30 \frac{g \text { VSS }}{g \text { COD }}\right)\left(1.42 \frac{\mathrm{~g} \mathrm{COD}}{\mathrm{gVSS}}\right) \\
& f_{s}=0.43 \frac{\mathrm{~g} \mathrm{COD} \text { cells }}{\mathrm{gCOD} \text { used }} \\
& f_{e}=1.0-0.43=0.57 \frac{\mathrm{~g} \mathrm{COD} \text { oxidized }}{\mathrm{g} \mathrm{COD} \text { used }}
\end{aligned}
$$

c. Anaerobic, organic compound

$$
f_{s}=\left(0.06 \frac{g \text { VSS }}{g \text { COD }}\right)\left(1.42 \frac{g \text { COD }}{g V S S}\right)
$$

$$
\mathrm{f}_{\mathrm{s}}=0.09 \frac{\mathrm{~g} \mathrm{COD} \mathrm{cells}}{\mathrm{~g} \mathrm{COD} \mathrm{used}}
$$

$$
\mathrm{f}_{\mathrm{e}}=1.0-0.09=0.91 \frac{\mathrm{~g} \mathrm{COD} \text { oxidized }}{\mathrm{g} \text { COD used }}
$$

d. Anaerobic, acetate
$f_{s}=\left(0.05 \frac{g \text { VSS }}{g C O D}\right)\left(1.42 \frac{g \text { COD }}{g V S S}\right)$
$f_{S}=0.07 \frac{\text { g COD cells }}{\text { g COD used }}$
$f_{e}=1.0-0.07=0.93 \frac{\text { g COD oxidized }}{\text { g COD used }}$

PROBLEM 7-13

Problem statement - see text, page 676

Solution

1. Prepare a summary table

Biological metabolism	Electron acceptor	End products	Relative synthesis yield
Aerobic	Oxygen	$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	Decreasing
Fermentation	Organic compound	Volatile fatty acid	Decreasing
Methanogenesis	CO_{2}	Methane	Decreasing

The bacteria metabolic end products are less oxidized compounds as the electron acceptor goes from oxygen to an organic compound and to CO_{2}. Thus, the energy available from the organic substrate utilized decreases. The cell yield per unit of substrate used is less in the direction indicated above, as a certain amount of energy is needed per unit of cell production and less energy is available per g substrate COD used.

PROBLEM 7-14

Problem statement - see text, page 676

Solution for diameter $=1 \mu \mathrm{~m}$

1. Cells are assumed spherical so that the mass per cell can be estimated using the volume of a sphere and specific gravity of the cells.
a. Volume of a sphere $=\frac{4}{3} \pi r^{3}=\frac{\pi D^{3}}{6}$

Volume $=\frac{\pi}{6}\left(1 \times 10^{-6} \mathrm{~m}\right)^{3}=0.524 \times 10^{-18} \mathrm{~m}^{3} /$ cell
Specific gravity for cell ~ 1.0

$$
\begin{aligned}
\text { Mass } / \text { cell } & =\left(0.524 \times 10^{-18} \mathrm{~m}^{3}\right)\left(1.0 \mathrm{~g} / \mathrm{cm}^{3}\right)(1000 \mathrm{mg} / \mathrm{g})(100 \mathrm{~cm} / \mathrm{m})^{3} \\
& =0.524 \times 10^{-9} \mathrm{mg} / \text { cell }
\end{aligned}
$$

b. $\quad 1 \mathrm{~L} @ 100 \mathrm{mg}$ VSS / L = 100 mg VSS cell mass

Organic mass/cell @ 90\% volatile (given)

$$
\text { Number cells }=\frac{100 \mathrm{mg}}{\left(0.90 \frac{\mathrm{~g} \mathrm{VSS}}{\mathrm{~g} \text { cell }}\right)\left(0.524 \times 10^{-9} \frac{\mathrm{mg}}{\mathrm{cell}}\right)}=2.12 \times 10^{11} \text { cells }
$$

PROBLEM 7-15

Problem statement - see text, page 676

Solution for generation time of $\mathbf{2 0} \mathbf{~ m i n}$

1. Using the generation time given, the maximum specific growth rate can be determined and used in zero-order growth rate model to obtain the population size versus time.

Generation time $=$ time to double population
Cells are growing at their maximum specific growth rate, thus:
$\frac{\mathrm{dN}}{\mathrm{dt}}=\mu_{\mathrm{m}} \mathrm{N} \quad$ (N equals number of cells)
Given that $\mathrm{N}=20$ at time $=0$
Integrate from $t=0$ to $t=t$
$N=N_{o} e^{\mu_{m} t}$
At 1 generation time $\mathrm{N}=2 \mathrm{~N}_{\mathrm{o}}$
$2 N_{o}=N_{o} e^{\mu_{m}(20 \mathrm{~min})}$
In $2=\mu_{m}(20 \mathrm{~min})(1 \mathrm{~h} / 60 \mathrm{~min})=\mu_{\mathrm{m}}(0.333) \mathrm{h}$
$\mu_{\mathrm{m}}=\ln 2 / 0.333 \mathrm{hr}=2.0815 / \mathrm{h}$
$N=N_{o} e^{2.08(t)}=20 e^{2.08(t)}$
At 12 hrs, $N=20 e^{2.08(12)}=1.409 \times 10^{12}$ cell
From Problem 7-13, the mass/cell $=0.524 \times 10^{-9} \mathrm{mg} /$ cell, thus
mg VSS $=1.409 \times 10^{12}$ cells $(0.90 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS})\left(0.524 \times 10^{-9} \mathrm{mg} /\right.$ cell $)$

$$
=0.66 \times 10^{3} \mathrm{mg}=660 \mathrm{mg}
$$

PROBLEM 7-16

Problem statement - see text, page 676

Solution (data set \#1)

1. Define equations for substrate utilization and growth and solve with computer spreadsheet.
a. Substrate utilization; modify Eq. (7-24) for ammonia-N oxidation:

$$
r_{s u}=\left[\frac{\mu_{N, \max } N}{Y_{N}\left(K_{N}+N\right)}\right]\left(\frac{S_{o}}{K_{o}+S_{o}}\right) X_{N}
$$

$\mathrm{N}=\mathrm{NH}_{3}-\mathrm{N}$ concentration, mg / L
So = Dissolved oxygen concentration, mg/L
Values for K_{N} and K_{0} are given in table of inputs for problem
$\mu_{\mathrm{N}, \max }=0.60 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}=0.025 / \mathrm{h}$
$\mathrm{K}_{\mathrm{N}}=0.50 \mathrm{mg} / \mathrm{L}, \mathrm{K}_{\mathrm{o}}=0.50 \mathrm{mg} / \mathrm{L}, \mathrm{Y}_{\mathrm{N}}=0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH} 33$ - N oxidized
b. Net cell growth, Eq. (7-21)

$$
\begin{aligned}
& r_{X}=Y_{N} r_{s u}-b X_{N} \\
& b=0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d}=0.00333 / \mathrm{h}
\end{aligned}
$$

2. Develop a spreadsheet solution. The substrate $\left(\mathrm{NH}_{3}-\mathrm{N}\right)$ concentration and biomass concentration are solved at incremental times using the Euler numerical method. A time increment of 0.25 hours is used in an Excel spreadsheet for this solution. Other time increments may be acceptable.
a. Ammonia- $\mathrm{N}(\mathrm{N}$, where, $\mathrm{t}=$ time, h$)$

$$
\begin{aligned}
& N_{t}=N_{t-1}-r_{s u}(\Delta t) \\
& N_{t}=N_{t-1}-\Delta t\left[\frac{\mu_{N, \max } N_{t-1}}{Y_{N}\left(K_{N}+N_{t-1}\right)}\right]\left[\frac{S_{0}}{K_{0}+S_{o}}\right] X_{N, t-1} \\
& N_{t}=N_{t-1}-\Delta t\left[\frac{0.025\left(N_{t-1}\right)}{0.12\left(0.5+N_{t-1}\right)}\right]\left[\frac{3.0}{(0.5+3.0)}\right]\left(X_{N, t-1}\right)
\end{aligned}
$$

b. Ammonia-oxidizing bacteria (X_{N}, where, $\mathrm{t}=$ time, h)

$$
X_{N, t}=X_{N, t-1}+r_{x}(\Delta t)
$$

$$
\begin{aligned}
& X_{N, t}=X_{N, t-1}+\left\{\left[\frac{\mu_{N, \max } X_{N, t-1} N_{t-1}}{\left(K_{N}+N_{t-1}\right)}\right]\left[\frac{S_{0}}{K_{0}+S_{0}}\right]-b\left(X_{N, t-1}\right)\right\} \Delta t \\
& X_{N, t}=X_{N, t-1}+\left\{\left[\frac{0.025 X_{N, t-1} N_{t-1}}{\left(0.5+N_{t-1}\right)}\right]\left[\frac{S_{0}}{0.5+S_{0}}\right]-0.00333\left(X_{N, t-1}\right)\right\} \Delta t
\end{aligned}
$$

Solve on excel spreadsheet, $N_{o}=50 \mathrm{mg} \mathrm{N} / \mathrm{L}, \mathrm{X}_{\mathrm{o}}=10 \mathrm{mg} / \mathrm{L}$
use $\Delta t=0.25 \mathrm{~h}$
c. Tabulate spreadsheet results for hourly values. Only the hourly values for $\mathrm{NH}_{3}-\mathrm{N}$ and X_{N} are tabulated here.

At $0.50 \mathrm{~d}, \mathrm{NH}_{3}-\mathrm{N}=26.48 \mathrm{mg} / \mathrm{L}$ and $\mathrm{X}_{\mathrm{N}}=12.38 \mathrm{mg} / \mathrm{L}$

Time, h	$\mathrm{N},\left(\mathrm{NH}_{3}-\mathrm{N}\right), \mathrm{X}_{\mathrm{N}}\left(\begin{array}{r}\text { (Biomass) } \\ \mathrm{mg} / \mathrm{L}\end{array}\right.$ mg / L	
0.00	50.00	10.00
1.00	48.22	10.18
2.00	46.41	10.36
3.00	44.57	10.55
4.00	42.69	10.74
5.00	40.78	10.93
6.00	38.84	11.13
7.00	36.87	11.33
8.00	34.86	11.53
9.00	32.82	11.74
10.00	30.74	11.95
11.00	28.63	12.16
12.00	26.48	12.38
13.00	24.30	12.60
14.00	22.08	12.82
15.00	19.83	13.05
16.00	17.54	13.28
17.00	15.23	13.51
18.00	12.88	13.75
19.00	10.51	13.99
20.00	8.12	14.23
21.00	5.73	14.47
22.00	3.38	14.70
23.00	1.19	14.91
24.00	<0.1	~ 15.01

Plot substrate and biomass concentration versus time up through 23 hours

PROBLEM 7-17
Problem statement - see text, page 677

Solution

Analyze the growth rates for the two types of bacteria. The y axis on the curve shows the specific growth rate for bacteria A and B. Note at steady state, the specific growth rate is the inverse of the SRT
a. For Experiment I, at a high SRT (say at 10 d , the specific growth rate (μ) will be low at $0.10 \mathrm{~d}^{-1}$). At this low μ, the reactor substrate concentration as shown on the curve will be lower for A than B. Thus, the bacteria represented by A will be more competitive and will consume more substrate than B; A will grow more and dominate.
b. For Experiment II, at an SRT of 1.1 d the steady state specific growth rate will be $0.9 \mathrm{~d}^{-1}$. At this specific growth rate only B will be present. The maximum specific growth rate for A is $0.6 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$ as shown on the
curve. Thus, the bacteria can not grow fast enough to stay in the reactor at the 1.1 d SRT.

PROBLEM 7-18

Problem Statement - see text, page 677

Solution (data set \#1)

1. Determine the minimum hydraulic retention time using the kinetic coefficients. For a system with no solids recycle, $\tau=$ SRT.
a. Calculate the washout SRT at $20^{\circ} \mathrm{C}$ using Eq. (7-71)
$\frac{1}{S R T_{\min }}=Y k-b$

$$
\begin{gathered}
\frac{1}{\mathrm{SRT}_{\text {min }}}=(0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \text { phenol })(0.90 \mathrm{~g} \text { phenol } / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d}) \\
-0.10 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d}
\end{gathered}
$$

$=0.305 / \mathrm{d}$
$@ 20^{\circ} \mathrm{C}, \mathrm{SRT}=\tau=1 / 0.305=3.28 \mathrm{~d}$
b. To solve the problem for a $10^{\circ} \mathrm{C}$ temperature, first calculate the values for the coefficients, k and b using temperature coefficients given
in Eq. (1-44)
$\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}=0.90(1.07)^{10-20}=0.46$
$b=0.10(1.04)^{10-20}=0.068 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$
$\frac{1}{\mathrm{SRT}_{\text {min }}}=(0.45)(0.46)-0.068=0.137 / \mathrm{d}$
$@ 10^{\circ} \mathrm{C}, \mathrm{SRT}_{\min }=1 / 0.137=7.25 \mathrm{~d}$
c. Apply steady state equations for effluent substrate and biomass concentrations as a function of SRT. Use Eq. (7-46) for steady state effluent phenol concentration.

$$
S=\frac{K_{S}[1+b(S R T)]}{S R T(Y k-b)-1}=\frac{0.20[1+(0.10)(0.40)]}{4[0.45(0.90)-0.10]-1}
$$

$\mathrm{S}=1.27 \mathrm{mg} / \mathrm{L}\left(\mathrm{g} / \mathrm{m}^{3}\right)$ phenol
Use Eq. (7-42) for biomass concentration, $(\mathrm{SRT}=\tau)$

$$
\mathrm{X}=\frac{\mathrm{Y}\left(\mathrm{~S}_{\mathrm{O}}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}\left(\frac{\mathrm{SRT}}{\mathrm{t}}\right)=\left\{\frac{0.45(100-1.27)}{[1+(0.10) 4.0]}\right\}\left(\frac{4.0}{4.0}\right)
$$

$$
\mathrm{X}=31.7 \mathrm{mg} / \mathrm{L} \text { biomass as VSS }
$$

d. Apply COD balance to determine oxygen required, Eq. (7-61).

Note substrate concentration is as COD
$R_{0}=Q\left(S_{o}-S\right)-1.42 P_{X, \text { bio }}$
Determine COD of phenol by stoichiometric balance
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}+7 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$\frac{\mathrm{g} \mathrm{O}_{2}}{\text { g phenol }}=\frac{7(32)}{(1)[72+6+16]}=2.38 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \mathrm{P}$
$\mathrm{S}_{\mathrm{o}}=2.38\left(100 \mathrm{~g} / \mathrm{m}^{3}\right)=238 \mathrm{~g} / \mathrm{m}^{3} \mathrm{COD}$
$\mathrm{S}=2.38\left(1.27 \mathrm{~g} / \mathrm{m}^{3}\right)=3.02 \mathrm{~g} / \mathrm{m}^{3} \mathrm{COD}$
Determine $\mathrm{P}_{\mathrm{X}, \text { bio }}$ (solids wasted)
Solids are wasted via effluent flow
$P_{X, \text { bio }}=Q(X)=100 \mathrm{~m}^{3} / \mathrm{d}\left(31.7 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)$
$R_{O}=\left[\left(100 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(238-3.02) \mathrm{g} / \mathrm{m}^{3}\right]-1.42\left(100 \mathrm{~m}^{3} / \mathrm{d}\right)\left(31.7 \mathrm{~g} / \mathrm{m}^{3}\right)\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$

$$
\mathrm{R}_{0}=19.0 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}
$$

2. Solve for S, X, and R_{0} for different SRTs using previous equations for parts c and d using a computer spreadsheet. The values are as follows:

SRT, d	$\mathrm{S}, \mathrm{mg} / \mathrm{L}$	$\mathrm{X}, \mathrm{mg} / \mathrm{L}$	$\mathrm{R}_{\mathrm{o}}, \mathrm{kg} / \mathrm{d}$
3.5	4.00	32.0	18.3
4	1.27	31.7	19.0
5	0.57	29.8	19.4
6	0.39	28.0	19.7
7	0.30	26.4	20.0
8	0.25	24.9	20.2
9	0.22	23.6	20.4
10	0.20	22.5	20.6
11	0.18	21.4	20.7
12	0.17	20.4	20.9
13	0.16	19.5	21.0
14	0.15	18.7	21.1
15	0.14	18.0	21.2

PROBLEM 7-19

Problem statement - see text, page 677

Solution

1. Compute Y and b by a linear regression to values calculated for 1/SRT and $r_{\text {su }}$ in Eqs. (7-39) and (7-40)

$$
\begin{aligned}
& \frac{1}{\text { SRT }}=Y\left(\frac{r_{\text {su }}}{X}\right)-b \\
& r_{\text {su }}=\frac{Q\left(S_{o}-S\right)}{V}
\end{aligned}
$$

Test no.	SRT, d	$1 / S R T, d^{-1}$	$r_{\text {sul }} / X, d^{-1}$
1	3.1	0.323	0.591
2	2.1	0.476	0.806
3	1.6	0.625	1.081
4	0.8	1.250	1.999
5	0.6	1.667	2.707

1. Determine Y and b from a linear fit of $\frac{1}{S R T}$ versus $r_{\text {su }} / X$ as shown on the following plot

Specific substrate utilization rate, $\mathrm{U}, \mathrm{g} / \mathrm{g} \cdot \mathrm{d}$

From graphs and linear fit: $\quad b=0.05 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$

$$
\mathrm{Y}=0.64 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}
$$

2. Use Eq. (7-12) to determine k and K_{s} from the data.

$$
\mathrm{r}_{\mathrm{su}}=\frac{\mathrm{kXS}}{\mathrm{~K}_{\mathrm{s}}+\mathrm{S}}
$$

$\frac{r_{\text {su }}}{X}=\frac{\mathrm{kS}}{\mathrm{K}_{\mathrm{s}}+\mathrm{S}}, U=\frac{\mathrm{r}_{\text {su }}}{\mathrm{X}}$, specific substrate utilization rate
$U=\frac{k S}{K_{s}+S}$ and
$\frac{1}{U}=\left(\frac{K s}{k}\right)\left(\frac{1}{S}\right)+\frac{1}{k}$

SRT (d)	$1 / \mathrm{U}(\mathrm{d})$	$1 / \mathrm{S}(\mathrm{L} / \mathrm{mg})$
3.1	1.691	0.100
2.1	1.240	0.070
1.6	0.925	0.048
0.8	0.500	0.020
0.6	0.369	0.010

4. Plot $1 / \mathrm{U}$ vs. $1 / \mathrm{S}$

From data fit

$$
\begin{aligned}
& \frac{1}{\mathrm{k}}=0.21, \mathrm{k}=4.76 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \frac{\mathrm{~K}_{\mathrm{S}}}{\mathrm{k}}=14.8 \\
& \mathrm{~K}_{\mathrm{S}}=14.8(4.76)=70.5 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

5. Now calculate μ_{m} from Eq. (7-16).

$$
\mu_{\mathrm{m}}=\mathrm{Yk}=0.64(4.76)=3.05 \mathrm{~d}
$$

Note: calculate the sludge production
Eq. (7-21):
$r_{x}=\mathrm{Yr}_{\text {su }}-\mathrm{bx}$
$r_{\text {su }}=\frac{Q\left(S_{0}-S\right)}{V}, \frac{V}{Q}=\tau$
$\mathrm{r}_{\mathrm{x}}=\mathrm{Y} \frac{Q\left(S_{0}-S\right)}{V}-\mathrm{bx}$
$r_{x}=Y \frac{\left(S_{0}-S\right)}{\tau}-\mathrm{bx}, \mathrm{g} / \mathrm{m}^{3}-\mathrm{d}$
this is the production in $\mathrm{g} / / \mathrm{d}$ per unit of reactor volume can not get it in g/d because flowrate and volume were not given
Another approach you can take is to calculate the amount of solids per unit flow eq. for X :
$X=\frac{Q Y\left(S_{0}-S\right) S R T}{(1+b S R T) V}$
$P_{x}=\frac{V X}{S R T}$, multiply the above eq. by V/SRT
$\frac{P_{x}}{Q}=\frac{Y\left(S_{0}-S\right)}{(1+\mathrm{bSRT})}$

	SRT	So	S	X	HRT	Y	b	r_{x}	Px / Q
Test	d	So, mg/L	mg / L	mg / L	d	gVSS/gCOD	g/g-d	$\mathrm{mg} / \mathrm{L}-\mathrm{d}$	$\mathrm{g} / \mathrm{m}^{3}$
1	3.1	400	10.0	3950	0.167	0.64	0.05	1297.1	216.1
2	2.1	400	14.3	2865	0.167	0.64	0.05	1334.8	223.3

3	1.6	400	21.0	2100	0.167	0.64	0.05	1347.4	224.6
4	0.8	400	49.5	1050	0.167	0.64	0.05	1290.7	215.7
5	0.6	400	101.6	660	0.167	0.64	0.05	1110.5	185.4

The sludge production increases as the SRT is increased from 0.80 to 1.6 days because the growth from the increase in the amount of COD removed is greater than the loss by endogenous decay. But for 2.1 days and higher the loss by endogenous decay is more than the growth from additional substrate removal, so the sludge production rate decreases with the higher SRT.

PROBLEM 7-20

Problem statement - see text, page 678

Solution

1. Determine the pertinent equations to compute Y and b .
$r_{X}=Y r_{s u}-b X$
$\frac{r_{X}}{X}=Y\left(\frac{r_{\text {su }}}{X}\right)-b$
$\frac{r_{x}}{X}=Y(U)-b$

$\frac{r_{X}}{X}, d^{-1}$	U, d^{-1}
0.0468	0.17
0.1619	0.41
0.1856	0.40
0.5398	1.09

3. Prepare a linear fit of a plot of r_{X} / X versus U to determine Y and b.

From plot $\quad \mathrm{Y}=0.54 \mathrm{~g}$ VSS/g BOD
$\mathrm{b}=0.043 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$

PROBLEM 7-21

Problem statement - see text, page 678

Solution (for data set \#1)

1. Determine SRT from aeration basin solids inventory and solids wasting rate

Eq. (7-56) $P_{X, V s s}=\frac{\left(X_{\text {VSS }}\right)(V)}{S R T}$
$P_{X, V S S}=\left(59 \mathrm{~m}^{3} / \mathrm{d}\right)\left(8000 \mathrm{~g} / \mathrm{m}^{3}\right)=472,000 \mathrm{~g} / \mathrm{d}$
???SRT $=\frac{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1000 \mathrm{~m}^{3}\right)}{472,000 \mathrm{~g} / \mathrm{d}}=6.36 \mathrm{~d}$
2. Determine oxygen required from COD balance.

Eq. (7-61) $\mathrm{R}_{\mathrm{O}}=\mathrm{Q}\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{X}, \text { bio }}$
Influent wastewater is all soluble so $\mathrm{P}_{\mathrm{x}, \mathrm{bio}}=\mathrm{P}_{\mathrm{x}, \text { vss }}$
$R_{0}=\left\{\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)[(400-5) \mathrm{mg} / \mathrm{L}]-[1.42(472,000 \mathrm{~g} / \mathrm{d})]\right\}\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$R_{0}=1304.8 \mathrm{~kg} / \mathrm{d}$
3. Divide the oxygen consumption rate in kg / d by the aeration tank volume to obtain the OUR, assuming steady state conditions

OUR $=\frac{\left(1304.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)\left(10^{6} \mathrm{mg} / \mathrm{kg}\right)}{\left(1000 \mathrm{~m}^{3}\right)\left(1000 \mathrm{~L} / \mathrm{m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}=54.4 \mathrm{mg} / \mathrm{L} \cdot \mathrm{h}$

PROBLEM 7-22

Problem Statement - see text, p. 678

Solution (for MLSS = $\mathbf{2 8 0 0} \mathbf{~ m g / L) ~}$

1. Determine the SRT from the aeration basin inventory and sludge removal daily from system via effluent and wasting for a process with a MLSS concentration of $2800 \mathrm{mg} / \mathrm{L}$.

Eq. (7-57) $\quad \mathrm{SRT}=\frac{\left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})}{\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}}$
$P_{X, T S S}=Q_{e}\left(X_{e}\right)+Q_{w} X_{R}, Q_{e}=Q-Q_{w}$
$P_{X, T S S}=\left[(1000-85.5) \mathrm{m}^{3} / \mathrm{d}\right]\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(85.5 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)$

$$
=873,290 \mathrm{~g} / \mathrm{d}
$$

$\tau=\frac{\mathrm{V}}{\mathrm{Q}} \quad \mathrm{V}=\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d})=1000 \mathrm{~m}^{3}$
$\mathrm{SRT}=\frac{\left(2800 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1000 \mathrm{~m}^{3}\right)}{(873,290 \mathrm{~g} / \mathrm{d})}=3.2 \mathrm{~d}$
2. Determine F/M ratio ($\mathrm{g} \mathrm{BOD} / \mathrm{g}$ MLVSS • d) and BOD loading using appropriate equation and VSS/TSS ratio.
$F / M=\frac{Q S_{o}}{X V}$, Eq. (7-62)
$F / M=\frac{Q_{0}}{X V}=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1875 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(2800 \mathrm{~g} / \mathrm{m}^{3}\right)(0.80)\left(1000 \mathrm{~m}^{3}\right)}=0.84 \mathrm{~g} \mathrm{BOD} / \mathrm{g} \mathrm{MLVSS} \cdot \mathrm{d}$
$\mathrm{L}_{\text {org }}=\frac{\mathrm{QS}_{0}}{(\mathrm{~V})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}$, Eq. (7-69)
$L_{\text {org }}=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1875 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(1000 \mathrm{~m}^{3}\right)\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=1.875 \mathrm{~kg} \mathrm{BOD} / \mathrm{m}^{3} \cdot \mathrm{~d}$
3. Calculate the observed yield based on solids produced in system and amount of COD or BOD removed. Assume the concentration of effluent soluble COD and BOD is not significant.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{X}_{\mathrm{T}}, \mathrm{TSS}}=873,290 \mathrm{~g} \mathrm{TSS} / \mathrm{d} \\
& \mathrm{y}_{\mathrm{obs}, \mathrm{COD}}=\frac{(873,290 \mathrm{~g} \mathrm{TSS} / \mathrm{d})}{\left(1000 \mathrm{~m}^{3}\right)\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.29 \mathrm{~g} \mathrm{TSS} / \mathrm{g} \mathrm{COD} \\
& \mathrm{y}_{\mathrm{obs}, \mathrm{BOD}}=\frac{(873,290 \mathrm{~g} \mathrm{TSS} / \mathrm{d})}{\left(1000 \mathrm{~m}^{3}\right)\left(1875 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.47 \mathrm{~g} \mathrm{TSS} / \mathrm{g} \mathrm{BOD}
\end{aligned}
$$

4. Determine synthesis yield from Eq. (7-54) that accounts for solids production, synthesis yield, endogenous decay, and cell debris. No influent non-degradable VSS is indicated from the problem statement.

$$
P_{\mathrm{X}, \mathrm{vss}}=\frac{\mathrm{QY}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \mathrm{SRT}}{1+\mathrm{b}(\mathrm{SRT})}+\mathrm{Q}\left(\mathrm{X}_{\mathrm{Qi}}\right)
$$

For COD Basis:

$$
\begin{aligned}
0.80(873,290 \mathrm{~g} / \mathrm{d})= & \frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right) \mathrm{Y}\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[1+\left(0.10 \mathrm{~d}^{-1}\right)(3.2 \mathrm{~d})\right]} \\
& +\frac{0.15\left(0.10 \mathrm{~d}^{-1}\right)(\mathrm{Y})\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)(3.2 \mathrm{~d})}{\left[1+\left(0.10 \mathrm{~d}^{-1}\right)(3.2 \mathrm{~d})\right]}
\end{aligned}
$$

$698,632=2,272,727 Y+109,091 \mathrm{Y}$
$\mathrm{Y}=0.29 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$
For BOD Basis:
$0.80(873,290 \mathrm{~g} / \mathrm{d})=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)(\mathrm{Y})\left(1875 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[1+\left(0.10 \mathrm{~d}^{-1}\right)(3.2 \mathrm{~d})\right]}$
$+\frac{0.15\left(0.10 \mathrm{~d}^{-1}\right)(\mathrm{Y})\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1875 \mathrm{~g} / \mathrm{m}^{3}\right)(3.2 \mathrm{~d})}{\left[1+\left(0.10 \mathrm{~d}^{-1}\right)(3.2 \mathrm{~d})\right]}$
$698,632=1,420,455 Y+68,182 Y$
$\mathrm{Y}=0.47 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{BOD}$

PROBLEM 7-23

Problem Statement - see text, page 678

Solution (For SRT = $8 \mathbf{d}$)

1. Based on the reactor volume, MLSS concentration and SRT the steady state sludge production rate is calculated from Eq. (7-57).

$$
\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}=\frac{(\mathrm{X})(\mathrm{V})}{\mathrm{SRT}}=\frac{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(8000 \mathrm{~m}^{3}\right)}{8 \mathrm{~d}}=3,000,000 \mathrm{~g} / \mathrm{d}=3000 \mathrm{~kg} / \mathrm{d}
$$

2. If wasting is done from the reactor, the waste sludge concentration $=3,000$ $\mathrm{mg} / \mathrm{L}\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)$

$$
\begin{aligned}
& P_{x, \text { Tss }}=\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(Q_{w}\right)=3,000,000 \mathrm{~g} / \mathrm{d} \\
& Q_{w}=1000 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

3. If wasting is done from the recycle line, the waste sludge concentration = $10,000 \mathrm{mg} / \mathrm{L}\left(\mathrm{g} / \mathrm{m}^{3}\right)$
$P_{\mathrm{X}, \text { TSS }}=\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\mathrm{Q}_{\mathrm{w}}\right)=3,000,000 \mathrm{~g} / \mathrm{d}$
$\mathrm{Q}_{\mathrm{w}}=300 \mathrm{~m}^{3}$

PROBLEM 7-24

Problem statement - see text, page 678

Solution (For influent VSS = $\mathbf{4 0 0} \mathbf{~ m g} / \mathrm{L}$ and SRT = $\mathbf{3} \mathbf{d}$)

1. Develop mass balance equations for particulates and biomass using Eq. (720) for the particulate degradation kinetics (let $X_{s}=P$ and $X_{H}=X$). Assume that the level of soluble COD remaining from the particulate conversion is very small so that the rate of soluble COD utilization for biomass growth is equal to the rate of particulate COD conversion. Note that the SRT of the particulates is the same as that for the biomass and the suspended solids for a steady state homogenous system.
a. Particulate (P) mass balance. Let $\mathrm{P}_{\mathrm{o}}=$ influent particulate concentration and $\mathrm{P}=$ effluent particulate concentration:
$\mathrm{V} \frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{ln}-$ out +P production or utilization
$V \frac{d P}{d t}=Q P_{0}-\frac{P V}{S R T}-\frac{K_{h}(P / X) X V}{\left(K_{X}+P / X\right)}$

At steady state, $\mathrm{V} \frac{\mathrm{dP}}{\mathrm{dt}}=0$

$$
Q P_{o}=\frac{P V}{S R T}+\frac{k_{h}(P / X) X V}{\left(K_{X}+P / X\right)}
$$

b. Mass balance for biomass (X) :

$$
\begin{aligned}
& V \frac{d X}{d t}=Q X_{o}-\frac{X V}{S R T}-\frac{(Y) k_{h}(P / X) X V}{\left(K_{X}+P / X\right)}-b X \\
& Q X_{o}=0 \\
& Q P o-Q P o-\frac{P V}{S R T}=\frac{k_{h}(P / X) X V}{\left(K_{X}+P / X\right)}
\end{aligned}
$$

At steady state and substituting for $r_{s c, P}$

$$
\begin{aligned}
& 0=-\frac{X V}{S R T}+Y\left(Q P_{o}-\frac{P V}{S R T}\right)-b X V \\
& \frac{X V}{S R T}+b X V=Y\left(Q P_{o}-\frac{P V}{S R T}\right) \\
& X=\frac{Y\left(Q P_{o}-\frac{P V}{S R T}\right) S R T}{V+b(S R T) V}
\end{aligned}
$$

2. To solve for P, the equation for X can be substituted, but first the steady state equation for P is rearranged.
$Q P_{o}-\frac{P V}{S R T}=\frac{k_{h} P V(X)}{K_{x}(X)+P}$
$\frac{Q P_{o}-\frac{P V}{S R T}}{k_{h} P V}=\frac{X}{K_{x}(X)+P}$
$\frac{k_{h} P V}{Q P_{o}-\frac{P V}{S R T}}=K_{x}+\frac{P}{X}$
$\frac{P}{X}=\frac{k_{h} P V}{Q P_{o}-\frac{P V}{S R T}}-K_{x}$

Substitute equation for X
$\frac{P[V+b(S R T) V]}{Y\left(Q P_{o}-\frac{P V}{S R T}\right) S R T}=\frac{k_{h} P V}{Q P_{o}-\frac{P V}{S R T}}-K_{x}$

Rearranging:

$$
\begin{aligned}
& \mathrm{P}=\frac{-\mathrm{K}_{\mathrm{x}} \mathrm{YQP}_{0}(S R T)}{\left.[\mathrm{V}+\mathrm{b}(S R T) \mathrm{V}]-\mathrm{k}_{\mathrm{h}} \mathrm{VY(SRT}\right)-\mathrm{K}_{\mathrm{x}} \mathrm{YV}} \\
& \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{o}}}=\frac{-\mathrm{K}_{\mathrm{x}} \mathrm{YQ}(\mathrm{SRT})}{\left.[\mathrm{V}+\mathrm{b}(S R T) \mathrm{V}]-\mathrm{k}_{\mathrm{h}} \mathrm{VY(SRT}\right)-\mathrm{K}_{\mathrm{x}} \mathrm{YV}}
\end{aligned}
$$

3. Solve for P at $P_{0}=400 \mathrm{mg} / \mathrm{L}$ and X at $\mathrm{SRT}=3 \mathrm{~d}$
$\frac{P}{P_{0}}=\frac{(-0.15 \mathrm{~g} / \mathrm{g})(0.5 \mathrm{~g} / \mathrm{g})\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)(3 \mathrm{~d})}{\left[500 \mathrm{~m}^{3}+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(3 \mathrm{~d})\left(500 \mathrm{~m}^{3}\right)\right]-\left[(2.2 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(500 \mathrm{~m}^{3}\right)(0.5 \mathrm{~g} / \mathrm{g})(3 \mathrm{~d})-\left[(0.15 \mathrm{~g} / \mathrm{g})(0.5 \mathrm{~g} / \mathrm{g})\left(500 \mathrm{~m}^{3}\right)\right.\right.}$

$$
\frac{P}{P_{o}}=0.43
$$

$$
P=0.43(400 \mathrm{mg} / \mathrm{L})=172 \mathrm{mg} / \mathrm{L}=172 \mathrm{~g} / \mathrm{m}^{3}
$$

$$
X=\frac{(0.5 \mathrm{~g} / \mathrm{g})\left[\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)-\frac{\left(172 \mathrm{~g} / \mathrm{m}^{3}\right)\left(500 \mathrm{~m}^{3}\right)}{3 \mathrm{~d}}\right] 3 \mathrm{~d}}{\left[500 \mathrm{~m}^{3}+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(3 \mathrm{~d})\left(500 \mathrm{~m}^{3}\right)\right]}
$$

$$
=1780 \mathrm{~g} / \mathrm{m}^{3}
$$

4. Compute percent removal

Percent removal $=\frac{\left(Q P_{o}-Q_{w} P_{w}\right) 100}{Q P_{o}}, Q_{w} P_{w}=\frac{V P}{S R T}$
Percent removal $=\left(1-\frac{Q_{w} P_{w}}{Q P_{o}}\right) 100=\left(1-\frac{V P}{S R T(Q) P_{o}}\right) 100$
At $P_{o}=400 \mathrm{mg} / \mathrm{L}, \mathrm{SRT}=3 \mathrm{~d}$
Percent removal $=\left[1-\frac{\left(500 \mathrm{~m}^{3}\right)\left(172 \mathrm{~g} / \mathrm{m}^{3}\right)}{(3.0 \mathrm{~d})\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)}\right] 100=96.4 \%$
5. Other solutions are tabulated below:
```
SRT,d P/Po P,mg/L X,mg/L % P removal
```

3	0.43	172	1780	96.4
5	0.37	147	2618	98.2
10	0.33	132	3967	99.2

PROBLEM 7-25

Problem statement - see text, page 679

Solution

Note that it is not necessary to carry out a numerical solution as the problem is basically asking how an increase in SRT from 10.5 d to 15 d will affect the values for the listed parameters in (a) through (f). One can assume that the temperature and DO concentration are constant. Answers are (I) for increase, (D) for decrease, and (S) for remain the same.

1. Sludge production rate (D)

The relevant relationship is shown in Eq. (7-54).

$$
\begin{gathered}
P_{X, V S S}=\frac{Q Y\left(S_{0}-S\right)}{1+b(S R T)}+\frac{\left(f_{d}\right)(b) Y Q\left(S_{0}-S\right) S R T}{1+b(S R T)}+Q\left(X_{o, i}\right) \\
\text { (A) }
\end{gathered}
$$

As SRT increases the value for (A) decreases and the value for (B) increases but (B) represents only a fraction of the solids lost by endogenous decay or decrease in A, so the net effect is a decrease in $P_{x, v s s}$.
2. Oxygen consumption rate (I).

The relevant relationships are shown in Eq. (7-61) and Eq. (7-46), and those shown in Fig. 7-13.

$$
\begin{align*}
& R_{o}=Q\left(S_{o}-S\right)-1.42 P_{x, b i o}, \text { Eq. }(7-61) \\
& S=\frac{K_{s}[1+b(S R T)]}{S R T(Y k-b)-1}, \quad \text { Eq. }(7-46) \tag{7-46}
\end{align*}
$$

As the SRT increased per Step 1, $\mathrm{P}_{\mathrm{x}, \text { bio }}(\mathrm{A}+\mathrm{B})$ decreases and the effluent bsCOD only decreases slightly from an SRT of 10.5 to 15 d (Figure 7-13). Thus, R_{o} must increase.
3. Effluent soluble biodegradable COD concentration (D)

Per Eq. (7-46) and Fig. 7-13, it will decrease slightly.
4. Aeration tank MLSS concentration (I)

The relevant relationships are Eq. (7-57) and Eq. (7-55):
$X_{\text {TSS }}=\frac{P_{\mathrm{X}, \text { TSS }}(S R T)}{V}$, Eq. (7-57)
$P_{\mathrm{X}, \mathrm{TsS}}=\frac{\mathrm{A}}{0.85}+\frac{\mathrm{B}}{0.85}+\mathrm{C}+\mathrm{Q}\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{0}\right)$, Eq. (7-55)
A, B, and C are shown in Step 1.
$\mathrm{V}=$ constant. Per Eq. (7-57), $\mathrm{X}_{\text {Tss }}$ increases in a linear proportion to SRT.
$P_{\mathrm{x}, \text { Tss }}$ decreases with SRT but less than a linear ratio, so the net effect is that $X_{\text {Tss }}$ will increase.
5. Effluent $\mathrm{NH}_{3}-\mathrm{N}$ concentration (D)

The relevant relationships are Eq. (7-46) shown in Step 2 and Fig. 7-13.
The S in Eq. $(7-46)$ is a degradable growth substrate and can be $\mathrm{NH}_{3}-\mathrm{N}$, which is oxidized by ammonia-oxidizing bacteria to nitrite. Thus, as shown in Step 3, as the SRT increases, the effluent $\mathrm{NH}_{3}-\mathrm{N}$ concentration will decrease.
6. Effluent $\mathrm{NO}_{2}-\mathrm{N}$ concentration (D)

This is for same reasons as for Step 3 and Step 5.

PROBLEM 7-26

Problem statement - see text, page 679

Solution

1. Use Eq. (7-58) to calculate observed yield and various solids fractions contributing to the yield. Assume $\mathrm{S}_{0}-\mathrm{S} \approx \mathrm{S}_{0}$

$$
\begin{aligned}
Y_{o b s}= & \frac{Y}{1+b(S R T)}+\frac{\left(f_{d}\right)(b) Y(S R T)}{1+b(S R T)}
\end{aligned}+\frac{X_{o, i}}{S_{o}-S}, \begin{aligned}
& \text { biomass } \\
& \\
& \\
& \\
& \\
& \text { cell debris } \\
&
\end{aligned}
$$

a. Prepare an example calculation for SRT = 4 d and coefficient set \#1

$$
\begin{aligned}
Y_{\text {obs }}= & \left.\frac{(0.40 \mathrm{~g} / \mathrm{g}}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(4 \mathrm{~d})]}\right)+\frac{(0.10 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(0.40 \mathrm{~g} / \mathrm{g})(4 \mathrm{~d})}{[1+0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(4 \mathrm{~d})]} \\
& +\frac{\left(100 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(300 \mathrm{~g} / \mathrm{m}^{3}\right)} \\
Y_{\text {obs }}= & 0.286+0.011+0.333=0.63
\end{aligned}
$$

b. Prepare a spreadsheet for SRTs ranging from 4 to 20 d

SRT	Biomass yield	Cell debris	Nondegradable VSS	Total yield g VSS $/ \mathrm{g} \mathrm{COD}$
4	0.286	0.011	0.333	0.63
6	0.250	0.015	0.333	0.60
8	0.222	0.018	0.333	0.57
10	0.200	0.020	0.333	0.55
12	0.182	0.022	0.333	0.54
14	0.167	0.023	0.333	0.52
16	0.154	0.025	0.333	0.51
18	0.143	0.026	0.333	0.50
20	0.133	0.027	0.333	0.49

a. Plot solids yield vs. SRT

2. Determine oxygen required and divide by COD removed to obtain $\mathrm{g} \mathrm{O}_{2} / \mathrm{g}$ COD removed
a. Determine the equation for oxygen required

$$
\begin{align*}
& R_{o}=Q\left(S_{O}-S\right)-1.42 P_{X, \text { bio }} \tag{7-61}\\
& P_{X, \text { bio }}=Y_{\text {bio }}(Q)\left(S_{o}-S\right) \\
& Y_{\text {bio }}=\frac{Y}{1+b(S R T)} \\
& R_{O}=Q\left(S_{o}-S\right)-1.42 Y_{\text {bio }}(Q)\left(S_{o}-S\right)
\end{align*}
$$

b. Determine $\mathrm{g} \mathrm{O}_{2} / \mathrm{g} \mathrm{COD}$

$$
\frac{\mathrm{g} \mathrm{O}_{2}}{\mathrm{gCOD}}=\frac{\mathrm{R}_{\mathrm{o}}}{Q\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)}=1-1.42 \mathrm{Y}_{\text {bio }}
$$

c. Prepare a spreadsheet $\left(Y_{\text {bio }}=Y_{\text {biomass }}+Y_{\text {cell debris }}\right)$

SRT	$\mathrm{Y}_{\text {bio }}$	$\mathrm{g} \mathrm{O}_{2} / \mathrm{g}$ COD
4	0.297	0.58
6	0.265	0.62
8	0.240	0.69
10	0.220	0.71
12	0.204	0.71
14	0.190	0.73
16	0.179	0.75
18	0.169	0.76
20	0.160	0.77

d. Plot oxygen demand vs. SRT

PROBLEM 7-27

Problem Statement - see text, page 679

Solution

1. Combine Eqs. $(7-54),(7-55)$, and $(7-57)$ to obtain the aeration tank volume and use Eq. (7-46) to determine the effluent soluble bCOD concentration value needed to solve for V, given $X_{\text {Tss }}$.

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})=\frac{\mathrm{QY}\left(\mathrm{~S}_{0}-\mathrm{S}\right)(\mathrm{SRT})}{[1+\mathrm{b}(\mathrm{SRT})](0.85)}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{~S}_{0}-\mathrm{S}\right)(\mathrm{SRT})(\mathrm{SRT})}{[1+\mathrm{b}(\mathrm{SRT})](0.85)} \\
& \quad+\mathrm{QX} \mathrm{X}_{\mathrm{o}, \mathrm{i}}(\mathrm{SRT})+\mathrm{Q}\left(\mathrm{TSS}_{\mathrm{o}}-\mathrm{VSS}_{\mathrm{o}}\right)(\mathrm{SRT}) \\
& \mathrm{S}=\frac{\mathrm{K}_{\mathrm{s}}[1}{[(\mathrm{SRT})(\mathrm{Yk}(\mathrm{SRT})]}
\end{aligned}
$$

a. Solve for S.

As indicated by the problem statement, the influent contains soluble BOD, no degradable VSS, and no inorganic suspended solids (TSS VSS). The SRT is given and $\mathrm{Yk}=\mu_{\mathrm{m}}$, therefore:

$$
\mathrm{S}=\frac{20 \mathrm{~g} / \mathrm{m}^{3}[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]}{[(10 \mathrm{~d})(2.5 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})-(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})]-1}=1.7 \mathrm{~g} / \mathrm{m}^{3}=1.7 \mathrm{mg} \mathrm{COD} / \mathrm{L}
$$

b. Solve for S_{o} for wastewater \#1.

As the coefficients are given in terms of bCOD, the influent $\left(\mathrm{S}_{\mathrm{o}}\right)$ must be converted to bCOD.
$\mathrm{S}_{\mathrm{o}}=(1.6 \mathrm{mg} \mathrm{bCOD} / \mathrm{mg}$ BOD $)(800 \mathrm{mg} / \mathrm{L}$ BOD $)=1280 \mathrm{mg} \mathrm{bCOD} / \mathrm{L}$
c. Solve for V.

$$
\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right) \mathrm{V}=\frac{\left.\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right)\right](10 \mathrm{~d})}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})](0.85)]}
$$

$+\frac{\left.(0.10 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.45 \mathrm{~g} / \mathrm{g})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right)\right](10 \mathrm{~d})^{2}}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(10 \mathrm{~d})](0.85)]}$
$+\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)(10 \mathrm{~d})$

$$
\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right) \mathrm{V}=22,888,435 \mathrm{~g} / \mathrm{m}^{3}\left(\mathrm{~m}^{3}\right)
$$

$$
V=9,155 \mathrm{~m}^{3}
$$

2. Determine the amount of waste solids using Eq. (7-57)

$$
P_{\mathrm{x}, \mathrm{TSS}}=\frac{\mathrm{X}_{\text {TSS }}(\mathrm{V})}{\text { SRT }}=\frac{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(9155 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{10 \mathrm{~d}}=2,288.8 \mathrm{~kg} / \mathrm{d}
$$

3. Determine the oxygen requirement using Eq. 7-61
$R_{0}=Q\left(S_{0}-S\right)-1.42 P_{X, \text { bio }}$, where $P_{X, \text { bio }}$ is determined from terms A and B in Eq. (7-54)

$$
P_{X, \text { bio }}=\frac{Q Y\left(S_{0}-S\right)}{1+b(S R T)}+\frac{\left(f_{\mathrm{f}}\right)(b) Y Q\left(S_{0}-S\right) S R T}{1+b(S R T)}
$$

$P_{X, \text { bio }}=\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right]}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(10 \mathrm{~d})]}$
$+\frac{(0.10 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.45 \mathrm{~g} / \mathrm{g})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right](10 \mathrm{~d})}{[1+0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(10 \mathrm{~d})]}$
$=1,265,517 \mathrm{~g} / \mathrm{d}$
$R_{0}=\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right]-(1.42)(1,265,517 \mathrm{~g} / \mathrm{d})$
$=3,316,165 \mathrm{~g} / \mathrm{d}=3316 \mathrm{~kg} / \mathrm{d}$
Volumetric oxygen uptake rate $=R_{0} / V$

$$
\begin{aligned}
& =(3,316,165 \mathrm{~g} / \mathrm{d}) /\left(9155 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / \mathrm{d}) \\
& =15.1 \mathrm{~g} / \mathrm{m}^{3} \cdot \mathrm{~h}=15.1 \mathrm{mg} / \mathrm{L} \cdot \mathrm{~h}
\end{aligned}
$$

4. Determine the effluent soluble BOD concentration from the effluent soluble bCOD concentration.

$$
\begin{aligned}
\text { Effluent sBOD } & =1.7 /(1.6 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{BOD}) \\
& =1.1 \mathrm{mg} / \mathrm{L} \mathrm{sBOD}
\end{aligned}
$$

5. Determine the return sludge recycle ratio by mass balance, accounting for the solids entering and leaving the final clarifier, where return sludge flow = Q_{R} and the recycle ratio, $R=Q_{R} / Q$ (ignore solids wasting which is a small fraction of rate of solids mass)

Rate of mass in = Rate of mass out
$\left(Q_{R}+Q\right)(2500 \mathrm{mg} / \mathrm{L})=\mathrm{Q}_{\mathrm{R}}(8000 \mathrm{mg} / \mathrm{L})+\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{R}}\right)(15 \mathrm{mg} / \mathrm{L})$
$(R+1)(2500 \mathrm{mg} / \mathrm{L})=R(8000 \mathrm{mg} / \mathrm{L})+(1-R)(15 \mathrm{mg} / \mathrm{L})$
Solving for $R: R=0.45$
4. Determine the MLVSS/MLSS ratio by first calculating the MLVSS concentration by combining Eqs. (7-54) and (7-56).

MLVSS $=P_{X, V S S}(S R T) / V$

$$
\left.\begin{array}{rl}
P_{X, V S S} & =\frac{Q Y\left(S_{o}-S\right)}{1+b(S R T)}+\frac{\left(f_{d}\right)(b) Y Q\left(S_{o}-S\right) S R T}{1+b(S R T)}+Q\left(X_{o, i}\right) \\
\text { MLVSS } & =\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right](10 \mathrm{~d})}{\left.[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]\left(9155 \mathrm{~m}^{3}\right)\right]} \\
& +\frac{(0.10 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}))(0.45 \mathrm{~g} / \mathrm{g})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(1280-1.7) \mathrm{g} / \mathrm{m}^{3}\right)(10 \mathrm{~d})^{2}}{\left.[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]\left(9155 \mathrm{~m}^{3}\right)\right]} \\
& +\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)(10 \mathrm{~d})}{9155 \mathrm{~m}^{3}}=2256 \mathrm{~g} / \mathrm{m}^{3}
\end{array}\right\}
$$

5. Determine the N and P requirements, based on the biomass produced/day. $P_{X, \text { bio }}=1,265,567 \mathrm{~g} / \mathrm{d}$
a. $\quad \mathrm{N}$ required $=0.12 \mathrm{~g} \mathrm{~N} / \mathrm{g}$ biomass

$$
=(0.12)(1,265,562 \mathrm{~g})=151,862 \mathrm{~g}
$$

Based on influent flow $=151,862 \mathrm{~g} /(4000 \mathrm{~m} 3 / \mathrm{d})=37.97 \mathrm{mg} / \mathrm{L} \cdot \mathrm{d}$ Influent flow TKN = $30 \mathrm{mg} / \mathrm{L}$, so nitrogen must be added at $8 \mathrm{mg} / \mathrm{L}$ as N.
c. Prequired $=0.02 \mathrm{~g} \mathrm{P} / \mathrm{g}$ biomass

$$
=0.02(1,265,567 \mathrm{~g})=25,310 \mathrm{~g} / \mathrm{d}
$$

Based on influent flow $=25,310 \mathrm{~g} /\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)=6.33 \mathrm{mg} / \mathrm{L}$
There is sufficient P in the influent $(8 \mathrm{mg} / \mathrm{L})$.

PROBLEM 7-28

Problem statement - see text, page 680

Solution

1. The PAC is not biodegradable and will not ignite at the temperature $\left(550^{\circ} \mathrm{C}\right)$ used for the VSS test, so it can be treated as a solids equivalent to an inorganic material or non-volatile TSS. The solution in Problem 7-27 is modified by adding the solids produced from the PAC.
$P_{X, P A C}=Q\left(T S S_{o}\right)=4000(50)=200,000 \mathrm{~g} / \mathrm{d}$
The sludge production as TSS in Problem 7-27 was $2288.8 \mathrm{~kg} / \mathrm{d}=$ 2,288,800 g/d
The new sludge production $P_{X, T S S}=2,288,800+200,000=2,488,800 \mathrm{~g} / \mathrm{d}$ $=2488.8 \mathrm{~kg} / \mathrm{d}$
2. The MLSS concentration is determined from the definition of solids wasting at steady state [Eq. (7-57)]:
$\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}=\frac{\mathrm{X}_{\mathrm{TSS}}(\mathrm{V})}{\mathrm{SRT}}$
MLSS $=X_{T S S}=P_{X, T S S}(S R T) / V=\frac{(2,488,800 \mathrm{~g} / \mathrm{d})(10 \mathrm{~d})}{9155 \mathrm{~m}^{3}}=2719 \mathrm{mg} / \mathrm{L}$
MLVSS in Problem 7-27 = $2256 \mathrm{mg} / \mathrm{L}$
MLVSS/MLSS $=(2256 \mathrm{mg} / \mathrm{L}) /(2719 \mathrm{mg} / \mathrm{L})=0.83$

Book Problem 7-29

Problem Statement - see text, page 680

Solution

1. The aeration capacity must equal the oxygen required per Eq. (7-61).

Equate the aeration capacity to the oxygen required and solve for SRT.
Assume $\mathrm{f}_{\mathrm{d}}=0.10 \mathrm{~g}$ VSS $/ \mathrm{g}$ VSS. (Note that nitrification is assumed
insignificant.) Solve for wastewater \#1.
Aeration capacity $=R_{0}=Q\left(S_{0}-S\right)-1.42 P_{X, \text { bio }}$
Assume $\mathrm{S}_{\mathrm{o}}-\mathrm{S} \approx \mathrm{S}_{0}$
$R_{0}=52 \mathrm{~kg} / \mathrm{h}(24 \mathrm{~h} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=1,248,000 \mathrm{~g} / \mathrm{d}$
$P_{X, \text { bio }}=\frac{Q Y\left(S_{0}-S\right)}{1+b(S R T)}+\frac{\left(f_{d}\right)(b) Y Q\left(S_{o}-S\right) S R T}{1+b(S R T)}$
$1,248,000 \mathrm{~g} / \mathrm{d}=\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(300 \mathrm{~g} / \mathrm{m}^{3}\right)$
$-1.42\left[\begin{array}{l}\frac{\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.40 \mathrm{~g} / \mathrm{g})\left(300 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(\mathrm{SRT})]} \\ +\frac{(0.10 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.40 \mathrm{~g} / \mathrm{g})\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(300 \mathrm{~g} / \mathrm{m}^{3}\right) \mathrm{SRT}}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(\text { SRT })]}\end{array}\right]$
$1,248,000 \mathrm{~g} / \mathrm{d}=1,800,000 \mathrm{~g} / \mathrm{d}-\left[\frac{1,022,400}{1+0.10(\text { SRT })}+\frac{10,224(\mathrm{SRT})}{1+0.10(\mathrm{SRT})}\right]$
SRT $=10.5$ days

Note: To show effect of SRT, the oxygen required at an SRT of 15 d is $1,329,696 \mathrm{~g} / \mathrm{d}=55.4 \mathrm{~kg} / \mathrm{h}$ (an amount greater by 7%)

PROBLEM 7-30

Problem statement - see text, page 680

Solution

1. For a complete-mix reactor the mass balances for substrate and biomass are as follows, where $r_{\text {su }}=k X S$

Mass rate of change $=$ rate of mass in - rate of mass out

+ rate of generation - rate of depletion
Substrate: $\frac{d S}{d t} V=Q S_{o}-Q S-r_{\text {su }} V$
At steady state and $r_{s u}=k X S$
$Q S_{0}-Q S=k X S V$
$S_{0}-S=k X S \frac{V}{Q}=k X S \tau$
$k X S \tau+S=S_{0}$
$S=S=\frac{S_{0}}{(1+k X \tau)}$
Biomass:

$$
\frac{\mathrm{dX}}{\mathrm{dt}} \mathrm{~V}=\mathrm{QX} \mathrm{X}_{\mathrm{o}}-\frac{\mathrm{XV}}{\mathrm{SRT}}+\mathrm{Yr}_{\mathrm{su}} \mathrm{~V}-\mathrm{bXV}
$$

At steady state and $X_{0}=0$ and $r_{\text {su }}=k X S$

$$
\begin{align*}
& r_{\text {su }} V=\text { substrate utilization rate }=Q\left(S_{0}-S\right) \\
& 0=-\frac{X V}{S R T}+Y Q\left(S_{o}-S\right)-b X V \\
& X V\left(\frac{1}{S R T}+b\right)=-Y Q\left(S_{0}-S\right) \\
& X=\frac{Y Q\left(S_{0}-S\right) S R T}{[1+b(S R T)] V}=\frac{S R T}{\tau}\left[\frac{Y\left(S_{0}-S\right)}{1+b(S R T)}\right] \tag{B}
\end{align*}
$$

This equation is the same as Eq. (7-42), p. 600
2. Using $S=1.0 \mathrm{mg} / \mathrm{L}$, substitute values into Eq. (A) above and solve for X.

Substitute X into Eq. (B) above and solve for SRT.
$1.0=\frac{500}{[1+(0.504 X)(0.25)]}=\frac{500}{(1+0.126 X)}$
$X=3960.3 \mathrm{mg}$ VSS/L
$3960.3=\frac{\mathrm{SRT}}{0.25}\left[\frac{0.50(500-1.0)}{1+(0.06) \mathrm{SRT}}\right]$
$3960.3=\frac{\mathrm{SRT}(998)}{1+(0.06) \mathrm{SRT}}$
SRT $=5.2 \mathrm{~d}$

PROBLEM 7-31

Problem statement - see text, p. 650

Solution

1. Write mass balance for X (biomass concentration) and show a steady state equation to solve for X.

Rate of change $=$ rate in - rate out + rate of production - rate of depletion

$$
V \frac{d X}{d t}=Q X_{o}-Q_{E} X-\left(r_{x d}\right) V
$$

Steady state: $V \frac{d X}{d t}=0, r_{x d}=b X$
$Q X_{o}=Q_{E} X+b X V$
$\mathrm{X}_{\mathrm{o}}=\frac{\mathrm{Q}_{\mathrm{E}}}{\mathrm{Q}}(\mathrm{X})+\mathrm{bX}\left(\frac{\mathrm{V}}{\mathrm{Q}}\right), \quad \tau=\frac{\mathrm{V}}{\mathrm{Q}}$
$X_{o}=\frac{Q_{E}}{Q}(X)+b X\left(\frac{V}{Q}\right)$
$X_{o}=\left[\frac{Q_{E}}{Q}+b \tau\right] X$
$X=\frac{X_{o}}{\left[Q_{E} / Q+b \tau\right]}$
2. Write a mass balance equation for the inert suspended solids, X_{1}, and give equation to solve for X_{1}.
$V \frac{d X_{I}}{d t}=Q X_{I, 0}-Q_{E} X_{I}$
Steady state: $Q_{E} X_{I}=Q_{E} X_{I, O}$

$$
X_{I}=\left(\frac{Q}{Q_{E}}\right) X_{I, O}
$$

3. $\mathrm{SRT}=$ mass present / mass wasted per day
$\mathrm{SRT}=\frac{\mathrm{V}(\mathrm{X})}{\mathrm{Q}_{\mathrm{E}}(\mathrm{X})}, \quad \mathrm{SRT}=\frac{\mathrm{V}}{\mathrm{Q}_{\mathrm{E}}}$
4. Solve for $X, X_{l, 0}$, and $S R T$ at $Q_{M}=0.5 Q$

From (1), $X=\frac{X_{0}}{\left[Q_{E} / Q+b \tau\right]}$
$Q_{E}+Q_{M}=Q, Q_{M}=0.50 Q$
$Q_{E}=0.50 \mathrm{Q}, \tau=\mathrm{V} / \mathrm{Q}=20 \mathrm{~d}$
$X=\frac{(24 \mathrm{~g} \mathrm{VSS} / \mathrm{L})}{[(0.50 \mathrm{Q} / \mathrm{Q})+(0.10 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d})(20 \mathrm{~d})]}=9.6 \mathrm{~g} \mathrm{VSS} / \mathrm{L}$
From (2), $X_{I}=\left(\frac{Q}{Q_{E}}\right) X_{I, 0}$

$$
\mathrm{X}_{\mathrm{I}}=\left(\frac{\mathrm{Q}}{0.50 \mathrm{Q}}\right)(6 \mathrm{~g} \mathrm{VSS} / \mathrm{L})=12.0 \mathrm{~g} \mathrm{VSS} / \mathrm{L}
$$

From (3), $\mathrm{SRT}=\frac{\mathrm{V}}{\mathrm{Q}_{\mathrm{E}}}$

$$
\begin{aligned}
& \mathrm{SRT}=\frac{\mathrm{V}}{0.50 \mathrm{Q}}=2\left(\frac{\mathrm{~V}}{\mathrm{Q}}\right) \\
& \mathrm{SRT}=2(20 \mathrm{~d})=40 \mathrm{~d}
\end{aligned}
$$

PROBLEM 7-32

Problem statement - see text, p. 681

Solution

1. Use Eq. (7-84) to relate surface flux limitations between the election acceptor and electron donor:
$S_{b a}<\frac{D_{w d} v_{a} m w_{a}}{D_{w a} v_{d} m w_{d}}\left(S_{b d}\right)$
$S_{b a}=2.0 \mathrm{mg} / \mathrm{L} \mathrm{DO}$
From Example 7-4, $\frac{v_{\mathrm{a}}}{v_{\mathrm{d}}}=0.103 \mathrm{moleO}_{2} / 0.125$ mole acetate
$m w_{\mathrm{d}}=60 \mathrm{~g} / \mathrm{mole}$ acetate
$\mathrm{mw}_{\mathrm{a}}=32 \mathrm{~g} / \mathrm{mole} \mathrm{O}_{2}$
$\mathrm{S}_{\mathrm{ba}}<\frac{0.90}{2.6}\left(\frac{0.103}{0.125}\right)\left(\frac{32}{60}\right)\left(\mathrm{S}_{\mathrm{bd}}\right)$
$\mathrm{S}_{\mathrm{ba}}<0.152 \mathrm{~S}_{\mathrm{bd}}$
$\frac{2.0}{0.152}<\mathrm{S}_{\mathrm{bd}}, 13.2<\mathrm{S}_{\mathrm{bd}}$
If $S_{b d}$ is $13.2 \mathrm{mg} / \mathrm{L}$ of acetate concentration or less, the acetate removal in the biofilm is not limited by a bulk liquid DO concentration of $2.0 \mathrm{mg} / \mathrm{L}$.
For Example 7-7, at a DO $=2.0 \mathrm{mg} / \mathrm{L}$, the bulk liquid $\mathrm{NH}_{4}-\mathrm{N}$ concentration $=$ $(2.0 \mathrm{mg} / \mathrm{L}) / 2.8=0.71 \mathrm{mg} / \mathrm{L}$ or less where the reaction is not surface flux DO limited. There are two reasons why at a DO of $2.0 \mathrm{mg} / \mathrm{L}$ the $\mathrm{NH}_{4}-\mathrm{N}$
concentration must be so much lower than that for acetate to prevent surface flux limitation of the electron acceptor. These are:
2. The $\mathrm{g} \mathrm{O}_{2} / \mathrm{g}$ electron donor is much greater for $\mathrm{NH}_{4}-\mathrm{N}$ utilization compared to acetate (4.57 vs. $\left[\frac{0.103(32)}{0.125(60)}\right]$ or $0.44 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \mathrm{H}_{\mathrm{AC}}$.
3. $\mathrm{NH}_{4}-\mathrm{N}$ has a higher diffusivity coefficient than acetate.

PROBLEM 7-33

Problem statement - see text, page 681

Solution

1. To consider the possible causes for the decline in nitrification performance, summarize the factors related to nitrification kinetics and biomass growth.

| Factors affecting
 nitrification | Comment |
| :--- | :--- | | SRT and temperature | Was not changed, still at 10 d and $18^{\circ} \mathrm{C} . \mathrm{SRT}$ is long enough
 at that temperature. |
| :--- | :--- |
| Toxicity | Low pH can inhibit performance - check
 Toxicity can hinder nitrification rates - perform bioassay on
 wastewater using nitrifier enrichments
 Check to see if enough aeration is being supplied and if basin
 DO concentration is $>2.0 \mathrm{mg} / \mathrm{L}$, or has changed
 DO concentration
 Peak $\mathrm{NH}_{4}-\mathrm{N}$ loading to see if high $\mathrm{NH}_{4}-\mathrm{N}$ concentration recycle streams are
 entering system to create transient overloads and periods of
 high effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration |

PROBLEM 7-34

Problem Statement - see text, page 682

Solution

1. Determine the SRT of the aerobic system at steady state for a completely mixed activated sludge system at $20^{\circ} \mathrm{C}$ by combining Eq. (7-94) and Eq. (798) and assuming no limitation by dissolved oxygen.

$$
\frac{1}{\mathrm{SRT}}=\mu_{\max , \mathrm{AOB}}\left(\frac{\mathrm{~S}_{\mathrm{NH}_{4}}}{\mathrm{~S}_{\mathrm{NH}_{4}}+\mathrm{K}_{\mathrm{NH}_{4}}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

From Table 7-13 for AOB at $20^{\circ} \mathrm{C}$:

$$
\begin{aligned}
& \mu_{\max }=0.90 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{NH}_{4}}=0.50 \mathrm{mg} \mathrm{NH}_{3}-\mathrm{N} / \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{S R T}= & (0.90 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \circ \mathrm{~d})\left(\frac{1.0 \mathrm{mg} \mathrm{~N} / \mathrm{L}}{1.0 \mathrm{mg} \mathrm{~N} / \mathrm{L}+0.50 \mathrm{mg} \mathrm{~N} / \mathrm{L}}\right) \\
& -0.17 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \circ \mathrm{~d} \\
\frac{1}{\mathrm{SRT}}= & 0.43 \mathrm{~d}^{-1}
\end{aligned}
$$

SRT $=2.33 \mathrm{~d}$
2. Determine the SRT of the anaerobic completely mixed system at $30{ }^{\circ} \mathrm{C}$ with limitation by nitrite. The same kinetics relationship as used in Step 1 for AOB applies.

From Table 7-13 at $30{ }^{\circ} \mathrm{C}$, using average of values shown.

$$
\begin{aligned}
\mu_{\max } & =0.065 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d} \\
\mathrm{~K}_{\mathrm{NH}_{4}} & =0.085 \mathrm{mg} \mathrm{NH}_{3}-\mathrm{N} / \mathrm{L} \\
\frac{1}{\mathrm{SRT}} & =(0.065 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d})\left(\frac{1.0 \mathrm{mg} \mathrm{~N} / \mathrm{L}}{1.0 \mathrm{mg} \mathrm{~N} / \mathrm{L}+0.085 \mathrm{mg} \mathrm{~N} / \mathrm{L}}\right)-0.03 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d} \\
& =0.0299 \mathrm{~d}^{-1} \\
\mathrm{SRT} & =33.4 \mathrm{~d}
\end{aligned}
$$

PROBLEM 7-35

Problem Statement - see text, page 682

Solution

1. Compare the moles of nitrite and oxygen used for 1 mole electron transfer in Eq. 3 and Eq. 4, respectively, in Table 7-6.

Electron Acceptors:

$$
\begin{aligned}
& \frac{1}{3} \mathrm{NO}_{2}^{-}+\frac{4}{3} \mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{6} \mathrm{~N}_{2}+\frac{2}{3} \mathrm{H}_{2} \mathrm{O} \\
& \frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+\mathrm{e}^{-}=\frac{1}{2} \mathrm{H}_{2} \mathrm{O} \\
& \frac{1}{3} \mathrm{NO}_{2}^{-}=\frac{1}{4} \mathrm{O}_{2} \text { for equal moles electron acceptor } \\
& \frac{\mathrm{gO}_{2} \text { equiv }}{\mathrm{g} \mathrm{NO}_{2}-\mathrm{N}}=\frac{32(1 / 4)}{14(1 / 3)}=1.7 \frac{\mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{NO}_{2}-\mathrm{N}}
\end{aligned}
$$

PROBLEM 7-36

Problem Statement - see text, page 682

Solution

1. Provide mass balance for $\mathrm{NO}_{3}-\mathrm{N}$ removed
$\mathrm{NO}_{3}-\mathrm{N}$ is removed to provide oxygen equivalent for COD degradation and to provide N for biomass synthesis.

Eq. (7-61) where Ro = oxygen needed:
$R_{O}=Q\left(S_{O}-S\right)-1.42 P_{\text {,bio }}$
$\mathrm{NO}_{3}-\mathrm{N}$ removed $=\mathrm{NO}_{3}-\mathrm{N}$ for supply of oxygen equiv. + biomass synthesis
$\mathrm{NO}_{3}-\mathrm{N}$ removed $=\mathrm{Q}(\mathrm{No}-\mathrm{N})=\frac{\mathrm{R}_{0}}{2.86}+0.12 \mathrm{P}_{\mathrm{X}, \text { bio }}$
$\mathrm{Q}(\mathrm{No}-\mathrm{N})=\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(40.5-0.5) \mathrm{g} / \mathrm{m}^{3}=160,000 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{d}$
$160,000 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{d}=\frac{\mathrm{R}_{0}}{2.86}+0.12 \mathrm{P}_{\mathrm{X}, \text { bio }}$
$160,000 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{d}=\frac{\left[\mathrm{Q}(\mathrm{So}-\mathrm{S})-1.42 \mathrm{P}_{\mathrm{X}, \text { bio }}\right]}{2.86}+0.12 \mathrm{P}_{\mathrm{X}, \text { bio }}$
$P_{X, \text { bio }}=\frac{Q Y\left(S_{0}-S\right)}{1+b(S R T)}+\frac{\left(f_{d}\right)(b) Y Q\left(S_{0}-S\right) S R T}{1+b(S R T)}$
$160,000 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{d}=$

$$
\begin{gathered}
{\left[\mathrm{Q}\left(\mathrm{So}_{0}-\mathrm{S}\right)-1.42\left[\frac{\mathrm{QY}\left(\mathrm{~S}_{0}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \mathrm{SRT}}{1+\mathrm{S}(\mathrm{SRT})}\right]\right.} \\
2.86 \\
+0.12\left[\frac{\mathrm{QY}\left(\mathrm{~S}_{0}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{1+\mathrm{b}(\mathrm{SRT})}\right]
\end{gathered}
$$

$160,000 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{d}=$

$$
\left[\frac{\mathrm{Q}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)}{2.86}\right]+\left(\frac{-1.42}{2.86}+0.12\right)\left[\frac{\mathrm{QY}\left(\mathrm{~S}_{0}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{1+\mathrm{b}(\mathrm{SRT})}\right]
$$

2. Use information given for Y, b, f_{d}, Q, and SRT to calculate the acetate used as COD
$160,000 \mathrm{~g} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{d}=$

$$
\left[\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(\mathrm{So}-\mathrm{S}) \mathrm{g} / \mathrm{m}^{3}}{2.86}\right]
$$

$$
+\left(\frac{-1.42}{2.86}+0.12\right)\left\{\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.42 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right)}{[1+(0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}-\mathrm{d})(5 \mathrm{~d})]}+0\right\}
$$

$160,000=1398.6($ So - S $)-(0.3766)(1200)(S o-S)$
So $-\mathrm{S}=169.0 \mathrm{mg} / \mathrm{L}$ COD
3. Determine the COD of acetate and amount of acetate used
$\mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{O}_{2}=2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Acetate $_{M W}=2(12)+4(1)+2(16)=60$
$\frac{\mathrm{g} \mathrm{COD}}{\mathrm{g} \text { acetate }}=\frac{2(32)}{60}=1.067 \mathrm{~g} \mathrm{COD} / \mathrm{g}$ acetate
Acetate used $=\frac{169.0 \mathrm{mg} \mathrm{COD} / \mathrm{L}}{1.067 \mathrm{mg} \mathrm{COD} / \mathrm{mg} \text { acetate }}=158.4 \mathrm{mg} / \mathrm{L}$ acetate
4. Determine the acetate dose and amount needed, kg / d

Given effluent acetate concentration $=2.0 \mathrm{mg} / \mathrm{L}$
$($ So -2.0$)=158.4 \mathrm{mg} / \mathrm{L}$ acetate
So = dose $=160.4 \mathrm{mg} / \mathrm{L}$ acetate

Amount added per day $=\left(160.4 \mathrm{~g} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)=641,600 \mathrm{~g} / \mathrm{d}$
Amount per day $=641.6 \mathrm{~kg} / \mathrm{d}$ acetate
5. Determine the biomass production rate, kg / d

The biomass production rate is $\mathrm{P}_{\mathrm{x}, \mathrm{bio}}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{x}, \text { bio }}=\frac{\mathrm{QY}\left(\mathrm{~S}_{0}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \text { SRT }}{1+\mathrm{b}(\mathrm{SRT})} \\
& \mathrm{P}_{\mathrm{x}, \text { bio }}=\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.42 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(169.0) \mathrm{g} \mathrm{COD} / \mathrm{m}^{3}}{[1+0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}-\mathrm{d}(5 \mathrm{~d})]}+0 \\
& \mathrm{P}_{\mathrm{x}, \text { bio }}=202,800 \mathrm{~g} \mathrm{VSS} / \mathrm{d} \\
& \mathrm{P}_{\mathrm{x}, \text { bio }}=202.8 \mathrm{~kg} \mathrm{VSS} / \mathrm{d} \\
& \mathrm{P}_{\mathrm{x}, \text { bio }}=\frac{202.8 \mathrm{~kg} \mathrm{VSS} / \mathrm{d}}{0.85 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS}}=238.6 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}
\end{aligned}
$$

6. Provide a steady state mass balance for reactor biomass concentration This is a steady state completely mixed reactor so Eq. (7-42) applies

$$
X=\left(\frac{S R T}{\tau}\right)\left[\frac{Y\left(S_{0}-S\right)}{1+b(S R T)}\right]
$$

The reactor volume would have to be given to solve for X or if a concentration is assumed, the hydraulic retention time can be determined.

PROBLEM 7-37

Problem statement - see text, page 682

Solution ($100 \mathrm{mg} / \mathrm{L}$ acetate)

1. Determine the reactor MLVSS concentration by combining and using appropriate terms in Eqs. (7-56) and (7-54). With that, the amount of solids wasted can be calculated, which, in turn, is used to account for the phosphorus removed. The phosphorus removal is equal to the removal as mg / L times the flowrate. The VSS/TSS ratio is used to calculate the MLSS concentration.
$\mathrm{X}_{\mathrm{VSS}}(\mathrm{V})=\mathrm{P}_{\mathrm{X}, \mathrm{VSS}}(\mathrm{SRT})$, Eq. (7-56)
$\operatorname{MLVSS}(\mathrm{V})=\left[\frac{\mathrm{QY}\left(\mathrm{S}_{0}-\mathrm{S}\right)}{1+\mathrm{b}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{YQ}\left(\mathrm{S}_{0}-\mathrm{S}\right) \text { SRT }}{1+\mathrm{b}(\mathrm{SRT})}\right] \operatorname{SRT}$
Divide by V and assume $\mathrm{S}_{0}-\mathrm{S} \approx \mathrm{S}_{0}$
Acetate as COD $=1.07 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{H}_{\mathrm{AC}}(100 \mathrm{mg} / \mathrm{L})=107 \mathrm{mg} / \mathrm{L}$
MLVSS $=\left\{\frac{\mathrm{Y}\left(\mathrm{S}_{0}\right)}{[1+\mathrm{b}(\mathrm{SRT})] \tau}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)(\mathrm{b}) \mathrm{Y}\left(\mathrm{S}_{\mathrm{o}}\right) \mathrm{SRT}}{[1+\mathrm{b}(\mathrm{SRT})] \tau}\right\}$ SRT
$\tau=3 \mathrm{~h}\left(\frac{1 \mathrm{~d}}{24 \mathrm{~h}}\right)=0.125 \mathrm{~d}$
MLVSS $=\left\{\begin{array}{l}\frac{(0.4 \mathrm{~g} / \mathrm{g})\left(107 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(5 \mathrm{~d})](0.125 \mathrm{~d})} \\ +\frac{(0.10 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.4 \mathrm{~g} / \mathrm{g})\left(107 \mathrm{~g} / \mathrm{m}^{3}\right)(5 \mathrm{~d})}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(5 \mathrm{~d})(0.125 \mathrm{~d})}\end{array}\right\}(5 \mathrm{~d})$
MLVSS $=1198.4 \mathrm{~g} / \mathrm{m}^{3}$
g VSS/d wasted $=\frac{(\text { MLVSS }) \mathrm{V}}{\text { SRT }}$
$g P$ removed $/ d=\frac{g P}{g \text { VSS }}$ (g VSS / d wasted)
$Q(\Delta P)=g$ Premoved $/ d$
a. For anaerobic / aerobic system:

$$
\begin{aligned}
& \mathrm{Q}(\Delta \mathrm{P})=\frac{0.25(\mathrm{MLVSS}) \mathrm{V}}{\mathrm{SRT}} \\
& \begin{aligned}
\Delta \mathrm{P} & =\frac{0.25(\mathrm{MLVSS})(\mathrm{V} / \mathrm{Q})}{\mathrm{SRT}}=\frac{0.25(\mathrm{MLVSS}) \tau}{\mathrm{SRT}} \\
& =\frac{(0.25 \mathrm{~g} / \mathrm{g})\left(1198.4 \mathrm{~g} / \mathrm{m}^{3}\right) 0.125 \mathrm{~d}}{5 \mathrm{~d}}=7.5 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
\end{aligned}
$$

Premoval from influent for anaerobic/aerobic system $=7.5 \mathrm{mg} / \mathrm{L}$

$$
\text { MLSS }=\frac{(1198.4 \mathrm{mg} \text { VSS } / \mathrm{L})}{(0.65 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \text { TSS })}=1843.7 \mathrm{~g} / \mathrm{m}^{3}
$$

b. For aerobic only system

$$
\begin{aligned}
\Delta \mathrm{P} & =\frac{0.015(\mathrm{MLVSS}) \tau}{\mathrm{SRT}} \\
& =\frac{(0.015 \mathrm{~g} / \mathrm{g})\left(1198.4 \mathrm{~g} / \mathrm{m}^{3}\right)(0.125 \mathrm{~d})}{5 \mathrm{~d}}=0.45 \mathrm{~g} / \mathrm{m}^{3} \\
\text { MLSS } & =\frac{\left(1198.4 \mathrm{~g} / \mathrm{m}^{3}\right)}{0.85}=1409.9 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

PROBLEM 7-38

Problem statement - see text, page 682

Solution

1. From page 652, the molar ratios of cations to P removal are $0.28,0.26$, and $0.09 \mathrm{Mg}^{2+}, \mathrm{K}^{+}$, and Ca^{2+}, respectively. Use these ratios to determine minimum concentrations needed in the influent wastewater for $10 \mathrm{mg} / \mathrm{L} P$ removal.
mmole P removal $=(10 \mathrm{mg} / \mathrm{L}) /(31 \mathrm{mg} / \mathrm{mmole} \mathrm{P})=0.323 \mathrm{mmole} \mathrm{P} / \mathrm{L}$
$\mathrm{Mg}^{2+}=(0.323 \mathrm{mmole} \mathrm{P} / \mathrm{L})(0.28 \mathrm{mmole} \mathrm{Mg} / \mathrm{mmole} \mathrm{P})(24.2 \mathrm{mg} \mathrm{Mg} / \mathrm{mmole} \mathrm{Mg})=$ $2.2 \mathrm{mg} / \mathrm{L}$
$\mathrm{K}^{+}=(0.323 \mathrm{mmole} \mathrm{P} / \mathrm{L})(0.26 \mathrm{mmole} \mathrm{K} /$ mmole P$)(39.1 \mathrm{mg} \mathrm{K} / \mathrm{mmole} \mathrm{K})=$ $3.3 \mathrm{mg} / \mathrm{L}$
$\mathrm{Ca}^{2+}=(0.323$ mmole $\mathrm{P} / \mathrm{L})(0.09 \mathrm{mmole} \mathrm{Ca} / \mathrm{mmole} \mathrm{P})(40 \mathrm{mg} \mathrm{Ca} / \mathrm{mmole} \mathrm{Ca})=$ $1.2 \mathrm{mg} / \mathrm{L}$

PROBLEM 7-39

Problem statement - see text, page 682

Solution

a. An increase in the system SRT and occurrence of nitrification will result in less P removal for the anaerobic/aerobic process shown in Fig. 7-23 and thus the effluent P concentration will increase (I).

The reason is that nitrate in the recycle stream to the anaerobic contact zone will be used as an electron acceptor by facultative heterotrophic
bacteria as they consume influent rbCOD. They are very competitive for substrate versus the PAOs. This leaves less rbCOD for PAOs and subsequently less PAO growth and less EBPR.
b. An increase in the fraction of rbCOD from 20 to 35 percent of the influent biodegradable COD will result in more P removal by EBPR and thus the effluent P concentration will decrease (D).

The reason is that PAOs take up rbCOD in the anaerobic zone to intracellular storage and then use the stored carbon for cell growth in the aerobic zone. Thus, with an increase in influent rbCOD concentration, more PAO growth will occur, and thus more P will be removed by EBPR.
c. The higher temperature and lower pH will result in less P removal by EBPR so that the effluent P concentration will increase (I).

The reason is that the higher temperature and lower pH provides more favorable conditions for the GAOs. On page 652 it is noted that GAOs can greatly outcompete PAOs at higher temperature and lower pH .
d. The decrease in DO concentration from 2.0 to a range of 0.30 to $0.50 \mathrm{mg} / \mathrm{L}$ will result in less EBPR and thus an increase in effluent P concentration (I). The reason is that the oxidation of the stored substrate by the PAOs will be at a reduced rate due to the oxygen-limited condition. Because the system SRT is low as noted for the base case, there is not excess aeration time to off set the decreased rate of stored carbon oxidation so that the amount of PAO growth will decrease and the P release in the anaerobic zone will be less. The combined effect of less growth and less P release in the anaerobic zone will results in less EBPR.

PROBLEM 7-40

Problem statement - see text, page 683

Solution (Influent COD = 2000 mg/L)

1. Determine the amount of COD converted to methane based on the COD in minus the COD in the effluent minus the COD in the biomass produced.

$$
\begin{aligned}
\mathrm{COD}_{\text {in }}= & \mathrm{COD}_{\text {eff }}+\mathrm{COD}_{\text {cells }}+\mathrm{COD}_{\text {methane }} \\
\mathrm{COD}_{\text {eff }}= & (1-0.95) \mathrm{Q}\left(\mathrm{~S}_{\mathrm{o}}\right) \\
& =(1-0.95)\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right)=50,000 \mathrm{~g} / \mathrm{d} \\
\mathrm{COD}_{\text {in }}= & \left(500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right)=1,000,000 \mathrm{~g} / \mathrm{d} \\
\mathrm{COD}_{\text {cells }} & =1.42\left(\frac{0.04 \mathrm{~g} \mathrm{VSS}}{\mathrm{gCOD}}\right)(1,000,000-50,000) \mathrm{g} / \mathrm{d} \\
& =53,960 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

$\mathrm{COD}_{\text {methane }}=(1,000,000-50,000-53,960) \mathrm{g} / \mathrm{d}=896,040 \mathrm{~g} / \mathrm{d}$
2. Methane production is based on

$0.35 \mathrm{~L} \mathrm{CH}_{4} / \mathrm{gCOD}$ at $0^{\circ} \mathrm{C}$

CH_{4} at $0^{\circ} \mathrm{C}=(0.35 \mathrm{~L} / \mathrm{g})(896,040 \mathrm{~g} / \mathrm{d})\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)=313.6 \mathrm{~m}^{3} / \mathrm{d}$
3. Calculate the methane gas volume at $30^{\circ} \mathrm{C}$ and 1 atm

$$
V_{2}=V_{1}\left(\frac{T_{2}}{T_{1}}\right)=\frac{\left(313.6 \mathrm{~m}^{3} / \mathrm{d}\right)(273.15+30) \mathrm{K}}{(273.15) \mathrm{K}}=348 \mathrm{~m}^{3} / \mathrm{d}
$$

Total gas flow $=\frac{\left(348 \mathrm{~m}^{3} / \mathrm{d}\right)}{0.65}=535.5 \mathrm{~m}^{3} / \mathrm{d}$
4. Determine energy value at $50.1 \mathrm{~kJ} / \mathrm{g} \mathrm{CH}_{4}$ by determining CH_{4} production in g/d.
At $0^{\circ} \mathrm{C}, 22,414 \mathrm{~L} \mathrm{CH}_{4} / \mathrm{mole}, 16 \mathrm{~g} / \mathrm{mole}$
Moles $\mathrm{CH}_{4}=\left(313.6 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)(1 \mathrm{~mole} / 22,414 \mathrm{~L})(16 \mathrm{~g} / \mathrm{mole})$

$$
=223,860 \mathrm{~g} \mathrm{CH}_{4} / \mathrm{d}
$$

Energy $=\left(50.1 \mathrm{~kJ} / \mathrm{g} \mathrm{CH}_{4} /\left(223,860 \mathrm{~g} \mathrm{CH}_{4} / \mathrm{d}\right)=11,215,390 \mathrm{~kJ} / \mathrm{d}\right.$

PROBLEM 7-41

Problem statement - see text, page 683

Solution

The problem addresses two options for the processing of food waste: (1) anaerobic digestion and (2) composting.
(1) When added to a municipal anaerobic digester, it is converted to methane and carbon dioxide. A check of the literature will show that food waste is highly degradable with potential for over 90 percent conversion. About 95 percent of the COD converted will show up as methane, so a large portion of the food waste can be converted to a methane fuel. The methane can be used in place of other fuels so that the net addition of greenhouse gases from the digestion is minimized when considering it is being substituted for another fuel. There is some increase in CO_{2} emission as the digester gas typically contains 30 to 35 percent CO_{2}.
(2) In composting, a large portion of the COD is oxidized to CO_{2} and water, as it is an aerobic process. The net effect is more CO_{2} production than that from anaerobic digestion, so its greenhouse gas contribution is greater.

I would agree with the professor.

PROBLEM 7-42

Problem statement - see text, page 683

Solution

1. Literature sources should be identified and interpreted to describe syntrophic relationship between methanogenic bacteria and acid formers. If hydrogen is not utilized at a fast enough rate by the methanogens, the conversion of propionate and butyrate to acetate and hydrogen will be inhibited. The accumulation of these fatty acids will cause inhibition of methanogenic activity and a drop in pH . The direction of changes in parameters listed for this problem for such an upset condition is given in the table below.

Parameter	Change
Gas Production Rate	Decrease

Percent Methane	Decrease
VFA Concentration	Increase
pH	Decrease

PROBLEM 7-43

Problem Statement - see text, page 683

Solution

1. Substitute the first order kinetics substrate utilization relationship
$\left(r_{s u}=k S X_{s}\right)$ in the Monod term (1/Y) $\left(\mu_{m} S / K_{s}+S\right) X_{s}$ in Eq (7-156) and develop a new relationship for S_{0}.

$$
S_{o}=k S\left(X_{S}\right) \tau+K_{p} S X_{T}\left(\frac{\tau}{S R T}\right)+K_{L} a_{S} S(\tau)+S
$$

2. Because the net biomass production depends on the substrate removed for biodegradation, the specific endogenous decay rate, and the SRT, Eq. (7157) is not changed.
$X_{S}=\frac{\mathrm{Y}\left[\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right)-\mathrm{K}_{\mathrm{p}} \mathrm{SX}_{\mathrm{T}}(\tau / \mathrm{SRT})-\mathrm{K}_{\mathrm{L}} \mathrm{a}_{\mathrm{S}} \mathrm{S}(\tau)\right]}{(\mathrm{b})(\tau)+(\tau / \text { SRT })}$
3. It is not possible to develop an equation to replace Eq. (7-158) as the effluent substrate concentration S is a function of all the factors affecting its fate in the reactor. Revised Eq. (7-156) and Eq. (7-157) must be solved simultaneously to develop a solution.

PROBLEM 7-44

Problem statement - see text, page 683

Solution

1. Assuming the loss due to volatilization is negligible, solve for the substrate concentration, S, as a function of SRT [Eq. (7-158)]. Solve for SRT = $5 \mathbf{d}$.

$$
S=\frac{K_{S}[1+\mathrm{b}(\mathrm{SRT})]}{(\mathrm{SRT})\left(\mu_{\mathrm{m}}-\mathrm{b}\right)-1}=\frac{\left(0.4 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}{(5 \mathrm{~d})[(2.0-0.08) \mathrm{g} / \mathrm{g} \cdot \mathrm{~d}]-1}=0.065 \mathrm{~g} / \mathrm{m}^{3}
$$

2. Determine X_{s} using Eq. (7-157), again assuming the loss due to volatilization is negligible.

$$
\begin{aligned}
X_{S} & =\frac{Y\left[\left(S_{o}-S\right)-K_{p} S X_{T}(\tau / S R T)\right]}{(b)(\tau)+(\tau / S R T)} \\
X_{S} & =\frac{(0.6 \mathrm{~g} / \mathrm{g})\left\{\left[(5.0-0.065) \mathrm{g} / \mathrm{m}^{3}\right]-\left(0.015 \mathrm{~m}^{3} / \mathrm{g}\right)\left(0.065 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right)(0.25 \mathrm{~d} / 5 \mathrm{~d})\right\}}{(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(0.25 \mathrm{~d})+(0.25 \mathrm{~d} / 5 \mathrm{~d})} \\
& =41.4 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

3. Determine the losses due to sorption, removal in the effluent, and biodegradation:
a. Sorption and waste sludge portion in Eq. (7-156)

$$
\begin{aligned}
\mathrm{K}_{p} \mathrm{SX}_{\mathrm{T}}(\tau / \mathrm{SRT}) & =\left(0.015 \mathrm{~m}^{3} / \mathrm{g}\right)\left(0.065 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right)(0.25 \mathrm{~d})(5 \mathrm{~d}) \\
& =0.0975 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

b. Removal in effluent, $S=0.065 \mathrm{~g} / \mathrm{m}^{3}$
c. Biodegradation using the biodegradation portion in Eq. (7-156)

$$
\begin{gathered}
? ?\left(\frac{1}{\mathrm{Y}}\right)\left(\frac{\mu_{\mathrm{m}} \mathrm{~S}}{\mathrm{~K}_{\mathrm{s}}+\mathrm{S}}\right)\left(\mathrm{X}_{\mathrm{s}}\right) \tau=\left(\frac{1}{0.6 \mathrm{~g} / \mathrm{g}}\right) \frac{(2.0 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(0.065 \mathrm{~g} / \mathrm{m}^{3}\right)\left(41.4 \mathrm{~g} / \mathrm{m}^{3}\right)(0.25 \mathrm{~d})}{\left[(0.4+0.065) \mathrm{g} / \mathrm{m}^{3}\right]} \\
=4.823 \mathrm{~g} / \mathrm{m}^{3}
\end{gathered}
$$

d. Check quantities with mass balance

$$
\text { Mass balance }=(0.0975+0.065+4.832) \mathrm{g} / \mathrm{m}^{3}=5.0 \mathrm{~g} / \mathrm{m}^{3} \text { (checks) }
$$

4. Repeat calculations with μ_{m} three times greater: $\mu_{m}=6.0 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$.
$X_{S}=42.4 \mathrm{~g} / \mathrm{m}^{3}$
Sorption: $\quad=0.0294 \mathrm{~g} / \mathrm{m}^{3}$
Effluent $\quad=0.0196 \mathrm{~g} / \mathrm{m}^{3}$
Biodegradation: $=4.951 \mathrm{~g} / \mathrm{m}^{3}$
Mass balance $=(0.0294+0.0196+4.951) \mathrm{g} / \mathrm{m}^{3}=5.0 \mathrm{~g} / \mathrm{m}^{3}$ (checks)

Instructors Note: In many of the problems where constituent concentrations are used, the units mg / L and $\mathrm{g} / \mathrm{m}^{3}$ are used interchangeably to facilitate computations without introducing additional conversion factors.

PROBLEM 8-1

Problem Statement - see text, page 919

Solution

1. Use Eq. (8-4) in page 711 to obtain the bCOD concentration:

$$
\begin{aligned}
& \frac{b C O D}{U B O D}=\frac{1}{1.0-1.42 \mathrm{f}_{\mathrm{d}}\left(\mathrm{Y}_{H}\right)} \\
& \frac{\mathrm{bCOD}}{\mathrm{UBOD}}=\frac{1}{1.0-1.42(0.15 \mathrm{~g} / \mathrm{g})(0.40 \mathrm{~g} / \mathrm{g})}=1.093 \\
& \mathrm{bCOD}=1.093(180 \mathrm{mg} / \mathrm{L})=196.8 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

PROBLEM 8-2

Problem Statement - see text page 920

Solution (Wastewater 1)

1. Develop a diagram illustrating the three phases of oxygen consumption.
a. Compute the oxygen consumption for each phase.

Phase A OUR $=64 \mathrm{mg} / 0.8 \mathrm{~h}=80 \mathrm{mg} / \mathrm{h}$
Phase B OUR $=192 \mathrm{mg} / 3.2 \mathrm{~h}=60 \mathrm{mg} / \mathrm{h}$
Phase C OUR $=40 \mathrm{mg} / 2 \mathrm{~h}=20 \mathrm{mg} / \mathrm{h}$
b. Plot oxygen consumption versus time as illustrated below.

2. Compute the oxygen consumption for rbCOD and the rbCOD concentration in the wastewater.
a. Compute the rbCOD oxygen consumption. The oxygen consumed for biological uptake of the rbCOD is illustrated as the upper section of Area A in the above graph between 60 and $80 \mathrm{mg} / \mathrm{h}$. Determine that area by subtracting the uptake rate due to the activity associated with area B.
rbCOD area OUR $=(80-60) \mathrm{mg} / \mathrm{h}=20 \mathrm{mg} / \mathrm{h}$
$\mathrm{O}_{\mathrm{A}}=$ oxygen used for rbCOD uptake $=20 \mathrm{mg} / \mathrm{h}(0.8 \mathrm{~h})=16.0 \mathrm{mg}$
The total test volume was 1.0 L so the uptake concentration is 16.0 mg/L
b. Compute the rbCOD concentration in the wastewater.

The rbCOD of the wastewater sample is calculated using the equation below to account for the sample and mixed liquor volumes and the fraction of rbCOD oxidized.
i. Determine the rbCOD measured in the test from the oxygen consumed.

$$
\mathrm{O}_{\mathrm{A}} \text { used }=\mathrm{rbCOD}-\mathrm{COD}_{\text {cells }}=\left(1-\mathrm{Y}_{\mathrm{H}, \mathrm{COD}}\right) \mathrm{rbCOD}
$$

$$
\mathrm{rbCOD}=\frac{\mathrm{O}_{\mathrm{A}}}{\left(1-\mathrm{Y}_{\mathrm{H}, \mathrm{COD}}\right)}
$$

$$
Y_{\mathrm{H}, \mathrm{COD}}=0.45 \frac{\mathrm{gVSS}}{\mathrm{gCOD}}\left(1.42 \frac{\mathrm{gCOD}}{\mathrm{gVSS}}\right)=\frac{0.64 \mathrm{gCOD}}{\text { cells }} \text { gCOD}
$$

$$
\mathrm{rbCOD}=\frac{16.0 \mathrm{mg}}{(1.0-0.64)}=44.44 \mathrm{mg}
$$

ii. Determine the rbCOD concentration in the sample

The sample volume for the rbCOD used was 0.50 L

$$
\text { rbCOD concentration }=\frac{44.44 \mathrm{mg}}{0.50 \mathrm{~L}}=88.9 \mathrm{mg} / \mathrm{L}
$$

PROBLEM 8-3

Problem Statement - see text, page 920

Solution (Wastewater 1)

1. Substract the treated effluent ffCOD from the primary effluent ffCOD. rbCOD $=(90-30) \mathrm{mg} / \mathrm{L}=60 \mathrm{mg} / \mathrm{L}$

PROBLEM 8-4

Problem Statement - see text, page 920

Solution (Wastewater 1)

1. Determine the biodegradable COD (bCOD) concentration. The bCOD/BOD ratio is given as 1.6.
$\mathrm{bCOD}=1.6(B O D)=1.6(200 \mathrm{mg} / \mathrm{L})=320 \mathrm{mg} / \mathrm{L}$
2. Determine the slowly biodegradable COD (sbCOD). The sbCOD is defined as the bCOD minus the readily biodegradable COD (rbCOD).
sbCOD = bCOD $-\mathrm{rbCOD}=(320-100) \mathrm{mg} / \mathrm{L}=220 \mathrm{mg}$
3. Determine the nonbiodegradable COD (nbCOD).
$\mathrm{nbCOD}=\mathrm{COD}-\mathrm{bCOD}=(500-320) \mathrm{mg} / \mathrm{L}=180 \mathrm{mg} / \mathrm{L}$
4. Determine the nonbiodegradable soluble COD (nbsCOD). The nonbiodegradable soluble COD is equal to the activated sludge system $\mathrm{sCOD}=30 \mathrm{mg} / \mathrm{L}$
5. Determine the nonbiodegradable volatile suspended solids (nbVSS) concentration.
a. Determine the particulate nonbiodegradable COD (nbpCOD). The nbpCOD equals the nbCOD minus the nbsCOD.
The nbPCOD equals the nonbiodegradable COD minus the nbsCOD

$$
\mathrm{nbpCOD}=\mathrm{nbCOD}-\mathrm{nbsCOD}=(180-30) \mathrm{mg} / \mathrm{L}=150 \mathrm{mg} / \mathrm{L}
$$

b. Determine the nbVSS concentration.

From Eq. (8-8)

$$
\begin{aligned}
& \mathrm{VSS}_{\mathrm{COD}}=\frac{\mathrm{TCOD}-\mathrm{sCOD}}{\mathrm{VSS}}=\frac{[(500-160) \mathrm{mg} / \mathrm{L}]}{(200 \mathrm{mg} / \mathrm{L})}=1.7 \mathrm{mg} \mathrm{COD} / \mathrm{mg} \mathrm{VSS} \\
& \mathrm{nbVSS}=150 / 1.7=88.2 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

6. Determine the inert TSS (iTSS) concentration.
iTSS $=$ TSS - VSS $=220-200=20 \mathrm{mg} / \mathrm{L}$

PROBLEM 8-5

Problem Statement - see text, page 921

Solution (wastewater 1)

1. Determine the organic nitrogen for Wastewater 1 using Eq. (8-16).
$\mathrm{ON}=\mathrm{TKN}-\mathrm{NH}_{4}-\mathrm{N}$
$\mathrm{ON}=(40-25) \mathrm{mg} / \mathrm{L}=15 \mathrm{mg} / \mathrm{L}$
2. Determine the nonbiodegradable particulate organic nitrogen (nbpON).
a. Calculate the organic nitrogen content of VSS using Eq. (8-10)

$$
\begin{aligned}
& f_{N}=\frac{T K N-s O N-\left(\mathrm{NH}_{4}-\mathrm{N}\right)}{\mathrm{VSS}} \\
& \mathrm{f}_{\mathrm{N}}=\frac{[(40-5.0-25) \mathrm{mg} / \mathrm{L}]}{(180 \mathrm{mg} / \mathrm{L})}=0.056
\end{aligned}
$$

b. Calculate nbVSS
nbVSS = VSS (nbVSS fraction)
$\mathrm{nbVSS}=180 \mathrm{mg} / \mathrm{L}(0.40)=72 \mathrm{mg} / \mathrm{L}$
c. Determine nbpON using Eq. (8-11) and the results from part (a) and (b).

$$
\begin{aligned}
& \mathrm{nbpON}=\mathrm{f}_{\mathrm{N}}(\mathrm{nbVSS}) \\
& \mathrm{nbpON}=0.056(72 \mathrm{mg} / \mathrm{L})=4.03 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

3. Determine the biodegradable organic nitrogen (bON)
a. Calculate nbON using Eq. (8-18)

$$
\mathrm{nbON}=\mathrm{nbsON}+\mathrm{nbpON}
$$

nbsON value is given, and nbpON was calculated in part 2 $\mathrm{nbON}=(1.0+4.03) \mathrm{mg} / \mathrm{L}=5.03 \mathrm{mg} / \mathrm{L}$
b. Calculate biodegradable organic nitrogen (bON) using Eq. (8-17) bON = ON - nbON
$\mathrm{bON}=(15-5.03) \mathrm{mg} / \mathrm{L}=9.97 \mathrm{mg} / \mathrm{L}$

PROBLEM 8-6

Problem Statement - see text, page 921

Solution

1. Determine the aeration tank volume $\left(\mathrm{m}^{3}\right)$ for Influent BOD concentration of $120 \mathrm{mg} / \mathrm{L}$.
a. Determine the net waste sludge daily in $\mathrm{kgVSS} / \mathrm{d}$

From Figure 8-7, at $\mathrm{SRT}=6 \mathrm{~d}, \mathrm{~T}=10^{\circ} \mathrm{C}$, the observed yield $\mathrm{Y}_{\text {obs }}=0.7$ kg VSS/kg BOD
Calculate $P_{X, V S S}$ using Eq. (8-19) in page 720
Assuming $S_{0}-S \approx S_{0}$ (S is usually small compared to S_{0} at $S R T=6 d$)

$$
P_{X, V S S}=Y_{o b s} Q\left(S_{o}-S\right) \approx Y_{o b s} Q S_{o}
$$

$$
P_{X, V S S}=(0.7 \mathrm{kgVSS} / \mathrm{kg} \text { BOD })\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(120 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)
$$

$$
=504 \mathrm{~kg} / \mathrm{d}
$$

b. Calculate the aeration tank volume from Eq. (7-48) in Chap. 7

$$
\begin{aligned}
& P_{X, V S S}=\frac{X_{T} V}{S R T} \\
& V=\frac{P_{X, V S S}(S R T)}{X_{T}} \\
& V=\frac{(504 \mathrm{~kg} / \mathrm{d})(6 \mathrm{~d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)}=1210 \mathrm{~m}^{3}
\end{aligned}
$$

2. Determine the amount of sludge wasted daily in kg TSS/d using Eq. (7-48).
$P_{X, V S S}=\frac{X_{T} V}{S R T}$

$$
P_{\mathrm{X}, \text { Tss }}=\frac{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1210 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{(6 \mathrm{~d})}=605 \mathrm{~kg} / \mathrm{d}
$$

3. Determine the tank volume and daily waste sludge for SRT = 12 d
a. Determine the aeration tank volume. Calculate the amount of wasted sludge daily from Fig. 8-7, at SRT $=12 \mathrm{~d}$ and $\mathrm{T}=10^{\circ} \mathrm{C}$, the observed yield $Y_{\text {obs }}=0.6 \mathrm{~kg}$ VSS $/ \mathrm{kg}$ BOD removed

$$
\begin{aligned}
& P_{X, V S S}=Y_{o b s}(Q) S_{o} \\
& P_{X, v s s}=(0.6 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{BOD})\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(120 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& \quad=432 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

Calculate the tank volume from Eq. (7-48)

$$
\begin{aligned}
& P_{X, V S S}=\frac{X_{T} V}{\text { SRT }} \\
& V=\frac{(432 \mathrm{~kg} / \mathrm{d})(12 \mathrm{~d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)}=2074 \mathrm{~m}^{3}
\end{aligned}
$$

b. Calculate the wasted sludge daily in TSS kg/d from Eq. (7-48).

$$
\begin{aligned}
& P_{X, V S S}=\frac{X_{T} V}{S R T} \\
& P_{X, T S S}=\frac{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2074 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{(12 \mathrm{~d})}=518.5 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

PROBLEM 8-7

Problem Statement - see text, page 921

Solution

1. Develop the wastewater characteristics needed for design

Find bCOD using Eq. (8-13) in page 714
$b C O D=1.6$ (BOD)
$b C O D_{\text {inf }}=1.6(150 \mathrm{mg} / \mathrm{L})=240 \mathrm{mg} / \mathrm{L}$
$\mathrm{bCOD}_{\text {eff }}=1.6(2 \mathrm{mg} / \mathrm{L})=3.2 \mathrm{mg} / \mathrm{L}$
2. Design an activated-sludge system for BOD removal only for wastewater 1
a. Determine biomass production using parts A and B of Eq. (8-20) in page 721.
$P_{X, V S S}=\frac{Q Y_{H}\left(S_{0}-S\right)}{1+b_{H}(S R T)}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{0}-S\right) S R T}{1+b_{H}(S R T)}$
Define input data for above equation
$Q=10,000 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{Y}_{\mathrm{H}}=0.4 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD}$
$S_{0}=240 \mathrm{mg} / \mathrm{L}$
$f_{d}=0.15$
$\mathrm{b}_{\mathrm{H}}=0.08$
SRT $=6 \mathrm{~d}$
$\mathrm{S}=3.2 \mathrm{mg} / \mathrm{L}$

$$
\begin{aligned}
P_{\mathrm{X}, \mathrm{VSS}} & =\frac{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4)\left[(240-3.2) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\left(0.08 \mathrm{~d}^{-1}\right)(6 \mathrm{~d})\right]} \\
& +\frac{(0.15)(0.08)\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4)(240-3.2) \mathrm{g} / \mathrm{m}^{3}(6 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\left(0.08 \mathrm{~d}^{-1}\right)(6 \mathrm{~d})\right]} \\
& =(640 \mathrm{~kg} / \mathrm{d})+(46.08 \mathrm{~kg} / \mathrm{d}) \\
& =686.08 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

b. Calculate the O_{2} demand using Eq. (7-61) in Chap. 7.
$R_{o}=Q\left(S_{o}-S\right)-1.42 P_{X, \text { bio }}$
$\left.R_{0}=\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(240-3.2) \mathrm{g} / \mathrm{m}^{3}\right)\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)-1.42(686.08 \mathrm{~kg} / \mathrm{d})$
$R_{o}=(2368-974.2) \mathrm{kg} / \mathrm{d}=1393.8 \mathrm{~kg} / \mathrm{d}$
c. Determine the aeration tank OUR in $\mathrm{mg} / \mathrm{L} \cdot \mathrm{h}$

OUR $=\frac{R_{0}}{V}$
$\mathrm{V}=\mathrm{Q} \tau$
Define input data for above equation
$R_{0}=1393.8 \mathrm{~kg} / \mathrm{d}=58.1 \mathrm{~kg} / \mathrm{h}$
$Q=10,000 \mathrm{~m}^{3} / \mathrm{d}$

$$
\tau=4 \mathrm{~h}
$$

$$
\text { OUR }=\frac{R_{0}}{Q_{\tau}}=\frac{(158.1 \mathrm{~kg} / \mathrm{h})\left(10^{6} \mathrm{mg} / \mathrm{kg}\right)}{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})(4 \mathrm{~h})\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}
$$

$$
\text { OUR = } 34.9 \mathrm{mg} / \mathrm{L} \bullet \mathrm{~h}
$$

d. Determine the aeration tank biomass concentration (mg/L) using Eq.
(7-56) in Table 8-10

$$
\begin{aligned}
& X_{V S S}=\frac{P_{X, V S S}(S R T)}{V}=\frac{P_{X, V S S}(S R T)}{Q_{\tau}} \\
& X_{\text {bio }}=\frac{(686.08 \mathrm{~kg} / \mathrm{d})(6 \mathrm{~d})}{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(4 \mathrm{~h})(1 \mathrm{~d} / 24 \mathrm{~h})} \\
& X_{\mathrm{bio}}=2.470 \mathrm{~kg} / \mathrm{m}^{3}=2470 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

PROBLEM 8-8

Problem Statement - see text, page 922

Solution

1. Develop the wastewater characteristics needed for design for

wastewater 1.

Determine bCOD using Eq. (8-13)
$b C O D=1.6(B O D)$
$\mathrm{bCOD}_{\text {inf }}=1.6(150 \mathrm{mg} / \mathrm{L})=240 \mathrm{mg} / \mathrm{L}$
$\mathrm{bCOD}_{\text {eff }}=1.6(2.0 \mathrm{mg} / \mathrm{L})=3.2 \mathrm{mg} / \mathrm{L}$
2. Design an activated sludge system for BOD removal and nitrification
a. Determine the aeration tank O_{2} demand

Calculate $P_{X, v s s}$ using Eq (8-20), parts A, B, and C
$P_{X, V S S}=\frac{Q Y_{H}\left(S_{0}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(S R T)}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) Q Y_{H}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \operatorname{SRT}\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{\mathrm{QY}_{n}\left(\mathrm{NO}_{\mathrm{x}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})}$
b. Define data input for above equation

$$
\begin{aligned}
& \mathrm{Q}=10,000 \mathrm{~m}^{3} / \mathrm{d} \\
& \mathrm{Y}_{\mathrm{H}}=0.4 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD}
\end{aligned}
$$

$\mathrm{S}_{\mathrm{o}}=240 \mathrm{mg} / \mathrm{LbCOD}$
$\mathrm{S}=3.2 \mathrm{mg} / \mathrm{L} \mathrm{bCOD}$
$\mathrm{b}_{\mathrm{H}}=0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{gVSS} \cdot \mathrm{d}$
SRT $=15 \mathrm{~d}$
$\mathrm{f}_{\mathrm{d}}=0.1 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}$
$Y_{n}=0.18 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N}$
$b_{n}=0.12$
Assume all of the influent TKN is biodegradable
Assume 20 percent of the TKN is used for cell synthesis
$\mathrm{NO}_{\mathrm{x}}=(100 \%-20 \%)(\mathrm{TKN})-\mathrm{NH}_{4}-\mathrm{N}_{\text {eff }}=(0.80)(35)-1.0=27.0 \mathrm{mg} / \mathrm{L}$
c. Solve above equation

$$
\begin{aligned}
& P_{\mathrm{X}, \mathrm{VSS}}=\frac{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4 \mathrm{~g} / \mathrm{g})\left[(240-3.2) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\left(0.08 \mathrm{~d}^{-1}\right)(15 \mathrm{~d})\right]} \\
& +\frac{(0.1 \mathrm{~g} / \mathrm{g})\left(0.08 \mathrm{~d}^{-1}\right)\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4 \mathrm{~g} / \mathrm{g})\left[(240-3.2) \mathrm{g} / \mathrm{m}^{3}\right](15 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\left(0.08 \mathrm{~d}^{-1}\right)(15 \mathrm{~d})\right]} \\
& +\frac{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.18)\left(27.0 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\left(0.12 \mathrm{~d}^{-1}\right)(15 \mathrm{~d})\right]} \\
& \mathrm{P}_{\mathrm{X}, \mathrm{VSS}}=(430.5+51.7+17.4) \mathrm{kg} / \mathrm{d}=499.6 \mathrm{~kg} / \mathrm{d} \\
& \operatorname{Re}^{-c a l c u l a t e} \mathrm{NO}_{\mathrm{x}} \text { using Eq }(8-24) \\
& \mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q} \\
& \left.\mathrm{NO}_{\mathrm{x}}=35 \mathrm{~g} / \mathrm{m}^{3}-1.0 \mathrm{~g} / \mathrm{m}^{3}-0.12(499.6 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) 10,000 \mathrm{~m}^{3} / \mathrm{d}\right) \\
& \mathrm{NO}_{\mathrm{x}}=(34.0-6.0) \mathrm{g} / \mathrm{m}^{3}=28.0 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Re-calculate $\mathrm{P}_{\mathrm{X}, \mathrm{Vss}}$ using $\mathrm{NO}_{\mathrm{X}}=28.0 \mathrm{mg} / \mathrm{L}$
$P_{X, V S S}=(430.5+51.7+18.0) \mathrm{kg} / \mathrm{d}=500.2 \mathrm{~kg} / \mathrm{d}$
Re-calculate $\mathrm{NO}_{\mathrm{x}}=35.0-1.0-6.0 \mathrm{~g} / \mathrm{m}^{3}=28.0 \mathrm{mg} / \mathrm{L}$
$\left(\mathrm{NO}_{\mathrm{x}}=28.0 \mathrm{~g} / \mathrm{m}^{3}\right)$
Calculate O_{2} demand using Eq. (8-23)
$R_{o}=Q\left(S_{o}-S\right)-1.42 P_{X, b i o}+4.57 Q\left(N O_{X}\right)$

$$
\begin{aligned}
& P_{\mathrm{x}, \text { bio }},(\text { heterotrophs })=(430.5+51.7) \mathrm{kg} / \mathrm{d}=482.2 \mathrm{~kg} / \mathrm{d} \\
& R_{o}=\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(240-3.2) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)-1.42(482.2 \mathrm{~kg} / \mathrm{d})+ \\
& 4.57\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(28.0 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& R_{0}=2368 \mathrm{~kg} / \mathrm{d}-684.7 \mathrm{~kg} / \mathrm{d}+1279.6 \mathrm{~kg} / \mathrm{d}=2962.9 \mathrm{~kg} / \mathrm{d} \\
& R_{0}=122.9 \mathrm{~kg} / \mathrm{h}
\end{aligned}
$$

b. Determine the OUR in $\mathrm{mg} / \mathrm{L} \cdot \mathrm{h}$
$O U R=\frac{R_{0}}{Q \tau}$
Define the input data for above equation
$R_{0}=123.5 \mathrm{~kg} / \mathrm{h}$
$Q=10,000 \mathrm{~m}^{3} / \mathrm{d}$ $\tau=8 \mathrm{~h}$

OUR $=\frac{(123.5 \mathrm{~kg} / \mathrm{h})\left(10^{6} \mathrm{mg} / \mathrm{kg}\right)}{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})(8 \mathrm{~h})\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}$
OUR $=37.05 \mathrm{mg} / \mathrm{L} \cdot \mathrm{h}$
c. Determine the tank biomass concentration (mg/L) using Eq. (7-56) in

Table 8-10

$$
\begin{aligned}
& X_{\text {bio }}=\frac{P_{X, V S S}(S R T)}{V}=\frac{P_{X, V S S}(S R T)}{Q_{\tau}} \\
& X_{\text {bio }}=\frac{(500.2 \mathrm{~kg} / \mathrm{d})(15 \mathrm{~d})}{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(8 \mathrm{~h})(1 \mathrm{~d} / 24 \mathrm{~h})} \\
& X_{\text {bio }}=2.251 \mathrm{~kg} / \mathrm{m}^{3}=2251 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

c. Determine the portion of the O_{2} required that is for nitrification

$$
f_{n}=\frac{R_{o n}}{R_{o}}=\frac{(1279.6 \mathrm{~kg} / \mathrm{d})}{(2962.9 \mathrm{~kg} / \mathrm{d})}=0.43
$$

PROBLEM 8-9

Problem Statement - see text, page 922

Solution

1. Develop the wastewater characteristics needed for design

$$
\begin{aligned}
& \mathrm{bCOD}=1.6(\mathrm{BOD})[\text { Eq. }(8-13)] \\
& \mathrm{bCOD}_{\mathrm{inf}}=1.6(200 \mathrm{mg} / \mathrm{L})=320 \mathrm{mg} / \mathrm{L} \\
& \mathrm{bCOD}_{\text {eff }}=1.6(2 \mathrm{mg} / \mathrm{L})=3.2 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. Determine sludge wasted daily using Eqs. (8-20) and (8-21)

$$
\frac{Q Y_{H}\left(S_{0}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) \mathrm{QY}_{\mathrm{H}}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \text { SRT }\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}
$$

(A)
(B)
$+\frac{Q Y_{n}\left(\mathrm{NO}_{\mathrm{X}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\left(\mathrm{b}_{\mathrm{n}}\right) \text { SRT }}+\mathrm{Q}(\mathrm{nbVSS})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
(C)
(D)
a. Define the input data for above equation. For $S R T=10 \mathrm{~d}$:
$Q=15,000 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{Y}_{\mathrm{H}}=0.4 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD}$
$S_{0}=320 \mathrm{mg} / \mathrm{L} \mathrm{bCOD}$
$\mathrm{S}=3.2 \mathrm{mg} / \mathrm{L}$
$\mathrm{b}_{\mathrm{H}}=0.1 \mathrm{~g} \mathrm{VSS} / \mathrm{gVSS} \cdot \mathrm{d}$
SRT $=10 \mathrm{~d}$
$f_{d}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}$
$Y_{n}=0.18 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N}$
Assume all of influent TKN is biodegradable
NO_{x} is assumed to be 80% of $\mathrm{TKN}: \mathrm{NO}_{\mathrm{x}}=(0.8)(35)=28 \mathrm{mg} / \mathrm{L}$ $b_{n}=0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$

For Wastewater 1, nbVSS = $100 \mathrm{mg} / \mathrm{L}$
b. Determine $P_{x, v s s}$

$$
\begin{align*}
& P_{\mathrm{X}, \text { VSS }}= \frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4 \mathrm{~g} / \mathrm{g})\left[(320-3.2) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \tag{A}\\
&+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.1 \mathrm{~g} / \mathrm{g})\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4 \mathrm{~g} / \mathrm{g})[(320-3.2) \mathrm{mg} / \mathrm{L}](10 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \tag{B}\\
&+\frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.18 \mathrm{~g})\left(28 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \tag{C}\\
&+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(100 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \tag{D}\\
& \mathrm{P}_{\mathrm{X}, \mathrm{Vss}}=(950.4+142.6+34.4+1500) \mathrm{kg} / \mathrm{d}=2627.4 \mathrm{~kg} / \mathrm{d} \\
& \mathrm{P}_{\mathrm{X}, \text { Bio }}=(950.4+142.6+34.4) \mathrm{kg} / \mathrm{d}=1127.4 \mathrm{~kg} / \mathrm{d}
\end{align*}
$$

3. Use the above $P_{X, v s s}$ to re-calculate NO_{x}
$\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q}$
$\mathrm{NO}_{\mathrm{x}}=(35-0.5) \mathrm{g} / \mathrm{m}^{3}-\left[0.12(1127.4 \mathrm{~kg} / \mathrm{d}) /\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\right]\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)$
$\mathrm{NO}_{\mathrm{x}}=25.5 \mathrm{~g} / \mathrm{m}^{3}$
4. Re-calculate the VSS sludge production rate ($\mathrm{P}_{\mathrm{X}, \mathrm{vss}}$) using $\mathrm{NO}_{\mathrm{X}}=25.6 \mathrm{~g} / \mathrm{m}^{3}$
(C) $\quad \frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.18 \mathrm{~g})\left(25.5 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(10 \mathrm{~d})]}=31.3 \mathrm{~kg} / \mathrm{d}$
$P_{x, \text { VSS }}=(950.4+142.6+31.3+1500) \mathrm{kg} / \mathrm{d}=2624.3 \mathrm{~kg} / \mathrm{d}$
5. Determine sludge production rate in TSS using Eq (8-21).
$\mathrm{P}_{\mathrm{X}, \mathrm{Tss}}=\frac{\mathrm{A}}{0.85}+\frac{\mathrm{B}}{0.85}+\frac{\mathrm{C}}{0.85}+\mathrm{D}$
$\mathrm{P}_{\mathrm{X}, \text { TSS }}=\left(\frac{950.4}{0.85}+\frac{142.6}{0.85}+\frac{31.3}{0.85}+1500\right) \mathrm{kg} \mathrm{TSS} / \mathrm{d}=2822.7 \mathrm{~kg}$ TSS $/ \mathrm{d} \mathrm{kg} / \mathrm{d}$
6. Determine biomass production rate using Eq ($8-20$), part A, B, and C .
$\mathrm{P}_{\mathrm{X}, \text { bio }}=(950.4+142.6+31.3) \mathrm{kg} / \mathrm{d}=1124.3 \mathrm{~kg} / \mathrm{d}$ (note: it is close to the
value in step 3 , so further iteration for NO_{x} was not needed.)
7. Determine the TSS, VSS, and biomass production rates without accounting for cell debris production (B) and the resulting error.
a. $\quad P_{x, v s s}=A+C+D$

$$
P_{X, \text { vss }}=(950.4+31.3+1500) \mathrm{kg} / \mathrm{d}=2481.7 \mathrm{~kg} / \mathrm{d}
$$

$$
\% \text { Error }=\frac{(2624.3-2481.7) 100}{2624.3}=5.4 \%
$$

b. $\quad P_{X, B i o}=A+C$

$$
\begin{aligned}
& P_{\mathrm{X}, \text { Bio }}=(950.4+31.3) \mathrm{kg} / \mathrm{d}=981.7 \mathrm{~kg} / \mathrm{d} \\
& \% \text { Error }=\frac{(1124.3-981.7) 100}{1124.3}=12.7 \%
\end{aligned}
$$

c. $\quad P_{X, T S S}=[(950.4+31.3) / 0.85]+1500=2654.9 \mathrm{~kg} / \mathrm{d}$

$$
\% \text { Error }=\frac{(2822.7-2654.9) 100}{2822.7}=5.9 \%
$$

8. For 20 d SRT, repeat the above steps with SRT = 20 d instead of 10 d . The following table summarizes and compares the results.

SRT, d	10	20		
$P_{\text {x,vss }}$, kg/d	2624.3	2353.7		
$\mathrm{P}_{\mathrm{x}, \mathrm{Bio}}, \mathrm{kg} / \mathrm{d}$	1124.3	853.7		
$\mathrm{P}_{\mathrm{x}, \text { Tss },} \mathrm{kg} / \mathrm{d}$	2822.7	2504.4		
Without debris term		\% Error		\% Error
$P_{\text {x,vss, }} \mathrm{kg} / \mathrm{d}$	2481.7	5.4	2163.6	8.1
$\mathrm{P}_{\mathrm{x}, \mathrm{Bio}}, \mathrm{kg} / \mathrm{d}$	981.7	12.7	663.6	22.3
$\mathrm{P}_{\mathrm{x}, \mathrm{Tss}}$, kg/d	2654.9	5.9	2280.7	8.9

PROBLEM 8-10

Problem Statement - see text, page 923

Solution - for wastewater \#1

1. Sketch system and show information provided for 3-stage activated sludge system.

$\mathrm{S}_{\mathrm{S}}=\mathrm{bCOD}, \mathrm{X}_{\mathrm{H}}=$ biomass $=1500 \mathrm{mg} / \mathrm{L}$
$\mathrm{S}_{\mathrm{NH}}=\mathrm{NH}_{4}-\mathrm{N}$
$\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=2300 \mathrm{~m}^{3}$
2. Determine the total oxygen transfer rate required for bCOD removal, nitrification, and endogenous decay using Eq. (8-25) in Table 8-10.
$\mathrm{R}_{\mathrm{o}}=\mathrm{Q}_{1}\left(1-\mathrm{Y}_{\mathrm{H}}\right)\left(\mathrm{S}_{\mathrm{S}, 1}-\mathrm{S}_{\mathrm{S}, 2}\right)+\mathrm{Q}_{1}(4.57)\left(\mathrm{NO}_{2}-\mathrm{NO}_{1}\right)+1.42 \mathrm{~b}_{\mathrm{H}}\left(\mathrm{X}_{\mathrm{H}}\right) \mathrm{V}_{2}$
Note: $Y_{H}=\mathrm{g}$ COD cell/g COD used

$$
=(0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \text { COD })(1.42 \mathrm{~g} \text { COD/g VSS })=0.639
$$

$$
\mathrm{NO}_{2}-\mathrm{NO}_{1}=\mathrm{S}_{\mathrm{NH}, 1}-\mathrm{S}_{\mathrm{NH}, 2}
$$

a. Determine flow and concentration of bCOD and $\mathrm{NH}_{4}-\mathrm{N}$ entering stage 1 from combining influent and recycle flow.

$$
\begin{aligned}
& Q_{1}=Q+Q_{R}=30,000 \mathrm{~m}^{3} / \mathrm{d} \\
& Q\left(S_{S, i}\right)+Q_{R}\left(S_{S R}\right)=\left(Q+Q_{R}\right)\left(S_{S, 0}\right) \\
& \left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(320 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(0.5 \mathrm{~g} / \mathrm{m}^{3}\right) \\
& \quad=\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(\mathrm{S}_{\mathrm{s}, 0}\right) \\
& \mathrm{S}_{\mathrm{S}, \mathrm{o}}=160.25 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{Q}\left(\mathrm{~S}_{\mathrm{NH}, \mathrm{i}}\right)+\mathrm{Q}_{\mathrm{R}}\left(\mathrm{~S}_{\mathrm{NH}, \mathrm{R}}\right)=\left(\mathrm{Q}+\mathrm{Q}_{\mathrm{R}}\right)\left(\mathrm{S}_{\mathrm{NH}, \mathrm{o}}\right) \\
& \left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(30 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(0.2 \mathrm{~g} / \mathrm{m}^{3}\right) \\
& \quad=\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(\mathrm{S}_{\mathrm{NH}, 0}\right)
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{NH}, \mathrm{o}}=15.1 \mathrm{~g} / \mathrm{m}^{3}
$$

b. Determine the oxygen transfer rate for State 1 , using Eq. (8-25). $\mathrm{Q}_{1}=$ $30,000 \mathrm{~m}^{3} / \mathrm{d}$.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{o}, 1}= & \left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1-0.639)\left[(160.25-30.0) \mathrm{g} / \mathrm{m}^{3}\right] \\
& +\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(4.57)\left[(15.1-8.0) \mathrm{g} / \mathrm{m}^{3}\right] \\
& +1.42(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2300 \mathrm{~m}^{3}\right) \\
= & 1,410,607.5 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+973,410 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+489,900 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d} \\
= & \left(1,410,607.5 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& +\left(973,410 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& +\left(489,900 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
= & 58.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}+40.6 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}+20.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h} \\
\mathrm{R}_{0,1}= & 119.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}
\end{aligned}
$$

c. Determine the oxygen transfer rate for Stage 2.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{o}, 2}= & \left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1-0.639)\left[(30.0-5.0) \mathrm{g} / \mathrm{m}^{3}\right] \\
& +\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(4.57)\left[(8.0-3.0) \mathrm{g} / \mathrm{m}^{3}\right] \\
& +1.42(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2300 \mathrm{~m}^{3}\right) \\
= & 270,750 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+685,500 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+489,900 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d} \\
= & \left(270,750 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& +\left(685,500 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& +\left(489,900 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
= & 11.3 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}+28.6 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}+20.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h} \\
\mathrm{R}_{\mathrm{o}, 2}= & 60.3 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}
\end{aligned}
$$

d. Determine the oxygen transfer rate for Stage 3.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}, 3}=\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1-0.639)\left[(5.0-0.5) \mathrm{g} / \mathrm{m}^{3}\right] \\
&+\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(4.57)\left[(3.0-0.2) \mathrm{g} / \mathrm{m}^{3}\right] \\
&+1.42(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2300 \mathrm{~m}^{3}\right) \\
&= 48,735 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+383,880 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+489,900 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d} \\
&=\left(48,735 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
&+\left(383,880 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
&+\left(489,900 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
&= 2.0 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}+16.0 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}+20.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h} \\
& \mathrm{R}_{\mathrm{o}, 3}= 38.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}
\end{aligned}
$$

e. Prepare a summary table.

Oxygen transfer rate ($\mathrm{kg} \mathrm{O}_{2} / \mathrm{h}$)

Stage	bCOD removal	Nitrification	Endogenous	Total	$\%$ of total
1	58.8	40.6	20.4	119.8	55
2	11.3	28.6	20.4	60.3	28
3	2.0	16.0	20.4	38.4	17
Total	72.1	85.2	61.2	218.5	100

PROBLEM 8-11

Problem Statement - see text, pages 923-924

Solution

1. Determine the biomass production in kg / d using Eq ($8-20$), parts A and B , and assume the process is designed for BOD removal only for wastewater
2.

$P_{\mathrm{X}, \text { bio }}=\frac{Q Y_{H}\left(S_{o}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) Q Y_{\mathrm{H}}\left(\mathrm{S}_{0}-\mathrm{S}\right) S R T\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}$
a. Define input data for above equation

$$
\begin{aligned}
& Q=3000 \mathrm{~m}^{3} / \mathrm{d} \\
& \mathrm{~S}_{0}=2000 \mathrm{mg} / \mathrm{L} \text { bCOD } \\
& \mathrm{S}=5 \mathrm{mg} / \mathrm{L} \mathrm{bCOD}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{H}}=0.4 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD} \\
& \left.\mathrm{~b}_{\mathrm{H}}=0.1 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d}\right) \\
& \mathrm{f}_{\mathrm{d}}=0.1 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \\
& \mathrm{SRT}=10 \mathrm{~d}
\end{aligned}
$$

b. Solve for $\mathrm{P}_{\mathrm{X}, \text { bio }}$

$$
\begin{aligned}
P_{\mathrm{X}, \text { bio }} & =\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4 \mathrm{~g} / \mathrm{g})\left[(2000-5) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \\
& +\frac{(0.1 \mathrm{~g} / \mathrm{g})(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.4 \mathrm{~g} / \mathrm{g})\left[(2000-5) \mathrm{g} / \mathrm{m}^{3}\right](10 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \\
& P_{\mathrm{X}, \text { bio }}=(1197+119.7)=1316.7 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

2. Determine the amount of N and P needed for biogrowth in kg / d Assume 12 percent by weight of N will be required and assume P required is about 20 percent of N required (see page 686).
a. Determine the amount of N needed for biogrowth N needed $=\left(\mathrm{P}_{\mathrm{X}, \mathrm{bio}}\right)(12 \%)=(1316.7 \mathrm{~kg} / \mathrm{d})(0.12)=158 \mathrm{~kg} / \mathrm{d}$
b. Determine the amount of P needed for bio-growth

$$
P \text { needed }=(N \text { needed })(20 \%)=(158 \mathrm{~kg} / \mathrm{d})(0.2)=31.6 \mathrm{~kg} / \mathrm{d}
$$

3. Determine the amount of N and P that must be added to the influent
a. Prepare a mass balance for N and P
N in the influent $+N_{\text {added }}=N$ in biomass $+N$ in effluent

$$
\begin{align*}
& Q\left(N_{i}\right)+Q\left(N_{\text {added }}\right)=P_{X, \text { bio }}(12 \%)+Q\left(N_{e}\right) \\
& N_{\text {added }}=\frac{P_{x, \text { bio }}(12 \%)}{Q}+N_{e}-N_{i} \tag{i}
\end{align*}
$$

P in the influent $+P_{\text {added }}=P$ in biomass $+P$ in effluent

$$
Q\left(P_{i}\right)+Q\left(P_{\text {added }}\right)=P_{\mathrm{x}, \text { bio }}(12 \%)(20 \%)+Q\left(P_{e}\right)
$$

$$
\begin{equation*}
P_{\text {added }}=\frac{P_{X, \text { bio }}(0.12)(0.20)}{Q}+P_{e}-P_{i} \tag{ii}
\end{equation*}
$$

b. Define input data for above equation (i) and (ii)

$$
\mathrm{Q}=3000 \mathrm{~m}^{3} / \mathrm{d}
$$

$$
\begin{aligned}
& P_{\text {X,bio }}=1316.7 \mathrm{~kg} / \mathrm{d} \text { from part } 1 \\
& \mathrm{~N}_{\mathrm{i}}=20 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}-\mathrm{N} \quad \text { influent } \mathrm{N} \\
& \mathrm{~N}_{\mathrm{e}}=0.1 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}-\mathrm{N} \quad \text { effluent } \mathrm{N} \\
& P_{i}=5 \mathrm{mg} / \mathrm{L} \quad \text { influent } P \\
& P_{e}=0.1 \mathrm{mg} / \mathrm{L} \quad \text { effluent } P
\end{aligned}
$$

c. Solve Eq. (i).

$$
\begin{aligned}
& N_{\text {added }}=(1316.7 \mathrm{~kg} / \mathrm{d})(0.12) /\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)+0.1 \mathrm{~g} / \mathrm{m}^{3}-20 \\
& \quad \mathrm{~g} / \mathrm{m}^{3} \\
& =(52.67+0.1-20) \mathrm{g} / \mathrm{m}^{3}=32.77 \mathrm{~g} / \mathrm{m}^{3} \\
& N_{\text {added }} \text { in } \mathrm{kg} / \mathrm{d}=\mathrm{N}_{\text {added }}(\mathrm{Q})=\left(32.77 \mathrm{~g} / \mathrm{m}^{3}\right)\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& =98.3 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

d. Solve Eq. (ii).

$$
\begin{aligned}
& P_{\text {added }}=(1376.7 \mathrm{~kg} / \mathrm{d})(0.12)(0.2) /\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) \\
& +0.1 \mathrm{~g} / \mathrm{m}^{3}-5 \mathrm{~g} / \mathrm{m}^{3} \\
& P_{\text {added }}=(10.53+0.1-5)=5.63 \mathrm{~g} / \mathrm{m}^{3} \\
& P_{\text {added }} \text { in } \mathrm{kg} / \mathrm{d}=P_{\text {added }}(Q)=\left(5.63 \mathrm{~g} / \mathrm{m}^{3}\right)\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& =16.9 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

PROBLEM 8-12

Problem Statement - see text, page 924

Solution (Activated sludge system 1)

1. Determine the average daily waste sludge rate in $\mathrm{m}^{3} / \mathrm{d}$ from the return activated sludge line for a 10 d SRT. Solve for Q_{w} in Eq. (8-27) in Table 810.
$S R T=\frac{V(X)}{\left(Q-Q_{w}\right) X_{e}+Q_{w} X_{R}}$
Rearranging:
$Q_{w}=\frac{(V X / S R T)-Q_{w} X_{e}}{X_{R}-X_{e}}$
From data in table,
$Q_{w}=\frac{\left[\frac{\left(2000 \mathrm{~m}^{3}\right)\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}{10 \mathrm{~d}}\right]-\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(9000-10) \mathrm{g} / \mathrm{m}^{3}\right]}$
$Q_{w}=62.3 \mathrm{~m}^{3} / \mathrm{d}$
2. Determine the actual SRT when $1 / 10$ th of the aeration volume is wasted. In this case the wasting rate, Q_{w}, equals $\mathrm{V} / 10$ at a solids concentration $=\mathrm{X}$.
Substitute Q_{w} with $V / 10$ into Eq. (8-27).
$S R T=\frac{V(X)}{\left(Q-\frac{V}{10}\right) X_{e}+\left(\frac{V}{10}\right) x_{R}}$
$\operatorname{SRT}=\frac{\left(2000 \mathrm{~m}^{3}\right)\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)-\frac{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}{10}\right]\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)+\left[\frac{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}{10}\right]\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}$

SRT $=9.4 \mathrm{~d}$

PROBLEM 8-13

Problem Statement - see text, page 924

Solution

1. Provide a sketch of the membrane bioreactor and show problem information.

$$
\begin{aligned}
& \mathrm{V}_{1}=0.75\left(\mathrm{~V}_{\mathrm{T}}\right)=0.75\left(4000 \mathrm{~m}^{3}\right)=3000 \mathrm{~m}^{3} \\
& \mathrm{~V}_{2}=0.25\left(\mathrm{~V}_{\mathrm{T}}\right)=0.25\left(4000 \mathrm{~m}^{3}\right)=1000 \mathrm{~m}^{3}
\end{aligned}
$$

2. Define the aerobic SRT from Eq. (8-27) in Table 8-10 for the MBR process.
$S R T=\frac{V(X)}{\left(Q-Q_{w}\right) X_{e}+Q_{w} X_{R}}, \quad X_{e}=0$
SRT $=\frac{\left[V_{1}\left(X_{1}\right)+V_{2}\left(X_{2}\right)\right]}{Q_{w}\left(X_{2}\right)}$
$S R T=10 \mathrm{~d}, \mathrm{X}_{2}=12,000 \mathrm{mg} / \mathrm{L}$
3. Determine X_{1} by mass balance on volume, V_{1}.
$Q_{R} X_{2}+Q(0)=\left(Q+Q_{R}\right) X_{1}$
$6 Q\left(X_{2}\right)=(Q+6 Q) X_{1}$
$X_{1}=\left(\frac{6}{7}\right) X_{2}=\left(\frac{6}{7}\right)(12,000 \mathrm{mg} / \mathrm{L})$
$X_{1}=10,285.7 \mathrm{mg} / \mathrm{L}$
4. Solve for Q_{w} from Step 2.
$\mathrm{Q}_{\mathrm{w}} \mathrm{X}_{2}=\frac{\left[\mathrm{V}_{1}\left(\mathrm{X}_{1}\right)+\mathrm{V}_{2}\left(\mathrm{X}_{2}\right)\right]}{S R T}$
$\mathrm{Q}_{\mathrm{w}}=\frac{\left[\mathrm{V}_{1}\left(\mathrm{X}_{1} / \mathrm{X}_{2}\right)+\mathrm{V}_{2}\right]}{\mathrm{SRT}}$
$\mathrm{Q}_{\mathrm{w}}=\frac{\left(3000 \mathrm{~m}^{3}\right)\left(\frac{10,285.7}{12,000}\right)+1000 \mathrm{~m}^{3}}{10 \mathrm{~d}}$
$Q_{w}=357.1 \mathrm{~m}^{3} / \mathrm{d}$
5. Alternative solution based on $\mathrm{Q}, \mathrm{Q}_{\mathrm{R}}$, volumes from Step 3 .

$$
\frac{X_{1}}{X_{2}}=\frac{Q_{R}}{Q+Q_{R}}=\frac{\left(Q_{R} / Q\right)}{\left(1+Q_{R} / Q\right)}
$$

$R=Q_{R} / Q=6.0$
$\frac{X_{1}}{X_{2}}=\frac{R}{1+R}$
From Step 4,
$\mathrm{Q}_{\mathrm{w}}=\frac{\left[\mathrm{V}_{1}\left(\mathrm{X}_{1} / \mathrm{X}_{2}\right)+\mathrm{V}_{2}\right]}{\mathrm{SRT}}$

$$
\begin{aligned}
& Q_{w}=\frac{\left[V_{1}\left(\frac{R}{1+R}\right)+V_{2}\right]}{S R T} \\
& Q_{w}=\frac{\left[\left(3000 \mathrm{~m}^{3}\right)\left(\frac{6}{1+6}\right)+1000 \mathrm{~m}^{3}\right]}{10 \mathrm{~d}} \\
& Q_{w}=357.1 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

Note: The SRT can be controlled without any MLSS measurements as a function of recycle ratio and volumes.

PROBLEM 8-14

Problem Statement - see text, page 924

Solution

1. From discussion on page 729 and page 892, determine the SVI value using Eq. (8-83)
$\mathrm{SVI}=\frac{(\text { settled volume of sludge, } \mathrm{mL} / \mathrm{L})\left(10^{3} \mathrm{mg} / 1 \mathrm{~g}\right)}{(\text { suspended solids, } \mathrm{mg} / \mathrm{L})}=\mathrm{mL} / \mathrm{g}$
$\mathrm{SVI}=\frac{(840 \mathrm{~mL} / 2 \mathrm{~L})\left(10^{3} \mathrm{mg} / 1 \mathrm{~g}\right)}{(3500 \mathrm{mg} / \mathrm{L})}=120 \mathrm{~mL} / \mathrm{g}$

PROBLEM 8-15

Problem Statement - see text, pages 924-925

Solution (for (1) heterotrophic bacteria under aerobic conditions)

1. Assume flow into 2nd stage equal influent flow, Q, plus return activated sludge flow Q_{R}.
2. Volume for 2nd stage equal V 2 and heterotrophic bacteria concentration equal X_{Ha}.
3. Perform mass balance and use component stoichiometric terms for X_{Ha} shown in Table 8-13 with corresponding processes in Table 8-12.
a. Prepare mass balance

Rate of change $=$ rate in - rate out + rate of production + rate of depletion
b. Express each term with stoichiometric terms

$$
\begin{aligned}
& \mathrm{V}_{2} \frac{\mathrm{dX}}{\mathrm{H}, 2} \\
& \mathrm{dt}
\end{aligned}=\left(\mathrm{Q}+\mathrm{Q}_{\mathrm{R}}\right) \mathrm{X}_{\mathrm{H}, 1}-\left(\mathrm{Q}+\mathrm{Q}_{\mathrm{R}}\right) \mathrm{X}_{\mathrm{H}, 2}+\mathrm{R}_{4} \mathrm{~V}_{2}+\mathrm{R}_{5} \mathrm{~V}_{2}+\mathrm{R}_{9} \mathrm{~V}_{2} .
$$

where:

$$
\begin{aligned}
& \left(\text { Growth }_{\mathrm{Lim}}\right)=\left(\frac{\mathrm{S}_{\mathrm{NH}_{4}}}{\mathrm{~K}_{\mathrm{NH}_{4}}+\mathrm{S}_{\mathrm{NH}_{4}}}\right)\left(\frac{\mathrm{S}_{\mathrm{PO}_{4}}}{\mathrm{~K}_{\mathrm{PO}_{4}}+\mathrm{S}_{\mathrm{PO}_{4}}}\right)\left(\frac{\mathrm{S}_{\mathrm{alk}}}{\mathrm{~K}_{\mathrm{alk}}+\mathrm{S}_{\mathrm{alk}}}\right) \\
& \mathrm{R}_{9}=(-1) \mathrm{b}_{\mathrm{H}} \mathrm{X}_{\mathrm{H}, 2}
\end{aligned}
$$

$$
\mathrm{V}_{2} \frac{\mathrm{~d} \mathrm{X}_{\mathrm{H}, 2}}{\mathrm{dt}}=\left(\mathrm{Q}+\mathrm{Q}_{\mathrm{R}}\right) \mathrm{X}_{\mathrm{H}, 1}-\left(\mathrm{Q}+\mathrm{Q}_{\mathrm{R}}\right) \mathrm{X}_{\mathrm{H}, 2}
$$

$$
+\mathrm{V}_{2} \mu_{\mathrm{H}}\left(\frac{\mathrm{~S}_{\mathrm{O}_{2}}}{\mathrm{~K}_{\mathrm{O}_{2}}+\mathrm{S}_{\mathrm{O}_{2}}}\right)\left(\frac{\mathrm{S}_{\mathrm{F}}}{\mathrm{~K}_{\mathrm{F}}+\mathrm{S}_{\mathrm{F}}}\right)\left(\frac{\mathrm{S}_{\mathrm{F}}}{\mathrm{~S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{F}}}\right)\left(\frac{\mathrm{S}_{\mathrm{NH}_{4}}}{\mathrm{~K}_{\mathrm{NH}_{4}}+\mathrm{S}_{\mathrm{NH}_{4}}}\right)\left(\frac{\mathrm{S}_{\mathrm{PO}_{4}}}{\mathrm{~K}_{\mathrm{PO}_{4}}+\mathrm{S}_{\mathrm{PO}_{4}}}\right)\left(\frac{\mathrm{S}_{\mathrm{alk}}}{\mathrm{~K}_{\mathrm{alk}}+\mathrm{S}_{\mathrm{alk}}}\right.
$$

$$
+\mathrm{V}_{2} \mu_{\mathrm{H}}\left(\frac{\mathrm{~S}_{\mathrm{O}_{2}}}{\mathrm{~K}_{\mathrm{O}_{2}}+\mathrm{S}_{\mathrm{O}_{2}}}\right)\left(\frac{\mathrm{S}_{\mathrm{A}}}{\mathrm{~K}_{\mathrm{A}}+\mathrm{S}_{\mathrm{A}}}\right)\left(\frac{\mathrm{S}_{\mathrm{A}}}{\mathrm{~S}_{\mathrm{A}}+\mathrm{S}_{\mathrm{F}}}\right)\left(\frac{\mathrm{S}_{\mathrm{NH}_{4}}}{\mathrm{~K}_{\mathrm{NH}_{4}}+\mathrm{S}_{\mathrm{NH}_{4}}}\right)\left(\frac{\mathrm{S}_{\mathrm{PO}_{4}}}{\mathrm{~K}_{\mathrm{PO}_{4}}+\mathrm{S}_{\mathrm{PO}_{4}}}\right)\left(\frac{\mathrm{S}_{\mathrm{alk}}}{\mathrm{~K}_{\mathrm{alk}}+\mathrm{S}_{\mathrm{all}}}\right.
$$

$$
-\mathrm{V}_{2} \mathrm{~b}_{\mathrm{H}} \mathrm{X}_{\mathrm{H}, 2}
$$

PROBLEM 8-16

Problem Statement - see text, page 925

Solution

1. Determine the specific steps needed to investigate the cause of bulking sludge condition. The following steps should be taken to investigate possible causes of bulking sludge:

- View the mixed liquor under a microscope with phase contrast to determine if bulking is related to a filamentous growth population or perhaps to hydrous bulking due to a large polysaccharide growth around the cells. The latter can be determined by staining with India ink. If filamentous growth is present, further investigation can be done microscopically to identify the type of filament, which may lead to an understanding of the cause, such as low DO, sulfide, insufficient nutrients, or low F/M.
- Evaluate the wastewater characteristics. The characteristics of wastewater that may relate to bulking are the soluble BOD or rbCOD concentration, $\mathrm{BOD} / \mathrm{N} / \mathrm{P}$ ratio, pH , sulfides, and total dissolved solids. High influent sulfide concentrations may lead to thiothrix or beggiatoa growth (filamentous bacteria). A high soluble BOD fraction or high rbCOD concentration may encourage filamentous growth if there are no selective pressures in the system design to encourage uptake of most of the readily available soluble substrate by non-filamentous bacteria.
- Evaluate the system operation. What is the DO concentration in the aeration basin at various times of the day? Are there conditions that encourage low DO filaments? Operation with a DO concentration in the range of $0.5 \mathrm{mg} / \mathrm{L}$ and availability of rbCOD can encourage growth of low DO filamentous bacteria. It was stated that full nitrification was occurring so determine if significant denitrification is occurring in the secondary clarifier that affects the sludge blanket. Evidence of denitrification is the presence of rising gas bubbles in the clarifier and the presence of some floating sludge. Indications can also be found by observing the behavior of the sludge during an SVI test.
Note that the information given was that it is a complete-mix activated sludge process with full nitrification so DO is likely not a problem. If there is a significant rbCOD concentration in the wastewater influent, sufficient nutrients are present, sulfides are low, and the pH and total dissolved solids
concentration are not abnormal, there is a good chance that the bulking is due to low F/M filamentous bacteria growth.

2. The possible short-term immediate actions that can be taken to reduce the effluent TSS concentration include the following and the choice depends on the initial investigation:

- Add chlorine or hydrogen peroxide to the return sludge at a dose that will damage the filamentous bacteria extending from the floc but not damage the nitrifying bacteria in the floc. The addition of chlorine or hydrogen peroxide will be effective if bulking is caused by filamentous growth.
- Add nutrients if needed
- Chlorinate the influent if a high sulfide concentration is present
- Control pH if needed
- Increase the aeration DO concentration if needed.
- Add alum to final clarifier to improve effluent TSS capture.

3. What selector type can be considered for bulking sludge control? The selector alternatives that can be considered for bulking sludge control include:

- High F/M selector in series (usually up to 3 reactors)
- Anaerobic selector
- Anoxic selector

Because nitrification is occurring, an anoxic selector, whether in a single stage or multiple stage (high F/M mode), is a logical choice. The design should evaluate the amount of rbCOD in the influent and the amount of nitrate produced in the system. For an anoxic selector sufficient nitrate must be provided to consume the rbCOD, and thus internal recycle to the anoxic selector may be needed to provide more nitrate in excess of that from the return activated sludge. If there is not sufficient nitrate, consideration should be given to a staged high F/M selector.

PROBLEM 8-17

Problem Statement - see text, page 925

Solution (Wastewater \#1)

1. Develop the wastewater characteristics needed for design using the kinetic values in Table 8-14.
a. Compute bCOD using Eq. (8-13) for wastewater 1.
$b C O D=1.6$ (BOD)
$b C O D=1.6(220)=352 \mathrm{mg} / \mathrm{L}$
b. Compute kinetic coefficients for $\mathrm{T}=15^{\circ} \mathrm{C}$ with Eq. (1-44) in Table 8-10

$$
\mu_{\max , \mathrm{H}, 15^{\circ} \mathrm{C}}=6.0(1.07)^{15-20}=4.3 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

$\mathrm{K}_{\mathrm{s}, 15^{\circ} \mathrm{C}}=8.0(1.0)^{15-20}=8.0 \mathrm{~g} / \mathrm{m}^{3}$
$b_{H, 15^{\circ} \mathrm{C}}=0.12(1.04)^{15-20}=0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mu_{\text {max }, A O B, ~}^{15}{ }^{\circ} \mathrm{C}=0.90(1.072)^{15-20}=0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{NH}, 15^{\circ} \mathrm{C}}=0.50(1.0)^{15-20}=0.50 \mathrm{~g} \mathrm{NH}_{4}-\mathrm{N} / \mathrm{m}^{3}$
$\mathrm{b}_{\mathrm{AOB}, 15^{\circ} \mathrm{C}}=0.17(1.029)^{15-20}=0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
2. Determine the effluent sbCOD and ammonia-N concentration as a function of SRT.
a. Determine S as a function SRT using Eq. (7-46) where $\mu_{m}=Y k$, and kinetic coefficients computed in step 1b.
$\mathrm{Y}_{\mathrm{H}}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}, \mathrm{f}_{\mathrm{d}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}$
$S=\frac{K_{S}\left[1+\left(b_{H}\right) S R T\right]}{S R T\left(\mu_{m}-b_{H}\right)-1}$
$\mathrm{S}=\frac{\left(8.0 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \text { SRT }]}{\operatorname{SRT}[(4.3-0.1) \mathrm{g} / \mathrm{g} \cdot \mathrm{d}]-1}$
$\mathrm{S}=\frac{8(1+0.1 \mathrm{SRT})}{4.2 \mathrm{SRT}-1} \mathrm{~g} / \mathrm{m}^{3}$
At SRT $=3.0 \mathrm{~d}, \mathrm{~S}=0.90 \mathrm{~g} / \mathrm{m}^{3}$
S as a function of SRT is summarized in table below.
b. Determine effluent $\mathrm{NH}_{3}-\mathrm{N}\left(\mathrm{N}_{\mathrm{e}}\right)$ concentrations as a function of SRT by combining Eq. (7-94) and Eq. (7-98) in Table 10. Let $\mathrm{S}_{0}=\mathrm{DO}$.

$$
\frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\max , \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

Solving for $\mathrm{S}_{\mathrm{NH} 4}$ (let $\mathrm{S}_{\mathrm{NH} 4}=\mathrm{N}_{\mathrm{e}}$):

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{e}}=\frac{\mathrm{K}_{\mathrm{NH} 4}\left(1+\mathrm{b}_{\mathrm{AOB}} \mathrm{SRT}\right)}{\left[\mu_{\max , \mathrm{AOB}}\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}\right] \mathrm{SRT}-1} \\
& \mathrm{~N}_{\mathrm{e}}=\frac{0.50 \mathrm{~g} / \mathrm{m}^{3}[1+(0.147 \mathrm{~g} / \mathrm{g}-\mathrm{d}) \mathrm{SRT}]}{\mathrm{SRT}\left\{0.636 \mathrm{~g} / \mathrm{g}-\mathrm{d}\left[\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}+2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]-0.147 \mathrm{~g} / \mathrm{g}-\mathrm{d}\right\}-1}
\end{aligned}
$$

At SRT $=3.0$ days, $\mathrm{N}_{\mathrm{e}}=8.62 \mathrm{~g} / \mathrm{m}^{3}$

Table showing Effluent $\mathrm{NH}_{3}-\mathrm{N}\left(\mathrm{N}_{\mathrm{e}}\right)$ and effluent sbCOD (S) concentration as a function of SRT:

	Effl. sbCOD mg / L	Effl. $\mathrm{NH}_{3}-\mathrm{N}$ mg / L	SRT, d	Effl. sbCOD mg / L	Effl. $\mathrm{NH}_{3}-\mathrm{N}$ mg / L
3	0.90	8.62	12	0.36	0.42
4	0.71	1.79	13	0.34	0.39
5	0.60	1.08	14	0.33	0.38
6	0.53	0.81	15	0.32	0.36
7	0.48	0.66	16	0.31	0.35
8	0.44	0.58	17	0.31	0.34
9	0.41	0.52	18	0.75	0.24
10	0.39	0.47	19	0.73	0.23
11	0.37	0.44	20	0.72	0.22

Figure 1. Effluent $\mathrm{NH}_{3}-\mathrm{N}$ and sbCOD concentration vs SRT
3. Determine solids wasted as $\mathrm{kg} \mathrm{TSS} / \mathrm{d}$ as a function of SRT. At steady state solids wasted is equal to the solids production rate, which can be calculated using Eq. (8-20) and Eq. (8-21) in Table 8-10.
$P_{X, T s s}=\frac{A}{0.85}+\frac{B}{0.85}+\frac{C}{0.85}+D+E$
where $\mathrm{E}=\mathrm{Q}\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{0}\right)$
a. Calculate the terms in Eq. 8-21; For first calculation assume $\mathrm{NO}_{\mathrm{x}} \approx$ 80% of influent TKN
i. Active biomass:

$$
A=\frac{Q Y_{H}\left(S_{0}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\left(\mathrm{b}_{H}\right) S R T\right] 0.85}
$$

$=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(352-\mathrm{S})\left(\mathrm{g} \mathrm{sbCOD} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(\mathrm{SRT})] 0.85}$
At SRT $=3.0 \mathrm{~d}, \mathrm{~A}=2869 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
ii. Cell debris:

$$
\mathrm{B}=\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right)(\mathrm{Q})\left(\mathrm{Y}_{\mathrm{H}}\right)\left(\mathrm{S}-\mathrm{S}_{0}\right) \operatorname{SRT}\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85}
$$

$$
=\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(352-\mathrm{S})\left(\mathrm{g} \mathrm{sbCOD} / \mathrm{m}^{3}\right) \mathrm{SRT}(1 \mathrm{~kg}}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(\text { SRT })] 0.85}
$$

At SRT $=3.0 \mathrm{~d}, \mathrm{~B}=127 \mathrm{~kg}$ TSS $/ \mathrm{d}$
iii. Nitrifying bacteria:
$\mathrm{C}=\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})\right] 0.85}$
Note $\mathrm{Y}_{\mathrm{n}}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g}$ NOx-N to account for growth of both AOB and NOB.

For first calculation assume $\mathrm{NOx}-\mathrm{N}=0.80$ (Influent TKN)

$$
=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NOx}-\mathrm{N})(0.8)\left(40 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(\mathrm{SRT})] 0.85}
$$

At SRT $=3.0 \mathrm{~d}, \mathrm{C}=52 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
iv. Nonbiodegradable VSS (VSS = TSS)

$$
\begin{aligned}
& D=Q(\mathrm{nbVSS})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& D=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(100 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=2000 \mathrm{~kg} \mathrm{VSS} / \mathrm{d}
\end{aligned}
$$

v. Inert inorganic TSS
$\mathrm{E}=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(220-200) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~d}\right)=400 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
b. Iterate for $\mathrm{NO}_{x}-\mathrm{N}$ value by calculating $\mathrm{NO}_{x}-\mathrm{N}$ from $\mathrm{P}_{\mathrm{x}, \text { bio }}$, using Eq. (824), Table 8-10 and replacing the initial assume value.

NOx-N = TKN-0.12 $\left(\mathrm{P}_{\mathrm{X}, \mathrm{bio}}\right)-\mathrm{N}_{\mathrm{e}}$
where $\mathrm{P}_{\mathrm{X}, \text { bio }}=\mathrm{VSS} / \mathrm{d}$ of active heterotrophs, debris, and nitrifiers
Solve for $\mathrm{NO}_{x}-\mathrm{N}$ and change value inserted in Eq. C above to iterate

Insert A, B, C, D, and E into Eq. (8-21) to solve $P_{X, \text { Tss }}$ as a function of SRT. Using a spreadsheet program, the values of $\mathrm{P}_{\mathrm{X}, \mathrm{Tss}}$ and $P_{x, b i o, v s s}$ for SRTs ranging from 3 to $20 d$ are shown in the following table.

	As kg TSS/d, except $\mathrm{P}_{\mathrm{x}, \text { bio }}$ which is kg VSS/d						
SRT, d	A	B	C	D	E	$P_{\mathrm{x}, \text { Tss }}$	$\mathrm{P}_{\mathrm{x}, \text { bio }}$
3	2869	127	52	2000	400	5448	2591
4	2667	158	68	2000	400	5293	2459
5	2492	184	68	2000	400	5144	2332
6	2338	208	65	2000	400	5010	2219
7	2202	228	63	2000	400	4892	2119
8	2081	246	58	2000	400	4785	2027
9	1972	263	57	2000	400	4691	1948
10	1874	277	53	2000	400	4605	1874
11	1786	291	52	2000	400	4528	1809
12	1705	303	49	2000	400	4457	1749
13	1632	314	47	2000	400	4392	1693
14	1564	324	46	2000	400	4334	1644
15	1502	333	44	2000	400	4279	1597
16	1444	342	42	2000	400	4228	1554
17	1391	350	42	2000	400	4183	1515
18	1342	357	41	2000	400	4140	1479
19	1296	364	40	2000	400	4100	1445
20	1253	371	38	2000	400	4062	1412

c. Determine tank volume $\mathrm{V}\left(\mathrm{m}^{3}\right)$ and $\tau(\mathrm{h})$ as a function of SRT using Eq. (7-57) in Table 8-10.

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})=\left(\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}\right) \text { SRT } \\
& \mathrm{V}=\frac{\left(\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}\right) \mathrm{SRT}}{\mathrm{X}_{\mathrm{TSS}}} \\
& \mathrm{~V}=\frac{\left(\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}, \mathrm{~kg} / \mathrm{d}\right)(\mathrm{SRT}, \mathrm{~d})}{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}=\frac{P_{\mathrm{X}, \mathrm{TSS}}(\mathrm{SRT})}{2.5} \mathrm{~m}^{3} \\
& \tau=\frac{V}{Q}
\end{aligned}
$$

$$
\tau=\frac{\left[\left(\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}\right)(\mathrm{SRT})\right]\left(\mathrm{m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{2.5\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=4.8 \times 10^{-4}\left[\left(\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}\right)(\mathrm{SRT})\right] \mathrm{h}
$$

Using a spreadsheet program, compute the values of V and τ for SRTs ranging from 3 to 20 d as shown in the following table and plot below:

SRT d	Volume m^{3}	τ h	SRT d	Volume m^{3}	τ h
3	6538	7.8	12	21,394	25.7
4	8469	10.2	13	22,839	27.4
5	10,288	12.3	14	24,270	29.1
6	12,025	14.4	15	25,674	30.8
7	13,699	16.4	16	27,061	32.5
8	15,313	18.4	17	28,442	34.1
9	16,889	20.3	18	29,810	35.8
10	18,419	22.1	19	31,157	37.4
11	19,925	23.9	20	32,493	39.0

Figure 2. Plot of Volume and hydraulic retention time (HRT) versus SRT.
d. Determine observed yield as g TSS/g BOD and g TSS/g bCOD
$Y_{\text {obs }}$ based on g TSS/g BOD
Observed yield $=\mathrm{P}_{\mathrm{X}, \text { Tss }} / \mathrm{g}$ BOD removed
$\mathrm{P}_{\mathrm{X}, \text { Tss }}$ was determined in Step 3a above.
$B O D$ removed $=Q\left(S_{o}-S\right), S$ is determined above as function of SRT
$Y_{\text {obs, TSS } / \text { BOD }}=\frac{\left(P_{X, \text { TSS }}, g \text { TSS } / \mathrm{d}\right)}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(220-\mathrm{S}) \mathrm{g} \mathrm{BOD} / \mathrm{m}^{3}}$
$Y_{\text {obs, TSS } / C O D}=\left(Y_{\text {obs, TSS/BOD }}\right)\left(\frac{\mathrm{BOD}}{1.6 B O D}\right)$
$Y_{\text {obs, TSS/COD }}=\frac{\left(\mathrm{Y}_{\text {obs,TSS/BOD }}\right)}{1.6}$

Using a spreadsheet program, compute the values of $\mathrm{Y}_{\mathrm{obs}}$ for SRTs ranging from 3 to 20 d as shown in the following table and plot.

SRT d	$Y_{\text {obs }}$ $\mathrm{gTSS} / \mathrm{gBOD}$	Yobs $\mathrm{gTSS} / \mathrm{gCOD}$	SRT d	Yobs gTSS/gBOD	Yobs $\mathrm{gTSS} / \mathrm{gCOD}$
3	1.24	0.78	12	1.01	0.63
4	1.20	0.75	13	1.00	0.62
5	1.17	0.73	14	0.99	0.62
6	1.14	0.71	15	0.97	0.61
7	1.11	0.70	16	0.96	0.60
8	1.09	0.68	17	0.95	0.59
9	1.07	0.67	18	0.94	0.59
10	1.05	0.66	19	0.93	0.58
11	1.03	0.64	20	0.92	0.58

Figure 3. Observed yield vs SRT
e. Determine oxygen requirement in kg / d as a function of SRT
i. Calculate NO_{x} using Eq. (8-24)

$$
\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \mathrm{bio}} / \mathrm{Q}
$$

$P_{X, \text { bio }}$ is calculated as shown above from A, B, and C
Using a spreadsheet program, compute the values of NO_{x} for SRTs ranging from 3 to 20 d as shown in the table following item ii. below.
ii. Calculate O_{2} demand rate using Eq. (8-23).

$$
\mathrm{R}_{0}=\mathrm{Q}\left(\mathrm{~S}_{0}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{x}, \text { bio }}+4.57 \mathrm{Q}\left(\mathrm{NO}_{\mathrm{x}}-\mathrm{N}\right)
$$

f. Using a spreadsheet program, compute the values of R_{0} for SRTs ranging from 3 to 20 d as shown in the following table and plot. The plot also includes the sludge production rate (kg TSS/d)

SRT d	$\mathrm{NOx}_{\mathrm{x}}-\mathrm{N}$ mg / L	Ro kg / d	SRT d	$\mathrm{NOx}_{\mathrm{x}}-\mathrm{N}$ mg / L	Ro kg / d
3	16	4853	12	29	7269
4	23	5760	13	29	7377
5	25	6076	14	30	7475
6	26	6323	15	30	7566
7	27	6531	16	30	7649
8	27	6714	17	31	7726
9	28	6875	18	31	7798
10	28	7020	19	31	7865
11	29	7150	20	31	7927

PROBLEM 8-18

Problem Statement - see text, page 925

Solution

The use of membranes for liquid-solids separation results in two important design changes compared to the single-tank activated sludge system in problem 8-17: (1) The aeration tank MLSS concentration is much higher with $12,000 \mathrm{mg} / \mathrm{L}$ (versus $2500 \mathrm{mg} / \mathrm{L}$) in the membrane compartment and also a much higher MLSS concentration in the first compartment which will be determined here by a mass balance, and (2) the two-stage reactor configuration provides a greater BOD removal and ammonia oxidation efficiency due to removal at a higher concentration in the first compartment. Because the effluent soluble bCOD is already very low for the solution in problem 8-17, the 2-stage effluent concentration will not be calculated here. However, the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration is calculated in this solution to show the effect of staged kinetics.

Before proceeding with the solution, the effect of the higher MLSS concentration and two-stage reactor configuration are addressed for each process parameter required to be addressed in Problem 8-17.
(a) The solids wasted will be the same as in Problem 8-17 for a given SRT
(b) The aeration tank volume and τ will be lower for each SRT for the membrane system due to the higher average MLSS concentration
(c) The observed yields will be the same due to the same solids production rate at each SRT
(d) The effluent soluble bCOD concentration will be lower for the two-stage membrane system but is not calculated here as it is already at a very low concentration in the Problem 8-17 solution
(e) The effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration will be lower for the two-stage membrane system and is calculated here because of a greater interest to minimize effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration for water quality concerns and as related to nitrogen removal processes
(f) The total oxygen demand will be increased by only a small amount due to slight increase in $\mathrm{NH}_{4}-\mathrm{N}$ oxidized.

The following solution thus determines V , τ, effluent $\mathrm{NH}_{4}-\mathrm{N}$ and Ro as a function of SRT.

1. Determine the MLSS concentration in compartment 1 and the total membrane aeration tank volume needed at each SRT.
a. Perform a mass balance for MLSS (ignore waste solids flow) in V_{1}.

($\mathrm{N}=\mathrm{NH}_{4}-\mathrm{N}$ concentration, $\mathrm{V}=$ volume, $\mathrm{X}=\mathrm{MLSS}$ concentration, $\mathrm{R}=$ return activated sludge ratio)

$$
V_{1}+V_{2}=V, V_{1}=0.75 \mathrm{~V}, V_{2}=0.25 \mathrm{~V}
$$

(Solids in) $=$ (Solids out)

$$
\begin{aligned}
& R Q\left(X_{2}\right)+Q(0)=(R Q+Q) X_{1} \\
& X_{1}=\left(\frac{R}{R+1}\right) X_{2}=\left(\frac{6}{6+1}\right)(12,000 \mathrm{mg} / \mathrm{L}) \\
& X_{1}=10,286 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

2. Using the sludge production rate calculations for Problem 8-17 as a function of SRT, calculate the MBR compartment volumes and τ. The following is shown for SRT = 10d.
a. Use Eq. (7-57) to calculate the aeration mass required.

Mass $=\left(P_{X, T S S}\right)$ SRT
At $S R T=10 \mathrm{~d}, \mathrm{P}_{\mathrm{X}, \mathrm{TSS}}=4369 \mathrm{~kg} / \mathrm{d}$
Mass $=V_{1} X_{1}+V_{2} X_{2}=(4369 \mathrm{~kg} / \mathrm{d})(10 \mathrm{~d})$
$V_{1} X_{1}+V_{2} X_{2}=43,690 \mathrm{~kg}$
b. Solve for V_{1} and V_{2}.
$0.75 \mathrm{VX}_{1}+0.25 \mathrm{VX}_{2}=43,690 \mathrm{~kg}$
$V\left(0.75 X_{1}+0.25 X_{2}\right)=43,690 \mathrm{~kg}$
$V=\frac{43,690 \mathrm{~kg}}{\left[0.75\left(10,286 \mathrm{~g} / \mathrm{m}^{3}\right)+0.25\left(12,000 \mathrm{~g} / \mathrm{m}^{3}\right)\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}$
$\mathrm{V}=4077.7 \mathrm{~m}^{3}$
$\mathrm{V}_{1}=0.75\left(4077.7 \mathrm{~m}^{3}\right)=3058.3 \mathrm{~m}^{3}$
$V_{2}=(0.25 / 0.75)\left(3058.3 \mathrm{~m}^{3}\right)=1019.4 \mathrm{~m}^{3}$
c. The hydraulic retention time, τ, for the MBR aeration tank of $\operatorname{SRT}=$ 10d:

$$
\tau=\frac{V}{Q}=\frac{\left(4077.7 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=4.89 \mathrm{~h}
$$

The MBR volume and τ as a function of SRT alongside the volumes for the activated sludge clarifier system are summarized in the following tables for comparison.

MBR and conventional activated sludge (CAS) volumes as a function of SRT

SRT d	Mass kg	MBR Volume m^{3}	CAS Volume m^{3}	SRT d	Mass kg	MBR Volume m^{3}	CAS Volume m^{3}
3.00	16,345	1525	6175	12.00	53,486	4992	20,338
4.00	21,173	1976	7980	13.00	57,097	5329	21,734
5.00	25,720	2400	9702	14.00	60,676	5663	23,110
6.00	30,062	2806	11,354	15.00	64,186	5991	24,469
7.00	34,247	3196	12,949	16.00	67,653	6314	25,813
8.00	38,282	3573	14,497	17.00	71,106	6636	27,143
9.00	42,222	3941	16,004	18.00	74,526	6956	28,461
10.00	46,049	4298	17,477	19.00	77,892	7270	29,769
11.00	49,812	4649	18,920	20.00	81,232	7582	31,066

MBR and conventional activated sludge (CAS) hydraulic retention time as a function of SRT

SRT d	MBR HRT h	CAS HRT h	SRT d	MBR HRT h	CAS HRT h
3	1.83	7.85	12	5.99	25.67
4	2.37	10.16	13	6.39	27.41
5	2.88	12.35	14	6.80	29.12
6	3.37	14.43	15	7.19	30.81
7	3.84	16.44	16	7.58	32.47
8	4.29	18.38	17	7.96	34.13
9	4.73	20.27	18	8.35	35.77
10	5.16	22.10	19	8.72	37.39
11	5.58	23.91	20	9.10	38.99

The tables illustrate the space reduction with an MBR.
3. Determine the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration in the first compartment of the MBR system.
a. Perform a mass balance for $\mathrm{NH}_{4}-\mathrm{N}$ in compartment 1 (refer to sketch).
$V_{1} \frac{d N_{1}}{d t}=Q N_{0}+R Q\left(N_{E}\right)-(Q+R Q) N_{1}=r_{N H 4}\left(V_{1}\right)$
Let N_{0} be the $\mathrm{NH}_{4}-\mathrm{N}$ available after N is used for syntyesis for biomass growth,
$N_{o}=T K N-N_{\text {syn }}$
$N_{o}=T K N-\frac{\left(P_{X, \text { bio }}\right)(0.12 \mathrm{~g} \mathrm{~N} / \mathrm{g} \mathrm{VSS})}{Q}$
$\mathrm{P}_{\mathrm{X}, \text { bio }}$ was determined in Problem 8-17 as a function of SRT.
At steady state:
$Q N_{\mathrm{O}}+\mathrm{RQ}\left(\mathrm{N}_{\mathrm{E}}\right)=(\mathrm{Q}+\mathrm{RQ}) \mathrm{N}_{1}=\mathrm{r}_{\mathrm{NH} 4}\left(\mathrm{~V}_{1}\right)$
$\mathrm{r}_{\mathrm{NH} 4}$ is determined with Eq. (7-101) in Table 8-10.
$r_{\mathrm{NH} 4}=\left(\frac{\mu_{\text {max }, \mathrm{AOB}}}{\mathrm{Y}_{\mathrm{AOB}}}\right)\left(\frac{\mathrm{N}_{1}}{\mathrm{~K}_{\mathrm{n}}+\mathrm{N}_{1}}\right)\left(\frac{\mathrm{DO}}{\mathrm{K}_{\mathrm{o}}+\mathrm{DO}}\right) \mathrm{X}_{\mathrm{AOB}, 1}$
where, $\mathrm{N}_{1}=\mathrm{S}_{\mathrm{NH} 4}$ in compartment 1.
Thus,

$$
\left.\begin{array}{rl}
\mathrm{QN} \\
\mathrm{O}
\end{array}+\mathrm{RQ}\left(\mathrm{~N}_{\mathrm{E}}\right)=(\mathrm{Q}+\mathrm{RQ}) \mathrm{N}_{1}, \begin{array}{l}
\mathrm{Y}_{\mathrm{AOB}} \tag{8-18b}
\end{array}\right)\left(\frac{\mathrm{N}_{1}}{\mathrm{~K}_{\mathrm{n}}+\mathrm{N}_{1}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right) \mathrm{X}_{\mathrm{AOB}, 1}\left(\mathrm{~V}_{1}\right)
$$

b. Provide equation for $X_{A O B} . X_{A O B}$ is a function of SRT, amount of growth from $\mathrm{NH}_{4}-\mathrm{N}$ oxidation, and compartment relative MLSS concentration. From Step 1a, the ratio of $X_{1, A O B}+X_{2, A O B}$ can be determined as proportional to the MLSS ratio.

$$
\frac{X_{\mathrm{AOB}, 1}}{\mathrm{X}_{\mathrm{AOB}, 2}}=\frac{10,286 \mathrm{mg} / \mathrm{L}}{12,000 \mathrm{mg} / \mathrm{L}}=0.857
$$

The mass of $X_{A O B}$ produced per day is determined from Part C in Eq.
$P_{\text {AOB,VSS }}=\frac{Q\left(Y_{A O B}\right)\left(\mathrm{NO}_{\mathrm{x}}\right)}{1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})}$
where, $\mathrm{NO}_{\mathrm{x}}=\mathrm{N}_{\mathrm{o}}-\mathrm{N}_{\mathrm{E}}$
The mass of $A O B$ in the system equals ($\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}$)SRT as indicated by Eq. (7-56) in Table 8-10.
The AOB mass is divided between compartments 1 and 2, where:
$\mathrm{X}_{\mathrm{AOB}, 1}\left(\mathrm{~V}_{1}\right)+\mathrm{X}_{\mathrm{AOB}, 2}\left(\mathrm{~V}_{2}\right)=\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}(\mathrm{SRT})$

$$
\begin{align*}
& \mathrm{X}_{\mathrm{AOB}, 1}(0.75 \mathrm{~V})+\mathrm{X}_{\mathrm{AOB}, 2}(0.25 \mathrm{~V})=\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}(\mathrm{SRT}) \\
& X_{\text {AOB }, 2}=\frac{X_{\text {AOB }, 1}}{0.857} \\
& X_{A O B, 1}(0.75 \mathrm{~V})+\frac{X_{A O B, 1}}{0.857}(0.25 \mathrm{~V})=P_{A O B, V S S}(S R T) \\
& X_{A O B, 1}(1.042 \mathrm{~V})=\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}(\mathrm{SRT}) \\
& =\frac{\mathrm{Q}\left(\mathrm{Y}_{\mathrm{AOB}}\right)\left(\mathrm{N}_{\mathrm{O}}-\mathrm{N}_{\mathrm{E}}\right) \mathrm{SRT}}{1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})} \\
& X_{A O B, 1}=\frac{Q\left(Y_{A O B}\right)\left(N_{0}-N_{E}\right) S R T}{(1.042 \mathrm{~V})\left[1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})\right]} \tag{8-18c}
\end{align*}
$$

The equation coefficients at $15^{\circ} \mathrm{C}$ have been determined in Problem 817 and are summarized below.
$\mu_{\max , A O B, 15^{\circ} \mathrm{C}}=0.90(1.072)^{15-20}=0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{NH} 4,15^{\circ} \mathrm{C}}=0.50(1.0)^{15-20}=0.50 \mathrm{~g} \mathrm{NH}_{4}-\mathrm{N} / \mathrm{m}^{3}$
$\mathrm{b}_{\mathrm{AOB}, 15^{\circ} \mathrm{C}}=0.17(1.029)^{15-20}=0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{Y}_{\text {AOB }}=0.15 \mathrm{~g}$ VSS/g NH $4-\mathrm{N}$ oxidized (Table 8-14)
$\mathrm{K}_{\mathrm{o}}=0.50 \mathrm{mg} / \mathrm{L}$ (Table 8-14)
4. Determine the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration for compartment 2 of the MBR system.
a. Perform a mass balance for $\mathrm{NH}_{4}-\mathrm{N}$ in compartment 2 (refer to sketch).

Note that $\mathrm{NH}_{4}-\mathrm{N}$ concentration is the same as the effluent
concentration, N_{E}.
$V_{2} \frac{d N E}{d t}=(Q+R Q) N_{1}-(Q+R Q) N_{E}-r_{N H 4}\left(V_{2}\right)$
$r_{\mathrm{NH} 4}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}}}{\mathrm{Y}_{\mathrm{AOB}}}\right)\left(\frac{\mathrm{N}_{\mathrm{E}}}{\mathrm{K}_{\mathrm{n}}+\mathrm{N}_{\mathrm{E}}}\right)\left(\frac{\mathrm{DO}}{\mathrm{K}_{\mathrm{o}}+\mathrm{DO}}\right) \mathrm{X}_{\mathrm{AOB}, 2}$
b. At steady state:

$$
\begin{align*}
(Q+R Q) N_{1} & =(Q+R Q) N_{E} \\
& +\left(\frac{\mu_{\max , A O B}}{\mathrm{Y}_{\mathrm{AOB}}}\right)\left(\frac{\mathrm{N}_{\mathrm{E}}}{\mathrm{~K}_{\mathrm{n}}+\mathrm{N}_{\mathrm{E}}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right) \mathrm{X}_{\mathrm{AOB}, 2}\left(\mathrm{~V}_{2}\right) \tag{8-18d}
\end{align*}
$$

From Step 3b,

$$
\begin{align*}
& \mathrm{X}_{\mathrm{AOB}, 1}(0.75 \mathrm{~V})+\mathrm{X}_{\mathrm{AOB}, 2}(0.25 \mathrm{~V})=\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}(\mathrm{SRT}) \\
& \mathrm{X}_{\mathrm{AOB}, 1}=0.857 \mathrm{X}_{\mathrm{AOB}, 2} \\
& 0.857 \mathrm{X}_{\mathrm{AOB}, 2}(0.75 \mathrm{~V})+\mathrm{X}_{\mathrm{AOB}, 2}(0.25 \mathrm{~V})=\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}(\mathrm{SRT}) \\
& \mathrm{X}_{\mathrm{AOB}, 2}(0.893 \mathrm{~V})=\mathrm{P}_{\mathrm{AOB}, \mathrm{VSS}}(\mathrm{SRT}) \\
& \mathrm{X}_{\mathrm{AOB}, 2}=\frac{\mathrm{Q}\left(\mathrm{Y}_{\mathrm{AOB}}\right)\left(\mathrm{N}_{\mathrm{O}}-\mathrm{N}_{\mathrm{E}}\right) \mathrm{SRT}}{0.893 \mathrm{~V}\left[1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})\right]} \tag{8-18e}
\end{align*}
$$

5. Solution approach.
6. Select SRT
7. Determine $P_{X 1, \text { bio }}$ (obtain from Problem 8-17)
8. Determine N_{o} (Eq. 8-18a in this solution)
9. Assume N_{E}
10. Determine $X_{A O B, 1}$ (Eq. 8-18c in this solution)
11. Solve for N_{1} in Eq. (8-18d) in this solution. Excel solver provides convenient solution
12. Determine $X_{A O B, 2}$ (Eq. 8-18e in this solution)
13. Solve for N_{E} in Eq. (8-18d) in this solution
14. Compare N_{E} from Step 8 to N_{E} in Step 4. Reiterate as necessary until they agree

Example for SRT = 10d
Step 2. $\mathrm{P}_{\mathrm{X} 1, \text { bio }}($ from Problem 8-17) $=1874 \mathrm{~kg}$ VSS/d
Step 3. Determine N_{o}

$$
\begin{aligned}
\mathrm{N}_{\mathrm{o}} & =\mathrm{TKN}-\frac{\left(\mathrm{P}_{\mathrm{X}, \mathrm{bio}}\right)(0.12 \mathrm{~g} \mathrm{~N} / \mathrm{g} \mathrm{VSS})}{Q} \\
\mathrm{~N}_{\mathrm{o}} & =\left(40 \mathrm{~g} / \mathrm{m}^{3}\right)-\frac{(1874 \mathrm{~kg} \mathrm{VSS} / \mathrm{d})(0.12 \mathrm{~g} \mathrm{~N} / \mathrm{g} \mathrm{VSS})}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)} \\
& =28.8 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Step 4. Assume $N_{E}=0.20 \mathrm{~g} / \mathrm{m}^{3}$

Step 5. Determine $X_{A O B, 1}$

$$
\begin{aligned}
X_{A O B, 1} & =\frac{Q\left(Y_{A O B}\right)\left(N_{o}-N_{E}\right) S R T}{(1.042 \mathrm{~V})\left[1+\mathrm{b}_{\mathrm{AOB}}(S R T)\right]} \\
\mathrm{X}_{\mathrm{AOB}, 1} & =\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{~N})\left[(28.8-0.20) \mathrm{g} / \mathrm{m}^{3}\right](10 \mathrm{~d})}{(1.042)\left(4298 \mathrm{~m}^{3}\right)[1+(0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \\
& =77.6 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Step 6. Solve for N_{1}

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{V}_{1}=0.75 \mathrm{~V}=0.75\left(4298 \mathrm{~m}^{3}\right)=3223.5 \mathrm{~m}^{3} \\
\mathrm{QN}_{\mathrm{O}}+\mathrm{RQ}\left(\mathrm{~N}_{\mathrm{E}}\right)= \\
\\
\qquad(\mathrm{Q}+\mathrm{RQ}) \mathrm{N}_{1} \\
\mathrm{Y}_{\mathrm{AOB}}
\end{array}\right)\left(\frac{\mu_{\max , \mathrm{AOB}}}{\mathrm{~K}_{\mathrm{n}}+\mathrm{N}_{1}}\right)\left(\frac{\mathrm{NO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right) \mathrm{X}_{\mathrm{AOB}, 1}\left(\mathrm{~V}_{1}\right) \\
& \left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(28.8 \mathrm{~g} / \mathrm{m}^{3}\right)+6.0\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(0.20 \mathrm{~g} / \mathrm{m}^{3}\right) \\
& =\left[\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)+6.0\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\right] \mathrm{N}_{1} \\
& +\left[\frac{(0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})}{(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{~N})}\right]\left[\frac{\mathrm{N}_{1}}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\mathrm{N}_{1}}\right]\left[\frac{2.0}{0.50+2.0}\right]\left(77.6 \mathrm{~g} \mathrm{/m}^{3}\right)\left(3223.5 \mathrm{~m}^{3}\right)
\end{aligned}
$$

From solver, $\mathrm{N}_{1}=1.2 \mathrm{~g} / \mathrm{m}^{3}$
Step 7. Determine $X_{A O B, 2}$

$$
\begin{aligned}
X_{A O B, 2} & =\frac{Q\left(Y_{A O B}\right)\left(N_{0}-N_{E}\right) S R T}{0.893 V\left[1+b_{A O B}(S R T)\right]} \\
X_{A O B, 2} & =\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{~N})\left[(28.8-0.20) \mathrm{g} / \mathrm{m}^{3}\right](10 \mathrm{~d})}{0.893\left(4298 \mathrm{~m}^{3}\right)[1+(0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(10 \mathrm{~d})]} \\
& =90.4 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Step 8. Solve for N_{E}

$$
\begin{aligned}
(\mathrm{Q}+\mathrm{RQ}) \mathrm{N}_{1}= & (\mathrm{Q}+\mathrm{RQ}) \mathrm{N}_{\mathrm{E}} \\
& +\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}}}{\mathrm{Y}_{\mathrm{AOB}}}\right)\left(\frac{\mathrm{N}_{\mathrm{E}}}{\mathrm{~K}_{\mathrm{n}}+\mathrm{N}_{\mathrm{E}}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right) \mathrm{X}_{\mathrm{AOB}, 2}\left(\mathrm{~V}_{2}\right) \\
\mathrm{V}_{2}=0.25 \mathrm{~V}= & 0.25\left(4298 \mathrm{~m}^{3}\right)=1074.5 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)+6.0\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\right]\left(1.2 \mathrm{~g} / \mathrm{m}^{3}\right)} \\
& =\left[\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)+6.0\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\right] \mathrm{N}_{\mathrm{E}} \\
& +\left[\frac{(0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})}{(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{~N})}\right]\left[\frac{\mathrm{N}_{\mathrm{E}}}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\mathrm{N}_{\mathrm{E}}}\right]\left[\frac{2.0}{0.50+2.0}\right]\left(90.5 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1074.5 \mathrm{~m}^{3}\right)
\end{aligned}
$$

From solver, $\mathrm{N}_{\mathrm{E}}=0.09 \mathrm{~g} / \mathrm{m}^{3}$
Reiteration results in $\mathrm{N}_{1}=0.68 \mathrm{mg} / \mathrm{L}$ and $\mathrm{N}_{\mathrm{E}}=0.08 \mathrm{mg} / \mathrm{L}$
A summary of the first compartment and effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentrations is provided as a function of SRT and compared to the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration for the single tank CAS system in Problem 8-17.

Effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentrations from conventional activated sludge (CAS) process and from first compartment and effluent of MBR process

$\begin{gathered} \text { SRT } \\ \text { d } \end{gathered}$	$\begin{gathered} \text { Px,bio } \\ \text { kg VSS/d } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{No} \\ \mathrm{mg} / \mathrm{L} \end{gathered}$	$X_{\text {AOB, } 1}$ mg/L	$\begin{gathered} \mathrm{X}_{\mathrm{AOB}, 2} \\ \mathrm{mg} / \mathrm{L} \end{gathered}$	MBR		$\begin{gathered} \text { CAS } \\ \mathrm{N}_{\mathrm{E}} \\ \mathrm{mg} / \mathrm{L} \end{gathered}$
					$\begin{gathered} \mathrm{N}_{1} \\ \mathrm{mg} / \mathrm{L} \\ \hline \end{gathered}$	N_{E} mg / L	
3	2591	24.5	94.1	109.8	1.86	0.50	8.62
4	2459	25.2	91.5	106.8	1.43	0.30	1.79
6	2219	26.7	86.8	101.3	1.00	0.16	0.81
8	2027	27.8	82.1	95.8	0.80	0.11	0.58
10	1874	28.8	77.8	90.7	0.68	0.08	0.47
12	1749	29.5	73.7	86.0	0.61	0.07	0.42
14	1644	30.1	70.0	81.7	0.56	0.06	0.38
16	1554	30.7	66.7	77.8	0.52	0.05	0.35
18	1479	31.1	63.5	74.1	0.50	0.05	0.33
20	1412	31.5	60.7	70.8	0.47	0.04	0.32

The two stage reactor provides a much lower effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration at the same SRT.

PROBLEM 8-19

Problem Statement - see text, page 925

Solution (Wastewater 1)

Solution

1. Determine and summarize wastewater characteristics for wastewater 1 after primary treatment and compute kinetic coefficients.
a. Determine wastewater characteristics; values are summarized below.

Parameter	Unit	Calculation	Value
Flowrate	$\mathrm{m}^{3} / \mathrm{d}$		20,000
BOD	mg / L	$(1-0.35) 220 \mathrm{mg} / \mathrm{L}$	143
bCOD	mg / L	$1.6 \mathrm{~g} / \mathrm{g}(143 \mathrm{mg} / \mathrm{L})$	229
TSS	mg / L	$(1-0.35) 220 \mathrm{mg} / \mathrm{L}$	143
VSS	mg / L	$(1-0.35) 200 \mathrm{mg} / \mathrm{L}$	130
nbVSS	mg / L	$(1-0.80) 100 \mathrm{mg} / \mathrm{L}$	20
TKN	mg / L	$(1-0.10) 40 \mathrm{mg} / \mathrm{L}$	36
Temperature	${ }^{\circ} \mathrm{C}$		15

b. Compute kinetic coefficients for $\mathrm{T}=15^{\circ} \mathrm{C}$ with Eq. (1-44) in Table 8-10

$$
\begin{aligned}
& \mu_{\max , \mathrm{H}, 15^{\circ} \mathrm{C}}=6.0(1.07)^{15-20}=4.3 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{s}, 15^{\circ} \mathrm{C}}=8.0(1.0)^{15-20}=8.0 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{~b}_{\mathrm{H}, 15^{\circ} \mathrm{C}}=0.12(1.04)^{15-20}=0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \quad \mu_{\mathrm{max}, \mathrm{AOB}, 15^{\circ} \mathrm{C}}=0.90(1.072)^{15-20}=0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{NH}, 15^{\circ} \mathrm{C}}=0.50(1.0)^{15-20}=0.50 \mathrm{~g} \mathrm{NH} 4^{-N} / \mathrm{m}^{3} \\
& \quad \mathrm{~b}_{\mathrm{AOB}, 15^{\circ} \mathrm{C}}=0.17(1.029)^{15-20}=0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

2. Determine the effluent sbCOD and ammonia-N concentration as a function of SRT.
a. Determine S as a function SRT using Eq. (7-46) where $\mu_{m}=\mathrm{Yk}$, and kinetic coefficients computed in step 1b.
$\mathrm{Y}_{\mathrm{H}}=0.45 \mathrm{~g}$ VSS $/ \mathrm{g} \mathrm{COD}, \mathrm{f}_{\mathrm{d}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}$
$S=\frac{K_{S}\left[1+\left(b_{H}\right) S R T\right]}{S R T\left(\mu_{m}-b_{H}\right)-1}$
$S=\frac{\left(8.0 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.1 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) S R T]}{\operatorname{SRT}[(4.3-0.1) \mathrm{g} / \mathrm{g} \cdot \mathrm{d}]-1}$
$\mathrm{S}=\frac{8(1+0.1 \mathrm{SRT})}{4.2 \mathrm{SRT}-1} \mathrm{~g} / \mathrm{m}^{3}$
At SRT $=3.0 \mathrm{~d}, \mathrm{~S}=0.90 \mathrm{~g} / \mathrm{m}^{3}$
S as a function of SRT is summarized in table below.
b. Determine effluent $\mathrm{NH}_{4}-\mathrm{N}\left(\mathrm{N}_{\mathrm{e}}\right)$ concentrations as a function of SRT by combining Eq. (7-94) and Eq. (7-98) in Table 10. Let $\mathrm{S}_{0}=$ DO.
$\frac{1}{\operatorname{SRT}}=\left(\frac{\mu_{\text {max }, A O B} S_{N H 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}$

Solving for $\mathrm{S}_{\mathrm{NH} 4}\left(\right.$ let $\left.\mathrm{S}_{\mathrm{NH} 4}=\mathrm{N}_{\mathrm{e}}\right)$:
$N_{e}=\frac{\mathrm{K}_{\mathrm{NH} 4}\left(1+\mathrm{b}_{\mathrm{AOB}} \mathrm{SRT}\right)}{\left[\mu_{\text {max }, \mathrm{AOB}}\left(\frac{\mathrm{DO}}{\mathrm{K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}\right] \mathrm{SRT}-1}$
$N_{e}=\frac{0.50 \mathrm{~g} / \mathrm{m}^{3}[1+(0.147 \mathrm{~g} / \mathrm{g}-\mathrm{d}) \mathrm{SRT}]}{\operatorname{SRT}\left\{0.636 \mathrm{~g} / \mathrm{g}-\mathrm{d}\left[\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}+2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]-0.147 \mathrm{~g} / \mathrm{g}-\mathrm{d}\right\}-1}$
At SRT $=3.0$ days, $N_{e}=8.62 \mathrm{~g} / \mathrm{m}^{3}$
Table showing Effluent $\mathrm{NH}_{4}-\mathrm{N}\left(\mathrm{N}_{\mathrm{e}}\right)$ and effluent sbCOD (S)
concentration as a function of SRT:

SRT d	Effl. sbCOD mg / L	Effl. $\mathrm{NH}_{4}-\mathrm{N}$ mg / L	SRT d	Effl. sbCOD mg / L	Effl. $\mathrm{NH}_{4}-\mathrm{N}$ mg / L
3	0.90	8.62	12	0.36	0.42
4	0.71	1.79	13	0.34	0.39
5	0.60	1.08	14	0.33	0.38
6	0.53	0.81	15	0.32	0.36
7	0.48	0.66	16	0.31	0.35
8	0.44	0.58	17	0.31	0.34
9	0.41	0.52	18	0.75	0.24
10	0.39	0.47	19	0.73	0.23
11	0.37	0.44	20	0.72	0.22

Figure 1. Effluent $\mathrm{NH}_{3}-\mathrm{N}$ and sbCOD concentration vs SRT
3. Determine solids wasted as kg TSS/d as a function of SRT. At steady state solids wasted is equal to the solids production rate, which can be calculated using Eq. (8-20) and Eq. (8-21) in Table 8-10.

$$
\begin{aligned}
& P_{X, T S S}=\frac{A}{0.85}+\frac{B}{0.85}+\frac{C}{0.85}+D+E \\
& \text { where } E=Q\left(T S S_{0}-V_{S S}\right)
\end{aligned}
$$

a. Calculate the terms in Eq. 8-21; For first calculation assume $\mathrm{NO}_{x} \approx$ 80% of influent TKN
i. Active biomass:

$$
A=\frac{Q Y_{H}\left(S_{0}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85}
$$

$$
=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(229-\mathrm{S})\left(\mathrm{g} \mathrm{sbCOD} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85}
$$

At SRT $=3.0 \mathrm{~d}, \mathrm{~S}=0.90 \mathrm{mg} / \mathrm{L}, \mathrm{A}=1862 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
ii. Cell debris:
$B=\frac{\left(f_{d}\right)\left(b_{H}\right)(Q)\left(Y_{H}\right)\left(S-S_{0}\right) S R T\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85}$
$=\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(229-\mathrm{S})\left(\mathrm{g} \mathrm{sbCOD} / \mathrm{m}^{3}\right) \mathrm{SRT}(1 \mathrm{~kg} / 1(}{[1+(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(\mathrm{SRT})] 0.85}$

At $\operatorname{SRT}=3.0 \mathrm{~d}, \mathrm{~S}=0.90 \mathrm{mg} / \mathrm{L}, \mathrm{B}=83 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
iii. Nitrifying bacteria:
$\mathrm{C}=\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left[1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})\right] 0.85}$
Note $\mathrm{Y}_{\mathrm{n}}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NO}_{\mathrm{x}}-\mathrm{N}$ to account for growth of both AOB and NOB.

For first calculation assume $\mathrm{NOx-N}=0.80$ (Influent TKN)

$$
=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NOx}-\mathrm{N})(0.8)\left(36 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(\mathrm{SRT})] 0.85}
$$

At SRT $=3.0 \mathrm{~d}, \mathrm{C}=94 \mathrm{~kg}$ TSS $/ \mathrm{d}$
iv. Nonbiodegradable VSS (VSS = TSS)
$D=Q(n b V S S)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$D=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=400 \mathrm{~kg} \mathrm{VSS} / \mathrm{d}$
v. Inert inorganic TSS
$E=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(143-130) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~d}\right)=260 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
b. Iterate for $\mathrm{NO}_{x}-\mathrm{N}$ value by calculating $\mathrm{NO}_{x}-\mathrm{N}$ from $\mathrm{P}_{\mathrm{x}, \text { bio }}$, using Eq. (824), Table 8-10 and replacing the initial assume value.

$$
\mathrm{NO}_{x}-\mathrm{N}=\mathrm{TKN}-0.12\left(\mathrm{P}_{\mathrm{x}, \mathrm{bio}}\right)-\mathrm{N}_{\mathrm{e}}
$$

where $P_{\mathrm{X}, \text { bio }}=\mathrm{VSS} / \mathrm{d}$ of active heterotrophs, debris, and nitrifiers
Solve for $\mathrm{NO}_{x}-\mathrm{N}$ and change value inserted in Eq. C above to iterate

Insert A, B, C, D, and E into Eq. (8-21) to solve $\mathrm{P}_{\mathrm{X}, \text { TsS }}$ as a function of SRT. Using a spreadsheet program, the values of $\mathrm{P}_{\mathrm{X}, \mathrm{TsS}}$ and $\mathrm{P}_{\mathrm{x}, \text { bio, vss }}$ for SRTs ranging from 3 to 20 d are shown in the following table.

	As kg TSS/d, except Px,bio which is kg VSS/d							
SRT, d	A	B	C	D	E	$P_{x, \text { TSS }}$	$P_{x, \text { bio }}$	mg/L
3	1862	83	55	400	260	2660	1700	17
4	1732	102	71	400	260	2565	1620	24
5	1618	120	70	400	260	2468	1537	26
6	1518	135	65	400	260	2378	1460	26
7	1430	148	63	400	260	2301	1395	27
8	1352	160	58	400	260	2230	1334	27
9	1281	171	57	400	260	2168	1282	28
10	1218	180	53	400	260	2111	1233	28
11	1160	189	50	400	260	2059	1189	28
12	1108	197	49	400	260	2014	1151	29
13	1060	204	47	400	260	1971	1114	29
14	1016	210	45	400	260	1931	1080	29
15	976	217	43	400	260	1895	1050	29
16	938	222	42	400	260	1863	1022	30
17	904	227	40	400	260	1831	996	30
18	872	232	39	400	260	1803	971	30
19	842	237	36	400	260	1774	947	30
20	814	241	36	400	260	1751	927	30

c. Determine tank volume $\mathrm{V}\left(\mathrm{m}^{3}\right)$ and $\tau(\mathrm{h})$ as a function of SRT using Eq.
(7-57) in Table 8-10.
$\left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})=\left(\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}\right)$ SRT

$$
\begin{aligned}
& \mathrm{V}=\frac{\left(\mathrm{P}_{\mathrm{X}, \text { TSS }}\right) \text { SRT }}{\mathrm{X}_{\text {TSS }}} \\
& \mathrm{V}=\frac{\left(\mathrm{P}_{\mathrm{X}, \text { TSS }}, \mathrm{kg} / \mathrm{d}\right)(\mathrm{SRT}, \mathrm{~d})}{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}=\frac{\mathrm{P}_{\mathrm{X}, \text { TSS }}(\mathrm{SRT})}{2.5} \mathrm{~m}^{3} \\
& \tau=\frac{\mathrm{V}}{\mathrm{Q}} \\
& \tau=\frac{\left[\left(\mathrm{P}_{\mathrm{X}, \text { TSS }}\right)(\mathrm{SRT})\right]\left(\mathrm{m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{2.5\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=4.8 \times 10^{-4}\left[\left(\mathrm{P}_{\mathrm{X}, \text { TSS }}\right)(\mathrm{SRT})\right] \mathrm{h}
\end{aligned}
$$

Using a spreadsheet program, compute the values of V and τ for SRTs ranging from 3 to 20 d as shown in the following table and plot below:

SRT d	Volume m^{3}	HRT h	SRT d	Volume m^{3}	HRT h
3	3192	3.8	12	9666	11.6
4	4105	4.9	13	10,247	12.3
5	4937	5.9	14	10,814	13.0
6	5708	6.8	15	11,368	13.6
7	6442	7.7	16	11,920	14.3
8	7135	8.6	17	12,454	14.9
9	7806	9.4	18	12,978	15.6
10	8444	10.1	19	13,484	16.2
11	9060	10.9	20	14,004	16.8

Figure 2. Plot of Volume and hydraulic retention time (HRT) versus SRT.
d. Determine observed yield as $\mathrm{g} \mathrm{TSS} / \mathrm{g}$ BOD and $\mathrm{g} \mathrm{TSS} / \mathrm{g}$ bCOD
$Y_{\text {obs }}$ based on g TSS/g BOD
Observed yield $=\mathrm{P}_{\mathrm{X}, \text { Tss }} / \mathrm{g}$ BOD removed
$\mathrm{P}_{\mathrm{X}, \text { TSS }}$ was determined in Step 3a above.
$B O D$ removed $=Q\left(S_{o}-S\right), S$ is determined above as function of SRT

$$
\begin{aligned}
& Y_{\text {obs, TSS/BOD }}=\frac{\left(P_{X, T S S}, g \mathrm{TSS} / \mathrm{d}\right)}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(143-\mathrm{S}) \mathrm{g} \mathrm{BOD} / \mathrm{m}^{3}} \\
& \mathrm{Y}_{\text {obs, TSS/COD }}=\left(\mathrm{Y}_{\text {obs,TSS/BOD }}\right)\left(\frac{\mathrm{BOD}}{1.6 B O D}\right) \\
& Y_{\text {obs, TSS/COD }}=\frac{\left(Y_{\text {obs,TSS } / \mathrm{BOD}}\right)}{1.6}
\end{aligned}
$$

Using a spreadsheet program, compute the values of $\mathrm{Y}_{\text {obs }}$ for SRTs ranging from 3 to 20 d as shown in the following table and plot.

SRT d	$Y_{\text {obs }}$ gTSS/gBOD	$Y_{\text {obs }}$ gTSS/gCOD	SRT d	$Y_{\text {obs }}$ gTSS/gBOD	$Y_{\text {obs }}$ gTSS/gCOD
3	0.93	0.58	12	0.70	0.44
4	0.90	0.56	13	0.69	0.43
5	0.86	0.54	14	0.68	0.42
6	0.83	0.52	15	0.66	0.41
7	0.80	0.50	16	0.65	0.41
8	0.78	0.49	17	0.64	0.40
9	0.76	0.47	18	0.63	0.39
10	0.74	0.46	19	0.62	0.39
11	0.72	0.45	20	0.61	0.38

Figure 3. Observed yield vs SRT
e. Determine oxygen requirement in kg / d as a function of SRT
i. Calculate NO_{x} using Eq. (8-24)
$\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q}$
$P_{X, \text { bio }}$ is calculated as shown above from A, B, and C
Using a spreadsheet program, compute the values of NO_{x} for SRTs
ranging from 3 to 20 d as shown in the table following item ii. below.
iii. Calculate O_{2} demand rate using Eq. (8-23).

$$
\mathrm{R}_{0}=\mathrm{Q}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{x}, \mathrm{bio}}+4.57 \mathrm{Q}\left(\mathrm{NO}_{\mathrm{x}}-\mathrm{N}\right)
$$

f. Using a spreadsheet program, compute the values of R_{0} for SRTs ranging from 3 to 20 d as shown in the following table and plot. The plot also includes the sludge production rate (kg TSS/d)

SRT	NOx-N	R_{0}	SRT	NOx-N	R_{0}

d	mg / L	kg / d	d	mg / L	kg / d
3	17	3781	12	29	5616
4	24	4587	13	29	5687
5	26	4815	14	29	5752
6	26	4986	15	29	5812
7	27	5126	16	30	5867
8	27	5249	17	30	5918
9	28	5356	18	30	5965
10	28	5452	19	30	6010
11	28	5538	20	30	6050

PROBLEM 8-20
Problem Statement - see text, page 925
Solution (for effluent $\mathrm{NH}_{4}-\mathrm{N}=1.0 \mathrm{mg} / \mathrm{L}$)

1. Summary of operating conditions given for nitrification.
$\mathrm{DO}=2.0 \mathrm{mg} / \mathrm{L}$
Temperature $=10^{\circ} \mathrm{C}$
Design safety factor $=$ Peak/average TKN $=1.8$
2. Establish basis for selecting SRT.
a. The ammonia-oxidizing bacteria (AOB) specific growth rate is related to the SRT in a complete-mix activated sludge process as shown by Eq. (7-98) in Table 8-10.

SRT $=\frac{1}{\mu_{\mathrm{AOB}}}$
b. The AOB specific growth rate is related to the ammonia-N and DO concentrations and kinetic coefficients as given by Eq. (7-94) in Table 8-10
$\mu_{\mathrm{AOB}}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}} \mathrm{S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{K}_{\mathrm{o}, \mathrm{AOB}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}$
Thus, the required SRT is related to the above factors by substitution for $\mu_{\text {AOB }}$

$$
\frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\max , \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

The design SRT is based on the selected safety factor (SF) value, and the SRT determined at the average design condition using Eq. (7-73) in Table 8-10.

Design SRT = SF (SRT)
3. Determine the kinetic coefficients. The coefficients for Eq. (7-94, 7-95) are obtained from Table 8-14. Use the temperature correction Eq. (1-44) shown in Table 8-10.
$\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}$
Temperature $=10^{\circ} \mathrm{C}$
$\mu_{\max , \mathrm{AOB}}=0.90(1.072)^{10-20}=0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{NH} 4}=0.50(1.0)^{10-20}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{Y}_{\mathrm{n}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \text { Noxidized } \\
& \quad \mathrm{b}_{\mathrm{AOB}}=0.17(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \quad \mathrm{~K}_{\mathrm{o}}=0.50 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

4. Determine the design SRT.
a. Calculate μ_{AOB} for an effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration of $0.50 \mathrm{mg} / \mathrm{L}$ and a DO concentration $=2.0 \mathrm{mg} / \mathrm{L}$.

$$
\begin{aligned}
& \mu_{\mathrm{AOB}}=\left\{\frac{(0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(0.50+1.0) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}\left\{\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(0.50+2.0) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}-0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mu_{\mathrm{AOB}}=0.111 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

b. Calculate the SRT.
$\mathrm{SRT}=\frac{1}{(0.111 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})}=9.0 \mathrm{~d}$
c. Determine the design SRT.

Design SRT $=1.8(9.0 \mathrm{~d})=16.2 \mathrm{~d}$

PROBLEM 8-21

Problem Statement - see text, page 926

Solution

1. Determine the SRT using Eqs. (8-20), (8-21), and (7-57) in Table 8-10.
a. Determine the total mass of solids for $\tau=8.3 \mathbf{h}$

$$
\begin{aligned}
P_{X, T S S} & =\frac{Q Y_{H}\left(S_{o}-S\right)}{\left[1+b_{H}(S R T)\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{\left[1+b_{H}(S R T)\right] 0.85} \\
& +\frac{Q Y_{n}\left(N O_{X}\right)}{\left[1+b_{n}(S R T)\right] 0.85}+Q(n b V S S)+Q\left(T S S_{o}-V_{S S}\right)
\end{aligned}
$$

Substituting $\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}$ in Eq. (7-57).

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})=\frac{\mathrm{QY} \mathrm{Y}_{\mathrm{H}}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{H}\right) \text { QY } \mathrm{Y}_{H}\left(\mathrm{~S}_{0}-\mathrm{S}\right)(\mathrm{SRT})^{2}}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right] 0.85} \\
& +\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{X}}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right] 0.85}+\mathrm{Q}(\mathrm{nbVSS}) \mathrm{SRT}+\mathrm{Q}\left(\mathrm{TSS}_{\mathrm{o}}-\mathrm{VSS}_{\mathrm{o}}\right) \mathrm{SRT}
\end{aligned}
$$

b. Obtain input values for equation and solve for SRT
$\tau=\frac{\mathrm{V}}{\mathrm{Q}}=\frac{8.3 \mathrm{~h}}{(24 \mathrm{~h} / \mathrm{d})}=0.346 \mathrm{~d}$
$\mathrm{V}=0.346 \mathrm{~d}\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)=5187.5 \mathrm{~m}^{3}$
$S_{0}-S$ is given as $130 \mathrm{mg} / \mathrm{L}$ BOD removed
Convert to BOD to bCOD using Eq. (8-13)
$\mathrm{S}_{0}-\mathrm{S}=1.6(130 \mathrm{mg} / \mathrm{L})=208 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{NO}_{\mathrm{x}} \sim 0.80(\mathrm{TKN})=0.80(40)=32 \mathrm{mg} / \mathrm{L}$
(Note: Due to low yield of nitrifiers, the error with this assumption has only a small and insignificant effect on the SRT determination. An iterative process may also be used in which NO_{x} is calculated after the SRT is determined.)
c. Determine coefficients from Table 8-14 and adjust for temperature using Eq. (1-44) and the table μ values
$\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}$
For heterotrophs:

$$
\begin{aligned}
& Y=0.45 \mathrm{gVSS} / \mathrm{g} \mathrm{bCOD} \\
& \mathrm{f}_{\mathrm{d}}=0.15 \mathrm{~g} / \mathrm{g} \\
& \mathrm{~b}_{\mathrm{H}}=0.12(1.04)^{10-20}=0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

For nitrification:

$$
\mu_{\mathrm{max}, \mathrm{AOB}}=(0.90 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.072)^{10-20}=0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{NH} 4}=(0.50 \mathrm{mg} / \mathrm{L})(1.0)^{10-20}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{~b}_{\mathrm{AOB}}=(0.17 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{Y}_{\mathrm{n}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}
\end{aligned}-\mathrm{N}, ~\left(\mathrm{~K}_{\mathrm{o}}=0.50 \mathrm{~g} / \mathrm{m}^{3} \mathrm{l}\right.
$$

d. Summarize other design parameters to be used

$$
\begin{aligned}
& X_{\text {TSS }}=3000 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{nbVSS}=30 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{TSS}_{\mathrm{o}}-\mathrm{VSS}_{\mathrm{o}}=(70-60) \mathrm{g} / \mathrm{m}^{3}=10 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{Q}=15,000 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

e. Substitute the above values and other given information into the equation developed in 1a.
$\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(5187.5 \mathrm{~m}^{3}\right)=\frac{(0.45 \mathrm{~g} / \mathrm{g})\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(208 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT })}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \mathrm{SRT}] 0.85}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(208 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})^{2}}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \mathrm{SRT}] 0.85}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT })}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \text { SRT }] 0.85}+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(30 \mathrm{~g} / \mathrm{m}^{3}\right)($ SRT $)$
$+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(30 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})$
15,562,500 = $\frac{1,651,765(S R T)}{1+.081 S R T}+\frac{20,069(S R T)^{2}}{1+0.081 S R T}+\frac{84705(S R T)}{1+0.128 S R T}+450,000 S R T+150,000 S R T$
f. Solve for SRT using spreadsheet - vary SRT until equation is solved or use Excel solver function:

SRT $=9.2 \mathrm{~d}$

The SRT for nitrification by ammonia-oxidizing bacteria (AOB) for a complete-mix process is related to the specific growth rate of the nitrifying bacteria by Eq. (7-98) in Table 8-10.

$$
\begin{aligned}
& \mathrm{SRT}=\frac{1}{\mu_{\mathrm{AOB}}} \\
& \mu_{\mathrm{AOB}}=\frac{1}{\mathrm{SRT}}=\frac{1}{9.2 \mathrm{~d}}=0.109 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

g. Solve for effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration. The value for μ_{AOB} is related to the kinetic coefficients, temperature, and DO and $\mathrm{NH}_{4}-\mathrm{N}$ concentration as shown by Eq. (7-94) in Table 8-10. The DO is given as $2.0 \mathrm{mg} / \mathrm{L}$.

$$
\mu_{\mathrm{AOB}}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}, \mathrm{AOB}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

and thus:

$$
\frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}, \mathrm{AOB}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

This is rearranged to solve for effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration:

$$
\mathrm{S}_{\mathrm{NH} 4}=\frac{\mathrm{K}_{\mathrm{NH} 4}\left(1+\mathrm{b}_{\mathrm{AOB}} \mathrm{SRT}\right)}{\left[\mu_{\mathrm{max}, \mathrm{AOB}}\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}\right] \mathrm{SRT}-1}
$$

$$
\mathrm{S}_{\mathrm{NH} 4}=\frac{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(9.2 \mathrm{~d})]}{\left\{(0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left[\frac{2.0}{(0.5+2.0)}\right]-(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\right\}(9.2)-1}
$$

$\mathrm{S}_{\mathrm{NH} 4}=0.97 \mathrm{mg} / \mathrm{L}$
h. Determine the SRT needed to obtain an effluent NH4-N concentration of $1.0 \mathrm{mg} / \mathrm{L}$ and safety factor.

$$
\begin{aligned}
& \frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}, \mathrm{AOB}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}} \\
& \frac{1}{\mathrm{SRT}}=\left[\frac{(0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(1.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]\left[\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]-0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \frac{1}{\mathrm{SRT}}=0.1115 \\
& \mathrm{SRT}=9.0
\end{aligned}
$$

Safety factor $=9.2 / 9.0=1.02,($ not significant $)$

PROBLEM 8-22

Problem Statement - see text, page 926

Solution (wastewater 1)

1. Determine the volume using Eqs. (7-57), (8-20), and (8-21) in Table 8-10.

$$
\begin{aligned}
& \left(X_{T S S}\right) V=P_{X, T S S}(S R T) \\
& P_{X, T S S}=\frac{Q Y\left(S_{0}-S\right)}{\left[1+b_{H}(S R T)\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y\left(S_{0}-S\right) S R T}{\left[1+b_{H}(S R T)\right] 0.85} \\
& \quad+\frac{Q Y_{n}\left(N O_{X}\right)}{\left[1+b_{n}(S R T)\right] 0.85}+Q(n b V S S)+Q\left(T S S_{o}-V_{S S}\right)
\end{aligned}
$$

2. Determine the value for S using Eq. (7-46) in Table 8-10 and an SRT = $\mathbf{8} \mathbf{d}$

$$
S=\frac{K_{S}\left[1+b_{H}(S R T)\right]}{S R T\left(Y_{H} k-b_{H}\right)-1}
$$

From Eq. (7-16), Table 8-10, $\mu_{\max }=\mathrm{Yk}$
Substituting $\mu_{\max }$ and values from problem statement:
$\mathrm{S}=\frac{\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(8 \mathrm{~d})]}{(8 \mathrm{~d})[(3.0 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})-(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})]-1}$
$\mathrm{S}=4.4 \mathrm{~g} / \mathrm{m}^{3} \mathrm{bCOD}$
3. Solve for V. (Note: NO_{x} is insignificant per problem statement, $\mathrm{NO}_{\mathrm{x}}=0$)

The information given shows that it is a soluble wastewater, so nbVSS and $\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{0}\right)=0$.
$V=\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.40 \mathrm{~g} / \mathrm{g})\left[(1800-4.4) \mathrm{g} / \mathrm{m}^{3}\right](8.0 \mathrm{~d})}{[1+(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(8.0 \mathrm{~d})](0.85)\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.40 \mathrm{~g} / \mathrm{g})\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(1800-4.4) \mathrm{g} / \mathrm{m}^{3}\right](8.0 \mathrm{~d})^{2}}{[1+(0.08 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(8.0 \mathrm{~d})](0.85)\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)}$
$V=4,946.3 m^{3}+474.8 m^{3}=5421.1 m^{3}$
$\tau=\frac{V}{Q}=\frac{5421.1 \mathrm{~m}^{3}}{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}=1.81 \mathrm{~d}=43.4 \mathrm{~h}$
4. Calculate the oxygen required using Eq. (8-23) in Table 8-10.
$R_{0}=Q\left(S_{o}-S\right)-1.42 P_{X, \text { bio }}$
Because nbVSS and $\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{0}\right)=0$, the solids are produced from only the biomass [components A and B in Eq. (8-20)]. Thus, the biomass production rate is equal to
$P X$, bio $=P_{X, V S S}=0.85 P_{X, T S S}$
From Eq. (7-57): $P_{X, T S S}=\frac{\left(\mathrm{X}_{\mathrm{TSS}}\right) V}{S R T}$
Thus:
$P_{X, \text { bio }}=\frac{0.85\left(X_{\text {TSS }}\right) V}{S R T}=\frac{0.85\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(5421.1 \mathrm{~m}^{3}\right)}{8.0 \mathrm{~d}}$
$P_{X, \text { bio }}=1,439,980 \mathrm{~g} / \mathrm{d}$
$R_{o}=\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(1800-4.4) \mathrm{g} / \mathrm{m}^{3}\right]-[(1.42)(1,439,980 \mathrm{~g} / \mathrm{d})]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$R_{0}=3,342 \mathrm{~kg} / \mathrm{d}$
5. Determine the sludge production using Eq. (7-57)

$$
P_{\mathrm{X}, \mathrm{TsS}}=\frac{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(5421.1 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{8.0 \mathrm{~d}}=1694 \mathrm{~kg} / \mathrm{d}
$$

6. Calculate the soluble BOD concentration in the effluent from the problem statement of $b C O D / B O D=1.6$.
$\mathrm{sBOD}=\frac{(4.4 \mathrm{mg} / \mathrm{L})}{1.6}=2.8 \mathrm{mg} / \mathrm{L}$
7. Determine the secondary clarifier diameter.
a. Select secondary clarifier overflow rate and solids loading from Table 8-34. Use the midpoint for the air-activated sludge process. (Note: no peak loadings are given)

Overflow rate $=Q / A=22 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$
Solids loading $=$ SLR $=5.0 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$
From Eq. (8-81), page 891

$$
S L R=\frac{\left(Q+Q_{R}\right) M L S S}{A}
$$

b. Calculate area per clarifier based on overflow rate assuming 2 clarifiers are used.

$$
A=\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(22 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=136.4 \mathrm{~m}^{2}
$$

$$
\text { Area/clarifier }=\frac{136.4 \mathrm{~m}^{2}}{2}=68.2 \mathrm{~m}^{2}
$$

c. Calculate clarifier diameter
$\mathrm{A}=\frac{\pi \mathrm{D}^{2}}{4}=68.2 \mathrm{~m}^{2}$
$\mathrm{D}=9.3$, use $\mathrm{D}=9 \mathrm{~m}$
8. Check solids loading. (Assume recycle ratio $=Q / Q_{R}=0.50$)

$$
\begin{aligned}
S L R & =\frac{\left(Q+Q_{R}\right) X}{A}=\frac{(Q+0.5 Q) X}{A}=1.5 \frac{Q}{A} X \\
S L R & =(1.5)\left(22 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)(1 \mathrm{~d} / 24 \mathrm{~h}) \\
& =3.4 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}
\end{aligned}
$$

Solids loading rate is $<5.0 \mathrm{~kg} / \mathrm{m}^{2} \bullet \mathrm{~h}$ and thus is acceptable.
9. Calculate the air flowrate
a. The following information is provided to calculate the airflow rate for fine bubble aeration.
$R_{0}=3342 \mathrm{~kg} / \mathrm{d}=139.3 \mathrm{~kg} / \mathrm{h}(\mathrm{step} 4)$
$\alpha=0.45$
$F=0.90$

$$
\beta=1.0
$$

Temperature $=15^{\circ} \mathrm{C}$
Effective DO saturation depth $=2.5 \mathrm{~m}$
Elevation $=300 \mathrm{~m}$
Clean water O_{2} transfer efficiency $=30 \%$
Assume mixed liquor DO concentration $=2.0 \mathrm{mg} / \mathrm{L}$
b. Convert the oxygen transfer rate to that required at clean water standard conditions using Eq. (5-70) as shown in Example 8-3.

$$
\text { SOTR }=\frac{(\text { AOTR }) \mathrm{C}_{\infty, 20}^{*}}{\left[(\beta)\left(\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{P}_{\mathrm{S}}}\right)\left(\frac{\mathrm{C}_{\mathrm{S}, \mathrm{~T}}^{*}}{\mathrm{C}_{\infty, 20}^{*}}\right) \mathrm{C}_{\infty, 20}^{*}-\mathrm{C}\right] \alpha \mathrm{F}(1.024)^{(\mathrm{T}-20)}}
$$

a. Determine effect of temperature and elevation on saturated DO concentration.
i. From Table E-1 (Appendix E), $\mathrm{C}_{\infty, 20}^{*}=9.09 \mathrm{mg} / \mathrm{L}$ and $\mathrm{C}_{15}=10.08$ mg / L.
ii. Determine the relative pressure at elevation 300 m to correct the DO concentration for altitude

$$
\begin{aligned}
\frac{P_{b}}{P_{s}} & =\exp \left[-\frac{g M\left(z_{b}-z_{a}\right)}{R T}\right] \\
& =\exp \left\{-\frac{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(28.97 \mathrm{~kg} / \mathrm{kg}-\mathrm{mole})[(300-0) \mathrm{m}]}{\left(8314 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~kg} \text {-mole } \cdot \mathrm{K}\right)[(273.15+15) \mathrm{K}]}\right\} \\
& =0.965 \\
\mathrm{P}_{\mathrm{s}} & =\text { standard pressure at sea level, }(760 \mathrm{~mm})(10.33 \mathrm{~m})
\end{aligned}
$$

b. Determine the effective saturated DO concentration at $20^{\circ} \mathrm{C}$. The problem provides an effective saturation depth of 2.5 m .
The effective DO saturation at $20^{\circ} \mathrm{C}$ is thus:

$$
\begin{aligned}
& \mathrm{C}_{\infty 20}^{*}=\frac{9.09(10.33+2.5) \mathrm{m}}{10.33 \mathrm{~m}}=9.09(1.24) \mathrm{m} \\
& \mathrm{C}_{\infty 20}^{*}=11.27 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

c. Determine the effect of temperature
$\frac{\mathrm{C}_{s, T}^{*}}{\mathrm{C}_{\infty, 20}^{*}}=\frac{10.08}{9.09}=1.109$
d. Determine the SOTR

SOTR $=\frac{(\text { AOTR })(11.27 \mathrm{mg} / \mathrm{L})}{\{[(1.0)(0.965)(1.109)(11.27)-2.0] \mathrm{mg} / \mathrm{L}\}(0.45)(0.90)(1.024)^{(15-20)}}$
$S O T R=3.11(A O T R)$

SOTR $=3.11(139.3 \mathrm{~kg} / \mathrm{h})=433.2 \mathrm{~kg} / \mathrm{h}$
e. Determine the air flow rate

Air flowrate, $\mathrm{m}^{3} / \mathrm{min}=\frac{(\mathrm{SOTR} \mathrm{kg} / \mathrm{h})}{\left[(\mathrm{E})(60 \mathrm{~min} / \mathrm{h})\left(\mathrm{kg} \mathrm{O}_{2} / \mathrm{m}^{3} \text { air }\right)\right]}$
From Appendix B, the density of air at $15^{\circ} \mathrm{C}$ and standard pressure is:
$\rho_{\mathrm{a}}=\frac{\mathrm{Pm}}{\mathrm{RT}}=\frac{\left(1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)(28.97 \mathrm{~g} / \mathrm{mole} \text { air })}{(8314 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{mole} \text { air } \cdot \mathrm{K})[(273.15+15) \mathrm{K}]}$
$\rho_{\mathrm{a}}=1.225 \mathrm{~kg} / \mathrm{m}^{3}$
At 300 m elevation,
$\rho_{\mathrm{a}}=0.965\left(1.225 \mathrm{~kg} / \mathrm{m}^{3}\right)=1.182 \mathrm{~kg} / \mathrm{m}^{3}$
The corresponding amount of oxygen at 23.18 percent by weight (Appendix B-2) is
$(0.2318 \mathrm{~kg} / \mathrm{kg})\left(1.182 \mathrm{~kg} / \mathrm{m}^{3}\right)=0.274 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{m}^{3}$ air
Air flowrate $=\frac{(433.2 \mathrm{~kg} / \mathrm{h})}{(0.30)(60 \mathrm{~min} / \mathrm{h})\left(0.274 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{m}^{3} \text { air }\right)}$
Air flowrate $=87.8 \mathrm{~m}^{3} / \mathrm{min}$

PROBLEM 8-23

Problem Statement - see text, page 926

Solution (Wastewater 1)

1. Determine the volume is using Eqs. (8-20), (8-21), and (7-57) in Table 8-10.

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right) \mathrm{V}=\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}(\mathrm{SRT}) \\
& P_{X, T S S}=\frac{Q Y_{H}\left(S_{0}-S\right)}{\left[1+b_{H}(S R T)\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{0}-S\right) S R T}{\left[1+b_{H}(S R T)\right] 0.85} \\
& +\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right)}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right] 0.85}+\mathrm{Q}(\mathrm{nbVSS})+\mathrm{Q}\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{0}\right)
\end{aligned}
$$

Combine equations

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right)\left(\frac{\mathrm{V}}{\mathrm{Q}}\right)=\frac{\mathrm{Y}_{\mathrm{H}}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) \mathrm{Y}_{\mathrm{H}}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}^{2}}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85} \\
& +\frac{\mathrm{Y}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right] 0.85}+(\mathrm{nbVSS}) \mathrm{SRT}+\left(\mathrm{TSS}_{\mathrm{o}}-\mathrm{VSS}_{o}\right) \mathrm{SRT}
\end{aligned}
$$

2. Define input for above equation for wastewater 1

Influent bCOD = $1.6(B O D)=1.6(270 \mathrm{mg} / \mathrm{L})=432 \mathrm{mg} / \mathrm{L}$
Assume $S_{0}-S \approx S_{0}=432 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{NO}_{\mathrm{x}} \sim 0.80(\mathrm{TKN})=0.80(40 \mathrm{mg} / \mathrm{L})=32 \mathrm{mg} / \mathrm{L}$
$V / Q=1 d$
$X_{T S S}=3500 \mathrm{mg} / \mathrm{L}$
3. Determine coefficients from Table 8-14 and adjust for temperature using Eq.
(1-44) in Table 8-10.

$$
\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}
$$

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{H}} & =0.45 \mathrm{gVSS} / \mathrm{g} \mathrm{bCOD} \\
\mathrm{f}_{\mathrm{d}} & =0.15 \mathrm{~g} / \mathrm{g} \\
\mathrm{~b}_{\mathrm{H}} & =0.12(1.04)^{10-20}=0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
\mathrm{~b}_{\mathrm{n}} & =(0.17 \mathrm{~g} / \mathrm{g}-\mathrm{d})(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
\mathrm{Y}_{\mathrm{n}} & =0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}
\end{aligned} \mathrm{~N}_{4}-\mathrm{N} \text { (includes growth from ammonia and } .
$$

4. Substitute values in the step 1 equation
$\left(3500 \mathrm{~g} / \mathrm{m}^{3}\right)(1 \mathrm{~d})=\frac{0.45 \mathrm{~g} / \mathrm{g}\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT })}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \text { SRT }] 0.85}+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.45 \mathrm{~g} / \mathrm{g})\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT })^{2}}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \text { SRT }] 0.85}$

$$
+\frac{0.20 \mathrm{~g} / \mathrm{g}\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85}+130 \mathrm{~g} / \mathrm{m}^{3}(\mathrm{SRT})+(250-240) \mathrm{g} / \mathrm{m}^{3}(\mathrm{SRT})
$$

5. Solve equation with a spreadsheet by selecting SRT value where left and right sides of equation are equal.

$$
3500=\frac{260.47(\mathrm{SRT})}{1+.081 \mathrm{SRT}}+\frac{3.16(\mathrm{SRT})^{2}}{1+0.081 \mathrm{SRT}}+\frac{7.53(\mathrm{SRT})}{1+0.128 \mathrm{SRT}}+130 \mathrm{SRT}+10 \mathrm{SRT}
$$

SRT $=11.9 \mathrm{~d}$
6. Determine the sludge production rate using Eq. (7-57)

$$
\begin{aligned}
& P_{\mathrm{X}, \mathrm{TSS}}=\frac{\left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})}{S R T}=\frac{\left(3500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{11.9 \mathrm{~d}} \\
& P_{\mathrm{X}, \mathrm{TSS}}=1176.5 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

7. Calculate MLVSS using Eq. (8-20) to determine $P_{X, v s s}$ and $P_{X, v s s} / P_{X, T s s}$ ratio.
MLVSS / MLSS $=\left(P_{X, V S S}\right) /\left(P_{X, T S S}\right)$
$P_{X, V S S}=\frac{Q\left(Y_{H}\right)\left(S_{o}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+b_{H}(S R T)}+\frac{f_{d}\left(b_{H}\right) Q Y_{H}(S o-S) S R T\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+b_{H}(S R T)}$
$+\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})}+\mathrm{Q}(\mathrm{nbVSS})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$P_{X, V S S}=\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) 11.9 \mathrm{~d}]}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)(11.9 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[(1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(11.9 \mathrm{~d})]}$
$+\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.20 \mathrm{~g} / \mathrm{g})\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(11.9 \mathrm{~d})]}+\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(130 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$\mathrm{P}_{\mathrm{X}, \mathrm{VSS}}=(395.9+57.2+10.2+520) \mathrm{kg} / \mathrm{d}=983.3 \mathrm{~kg} / \mathrm{d}$
MLVSS $=(3500 \mathrm{mg} / \mathrm{L})\left[\frac{(983.3 \mathrm{~kg} / \mathrm{d})}{(1176.5 \mathrm{~kg} / \mathrm{d})}\right]=2925.2 \mathrm{mg} / \mathrm{L}$
8. Determine the rate of oxygen required using Eq. (8-23) in Table 8-10.
$R_{o}=Q\left(S_{o}-S\right)-1.42 P_{X, \text { bio }}+4.57 Q\left(\mathrm{NO}_{\mathrm{x}}\right)$
a. Calculate $P_{X, \text { bio }}$ from components A and B in Eq. (8-20)

$$
\begin{aligned}
& P_{X, \text { bio }}=\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(11.9 \mathrm{~d})]} \\
&+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(11.9 \mathrm{~d})]} \\
& \quad=395.9 \mathrm{~kg} / \mathrm{d}+57.2 \mathrm{~kg} / \mathrm{d}=453.1 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

b. Calculate NO_{x} using Eq. (8-24) in Table 8-10.
$\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X} \text {.bio }} / \mathrm{Q}$
$\mathrm{NO}_{\mathrm{x}}=(40-1.0) \mathrm{g} / \mathrm{m}^{3}-\frac{0.12(453.1 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}$
$\mathrm{NO}_{\mathrm{x}}=25.4 \mathrm{~g} / \mathrm{m}^{3}$
Note: This is lower than the assumed value of $32 \mathrm{~g} / \mathrm{m}^{3}$. Recalculation using $25.4 \mathrm{~g} / \mathrm{m}^{3}$ results in the following values for the previously calculated parameters shown above.

Parameter	NOx $25.4 \mathrm{~g} / \mathrm{m}^{3}$	NOx $32.0 \mathrm{~g} / \mathrm{m}^{3}$
MLSS, mg/L	3500	3500
SRT, d	11.9	11.9
P $_{\mathrm{X}, \text { Tss, }} \mathrm{kg} / \mathrm{d}$	1176.5	1176.5
P $_{\mathrm{x}, \mathrm{vss}, \mathrm{kg} / \mathrm{d}}$	981.2	983.3
NOx-N, g/m		

c. Calculate R_{0}

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}}=\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)-(1.42 \mathrm{~g} / \mathrm{g})(453.1 \mathrm{~kg} / \mathrm{d}) \\
&+4.57\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(25.4 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& \mathrm{R}_{\mathrm{o}}=(1728.0-643.4+464.3) \mathrm{kg} / \mathrm{d}=1548.9 \mathrm{~kg} / \mathrm{d} \\
& \text { AOTR }=\frac{(1548.9 \mathrm{~kg} / \mathrm{d})}{(24 \mathrm{~h} / \mathrm{d})}=64.54 \mathrm{~kg} / \mathrm{h}
\end{aligned}
$$

9. Determine the aeration horsepower at $10^{\circ} \mathrm{C}$ by first converting the oxygen transfer rate to that required at clean water standard conditions using Eq. (5-70) and the values given in the problem statement. The value for the
fouling factor (F) is equal to 1.0 as fouling is not a factor for surface mechanical aerators.
SOTR $=\frac{(\text { AOTR }) C_{\infty, 20}^{*}}{\left[(\beta)\left(\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{P}_{\mathrm{S}}}\right)\left(\frac{\mathrm{C}_{\mathrm{S}}^{*}, \mathrm{~T}}{\mathrm{C}_{\infty, 20}^{*}}\right) \mathrm{C}_{\infty, 20}^{*}-\mathrm{C}\right] \alpha \mathrm{F}(1.024)^{(\mathrm{T}-20)}}$
From Appendix E, Table E-1, C $\mathrm{s} \cdot 20=9.09 \mathrm{mg} / \mathrm{L}$
a. From Appendix B-4, determine the barometric pressure at 500 in elevation to use for a pressure correction.

$$
\begin{aligned}
\frac{P_{b}}{P_{s}} & =\exp \left[-\frac{g M\left(z_{b}-z_{a}\right)}{R T}\right] \\
& =\exp \left\{\frac{9.81 \mathrm{~m} / \mathrm{s}^{2}(28.97 \mathrm{~kg} / \mathrm{kg}-\mathrm{mole})(500-0) \mathrm{m}}{\left(8314 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~kg}-\mathrm{mole} \cdot \mathrm{~K}\right)[(273.15+10) \mathrm{K}]}\right\}
\end{aligned}
$$

$$
\frac{P_{b}}{P_{s}}=0.941
$$

b. From Appendix $\mathrm{E}, \mathrm{C}_{\mathrm{s}, 10^{\circ} \mathrm{C}}=11.29 \mathrm{mg} / \mathrm{L}$

$$
\frac{\mathrm{C}_{\mathrm{S}, \mathrm{~T}}^{*}}{\mathrm{C}_{\infty, 20}^{*}}=\frac{11.29}{9.09}=1.242
$$

c. Calculate SOTR

$$
\begin{aligned}
\text { SOTR } & =\frac{(65.54 \mathrm{~kg} / \mathrm{h})(9.09 \mathrm{mg} / \mathrm{L})}{[(0.98)(0.941)(1.242) 9.09-2.0](0.90)(1.024)^{(10-20)}} \\
& =103.3 \mathrm{~kg} / \mathrm{h}
\end{aligned}
$$

d. Calculate the total aeration energy using clean water efficiency provided in problem statement.
Installed energy $=\frac{(103.3 \mathrm{~kg} / \mathrm{h})}{(0.9 \mathrm{~kg} / \mathrm{kWh})}=114.8 \mathrm{~kW}$
From Appendix A, Table A-1
Horsepower $=\frac{114.8 \mathrm{~kW}}{(0.746 \mathrm{~kW} / \mathrm{hp})}=153.9$

Note: For an actual aerator design application, these calculations should also be done at the high design temperature. At higher temperatures for the same SRT more oxygen will be consumed by the heterotrophic biomass and the aerator SOTR/AOTR calculation will be different.
10. Determine the SRT required for nitrification at the temperature given. Use Eq. (7-94) and Eq. (7-98) in Table 8-10 to calculate the specific growth rate of ammonia-oxidizing bacteria (AOB) in this complete-mix activated sludge system.

$$
\begin{aligned}
& \mu_{\mathrm{AOB}}=\left(\frac{\mu_{\max , \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}, \mathrm{AOB}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}} \text { and thus: } \\
& \frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{0, \mathrm{AOB}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
\end{aligned}
$$

a. Determine the design SRT using the safety factor (SF) based on Eq.
(7-73) in Table 8-10:
Design SRT = SF (required SRT)
b. Determine nitrification kinetic coefficients at $10^{\circ} \mathrm{C}$ using values from

Table 8-14. (based on ammonia oxidation)

$$
\begin{aligned}
& \mu_{\text {max }, A O B}=(0.90 \mathrm{~g} / \mathrm{g}-\mathrm{d})(1.072)^{10-20}=0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{NH} 4}=(0.50 \mathrm{mg} / \mathrm{L})(1.0)^{10-20}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{~b}_{\mathrm{AOB}}=(0.17 \mathrm{~g} / \mathrm{g}-\mathrm{d})(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{O}, \mathrm{AOB}}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \frac{1}{\mathrm{SRT}}=\left\{\frac{(0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.0 \mathrm{mg} / \mathrm{L})}{[(0.50+1.0) \mathrm{mg} / \mathrm{L}]}\right\}\left\{\frac{(2.0 \mathrm{mg} / \mathrm{L})}{[(0.50+2.0) \mathrm{mg} / \mathrm{L}]}\right\}-0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \frac{1}{\mathrm{SRT}}=0.111 \mathrm{~d}^{-1} \\
& \text { SRT }=\frac{1}{0.111 \mathrm{~d}^{-1}}=9.0 \mathrm{~d}
\end{aligned}
$$

Design SRT $=1.5(9.0 \mathrm{~d})=13.5 \mathrm{~d}$

But the SRT is only 11.9 d , which gives a safety factor of 1.32 .

For the 1.5 safety factor the SRT could be increased by increasing the MLSS concentration to approximately (1.5/1.32)(3500 mg/L) $=3980$ mg / L, which may be possible if the secondary clarifiers have sufficient area. Otherwise the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration may be higher during peak loading.
11. Determine ratio of total volume to required nitrification volume at average load:
$\frac{\text { Total volume }}{\text { Nitrification volume }}=\frac{11.9 \mathrm{~d}}{9.0 \mathrm{~d}}=1.32$
Note: By controlling DO concentration, a portion of the oxidation ditch channel volume can be at low to zero DO concentration to accomplish denitrification.

PROBLEM 8-24

Problem Statement - see text page 927

Solution

1. Determine fill time $\left(t_{F}\right)$ by applying uniform flow assumption for 2 tanks and assuming idle time $t_{1}=0$
$T_{C}=t_{F}+t_{A}+t_{S}+t_{D}$
for 2 Tanks
$t_{F}=t_{A}+t_{S}+t_{D}=(2.0+1.0+0.5) h=3.5 h$
Total cycle time, $\mathrm{T}_{\mathrm{C}}=(3.5+2.0+1.0+0.5) \mathrm{h}=7.0 \mathrm{~h}$
2. Determine the total volume. The full volume is related to the feed volume per cycle and fraction of the tank volume removed (and filled) each cycle. Feed volume/cycle = flow rate (fill time)

$$
=\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})(3.5 \mathrm{~h} / \text { fill })=583.3 \mathrm{~m}^{3}
$$

As given: $\frac{V_{F}}{V_{T}}=0.20$
where $V_{F}=$ fill volume and $V_{T}=$ total volume

$$
V_{T}=\frac{V_{F}}{0.20}=\frac{583.3 \mathrm{~m}^{3}}{0.20}=2916.7 \mathrm{~m}^{3}
$$

3. Determine the SRT using Eqs. (8-20), (8-21), and (7-57) in Table 8-10 and total volume of $2916.7 \mathrm{~m}^{3}$ and flow of $2000 \mathrm{~m}^{3} / \mathrm{d}$ per tank ($4000 \mathrm{~m}^{3} / \mathrm{d}$ for 2 tanks)
$\left(\mathrm{X}_{\mathrm{TSS}}\right) \mathrm{V}=\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}(\mathrm{SRT})$

$$
\begin{aligned}
P_{X, \text { TSS }} & =\frac{Q Y_{H}\left(S_{o}-S\right)}{\left[1+b_{H}(S R T)\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{\left[1+b_{H}(S R T)\right] 0.85} \\
& +\frac{Q Y_{n}\left(\mathrm{NO}_{X}\right)}{\left[1+b_{n}(S R T)\right] 0.85}+Q(n b V S S)+Q\left(\text { TSS }_{o}-\text { VSS }_{o}\right)
\end{aligned}
$$

Combine equations

$$
\begin{aligned}
& \left(\mathrm{X}_{\text {TSS }}\right)\left(\frac{\mathrm{V}}{\mathrm{Q}}\right)=\frac{\mathrm{Y}_{H}\left(\mathrm{~S}_{o}-\mathrm{S}\right) \text { SRT }}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right](0.85) \mathrm{X}}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{H}\right) \mathrm{Y}_{H}\left(\mathrm{~S}_{o}-\mathrm{S}\right)(\mathrm{SRT})^{2}}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right](0.85) \mathrm{X}} \\
& +\frac{Y_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{X}}\right) S R T}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right](0.85) \mathrm{X}}+(\mathrm{nbVSS}) \text { SRT }+\left(\mathrm{TSS}_{o}-\mathrm{VSS}_{o}\right) \text { SRT }
\end{aligned}
$$

4. Define input for above equation for wastewater \mathbf{A}

Influent $\mathrm{bCOD}=1.6(B O D)=1.6(270 \mathrm{mg} / \mathrm{L})=432 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{S}_{\mathrm{o}}-\mathrm{S} \approx \mathrm{S}_{0}=432 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{NO}_{x} \sim 0.80(\mathrm{TKN})=0.80(40)=32 \mathrm{mg} / \mathrm{L}$
(Note: Nitrifier growth has very small effect on MLSS concentration compared to other factors)
5. Determine coefficients from Table 8-14 and adjust for temperature using Eq.
(1-44) in Table 8-10.
$\mathrm{K}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}$
$\mathrm{Y}_{\mathrm{H}}=0.45 \mathrm{gVSS} / \mathrm{g} \mathrm{bCOD}$

$$
\begin{aligned}
& f_{d}=0.15 \mathrm{~g} / \mathrm{g} \\
& \mathrm{~b}_{\mathrm{H}}=0.12(1.04)^{10-20}=0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{Y}_{\mathrm{n}}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N} \text { (includes ammonia and nitrite oxidizers) } \\
& \mathrm{b}_{\mathrm{n}}=0.17(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

6. Substitute values in the step 3 equation

$$
\begin{aligned}
& \left(3500 \mathrm{~g} / \mathrm{m}^{3}\right)\left[\frac{2916.7 \mathrm{~m}^{3}}{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]=\frac{0.45 \mathrm{~g} / \mathrm{g}\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(0.45 \mathrm{~g} / \mathrm{g})\left(432 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})^{2}}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \text { SRT }] 0.85} \\
& +\frac{0.20 \mathrm{~g} / \mathrm{g}\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \text { SRT }] 0.85}+130 \mathrm{~g} / \mathrm{m}^{3}(\mathrm{SRT})+(250-240) \mathrm{g} / \mathrm{m}^{3}(\text { SRT })
\end{aligned}
$$

7. Solve equation on spreadsheet by selecting SRT value where left and right sides of equation are equal, or use Excel solver function.
$5104.2=\frac{228.7(\mathrm{SRT})}{1+.081 \mathrm{SRT}}+\frac{2.78(\mathrm{SRT})^{2}}{1+0.081 \mathrm{SRT}}+\frac{7.53(\mathrm{SRT})}{1+0.128 \mathrm{SRT}}+130 \mathrm{SRT}+10 \mathrm{SRT}$
SRT $=20.5 \mathrm{~d}$
8. Determine the decant pumping rate

$$
Q_{\text {decant }}=\frac{\text { volume } / \text { fill }}{t_{D}}=\frac{583.3 \mathrm{~m}^{3}}{0.5 \mathrm{~h}(60 \mathrm{~m} / \mathrm{h})}=19.44 \mathrm{~m}^{3} / \mathrm{min}
$$

PROBLEM 8-25

Problem Statement - see text, page 927
Instructors Note: The approach used in example problem 8-3 can be followed to solve this problem. First, the biomass production rate $\left(P_{X, \text { bio }}\right)$ is calculated and used to determine the nitrogen used for cell synthesis, so that the oxidizable nitrogen $\left(\mathrm{NO}_{\mathrm{x}}\right)$ can be determined. Then the oxidizable N concentration at the beginning of the aeration period is calculated and the time necessary to reduce it
to $0.5 \mathrm{mg} / \mathrm{L} \mathrm{NH} 44-\mathrm{N}$ is determined using the batch reaction Eq. (8-49). The time can be then compared to the actual aeration time.

Solution (Wastewater \#1)

1. Determine $P_{X, \text { bio }}$ from the A, B, and C terms in Eq. (8-20)

$$
P_{\mathrm{X}, \text { bio }}=\frac{Q\left(Y_{H}\right)\left(\mathrm{S}_{0}-S\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{f_{\mathrm{d}}\left(\mathrm{~b}_{\mathrm{H}}\right) \mathrm{Q}\left(\mathrm{Y}_{\mathrm{H}}\right)\left(\mathrm{S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{1+\mathrm{b}_{\mathrm{H}}(\text { SRT })}+\frac{Q Y_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right)}{1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})}
$$

2. Define inputs for above equation for wastewater \#1

Flowrate $=4800 \mathrm{~m}^{3} / \mathrm{d}$
Influent $b C O D=1.6 B O D=1.6(250 \mathrm{mg} / \mathrm{L})=400 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{S}_{0}-\mathrm{S} \approx \mathrm{S}_{0}$
Assume $\mathrm{NO}_{x}-\mathrm{N} \sim 0.80(\mathrm{TKN})=0.80(45 \mathrm{mg} / \mathrm{L})=36 \mathrm{mg} / \mathrm{L}$
\# of SBR tanks = 2
Volume per SBR Tank $=3000 \mathrm{~m}^{3}$
Flow/tank $=\frac{\left(4800 \mathrm{~m}^{3} / \mathrm{d}\right)}{2 \text { tanks }}=2400 \mathrm{~m}^{3} / \mathrm{d} \cdot \mathrm{tank}$
SRT = 20 d
Aeration DO concentration $=2.0 \mathrm{mg} / \mathrm{L}$
Fill volume fraction $\left(\mathrm{V}_{\mathrm{F}} / \mathrm{V}_{\mathrm{T}}\right)$ per cycle $=0.20$
Aeration Time per cycle $=2.0 \mathrm{~h}$
Temperature $=15^{\circ} \mathrm{C}$
3. Determine non-aerated time and fraction of aerobic time during cycle

Non-aerated time $=$ fill + settle + decant times
Fill volume per cycle $=\left(V_{F} / V_{T}\right)\left(V_{T}\right)=0.20\left(3000 \mathrm{~m}^{3}\right)=600 \mathrm{~m}^{3} / \mathrm{cycle}$
Number of cycles per day per tank $=\frac{\left(2400 \mathrm{~m}^{3} / \text { d-tank }\right)}{\left(600 \mathrm{~m}^{3} / \text { cycle }\right)}=4$ cycles $/ \mathrm{d}$
Cycle time $=\frac{(24 \mathrm{~h} / \mathrm{d})}{(4 \text { cycles } / \mathrm{d})}=6 \mathrm{~h} /$ cycle

From Example 8-5: $T_{C}=t_{F}+t_{A}+t_{S}+t_{D}$
$6.0 h=t_{F}+2.0 h+t_{S}+t_{D}$
$t_{F}+t_{S}+t_{D}=6.0-2.0=4.0 h$
Fraction aerobic time $=\frac{t_{A}}{T_{C}}=\frac{2 h}{6 h}=0.33$
4. Determine coefficients from Table 8-14 and adjust for temperature using Eq. (1-44) in Table 8-10, where $\mathrm{T}=15^{\circ} \mathrm{C}$
$\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}$
$\mathrm{Y}_{\mathrm{H}}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD}$
$f_{d}=0.15 \mathrm{~g} / \mathrm{g}$
$\mathrm{b}_{\mathrm{H}}=0.12(1.04)^{(15-20)}=0.0986 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mu_{\max , \mathrm{AOB}, 15}=\mu_{\max , \mathrm{AOB}, 20}(1.072)^{(15-20)}=0.90(0.706)=0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{n}}=0.50 \mathrm{mg} / \mathrm{L}$
$Y_{n}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{3}-\mathrm{N}$ (assumes minimal NO_{2} at end of aeration)

Per Example 8-5 for weighted average b_{n} for nitrifiers
Aerobic $b_{n}=0.17(1.029)^{(15-20)}=0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
Anoxic $b_{n}=0.07(1.029)^{(15-20)}=0.061 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
Weighted average $\mathrm{b}_{\mathrm{n}}=0.147 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}\left(\mathrm{t}_{\mathrm{A}} / \mathrm{T}_{\mathrm{C}}\right)+0.061 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}\left(1-\mathrm{t}_{\mathrm{A}} / \mathrm{T}_{\mathrm{C}}\right)$
Weighted average $b_{n}=0.147 \mathrm{~g} / \mathrm{g} \cdot d(0.33)+0.061 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}(0.67)=0.089 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
4. Determine $P_{X, \text { bio }}$
$P_{X, \text { bio }}=\frac{\left(2400 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.0986 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(20 \mathrm{~d})]}$

$$
\begin{aligned}
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.0986 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(2400 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(20 \mathrm{~d})}{[1+(0.0986 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(20 \mathrm{~d})]} \\
& +\frac{(0.20 \mathrm{~g} / \mathrm{g})\left(2400 \mathrm{~m}^{3} / \mathrm{d}\right)(0.80)\left(45 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.089 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(20 \mathrm{~d})]} \\
\mathrm{P}_{\mathrm{X}, \text { bio }} & =(145,357+42,997+6216) \mathrm{g} / \mathrm{d}=194,570 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

5. Determine $\mathrm{NO}_{x}-\mathrm{N}$ from Eq. (8-24), Table 8-10.
$\mathrm{NO}_{\mathrm{x}}-\mathrm{N}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q}$
Assume $\mathrm{N}_{\mathrm{e}}=0.50 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{NO}_{x}-\mathrm{N}=45.0 \mathrm{~g} / \mathrm{m}^{3}-0.50 \mathrm{~g} / \mathrm{m}^{3}-\frac{0.12(194,570 \mathrm{~g} / \mathrm{d})}{\left(2400 \mathrm{~m}^{3} / \mathrm{d}\right)}$
$\mathrm{NO}_{\mathrm{x}}-\mathrm{N}=(45.0-0.50-9.73) \mathrm{g} / \mathrm{m}^{3}=34.8 \mathrm{~g} / \mathrm{m}^{3}$
Note: replace $\mathrm{NO}_{x}-\mathrm{N}$ of $[(0.8)(45)=36]$ with 34.8 part C of $\mathrm{P}_{\mathrm{x}, \text { bio. }}$. The iteration results in $\mathrm{NO}_{\mathrm{x}}-\mathrm{N}=34.8$.
6. Determine amount of oxidizable N available at start of aeration
$\mathrm{NO}_{x}-\mathrm{N}$ available in feed $=34.8 \mathrm{~g} / \mathrm{m}^{3}$
NO_{x} added/cycle $=\mathrm{V}_{\mathrm{F}}\left(\mathrm{NO}_{\mathrm{x}}\right)$
NO_{x} added/cycle $=\left(600 \mathrm{~m}^{3} /\right.$ cycle $)\left(34.8 \mathrm{~g} / \mathrm{m}^{3}\right)=20,880 \mathrm{~g}$
$\mathrm{NH}_{4}-\mathrm{N}$ remaining before fill $=\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{F}}\right)\left(\mathrm{N}_{\mathrm{e}}\right)$
Assumed $\mathrm{N}_{\mathrm{e}}=0.50 \mathrm{~g} / \mathrm{m}^{3}$
$\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{F}}\right)\left(\mathrm{N}_{\mathrm{e}}\right)=\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)(3000-600) \mathrm{m}^{3}=1200 \mathrm{~g}$
Total oxidizable $\mathrm{N}=(20,880+1200) \mathrm{g}=22,080 \mathrm{~g}$
Initial concentration $=N_{o}=\frac{22,080 \mathrm{~g}}{3000 \mathrm{~m}^{3}}=7.36 \mathrm{~g} / \mathrm{m}^{3}$
7. Solve for final $\mathrm{NH}_{4}-\mathrm{N}$ concentration $\left(\mathrm{N}_{\mathrm{t}}\right)$ at aeration time $=2.0 \mathrm{~h}$
a. Define equations needed

$$
K_{n} \ln \frac{N_{o}}{N_{t}}+\left(N_{o}-N_{t}\right)=X_{n}\left(\frac{\mu_{n m}}{Y_{n}}\right)\left(\frac{D O}{K_{o}+D O}\right) t
$$

where $\mathrm{t}=$ aeration time $=2.0 \mathrm{~h}$

$$
X_{n}=\frac{Q\left(Y_{n}\right)\left(\mathrm{NO}_{x}-N\right) S R T}{\left[1+b_{n}(S R T)\right] V}
$$

b. Apply coefficients from step 4 to determine AOB concentration.

$$
X_{n}=\frac{\left(2400 \mathrm{~m}^{3} / \mathrm{d}\right)(0.15 \mathrm{~g} / \mathrm{g})\left(34.8 \mathrm{~g} / \mathrm{m}^{3}\right)(20 \mathrm{~d})}{[1+(0.089 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(20 \mathrm{~d})]\left(3000 \mathrm{~m}^{3}\right)}=30.0 \mathrm{~g} / \mathrm{m}^{3}
$$

c. Solve for Nt for aeration time $=2.0 \mathrm{~h}$ (use solver on Excel)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{n}} \ln \frac{\mathrm{~N}_{0}}{N_{t}}+\left(\mathrm{N}_{\mathrm{o}}-\mathrm{N}_{\mathrm{t}}\right)=\mathrm{X}_{\mathrm{n}}\left(\frac{\mu_{\mathrm{nm}}}{Y_{\mathrm{n}}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+D O}\right) \mathrm{t} \\
& \mathrm{t}=2 \mathrm{~h} /(24 \mathrm{~h} / \mathrm{d})=0.0833 \mathrm{~d}
\end{aligned}
$$

$$
\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right) \ln \left[\frac{\left(7.36 \mathrm{~g} / \mathrm{m}^{3}\right)}{N_{\mathrm{t}}}\right]+\left(7.36 \mathrm{~g} / \mathrm{m}^{3}-\mathrm{N}_{\mathrm{t}}\right)=
$$

$$
29.6 \mathrm{~g} / \mathrm{m}^{3}\left[\frac{(0.636 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})}{(0.15 \mathrm{~g} / \mathrm{g})}\right]\left[\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.5 \mathrm{~g} / \mathrm{m}^{3}+2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right] 0.0833 \mathrm{~d}
$$

$$
\mathrm{N}_{\mathrm{t}}=0.37 \mathrm{~g} / \mathrm{m}^{3}
$$

This value must be used in place of the assumed value of $0.50 \mathrm{~g} / \mathrm{m}^{3}$ and thus the previous calculations must be iterated on spreadsheet. At each interation the $\mathrm{NO}_{x}-\mathrm{N}$ will change and thus must be adjusted before solving for Nt . By the $4^{\text {th }}$ iteration the following was determined with an exact solution;
$\mathrm{N}_{\mathrm{t}}=0.30 \mathrm{mg} / \mathrm{L}$
$\mathrm{NO}_{x}-\mathrm{N}=35.0 \mathrm{mg} / \mathrm{L}$
$X_{n}=30.2 \mathrm{mg} / \mathrm{L}$

PROBLEM 8-26

Problem Statement - see text, page 928

Solution

1. Determine the settled volume mixed liquor concentration with $\mathbf{S V I}=\mathbf{1 5 0}$ mL / g using Eq. (8-43).

$$
X_{R}=\frac{1}{\mathrm{SVI}} \frac{\left(10^{3} \mathrm{mg} / 1 \mathrm{~g}\right)}{\left(1 \mathrm{~L} / 10^{3} \mathrm{~mL}\right)}=\frac{10^{6}}{150 \mathrm{~mL} / \mathrm{g}}=6666 \mathrm{mg} / \mathrm{L}
$$

2. Determine the fraction of the depth occupied by the settled mixed liquor.

The depth fraction is equal to the settled volume divided by the total volume.
$\frac{V_{S}}{V_{T}}=\frac{X}{X_{S}}=\frac{(3500 \mathrm{mg} / \mathrm{L})}{(6666 \mathrm{mg} / \mathrm{L})}=0.525=0.525$
3. Determine the settled, decant, andf fill depths.

Settled mixed liquor depth $=0.525$ (total depth) $=0.525(5.5 \mathrm{~m})=2.9 \mathrm{~m}$
The allowable settled depth including the 0.6 m clear liquid $=0.6 \mathrm{~m}+2.9 \mathrm{~m}$
$=3.5 \mathrm{~m}$
The decant depth $=$ total depth - settled depth

$$
=(5.5-3.5) \mathrm{m}=2.0 \mathrm{~m}
$$

The fill depth = decant depth $=2.0 \mathrm{~m}$
4. Determine the fill volume/total volume ratio

The fill volume $\left(\mathrm{V}_{\mathrm{F}}\right)$ to total volume $\left(\mathrm{V}_{\mathrm{T}}\right)$ ratio is proportional to fill depth/total depth

$$
\frac{V_{F}}{V_{T}}=\frac{2.0 \mathrm{~m}}{5.5 \mathrm{~m}}=0.36
$$

PROBLEM 8-27

Problem Statement - see text, page 928

Solution

Design conditions and assumptions given in Example 8-6.

Solution

1. Determine the SRT value and the concentration of the nitrifying bacteria for a single-stage system, $\mathrm{T}=8 \mathrm{~h}=0.33 \mathrm{~d}, \mathrm{~N}=1.0 \mathrm{~g} / \mathrm{m}^{3}$.
a. Solve for the specific growth rate using Eq. (7-94) in Table 8-10.

$$
\begin{aligned}
& \mu_{\mathrm{AOB}}=\mu_{\mathrm{max}, \mathrm{AOB}, 16}\left[\frac{\mathrm{~S}_{\mathrm{NH}}}{\mathrm{~S}_{\mathrm{NH}}+\mathrm{K}_{\mathrm{NH}}}\right]\left[\frac{\mathrm{S}_{\mathrm{o}}}{\mathrm{~S}_{\mathrm{O}}+\mathrm{K}_{\mathrm{o}, \mathrm{AOB}}}\right]-\mathrm{b}_{\mathrm{AOB}} \\
& \mu_{\mathrm{AOB}}=\left\{\frac{(0.681 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(0.50+1.0) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}\left\{\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(0.50+2.0) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}-0.151=0.212 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

b. Solve for SRT using Eq. (7-98) in Table 8-10.

$$
\mathrm{SRT}=\frac{1}{\mu_{\mathrm{AOB}}}=\frac{1}{(0.212 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})}=4.72 \mathrm{~d}
$$

c. Solve for the concentration of nitrifying bacteria using a modified form of Eq. (7-42).

$$
\begin{aligned}
X_{n} & =\frac{(S R T) Y_{n}\left(N O_{x}\right)}{\tau\left[1+b_{n}(S R T)\right]} \\
& =\frac{(4.72 \mathrm{~d})(0.15 \mathrm{~g} / \mathrm{g})\left(30 \mathrm{~g} / \mathrm{m}^{3}\right)}{(0.33 \mathrm{~d})[1+(0.151 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(4.72 \mathrm{~d})]}=37.5 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

2. Perform nitrogen mass balances for a four-stage system shown on the following figure using equal volumes per stage. The total volume of the four-stage system is equal to the volume of the CMAS system, $\tau /$ stage $=$ $0.333 \mathrm{~d} / 4=0.0833 \mathrm{~d} /$ stage .

a. For Stage 1

$$
\text { Accumulation }=\text { in }- \text { out }+ \text { generation }
$$

$$
\frac{d N_{1}}{d t} V=Q\left(\mathrm{NO}_{x}\right)+Q_{R} N_{4}-\left(Q+Q_{R}\right) N_{1}-R_{n, 1} V
$$

The rate expression for nitrification, derived from Eq. (7-101) in Table 8-10 includes a correction for the DO concentration, and is given by
$r_{N H 4}=\left[\frac{\mu_{\text {max }, \mathrm{AOB}}}{\mathrm{Y}_{\mathrm{AOB}}}\right]\left[\frac{\mathrm{S}_{\mathrm{NH} 4}}{\mathrm{~S}_{\mathrm{NH} 4}+\mathrm{K}_{\mathrm{NH} 4}}\right]\left[\frac{\mathrm{S}_{\mathrm{o}}}{\mathrm{S}_{\mathrm{o}}+\mathrm{K}_{\mathrm{o}, \mathrm{AOB}}}\right] \mathrm{X}_{\mathrm{AOB}}$
where $Q=$ wastewater flowrate, $\mathrm{m}^{3} / \mathrm{d}$
$\mathrm{NO}_{\mathrm{x}}=$ amount of available influent $\mathrm{NH}_{4}-\mathrm{N}$ oxidized, $30 \mathrm{~g} / \mathrm{m}^{3}$
$Q_{R}=$ recycle flowrate from stage $4, \mathrm{~m}^{3} / \mathrm{d}$
$Q / Q_{R}=0.50$
$\mathrm{N}_{4}=\mathrm{NH}_{4}-\mathrm{N}$ concentration for stage $4, \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{N}_{1}=\mathrm{NH}_{4}-\mathrm{N}$ concentration for stage $1, \mathrm{~g} / \mathrm{m}^{3}$
$R_{\mathrm{n}, 1}=$ nitrification rate for stage $1, \mathrm{~g} / \mathrm{m}^{3} \cdot \mathrm{~d}$
$X_{n}=$ nitrifying bacteria concentration, g / m^{3}
The nitrifying bacteria concentration is the same as that calculated for the CMAS system assuming that the same amount of $\mathrm{NH}_{4}-\mathrm{N}$ is removed and the systems are at the same SRT.
At steady state $\mathrm{dN}_{1} / \mathrm{dt}=0$, and
$\mathrm{NO}_{\mathrm{x}}+\mathrm{Q}_{\mathrm{R}} / \mathrm{QN}_{4}-\left(1+\mathrm{Q}_{\mathrm{R}} / \mathrm{Q}\right) / \mathrm{N}_{1}-\mathrm{R}_{\mathrm{n}, \mathrm{V}} \mathrm{V} / \mathrm{Q}=0$
$\mathrm{NO}_{\mathrm{x}}+0.5 \mathrm{~N}_{4}=1.5 \mathrm{~N}_{1}+\mathrm{R}_{\mathrm{n}, 1}(\tau)$
where $\mathrm{T}=0.0833 \mathrm{~d}$, detention time of stage 1
$\mathrm{NO}_{\mathrm{x}}=30 \mathrm{~g} / \mathrm{m}^{3}$
b. For Stage 2, use the same procedure as Stage 1.
$V \frac{d N_{2}}{d t}=\left(Q+Q_{R}\right) N_{1}-\left(Q+Q_{R}\right) N_{2}-R_{n, 2} V$
$1.5 \mathrm{~N}_{1}=1.5 \mathrm{~N}_{2}+\mathrm{R}_{\mathrm{n}, 2}(\tau)$
c. For Stage 3
$1.5 \mathrm{~N}_{2}=1.5 \mathrm{~N}_{3}+\mathrm{R}_{\mathrm{n}, 3}(\tau)$
d. For Stage 4

$$
1.5 \mathrm{~N}_{3}=1.5 \mathrm{~N}_{4}+\mathrm{R}_{\mathrm{n}, 4}(\tau)
$$

3. $\quad R_{n,(i=1-4)}$ is a function of the $\mathrm{NH}_{4}-\mathrm{N}$ concentration (N) in each stage:

For stage 1 ,

$$
\begin{aligned}
& \left.R_{n, i}=\left[\frac{(0.681 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})}{(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}} 4^{-N}\right)\right]\left\{\frac{\mathrm{N}_{\mathrm{i}}}{\left[\left(0.50+\mathrm{N}_{\mathrm{i}}\right) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}\left\{\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(0.5+2.0) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}\left(37.5 \mathrm{~g} / \mathrm{m}^{3}\right) \\
& R_{n, i}=136.2\left[\frac{N_{i}}{\left[\left(0.50+N_{i}\right) g / m^{3}\right]}\right] \text {, where } i=1,2,3 \text {, or } 4 \text { for stages } 1-4
\end{aligned}
$$

4. The above equations for the four stages are solved with a spreadsheet program starting with Stage 1 either by using Solver in the Excel software or by an iterative technique. In the iterative technique the value for N_{4} is assumed and N_{1} is calculated. Subsequently N_{2}, N_{3} and N_{4} are calculated. Using Solver, the following effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentrations are computed for each stage for a return sludge recycle ratio of 1.0. In addition a solutions is also shown for a return sludge recycle ratio of 6.0 as would be typical for an MBR system:

	$\mathrm{NH}_{4}-\mathrm{N}$ concentration, $\mathrm{g} / \mathrm{m}^{3}$	
Stage	Recycle Ratio $=0.50$	Recycle Ratio $=6.0$
1	13.11	3.73
2	6.17	2.40
3	1.07	1.25
4	0.08	0.47

Comment

Based on the above results, the same effluent NH4-N concentration of $1.0 \mathrm{mg} / \mathrm{L}$ can be achieved with a little over 3 of the 4 stages for the aerobic staged nitrification system showing that staging reduces the aeration tank volume needed by about 25% compared to that required for a CMAS design at a recycle ratio of 0.50 . At the higher recycle ratio the amount of volume reduction is not as much due to the greater dilution of the influent $\mathrm{NH}_{4}-\mathrm{N}$ concentration with lower $\mathrm{NH}_{4}-\mathrm{N}$ concentrations driving the nitrification reaction rates in the first two stages. Thus, a staged nitrification reactor is more efficient than a CMAS reactor design and compared to the CMAS the staged system can have a lower SRT and thus
lower total volume. Or for the same SRT and volume, the staged system would produce a lower average effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration. The above solution is also illustrative of the importance of the return activated sludge recycle ratio. The effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration is higher for the MBR system, which has a higher recycle ratio. The effect of the higher recycle ratio is to dilute the influent $\mathrm{NH}_{4}-\mathrm{N}$ concentration more so that the $\mathrm{NH}_{4}-\mathrm{N}$ concentration is lower in the first stage. Because the nitrification rate is related to the $\mathrm{NH}_{4}-\mathrm{N}$ concentration, the nitrification rate is lower and thus the effluent concentration is higher.

PROBLEM 8-28

Problem Statement - see text, page 928

Instructors Note: This problem is solved in a manner similar to that used for nitrification for the staged system in Example 8-6. A mass balance is performed at each stage using Eq. (7-12) in Table 8-10 for the substrate utilization rate, and the biomass concentration X is given. Changes in X in each stage is small relative to the stage concentration and can be ignored.

Solution

1. Develop a flow diagram

2. Prepare a mass balance; use Eq. (7-12) $r_{s u}=\frac{k X S}{K_{s}+S}$

Stage 1 mass balance:
$V \frac{d S_{1}}{d t}=Q S_{o}+Q_{R} S_{4}-\left(Q+Q_{R}\right) S_{1}-V r_{s u, 1}$
at steady state, $\frac{d S_{1}}{d t}=0$, divide by $Q, Q_{R} / Q=R$

$$
S_{o}+R S_{4}-(1+R) S_{1}-\frac{V}{Q} r_{s u}=0
$$

Substitute $r_{\text {su }}$:

$$
S_{0}+R S_{4}-(1+R) S_{1}-\frac{V}{Q}\left(\frac{k X S_{1}}{K_{s}+S_{1}}\right)=0
$$

By assuming S_{4}, a value for S_{1} can be calculated. S_{4} is selected and an iterative spreadsheet solution is done until the S_{4} calculated for Stage 4 equals the assumed S_{4}.

Stage 2:

$V \frac{d S_{2}}{d t}=\left(Q+Q_{R}\right) S_{1}-\left(Q+Q_{R}\right) S_{2}-V r_{\text {su,2 }}$
$(1+R) S_{1}-(1+R) S_{2}-\frac{V}{Q}\left(\frac{k X S_{2}}{K_{s}+S_{2}}\right)=0$
Similarly:
Stage 3: $(1+R) S_{2}-(1+R) S_{3}-\frac{V}{Q}\left(\frac{k X S_{3}}{K_{s}+S_{3}}\right)=0$
Stage 4: $(1+R) S_{3}-(1+R) S_{4}-\frac{V}{Q}\left(\frac{k X S_{4}}{K_{s}+S_{4}}\right)=0$
3. Summarize the parameters to be used in the above equations.
a. From table in Problem Statement for wastewater 1:

$$
\begin{aligned}
& \mathrm{k}=1.2 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{s}}=50 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

b. Given values:

$$
\begin{aligned}
& \mathrm{X}=1600 \mathrm{~g} / \mathrm{m}^{3} \\
& \begin{aligned}
\mathrm{S}_{\mathrm{o}} & =300 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD} \\
& =1.6\left(300 \mathrm{~g} / \mathrm{m}^{3}\right)=480 \mathrm{~g} / \mathrm{m}^{3} \mathrm{COD} \\
\frac{\mathrm{~V}}{\mathrm{Q}} & =\frac{240 \mathrm{~m}^{3}}{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.06 \mathrm{~d}
\end{aligned}
\end{aligned}
$$

$$
R=0.5
$$

4. Use a spreadsheet program to solve the equations.

The spreadsheet solution is given in the following table

Stage	$\mathrm{S}, \mathrm{bCOD}$, mg / L
1	293.4
2	230.3
3	170.9
4	117.0

5. Determine the oxygen consumption rate. The oxygen consumption rate in each stage is related to oxygen consumed for substrate utilization, nitrification, and for endogenous decay as shown in Eq. (8-25). For this problem there is no nitrification. Thus, the oxygen demand is calculated as follows:

Stage 1
$R_{0,1}=\left[\left(Q S_{0}+Q_{R} S_{4}\right)-\left(Q+Q_{R}\right) S_{1}\right]\left(1-Y_{H}\right)+1.42 b_{H} X\left(V_{1}\right)$

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{H}} & =(0.35 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(1.42 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS})=0.50 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{COD} \\
\mathrm{Q}_{\mathrm{R}} & =\mathrm{RQ}=0.5\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)=2000 \mathrm{~m}^{3} / \mathrm{d} \\
\mathrm{R}_{\mathrm{o}, 1} & =\left[\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(480 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(117 \mathrm{~g} / \mathrm{m}^{3}\right)\right. \\
& \left.-\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(293.4 \mathrm{~g} / \mathrm{m}^{3}\right)\right][1-(0.5 \mathrm{~g} / \mathrm{g})] \\
& +1.42(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1600 \mathrm{~g} / \mathrm{m}^{3}\right)\left(240 \mathrm{~m}^{3}\right)
\end{aligned}
$$

Two oxygen demand terms are shown; for substrate utilization rate (R_{os}) and for endogenous decay rate ($R_{o e}$)
$R_{o, 1}=R_{o s}+R_{o e}$
$R_{0,1}=198,129 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+54,528 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}$
Stage 2
$R_{0,2}=\left[\left(Q+Q_{R}\right)\left(S_{1}-S_{2}\right)\right]\left(1-Y_{H}\right)+1.42 b_{H} X\left(V_{2}\right)$
$R_{0,2}=\left[\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(293.4-230.3) \mathrm{g} / \mathrm{m}^{3}\right][(1-0.5) \mathrm{g} / \mathrm{g}]\right.$
$+1.42(0.10 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1600 \mathrm{~g} / \mathrm{m}^{3}\right)\left(240 \mathrm{~m}^{3}\right)$
$R_{0,2}=190,432 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}+54,528 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}$
Similar calculations follow for Stages 3 and 4.
The oxygen demand for substrate utilization and endogenous decay is summarized for each stage.

Stage	$\mathrm{S}, \mathrm{bCOD}$, $\mathrm{g} / \mathrm{m}^{3}$	R_{OS}, kg / d	$\mathrm{R}_{\mathrm{Oe},}$ kg / d	O_{2} Total, kg / d	Fraction of total
1	293.4	198.1	54.5	252.6	0.27
2	230.3	190.4	54.5	244.9	0.26
3	170.9	179.3	54.5	233.8	0.25
4	117.0	162.4	54.5	216.9	0.22
				948.2	1.00

Note: The oxygen demand per stage is similar as the substrate concentration is high relative to the half-velocity coefficient value, K_{s}, so that the reaction rate approaches zero order in each stage.

The solution for a higher value for k of $10.0 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$ is shown in the following table.

Stage	$\mathrm{S}, \mathrm{bCOD}$, $\mathrm{g} / \mathrm{m}^{3}$	R_{OS}, kg / d	$\mathrm{R}_{\mathrm{oe},}$ kg / d	O_{2} Total, kg / d	Fraction of total
1	39.1	847.7	54.5	902.2	0.76
2	3.0	109.0	54.5	163.5	0.14
3	0.22	8.4	54.5	62.9	0.05
4	0.02	0.6	54.5	55.1	0.05
				1183.7	1.00

76% of oxygen required is in the first stage for this case with a higher specific substrate utilization rate coefficient value.

PROBLEM 8-29

Problem Statement - see text, page 928

Solution

The comparison is given in the following table.

Parameter	Processes			
	Complete-mix	Pure oxygen	Contact stabilization	Oxidation ditch
Effluent quality	Low BOD/TSS Good nitrification	Low BOD/TSS Nitrification not common due to low SRT and low pH	Higher BOD/TSS but less than 30 mg / L possible Little or no nitrification	Low BOD/TSS Good nitrification Some denitrification possible
Space requirements	Moderate	Low	Low but more than pure oxygen system	High
Complexity	Low	Most complex with covered system and O_{2} supply	Low	Low
Energy requirements	Moderate	Higher than complete-mix system	Moderate to low	Highest
Operational requirements	Moderate	High	Moderate	Lowest
Ability to handle variable loads	Moderate	Low	Moderate	High

PROBLEM 8-30

Problem Statement - see text, page 928

Solution (wastewater \#1)

1. Prepare a solids balance for each tank to determine the MLVSS concentration (ignore biomass or solids production - low relative to solids flow in/out). Use parameters for wastewater \#1.

Assume steady state: in = out.
Pass 1:

$$
\begin{aligned}
& Q_{R} X_{R}+Q_{1}(O)=\left(Q_{1}+Q_{R}\right) X_{1} \\
& X_{1}=\frac{Q_{R} X_{R}}{Q_{1}+Q_{R}}=\frac{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(800+2000) \mathrm{m}^{3} / \mathrm{d}\right]}=7142.9 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Pass 2

$$
\left(Q_{1}+Q_{R}\right) X_{1}+Q_{2}(0)=\left(Q_{1}+Q_{2}+Q_{R}\right) X_{2}
$$

$$
X_{2}=\frac{\left(Q_{1}+Q_{R}\right) X_{1}}{Q_{1}+Q_{2}+Q_{R}}=\frac{\left[(800+2,000) \mathrm{m}^{3} / \mathrm{d}\right]\left(7142.9 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(800+1200+2000) \mathrm{m}^{3} / \mathrm{d}\right]}=5000 \mathrm{~g} / \mathrm{m}^{3}
$$

Pass 3

$$
\begin{aligned}
& \left(Q_{1}+Q_{2}+Q_{R}\right) X_{2}+Q_{3}(0)=\left(Q_{1}+Q_{2}+Q_{3}+Q_{R}\right) X_{3} \\
& X_{3}=\frac{\left(Q_{1}+Q_{2}+Q_{R}\right) X_{2}}{Q_{1}+Q_{2}+Q_{3}+Q_{R}}=\frac{\left[(800+1200+2,000) \mathrm{m}^{3} / \mathrm{d}\right]\left(5000 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(800+1200+1000+2000) \mathrm{m}^{3} / \mathrm{d}\right]} \\
& X_{3}=4000 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

Pass 4
Similarly,

$$
\begin{aligned}
& X_{4}=\frac{\left(Q_{1}+Q_{2}+Q_{3}+Q_{R}\right) X_{3}}{Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{R}}=\frac{\left[(800+1200+1000+2,000) \mathrm{m}^{3} / \mathrm{d}\right](4000 \mathrm{mg} / \mathrm{L})}{\left[(800+1,200+1000+1000+2000) \mathrm{m}^{3} / \mathrm{d}\right]} \\
& X_{4}=3333 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

Summary:

Tank \#	MLVSS, mg/L
1	7143
2	5000
3	4000
4	3333

PROBLEM 8-31

Problem Statement - see text, page 929

Solution

1. Use Eq. (8-62) to determine the internal recycle ratio and recycle flow rate.
$I R=\frac{\mathrm{NO}_{\mathrm{x}}}{\mathrm{N}_{\mathrm{e}}}-1.0-\mathrm{R}$
2. Determine the effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration $\left(\mathrm{N}_{e}\right)$ based on requirement of 85 percent N removal and given effluent $\mathrm{NH}_{4}-\mathrm{N}=1.0 \mathrm{mg} / \mathrm{L}$. Assume effluent $\mathrm{NO}_{2}-\mathrm{N}$ concentration ≈ 0.0 and ignore soluble organic nitrogen concentration (conservative design).
$\mathrm{N}_{\mathrm{e}}=(1-0.85) \mathrm{TKN}-\mathrm{NH}_{4}-\mathrm{N}$
$\mathrm{N}_{\mathrm{e}}=0.15(35 \mathrm{mg} / \mathrm{L})-(1.0 \mathrm{mg} / \mathrm{L})=4.25 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$
3. Estimate sludge recycle ratio by simple mass balance around secondary clarifier (ignore sludge wasting) per Step 21 in Example 8-3.

$$
R=\frac{X}{X_{R}-X}=\frac{(3500 \mathrm{mg} / \mathrm{L})}{[(10,000-3,500) \mathrm{mg} / \mathrm{L}]}=0.54
$$

4. Determine NO_{x} using Eq. (8-24) in Table 8-10.
$\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q}$
$P_{X, \text { bio }}$ can be determined using Eq. (7-56), Table 8-10, and the information provided by using X_{b} in place of $X_{\text {vss }}$.
$X_{b} V=P_{X, \text { bio }}(S R T)$
$P_{X, \text { bio }}=\frac{X_{b} V}{S R T}=\frac{\left(1620 \mathrm{~g} / \mathrm{m}^{3}\right) 460 \mathrm{~m}^{3}}{10 \mathrm{~d}}=74,520 \mathrm{~g} / \mathrm{d}$
$\mathrm{NO}_{\mathrm{x}}=35.0 \mathrm{~g} / \mathrm{m}^{3}-1.0 \mathrm{~g} / \mathrm{m}^{3}-\frac{(0.12 \mathrm{~g} / \mathrm{g})(74,520 \mathrm{~g} / \mathrm{d})}{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)}=25.1 \mathrm{~g} / \mathrm{m}^{3}$
5. Determine internal recycle rate (IR) using Eq. (8-62)
$I R=\frac{25.1}{4.25}-1.0-0.54=4.4$
Internal recycle rate $=I R(Q)=4.4\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)=4400 \mathrm{~m}^{3} / \mathrm{d}$
6. Determine the anoxic tank volume and τ for a single stage anoxic tank by the following steps:

- Determine the $\mathrm{NO}_{3}-\mathrm{N}$ feed rate to the anoxic zone.
- Select an anoxic volume and use Eq. (8-52) to determine if the nitrate that can be removed is nearly equal to that determined above.
- Use the coefficients in Table 8-22 with Eq. (8-57) or Eq. (8-58) to obtain SDNR $_{\mathrm{b}}$. Use E. (8-56) to obtain $\mathrm{F} / \mathrm{M}_{\mathrm{b}}$.
- Use Eq. (8-60) to correct for SDNR $_{b}$ for recycle and θ value of 1.026 (page 808) to correct for temperature using Eq. (1-44). Use the final SDNR in Eq. (8-52) to determine if the nitrate removal is sufficient.
a. $\mathrm{NO}_{3}-\mathrm{N}$ feed to anoxic zone:
$[(I R) Q+R Q] N_{e}=[4.4+0.54]\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(4.25 \mathrm{~g} / \mathrm{m}^{3}\right)=20,995 \mathrm{~g} / \mathrm{d}$
b. Determine anoxic volume. Use Eq. (8-52) (based on biomass)
$\mathrm{NO}_{\mathrm{r}}=\mathrm{V}_{\text {nox }}$ (SDNR) (MLVSS biomass $)$
Select anoxic volume, $\tau_{\text {anoxic }}=2 \mathrm{~h}$
$V_{\text {nox }}=Q \tau_{\text {anoxic }}=\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)(2.0 \mathrm{~h}) /(24 \mathrm{~h} / \mathrm{d})=83.3 \mathrm{~m}^{3}$
c. Determine SDNR for wastewater 1

Use Eq. (8-56) to compute F/M

$$
F / M_{b}=\frac{Q_{0}}{X_{b} V_{n o x}}=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)}{\left(1620 \mathrm{~g} / \mathrm{m}^{3}\right)\left(83.3 \mathrm{~m}^{3}\right)}=1.48 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

Compute rbCOD fraction and determine SDNR based on rbCOD fraction:

$$
\text { rbCOD fraction }=\frac{\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)}{(1.6 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{BOD})\left(200 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)}=0.19
$$

From Eq. (8-57) and Table 8-22,

$$
\begin{aligned}
\operatorname{SDNR}_{\mathrm{b}} & =0.213+0.118\left[\ln \left(\mathrm{~F} / \mathrm{M}_{\mathrm{b}}\right)\right] \\
& =0.213+0.118[\ln (1.49)]
\end{aligned}
$$

$S_{D N R}=0.26$
Correct SDNR for internal recycle (Eq. 8-60) and temperature (Eq. 1-44)
$\mathrm{SDNR}_{\mathrm{adj}}=\mathrm{SDNR}_{\mathrm{IR} 1}-0.029 \mathrm{In}\left(\mathrm{F} / \mathrm{M}_{\mathrm{b}}\right)-0.012$

$$
=0.26-0.029(\ln 1.48)-0.012=0.236 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

$\operatorname{SDNR}_{15}=\operatorname{SDNR}_{20}(1.026)^{15-20}=0.236(1.026)^{-5}=0.21 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{NO}_{\mathrm{r}}=\left(83.3 \mathrm{~m}^{3}\right)(0.21 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1620 \mathrm{~g} / \mathrm{m}^{3}\right)=28,339 \mathrm{~g} / \mathrm{d}$
NO_{x} required $=20,995 \mathrm{~g} / \mathrm{d}$, so select lower $\tau_{\text {anoxic }}$
Use a spreadsheet solution to recomputed values, as follows.

τ, h	$\mathrm{V}_{\mathrm{NO}_{\mathrm{x}}}$ m^{3}	$\mathrm{F} / \mathrm{M}_{\mathrm{b}}$ $\mathrm{g} / \mathrm{g} \cdot \mathrm{d}$	SDNR, $\mathrm{g} / \mathrm{g} \cdot \mathrm{d}$	$\mathrm{SDNR}_{\mathrm{adj}}$, $\mathrm{g} / \mathrm{g} \cdot \mathrm{d}$	$\mathrm{SDNR}{ }_{\mathrm{T}}$, $\mathrm{g} / \mathrm{g} \cdot \mathrm{d}$	NO_{r}, g / d	Required NO_{r}, g / d
1.4	58.3	2.1	0.301	0.268	0.235	22,250	20,995

Thus, $\tau_{\text {anoxic }}=1.4 \mathrm{~h}$ is reasonable solution
7. Determine $\mathrm{V}_{\mathrm{NO}_{x}}$ and τ for each stage of a 3 stage anoxic tank with equal volumes per stage.

The same procedure is used and NO_{r} is calculated for each stage.
Calculate the $\mathrm{F} / \mathrm{M}_{\mathrm{b}}$ for each stage as follows:

Stage	$\mathrm{F} / \mathrm{M}_{\mathrm{b}}$
1	$\frac{\mathrm{QS}_{0}}{\mathrm{X}_{\mathrm{b}} \mathrm{V}_{1}}$
2	$\frac{\mathrm{QS}_{0}}{\mathrm{X}_{\mathrm{b}}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)}$
3	$\frac{\mathrm{QS}_{0}}{\mathrm{X}_{\mathrm{b}}\left(\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}\right)}$

The spreadsheet solution summary for three iterations is shown on the following table:

	Iteration		
Parameter	1	2	3
Flow, $\mathrm{m}^{3} / \mathrm{d}$	1000	1000	1000
$\mathrm{BOD}, \mathrm{mg} / \mathrm{L}$	200	200	200
$\mathrm{X}_{\mathrm{b}}, \mathrm{mg} / \mathrm{L}$	1620	1620	1620
Temp, ${ }^{\circ} \mathrm{C}$	15	15	15
rbCOD, mg / L	60	60	60
bCOD, mg / L	320	320	320
Fraction rbCOD	0.19	0.19	0.19
Required removal, g/d	20,995	20,995	20,995

Stage 1:			
Volume, m^{3}	19.4	13.9	16.7
HRT, min	28.0	20.0	24.0
$\mathrm{~F}_{\mathrm{b}}$	6.3	8.9	7.4
SDNR $_{\mathrm{b}}$ (graph)	0.43	0.47	0.45
SDNR $_{\text {corr }}$	0.37	0.40	0.38
$\mathrm{SDNR}_{\mathrm{T}}$	0.32	0.35	0.33

$\mathrm{NO}_{3}-\mathrm{N}_{\mathrm{r}}, \mathrm{g} / \mathrm{d}$	10126	7826	9005
Stage 2			
Volume, m^{3}	19.4	13.9	16.7
HRT, min	28.0	20.0	24.0
F / M_{b}	3.2	4.4	3.7
$\mathrm{SDNR}_{\mathrm{b}}$ (graph)	0.35	0.39	0.37
SDNRcorr	0.30	0.33	0.32
$\mathrm{SDNR}_{\text {T }}$	0.27	0.29	0.28
$\mathrm{NO}_{3}-\mathrm{N}_{\mathrm{r}}, \mathrm{g} / \mathrm{d}$	8417	6605	7540
Stage 3			
Volume, m^{3}	19.4	13.9	16.7
HRT, min	28.0	20.0	24.0
F / M_{b}	2.1	4.4	3.7
$\mathrm{SDNR}_{\mathrm{b}}$ (graph)	0.30	0.39	0.37
SDNRcorr	0.27	0.33	0.32
SDNR ${ }_{\text {T }}$	0.24	0.29	0.28
$\mathrm{NO}_{3}-\mathrm{N}_{\mathrm{r}}, \mathrm{g} / \mathrm{d}$	7417	6605	7540
Total removal, g / d	25,962	21,036	24,087
Required removal	20,995	20,995	20,995

The first column solution is based on the same HRT of 1.4 h as used above for the single-stage anoxic zone. With 3 stages the removal capacity is about 24 percent higher. The total HRT used for 3 stages in the solution shown in the second column is 1.0 h . This lower HRT results in a $\mathrm{NO}_{3}-\mathrm{N}$ removal rate that is similar to the single stage anoxic zone with an HRT of 1.4 h.
8. Determine the final alkalinity.

The final alkalinity ($\mathrm{as}_{\mathrm{CaCO}}^{3}$) is determined based on 7.14 g alkalinity used $/ \mathrm{g} \mathrm{NH} 4_{4}-\mathrm{N}$ oxidized and 3.57 g alkalinity produced $/ \mathrm{g} \mathrm{NO}{ }_{3}-\mathrm{N}$ reduced.
$\mathrm{NO}_{\mathrm{x}}=25.1 \mathrm{mg} / \mathrm{L}$, final $\mathrm{NO}_{3}-\mathrm{N}=4.25 \mathrm{mg} / \mathrm{L}$
Final alkalinity $=\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)-(7.14 \mathrm{~g} / \mathrm{g})\left(25.1 \mathrm{~g} / \mathrm{m}^{3}\right)+(3.57 \mathrm{~g} / \mathrm{g})(25.1-4.25) \mathrm{g} / \mathrm{m}^{3}$ $=95.9 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
9. Determine the oxygen required. The oxygen demand is calculated first for BOD removal and nitrification and then a credit is applied for the oxygen demand satisfied by BOD removal using nitrate in the anoxic zone before the aeration tank.
Using Eq. (8-24), Table 8-10,

$$
\begin{aligned}
R_{o}= & Q\left(S_{o}-S\right)-1.42 P_{X, b i o}+4.57 Q\left(\mathrm{NO}_{x}\right) \\
S_{o}-S \approx & S_{o}=320 \mathrm{~g} / \mathrm{m}^{3} \\
R_{0}= & {\left[1000 \mathrm{~m}^{3} / \mathrm{d}\left(320 \mathrm{~g} / \mathrm{m}^{3}\right)-1.42(74,520 \mathrm{~g} / \mathrm{d})\right.} \\
& \left.+4.57\left(25.1 \mathrm{~g} / \mathrm{m}^{3}\right)(1000 \mathrm{~m} 3 / \mathrm{d})\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
= & (320-105.8+114.7) \mathrm{kg} / \mathrm{d}=328.9 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

Oxygen equivalent from denitrification

$$
\mathrm{O}_{2}=2.86 \frac{\mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{NO}_{\mathrm{x}}}\left[(25.1-4.25) \mathrm{g} / \mathrm{m}^{3}\right]\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=59.6 \mathrm{~kg} / \mathrm{d}
$$

Net Oxygen required $=(328.9-59.6) \mathrm{kg} / \mathrm{d}=269.3 \mathrm{~kg} / \mathrm{d}$
Required oxygen for BOD removal/nitrification $=328.9 \mathrm{~kg} / \mathrm{d}$
Required oxygen with anoxic/aerobic process $=269.3 \mathrm{~kg} / \mathrm{d}$
Energy savings $=\frac{[(328.9-269.3) \mathrm{kg} / \mathrm{d}]}{(328.9 \mathrm{~kg} / \mathrm{d})}(100 \%)=18.1 \%$

PROBLEM 8-32

Problem Statement - see text, page 929

Solution

The effect of using an anoxic/aerobic MBR compared to the activated sludge system in Problem 8-31 is that a higher MLSS concentration is used and thus a smaller volume is used for the same SRT of 10 days. In addition the recycle ratio is given for the MBR system, which results in a different effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration. The MBR system anoxic tank volume is then a function of the $\mathrm{NO}_{3}-\mathrm{N}$ removed and the higher biomass concentration.

1. Sketch of MBR system

Given:
$X_{2}=10,000 \mathrm{mg} / \mathrm{L}$
Membrane flux $=20 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~h}$
Membrane reactor volume $=0.025 \mathrm{~m}^{3} / \mathrm{m}^{2}$ (membrane area, m^{2})
2. Determine MBR aerobic volumes.
a. Membrane area

$$
\text { Area }=\text { Area }=\frac{Q}{\text { Flux }}=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}{\left(20 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)(24 \mathrm{~h} / \mathrm{d})}=2083 \mathrm{~m}^{3}
$$

b. Membrane compartment volume, V_{2}
$\mathrm{V}_{2}=\left(0.025 \mathrm{~m}^{3} / \mathrm{m}^{2}\right)\left(2083 \mathrm{~m}^{2}\right)=52 \mathrm{~m}^{3}$
c. Determine total volume and V_{1}

At same SRT, the mass of solids for $\mathrm{V}_{1}+\mathrm{V}_{2}=$ mass of solids for aerobic system in Problem 8-31.
$\mathrm{V}_{1} \mathrm{X}_{1}+\mathrm{V}_{2} \mathrm{X}_{2}=\left(460 \mathrm{~m}^{3}\right)\left(3500 \mathrm{~g} \mathrm{TSS} / \mathrm{m}^{3}\right)$
$6 Q\left(X_{2}\right)+Q(0)=7 Q X_{1}$
$X_{1}=\frac{6}{7}\left(X_{2}\right)=\left(\frac{6}{7}\right)\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)=8571 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{V}_{1}(8571)+\mathrm{V}_{2}(10,000)=(460)(3500)$
$\mathrm{V}_{2}=52 \mathrm{~m}^{3}$
$\mathrm{V}_{1}=127.2 \mathrm{~m}^{3}$
The two stage nitrification system for the MBR will produce a lower effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration than that for the single-stage aeration tank in Problem 8-31. However, because the volume for V_{2} is small relative to V_{1}, the effluent $\mathrm{NH}_{4}-\mathrm{N}$ will be only slightly lower. To simplify the problem, the same effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration for Problem 8-31 will be
used.
3. Determine $X_{b, N O X}, X_{b, 1}$, and $X_{b i o}$ for MBR system.

At same SRT of 10 d , the same ratio for X_{b} / X in Problem 8-31 can be used.
$\frac{X_{b 1, N O x}}{X_{\text {NOx }}}=\frac{X_{b, 1}}{X_{1}}=\frac{X_{b, 2}}{X_{2}}=\frac{\left(1620 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(3500 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.463$
Note $X_{\text {NOX }}=X_{1}$
$X_{b, N O X}=X_{b, 1}=0.463\left(8571 \mathrm{~g} / \mathrm{m}^{3}\right)=3968.4 \mathrm{~g} / \mathrm{m}^{3}$
$X_{b, 2}=0.463\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)=4630 \mathrm{~g} / \mathrm{m}^{3}$
4. Determine the $\mathrm{NO}_{3}-\mathrm{N}$ removed in the anoxic zone.
a. Determine NO_{x}, using Eq. (8-24) in Table 8-10. This calculation will be the same as for Problem 8-31, but it is repeated here.

$$
\begin{aligned}
& P_{X, \text { bio }}=\frac{V_{1}\left(X_{b, 1}\right)+V_{2}\left(X_{b, 2}\right)}{S R T} \\
& P_{X, \text { bio }}=\frac{\left(127.2 \mathrm{~m}^{3}\right)\left(3968.4 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(52 \mathrm{~m}^{3}\right)\left(4630 \mathrm{~g} / \mathrm{m}^{3}\right)}{10 \mathrm{~d}} \\
& P_{X, \text { bio }}=74,550 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

$$
\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q}
$$

$$
=35 \mathrm{~g} / \mathrm{m}^{3}-1.0 \mathrm{~g} / \mathrm{m}^{3}-\frac{0.12(74,550 \mathrm{~g} / \mathrm{d})}{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)}
$$

$\mathrm{NO}_{\mathrm{x}}=25.1 \mathrm{~g} / \mathrm{m}^{3}$
Assume all the $\mathrm{NO}_{3}-\mathrm{N}$ in the recycle to the anoxic zone is removed.
Mass balance on NO_{x} produced to obtain effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration, NO_{E}.
$\mathrm{NO}_{\mathrm{x}}(\mathrm{Q})=6 \mathrm{Q}\left(\mathrm{NO}_{\mathrm{E}}\right)+\mathrm{Q}\left(\mathrm{NO}_{\mathrm{E}}\right)$
$25.1=6\left(\mathrm{NO}_{\mathrm{E}}\right)+1\left(\mathrm{NO}_{\mathrm{E}}\right)$
$\mathrm{NO}_{\mathrm{E}}=3.6 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{NO}_{3}-\mathrm{N}$ removed in anoxic zone $=6\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(3.6 \mathrm{~g} / \mathrm{m}^{3}\right)=21,600 \mathrm{~g} / \mathrm{d}$
5. Determine the anoxic tank volume and τ for a single stage anoxic tank by the following steps:

- Determine the $\mathrm{NO}_{3}-\mathrm{N}$ feed rate to the anoxic zone.
- Select an anoxic volume and use Eq. (8-52) to determine if the nitrate that can be removed is nearly equal to that determined above.
- Use the coefficients in Table 8-22 with Eq. (8-57) or Eq. (8-58) to obtain SDNR $_{b}$. Use Eq. $(8-56)$ to obtain F / M_{b}.
- Use Eq. (8-60) to correct for SDNR $_{b}$ for recycle and θ value of 1.026 (page 808) to correct for temperature using Eq. (1-44). Use the final SDNR in Eq. (8-52) to determine if the nitrate removal is sufficient.
a. $\mathrm{NO}_{3}-\mathrm{N}$ feed to anoxic zone $=21,600 \mathrm{~g} / \mathrm{d}$
b. Determine anoxic volume. Use Eq. (8-52) (based on biomass) $\mathrm{NO}_{\mathrm{r}}=\mathrm{V}_{\text {nox }}($ SDNR $)\left(\right.$ MLVSS $\left._{\text {biomass }}\right)$

The following has been determined by initial guess and then iteration. Select anoxic volume, $\tau_{\text {anoxic }}=0.55 \mathrm{~h}=33 \mathrm{~min}$

$$
V_{\text {nox }}=Q \tau_{\text {anoxic }}=\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.55 \mathrm{~h}) /(24 \mathrm{~h} / \mathrm{d})=22.9 \mathrm{~m}^{3}
$$

c. Determine SDNR for wastewater 1

Use Eq. (8-56) to compute F / M_{b}

$$
F / M_{b}=\frac{Q_{0}}{X_{b} V_{n o x}}=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)}{\left(3968 \mathrm{~g} / \mathrm{m}^{3}\right)\left(22.9 \mathrm{~m}^{3}\right)}=2.20 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

Compute rbCOD fraction and determine SDNR based on rbCOD fraction:
rbCOD fraction $=\frac{\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)}{(1.6 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{BOD})\left(200 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)}=0.19$
From Eq. (8-57) and Table 8-22,
$S D N R_{b}=0.213+0.118\left[\ln \left(F / M_{b}\right)\right]$
$=0.213+0.118[\ln (2.2)]$
$S D N R_{b}=0.306$
Correct SDNR for internal recycle (Eq. 8-60) and temperature (Eq. 1-44)
$\operatorname{SDNR}_{\mathrm{adj}}=\operatorname{SDNR}_{\mathrm{IR} 1}-0.029 \ln \left(\mathrm{~F} / \mathrm{M}_{\mathrm{b}}\right)-0.012$

$$
=0.306-0.029(\ln 2.2)-0.012=0.271 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

$$
\begin{aligned}
& \operatorname{SDNR}_{15}=\operatorname{SDNR}_{20}(1.026)^{15-20}=0.271(1.026)^{-5}=0.238 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{NO}_{\mathrm{r}}=\left(22.9 \mathrm{~m}^{3}\right)(0.238 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(3968 \mathrm{~g} / \mathrm{m}^{3}\right)=21,626 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

10. Determine the final alkalinity.

The final alkalinity ($\mathrm{as}_{\mathrm{CaCO}}^{3}$) is determined based on 7.14 g alkalinity used/g $\mathrm{NH}_{4}-\mathrm{N}$ oxidized and 3.57 g alkalinity produced $/ \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}$ reduced.
$\mathrm{NO}_{\mathrm{x}}=25.1 \mathrm{mg} / \mathrm{L}$, final $\mathrm{NO}_{3}-\mathrm{N}=3.6 \mathrm{mg} / \mathrm{L}$
Final alkalinity $=\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)-(7.14 \mathrm{~g} / \mathrm{g})\left(25.1 \mathrm{~g} / \mathrm{m}^{3}\right)+(3.57 \mathrm{~g} / \mathrm{g})(25.1-3.6) \mathrm{g} / \mathrm{m}^{3}$ $=91.0 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
11. Determine the oxygen required. The oxygen demand is calculated first for BOD removal and nitrification and then a credit is applied for the oxygen demand satisfied by BOD removal using nitrate in the anoxic zone before the aeration tank.
Using Eq. (8-24), Table 8-10,

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}}= \mathrm{Q}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{X} \text { bio }}+4.57 \mathrm{Q}\left(\mathrm{NO}_{\mathrm{x}}\right) \\
& \mathrm{S}_{\mathrm{o}}-\mathrm{S} \approx \mathrm{~S}_{\mathrm{o}}=320 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{R}_{\mathrm{o}}= {\left[\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(320 \mathrm{~g} / \mathrm{m}^{3}\right)-1.42(74,520 \mathrm{~g} / \mathrm{d})\right.} \\
&\left.+4.57\left(25.1 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
&=(320-105.8+114.7) \mathrm{kg} / \mathrm{d}=328.9 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

Oxygen equivalent from denitrification
$\mathrm{O}_{2}=2.86 \frac{\mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{NO}_{\mathrm{x}}}\left[(25.1-3.6) \mathrm{g} / \mathrm{m}^{3}\right]\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=61.5 \mathrm{~kg} / \mathrm{d}$
Net Oxygen required $=(328.9-61.5) \mathrm{kg} / \mathrm{d}=267.4 \mathrm{~kg} / \mathrm{d}$
Required oxygen for BOD removal/nitrification $=328.9 \mathrm{~kg} / \mathrm{d}$
Required oxygen with anoxic/aerobic process $=267.4 \mathrm{~kg} / \mathrm{d}$
Energy savings $=\frac{[(328.9-267.4) \mathrm{kg} / \mathrm{d}]}{(328.9 \mathrm{~kg} / \mathrm{d})}(100 \%)=18.7 \%$

PROBLEM 8-33

Problem Statement - see text, page 929

Solution

1. Determine the anoxic and aerobic volumes. Based on the problem statement the anoxic volume is 10 percent of the total volume:
$\mathrm{V}_{\mathrm{NO}_{x}}=0.10\left(3600 \mathrm{~m}^{3}\right)=360 \mathrm{~m}^{3}$
Aerobic volume $=(3600-360) \mathrm{m}^{3}=3240 \mathrm{~m}^{3}$
2. Determine the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration. To determine the effluent $\mathrm{NH}_{4}{ }^{-}$ N concentration, the aerobic SRT must be first calculated, using Eqs. (7-57), (8-20) and (8-21) in Table 8-10.
$\left(X_{T S S}\right) V=P_{X, T S S}(S R T)$

$$
\begin{aligned}
P_{X, T S S} & =\frac{Q Y_{H}\left(S_{o}-S\right)}{\left[1+b_{H}(S R T)\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{\left[1+b_{H}(S R T)\right] 0.85} \\
& +\frac{Q Y_{n}\left(N O_{X}\right)}{\left[1+b_{n}(S R T)\right] 0.85}+Q(n b V S S)+Q\left(T_{S S}-V_{o} S_{o}\right)
\end{aligned}
$$

Combine equations

$$
\begin{aligned}
& \left(X_{T S S}\right)\left(\frac{V}{Q}\right)=\frac{Y\left(S_{o}-S\right) S R T}{\left[1+b_{H}(S R T)\right](0.85) X}+\frac{\left(f_{d}\right)\left(b_{H}\right) Y_{H}\left(S_{o}-S\right)(S R T)^{2}}{\left[1+b_{H}(S R T)\right](0.85) X} \\
& \quad+\frac{Y_{n}\left(N O_{x}\right) S R T}{\left[1+b_{n}(S R T)\right](0.85)}+(n b V S S) S R T+\left(\text { TSS }_{o}-V_{S S}\right) S R T
\end{aligned}
$$

3. Define input for above equation

Assume $\mathrm{S}_{0}-\mathrm{S} \approx \mathrm{S}_{0}=240 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{NO}_{\mathrm{x}} \sim 0.80(\mathrm{TKN})=0.80(40)=32 \mathrm{mg} / \mathrm{L}$
(Note: Nitrifier growth has very small effect on MLSS concentration compared to other factors)
4. Define coefficients from Table 8-14 at $10^{\circ} \mathrm{C}$:
$\mathrm{Y}=0.45 \mathrm{gVSS} / \mathrm{g} \mathrm{bCOD}$
$f_{d}=0.15 \mathrm{~g} / \mathrm{g}$
$\mathrm{b}_{\mathrm{H}}=0.12(1.04)^{10-20}=0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{Y}_{\mathrm{n}}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH} 44$ - (Includes $\mathrm{NH}_{4}-\mathrm{N}$ and $\mathrm{NO}_{2}-\mathrm{N}$ oxidizers)
$\mathrm{b}_{\mathrm{n}}=0.17(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
5. Insert data and coefficients into equation

$$
\begin{aligned}
& \left(3500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(3240 \mathrm{~m}^{3}\right)=\frac{(0.45 \mathrm{~g} / \mathrm{g})\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT })^{2}}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85} \\
& +\frac{(0.20 \mathrm{~g} / \mathrm{g})\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT })}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85}+\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)(\text { SRT }) \\
& +\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(80-70) \mathrm{g} / \mathrm{m}^{3}\right](\text { SRT })
\end{aligned}
$$

6. Solve equation on spreadsheet by selecting SRT value where left and right side of equation are equal.

$$
\begin{aligned}
11,340,000 \mathrm{~g} & =\frac{1,106,470(\mathrm{SRT})}{1+0.081 \mathrm{SRT}}+\frac{12,350(\mathrm{SRT})^{2}}{1+0.081 \mathrm{SRT}}+\frac{60,235(\mathrm{SRT})}{1+0.128 \mathrm{SRT}} \\
& +480,000 \mathrm{SRT}+80,000 \mathrm{SRT}
\end{aligned}
$$

SRT $=9.2 \mathrm{~d}$
7. Calculate effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration.

Determine effluent $\mathrm{NH}_{4}-\mathrm{N}\left(\mathrm{N}_{\mathrm{e}}\right)$ concentrations as a function of SRT by combining Eq. (7-94) and Eq. (7-98) in Table 10. Let $\mathrm{S}_{0}=\mathrm{DO}$.

$$
\frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\mathrm{max}, \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

The nitrification coefficients are obtained from Table 8-14. Use the temperature correction Eq. (1-44) shown in Table 8-10.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{T}}=\mathrm{K}_{20}(\theta)^{\mathrm{T}-20} \\
& \text { Temperature }=10^{\circ} \mathrm{C} \\
& \mu_{\text {max, } \mathrm{AOB}}=0.90(1.072)^{10-20}=0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{NH} 4}=0.50(1.0)^{10-20}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{~b}_{\text {AOB }}=0.17(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~K}_{0}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{Y}_{\mathrm{n}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N} \text { oxidized }
\end{aligned}
$$

Solving for $\mathrm{S}_{\mathrm{NH} 4}\left(\right.$ let $\left.\mathrm{S}_{\mathrm{NH} 4}=\mathrm{N}_{\mathrm{e}}\right)$:

$$
N_{\mathrm{e}}=\frac{\mathrm{K}_{\mathrm{NH} 4}\left[1+\mathrm{b}_{\mathrm{AOB}}(\mathrm{SRT})\right]}{\left[\mu_{\max , \mathrm{AOB}}\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}\right] \mathrm{SRT}-1}
$$

$$
N_{e}=\frac{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(9.2 \mathrm{~d})]}{(9.2 \mathrm{~d})\left\{(0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left[\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]-(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\right\}-1}
$$

At SRT $=9.2 \mathrm{~d}, \mathrm{~N}_{\mathrm{e}}=0.97 \mathrm{~g} / \mathrm{m}^{3}$
8. Calculate effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration. To determine the effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration, the amount of $\mathrm{NO}_{3}-\mathrm{N}$ produced $\left(\mathrm{NO}_{x}\right)$ in the aerobic zone and the amount of $\mathrm{NO}_{3}-\mathrm{N}$ that can be removed in the anoxic zone must be determined. The difference is the $\mathrm{NO}_{3}-\mathrm{N}$ in the effluent.
a. To determine NO_{x}, use equation (8-24) in Table 8-10:
$\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \mathrm{bio}} / \mathrm{Q}$
$P_{X, \text { bio }}$ is determined from appropriate components of Eq. (8-15)

$$
\begin{aligned}
& P_{\mathrm{X}, \text { bio }}=\frac{Q\left(Y_{H}\right)\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{f_{\mathrm{d}}\left(\mathrm{~b}_{\mathrm{H}}\right) \mathrm{Q}\left(\mathrm{Y}_{\mathrm{H}}\right)\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right) \mathrm{SRT}}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{Q Y_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{X}}\right)}{1+\mathrm{b}_{\mathrm{n}}(\text { (RT })} \\
& P_{\mathrm{X}, \text { bio }}=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(9.2 \mathrm{~d})]} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)(9.2 \mathrm{~d})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(9.2 \mathrm{~d})]} \\
& +\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.15 \mathrm{~g} / \mathrm{g})\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(9.2 \mathrm{~d})]} \\
& P_{\mathrm{X}, \text { bio }}=(495,072+55,339+17,634) \mathrm{g} / \mathrm{d}=568,045 \mathrm{~g} / \mathrm{d} \\
& \mathrm{NO}_{\mathrm{x}}=40 \mathrm{~g} / \mathrm{m}^{3}-0.97 \mathrm{~g} / \mathrm{m}^{3}-\frac{0.12(568,045 \mathrm{~g} / \mathrm{d})}{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)}=30.5 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

b. To determine the nitrate removed in the anoxic zone use Eq. (8-52)
(based on biomass)
$\mathrm{NO}_{\mathrm{r}}=\mathrm{V}_{\text {nox }}\left(\right.$ (SDNR) $\left(\mathrm{MLVSS}_{\text {biomass }}\right)$
The SDNR is a function of the anoxic zone $\mathrm{F} / \mathrm{M}_{\mathrm{b}}$ ratio.

Use Eq. (8-56) to compute F / M_{b}
$F / M_{b}=\frac{Q S_{0}}{X_{b} V_{\text {nox }}}$ Where $S_{o}=B O D$
$B O D=240 / 1.6=150 \mathrm{~g} / \mathrm{m}^{3}$
c. Determine X_{b} using Eq. (8-20) in Table 8-10.

Assume $S_{0}-S \approx S_{0}$
$X_{b}=\frac{Q Y_{H}(\text { So }- \text { S }) \text { SRT }}{\left[1+\left(b_{H}\right) S R T\right] V}=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)(9.2 \mathrm{~d})}{[(1+0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(9.2 \mathrm{~d})]\left(3240 \mathrm{~m}^{3}\right)}$
$X_{b}=1406 \mathrm{~g} / \mathrm{m}^{3}$
d. From Step $1 V_{\text {nox }}=360 \mathrm{~m}^{3}$
$F / M_{b}=\frac{Q S_{0}}{X_{b} V_{\text {nox }}}=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3} \mathrm{BOD}\right)}{\left(1406 \mathrm{~g} / \mathrm{m}^{3}\right)\left(360 \mathrm{~m}^{3}\right)}=2.37 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
9. Determine SDNR for wastewater 1
a. Compute rbCOD fraction and determine SDNR based on rbCOD fraction:
rbCOD fraction $=\frac{\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(240 \mathrm{~g} / \mathrm{m}^{3} \mathrm{bCOD}\right)}=0.10$
From Eq. (8-57) and coefficients in Table 8-22,
$S_{D N R}=0.186+0.078\left[\ln \left(F / M_{b}\right)\right]$

$$
=0.186+0.078[\ln (2.37)]
$$

$S_{D N R}=0.253$
b. Correct SDNR for internal recycle (Eq. 8-60) (assume ratio $=3-4$) and for temperature (Eq. 1-44)
$\mathrm{SDNR}_{\mathrm{adj}}=$ SDNR $_{\text {IR1 }}-0.029 \ln \left(\mathrm{~F} / \mathrm{M}_{\mathrm{b}}\right)-0.012$

$$
=0.253-0.029(\ln 2.37)-0.012=0.216 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

$\operatorname{SDNR}_{10}=\operatorname{SDNR}_{20}(1.026)^{10-20}=0.216(1.026)^{-10}=0.167 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{NO}_{\mathrm{r}}=\left(360 \mathrm{~m}^{3}\right)(0.167 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1406 \mathrm{~g} / \mathrm{m}^{3}\right)=84,528 \mathrm{~g} / \mathrm{d}$
Based on flow; $\mathrm{NO}_{3}-\mathrm{N}$ removal $=\frac{(84,528 \mathrm{~g} / \mathrm{d})}{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)}=10.6 \mathrm{~g} / \mathrm{m}^{3}$

Effluent $\mathrm{NO}_{3}-\mathrm{N}=\mathrm{NO}_{x}-\mathrm{NO}_{3}-\mathrm{N}$ removal

$$
=(30.5-10.6) \mathrm{g} / \mathrm{m}^{3}=19.9 \mathrm{~g} / \mathrm{m}^{3}
$$

9. Determine the internal recycle ratio using Eq. (8-62)
$I R=\frac{\mathrm{NO}_{\mathrm{x}}}{\mathrm{N}_{\mathrm{e}}}-1.0-\mathrm{R}$
$\mathrm{IR}=\frac{\left(30.5 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(19.9 \mathrm{~g} / \mathrm{m}^{3}\right)}-1.0-0.5=0.03$
An iteration is required as the nitrate that can be removed in the anoxic zone can be supplied by the recycle. Thus, there is no correction to the SDNR based on recycle.
10. Recalculate effluent $\mathrm{NO}_{x}-\mathrm{N}$ concentration.
$\operatorname{SDNR}_{\mathrm{b}}=0.253$
Correct SDNR for temperature only.
$\operatorname{SDNR}_{10}=\operatorname{SDNR}_{20}(1.026)^{10-20}=0.253(1.026)^{-10}=0.196 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{NO}_{\mathrm{r}}=\left(360 \mathrm{~m}^{3}\right)(0.196 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1406 \mathrm{~g} / \mathrm{m}^{3}\right)=99,207 \mathrm{~g} / \mathrm{d}$
Based on flow; $\mathrm{NO}_{3}-\mathrm{N}$ removal $=\frac{(99,207 \mathrm{~g} / \mathrm{d})}{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)}=12.4 \mathrm{~g} / \mathrm{m}^{3}$
Effluent $\mathrm{NO}_{3}-\mathrm{N}=\mathrm{NO}_{\mathrm{x}}-\mathrm{NO}_{3}-\mathrm{N}$ removal

$$
=(30.5-12.4) \mathrm{g} / \mathrm{m}^{3}=18.1 \mathrm{~g} / \mathrm{m}^{3}
$$

$\mathrm{IR}=\frac{\left(30.5 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(18.1 \mathrm{~g} / \mathrm{m}^{3}\right)}-1.0-0.5=0.18$
So again no significant internal recycle is needed. In lieu of recycle, the RAS recycle rate can be increased slightly.

PROBLEM 8-34

Problem Statement - see text, page 930

Solution

Provide solution assuming steady state operating conditions with no safety factor for nitrification.

1. Determine the design effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration. To determine the design effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration, calculate the aerobic SRT using Eqs.
(8-20), (8-21), and (7-57) in Table 8-10.
Eq. 7-57. $\left(\mathrm{X}_{\mathrm{TSS}}\right) \mathrm{V}=\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}$ (SRT)

$$
\begin{aligned}
P_{\mathrm{X}, \text { TSS }}= & \frac{Q Y_{H}\left(\mathrm{~S}_{0}-\mathrm{S}\right)}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) \mathrm{QY}_{H}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right] 0.85} \\
& +\frac{\mathrm{Q} Y_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{X}}\right)}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right] 0.85}+\mathrm{Q}(\mathrm{nbVSS})+\mathrm{Q}\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{0}\right)
\end{aligned}
$$

Substituting $\mathrm{P}_{\mathrm{X}, \text { Tss }}$ in Eq. (7-57).

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})=\frac{\mathrm{QY} \mathrm{Y}_{\mathrm{H}}\left(\mathrm{~S}_{0}-\mathrm{S}\right) S R T}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right] 0.85}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{H}\right) Q \mathrm{Y}_{H}\left(\mathrm{~S}_{0}-\mathrm{S}\right)(\mathrm{SRT})^{2}}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right] 0.85} \\
& +\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{X}}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right] 0.85}+\mathrm{Q}(\mathrm{nbVSS}) \mathrm{SRT}+\mathrm{Q}\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{\mathrm{o}}\right) \text { SRT }
\end{aligned}
$$

2. Define input for above equation for wastewater 1

Influent $b C O D=1.6(B O D)=1.6(250)=400 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{S}_{0}-\mathrm{S} \approx \mathrm{S}_{0}=400 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{NO}_{\mathrm{x}} \sim 0.80(\mathrm{TKN})=0.80(40)=32 \mathrm{mg} / \mathrm{L}$
(Note: Nitrifier growth has very small effect on MLSS concentration compared to other factors)
3. Determine coefficients from Table 8-14 and adjust for temperature using Eq.
(1-44) and the table θ values
$\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(\theta)^{\mathrm{T}-20}$
For heterotrophs:
$\mathrm{Y}=0.45 \mathrm{gVSS} / \mathrm{g} \mathrm{bCOD}$
$\mathrm{f}_{\mathrm{d}}=0.15 \mathrm{~g} / \mathrm{g}$
$\mathrm{b}_{\mathrm{H}}=0.12(1.04)^{10-20}=0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
For nitrification:
$\mu_{\text {max }, A O B}=(0.90 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(1.072)^{10-20}=0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{NH} 4}=(0.50 \mathrm{mg} / \mathrm{L})(1.0)^{10-20}=0.50 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{~b}_{\mathrm{AOB}}=(0.17 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.029)^{10-20}=0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

$\mathrm{Y}_{\mathrm{n}}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N}$ (including both ammonia- and nitriteoxidizers

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{n}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N} \text { for ammonia-oxidizers } \\
& \mathrm{K}_{\mathrm{o}}=0.50 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

4. Determine the aerobic volume

Aerobic volume $=0.50\left(4600 \mathrm{~m}^{3}\right)=2300 \mathrm{~m}^{3}$
5. Insert data and coefficients into above equation. Assume a typical ditch detention time of 24 hours, so flow $=4600 \mathrm{~m}^{3} / \mathrm{d}$. Thus:

$$
\begin{aligned}
& \left(3500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(2300 \mathrm{~m}^{3}\right)=\frac{(0.45 \mathrm{~g} / \mathrm{g})\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})^{2}}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85} \\
& \quad+\frac{(0.20 \mathrm{~g} / \mathrm{g})\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT}] 0.85}+\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)\left(80 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT}) \\
& \quad+\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(220-210) \mathrm{g} / \mathrm{m}^{3}\right](\mathrm{SRT})
\end{aligned}
$$

6. Solve equation on spreadsheet by selecting SRT value where left and right side of equation are equal.
8,050,000 g =
$\frac{974,117(\mathrm{SRT})}{1+.081 \mathrm{SRT}}+\frac{11,836(\mathrm{SRT})^{2}}{1+0.081 \mathrm{SRT}}+\frac{34,635(\mathrm{SRT})}{1+0.128 \mathrm{SRT}}+368,000 \mathrm{SRT}+46,000 \mathrm{SRT}$

SRT $=8.0 \mathrm{~d}$
7. Determine effluent $\mathrm{NH}_{4}-\mathrm{N}\left(\mathrm{N}_{\mathrm{e}}\right)$ concentrations as a function of SRT by combining Eq. (7-94) and Eq. (7-98) in Table 10. Let $S_{0}=$ DO. Assume average DO concentration $=1.0 \mathrm{mg} / \mathrm{L}$ as it varies in the ditch from 0 to 2.0 mg/L.

$$
\frac{1}{\mathrm{SRT}}=\left(\frac{\mu_{\max , \mathrm{AOB}} \mathrm{~S}_{\mathrm{NH} 4}}{\mathrm{~K}_{\mathrm{NH} 4}+\mathrm{S}_{\mathrm{NH} 4}}\right)\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}
$$

Solving for $\mathrm{S}_{\mathrm{NH} 4}\left(\right.$ let $\left.\mathrm{S}_{\mathrm{NH} 4}=\mathrm{N}_{\mathrm{e}}\right)$:

$$
\mathrm{N}_{\mathrm{e}}=\frac{\mathrm{K}_{\mathrm{NH} 4}\left(1+\mathrm{b}_{\mathrm{AOB}} \mathrm{SRT}\right)}{\left[\mu_{\max , \mathrm{AOB}}\left(\frac{\mathrm{DO}}{\mathrm{~K}_{\mathrm{o}}+\mathrm{DO}}\right)-\mathrm{b}_{\mathrm{AOB}}\right] \mathrm{SRT}-1}
$$

$$
\mathrm{N}_{\mathrm{e}}=\frac{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(8.0 \mathrm{~d})]}{\left\{(0.449 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left[\frac{\left(1.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(1.0 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]-(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\right\}(8.0 \mathrm{~d})-1}
$$

$$
\mathrm{N}_{\mathrm{e}}=2.7 \mathrm{~g} / \mathrm{m}^{3}
$$

8. Calculate nitrate removal. The amount of nitrate removed in the half of the ditch that is anoxic is calculated from Eq. (8-52) and Eqs. (8-66), (8-67), and (8-68).

Eq. (8-52): $\mathrm{NO}_{\mathrm{r}}=\mathrm{V}_{\text {nox }}\left(\mathrm{SDNR}_{\mathrm{b}}\right)($ MLVSS biomass $)$
Eq. (8-66): $\operatorname{SDNR}_{\mathrm{b}}=\frac{0.175 \mathrm{~A}_{\mathrm{N}}}{\left(\mathrm{Y}_{\text {net }}\right) \mathrm{SRT}}$
The total system SRT is used in Eq. (8-66) to reflect the endogenous decay activity of the mixed liquor for nitrate reduction. The same equation used above for the nitrification aerobic SRT calculation is used with the exception that the volume is $4600 \mathrm{~m}^{3}$ instead of $2300 \mathrm{~m}^{3}$:
$8,050,000\left(\frac{4600 \mathrm{~m}^{3}}{2300 \mathrm{~m}^{3}}\right)=$
$\frac{974,117(\mathrm{SRT})}{1+0.081 \mathrm{SRT}}+\frac{11,836(\mathrm{SRT})^{2}}{1+0.081 \mathrm{SRT}}+\frac{34,635(\mathrm{SRT})}{1+0.128 \mathrm{SRT}}+368,000 \mathrm{SRT}+46,000 \mathrm{SRT}$

SRT $=17.7 \mathrm{~d}$
To obtain the $S_{D N R}$ value A_{n} and $Y_{\text {net }}$ values must be calculated for use in Eq. (8-66). A_{n} is calculated using Eq. (8-67).
$A_{n}=1.0-1.42 Y_{H}+\frac{1.42\left(b_{H}\right)\left(Y_{H}\right) S R T}{1+\left(b_{H}\right) S R T}$
$A_{n}=1.0-1.42(0.45 \mathrm{~g} / \mathrm{g})+\frac{1.42(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(0.45 \mathrm{~g} / \mathrm{g}) 17.7 \mathrm{~d}}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(17.7 \mathrm{~d})]}$
$A_{\mathrm{n}}=0.737 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \mathrm{bCOD}$
$Y_{\text {net }}$ is calculated using Eq. (8-68).
$Y_{\text {net }}=\frac{Y}{1+\left(b_{H}\right) S R T}=\frac{(0.45 \mathrm{~g} / \mathrm{g})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(17.7 \mathrm{~d})]}=0.185 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD}$
Then $\operatorname{SDNR}_{\mathrm{b}}=\frac{0.175 \mathrm{~A}_{\mathrm{N}}}{\left(\mathrm{Y}_{\text {net }}\right) \text { SRT }}=\frac{0.175(0.737 \mathrm{~g} / \mathrm{g})}{(0.185 \mathrm{~g} / \mathrm{g})(17.7 \mathrm{~d})}=0.039 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$V_{\text {nox }}=2300 \mathrm{~m}^{3}$ and
$\mathrm{NO}_{\mathrm{r}}=\left(2300 \mathrm{~m}^{3}\right)(0.039 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(\mathrm{X}_{\mathrm{b}}\right)$
X_{b} is calculated using Eq. (8-20) in Table 8-10:
$X_{b}=\frac{Q\left(Y_{H}\right)\left(S_{0}-S\right) S R T}{\left[1+\left(b_{H}\right) S R T\right] V}=\frac{\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(17.7 \mathrm{~d})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(17.7 \mathrm{~d})]\left(4600 \mathrm{~m}^{3}\right)}=1309$
$\mathrm{g} / \mathrm{m}^{3}$
$\mathrm{NO}_{\mathrm{r}}=\left(2300 \mathrm{~m}^{3}\right)(0.039 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1309 \mathrm{~g} / \mathrm{m}^{3}\right)=117,417 \mathrm{~g} / \mathrm{d}$
$\mathrm{NO}_{3}-\mathrm{N}$ removed, normalized to flow $=\frac{(117,417 \mathrm{~g} / \mathrm{d})}{\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)}=25.5 \mathrm{~g} / \mathrm{m}^{3}$
The effluent $\mathrm{NO}_{3}-\mathrm{N}$ equals the $\mathrm{NO}_{3}-\mathrm{N}$ produced minus the $\mathrm{NO}_{3}-\mathrm{N}$ reduced in the ditch anoxic volume. The $\mathrm{NO}_{3}-\mathrm{N}$ produced $\left(\mathrm{NO}_{x}\right)$ is determined using Eq. (8-24) in Table 8-10:

$$
\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \mathrm{bio}} / \mathrm{Q}
$$

$\mathrm{P}_{\mathrm{X}, \text { bio }}$ is determined from the appropriate components of Eqs. (8-20) and (821):

$$
\begin{aligned}
& P_{X, \text { bio }}=\frac{Q Y_{H}\left(S_{o}-S\right)}{\left[1+b_{H}(S R T)\right]}+\frac{\left(f_{d}\right)\left(b_{H}\right) \text { QY }_{H}\left(S_{o}-S\right) S R T}{\left[1+b_{H}(S R T)\right]}+\frac{Q Y_{n}\left(N_{X}\right)}{\left[1+b_{n}(S R T)\right]} \\
& P_{\mathrm{X}, \text { bio }}=\frac{\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(17.7 \mathrm{~d})]} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(17.7 \mathrm{~d})}{[1+(0.081 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(17.7 \mathrm{~d})]}
\end{aligned}
$$

$+\frac{\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)(0.15 \mathrm{~g} / \mathrm{g})\left(32 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.128 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(17.7 \mathrm{~d})]}$
$P_{\mathrm{X}, \text { bio }}=(340,222+73,166+6,761) \mathrm{g} / \mathrm{d}=420,149 \mathrm{~g} / \mathrm{d}$
$\mathrm{NO}_{\mathrm{x}}=40 \mathrm{~g} / \mathrm{m}^{3}-2.7 \mathrm{~g} / \mathrm{m}^{3}-\frac{(0.12 \mathrm{~g} / \mathrm{g})(420,149 \mathrm{~g} / \mathrm{d})}{\left(4600 \mathrm{~m}^{3} / \mathrm{d}\right)}=26.3 \mathrm{~g} / \mathrm{m}^{3}$
Effluent $\mathrm{NO}_{3}-\mathrm{N}=\mathrm{NO}_{x}-\mathrm{NO}_{3}-\mathrm{N}$ removed $=(26.3-25.5) \mathrm{g} / \mathrm{m}^{3}=0.80 \mathrm{~g} / \mathrm{m}^{3}$

PROBLEM 8-35

Problem Statement - see text, page 930

Solution

Instructors Note: For the SBR design, there is no mixing during the fill so that nitrate remaining after aeration, settling, and decanting will likely be consumed by the influent BOD during the non-aerated, anoxic fill period. The effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration is then a function of how much nitrate is produced during each cycle and its dilution by the SBR tank volume.

1. Determine the nitrate produced in each cycle for wastewater 1. $\mathrm{The}_{\mathrm{NO}}^{3}-\mathrm{N}$ produced each cycle is:
$V_{F}\left(\mathrm{NO}_{\mathrm{x}}\right), \mathrm{g} / \mathrm{d}$
where V_{F} is the fill volume (and effluent volume) per cycle. The $\mathrm{NO}_{3}-\mathrm{N}$ produced is equal to the mass in the total volume, assuming that all the $\mathrm{NO}_{3}-\mathrm{N}$ is reduced in the mixed un-aerated fill step.
$\mathrm{V}_{\mathrm{F}}\left(\mathrm{NO}_{\mathrm{x}}\right)=\mathrm{V}_{\mathrm{T}}\left(\mathrm{NO}_{\mathrm{e}}\right)$
where, $\mathrm{NO}_{\mathrm{e}}=$ reactor $\mathrm{NO}_{3}-\mathrm{N}$ concentration before settling

$$
\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{~V}_{\mathrm{T}}}\left(\mathrm{NO}_{x}\right)=6 \mathrm{mg} / \mathrm{L} \mathrm{NO}
$$

Thus, the fill volume fraction, $\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{V}_{\mathrm{T}}}$, determines the effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration.
An iterative solution is necessary and the procedure is as follows:

- Assume $\mathrm{NO}_{\mathrm{x}}=0.80(\mathrm{TKN})$
- Determine $\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{V}_{\mathrm{T}}}$
- Solve for V_{F} based on flow and cycle times and then calculate V_{T}
- From V_{T} and the assumed MLSS concentration, determine the SRT
- From the SRT, determine $\mathrm{P}_{\mathrm{X} \text {,bio }}$ and NO_{x}
- If NO_{x} is not equal or close to assumed NO_{x}, perform the calculation with another NO_{x} value
- With final solution SRT, determine the nitrifying bacteria concentration $\left(\mathrm{X}_{\mathrm{N}}\right)$ and calculate the $\mathrm{NH}_{4}-\mathrm{N}$ concentration at the end of the aeration period.

1. Compute $\mathrm{NO}_{x} ; \mathrm{NO}_{x}=0.80(45 \mathrm{mg} / \mathrm{L})=36 \mathrm{mg} / \mathrm{L}$
2. Determine $\frac{V_{F}}{V_{T}} ; \frac{V_{F}}{V_{T}}(36 \mathrm{mg} / \mathrm{L})=6.0 \mathrm{mg} / \mathrm{L}$

$$
\frac{V_{F}}{V_{T}}=\frac{(6.0 \mathrm{mg} / \mathrm{L})}{(36.0 \mathrm{mg} / \mathrm{L})}=\frac{1}{6}=0.167
$$

3. Determine the number of cycles/day and V_{F} by assuming uniform flow and the fill time (t_{F}) for one tank equals the sum of the aeration time $\left(t_{A}\right)$, settle time $\left(\mathrm{t}_{\mathrm{S}}\right)$, and decant time $\left(\mathrm{t}_{\mathrm{D}}\right)$ for the second SBR tank.
$t_{F}=t_{A}+t_{S}+t_{D}$
$\mathrm{T}_{\mathrm{C}}=$ cycle time $=\mathrm{t}_{\mathrm{F}}+\mathrm{t}_{\mathrm{A}}+\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{D}}$
From information provided, $\mathrm{t}_{\mathrm{F}}=(2.0+1.0+0.5) \mathrm{h}=3.5 \mathrm{~h}$
$\mathrm{T}_{\mathrm{C}}=3.5 \mathrm{~h}+3.5 \mathrm{~h}=7.0 \mathrm{~h} /$ cycle
Average number of cycle/d $=\frac{(24 \mathrm{~h} / \mathrm{d})}{(7.0 \mathrm{~h} / \text { cycle })}=3.43 \mathrm{cycle} / \mathrm{d}$
For 2 tanks, total number of cycle/d $=2(3.43)=6.86$
$V_{F}=\frac{(\text { flow } / \mathrm{d})}{(\text { cycles } / \mathrm{d})}=\frac{\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(6.86 \text { cycles } / \mathrm{d})}=792.2 \mathrm{~m}^{3} /$ cycle

$$
\begin{aligned}
& \frac{V_{F}}{V_{T}}=\frac{792.2 \mathrm{~m}^{3}}{V_{T}}=0.167 \\
& V_{T}=\frac{792.2 \mathrm{~m}^{3}}{0.167}=4374 \mathrm{~m}^{3}
\end{aligned}
$$

4. Determine the SRT using Eqs. (8-20), (8-21), and (7-57).
a. From Eqs. (8-20) and (8-21)

$$
\begin{aligned}
& P_{X, T S S}=\frac{Q Y_{H}\left(S_{o}-S\right)}{\left[1+b_{H}(S R T)\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{\left[1+b_{H}(S R T)\right] 0.85} \\
& +\frac{Q Y_{n}\left(\mathrm{NO}_{\mathrm{X}}\right)}{\left[1+\mathrm{b}_{\mathrm{n}}(\mathrm{SRT})\right] 0.85}+\mathrm{Q}(\mathrm{nbVSS})+\mathrm{Q}\left(\mathrm{TSS}_{o}-\mathrm{VSS}_{o}\right)
\end{aligned}
$$

Substituting $\mathrm{P}_{\mathrm{X}, \text { TSS }}$ in Eq. (7-57).

$$
\begin{aligned}
& \left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V})=\frac{\mathrm{QY} \mathrm{Y}_{H}\left(\mathrm{~S}_{0}-\mathrm{S}\right) \mathrm{SRT}}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right] 0.85}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{H}\right) Q \mathrm{Y}_{H}\left(\mathrm{~S}_{0}-\mathrm{S}\right)(\mathrm{SRT})^{2}}{\left[1+\mathrm{b}_{H}(\mathrm{SRT})\right] 0.85} \\
& +\frac{\mathrm{QY}_{\mathrm{n}}\left(\mathrm{NO}_{\mathrm{x}}\right) \text { SRT }}{\left[1+\left(\mathrm{b}_{\mathrm{n}}\right) \mathrm{SRT}\right] 0.85}+\mathrm{Q}(\mathrm{nbVSS}) \mathrm{SRT}+\mathrm{Q}\left(\mathrm{TSS}_{0}-\mathrm{VSS}_{o}\right) \text { SRT }
\end{aligned}
$$

b. Define values for solution to above equation:

Influent bCOD = $1.6(B O D)=1.6(250)=400 \mathrm{mg} / \mathrm{L}$
Assume $\mathrm{S}_{0}-\mathrm{S} \approx$ influent $\mathrm{bCOD}=1.6(\mathrm{BOD})=1.6\left(250 \mathrm{~g} / \mathrm{m}^{3}\right)$

$$
=400 \mathrm{~g} / \mathrm{m}^{3}
$$

Volume/tank $=4374 \mathrm{~m}^{3}$
Flow/tank $=\frac{\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)}{2}=2500 \mathrm{~m}^{3} / \mathrm{d}$
c. Develop coefficients from Tables $8-14$ at $12^{\circ} \mathrm{C}$:
$Y=0.45 \mathrm{~g} / \mathrm{g}$
$\mathrm{K}_{\mathrm{n}}=0.50(1.0)^{12-20}=0.50 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{b}_{\mathrm{H}}=0.12(1.04)^{12-20}=0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$Y_{n}=0.20 \mathrm{~g} / \mathrm{g}$ (including ammonia- and nitrite- oxidizers)
$b_{n}=0.17(1.029)^{12-20}=0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mu_{\text {max }, A O B}=0.90(1.072)^{12-20}=0.516 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{o}}=0.50 \mathrm{~g} / \mathrm{m}^{3}$
d. Insert values and coefficients in equation developed in 4a and compute SRT.
$\left(4000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(4374 \mathrm{~m}^{3}\right)=\frac{(0.45 \mathrm{~g} / \mathrm{g})\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \text { SRT }] 0.85}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})^{2}}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) S R T] 0.85}$
$+\frac{(0.20 \mathrm{~g} / \mathrm{g})\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(36 \mathrm{~g} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+(0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \text { SRT }] 0.85}+\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(120 \mathrm{~g} / \mathrm{m}^{3}\right)($ SRT $)$
$+\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(220-210) \mathrm{g} / \mathrm{m}^{3}\right]($ SRT $)$
$17,496,000 \mathrm{~g}=$
$\frac{529,411(\mathrm{SRT})}{1+.088(\mathrm{SRT})}+\frac{6988(\mathrm{SRT})^{2}}{1+0.088(\mathrm{SRT})}+\frac{21,176(\mathrm{SRT})}{1+0.135(\mathrm{SRT})}+300,000(\mathrm{SRT})+25,000(\mathrm{SRT})$
$\mathrm{SRT}=33.5 \mathrm{~d}$
5. Determine $\mathrm{P}_{\mathrm{X}, \text { bio }}$ using appropriate components of Eq. (8-15)

$$
\begin{aligned}
& P_{X, \text { bio }}=\frac{Q\left(Y_{H}\right)\left(S_{o}-S\right)}{1+b_{H}(S R T)}+\frac{f_{d}\left(b_{H}\right) Q\left(Y_{H}\right)\left(S_{o}-S\right) S R T}{1+b_{H}(S R T)}+\frac{Q Y_{n}\left(N O_{\mathrm{x}}\right)}{1+b_{n}(S R T)} \\
& P_{X, \text { bio }}=\frac{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(33.5 \mathrm{~d})]} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)(33.5 \mathrm{~d})}{[1+0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(33.5 \mathrm{~d})]} \\
& +\frac{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.20 \mathrm{~g} / \mathrm{g})\left(36 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(33.5 \mathrm{~d})]} \\
& P_{\mathrm{X}, \text { bio }}=(113,981+50,402+3259) \mathrm{g} / \mathrm{d}=167,642 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

6. Determine NO_{x} using Eq. (8-24):
$\mathrm{NO}_{\mathrm{x}}=\mathrm{TKN}-\mathrm{N}_{\mathrm{e}}-0.12 \mathrm{P}_{\mathrm{X}, \text { bio }} / \mathrm{Q}$
Considering a long SRT, assume $\mathrm{N}_{\mathrm{e}}=0.5 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}-\mathrm{N}$
$\mathrm{NO}_{\mathrm{x}}=45.0 \mathrm{~g} / \mathrm{m}^{3}-0.5 \mathrm{~g} / \mathrm{m}^{3}-\frac{0.12(167,642 \mathrm{~g} / \mathrm{d})}{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)}$
$\mathrm{NO}_{\mathrm{x}}=36.5 \mathrm{~g} / \mathrm{m}^{3}$ (close to assumption of $36.0 \mathrm{mg} / \mathrm{L}$; an additional iteration is not necessary)
7. Volume of each SBR tank $=4374 \mathrm{~m}^{3}$
8. Compute the decant pumping rate. The decant pumping rate equals the fill volume divided by decant time:

$$
Q_{D}=\frac{V_{F}}{t_{D}}=\frac{729.2 \mathrm{~m}^{3}}{30 \mathrm{~min}}=24.3 \mathrm{~m}^{3} / \mathrm{min}
$$

9. Compute the nitrification safety factor
a. Compute the ammonia oxidizing bacteria concentration by using Eq. (742) in Table 8-10:

$$
X_{n}=\frac{Q\left(Y_{n}\right)\left(\mathrm{NO}_{x}\right) S R T}{\left[1+\left(b_{n}\right) S R T\right](V)}
$$

Per Example 8-5, calculate weighted average nitrifier endogenous decay rate:

Aerobic $\mathrm{b}_{\mathrm{n}}=0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
Anoxic $b_{n}=(0.07 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(1.029)^{12-20}=0.056 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
Fraction of cycle aerobic $=\frac{t_{\mathrm{A}}}{\mathrm{t}_{\mathrm{C}}}=\frac{2 \mathrm{~h}}{7 \mathrm{~h}}=0.285$
Fraction of cycle anoxic $=\left(1-\frac{2 h}{7 h}\right)=0.715$
Average $\mathrm{b}_{\mathrm{n}, 12^{\circ} \mathrm{C}}=0.285(0.135)+0.715(0.056)$ $=0.078 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$X_{n}=\frac{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.15 \mathrm{~g} / \mathrm{g})\left(36.5 \mathrm{~g} / \mathrm{m}^{3}\right)(33.5 \mathrm{~d})}{[1+(0.078 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(33.5 \mathrm{~d})]\left(4374 \mathrm{~m}^{3}\right)}$
$X_{n}=29.0 \mathrm{~g} / \mathrm{m}^{3}$
b. Solve for $\mathrm{NH}_{4}-\mathrm{N}$ as a function of aeration time in the batch reaction using Eq. (8-53)
$K_{n} \ln \left(\frac{N_{0}}{N_{t}}\right)+\left(N_{o}-N_{t}\right)=X_{n}\left(\frac{\mu_{\max }}{Y_{n}}\right)\left(\frac{D O}{K_{o}+D O}\right) t$

Assuming effluent $\mathrm{NH}_{4}-\mathrm{N}=0.50 \mathrm{mg} / \mathrm{L}$, a mass balance on available $\mathrm{NH}_{4}-\mathrm{N}$ after the fill is done to obtain N_{0}, the initial available $\mathrm{NH}_{4}-\mathrm{N}$ concentration.

$$
\left(\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{F}}\right) \mathrm{N}_{\mathrm{e}}+\mathrm{V}_{\mathrm{F}}\left(\mathrm{NO}_{\mathrm{x}}\right)=\mathrm{V}_{\mathrm{T}}\left(\mathrm{~N}_{\mathrm{o}}\right)
$$

$$
\left(1-\frac{V_{F}}{V_{T}}\right) N_{e}+\frac{V_{F}}{V_{T}}\left(\mathrm{NO}_{x}\right)=\mathrm{N}_{\mathrm{o}}
$$

$$
(1-0.167)\left(0.5 \mathrm{~g} / \mathrm{m}^{3}\right)+0.167\left(36.5 \mathrm{~g} / \mathrm{m}^{3}\right)=\mathrm{N}_{\mathrm{o}}
$$

$$
\mathrm{N}_{\mathrm{o}}=6.5 \mathrm{~g} / \mathrm{m}^{3}
$$

$$
0.50 \ln \left(\frac{6.5}{N_{t}}\right)+\left(6.5-N_{t}\right)=\left(29.0 \mathrm{~g} / \mathrm{m}^{3}\right)\left[\frac{(0.516 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})}{(0.15 \mathrm{~g} / \mathrm{g})}\right]+\left[\frac{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{(0.5+2.0) \mathrm{g} / \mathrm{m}^{3}}\right] \mathrm{t}
$$

$$
0.50 \ln \left(\frac{6.5}{N_{t}}\right)+\left(6.5-N_{t}\right)=79.8 t
$$

at $\mathrm{N}_{\mathrm{t}}=1.0 \mathrm{~g} / \mathrm{m}^{3}$,
$0.94+5.5=79.8 t$
$\mathrm{t}=0.08 \mathrm{~d}=1.92 \mathrm{~h}$
Aeration time $=2.0 \mathrm{~h}$
Thus, safety factor ≈ 1.0

PROBLEM 8-36

Problem Statement - see text, page 931

Solution

1. Using synthesis yield values given, determine exogenous carbon dose in $\mathrm{mg} \mathrm{COD} / \mathrm{L}$ to remove $5 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$ for methanol, acetate, and ethanol. Use Eq. (8-69) to determine the carbon consumptive ratio C_{R}, g COD/g
$\mathrm{NO}_{3}-\mathrm{N}$.

$$
\mathrm{C}_{\mathrm{R}, \mathrm{NH} 3}=\frac{2.86}{1-1.42 \mathrm{Y}_{\mathrm{H}}}
$$

a. For methanol,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{R}, \mathrm{NO} 3}=\frac{2.86}{1-1.42(0.25 \mathrm{~g} \mathrm{VSS} / \mathrm{gCOD})} \\
& \mathrm{C}_{\mathrm{R}}=4.43 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N} \\
& \text { Dose }=(4.43 \mathrm{~g} / \mathrm{g})(5.0 \mathrm{mg} / \mathrm{L}) \\
& \text { Dose }=22.2 \mathrm{mg} / \mathrm{L} \text { methanol COD }
\end{aligned}
$$

b. For acetate,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{R}, \mathrm{NO} 3}=\frac{2.86}{1-1.42(0.40 \mathrm{~g} \mathrm{VSS} / \mathrm{gCOD})} \\
& \mathrm{C}_{\mathrm{R}}=6.62 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N} \\
& \text { Dose }=(6.62 \mathrm{~g} / \mathrm{g})(5.0 \mathrm{mg} / \mathrm{L}) \\
& \text { Dose }=33.1 \mathrm{mg} / \mathrm{L} \text { acetate COD }
\end{aligned}
$$

c. For ethanol,

$$
\mathrm{C}_{\mathrm{R}, \mathrm{NO} 3}=\frac{2.86}{1-1.42(0.36 \mathrm{~g} \mathrm{VSS} / \mathrm{gCOD})}
$$

$\mathrm{C}_{\mathrm{R}}=5.85 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}$
Dose $=(5.85 \mathrm{~g} / \mathrm{g})(5.0 \mathrm{mg} / \mathrm{L})$
Dose $=29.3 \mathrm{mg} / \mathrm{L}$ ethanol COD
2. Describe dose needed in terms of the substrate concentration, in $\mathrm{g} \mathrm{COD} / \mathrm{g}$ substrate.
a. Methanol

$$
\mathrm{CH}_{3} \mathrm{OH}+1.5 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\frac{\mathrm{gO}_{2}}{\mathrm{~g} \text { methanol }}=\frac{1.5(32 \mathrm{~g} / \mathrm{mole})}{1.0(32 \mathrm{~g} / \mathrm{mole})}=1.5 \mathrm{gCOD} / \mathrm{g}$ methanol
Dose as methanol $=(22.2 \mathrm{mg}$ COD/L) $)\left[\frac{1}{(1.5 \mathrm{gCOD} / \mathrm{g} \text { methanol })}\right]$
$=14.8 \mathrm{mg} / \mathrm{L}$ methanol
b. Acetate
$\mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\frac{\mathrm{g} \mathrm{O}_{2}}{\text { g acetate }}=\frac{2.0(32 \mathrm{~g} / \mathrm{mole})}{1.0(60 \mathrm{~g} / \mathrm{mole})}=1.067 \mathrm{gCOD} /$ g acetate

Dose as acetate $=(33.1 \mathrm{mg}$ COD/L) $)\left[\frac{1}{(1.067 \mathrm{gCOD} / \mathrm{g} \text { acetate })}\right]$
$=31.0 \mathrm{mg} / \mathrm{L}$ acetate
c. Ethanol

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
& \frac{\mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \text { ethanol }}=\frac{3.0(32 \mathrm{~g} / \mathrm{mole})}{1.0(46 \mathrm{~g} / \mathrm{mole})}=2.09 \mathrm{gCOD} / \mathrm{g} \text { ethanol } \\
& \text { Dose as ethanol }=(29.3 \mathrm{mg} \mathrm{COD} / \mathrm{L})\left[\frac{1}{(2.09 \mathrm{gCOD} / \mathrm{g} \text { ethanol })}\right] \\
& \qquad=14.0 \mathrm{mg} / \mathrm{L} \text { ethanol }
\end{aligned}
$$

3. Summary

Substrate dose to remove $5.0 \mathrm{mg} / \mathrm{L} \mathrm{NO}_{3}-\mathrm{N}$

Substrate	mg COD/L	mg substrate/L
Methanol	22.2	14.8
Acetate	33.1	31.0
Ethanol	29.3	14.0

PROBLEM 8-37

Problem Statement - see text, page 931

Solution (Wastewater 1)

1. Determine the acetate consumptive ratio using Eq. (8-69).

$$
\mathrm{C}_{\mathrm{R}, \mathrm{NO} 3}=\frac{2.86}{1-1.42(0.4 \mathrm{gVSS} / \mathrm{gCOD})}=6.62 \mathrm{gCOD} / \mathrm{gNO}_{3}-\mathrm{N}
$$

2. Determine the amount of NO3-N reduced due to endogenous decay using Eq. (8-63).

$$
\mathrm{R}_{\mathrm{NO} 3}=\frac{1.42}{2.86}\left(\mathrm{~b}_{\mathrm{H}, \text { anox }}\right)\left(\mathrm{X}_{\mathrm{H}}\right)\left(\mathrm{V}_{\text {anox }}\right)
$$

From Table $8-14$, the endogenous decay rate at $15^{\circ} \mathrm{C}$ is

$$
\mathrm{b}_{\mathrm{H}, 15}=\mathrm{b}_{\mathrm{H}, 20}(\theta)^{\top}-20=0.12(1.04)^{15-20}=0.098 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
$$

$R_{\text {NO3 }}=\frac{1.42}{2.86}(0.098 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1200 \mathrm{~g} / \mathrm{m}^{3}\right)\left(250 \mathrm{~m}^{3}\right)$
$R_{\text {NO3 }}=14,597.2 \mathrm{~g} / \mathrm{d}$
Normalized to flow, $\mathrm{R}_{\mathrm{NO} 3}=\frac{(14,597.2 \mathrm{~g} / \mathrm{d})}{\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)}=2.9 \mathrm{~g} / \mathrm{m}^{3}$
3. Determine the post anoxic tank acetate concentration using Eq. (8-70).

SDNR $=\left(\frac{1-1.42 \mathrm{Y}_{\mathrm{H}}}{2.86}\right)\left[\frac{\mu_{\text {max }} \mathrm{S}_{\mathrm{s}}}{\mathrm{Y}_{\mathrm{H}}\left(\mathrm{K}_{\mathrm{s}}+\mathrm{S}_{\mathrm{s}}\right)}\right]\left(\frac{\mathrm{S}_{\mathrm{NO} 3}}{\mathrm{~K}_{\mathrm{NO} 3}+\mathrm{S}_{\mathrm{NO} 3}}\right)\left(\frac{\eta \mathrm{X}_{\mathrm{H}}}{\mathrm{X}_{\mathrm{VSS}}}\right)$
Determine the SDNR needed to remove the remaining $\mathrm{NO}_{3}-\mathrm{N}$ after accounting for endogenous decay.
$\mathrm{NO}_{3}-\mathrm{N}$ removal by acetate $=(6.0-2.9-0.3) \mathrm{g} / \mathrm{m}^{3}$

$$
=2.8 \mathrm{~g} / \mathrm{m}^{3}
$$

$\mathrm{R}_{\mathrm{NO} 3}=\left(2.8 \mathrm{~g} / \mathrm{m}^{3}\right)\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)=14,000 \mathrm{~g} / \mathrm{d}$
From Eq. (8-52),
$\mathrm{R}_{\mathrm{NO} 3}=\operatorname{SDNR}(\mathrm{MLVSS}) \mathrm{V}$
$14,000 \mathrm{~g} / \mathrm{d}=\operatorname{SDNR}\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(250 \mathrm{~m}^{3}\right)$
SDNR $=0.0187 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
Apply Eq. (8-70) and solve for the anoxic tank acetate concentration.
Determine $\mu_{\text {max }, 15}$ with Eq. (1-44) in Table 8-10.
$\mu_{\text {max }, 15}=\mu_{\text {max }, 20} \theta^{\mathrm{T}-20}=(4.46 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(1.21)^{15-20}$
$\mu_{\text {max }, 15}=1.71 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$0.0187=\left[\frac{1-1.42(0.40 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})}{2.86}\right]\left[\frac{(1.71 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) \mathrm{S}_{\mathrm{s}}}{(0.40 \mathrm{gVSS} / \mathrm{gCOD})\left(5.0+\mathrm{S}_{\mathrm{s}}\right)}\right]$

$$
\left\{\frac{\left(0.30 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(0.10+0.30) \mathrm{g} / \mathrm{m}^{3}\right]}\right\}\left[\frac{0.80\left(1200 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]
$$

Solve for S_{s} :
$\mathrm{S}_{\mathrm{s}}=0.69 \mathrm{~g} / \mathrm{m}^{3}$ acetate
As acetate COD,
$\mathrm{CH}_{3} \mathrm{COOH}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\frac{\mathrm{g} \mathrm{O}_{2}}{\mathrm{~g} \text { acetate }}=\frac{2.0(32 \mathrm{~g} / \mathrm{mole})}{1.0(60 \mathrm{~g} / \mathrm{mole})}=1.067 \mathrm{~g} \mathrm{COD} / \mathrm{g}$ acetate
$\mathrm{S}_{\mathrm{s}}=\left(0.69 \mathrm{~g} / \mathrm{m}^{3}\right)(1.067 \mathrm{~g}$ COD $/ \mathrm{g}$ acetate $)=0.74 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}$
4. Determine the carbon dose using Eq. (8-76).
$\mathrm{C}_{\mathrm{D}}=\operatorname{SDNR}\left(\mathrm{X}_{\mathrm{vSs}}\right)(\mathrm{V}) \mathrm{C}_{\mathrm{R}, \mathrm{NO} 3}+\mathrm{Q}(1+\mathrm{R})\left(\mathrm{S}_{\mathrm{s}}\right)$
$C_{D}=(14,000 \mathrm{~g} / \mathrm{d})\left(6.62 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}\right)$
$+\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)(1+0.5)\left(0.74 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)$
$C_{D}=98,230 \mathrm{~g} \mathrm{COD} / \mathrm{d}=98.23 \mathrm{~kg}$ COD $/ \mathrm{d}$
$C_{D, \text { acetate }}=\frac{(98.23 \mathrm{~kg} \mathrm{COD} / \mathrm{d})}{(1.067 \mathrm{~g} \mathrm{COD} / \mathrm{g} \text { acetate })}=92.1 \mathrm{~kg}$ acetate $/ \mathrm{d}$
Dose in mg/L
Dose $=\frac{(98,230 \mathrm{~g} \mathrm{COD} / \mathrm{d})}{\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)}=19.6 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}$
Dose $=\frac{\left(19.60 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)}{(1.067 \mathrm{~g} \mathrm{COD} / \mathrm{g} \text { acetate })}=18.4 \mathrm{~g}$ acetate $/ \mathrm{m}^{3}$
5. Determine the amount of $\mathrm{NH}_{4}-\mathrm{N}$ released.

From Example 8-10, $0.06 \mathrm{~g} \mathrm{NH}_{4}-\mathrm{N}$ released/g VSS in endogenous decay.
Increase in $\mathrm{NH}_{4}-\mathrm{N}$ concentration $=\frac{(0.06 \mathrm{~g} \mathrm{~N} / \mathrm{g} \mathrm{VSS})\left(\mathrm{b}_{\mathrm{H}}\right)\left(\mathrm{X}_{\mathrm{H}}\right) \mathrm{V}}{\mathrm{Q}(1+\mathrm{R})}$
$=\frac{(0.06 \mathrm{~g} \mathrm{~N} / \mathrm{g} \mathrm{VSS})(0.098 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1200 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)\left(250 \mathrm{~m}^{3}\right)}{\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)(1+0.50)}$
$=0.20 \mathrm{~g} / \mathrm{m}^{3}$

PROBLEM 8-38

Problem Statement - see text, page 932

Solution (Wastewater 1)

1. Determine the Premoval by PAOs consuming rbCOD from the influent wastewater.
a. rbCOD is first consumed for $\mathrm{NO}_{3}-\mathrm{N}$ reduction. Assume return sludge recycle ratio $=0.50 \mathrm{mg} / \mathrm{L}$.
$\mathrm{NO}_{3}-\mathrm{N}$ available based on influent flow
$\mathrm{Q}\left(\mathrm{NO}_{3}-\mathrm{N}\right)_{\text {available }}=\left(\mathrm{NO}_{3}-\mathrm{N}_{\mathrm{R}}\right) \mathrm{RQ}$
$\left(\mathrm{NO}_{3}-\mathrm{N}\right)_{\text {available }}=5.0(0.5)=2.5 \mathrm{mg} / \mathrm{L}$
From page 879 rbCOD consumption for $\mathrm{NO}_{3}-\mathrm{N}$ reduction

$$
=\frac{5.0 \mathrm{~g} \mathrm{rbCOD}}{\mathrm{~g} \mathrm{NO}_{3}-\mathrm{N}}(2.5 \mathrm{mg} / \mathrm{L})
$$

rbCOD consumption $=13.0 \mathrm{mg} / \mathrm{L}$
rbCOD available for $\mathrm{PAOs}=70-13=57 \mathrm{mg} / \mathrm{L}$
b. Determine rbCOD/P ratio from Figure 8-38.

At VFA/rbCOD $=0.50, \mathrm{rbCOD} / \mathrm{P}=10.0$
P removal by $\mathrm{PAOs}=\frac{(57 \mathrm{mg} \mathrm{rbCOD} / \mathrm{L})}{(10.0 \mathrm{grbCOD} / \mathrm{g} \mathrm{P})}$

$$
=5.7 \mathrm{mg} / \mathrm{L}
$$

2. Determine P removal by biomass production. Assume $0.015 \mathrm{~g} \mathrm{P} / \mathrm{g}$ VSS from Example 8-13.
Biomass growth $=(0.30 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{BOD})(160 \mathrm{mg} / \mathrm{L})=48.0 \mathrm{mg} / \mathrm{L}$ VSS
Premoval by synthesis $=(0.015 \mathrm{~g} \mathrm{P} / \mathrm{g} \mathrm{VSS})(48.0 \mathrm{mg} / \mathrm{L})=0.7 \mathrm{mg} \mathrm{P} / \mathrm{L}$
Effluent soluble $\mathrm{P}=7.0-0.7-5.7=0.6 \mathrm{mg} / \mathrm{L}$
3. Determine the phosphorus content of the waste sludge

Sludge production $=(0.60 \mathrm{~g} \mathrm{TSS} / \mathrm{g} \mathrm{BOD})\left(160 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}\right)$

$$
=96.0 \mathrm{~g} / \mathrm{m}^{3}
$$

Premoved $=7.0-0.60=6.4 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{g} \mathrm{P} / \mathrm{g}$ sludge $=\frac{\left(6.4 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(96 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.067 \mathrm{~g} / \mathrm{g}, \mathrm{P}$ content of dry solids $=6.7 \%$
4. Eliminate or reduce the amount of $\mathrm{NO}_{3}-\mathrm{N}$ in the return sludge flow to the EBPR anaerobic contact zone. This could be done by incorporating the JHB or UCT process in the treatment process. The feasibility and preferred method would depend on the actual plant layout.

PROBLEM 8-39

Problem Statement - see text, page 932

Solution

1. Determine the change in effluent phosphorus content. The amount of nitrate fed to the anaerobic zone affects enhanced biological phosphorus removal efficiency due to rbCOD consumption by nitrate. Per page 879, 1.0 $\mathrm{mg} \mathrm{NO} 33-\mathrm{N}$ consumes 5.2 mg rbCOD.

In the $\mathrm{A}^{2} \mathrm{O}$ process, $\mathrm{NO}_{3}-\mathrm{N}$ is fed to the anaerobic zone in the return activated sludge (RAS). Assuming no $\mathrm{NO}_{3}-\mathrm{N}$ removal in the secondary clarifier, the $\mathrm{NO}_{3}-\mathrm{N}$ concentration in RAS is equal to the effluent concentration. In this problem, the internal recycle for the $\mathrm{A}^{2} \mathrm{O}$ process is to be decreased, which will increase the effluent and $\mathrm{RAS} \mathrm{NO}_{3}-\mathrm{N}$ concentration. Eq. (8-62) is used to determine changes in the effluent NO_{3} N concentration as a function of the internal recycle ratio (IR).
$I R=\frac{\mathrm{NO}_{\mathrm{x}}}{\mathrm{N}_{\mathrm{e}}}-1.0-\mathrm{R}$
Solve for NO_{x} for the present condition as this will not change with changes in recycle rates. Rearranging the equation:
$\mathrm{NO}_{\mathrm{x}}=\mathrm{N}_{\mathrm{e}}(1+\mathrm{R}+\mathrm{IR})$
$\mathrm{NO}_{x}=5.0 \mathrm{mg} / \mathrm{L}(1+0.50+3.0)=22.5 \mathrm{mg} / \mathrm{L}$
Determine N_{e} for $\mathbf{I R}=\mathbf{2 . 0}$ and $\mathbf{R}=1.0$
$\mathrm{N}_{\mathrm{e}}=\frac{\mathrm{NO}_{\mathrm{x}}}{(1+\mathrm{R}+\mathrm{IR})}=\frac{(22.5 \mathrm{mg} / \mathrm{L})}{(1+1.0+2.0)}=5.63 \mathrm{mg} / \mathrm{L}$
The amount of nitrate fed to the anaerobic zone is equal to the RAS flow rate and $\mathrm{NO}_{3}-\mathrm{N}$ concentration and is shown as follows:

$$
\mathrm{g} \mathrm{NO}_{3}-\mathrm{N} \text { fed/d }=\mathrm{RQN} \mathrm{e}_{\mathrm{e}}
$$

The rbCOD required in the influent flow for $\mathrm{NO}_{3}-\mathrm{N}$ consumption is shown as follows:

Thus, the rbCOD used in the influent flow for $\mathrm{NO}_{3}-\mathrm{N}$ removal is:

$$
\mathrm{rbCOD} \mathrm{NO}_{3}, \mathrm{mg} / \mathrm{L}=5.2 \mathrm{RN}_{\mathrm{e}}
$$

For the initial case, $R=0.5, N_{e}=5.0 \mathrm{mg} / \mathrm{L}$

$$
\mathrm{rbCOD}_{\mathrm{NO}_{3}}=5.2(0.5)(5.0 \mathrm{mg} / \mathrm{L})=13.0 \mathrm{mg} / \mathrm{L}
$$

For the new recycle condition, $R=1.0, N_{e}=5.63 \mathrm{mg} / \mathrm{L}$

$$
\mathrm{rbCOD}_{\mathrm{NO}_{3}}=5.2(1.0)(5.63 \mathrm{mg} / \mathrm{L})=29.3 \mathrm{mg} / \mathrm{L}
$$

Thus, the additional rbCOD consumed in the anaerobic zone $=(29.3-13.0)$ $\mathrm{mg} / \mathrm{L}=16.3 \mathrm{mg} / \mathrm{L}$
Assuming 10 g rbCOD / g P removal,
the loss of P removal $=\frac{(16.3 \mathrm{mg} / \mathrm{L})}{(10 \mathrm{~g} / \mathrm{g})}=1.6 \mathrm{mg} / \mathrm{L}$

PROBLEM 8-40

Problem Statement - see text, page 932
Solution (Solids loading rate $=\mathbf{4 . 0} \mathbf{~ k g} / \mathrm{m}^{2} \cdot \mathrm{~h}$)

1. Determine the influent flow rate given the return activated sludge recycle ratio, MLSS concentration, and clarifier number and diameter.
a. Determine the clarifier average surface overflow rate (SOR) using Eq.
(8-82).
MLSS $=3000 \mathrm{~g} / \mathrm{m}^{3}=3.0 \mathrm{~kg} / \mathrm{m}^{3}$
$S L R=\frac{(Q+R Q) M L S S}{A}=(1+R)(S O R) M L S S$
$\mathrm{SOR}=\frac{\mathrm{SLR}}{(1+\mathrm{R}) \mathrm{MLSS}}=\frac{\left(4.0 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)}{(1+0.5)\left(3.0 \mathrm{~kg} / \mathrm{m}^{3}\right)}$
SOR $=0.88 \mathrm{~m} / \mathrm{h}$
$\mathrm{SOR}=\mathrm{Q} / \mathrm{A}$
b. Determine the influent flowrate
$Q=A(S O R)$
Clarifier area $=(2)\left(\pi D^{2} / 4\right)$

$$
\begin{aligned}
& =(2)(3.14 / 4)(20 \mathrm{~m})^{2} \\
& =628 \mathrm{~m}^{2} \\
Q & =\left(628 \mathrm{~m}^{2}\right)(0.88 \mathrm{~m} / \mathrm{h})(24 \mathrm{~h} / \mathrm{d}) \\
Q & =13,263 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

2. Determine the return sludge MLSS concentration.

Ideal mass balance on the clarifier:
Solids in = Solids out
Ignore effluent TSS and solids wasting
$\mathrm{Q}(1+\mathrm{R}) \mathrm{X}=\mathrm{RQ}\left(\mathrm{X}_{\mathrm{R}}\right)$

$$
\begin{aligned}
& X_{R}=\frac{(1+R) X}{R}=\frac{1.5(3000 \mathrm{mg} / \mathrm{L})}{0.5} \\
& X_{R}=9000 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

PROBLEM 8-41

Problem Statement - see text, page 933
Solution

1. The effects are summarized in the following table.

Change in process or wastewater characteristics	Effect on effluent process concentration
SRT is increased	Effluent P decreases. Less phosphorus accumulating organism (PAO) bacteria biomass is produced due to lower yield at higher SRT
Influent rbCOD concentration increases	Effluent P decreases. Higher rbCOD provides more food for PAOs and thus more growth and P removal
Clarifier effluent suspended solids	Effluent P increases. Effluent suspended solids
concentration increases	contain P

PROBLEM 8-42

Problem Statement - see text, page 933

Solution

Using the column test data a gravity flux curve is first developed by determining the initial interfacial settling from the data provided. Then the limiting solids flux can be determined graphically for each underflow MLSS concentration given. The underflow velocity $\left(Q_{R} / A\right)$ is obtained as the negative slope of the underflow operating rate curve. The Q/A value is given for the problem, so the percent RAS recycle rate is:

$$
\frac{\left(Q_{R} / A\right) 100}{(Q / A)}=\text { percent RAS recycle rate }
$$

1. Gravity flux curve from data

$\mathrm{C}_{\mathrm{i}}, \mathrm{g} / \mathrm{L}$	$\mathrm{V}_{\mathrm{i}}, \mathrm{m} / \mathrm{h}$	$\mathrm{SF}_{\mathrm{g}}, \mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$
1.0	7.03	7.03
1.5	6.21	9.32
2.0	5.43	10.86
2.5	3.95	9.87
3.0	2.47	7.41
5.0	1.03	5.15
10.0	0.29	2.90
15.0	0.18	2.70

For $\mathrm{C}_{\mathrm{i}}=1 \mathrm{~g} / \mathrm{L}$,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=\frac{117.1 \mathrm{~cm}}{10 \mathrm{~min}}\left(\frac{\mathrm{~m}}{100 \mathrm{~cm}}\right) \frac{60 \mathrm{~m}}{\mathrm{~h}}=7.03 \mathrm{~m} / \mathrm{h} \\
& \mathrm{SF}_{\mathrm{g}}=\mathrm{C}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\left(\frac{1 \mathrm{~g}}{\mathrm{~L}}\right)(7.03 \mathrm{~m} / \mathrm{h})\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(\frac{1.0 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=7.03 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}
\end{aligned}
$$

2. Plot solids flux graph with $X_{R}=10,500 \mathrm{mg} / \mathrm{L}$ and $15,000 \mathrm{mg} / \mathrm{L}$. Compute percent recycle for a clarifier overflow rate of $0.82 \mathrm{~m} / \mathrm{h}$.

a. At $X_{R}=10,500 \mathrm{mg} / \mathrm{L}$
$S F_{L}=9.8 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$
$\frac{Q_{R}}{A}=\frac{\left(9.8 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)}{(10.5 \mathrm{~g} / \mathrm{L})}=0.93 \mathrm{~m} / \mathrm{h}$
Percent recycle $=\frac{[0.93 \mathrm{~m} / \mathrm{h}(100)]}{(0.82 \mathrm{~m} / \mathrm{h})}=114$
b. At $X_{R}=15,000 \mathrm{mg} / \mathrm{L}$
$S F_{\mathrm{L}}=7.0 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$
$\frac{Q_{R}}{A}=\frac{\left(7.0 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)}{(15.0 \mathrm{~g} / \mathrm{L})}=0.47 \mathrm{~m} / \mathrm{h}$
Percent recycle $=\frac{(0.47 \mathrm{~m} / \mathrm{h})(100)}{(0.82 \mathrm{~m} / \mathrm{h})}=57$

PROBLEM 8-43

Problem Statement - see text, page 933

Solution

1. First calculate the solids flux due to gravity thickening using equation given for V_{i}

$$
\begin{aligned}
& \mathrm{SF}_{\mathrm{g}}=\mathrm{V}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}=\left[\mathrm{X}_{\mathrm{i}} \mathrm{~V}_{\mathrm{o}}\left(\mathrm{e}^{-k X_{i}}\right)\right]\left(\frac{1.0 \mathrm{~d}}{24 \mathrm{~h}}\right) \\
& \mathrm{k}=0.4004 \mathrm{~L} / \mathrm{g} \\
& \mathrm{~V}_{\mathrm{o}}=172 \mathrm{~m} / \mathrm{d} \\
& \mathrm{X}_{\mathrm{i}}=\mathrm{MLSS}, \mathrm{~g} / \mathrm{L} \\
& \mathrm{SF}_{\mathrm{g}}=\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}
\end{aligned}
$$

a. The solids flux is summarized as follows and graphed as shown:

X_{j}, g / L	SF_{g}, $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$	X_{j}, g / L	SF_{g}, $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$
1.0	4.80	8.0	2.34
2.0	6.44	9.0	1.76
3.0	6.48	10.0	1.31
4.0	5.79	12.0	0.71
5.0	4.85	14.0	0.37
6.0	3.90	16.0	0.19
7.0	3.05	18.0	0.10

b. The overflow rate operating flux line $=\frac{Q}{A}\left(X_{i}\right)$

$$
\mathrm{Q} / \mathrm{A}=1 \mathrm{~m} / \mathrm{h}
$$

Shown on graph, at $X_{i}=5 \mathrm{~g} / \mathrm{L}$, the overflow rate operating flux

$$
=5 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}
$$

c. Underflow concentration, $\mathbf{X}_{\mathbf{R}}=\mathbf{1 0} \mathbf{g} / \mathbf{L}$

The underflow line is drawn by starting at $10 \mathrm{~g} / \mathrm{L}$ on the X -axis and intersecting the operating state point.

The solids flux rate is determined from the y-axis intercept and is 6.5 $\mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$.

The value for Q_{R} / A is the negative slope:
$Q_{R} / A=\frac{\left(6.5 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)}{(10 \mathrm{~g} / \mathrm{L})}=0.65 \mathrm{~m} / \mathrm{h}$
Recycle ratio $=\frac{Q_{R}}{Q}=\frac{\left(Q_{R} / A\right)}{(Q / A)}=\frac{(0.65 \mathrm{~m} / \mathrm{h})}{(1.0 \mathrm{~m} / \mathrm{h})}=0.65$
d. With only one clarifier in operation the overflow rate is doubled and Q / A $=2 \mathrm{~m} / \mathrm{h}$. The new overflow rate operating flux line is shown on the graph. The recycle flux line is drawn so that it is just below the gravity flux curve and thus does not exceed the solids flux limitation. A new graph is shown below.

The maximum MLSS concentration is $3000 \mathrm{mg} / \mathrm{L}$ and the solids flux is $9.3 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}$. The recycle overflow rate is:

$$
\frac{Q_{R}}{A}=\frac{\left(9.3 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)}{(10 \mathrm{~g} / \mathrm{L})}=0.93 \mathrm{~m} / \mathrm{h}
$$

The recycle ratio $=\frac{(0.93 \mathrm{~m} / \mathrm{h})}{(2.0 \mathrm{~m} / \mathrm{h})}=0.47$

PROBLEM 8-44

Problem Statement - see text, page 934

Solution (MBR MLSS $=\mathbf{1 0 , 0 0 0} \mathbf{~ m g} / \mathrm{L}$)

1. The SRTs and MLSS concentrations are given for the two cases. The flow that can be treated is related to sludge production, $\mathrm{P}_{\mathrm{X}, \mathrm{TSS}} . \mathrm{P}_{\mathrm{X}, \mathrm{TSS}}$ is related to the SRT and MLSS by Eq. (7-57) in Table 8-10.

$$
\frac{\left(\mathrm{X}_{\text {TSS }}\right)(\mathrm{V})}{S R T}=P_{\mathrm{X}, \mathrm{TSS}}
$$

The solids production $\mathrm{P}_{\mathrm{x}, \text { tss }}$ is obtained using Eq. (8-20) and (8-21) in Table 8-10.

$$
\begin{aligned}
P_{X, T S S}= & \frac{Q Y_{H}\left(S_{0}-S\right)}{\left[1+\left(b_{H}\right) S R T\right] 0.85}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{\left[1+\left(b_{H}\right) S R T\right] 0.85} \\
& +\frac{Q Y_{n}\left(N O_{X}\right)}{\left[1+\left(b_{n}\right) S R T\right] 0.85}+Q(\text { nbVSS })+Q\left(\text { TSS }_{o}-\text { VSS }_{o}\right)
\end{aligned}
$$

For the 6 d SRT operation,

$$
P_{x, T s s}=\frac{\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)\left(4600 \mathrm{~m}^{3}\right)}{6 \mathrm{~d}}=1,916,667 \mathrm{~g} / \mathrm{d}
$$

As the temperature is not given the above equation, the relationship for $\mathrm{P}_{\mathrm{X}, \text { tss }}$ must be used with the flow rate at the 6-d SRT condition to determine b_{H}, which will be the same value for the 12-d SRT membrane reactor application. The following coefficients are used in the equation.
$\mathrm{Y}_{\mathrm{H}}=0.45 \mathrm{gVSS} / \mathrm{g} \mathrm{bCOD}$
$\mathrm{f}_{\mathrm{d}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}$
$\mathrm{Y}_{\mathrm{n}}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N}$
Use b_{n} at $20^{\circ} \mathrm{C}$ as error in this case for low solids production nitrification has small effect:
$\mathrm{b}_{\mathrm{n}}=0.17 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$
Thus:
$1,916,667 \mathrm{~g} / \mathrm{d}=\frac{0.45 \mathrm{~g} / \mathrm{g}\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[1+\left(\mathrm{b}_{\mathrm{H}}, \mathrm{g} / \mathrm{g} \cdot \mathrm{d}\right)(6 \mathrm{~d})\right] 0.85}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})\left(\mathrm{b}_{\mathrm{H}}\right)\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)(6 \mathrm{~d})}{\left[1+\left(\mathrm{b}_{\mathrm{H}}, \mathrm{g} / \mathrm{g} \cdot \mathrm{d}\right)(6 \mathrm{~d})\right] 0.85}$
$+\frac{0.20 \mathrm{~g} / \mathrm{g}\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(28 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.17 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(6 \mathrm{~d})] 0.85}+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(35 \mathrm{~g} / \mathrm{m}^{3}\right)$
$+\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)(80-68) \mathrm{g} / \mathrm{m}^{3}$
$1,916,667=\frac{1,905,882}{\left[1+b_{H}(6 d)\right]}+\frac{1,715,292\left(b_{H}\right)}{\left[1+b_{H}(6 d)\right]}+753,922$
Use a spreadsheet to solve for b_{H}.
$\mathrm{b}_{\mathrm{H}}=0.14 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
2. For the membrane reactor, $\mathrm{SRT}=12 \mathrm{~d}$

MLSS $=\mathbf{1 0 , 0 0 0} \mathbf{m g} / \mathrm{L}$, and V also $=4600 \mathrm{~m}^{3}$
$P_{X, T S S}=\frac{X V}{S R T}=\frac{\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(4600 \mathrm{~m}^{3}\right)}{12 \mathrm{~d}}=3,833,333 \mathrm{~g} / \mathrm{d}$
Use equation for $P_{X, T S S}$ and solve for Q with same input values as for the 6 d SRT application.

$$
\begin{aligned}
& 3,833,333 \mathrm{~g} / \mathrm{d}=\frac{\mathrm{Q}(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.14 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(12 \mathrm{~d})] 0.85} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.14 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(\mathrm{Q})(0.45 \mathrm{~g} / \mathrm{g})\left(240 \mathrm{~g} / \mathrm{m}^{3}\right) 12 \mathrm{~d}}{[1+(0.14 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(12 \mathrm{~d})] 0.85} \\
& +\frac{(\mathrm{Q})(0.20 \mathrm{~g} / \mathrm{g})\left(28 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.17 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(12 \mathrm{~d})] 0.85}+(\mathrm{Q})\left(35 \mathrm{~g} / \mathrm{m}^{3}\right)+Q(80-68) \mathrm{g} / \mathrm{m}^{3} \\
& Q=35,320 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

Thus, the MLSS concentration was increased by a factor of 4 and the SRT and flowrate were increased by factors of 2 and 2.3, respectively.
3. The volumetric BOD loading ($\mathrm{L}_{\text {org }}$) and F/M ratio are calculated using Eq. (769) and (7-62), respectively in Table 8-10.
$L_{\text {org }}=\frac{(Q)\left(S_{0}\right)}{V}$
$F / M=\frac{Q_{0}}{V X}$
SRT $=6 \mathrm{~d}$
$\mathrm{L}_{\text {org }}=\frac{\left(15000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{4600 \mathrm{~m}^{3}}=0.49 \mathrm{~kg} \mathrm{BOD} / \mathrm{m}^{3} \cdot \mathrm{~d}$
$F / M=\frac{\left(15,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(4600 \mathrm{~m}^{3}\right)\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.20 \mathrm{gBOD} / \mathrm{gMLSS} \cdot \mathrm{d}$
SRT = 12 d with membrane

$$
\begin{aligned}
& \mathrm{L}_{\text {org }}=\frac{\left(35,320 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{4600 \mathrm{~m}^{3}}=1.15 \mathrm{kgBOD} / \mathrm{m}^{3} \cdot \mathrm{~d} \\
& \mathrm{~F} / \mathrm{M}=\frac{\left(35,320 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(4600 \mathrm{~m}^{3}\right)\left(10,000 \mathrm{~g} / \mathrm{m}^{3}\right)}=0.11 \mathrm{gBOD} / \mathrm{g} \mathrm{MLSS} \cdot \mathrm{~d}
\end{aligned}
$$

4. The flowrate divided by the allowable membrane flux of $900 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~d}$ determines the membrane surface area:

$$
\text { Area }=\frac{\left(35,320 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(20.0 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)\left(1.0 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)(24 \mathrm{~h} / \mathrm{d})}=73,583 \mathrm{~m}^{2}
$$

9

ATTACHED GROWTH AND COMBINED BIOLOGICAL TREATMENT PROCESSES

Instructors Note: In many of the problems where constituent concentrations are used, the units mg / L and $\mathrm{g} / \mathrm{m}^{3}$ are used interchangeably to facilitate computations without introducing additional conversion factors.
In the first print of the textbook, Eq. $(9-15)$ should to be corrected to
$\frac{S_{e}}{S_{i}}=\exp \left(\frac{-k D}{q^{n}}\right)$

PROBLEM 9-1

Problem Statement - see text, page 1046

Solution

1. Determine effluent concentration at $20^{\circ} \mathrm{C}$ for an average flowrate of 390 $\mathrm{m}^{3} / \mathrm{h}$.
a. Determine k_{20} for design conditions using Eq. (9-20).

$$
\begin{aligned}
k_{2} & =k_{1}\left(\frac{D_{1}}{D_{2}}\right)^{0.5}\left(\frac{S_{1}}{S_{2}}\right)^{0.5} \\
& =0.210\left(\frac{6.1}{6.1}\right)^{0.5}\left(\frac{150}{150}\right)^{0.5}=0.210(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}
\end{aligned}
$$

b. Determine the hydraulic application rate.

$$
\begin{aligned}
& \mathrm{q}=\mathrm{Q} / \mathrm{A} \\
& \text { where } \mathrm{Q}=\left(390 \mathrm{~m}^{3} / \mathrm{h}\right)\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)(1 \mathrm{~h} / 3600 \mathrm{~s})=108.3 \mathrm{~L} / \mathrm{s} \\
& \quad \mathrm{~A}=\pi \mathrm{D}^{2} / 4=\left[(\pi / 4)\left(20^{2}\right)\right]=314.2 \mathrm{~m}^{2} \\
& \mathrm{q}=(108.3 \mathrm{~L} / \mathrm{s}) /\left(314.2 \mathrm{~m}^{2}\right)=0.345 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

c. Determine effluent concentration using Eq. (9-15).

$$
\begin{aligned}
\frac{S_{e}}{S_{i}} & =\exp \left(\frac{-k D}{q^{n}}\right) \\
S_{e} & =S_{i} e^{-k D / q^{n}} \\
& =(150 \mathrm{mg} / \mathrm{L})\left[\mathrm{e}^{-(0.210)(6.1) / 0.345^{0.5}}\right]=16.9 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

d. Determine percent BOD removal

$$
\% \text { removal }=\frac{[(150-16.9) \mathrm{mg} / \mathrm{L}]}{(150 \mathrm{mg} / \mathrm{L})}(100 \%)=88.7
$$

2. Determine effluent concentration at $15^{\circ} \mathrm{C}$.
a. Correct k_{2} for design conditions using Eq. (9-16).

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{(\mathrm{T}-20)} \\
& \mathrm{k}_{15}=0.210(1.035)^{(15-20)}=0.177
\end{aligned}
$$

b. the hydraulic application rate is the same as in Step 1b.

$$
\mathrm{q}=0.345 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}
$$

c. Determine effluent concentration using Eq. (9-15).

$$
\begin{aligned}
S_{e} & =S_{i} e^{-k D / q^{n}} \\
& =(150 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-(0.177)(6.1) / 0.345^{0.5}}=23.9
\end{aligned}
$$

d. Determine percent BOD removal

$$
\% \text { removal }=\frac{[(150-23.9) \mathrm{mg} / \mathrm{L}]}{(150 \mathrm{mg} / \mathrm{L})}(100 \%)=84.1
$$

3. In comparing BOD removal, the removal rate is reduced at the lower temperature (88.7 vs. 84.1 \%).

PROBLEM 9-2

Problem Statement - see text, page 1046

Solution

1. Determine the operating and flushing dose rates for an influent BOD concentration of $600 \mathrm{mg} / \mathrm{L}$.
a. Determine the volume of each filter.

$$
V=\left(\frac{\pi D^{2}}{4}\right) h=\left[\frac{\pi(15)^{2}}{4}\right] 6=1060.3 \mathrm{~m}^{3}
$$

b. Determine BOD loading for each filter (two filters operating in parallel) BOD loading = QSo/v

$$
\begin{aligned}
& =\left[(2120 / 2) \mathrm{m}^{3} / \mathrm{d}\right]\left(600 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) /\left(1060.3 \mathrm{~m}^{3}\right) \\
& =0.60 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}
\end{aligned}
$$

c. Determine the estimated operating and flushing dosing rates.

From Table 9-3 (page 959) the estimated dosing rates are:
Operating rate $=75 \mathrm{~mm} /$ pass
Flushing rate $=125 \mathrm{~mm} /$ pass
2. Determine the distributor speed using Eq. (9-1)
$D R=\frac{(1+R) q\left(10^{3} \mathrm{~mm} / 1 \mathrm{~m}\right)}{\left(\mathrm{N}_{\mathrm{A}}\right)(\mathrm{n})(60 \mathrm{~min} / 1 \mathrm{~h})}$
a. Calculate the hydraulic application rate, q
$q=Q / A$
Where $Q=2120 / 2=1060 \mathrm{~m}^{3} / \mathrm{d}$

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{D}^{2} / 4=(\pi / 4)(15)^{2}=176.7 \mathrm{~m}^{2} \\
& \mathrm{q}=\left[\left(1060 \mathrm{~m}^{3} / \mathrm{d}\right) /\left(176.7 \mathrm{~m}^{2}\right)\right](1 \mathrm{~d} / 24 \mathrm{~h})\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)(1 \mathrm{~h} / 3600 \mathrm{~s}) \\
& = \\
& =0.069 \mathrm{~L}^{2} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

b. Determine the recirculation rate and recirculation ratio. Use a minimum hydraulic application rate of $0.5 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$ (as in Example 9-3 in page 975).

Determine the recirculation ratio.
$\mathrm{q}+\mathrm{q}_{\mathrm{r}}=0.5 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
$\mathrm{q}_{\mathrm{r}}=0.5-0.069=0.431 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
Determine the recirculation ratio

$$
R=q_{r} / q=0.431 / 0.069=6.24
$$

c. Calculate the distributor speed for the flushing rate.

$$
\begin{aligned}
& \mathrm{n}=\frac{(1+\mathrm{R}) \mathrm{q}(1000 \mathrm{~mm} / \mathrm{min})}{\left(\mathrm{N}_{\mathrm{A}}\right)(\mathrm{DR})(60 \mathrm{~min} / \mathrm{h})}= \\
& \frac{(1+6.24)\left(0.069 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)\left(10^{3} \mathrm{~mm} / 1 \mathrm{~m}\right)}{(2)(125 \mathrm{~mm} / \text { pass })} \\
&=0.002 \mathrm{rev} / \mathrm{sec} \\
& \frac{1}{\mathrm{n}}=\frac{1}{(0.002 \mathrm{rev} / \mathrm{s})}\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=8.33 \mathrm{~min} / \mathrm{rev}
\end{aligned}
$$

3. Calculate the pumping rate to each filter.

$$
\begin{aligned}
\text { Pumping rate } & =\left(\mathrm{q}+\mathrm{q}_{\mathrm{r}}\right) \mathrm{A}=\left(0.5 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)\left(176.7 \mathrm{~m}^{2}\right) \\
& =88.35 \mathrm{~L} / \mathrm{s}=(88.35 \mathrm{~L} / \mathrm{s})\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)(3600 \mathrm{~s} / 1 \mathrm{~h})=318 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

PROBLEM 9-3

Problem Statement - see text, page 1046

Solution (4 m packing depth)

The correct solution for the trickling filter in textbook EXAMPLE 9-3 is presented first.

1. Determine k_{20} for the design conditions using Eq. (9-20)

$$
\mathrm{k}_{2}=\mathrm{k}_{1}\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{0.5}\left(\frac{\mathrm{~S}_{1}}{\mathrm{~S}_{2}}\right)^{0.5}
$$

a. Solve for k_{2}

From Table 9-6, $k=0.210(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$ [Note: $\mathrm{k}=\mathrm{kA}$ in Eq. (9-19)]
Trickling filter depth $=6.1 \mathrm{~m}$

$$
=0.210\left(\frac{6.1}{6.1}\right)^{0.5}\left(\frac{150}{125}\right)^{0.5}=0.230(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}
$$

b. Correct k_{2} for temperature effect using Eq. (9-16)
i. $k_{T}=k_{20}(1.035)^{T-20}$
ii. $\mathrm{k}_{14}=0.230(1.035)^{14-20}=0.187(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$
2. Determine the hydraulic loading rate and the filter area, volume, and diameter
a. Using Eq. (9-19) with $\mathrm{k}_{\mathrm{T}}=\left(\mathrm{KA}_{\mathrm{s}}\right) \theta^{\mathrm{T}-20}=0.187(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$ determine the hydraulic loading rate

$$
S_{e}=\frac{S_{0}}{(R+1) \exp \left\{\frac{k_{T} D}{[q(R+1)]^{n}}\right\}-R}
$$

Rearrange to get following:

$$
\begin{aligned}
& {[q(1+R)]=\left\{\frac{k_{T} D}{\ln \left[\frac{S_{\mathrm{o}}+R S_{e}}{\mathrm{~S}_{\mathrm{e}}(1+R)}\right]}\right\}^{1 / n}} \\
& {[\mathrm{q}(1+1)]=\left\{\frac{\left(0.187 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)(6.1 \mathrm{~m})}{\ln \left[\frac{\left(125 \mathrm{~g} / \mathrm{m}^{3}\right)+(1)\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)(1+1)}\right]}\right\}^{2}} \\
& \mathrm{q}=0.392 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

b. Determine the tower area

$$
\mathrm{Q}=15,140 \mathrm{~m} 3 / \mathrm{d}=175.2 \mathrm{~L} / \mathrm{s}
$$

Filter area $=Q / q=175.2 / 0.0 .392=446.9 \mathrm{~m}^{2}$
c. Determine the packing volume

Packing volume $=\left(446.9 \mathrm{~m}^{2}\right)(6.1 \mathrm{~m})=2726 \mathrm{~m}^{3}$
d. Determine the tower diameter

$$
\text { Area/tower }=446.9 \mathrm{~m}^{2} / 2=223.5 \mathrm{~m}^{2}
$$

Diameter $=16.9 \mathrm{~m}$ each
Two towers each with a diameter of 17 m
3. Determine the pumping rate
$q+q_{r}=(1+R) q=(1+1) 0.392 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}=0.784 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
Total pumping rate $=\left(0.784 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)\left(446.9 \mathrm{~m}^{2}\right)$

$$
=350.4 \mathrm{~L} / \mathrm{s}=1,261 \mathrm{~m}^{3} / \mathrm{h}
$$

4. Determine flushing and normal dose rate using the data given in Table 9-3.
a. Determine BOD loading

$$
\begin{aligned}
\text { BOD loading } & =\text { Q So } / \mathrm{V} \\
& =\frac{\left(15,140 \mathrm{~m}^{3} / \mathrm{d}\right)(125 \mathrm{mg} / \mathrm{L})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{2726 \mathrm{~m}^{3}} \\
& =0.69 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}
\end{aligned}
$$

b. Determine the dosing rates

From Table 9-3, the estimated flushing and operation dose rates are:
i. Flushing dose $=150 \mathrm{~mm} /$ pass
ii. Operating dose $=75 \mathrm{~mm} /$ pass
5. Determine the distributor speed using Eq. (9-1).
a. For normal operation:

$$
\begin{aligned}
& \mathrm{n}=\frac{(1+\mathrm{R}) \mathrm{q}(1000 \mathrm{~mm} / \mathrm{min})}{\left(\mathrm{N}_{\mathrm{A}}\right)(\mathrm{DR})(60 \mathrm{~min} / \mathrm{h})}, \text { where } \mathrm{q}=\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h} \\
& \mathrm{q}=\left(0.392 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)\left(\frac{3600 \mathrm{~s}}{\mathrm{~h}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)=1.4 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h} \\
& \mathrm{R}=1.0 \\
& \mathrm{n}=\frac{(1+1)(1.4)(1000)}{(2)(75)(60)}=0.31 \mathrm{rev} / \mathrm{min}(\text { (i.e. } 3.2 \mathrm{~min} / \mathrm{rev})
\end{aligned}
$$

b. For flushing operation:

$$
\mathrm{n}=\frac{(1+1)(1.4)(1000)}{(2)(150)(60)}=0.16 \mathrm{rev} / \mathrm{min}(\text { i.e. } 6.25 \mathrm{~min} / \mathrm{rev})
$$

For 4.0 m packing depth

1. Determine k_{20} for the design conditions and a packing depth of 4.0 m using Eq. (9-20)
a. From Table 9-6, $\mathrm{k}=0.210(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$
b. For a 4.0 m tower

$$
\begin{aligned}
& k_{2}=k_{1}\left(\frac{D_{1}}{D_{2}}\right)^{0.5}\left(\frac{S_{1}}{S_{2}}\right)^{0.5} \\
& =0.210\left(\frac{6.1}{4.0}\right)^{0.5}\left(\frac{150}{125}\right)^{0.5}=0.284(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}
\end{aligned}
$$

c. Correct k_{2} for temperature effect using Eq. (9-16)

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{\mathrm{T}-20} \\
& \mathrm{k}_{14}=0.284(1.035)^{14-20}=0.231
\end{aligned}
$$

2. Determine the hydraulic loading rate and the filter area, volume, and diameter
a. Using Eq. (9-19) with $\mathrm{k}_{\mathrm{T}}=\left(\mathrm{kA}_{\mathrm{s}}\right) \theta^{\mathrm{T}-20}=0.231(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$ determine the hydraulic loading rate

$$
S_{e}=\frac{S_{0}}{(R+1) \exp \left\{\frac{k_{T} D}{[q(R+1)]^{n}}\right\}-R}
$$

Rearrange to get following:

$$
\begin{aligned}
& {[q(1+R)]=\left\{\frac{k_{T} D}{\ln \left[\frac{S_{0}+R S_{e}}{S_{e}(1+R)}\right]}\right\}^{1 / n}} \\
& {[q(1+1)]=\left\{\frac{\left(0.231 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)(4.0 \mathrm{~m})}{\ln \left[\frac{\left(125 \mathrm{~g} / \mathrm{m}^{3}\right)+(1)\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)(1+1)}\right]}\right\}^{2}} \\
& q=0.257 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

b. Determine the tower area

$$
Q=15,140 \mathrm{~m}^{3} / \mathrm{d}=175.2 \mathrm{~L} / \mathrm{s}
$$

Filter area $=Q / q=175.2 / 0.257=681.7 \mathrm{~m}^{2}$
c. Determine the packing volume

Packing volume $=\left(681.7 \mathrm{~m}^{2}\right)(4.0 \mathrm{~m})=2727 \mathrm{~m}^{3}$
d. Determine the tower diameter

Area/tower $=681.7 \mathrm{~m}^{2} / 2=340.9 \mathrm{~m}^{2}$
Diameter $=20.8 \mathrm{~m}$ each
Two towers each with a diameter of 21 m
3. Determine volumetric BOD loading rate.

BOD loading $=$ Q So $/ V$

$$
\begin{aligned}
& =\frac{\left(15,140 \mathrm{~m}^{3} / \mathrm{d}\right)\left(125 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{2727 \mathrm{~m}^{3}} \\
& =0.69 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}
\end{aligned}
$$

The following table compares the two designs. For the same treatment removal efficiency the two systems have similar packing volume. At the greater depth a smaller diameter trickling filter with a high hydraulic loading rate is used

Comparison of design at two packing depths.

		Value	
Parameter	Unit	Design 1	Design 2
Packing depth	m	6.1	4.0
Packing volume	m^{3}	2726	2727
Hydraulic loading rate	$\mathrm{L} / \mathrm{m}^{2} \cdot \mathrm{~s}$	0.392	0.257
Volumetric BOD loading	$\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{~d}$	0.69	0.69

PROBLEM 9-4

Problem Statement - see text, page 1047

Solution (for test data collected at $12^{\circ} \mathrm{C}$)

1. Determine the treatability coefficient in Eq. (9-15) by the least squares approach as summarized in the table below. The value for k is determined using Excel Solver function which selects a k that minimizes the sum of the square of the error between the observed $\mathrm{S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{i}}$ and the calculated $\mathrm{S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{i}}$ using the selected k value in Eq. (9-15).
$\frac{S_{e}}{S_{i}}=\exp \left(\frac{-k D}{q^{n}}\right)$
The values for D and n are given.
$\mathrm{D}=6.1 \mathrm{~m} \quad \mathrm{n}=0.5$

Example calculation for the first data point ($6 \mathrm{~m}^{3} / \mathrm{d}, 88 \%$ BOD removal) using the k value determined by least squares method shown in the table below:

At 88% removal $S_{e} / S_{i}=[1.0-(88 / 100)]=0.12$
Calculated $\mathrm{S}_{\mathrm{e}} / \mathrm{S}_{\mathrm{i}}$ using solution k value and flowrate
$\mathrm{q}=\mathrm{Q} / \mathrm{A}$, where $\mathrm{Q}=6 \mathrm{~m}^{3} / \mathrm{d}$ and $\mathrm{A}=\pi \mathrm{D}^{2} / 4=(\pi / 4)\left(1^{2}\right)=0.785 \mathrm{~m}^{2}$
$\mathrm{q}=6 \mathrm{~m}^{3} / \mathrm{d} / 0.785 \mathrm{~m}^{2}=7.64 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}=0.0885 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
$\frac{S_{e}}{S_{i}}=\exp \left[\frac{-0.103(6.1)}{0.0885^{0.5}}\right]=0.12$

Flowrate, $\mathrm{m}^{3} / \mathrm{d}$	q $\mathrm{L} / \mathrm{m}^{2} \cdot \mathrm{~s}$	Removal eff., \%	Observed $\mathrm{Se} / \mathrm{Si}$	Predicted $\mathrm{Se} / \mathrm{Si}$	error	error 2
6	0.0885	88	0.12	0.12	0.00	0.000001
12	0.1769	82	0.18	0.22	-0.04	0.002013
18	0.2654	67	0.33	0.30	0.03	0.001176
24	0.3539	63	0.37	0.35	0.02	0.000478
48	0.7077	54	0.46	0.47	-0.01	0.000202

For least squares solution using solver $\mathrm{k}=0.103(\mathrm{~L} / \mathrm{s})^{0.5} \mathrm{~m}^{2}$ for the test temperature of $12^{\circ} \mathrm{C}$.
2. Compute k_{20} using Eq. (9-16) and the k_{12} value determined above.

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{(\mathrm{T}-20)} \\
& 0.103=\mathrm{k}_{20}(1.035)^{(12-20)} \\
& \mathrm{k}_{20}=0.136(\mathrm{~L} / \mathrm{s})^{0.5} \mathrm{~m}^{2}
\end{aligned}
$$

3. If the data collection was at 18 or $24^{\circ} \mathrm{C}$, the k_{20} values are 0.110 and 0.09 (L/s) $0.5 \mathrm{~m}^{2}$ respectively.

PROBLEM 9-5

Problem Statement - see text, page 1047
Instructors Note: For this problem, an effluent BOD of $20 \mathrm{mg} / \mathrm{L}$ is used. Sizing of the clarifiers and tower trickling filters is based on two units each.

Solution

1. Determine primary clarifier diameter for wastewater \#1.

From Table 5-19 in Chap. 5 (page 394), use an overflow rate (OR) at average flow of $40 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$.

Clarifier surface area $=Q / O R=\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right) /\left(40 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)=250 \mathrm{~m}^{2}$
Use two clarifiers, $A=250 \mathrm{~m}^{2} / 2=125 \mathrm{~m}^{2}$ each
$D=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(125)}{\pi}}=12.6 \mathrm{~m}$
Use two 13 m diameter clarifiers.
2. Determine k_{20} for the design conditions using Eq. (9-20).
a. From Table 9-6, $\mathrm{k}=0.210(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$
b. Influent to tower $S_{i}=(270 \mathrm{mg} / \mathrm{L})(0.7)=189 \mathrm{mg} / \mathrm{L}$
c. For 6.1 m tower

$$
\begin{aligned}
k_{2} & =k_{1}\left(\frac{D_{1}}{D_{2}}\right)^{0.5}\left(\frac{S_{1}}{S_{2}}\right)^{0.5} \\
& =0.210\left(\frac{6.1}{6.1}\right)^{0.5}\left(\frac{150}{189}\right)^{0.5}=0.187(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}
\end{aligned}
$$

d. Correct k_{2} for temperature effect using Eq. (9-20)

$$
\begin{aligned}
& k_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{\mathrm{T}-20} \\
& \mathrm{k}_{15}=0.187(1.035)^{15-20}=0.157
\end{aligned}
$$

3. Solve for the hydraulic application rate and calculate area and volume using Eq. (9-15)
$\frac{S_{e}}{S_{i}}=\exp \left(\frac{-k D}{q^{n}}\right)$
$q=\left\{k D /\left[\ln \left(S_{i} / S_{e}\right)\right]\right\}^{1 / n}$
$q=[0.157(6.1) / \ln (189 / 20)]^{2}$
$\mathrm{q}=0.1818 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
$Q=10,000 \mathrm{~m}^{3} / \mathrm{d}=\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})(1 \mathrm{~h} / 3600 \mathrm{~s})=115.7 \mathrm{~L} / \mathrm{s}$
Filter tower area $=\mathrm{Q} / \mathrm{q}=(115.7 \mathrm{~L} / \mathrm{s}) /\left(0.1818 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)=636.4 \mathrm{~m}^{2}$
Packing volume $=\left(636.4 \mathrm{~m}^{2}\right)(6.1 \mathrm{~m})=3882 \mathrm{~m}^{3}$
Tower diameter, use two towers

$$
\begin{aligned}
& \text { Area/tower }=636.4 \mathrm{~m}^{2} / 2=318.2 \mathrm{~m}^{2} \\
& \text { Diameter }=20.1 \mathrm{~m} \text { each }
\end{aligned}
$$

Two towers each with a diameter of 20 m
4. Recirculation rate

Minimum wetting rate required $=0.5 \mathrm{~L} / \mathrm{m}^{2}$.s

$$
\begin{aligned}
& \mathrm{q}+\mathrm{q}_{\mathrm{r}}=0.5 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& \mathrm{q}=0.1818 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \quad \text { (round to } 0.2 \text {) } \\
& \mathrm{q}_{\mathrm{r}}=0.5-0.2=0.3 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& \mathrm{R}=\mathrm{q}_{\mathrm{r}} / \mathrm{q}=0.3 / 0.2=1.5
\end{aligned}
$$

5. Total pumping rate
$q+q_{r}=0.5 \mathrm{~L} / \mathrm{m}^{2} . \mathrm{s}$
Total pumping rate $=\left(0.5 \mathrm{~L} / \mathrm{m}^{2} . \mathrm{s}\right)\left(636.4 \mathrm{~m}^{2}\right)=318 \mathrm{~L} / \mathrm{s}$
Total pumping rate $=(318 \mathrm{~L} / \mathrm{s})(60 \mathrm{~s} / \mathrm{min})(60 \mathrm{~min} / \mathrm{h})\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)=1145 \mathrm{~m}^{3} / \mathrm{h}$
6. Determine flushing and normal dose rate using the data given in Table 9-3.

BOD loading $=$ Q So $/ V$

$$
\begin{aligned}
& =\frac{\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(189 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{3882 \mathrm{~m}^{3}} \\
& =0.49 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}
\end{aligned}
$$

From Table 9-3, the estimated flushing and operation dose rates are:
Flushing dose $=120 \mathrm{~mm} /$ pass
Operating dose $=90 \mathrm{~mm} /$ pass
7. Determine diameter of secondary clarifier

From Fig. 9-12, select a 4 m sidewater depth clarifier with an overflow rate at average flow of $1.1 \mathrm{~m} / \mathrm{h}\left(\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)$

Clarifier surface area $=Q / O R=\left(10,000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h}) /\left(1.1 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)$

$$
=379 \mathrm{~m}^{2}
$$

Use two clarifiers, $A=379 \mathrm{~m}^{2} / 2=189.5 \mathrm{~m}^{2}$ each
$D=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(189.5)}{\pi}}=15.5 \mathrm{~m}$
Use two 16 m diameter clarifiers.

PROBLEM 9-6

Problem Statement - see text, page 1047-1048
Solution (Use the NRC equation for rock trickling filters that can be found in the $4^{\text {th }}$ edition of the Metcalf and Eddy Wastewater Engineering textbook or other references)

1. Compute BOD loading to filters for wastewater \#1.
$B O D=220 \mathrm{mg} / \mathrm{L} \times 0.65=143 \mathrm{mg} / \mathrm{L}$
2. Compute E_{1} and E_{2}.

Overall efficiency $=\frac{[(143-20) \mathrm{mg} / \mathrm{L}]}{(143 \mathrm{mg} / \mathrm{L})}(100)=86.0 \%$
$E_{1}+E_{2}\left(1-E_{1}\right)=0.86$
Assume $E_{1}=E_{2}$,
$2 E_{1}-E_{1}{ }^{2}=1-\left(1-E_{1}\right)^{2}=0.86$
$\mathrm{E}_{1}=\mathrm{E}_{2}=0.626=62.6 \%$
3. Compute the recirculation factor using Eq. (9-12), $4^{\text {th }}$ edition.

Use $R=2$.
$F=\frac{1+R}{(1+R / 10)^{2}}=\frac{1+2}{(1.2)^{2}}=2.08$
4. Compute the BOD loading for the first filter.

$$
\mathrm{W}_{1}=\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(143 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=715 \mathrm{~kg} \mathrm{BOD} / \mathrm{d}
$$

5. Compute the volume for the first stage using Eq. $(9-11), 4^{\text {th }}$ edition.
$E_{1}=\frac{100}{1+0.04432 \sqrt{\frac{W_{1}}{V F}}}$
$62.6=\frac{100}{1+0.4432 \sqrt{\frac{715}{V(2.08)}}}$
$V=189 \mathrm{~m}^{3}$
6. Compute the diameter of the first filter.
$A=\frac{V}{D}=\frac{189 \mathrm{~m}^{3}}{1.5 \mathrm{~m}}=126.1 \mathrm{~m}^{2}$
$\mathrm{D}=12.7 \mathrm{~m}$
7. Compute the BOD loading for the second-stage filter.
$\mathrm{W}_{2}=\left(1-\mathrm{E}_{1}\right) \mathrm{W}_{1}=0.374(715 \mathrm{~kg} \mathrm{BOD} / \mathrm{d})=267 \mathrm{~kg} \mathrm{BOD} / \mathrm{d}$
8. Compute the packing volume of the second-stage filter using Eq. (9-13), $4^{\text {th }}$ edition.
$E_{2}=\frac{100}{1+\frac{0.4432}{1-E_{1}} \sqrt{\frac{W_{2}}{V F}}}$
$62.6=\frac{100}{1+\frac{0.4432}{1-0.626} \sqrt{\frac{267}{\mathrm{~V}(2.08)}}}$
$\mathrm{V}=505 \mathrm{~m}^{3}$
9. Compute the diameter of the second filter.
$A=\frac{V}{D}=\frac{505 \mathrm{~m}^{3}}{1.5 \mathrm{~m}}=336.6 \mathrm{~m}^{2}$
$\mathrm{D}=20.7 \mathrm{~m}$

PROBLEM 9-7

Problem Statement - see text, page 1048

Solution

1. Compute the required oxygen supply using Eq. (9-4) for wastewater with a primary effluent BOD concentration of $100 \mathrm{mg} / \mathrm{L}$.
$R_{0}=(20 \mathrm{~kg} / \mathrm{kg})\left(0.80 \mathrm{e}^{-9 \mathrm{~L}_{\mathrm{B}}}+1.2 \mathrm{e}^{-0.17 \mathrm{~L}_{\mathrm{B}}}\right)(\mathrm{PF})$
a. Summarize data input to equation

BOD to filter $=\left(7600 \mathrm{~m}^{3} / \mathrm{d}\right)\left(100 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=760 \mathrm{~kg} / \mathrm{d}$
Volume of filter $=(\pi / 4)(18 \mathrm{~m})^{2}(6.1 \mathrm{~m})=1552.3 \mathrm{~m}^{3}$
$\mathrm{L}_{\mathrm{B}}=(760 \mathrm{~kg} / \mathrm{d}) / 1552.3 \mathrm{~m}^{3}=0.490 \mathrm{~kg} \mathrm{BOD} / \mathrm{m}^{3} \cdot \mathrm{~d}$
$P F=1.5$
b. Compute R_{o}

$$
\begin{aligned}
\mathrm{R}_{\mathrm{o}} & =(20 \mathrm{~kg} / \mathrm{kg})\left(0.80 \mathrm{e}^{-9(0.490)}+1.2 \mathrm{e}^{-0.17(0.490)}\right)(1.5) \\
& =33.41 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \mathrm{BOD} \text { applied }
\end{aligned}
$$

c. Compute oxygen supplied in kg / h.

$$
\begin{aligned}
\mathrm{O}_{2} \text { supplied } & =\left(33.41 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \mathrm{BOD}\right)(760 \mathrm{~kg} \mathrm{BOD} / \mathrm{d})(1 \mathrm{~d} / 24 \mathrm{~h}) \\
& =1058 \mathrm{~kg} / \mathrm{h}
\end{aligned}
$$

2. Determine the airflow rate at warmest temperature $\left(23^{\circ} \mathrm{C}\right)$.
a. Compute airflow at $20^{\circ} \mathrm{C}$ using Eq. (9-6).

$$
\begin{aligned}
\mathrm{AR}_{20} & =\frac{\left(\mathrm{R}_{0}\right)(\mathrm{Q})\left(\mathrm{S}_{0}\right)\left(3.58 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{O}_{2}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)(1440 \mathrm{~min} / \mathrm{d})} \\
\mathrm{AR}_{20} & =\frac{(33.41 \mathrm{~kg} / \mathrm{kg})\left(7600 \mathrm{~m}^{3} / \mathrm{d}\right)\left(100 \mathrm{~g} / \mathrm{m}^{3}\right)\left(3.58 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{O}_{2}\right)}{\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)(1440 \mathrm{~min} / \mathrm{d})} \\
& =63.1 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

b. Compute airflow at $23^{\circ} \mathrm{C}$ assuming the treatment plant is located near sea level using Eq. (9-7).

$$
\begin{aligned}
& A R_{\mathrm{T}}=A R_{20}\left(\frac{273.15+\mathrm{T}_{\mathrm{A}}}{273.15}\right)\left(\frac{760}{\mathrm{P}_{\mathrm{o}}}\right) \\
& \mathrm{AR}_{\mathrm{T}}=63.1\left(\frac{273.15+23}{273.15}\right)\left(\frac{760}{760}\right)=68.4 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

c. Correct airflow for temperature above $20^{\circ} \mathrm{C}$ using Eq. (9-8).

$$
\begin{aligned}
& \mathrm{AR}_{\mathrm{T},>20}=\mathrm{AR}_{\mathrm{T}}\left(1+\frac{\mathrm{T}_{\mathrm{A}}-20}{100}\right) \\
& \mathrm{AR}_{\mathrm{T},>20}=68.4\left(1+\frac{23-20}{100}\right)=70.5 \mathrm{~m}^{3} / \mathrm{min}
\end{aligned}
$$

2. Compute airflow pressure drop across packing.
a. Compute tower resistance term N_{p} using Eq. (9-10).

$$
N_{p}=10.33(D) e^{\left(1.36 \times 10^{-5}\right)(L / A)}
$$

From Table C-1 in Appendix C, density of water at $18{ }^{\circ} \mathrm{C}=998.6 \mathrm{~kg} / \mathrm{m}^{3}$ $\mathrm{L}=\left(7600 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h})\left(998.6 \mathrm{~kg} / \mathrm{m}^{3}\right)=\left(316.7 \mathrm{~m}^{3} / \mathrm{h}\right)\left(998.6 \mathrm{~kg} / \mathrm{m}^{3}\right)$ $=316,223 \mathrm{~kg} / \mathrm{h}$

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi \mathrm{D}^{2}}{4}=\frac{\pi(18)^{2}}{4}=254 \mathrm{~m}^{2} \\
& \mathrm{~N}_{\mathrm{p}}=10.33(6.1) \mathrm{e}^{\left(1.36 \times 10^{-5}\right)(316,223 / 254)}=64.1
\end{aligned}
$$

b. Compute the pressure drop through the packing using Eq. (9-9).

$$
\Delta P=N_{p}\left(\frac{v^{2}}{2 g}\right)
$$

$\mathrm{v}=$ airflow rate/filter area $=\left(70.5 \mathrm{~m}^{3} / \mathrm{min}\right)(1 \mathrm{~min} / 60 \mathrm{~s}) / 254 \mathrm{~m}^{2}$
$=0.005 \mathrm{~m} / \mathrm{s}$

$$
\Delta \mathrm{P}=64.1\left[\frac{(0.005 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\right]=8.16 \times 10^{-5} \mathrm{~m}
$$

c. Compute total pressure drop through filter

$$
\begin{aligned}
\Delta \mathrm{P}_{\mathrm{T}} & =8.16 \times 10^{-5} \mathrm{~m}+1.5\left(\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}\right) \\
\Delta \mathrm{P}_{\mathrm{T}} & =8.16 \times 10^{-5} \mathrm{~m}+1.5\left[\frac{(0.005 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\right] \\
& =\left(8.16 \times 10^{-5}+0.18 \times 10^{-5}\right) \mathrm{m}=8.34 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

PROBLEM 9-8

Problem Statement - see text, page 1048

Solution

1. Compute the BOD loading for a wastewater with a concentration of 150 mg / L.

BOD loading $=\left(11,200 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=1680 \mathrm{~kg} / \mathrm{d}$
Surface area of filter $=A=2\left(\frac{\pi D^{2}}{4}\right)=2\left[\frac{\pi(20)^{2}}{4}\right]=628 \mathrm{~m}^{2}$
BOD surface loading $=(1680 \mathrm{~kg} / \mathrm{d}) / 628 \mathrm{~m}^{2}=2.68 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~d}$
2. Determine the nitrogen removal efficiency by estimating the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration using Eq. (9-23).
$\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{e}}=20.81\left(\mathrm{BOD}_{\mathrm{L}}\right)^{1.03}\left(\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{L}}\right)^{1.52}(\mathrm{Iv})^{-0.36}(\mathrm{~T})^{-0.12}$
a. Determine the media surface area.

Media volume $=A(D)$

$$
=\left(628 \mathrm{~m}^{2}\right)(6.1 \mathrm{~m})=3830.8 \mathrm{~m}^{3}
$$

Surface area $=\left(3830.8 \mathrm{~m}^{3}\right)\left(100 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)=383.080 \mathrm{~m}^{2}$
b. Determine specific loading rates for Eq. (9-23) terms.

$$
\begin{aligned}
& \mathrm{BOD}_{\mathrm{L}}=\frac{\left(11,200 \mathrm{~m}^{3} / \mathrm{d}\right)\left(150 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}\right)}{383,080 \mathrm{~m}^{2}}=4.386 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{2} \cdot \mathrm{~d} \\
& \mathrm{NH}_{4}-\mathrm{N}_{\mathrm{L}}=\frac{\left(11,200 \mathrm{~m}^{3} / \mathrm{d}\right)\left(24 \mathrm{~g} \mathrm{TKN} / \mathrm{m}^{3}\right)}{383,080 \mathrm{~m}^{2}}=0.70 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d} \\
& \mathrm{Iv}=\frac{\left(11,200 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)}{383,080 \mathrm{~m}^{2}}=29.2 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~d}
\end{aligned}
$$

c. Determine the effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration and removal efficiency.

$$
\begin{aligned}
& \mathrm{NH}_{4}-\mathrm{N}_{\mathrm{e}}=20.81(4.386)^{1.03}(0.70)^{1.52}(29.2)^{-0.36}(18)^{-0.12}=11.6 \mathrm{mg} / \mathrm{L} \\
& \text { Nitrogen removal efficiency }=\frac{(100)[(24-11.6) \mathrm{mg} / \mathrm{L}]}{(24 \mathrm{mg} / \mathrm{L})} \\
& =51.7 \%
\end{aligned}
$$

PROBLEM 9-9

Problem Statement - see text, page 1048

Solution

Design input from Example 8-3.
Flow $=22,700 \mathrm{~m}^{3} / \mathrm{d}$
$B O D=140 \mathrm{mg} / \mathrm{L}$
TKN $=35 \mathrm{mg} / \mathrm{L}$
Temperature $=12^{\circ} \mathrm{C}$

A. BOD Removal

1. Determine the trickling filter hydraulic loading rate and the area and volume needed using Eq. (9-19).

$$
S_{e}=\frac{S_{0}}{(R+1) \exp \left\{\frac{k_{T} D}{[q(R+1)]^{n}}\right\}-R}
$$

a. Determine K_{T},

From Table 9-6, $\mathrm{k}=0.210(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$ at $20^{\circ} \mathrm{C}$. [Note: $\mathrm{k}=\mathrm{kA}$ in Eq. (919)]

Trickling filter depth $=6.1 \mathrm{~m}$

$$
=0.210\left(\frac{6.1}{6.1}\right)^{0.5}\left(\frac{150}{140}\right)^{0.5}=0.217(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}
$$

b. Correct k_{2} for temperature effect using Eq. (9-16)
i. $\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{\mathrm{T}-20}$
ii. $\mathrm{k}_{12}=0.217(1.035)^{12-20}=0.165(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$

Rearrange Eq. (9-19) to solve for q.

$$
\begin{aligned}
& {[q(1+R)]=\left\{\frac{k_{T} D}{\ln \left[\frac{S_{0}+R S_{e}}{S_{e}(1+R)}\right]}\right\}^{1 / n}} \\
& {[q(1+0.5)]=\left\{\frac{\left(0.165 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)(6.1 \mathrm{~m})}{\ln \left[\frac{\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)+(0.5)\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)(1+0.5)}\right]}\right\}^{2}} \\
& q=0.343 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{aligned}
$$

c. Determine the tower area

$$
\mathrm{Q}=22,700 \mathrm{~m}^{3} / \mathrm{d}=262.7 \mathrm{~L} / \mathrm{s}
$$

Filter area $=Q / q=262.7 / 0.343=765.9 \mathrm{~m}^{2}$
d. Determine the packing volume

Packing volume $=\left(765.9 \mathrm{~m}^{2}\right)(6.1 \mathrm{~m})=4672 \mathrm{~m}^{3}$
e. Determine the tower diameter

Area/tower $=765.9 \mathrm{~m}^{2} / 2=383 \mathrm{~m}^{2}$
Diameter $=22 \mathrm{~m}$ each
2. Determine the pumping rate and pumping energy needed.
$Q p=(1+R) Q=(1+0.5)\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)=34,050 \mathrm{~m}^{3} / \mathrm{d}$
Pumping energy $=$
$\frac{1.58 \mathrm{~kW}}{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)}\left(34,050 \mathrm{~m}^{3} / \mathrm{d}\right)=53.8 \mathrm{~kW}$
$\mathrm{kWh} / \mathrm{d}=(24 \mathrm{~h} / \mathrm{d}) 53.8 \mathrm{~kW}=1291.2 \mathrm{kWh} / \mathrm{d}$
$\mathrm{kWh} / \mathrm{mo}=(1291.2 \mathrm{kWh} / \mathrm{d})(30 \mathrm{~d} / \mathrm{mo})=38,736 \mathrm{kWh} / \mathrm{mo}$
3. Determine the trickling filter clarifier area.

From Fig. 9-12, select a 4 m sidewater depth clarifier with an overflow rate at average flow of $1.1 \mathrm{~m} / \mathrm{h}\left(\mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)$
Clarifier surface area $=Q / O R=\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 24 \mathrm{~h}) / 1.1 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h}$

$$
=860 \mathrm{~m}^{2}
$$

Use two clarifiers, $A=860 \mathrm{~m}^{2} / 2=430 \mathrm{~m}^{2}$ each
$D=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(430)}{\pi}}=23.4 \mathrm{~m}$

B. Combined BOD removal and nitrification

1. Determine the trickling filter area using Eq. (9-23)
$\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{e}}=20.81\left(\mathrm{BOD}_{\mathrm{L}}\right)^{1.03}\left(\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{L}}\right)^{1.52}(\mathrm{lv})^{-0.36}(\mathrm{~T})^{-0.12}$
$\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{e}}=1.0 \mathrm{mg} / \mathrm{L}$
$\mathrm{BOD}_{\mathrm{L}}\left(\frac{\mathrm{gBOD}}{\mathrm{m}^{2} \cdot \mathrm{~d}}\right)=\left[\frac{\mathrm{Q}\left(\mathrm{S}_{\mathrm{o}}\right)}{\mathrm{V}(\mathrm{a})}\right]$
where,
$\mathrm{V}=$ trickling filter volume $=(\mathrm{A})(\mathrm{d})=\mathrm{A}(6.1 \mathrm{~m})$
$\mathrm{a}=$ specific area of media $=100 \mathrm{~m}^{2} / \mathrm{m}^{3}$
$\mathrm{BOD}_{\mathrm{L}}=\frac{\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)}{\mathrm{A}(6.1 \mathrm{~m})\left(100 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=\frac{5209.8}{\mathrm{~A}}$
$\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{L}}\left(\frac{\mathrm{g} \mathrm{N}}{\mathrm{m}^{2} \cdot \mathrm{~d}}\right)=\left[\frac{\mathrm{Q}(\mathrm{N})}{\mathrm{V}(\mathrm{a})}\right]$
where,
$\mathrm{N}=(35-8) \mathrm{g} / \mathrm{m}^{3}=27 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{NH}_{4}-\mathrm{N}_{\mathrm{L}}=\frac{\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(27 \mathrm{~g} / \mathrm{m}^{3}\right)}{\mathrm{A}(6.1 \mathrm{~m})\left(100 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=\frac{1004.8}{\mathrm{~A}}$
$\operatorname{Iv}\left(\frac{L}{m^{2} \cdot d}\right)=\frac{Q}{V(a)}=\frac{\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)}{A(6.1 \mathrm{~m})\left(100 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=\frac{37,213.1}{A}$
$1.0=20.81\left(\frac{5209.8}{\mathrm{~A}}\right)^{1.03}\left(\frac{1004.8}{\mathrm{~A}}\right)^{1.52}\left(\frac{37,213.1}{\mathrm{~A}}\right)^{-0.36}(12)^{-0.12}$
$\mathrm{A}=4198 \mathrm{~m}^{2}$
Area $=4198 \mathrm{~m}^{2}$
Assume 4 filter, $\pi D^{2 / 4}=$ Area
Diameter for each filter $=\sqrt{\frac{4(\mathrm{~A})}{\pi}}$

$$
\begin{aligned}
& =\sqrt{\frac{4(4198 / 4)}{\pi}} \\
& =36.6 \mathrm{~m}
\end{aligned}
$$

Media volume $=4198 \mathrm{~m}^{2}(6.1 \mathrm{~m})=25,608 \mathrm{~m}^{3}$
2. Determine the pumping rate and pumping energy needed.
a. Determine the hydraulic application rate based on the effluent flow.

$$
\left.\begin{array}{l}
\begin{array}{rl}
\mathrm{G} & =\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)(\mathrm{d} / 24 \mathrm{~h})(\mathrm{h} / 3600 \mathrm{~s})\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)}{4198 \mathrm{~m}^{2}} \\
& =0.063 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}
\end{array} \\
\text { Minimum } \mathrm{q}=0.50 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
\text { Recycle rate }=(0.50-0.063) \mathrm{L} / \mathrm{m}^{2} \cdot \mathrm{~s}=0.437 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
\text { Recycle ratio }=\frac{0.437}{0.063}=6.9
\end{array}\right\}
$$

b. Determine the pumping energy.

Pumping energy =
$\frac{1.58 \mathrm{~kW}}{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)}\left(179,330 \mathrm{~m}^{3} / \mathrm{d}\right)=283.3 \mathrm{~kW}$
$\mathrm{kWh} / \mathrm{d}=(24 \mathrm{~h} / \mathrm{d}) 283.3 \mathrm{~kW}=6800 \mathrm{kWh} / \mathrm{d}$
$\mathrm{kWh} / \mathrm{mo}=(6800 \mathrm{kWh} / \mathrm{d})(30 \mathrm{~d} / \mathrm{mo})=204,000 \mathrm{kWh} / \mathrm{mo}$
3. The trickling filter clarifier area is the same as in the BOD removal only application as shown in Step A3 above.

Area $=860 \mathrm{~m}^{2}$
$B O D$ removal only and BOD and nitrification design information is found in Example 8-3. These results are included in the summary comparison tables below.

Summary Table (BOD removal only)

Parameter	Unit	Trickling filter	Activated sludge
Aeration volume	m^{3}		4446
Aeration depth	m		5.0
Media volume	m^{3}	4672	
Media deph	m	6.1	
Aerobic tank area	m^{2}		889
Trickling filter area	m^{2}	766	
Clarifier area	m^{2}	860	946
Total area	m^{2}	1626	1835
Pumping rate	$\mathrm{m}^{3} / \mathrm{d}$	34,050	
Pumping energy	$\mathrm{kW} / 10^{3} \mathrm{~m}^{3} / \mathrm{d}$	1.5	
Air supply rate	$\mathrm{m} 3 / \mathrm{min}^{3}$		60.5
Aeration energy	$\mathrm{kW} / \mathrm{m}^{3} \cdot \mathrm{~min}$		1.8
Monthly energy	$\mathrm{kWh} / \mathrm{mo}$	38,736	78,408

Note: Activated sludge monthly energy $=(60.5)(1.8)(24)(30)=78,408 \mathrm{kWh}$.

Summary Table (combined BOD and nitrification)

Parameter	Unit	Trickling filter	Activated sludge
Aeration volume	m^{3}		13,418
Aeration depth	m		5.0
Media volume	m^{3}	25,608	
Media deph	m	6.1	
Aerobic tank area	m^{2}		2684
Trickling filter area	m^{2}	4198	
Clarifier area	m^{2}	860	946
Total area	m^{2}	5058	3630
Pumping rate	$\mathrm{m}^{3} / \mathrm{d}$	179,330	
Pumping energy	$\mathrm{kW} / 10^{3} \mathrm{~m}^{3} / \mathrm{d}$	1.5	
Air supply rate	$\mathrm{m} 3 / \mathrm{min}$		115.5

Aeration energy	$\mathrm{kW} / \mathrm{m}^{3} \cdot \mathrm{~min}$	1.8	
Monthly energy	$\mathrm{kWh} / \mathrm{mo}$	204,000	149,700
Note: Activated sludge monthly energy $=(115.5)(1.8)(24)(30)=149,700 \mathrm{kWh}$			

PROBLEM 9-10

Problem Statement - see text, page 1048

Solution

1. The advantages and disadvantages of tower trickling filters with plastic packing as compared to activated sludge treatment are summarized in the following table (see also page 953-954).

Advantages	Disadvantages
Less energy required for treatment	Poorer effluent quality in terms of BOD and TSS concentrations
Simpler operation with no issues of mixed liquor inventory control and sludge wasting	Greater sensitivity to lower temperatures resulting in lower removals of BOD and TSS
No problems with sludge bulking in secondary clarifiers	Odor production especially in overloaded filters
Better sludge thickening properties	Pumping stations are usually required for filter feed and recirculation
Less equipment maintenance needs Better recovery from shock toxic loads	Solids sloughing needs to be controlled Not able to nitrify to as low an effluent ammonia- N concentration as with activated sludge
Less susceptible to upset caused by	Not compatible with biological nitrogen removal and enhanced biological phosphorus removal.

PROBLEM 9-11

Problem Statement - see text, page 1049

Solution (Influent flowrate is $37,000 \mathrm{~m}^{3} / \mathrm{d}$)

Input and Assumptions
$J_{\mathrm{N}, \max }$ value $=1.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}$
$J_{N, \max }$ value is decreased by $0.10 / \mathrm{m}$ after the $\mathrm{NH}_{4}-\mathrm{N}$ concentration decreased to $6.0 \mathrm{~g} / \mathrm{m}^{3}$ per Example 9-5.
$\mathrm{K}_{\mathrm{N}}=1.5 \mathrm{~g} / \mathrm{m}^{3}$

Temperature $>10^{\circ} \mathrm{C}$
Trickling filter diameter $=20 \mathrm{~m}$
Packing depth $=5 \mathrm{~m}$
Influent $\mathrm{NH}_{4}-\mathrm{N}=20 \mathrm{mg} / \mathrm{L}$

Solution with No Recycle:

(a) $\mathrm{R}=0$ and $\mathrm{q} \geq 1.0 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$

1. Determine the hydraulic application rate, q , in units of $\mathrm{m}^{3} / \mathrm{m}^{2} \cdot d$ for use in Eq. (9-29).

Trickling filter area $=\frac{\pi \mathrm{D}^{2}}{4}=\frac{\pi(20 \mathrm{~m})^{2}}{4}=117.83 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}=1.36 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
2. Solve for depth N in Eq. (9-29), where N_{o} is $20.0 \mathrm{~g} / \mathrm{m} 3$ and Z is 5.0 m .

Because no recirculation is used, the $\mathrm{NH}_{4}-\mathrm{N}$ concentration at the top of the tower is $20.0 \mathrm{~g} / \mathrm{m}^{3} . \mathrm{J}_{\mathrm{N}, \max }=1.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}$

$$
\begin{aligned}
& \left(N_{o}-N\right)+K_{N} \ln \left(\frac{N_{0}}{N}\right)=\frac{Z a J_{N, \max }}{q} \\
& {\left[(20.0-N) \mathrm{g} / \mathrm{m}^{3}\right]+\left(1.5 \mathrm{~g} / \mathrm{m}^{3}\right) \ln \left(\frac{20.0}{N}\right)=\frac{(5 \mathrm{~m})\left(138 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)\left(1.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}{\left(117.8 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}}
\end{aligned}
$$

$$
N=10.44 \mathrm{mg} / \mathrm{L}
$$

Solution with recycle

(b) $R=1.0$,

1. Determine the total hydraulic application rate.

$$
q=(1+R) 117.83 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot d=(2) 117.83 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}=235.7 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot d
$$

2. Determine the $\mathrm{NH}_{4}-\mathrm{N}$ concentration at the top of the tower due to influent dilution by the recycle using Eq. (9-30).
Assume effluent $\mathrm{NH}_{4}-\mathrm{N}=10.4 \mathrm{~g} / \mathrm{m}^{3}$.

$$
N_{o}=\frac{N_{\text {sec }}+R N}{1+R}=\frac{20.0 \mathrm{~g} / \mathrm{m}^{3}+(1.0)\left(10.4 \mathrm{~g} / \mathrm{m}^{3}\right)}{1.0+1.0}=15.2 \mathrm{~g} / \mathrm{m}^{3}
$$

3. Solve for N in Eq. (9-29), where N_{o} is $15.2 \mathrm{~g} / \mathrm{m}^{3}$ and Z is 5.0 m .

$$
\begin{aligned}
& {\left[(15.2-\mathrm{N}) \mathrm{g} / \mathrm{m}^{3}\right]+\left(1.5 \mathrm{~g} / \mathrm{m}^{3}\right) \ln \left(\frac{15.2}{\mathrm{~N}}\right)=\frac{(5 \mathrm{~m})\left(138 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)\left(1.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}{\left(235.7 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}} \\
& \mathrm{N}=10.49 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4. Repeat the above for $N=10.49 \mathrm{mg} / \mathrm{L}$.

$$
N_{o}=\frac{N_{\mathrm{sec}}+R N}{1+R}=\frac{\left(20.0 \mathrm{~g} / \mathrm{m}^{3}\right)+(1.0)\left(10.49 \mathrm{~g} / \mathrm{m}^{3}\right)}{1.0+1.0}=15.25 \mathrm{~g} / \mathrm{m}^{3}
$$

Solve for N in Eq. (9-29), where N_{o} is $15.25 \mathrm{~g} / \mathrm{m}^{3}$ and Z is 5.0 m .

$$
\left[(15.25-\mathrm{N}) \mathrm{g} / \mathrm{m}^{3}\right]+\left(1.5 \mathrm{~g} / \mathrm{m}^{3}\right) \ln \left(\frac{15.25}{\mathrm{~N}}\right)=\frac{(5 \mathrm{~m})\left(138 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)\left(1.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}{\left(235.7 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}
$$

$$
\mathrm{N}=10.53 \mathrm{mg} / \mathrm{L}
$$

5. Repeat the above and solve for N .

$$
\mathrm{N}=10.56 \mathrm{mg} / \mathrm{L}
$$

Comment

The system with recycle had a slightly higher effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration due to the lower $\mathrm{NH}_{4}-\mathrm{N}$ concentration at the top of the tower which resulted in a slightly lower nitrification rate.
6. No effluent suspended solids removal is necessary because the biomass yield from nitrification is small. With a synthesis yield of $0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{N}$ oxidized (Table 8-14), the VSS production for the removal of $10 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}-\mathrm{N}$ would be less than $2.0 \mathrm{mg} / \mathrm{L}$ with consideration for endogenous decay.

PROBLEM 9-12

Problem Statement - see text, page 1049

Solution - Part A, 40 percent BOD removal in trickling filter

1. Determine the trickling filter size for 40 percent BOD removal and a BOD of $400 \mathrm{mg} / \mathrm{L}\left(\mathrm{S}_{\mathrm{e}}=240 \mathrm{mg} / \mathrm{L}\right)$.
a. Correct the removal rate coefficient for temperature effect using Eq. (916).
$\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{(\mathrm{T}-20)}$
$\mathrm{k}_{12}=0.18(1.035)^{(12-20)}=0.137$
b. Normalize the removal rate coefficient for the design conditions using Eq. (9-20).

For a 6.1 m tower

$$
\begin{aligned}
& k_{12}=k_{1}\left(\frac{D_{1}}{D_{2}}\right)^{0.5}\left(\frac{S_{1}}{S_{2}}\right)^{0.5} \\
& =0.137\left(\frac{6.1}{6.1}\right)^{0.5}\left(\frac{150}{400}\right)^{0.5}=0.0839(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}
\end{aligned}
$$

c. Solve for the hydraulic application rate and calculate area and volume of each tower using Eq. (9-15).

$$
\begin{aligned}
& \frac{S_{e}}{S_{i}}=\exp \left(\frac{-k D}{q^{n}}\right) \\
& q=\left\{k D /\left[\ln \left(S_{i} / S_{e}\right)\right]\right\}^{1 / n} \\
& q=[0.0839(6.1) / \ln (400 / 240)]^{2}=1.004 \\
& q=1.004 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& Q=8000 \mathrm{~m}^{3} / \mathrm{d}=\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)(1 \mathrm{~d} / 86400 \mathrm{~s})=92.6 \mathrm{~L} / \mathrm{s}
\end{aligned}
$$

Filter area $=\mathrm{Q} / \mathrm{q}=(92.6 \mathrm{~L} / \mathrm{s}) /\left(1.004 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)=92.2 \mathrm{~m}^{2}$
Packing volume $=\left(92.2 \mathrm{~m}^{2}\right)(6.1 \mathrm{~m})=562.4 \mathrm{~m}^{3}$
Tower diameter

$$
\text { Area/tower }=92.2 \mathrm{~m}^{2} / 2=46.1 \mathrm{~m}^{2}
$$

$$
\mathrm{D}=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(46.1)}{\pi}}=7.7 \mathrm{~m}
$$

Use two towers each with a diameter of 8 m
2. Determine the amount of soluble BOD in the effluent from the trickling filter.
$\mathrm{sBOD}=0.5(\mathrm{BOD})=0.5(240 \mathrm{mg} / \mathrm{L})=120 \mathrm{mg} / \mathrm{L}$
3. Determine the oxygen demand satisfied in the trickling filter.
a. Determine the organic loading rate using a modified version of Eq. (769) in Chap. 7 (page 607).

$$
\begin{aligned}
\mathrm{L}_{\text {org }} & =\frac{\mathrm{q} \mathrm{~S}_{\mathrm{i}}}{\mathrm{D}\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)} \\
\mathrm{L}_{\text {org }} & =\frac{\left(1.004 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)(86400 \mathrm{~s} / 1 \mathrm{~d})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)}{(6.1 \mathrm{~m})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)} \\
& =5.69 \mathrm{~kg} \mathrm{BOD} / \mathrm{m}^{3} \cdot \mathrm{~d}
\end{aligned}
$$

b. Determine the SRT from Fig. 9-15.

$$
\text { SRT }=1.25 \mathrm{~d}
$$

c. Determine biomass produced using Eq. (7-42).

$$
\begin{aligned}
& X=\frac{Y\left(S_{0}-S\right)}{1+\mathrm{b}(\text { SRT })} \\
& X_{\text {TF }}=\frac{\left[0.6(400-240) \mathrm{g} / \mathrm{m}^{3}\right]}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.25 \mathrm{~d})]}=83.5 \mathrm{~g} / \mathrm{m}^{3}(\mathrm{mg} / \mathrm{L})
\end{aligned}
$$

For short SRT values, cell debris (Sec. 8-3 in Chap. 8) is negligible and is not included here.
Determine the oxygen satisfied in trickling filter with a COD balance
O_{2} used $=\mathrm{UBOD}_{\text {IN }}-$ UBOD $_{\text {OUT }}-1.42 \mathrm{X}$

$$
=[1.6(400-240) \mathrm{mg} / \mathrm{L})]-1.42(83.5 \mathrm{mg} / \mathrm{L})
$$

Oxygen used in trickling filter $=137.4 \mathrm{mg} / \mathrm{L}$
4. Determine biomass produced in the aeration tank

Approximate BOD removed $=240 \mathrm{mg} / \mathrm{L}$, SRT $=5 \mathrm{~d}$
Biomass due to oxidation of organic matter

$$
X_{A T}=\frac{0.6\left(240 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}=90 \mathrm{~g} / \mathrm{m}^{3}
$$

Trickling filter biomass remaining after endogenous decay in the activated sludge tank.

$$
X_{T F, \text { decay }}=\frac{\left(83.5 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}=52.2 \mathrm{~g} / \mathrm{m}^{3}
$$

Total biomass produced and fed to the aeration tank $=(90+52.2) \mathrm{g} / \mathrm{m}^{3}$

$$
=142.2 \mathrm{~g} / \mathrm{m}^{3}
$$

5. Determine oxygen demand in the aeration tank in mg / L and $\mathrm{kg} \mathrm{O}_{2} / \mathrm{d}$

Total oxygen consumed $=1.6(400)-1.42(142.2)=438.1 \mathrm{~g} / \mathrm{m}^{3}$
Activated sludge oxygen demand $=$ total demand - TF demand

$$
=438.1-137.4=300.7 \mathrm{~g} / \mathrm{m}^{3}(\mathrm{mg} / \mathrm{L})
$$

$\mathrm{kg} \mathrm{O}_{2} / \mathrm{d}=300.7 \mathrm{~g} / \mathrm{m}^{3}\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=2406 \mathrm{~kg} / \mathrm{d}$
6. Determine the amount of solids wasted per day (TSS). Assume biomass VSS/TSS = 0.85
a. Determine the inert inorganic solids Inert solids = TSS - VSS $=(65-55) \mathrm{mg} / \mathrm{L}=10 \mathrm{mg} / \mathrm{L}$
b. Determine the total solids wasted per day expressed in mg / L Total solids $=$ biomass + inert inorganics + nbVSS

$$
\text { Biomass }=\frac{\left(142.2 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)}{(0.85 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS})}=167.3 \mathrm{~g} \mathrm{TSS} / \mathrm{m}^{3}
$$

Inert organics $=10 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{nbVSS}=22 \mathrm{~g} / \mathrm{m}^{3}$
Total solids $=(167.3+10+22)=199.3 \mathrm{~g} \mathrm{TSS} / \mathrm{m}^{3}$
c. Determine the total solids wasted per day expressed in $\mathrm{kg} \mathrm{TSS} / \mathrm{d}$

$$
\begin{aligned}
P_{x} & =\left(199.3 \mathrm{~g} / \mathrm{m}^{3}\right)\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& =1594 \mathrm{~kg} \text { TSS} / \mathrm{d} \text { solids wasted }
\end{aligned}
$$

7. Determine the aeration tank volume and the corresponding hydraulic detention time
a. Determine the aeration tank volume using Eq. (7-57)

$$
\begin{aligned}
& \left(X_{T S S}\right)(V)=P_{X, T S S}(S R T) \\
& V=\frac{P_{X}(S R T)}{X}=\frac{(1594 \mathrm{~kg} / \mathrm{d})(5 \mathrm{~d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}=2657 \mathrm{~m}^{3}
\end{aligned}
$$

b. Determine the hydraulic detention time in the aeration tank

$$
\tau=\frac{\left(2657 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / 1 \mathrm{~d})}{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)}=8.0 \mathrm{~h}
$$

Solution - Part B, 80 percent BOD removal in trickling filter

1. Determine the trickling filter size for 80 percent BOD removal and a BOD of $400 \mathrm{mg} / \mathrm{L} .\left(\mathrm{S}_{\mathrm{e}}=80 \mathrm{mg} / \mathrm{L}\right)$.
a. $\quad k_{12}$ is the same as computed in Part A, 1b.
b. Solve for the hydraulic application rate and calculate area and volume of each tower using Eq. (9-15)

$$
\begin{aligned}
& \frac{\mathrm{S}_{\mathrm{e}}}{\mathrm{~S}_{\mathrm{i}}}=\exp \left(\frac{-\mathrm{kD}}{\mathrm{q}^{n}}\right) \\
& \mathrm{q}=\left\{\mathrm{kD} /\left[\ln \left(\mathrm{S}_{\mathrm{i}} / \mathrm{S}_{\mathrm{e}}\right)\right]\right\}^{1 / \mathrm{n}} \\
& \mathrm{q}=[0.0839(6.1) / \mathrm{ln}(400 / 80)]^{2} \\
& \mathrm{q}=0.101 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s} \\
& \mathrm{Q}=8000 \mathrm{~m}^{3} / \mathrm{d}=\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / 1 \mathrm{~m}^{3}\right)(1 \mathrm{~d} / 86400 \mathrm{~s})=92.6 \mathrm{~L} / \mathrm{s} \\
& \text { Filter area }=\mathrm{Q} / \mathrm{q}=92.6 / 0.101=916.8 \mathrm{~m}^{2} \\
& \text { Packing volume }=\left(916.8 \mathrm{~m}^{2}\right)(6.1 \mathrm{~m})=5592 \mathrm{~m}^{3}
\end{aligned}
$$

Tower diameter

$$
\text { Area/tower }=916.8 \mathrm{~m}^{2} / 2=458.4 \mathrm{~m}^{2}
$$

$$
\mathrm{D}=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(458.4)}{\pi}}=24.1 \mathrm{~m}
$$

$$
\text { Diameter }=24.1 \text { m }
$$

Use two towers each with a diameter of 24 m
2. Determine the amount of soluble BOD in the effluent from the trickling filter.
$\mathrm{sBOD}=0.5(\mathrm{BOD})=0.5(80 \mathrm{mg} / \mathrm{L})=40 \mathrm{mg} / \mathrm{L}$
3. Determine the oxygen demand satisfied in the trickling filter
a. Determine the organic loading rate using a modified version of Eq. (769)

$$
L_{\text {org }}=\frac{q S_{i}}{D\left(10^{3} g / k g\right)}
$$

$$
\begin{aligned}
\mathrm{L}_{\text {org }} & =\frac{\left(0.101 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)\left(1 \mathrm{~m}^{3} / 10^{3} \mathrm{~L}\right)(86400 \mathrm{~s} / 1 \mathrm{~d})\left(400 \mathrm{~g} / \mathrm{m}^{3}\right)}{(6.1 \mathrm{~m})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)} \\
& =0.57 \mathrm{~kg} \mathrm{BOD} / \mathrm{m}^{3} \cdot \mathrm{~d}
\end{aligned}
$$

b. Determine the SRT from Fig. 9-15

$$
\mathrm{SRT}=4 \mathrm{~d}
$$

c. Determine biomass produced using Eq. (7-42).

$$
\begin{aligned}
& X=\frac{Y\left(S_{0}-S\right)}{1+b(S R T)} \\
& X_{T F}=\frac{\left[0.6(400-80) \mathrm{g} / \mathrm{m}^{3}\right]}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(4 \mathrm{~d})]}=129.8 \mathrm{~g} / \mathrm{m}^{3}(\mathrm{mg} / \mathrm{L})
\end{aligned}
$$

Assume cell debris is negligible.
d. Determine the oxygen satisfied in trickling filter with a COD balance

$$
\begin{aligned}
\mathrm{O}_{2} \text { used } & =\text { UBOD }_{\text {IN }}-\text { UBOD }_{\text {OUT }}-1.42 \mathrm{X} \\
& =[1.6(400-80) \mathrm{mg} / \mathrm{L})]-1.42(129.8 \mathrm{mg} / \mathrm{L})
\end{aligned}
$$

Oxygen used in trickling filter $=327.7 \mathrm{mg} / \mathrm{L}$
4. Determine biomass produced in the aeration tank

Approximate BOD removed $=80 \mathrm{mg} / \mathrm{L}, \mathrm{SRT}=5 \mathrm{~d}$
Biomass due to oxidation of organic matter

$$
\mathrm{X}_{\mathrm{AT}}=\frac{0.6\left(80 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}=30 \mathrm{~g} / \mathrm{m}^{3} \text { biomass }
$$

Trickling filter biomass remaining after endogenous decay
$X_{T F, \text { decay }}=\frac{\left(129.8 \mathrm{~g} / \mathrm{m}^{3}\right)}{[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(5 \mathrm{~d})]}=81.1 \mathrm{~g} / \mathrm{m}^{3}$
Total biomass produced and fed to the aeration tank $=(30+81.1) \mathrm{g} / \mathrm{m}^{3}$

$$
=111.1 \mathrm{~g} / \mathrm{m}^{3}
$$

5. Determine oxygen demand in the aeration tank in mg / L and $\mathrm{kg} \mathrm{O}_{2} / \mathrm{d}$

Total oxygen consumed $=1.6(400)-1.42(111.1)=482.2 \mathrm{~g} / \mathrm{m}^{3}$
Activated sludge oxygen demand $=$ total demand - TF demand

$$
=482.2-327.7=154.5 \mathrm{mg} / \mathrm{L}
$$

$\mathrm{kg} \mathrm{O}_{2} / \mathrm{d}=154.5 \mathrm{~g} / \mathrm{m}^{3}\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=1236 \mathrm{~kg} / \mathrm{d}$
6. Determine the amount of solids wasted per day (TSS). Assume biomass VSS/TSS $=0.85$
a. Determine the inert inorganic solids

$$
\text { Inert solids }=\text { TSS }-\mathrm{VSS}=(65-55) \mathrm{mg} / \mathrm{L}=10 \mathrm{mg} / \mathrm{L}
$$

b. Determine the total solids wasted per day expressed in mg / L

Total solids = biomass + inert inorganics + nbVSS
Biomass $=\frac{\left(111.1 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)}{(0.85 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS})}=130.7 \mathrm{~g} \mathrm{TSS} / \mathrm{m}^{3}$
Inert organics $=10 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{nbVSS}=22 \mathrm{~g} / \mathrm{m}^{3}$
Total solids $=(130.7+10+22)=162.7 \mathrm{~g} \mathrm{TSS} / \mathrm{m}^{3}$
c. Determine the total solids wasted per day expressed in kg TSS/d

$$
\begin{aligned}
P_{X} & =\left(162.7 \mathrm{~g} / \mathrm{m}^{3}\right)\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& =1302 \mathrm{~kg} / \mathrm{d} \text { solids wasted }
\end{aligned}
$$

7. Determine the aeration tank volume and the corresponding hydraulic detention time
a. Determine the aeration tank volume using Eq. (7-57)

$$
\begin{aligned}
& \left(X_{T S S}\right)(\mathrm{V})=P_{\mathrm{X}, \mathrm{TSS}}(\mathrm{SRT}) \\
& V=\frac{P_{X}(\mathrm{SRT})}{X}=\frac{(1302 \mathrm{~kg} / \mathrm{d})(5 \mathrm{~d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(3000 \mathrm{~g} / \mathrm{m}^{3}\right)}=2170 \mathrm{~m}^{3}
\end{aligned}
$$

b. Determine the hydraulic detention time in the aeration tank

$$
\tau=\frac{\left(2170 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)}=6.5 \mathrm{~h}
$$

Solution - Part C, Summarize and compare the alternative designs

1. Summarize design data

Design Parameter	Unit	Design A	Design B
Trickling filter diameter	m	8	24
Trickling filter packing volume	m^{3}	562	5592
Hydraulic application rate	$\mathrm{L} / \mathrm{m}^{2} \cdot \mathrm{~s}$	1.004	0.101

O_{2} required in aeration tank	kg / d	2406	1236
Solids wasted	kg / d	1594	1302
Volume of aeration tank	m^{3}	2657	2170
Hydraulic retention time in aeration tank	h	8.0	6.5

2. Selection of design preference.

A definitive selection cannot be made unless a life cycle cost estimate is made to assess capital, aeration and pumping energy costs, and waste sludge handling costs. There would be significant differences in capital cost of the facilities with Design B requiring almost 10 times the packing media volume as for Design A, but only a about a 20 percent reduction in the aeration tank volume. The activated sludge aeration energy costs would be lower for Design B as the oxygen demand is about $1 / 2$ of that needed for Design A. However, the trickling filter feed pumping energy would be higher in Design B due to the need for recycle in the nitrification system to maintain a minimum hydraulic application rate of about $0.50 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$. The solids handling costs is lower for Design B with about 20 percent less sludge production. Design B would require much more land area than Design A. Design B would have greater operational stability as it would better handle load variations.

PROBLEM 9-13

Problem Statement - see text, page 1049-1050

1. A listing of the potential impacts of converting an activated sludge process to a TF/AS facility follows based on the fact that the trickling filter application with 60 percent BOD removal is in a roughing performance mode.

Category	Impact
Hydraulics	Construction of a trickling filter following the primary tanks and before the aeration tanks will require installation of a filter feed pumping station. Construction of a recirculation line from the filter

	effluent to the filter feed pumping station will also be required Site requirements Space is needed for the construction of the trickling filters. As computed below, space will be needed for two trickling filters approximately 14 m each in diameter and their related pumping equipment.
Installation of an additional process, trickling filters, will have some	
Operating	
advantages and disadvantages. Advantages include (1) reducing	
loading variations on the activated sludge process that will improve	
treatment performance and (2) reducing the aeration requirements.	
Disadvantages include the need to maintain the addditional process	
and its ancillary equipment and materials (pumps, valves, filter	
medium).	

PROBLEM 9-14

Problem Statement - see text, page 1050
Solution (Influent BOD = 1200 mg/L)
Instructors Note: Corrections to problem statement $-\mathrm{k}_{20^{\circ} \mathrm{C}}=0.075(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$ is to be corrected to $\mathrm{k}_{20^{\circ} \mathrm{C}} \mathrm{As}=0.175(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}$, the trickling filter hydraulic application rate of $0.10 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}$ is $0.015 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}$, the winter MLSS concentration is $4000 \mathrm{mg} / \mathrm{L}$ and the pilot plant trickling filter media depth is 6.1 m . Use the same biomass yield and decay coefficients for the trickling filter and activated sludge units.

Solution for Winter Condition (Temperature $=5^{\circ} \mathrm{C}$ and activated sludge $\mathrm{SRT}=$ 15 days)

1. Determine the trickling filter size and media volume
a. Determine the area and media volume

$$
\begin{aligned}
& \text { Area }=\frac{Q}{q}=\frac{20,000 \mathrm{~m}^{3} / \mathrm{d}}{\left(0.015 \mathrm{~m}^{3} / \mathrm{m}^{2}-\mathrm{min}\right)(1440 \mathrm{~min} / \mathrm{d})}=925.9 \mathrm{~m}^{2} \\
& \text { Diameter }=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(925.9)}{\pi}}=34.3 \mathrm{~m}
\end{aligned}
$$

b. 2 trickling filters would likely be used

$$
\text { Packing volume }=(\text { depth })(A)=(6.1 \mathrm{~m})\left(925.9 \mathrm{~m}^{2}\right)=5648 \mathrm{~m}^{3}
$$

2. Determine the amount of soluble BOD removed in the trickling filter using Eq. (9-19) and Eq. (8-26). Note Eq. (9-19) is based on an effluent settled BOD. Assume a settled effluent TSS concentration of $30 \mathrm{mg} / \mathrm{L}$.

$$
\begin{align*}
& S_{e}=\frac{S_{0}}{(R+1) \exp \left(\frac{k_{20} A_{s} D \theta^{T-20}}{[q(R+1)]^{n}}\right)-R} \tag{9-19}\\
& q=\frac{0.015 \mathrm{~m}^{3}}{\mathrm{~m}^{2} \cdot \min }\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=0.25 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot \mathrm{~s}}
\end{align*}
$$

From Example 9-3 the minimum wetting rate $=0.50 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$
Recycle is thus required to add additional flow of $0.25 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~s}$ and thus $\mathrm{R}=$ $0.25 / 0.25=1.0$

$$
\mathrm{S}_{\mathrm{e}}=\frac{\left(1200 \mathrm{gBOD} / \mathrm{m}^{3}\right)}{(1+1) \exp \left\{\frac{\left(0.175(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}\right)(6.1 \mathrm{~m}) 1.035^{5-20}}{\left[\left(0.25 \mathrm{~L} / \mathrm{m}^{2}\right) \cdot \mathrm{s}(1+1)\right]^{0.5}}\right\}-1}=305.8 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}
$$

Determine the soluble BOD from Eq. (8-26)
$\mathrm{BOD}_{\mathrm{e}}=\mathrm{sBOD}_{\mathrm{e}}+\frac{0.60 \mathrm{~g} \mathrm{BOD}}{\mathrm{g} \mathrm{UBOD}}\left(\frac{1.42 \mathrm{~g} \mathrm{UBOD}}{\mathrm{g} \mathrm{VSS}}\right)\left(\frac{0.85 \mathrm{~g} \mathrm{VSS}}{\mathrm{g} \mathrm{TSS}}\right)\left(\frac{30 \mathrm{~g} \mathrm{TSS}}{\mathrm{m}^{3}}\right)$
$305.8 \mathrm{~g} / \mathrm{m}^{3}=\mathrm{sBOD}_{\mathrm{e}}+21.7 \mathrm{~g} / \mathrm{m}^{3}, \mathrm{sBOD}_{\mathrm{e}}=284.1 \mathrm{~g} / \mathrm{m}^{3}$
sBOD removal $=(1200-284.1)=915.9 \mathrm{~g} / \mathrm{m}^{3}$
3. Determine the biomass produced in the trickling filter and concentration in flow to the activated sludge tank.
a. Determine the organic loading rate using Eq. (7-69) in Chap. 7 (page 607).

$$
\mathrm{L}_{\text {org }}=\frac{\mathrm{QS}_{0}}{\mathrm{~V}\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1200 \mathrm{~g} / \mathrm{m}^{3}\right)}{5648 \mathrm{~m}^{3}\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=4.25 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}
$$

b. Determine the SRT from Fig. 9-15.

Estimate $\mathrm{SRT}=1.0 \mathrm{~d}$
c. Determine biomass produced in trickling filter using Eq. (7-42).

$$
X=\frac{Y\left(S_{0}-S\right)}{1+b(S R T)}
$$

From Eq. (1-44), Table 8-10, page $743, \mathrm{~K}_{\mathrm{T}}=\mathrm{K}_{20} \theta^{(\mathrm{T}-20)}$

$$
\begin{aligned}
b_{5} & =b_{20} \theta^{(T-20)}=0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(1.035)^{(5-20)}=0.072 \mathrm{gVSS} / \mathrm{gVSS} \cdot \mathrm{~d} \\
X_{\mathrm{TF}, \mathrm{VSS}} & =\frac{\left[(0.6 \mathrm{gVSS} / \mathrm{gBOD})(915.9) \mathrm{g} / \mathrm{m}^{3}\right]}{[1+0.072 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(1.0 \mathrm{~d})]}=512.6 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}
\end{aligned}
$$

For short SRT values, cell debris (Sec. 8-3 in Chap. 8) is negligible and is not included here.
4. Determine biomass produced in the aeration tank
a. Determine the effluent soluble BOD from Eq. (7-46) shown in Table 810, page 743 .

$$
S_{e}=\frac{K_{\mathrm{S}}\left[1+b_{H}(S R T)\right]}{\operatorname{SRT}\left(Y_{H} k-b_{H}\right)-1}
$$

$$
\text { At } 5^{\circ} \mathrm{C}, \mathrm{k}_{5}=\mathrm{k}_{20}(1.035)^{(5-20)}=(6.0 \mathrm{gBOD} / \mathrm{gVSS})(1.035)^{-15}
$$

$$
\mathrm{k}_{5}=3.58 \mathrm{gBOD} / \mathrm{gVSS}
$$

$$
\mathrm{S}_{\mathrm{e}}=\frac{\left(90 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.072 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(15 \mathrm{~d})]}{15 \mathrm{~d}[(0.60 \mathrm{~g} / \mathrm{g})(3.58 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})-(0.072 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})]-1}=6.2 \mathrm{gBOD} / \mathrm{m}^{3}
$$

b. Soluble BOD removed in activated sludge $=284.1-6.2=277.9 \mathrm{~g}$ BOD/m ${ }^{3}$

Activated sludge biomass due to oxidation of organic matter

$$
\mathrm{X}_{\mathrm{AS}}=\frac{(0.6 \mathrm{gVSS} / \mathrm{gBODr})\left(277.9 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}\right)}{[1+(0.072 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(15.0 \mathrm{~d})]}=80.2 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}
$$

5. Determine the sludge production rate in the activated sludge.
a. Determine net biomass production from trickling filter and activated sludge

Trickling filter biomass remaining after endogenous decay in the activated sludge tank.

$$
X_{T F, \text { decay }}=\frac{\left(512.6 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)}{[1+(0.072 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(15.0 \mathrm{~d})]}=246.4 \mathrm{gVSS} / \mathrm{m}^{3}
$$

Net biomass produced in the aeration tank $=$

$$
=(246.4+80.2) \mathrm{gVSS} / \mathrm{m}^{3}=326.6 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}
$$

b. Determine net amount of solids amount of solids wasted per day (TSS) from the activated sludge system using Eq. (8-21) in Table 8-10. (Cell debris term ignored, no nitrification of ammonia, and there was no influent nbVSS)

$$
\begin{aligned}
P_{X, T S S}= & \frac{P_{X, \text { Bio }}}{0.85}+Q\left(\mathrm{TSS}_{0}-V_{S S}\right) \\
P_{\mathrm{X}, \mathrm{TSS}}= & \frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(326.6 \mathrm{gVSS} / \mathrm{m}^{3}\right)}{(0.85 \mathrm{~g} \mathrm{VSS} / \mathrm{gTSS})} \\
& +\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)(100-0) \mathrm{gTSS} / \mathrm{m}^{3}=9,684,706 \mathrm{gTSS} / \mathrm{d}
\end{aligned}
$$

The total solids wasted per day expressed in $\mathrm{kg} / \mathrm{d}=9685 \mathrm{kgTSS} / \mathrm{d}$
6. Determine the aeration tank volume and the corresponding hydraulic retention time
a. Determine the aeration tank volume using Eq. (7-57) in Table 8-10.

$$
\begin{aligned}
& \left(X_{T S S}\right)(\mathrm{V})=P_{X, T S S}(S R T) \\
& V=\frac{P_{X, T S S}(S R T)}{X_{T S S}}=\frac{(9685 \mathrm{~kg} / \mathrm{d})(15.0 \mathrm{~d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(4000 \mathrm{~g} / \mathrm{m}^{3}\right)}=36,319 \mathrm{~m}^{3}
\end{aligned}
$$

b. Determine the hydraulic retention time in the aeration tank

$$
\tau=\frac{\left(36,319 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=43.6 \mathrm{~h}
$$

c. The activated sludge recycle ratio may range from 0.50 to 1.0 .
7. Determine the amount of nitrogen and phosphorus that must be added daily in kg/d
a. Nitrogen needed for net biomass growth.

From $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}$ (page 723) the biomass contains $0.12 \mathrm{~g} \mathrm{~N} / \mathrm{g}$ VSS
Nitrogen needed $=(0.12 \mathrm{~g} / \mathrm{g})\left(326.6 \mathrm{gVSS} / \mathrm{m}^{3}\right)=39.2 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}$
Nitrogen addition $=39.2 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}-10.0 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}=29.2 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}$
Nitrogen addition in $\mathrm{kg} / \mathrm{d}=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(29.2 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$

$$
=584 \mathrm{~kg} \mathrm{~N} / \mathrm{d}
$$

b. Phosphorus needed for net biomass growth.

From Example 8-13, assume content of biomass = 1.5\%
Phosphorus needed $=(0.015 \mathrm{~g} / \mathrm{g})\left(326.6 \mathrm{gVSS} / \mathrm{m}^{3}\right)=4.9 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}$
Phosphorus addition $=4.9 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}-4.0 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}=0.9 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}$

$$
\text { Phosphorus addition in } \mathrm{kg} / \mathrm{d}=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(0.9 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)
$$

$$
=18 \mathrm{~kg} \mathrm{P} / \mathrm{d}
$$

Solution for Summer Condition (Temperature $=26^{\circ} \mathrm{C}$ and activated sludge SRT = 5 days)

1. Determine the trickling filter size and media volume
a. Determine the area and media volume

$$
\text { Area }=\frac{Q}{q}=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.015 \mathrm{~m}^{3} / \mathrm{m}^{2}-\mathrm{min}\right)(1440 \mathrm{~min} / \mathrm{d})}=925.9 \mathrm{~m}^{2}
$$

$$
\text { Diameter }=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(925.9)}{\pi}}=34.3 \mathrm{~m}
$$

2 trickling filters would likely be used
Packing volume $=($ depth $)(A)=(6.1 \mathrm{~m})\left(925.9 \mathrm{~m}^{2}\right)=5648 \mathrm{~m}^{3}$
2. Determine the amount of soluble BOD removed in the trickling filter using Eq. (9-19) and Eq. (8-26). Note Eq. (9-19) is based on an effluent settled BOD. Assume a settled effluent TSS concentration of $30 \mathrm{mg} / \mathrm{L}$.

$$
\begin{align*}
& S_{e}=\frac{S_{0}}{(R+1) \exp \left(\frac{k_{20} A_{s} D \theta^{T-20}}{[q(R+1)]^{n}}\right)-R} \tag{9-19}\\
& q=\frac{0.015 \mathrm{~m}^{3}}{\mathrm{~m}^{2} \cdot \min }\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=0.25 \frac{\mathrm{~L}}{\mathrm{~m}^{2} \cdot \mathrm{~s}}
\end{align*}
$$

From Example 9-3 the minimum wetting rate $=0.50 \mathrm{~L} / \mathrm{m}^{2}-\mathrm{s}$
Recycle is thus required to add additional flow of $0.25 \mathrm{~L} / \mathrm{m}^{2}-\mathrm{s}$ and thus $\mathrm{R}=$ $0.25 / 0.25=1.0$

$$
\mathrm{S}_{\mathrm{e}}=\frac{\left(1200 \mathrm{gBOD} / \mathrm{m}^{3}\right)}{(1+1) \exp \left\{\frac{\left(0.175(\mathrm{~L} / \mathrm{s})^{0.5} / \mathrm{m}^{2}\right)(6.1 \mathrm{~m}) 1.035^{26-20}}{\left[\left(0.25 \mathrm{~L} / \mathrm{m}^{2}\right) \cdot \mathrm{s}(1+1)\right]^{0.5}}\right\}-1}=101.8 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}
$$

Determine the soluble BOD from Eq. (8-26)

$$
\begin{aligned}
& \mathrm{BOD}_{\mathrm{e}}=\mathrm{sBOD}_{\mathrm{e}}+\frac{0.60 \mathrm{~g} \mathrm{BOD}}{\mathrm{~g} \mathrm{UBOD}}\left(\frac{1.42 \mathrm{~g} \mathrm{UBOD}}{\mathrm{gVSS}}\right)\left(\frac{0.85 \mathrm{~g} \mathrm{VSS}}{\mathrm{~g} \mathrm{TSS}}\right)\left(\frac{30 \mathrm{~g} \mathrm{TSS}}{\mathrm{~m}^{3}}\right) \\
& 101.8 \mathrm{~g} / \mathrm{m}^{3}=\mathrm{sBOD} \\
& \mathrm{e}
\end{aligned}+21.7 \mathrm{~g} / \mathrm{m}^{3}, \mathrm{sBOD}=80.1 \mathrm{~g} / \mathrm{m}^{3} \mathrm{e}=1.9 \mathrm{~g} / \mathrm{m}^{3} .
$$

3. Determine the biomass produced in the trickling filter and concentration in flow to the activated sludge tank.
a. Determine the organic loading rate using Eq. (7-69) in Chap. 7 (page 607).

$$
\mathrm{L}_{\text {org }}=\frac{\mathrm{QS}_{0}}{\mathrm{~V}\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=\frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1200 \mathrm{~g} / \mathrm{m}^{3}\right)}{5648 \mathrm{~m}^{3}\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=4.25 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}
$$

b. Determine the SRT from Fig. 9-15.

Estimate $\mathrm{SRT}=1.0 \mathrm{~d}$
c. Determine biomass produced in trickling filter using Eq. (7-42).

$$
X=\frac{Y\left(S_{0}-S\right)}{1+b(S R T)}
$$

From Eq. (1-44), Table 8-10, page $743, \mathrm{~K}_{\mathrm{T}}=\mathrm{K}_{20} \theta^{(\mathrm{T}-20)}$

$$
\begin{aligned}
& b_{5}=b_{20} \theta^{(T-20)}=0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(1.035)^{(26-20)}=0.148 \mathrm{gVSS} / \mathrm{gVSS} \cdot \mathrm{~d} \\
& X_{T F, V S S}=\frac{\left[(0.6 \mathrm{gVSS} / \mathrm{g} \mathrm{BOD})(1119.9) \mathrm{g} / \mathrm{m}^{3}\right]}{[1+(0.148 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.0 \mathrm{~d})]}=585.3 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}
\end{aligned}
$$

For short SRT values, cell debris (Sec. 8-3 in Chap. 8) is negligible and is not included here.
4. Determine biomass produced in the aeration tank
a. Determine the effluent soluble BOD from Eq. (7-46) shown in Table 810, page 743 .

$$
S_{e}=\frac{K_{\mathrm{S}}\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right]}{\operatorname{SRT}\left(\mathrm{Y}_{\mathrm{H}} \mathrm{k}-\mathrm{b}_{\mathrm{H}}\right)-1}
$$

At $5^{\circ} \mathrm{C}, \mathrm{k}_{5}=\mathrm{k}_{20} 1.035^{(26-20)}=6.0 \mathrm{gBOD} / \mathrm{gVSS}(1.035)^{6}$

$$
\mathrm{k}_{26}=7.38 \mathrm{gBOD} / \mathrm{gVSS}
$$

$$
\mathrm{S}_{\mathrm{e}}=\frac{\left(90 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.148 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}{5 \mathrm{~d}[(0.60 \mathrm{~g} / \mathrm{g})(7.38 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})-(0.148 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})]-1}=7.7 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}
$$

b. Soluble $B O D$ removed in activated sludge

$$
=80.1-7.7=72.4 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}
$$

c. Activated sludge biomass due to oxidation of organic matter

$$
\mathrm{X}_{\mathrm{AS}}=\frac{(0.6 \mathrm{~g} \mathrm{VSS} / \mathrm{gBODr})\left(72.4 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}\right)}{[1+(0.148 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5.0 \mathrm{~d})]}=25.0 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}
$$

5. Determine the sludge production rate in the activated sludge.
a. Determine net biomass production from trickling filter and activated sludge
Trickling filter biomass remaining after endogenous decay in the activated sludge tank.

$$
X_{T F, \text { decay }}=\frac{\left(585.3 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)}{[1+(0.148 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5.0 \mathrm{~d})]}=336.4 \mathrm{gVSS} / \mathrm{m}^{3}
$$

b. Net biomass production rate in the aeration tank =

$$
=(25.0+336.4) \mathrm{gVSS} / \mathrm{m}^{3}=361.4 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}
$$

c. Determine net amount of solids amount of solids wasted per day (TSS) from the activated sludge system using Eq. (8-21) in Table 8-10. (Cell debris term ignored, no nitrification of ammonia, and there was no influent nbVSS)

$$
\begin{aligned}
P_{\mathrm{X}, \text { TSS }}= & \frac{\mathrm{P}_{\mathrm{x}, \text { Bio }}}{0.85}+\mathrm{Q}\left(\mathrm{TSS}_{\mathrm{o}}-\mathrm{VSS}_{\mathrm{o}}\right) \\
\mathrm{P}_{\mathrm{X}, \text { TSS }}= & \frac{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(361.4 \mathrm{gVSS} / \mathrm{m}^{3}\right)}{(0.85 \mathrm{gVSS} / \mathrm{gTSS})} \\
& +\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(100-0) \mathrm{gTSS} / \mathrm{m}^{3}\right]=10,503,529 \mathrm{gTSS} / \mathrm{d}
\end{aligned}
$$

The total solids wasted per day expressed in $\mathrm{kg} / \mathrm{d}=10,504 \mathrm{kgTSS} / \mathrm{d}$
6. Determine the aeration tank MLSS concentration. The aeration tank volume was determined from the winter longer-SRT, cold temperature condition.
a. Determine the MLSS concentration using Eq. (7-57) in Table 8-10.

$$
\begin{aligned}
& \left(X_{T S S}\right)(V)=P_{X, T S S}(S R T) \\
& V=\frac{P_{X, T S S}(S R T)}{X_{T S S}}=\frac{(10,504 \mathrm{~kg} / \mathrm{d})(5.0 \mathrm{~d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(X_{T S S}, \mathrm{~g} / \mathrm{m}^{3}\right)}=36,319 \mathrm{~m}^{3} \\
& X_{T S S}=1446 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

b. The hydraulic retention time in the aeration tank is the same assuming same average influent flowrate.

$$
\tau=\frac{\left(36,319 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=43.6 \mathrm{~h}
$$

7. Determine the amount of nitrogen and phosphorus that must be added daily in kg/d
a. Nitrogen needed for net biomass growth.

From $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}$ (page 723) the biomass contains $0.12 \mathrm{~g} \mathrm{~N} / \mathrm{g}$ VSS
Nitrogen needed $=0.12 \mathrm{~g} / \mathrm{g}\left(361.4 \mathrm{gVSS} / \mathrm{m}^{3}\right)=43.4 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}$
Nitrogen addition $=43.4 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}-10.0 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}=33.4 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}$
Nitrogen addition in $\mathrm{kg} / \mathrm{d}=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(33.4 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$

$$
=668 \mathrm{~kg} \mathrm{~N} / \mathrm{d}
$$

b. Phosphorus needed for net biomass growth.

From Example 8-13, assume content of biomass $=1.5 \%$
Phosphorus needed $=0.015 \mathrm{~g} / \mathrm{g}\left(361.4 \mathrm{gVSS} / \mathrm{m}^{3}\right)=5.4 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}$
Phosphorus addition $=5.4 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}-4.0 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}=1.4 \mathrm{~g} \mathrm{P} / \mathrm{m}^{3}$
Phosphorus addition in $\mathrm{kg} / \mathrm{d}=\left(20,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1.4 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$

$$
=28 \mathrm{~kg} \mathrm{P} / \mathrm{d}
$$

Solution Summary Table (TF-trickling filter, AS-activated sludge)

Parameter	Units	Winter, $5^{\circ} \mathrm{C}$	Summer, $26^{\circ} \mathrm{C}$
AS SRT	d	15	5
AS HRT	h	43.6	43.6
AS MLSS	mg / L	4000	1446
TF recycle ratio		1.0	1.0
TF effluent sBOD	mg / L	284.1	80.1

AS effluent sBOD	mg / L	6.2	7.7
Daily sludge wasting	kg TSS $/ \mathrm{d}$	9685	10,505
Nitrogen addition	kg / d	584	668
Phosphorus addition	kg / d	18	28

PROBLEM 9-15

Problem Statement - see text, page 1050

Solution (DO concentration $=3.0 \mathrm{mg} / \mathrm{L}$)

The procedure is identical to that used in Example 9-7 to produce and effluent $\mathrm{NH}_{3}-\mathrm{N}$ concentration below $0.70 \mathrm{mg} / \mathrm{L}$ but with a DO concentration of $3.0 \mathrm{mg} / \mathrm{L}$ instead of $4.0 \mathrm{mg} / \mathrm{L}$.

The same following steps are used: the media fill volume percent is assumed for $2 / 3^{\text {rd }}$ of the aeration tank volume, the average percent fill volume and fill fraction is calculated $\left(\mathrm{V}_{\mathrm{m}} / \mathrm{V}\right)$, the suspended growth SRT is calculated within the MLSS concentration constraint of $3,000 \mathrm{mg} / \mathrm{L}$, the amount of ammonia oxidized is determined and then equations are solved for the media nitrifier biomass density, the nitrifier concentration in the suspended growth and the bulk liquid ammonia- N concentration. From a plot of effluent $\mathrm{NH}_{3}-\mathrm{N}$ versus $\mathrm{V}_{\mathrm{m}} / \mathrm{V}$, the desired fill volume fraction is determined.

At a DO of $3.0 \mathrm{mg} / \mathrm{L}$ the maximum DO limited nitrification flux is $0.88 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}$ from Figure $9-25$ and it is DO limited at $\mathrm{NH}_{3}-\mathrm{N}$ concentration at $0.80 \mathrm{mg} / \mathrm{L}$ or more.

Solution (calculation shown for maximum fill volume percent):

1. Assume a media fill volume percent in $2 / 3^{\text {rds }}$ of tank = maximum at 60 percent. Average fill volume percent $=2 / 3(60)=40$ percent. $\mathrm{V}_{\mathrm{M}} / \mathrm{V}=0.40$
2. Determine the kinetic coefficients at $12^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{H}, 12}=(0.12)\left[1.04^{(12-20)}\right]=0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mu_{\mathrm{max}, 12}=(0.90)\left[1.072^{(12-20)}\right]=0.516 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{~b}_{\mathrm{n}, 12}=(0.17)\left[1.029^{(12-20)}\right]=0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

3. Determine the influent bCOD concentration
$\mathrm{bCOD}=1.6\left(140 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}\right)=224.0 \mathrm{~g} / \mathrm{m}^{3}$
4. Determine the suspended growth SRT using Eq. (9-50) and MLSS $=3000$ $\mathrm{g} / \mathrm{m}^{3}$ (for simplicity ignore cell debris and nitrifier growth sludge production) From Eqs (8-20 and 8-21) in Table 8-10 on page 743:

$$
P_{X, T S S}=\frac{Q Y_{H} S_{0}}{\left[1+b_{H}(S R T)\right] 0.85}+Q(n b V S S)+Q(T S S-V S S)
$$

From Eq (7-57) in Table 8-10 on page 743:

$$
\begin{aligned}
& X_{T S S}(V)=P_{X, T S S}(S R T), \text { where } V=\left(1-V_{M} / V\right)(V) \\
& \text { and } X=3000 \mathrm{mg} / \mathrm{L}=\frac{P_{\mathrm{X}, \mathrm{TSS}}(S R T)}{\left(1-V_{M} / \mathrm{V}\right)(\mathrm{V})}
\end{aligned}
$$

Substituting for $\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}$:

$$
\begin{aligned}
3000= & \frac{Q Y_{H} S_{0}(S R T)}{\left[1+b_{H}(S R T)\right] 0.85\left(1-V_{M} / V\right) V}+\frac{Q(n b V S S)(S R T)}{\left(1-V_{M} / V\right) V} \\
& +\frac{Q(T S S-V S S)(S R T)}{\left(1-V_{M} / V\right) V}
\end{aligned}
$$

And substituting $\tau=\mathrm{V} / \mathrm{Q}$:

$$
\begin{aligned}
3000= & \frac{\mathrm{Y}_{\mathrm{H}} \mathrm{~S}_{0}(\mathrm{SRT})}{\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right] 0.85\left(1-\mathrm{V}_{\mathrm{M}} / \mathrm{V}\right) \tau}+\frac{(\mathrm{nbVSS})(\mathrm{SRT})}{\left(1-\mathrm{V}_{\mathrm{M}} / \mathrm{V}\right) \tau} \\
& +\frac{(\mathrm{TSS}-\mathrm{VSS})(\mathrm{SRT})}{\left(1-\mathrm{V}_{\mathrm{M}} / \mathrm{V}\right) \tau}
\end{aligned}
$$

For $\mathrm{V}_{\mathrm{M}} / \mathrm{V}=0.40$ and other inputs from Example 9-7:

$$
\begin{aligned}
3000= & \frac{(0.45 \mathrm{gVSS} / \mathrm{gbCOD})\left(224 \mathrm{gbCOD} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{[1+0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(\mathrm{SRT})] 0.85(1-0.40) 0.233 \mathrm{~d}}+\frac{\left(25 \mathrm{gVSS} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{(1-0.40) 0.233 \mathrm{~d}} \\
& +\frac{\left(10 \mathrm{gTSS} / \mathrm{m}^{3}\right)(\mathrm{SRT})}{(1-0.40) 0.233 \mathrm{~d}}
\end{aligned}
$$

$$
3000=\frac{848.27(\mathrm{SRT})}{[1+0.088(\mathrm{SRT})]}+178.83 \mathrm{SRT}+74.53 \mathrm{SRT}
$$

Activated sludge SRT $=3.29 \mathrm{~d}$

$$
X_{H}=\frac{(0.45 \mathrm{gVSS} / \mathrm{gbCOD})\left(224 \mathrm{gbCOD} / \mathrm{m}^{3}\right)(3.29 \mathrm{~d})}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(\mathrm{SRT})](1-0.40) 0.233 \mathrm{~d}}=1840 \mathrm{gVSS} / \mathrm{m}^{3}
$$

5. Determine N available for nitrification $\left(\mathrm{N}_{\mathrm{o}}\right)$ from Eq. (8-24) in Table 8-10 on page 743.

$$
\begin{aligned}
& N_{o}=T K N-\frac{0.12 P_{X, \text { bio }}}{Q} \\
& N_{o}=T K N-\frac{0.12 Y_{H} S_{o}}{\left[1+b_{H}(S R T)\right]} \\
& N_{o}=35.0-\frac{(0.12)(0.45 \mathrm{gVSS} / \mathrm{gCOD})\left(224 \mathrm{gbCOD} / \mathrm{m}^{3}\right)}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(3.29 \mathrm{~d})]}=25.6 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

6. Assume the bulk liquid N concentration is below the critical value and use the left side of Eq. $(9-43)$ to calculate $X_{B F}$.

$$
\begin{aligned}
X_{B F} & =\frac{Y_{n}\left(\frac{N}{k_{n, B F}+N}\right) J_{N, \max }}{b_{n}+\left(\frac{1}{S R T_{B F}}\right)} \\
& =\frac{\left(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{~N}_{\text {oxidized }}\right)\left[\frac{\mathrm{N}}{\left(2.2 \mathrm{~g} / \mathrm{m}^{3}\right)+\mathrm{N}}\right]\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}{(0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})+\left(\frac{1}{6.0 \mathrm{~d}}\right)}
\end{aligned}
$$

7. Calculate the bulk liquid $A O B$ concentration from Eq. (9-46).

$$
\begin{aligned}
X_{n} & =\frac{S S_{A}\left(\frac{V_{m}}{V}\right)\left(\frac{X_{B F}}{S R T_{B F}}\right)}{b_{n}\left(1-\frac{V_{m}}{V}\right)+\frac{1}{S R T_{A S}}\left(1-\frac{V_{m}}{V}\right)-\left(\frac{\mu_{\max } N}{K_{n}+N}\right)\left(\frac{D O}{K_{o}+D O}\right)\left(1-\frac{V_{m}}{V}\right)} \\
& =\frac{\left(500 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)(0.40)\left(X_{B F} / 6 \mathrm{~d}\right)}{(0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1-0.40)+\left(\frac{1}{3.34 \mathrm{~d}}\right)(1-0.40)-\left\{\frac{(0.516 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{N}\left(3.0 \mathrm{~g} / \mathrm{m}^{3}\right)(1-0.40)}{\left[\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\mathrm{N}\right]\left[\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(3.0 \mathrm{~g} / \mathrm{m}^{3}\right)\right]}\right\}}
\end{aligned}
$$

8. Put in known values for Eq. (9-48).

$$
\begin{array}{r}
N_{o}=N+\left[\frac{\left(\mu_{\max } / Y_{n}\right) N}{K_{n}+N}\right]\left(\frac{D O}{K_{o}+D O}\right) X_{n}(\tau)+\left(\frac{N}{K_{n, B F}+N}\right) J_{N, \max }\left(\frac{V_{m}}{V}\right)\left(S S_{A}\right)(\tau) \\
-0.12 b_{H} X_{H}\left(1-\frac{V_{m}}{V}\right)(\tau)
\end{array}
$$

$$
\begin{aligned}
25.6 \mathrm{~g} / \mathrm{m}^{3}= & \mathrm{N}+\frac{[(0.516 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) /(0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{~N})](\mathrm{N})\left(3.0 \mathrm{~g} / \mathrm{m}^{3}\right) \mathrm{X}_{\mathrm{n}}(0.233 \mathrm{~d})}{\left[\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\mathrm{N}\right]\left[\left(0.50 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(3.0 \mathrm{~g} / \mathrm{m}^{3}\right)\right]} \\
& +\frac{(\mathrm{N})\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(0.40)\left(500 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)(0.233 \mathrm{~d})}{\left[\left(2.2 \mathrm{~g} / \mathrm{m}^{3}\right)+\mathrm{N}\right]} \\
& -0.12(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(1840 \mathrm{~g} / \mathrm{m}^{3}\right)(0.60)(0.233 \mathrm{~d})
\end{aligned}
$$

9. For steps 6, 7 , and 8 , there are three unknowns $\left(X_{B F}, X_{n}\right.$, and $\left.N\right)$ and three equations. These equations can be solved on an excel spreadsheet using a solver function. The result is:
$X_{n}=21.5 \mathrm{~g} / \mathrm{m}^{3}$
$X_{B F}=0.24 \mathrm{~g} / \mathrm{m}^{2}$
$\mathrm{N}=0.39 \mathrm{~g} / \mathrm{m}^{3}$
The fraction of the amount of $\mathrm{NH}_{3}-\mathrm{N}$ nitrified that occurred in the biofilm $=$ 0.79

The bulk liquid N concentration is below the critical value of $0.80 \mathrm{~g} / \mathrm{m}^{3}$ so the appropriate equations were selected.
10. The spreadsheet calculations were repeated for different $\mathrm{V}_{\mathrm{M}} / \mathrm{V}$ values to determine the fraction that resulted in an effluent $\mathrm{NH}_{3}-\mathrm{N}$ concentration of $0.70 \mathrm{mg} / \mathrm{L}$. At this concentration the biofilm nitrification flux was not DO limited.

		Average Fill Volume Fraction		
Parameter	Unit	0.27	0.30	0.40
$\mathrm{SRT}_{\mathrm{AS}}$	d	4.2	4.0	3.29
X_{BF}	$\mathrm{g} / \mathrm{m}^{2}$	0.38	0.33	0.24
X_{n}	$\mathrm{g} / \mathrm{m}^{3}$	18.0	19.1	21.5
N	$\mathrm{~g} / \mathrm{m}^{3}$	0.67	0.56	0.39
Fraction of N oxidized in biofilm	-	0.77	0.77	0.78

11. Determine the amount of media to add.

The average fill volume fraction for the aeration tank is 0.27 . The fill fraction in the aeration tank portion with media is $(0.27)(3 / 2)=0.405$, as two-thirds of the aeration tank will have the media. The aeration tank volume is 6940 m^{3} as given and thus the bulk volume of the amount of media needed is $0.405\left(6940 \mathrm{~m}^{3}\right)=2810 \mathrm{~m}^{3}$.

PROBLEM 9-16

Problem Statement - see text, page 1050

Solution

Compare the advantages and disadvantages for selecting one of the following processes for a small flow decentralized wastewater treatment facility with limited land space and close to a residential area to produce a nitrified effluent: (a) activated sludge with conventional clarification, (b) membrane bioreactor and (c) moving bed bioreactor process.

Criteria	Activated sludge with a clarifier	Membrane bioreactor (MBR)	Moving bed bioreactor (MBBR)
Less space	Most space	Least space- major advantage	Medium in space The need for a clarifier requires more space than MBR
Less operator attention	More operator issues with sludge settling characteristics and potential for settling issues in gravity clarifier. Less advantageous than MBR and MBBR	Easy to operate with almost all suspended solids removal by membrane. Membrane fouling control required with chemical cleaning. Advantage similar to that for MBBR	Easiest to operate, no issues with sludge settling and recycle and solids wasting. Screens need to be checked. Advantage similar to that for MBR
Less energy	Least energy	Highest energy	Medium for energy
Ability to house/aesthetics	More involved for housing. Not as good as that for MBR and MBBR	Easiest to house. This is commonly done for small systems. Very advantageous for this application	Can be housed but not as easy as for MBR

Treatment reliability	Complete nitrification has been proven but risk is related to sludge settling issues and changes that may occur	Very reliable for maintaining good treatment and nitrification	Should be very reliable Not as well demonstrated for small systems as MBR
Capital Cost	Least expensive	Most expensive	Medium in cost
System simplicity	Medium complexity	Most complex with regard to equipment	Least complex with regard to equipment.

The least preferred is the conventional activated sludge system with clarifier due to higher operational concerns and reliability. The MBR is the most reliable in treatment but has a higher capital and energy cost. In addition it is more complex with the membrane fouling equipment. The MBBR is a better choice if all factors are of equal weight. It could be housed but with more cost but is simple to operate and has less energy than MBR. For the treatment level needed the MBBR is the selected process.

PROBLEM 9-17

Problem Statement - see text, page 1051
Design conditions:

1. Use same primary effluent wastewater characteristics as for Example 9-8
2. Single stage BOD removal followed by single stage nitrification
3. Effluent $\mathrm{NH}_{4}-\mathrm{N}$ concentration goal $=0.70 \mathrm{mg} / \mathrm{L}$
4. $\mathrm{DO}=2.0 \mathrm{mg} / \mathrm{L}$ in BOD removal zone and $4.0 \mathrm{mg} / \mathrm{L}$ in nitrification zone
5. Carrier media fill fraction $=50$ percent
6. Effective SRT for BOD biofilm $=4.0 \mathrm{~d}$
7. Effective SRT for nitrifying biofilm $=8.0 \mathrm{~d}$

Determine media and tank volumes, sludge production rate and oxygen utilization rate.

Solution:

1. Determine plastic media volume needed and tank volume for BOD removal reactor.
a. Applied BOD flux (Example $9-8)=\frac{\left(4.0 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}{0.90}=4.44 \mathrm{gBOD} / \mathrm{m}^{2} \cdot \mathrm{~d}$
b. \quad BOD loading $=\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)=4,200,000 \mathrm{~g} \mathrm{BOD} / \mathrm{d}$
c. Media area $=\frac{(4,200,000 \mathrm{gBOD} / \mathrm{d})}{\left(4.44 \mathrm{gBOD} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=945,946 \mathrm{~m}^{2}$
d. Media volume $=\frac{945,946 \mathrm{~m}^{2}}{\left(500 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=1892 \mathrm{~m}^{3}$
e. Tank volume at 50 percent fill fraction $=\frac{1892 \mathrm{~m}^{3}}{0.50 \mathrm{~m}^{3} / \mathrm{m}^{3}}=3784 \mathrm{~m}^{3}$
f. Hydraulic retention time, $\tau=\mathrm{V} / \mathrm{Q}=\frac{3784 \mathrm{~m}^{3}}{30,000 \mathrm{~m}^{3}}\left(\frac{24 \mathrm{~h}}{\mathrm{~d}}\right)=3.03 \mathrm{~h}$
2. Determine available $\mathrm{NH}_{4}-\mathrm{N}$ for nitrification after nitrogen consumption for heterotrophic bacteria synthesis from BOD removal using Eq. (8-20), Table 8-10.
$P_{x, \text { bio }}=\frac{Q\left(Y_{H}\right)(B O D)}{1+b_{H}(S R T)}+\frac{f_{d}\left(b_{H}\right) Q\left(Y_{H}\right)(B O D) S R T}{1+b_{H}(S R T)}$
$\frac{P_{x, \text { bio }}}{Q}=\frac{\left(Y_{H}\right)(B O D)\left[1+f_{d}\left(b_{H}\right) S R T\right]}{1+b_{H}(S R T)}$
$b_{H, 12}=b_{H, 20}(1.04)^{(12-20)}=(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(1.04)^{(12-20)}=0.087 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$Y_{H}=0.45 \frac{\mathrm{gVSS}}{\mathrm{gbCOD}}\left(\frac{1.6 \mathrm{~g} \mathrm{bCOD}}{\mathrm{gBOD}}\right)=0.72 \mathrm{gVSS} / \mathrm{gBOD}$
$\frac{P_{x, \text { bio }}}{Q}=\frac{(0.72 \mathrm{gVSS} / \mathrm{gBOD})\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)[1+0.15(0.087 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) 6 \mathrm{~d}]}{[1+0.15(0.087 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}) 6 \mathrm{~d}]}=71.4 \mathrm{gVSS} / \mathrm{m}^{3}$

Ammonia available for nitrification (Eq. 8-25, Table 8-10):

$$
\begin{aligned}
& \mathrm{NH}_{0}=\mathrm{TKN}-\left(\frac{0.12 \mathrm{~g} \mathrm{~N}}{\mathrm{~g} \text { biomass }}\right) \frac{P_{x, \text { bio }}}{\mathrm{Q}} \\
& \mathrm{NH}_{0}=35.0 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}-0.12\left(71.4 \mathrm{gVSS} / \mathrm{m}^{3}\right)=26.4 \mathrm{gN} / \mathrm{m}^{3}
\end{aligned}
$$

3. Determine media volume and tank volume for nitrification reactor
a. Determine nitrification flux in nitrification reactor under ammonia limited conditions from Eq. (9-52) and adjust to $12^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& J_{\mathrm{N}, 15}=\left(\frac{\mathrm{N}}{2.2 \mathrm{~g} / \mathrm{m}^{3}+\mathrm{N}}\right)\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right) \\
& \quad=\left[\frac{\left(0.70 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(2.2 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(0.70 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)=0.797 \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}
\end{aligned}
$$

$$
\mathrm{J}_{\mathrm{N}, 12}=\left(0.797 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(1.098)^{(12-15)}=0.60 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}
$$

b. Media area $=\frac{\left(26.4 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}\right)\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.60 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=1,320,000 \mathrm{~m}^{2}$
c. Media volume $=\frac{1,320,000 \mathrm{~m}^{2}}{500 \mathrm{~m}^{2} / \mathrm{m}^{3}}=2640 \mathrm{~m}^{3}$
d. Tank volume at 50 percent fill fraction $=\frac{2640 \mathrm{~m}^{3}}{\left(0.50 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)}=5280 \mathrm{~m}^{3}$
e. Hydraulic retention time, $\tau=\mathrm{V} / \mathrm{Q}=\frac{5280 \mathrm{~m}^{3}}{30,000 \mathrm{~m}^{3}}\left(\frac{24 \mathrm{~h}}{\mathrm{~d}}\right)=4.22 \mathrm{~h}$
4. Summary of media and tank volumes.

Example 9-8

Reactor	Function	$\begin{aligned} & \mathrm{DO}, \\ & \mathrm{mg} / \mathrm{L} \end{aligned}$	Media volume, m^{3}	Tank volume, m^{3}	$\begin{aligned} & \mathrm{T}, \\ & \mathrm{~h} \end{aligned}$
1	BOD removal	2.0	525	1050	0.8
2	BOD removal	3.0	473	1050	0.8
3	Nitrification	4.0	1030	1720	1.4
4	Nitrification	4.0	1030	1720	1.4
	Total		3058	5540	4.4

Problem 9-17

		DO,	Media volume, m^{3}	Tank volume, m^{3},	T, h
1	Beactor removal	Function	2.0	1892	3784
2	Nitrification	4.0	2640	5280	3.0
	Total		4532	9064	7.2

The use of only a single BOD and single nitrification tank increases the media volume for BOD removal and nitrification by 90% for BOD removal and 28% for nitrification. The volume and hydraulic retention times also increase by these percentages.
5. Determine the daily sludge production rate in $\mathrm{kgTSS} / \mathrm{d}$ using Eqs. (8-20) and (8-21) and the yield and decay coefficients in Table 8-14.

$$
\frac{Q Y_{H}\left(S_{0}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})(0.85)}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) Q Y_{H}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \operatorname{SRT}\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})(0.85)}
$$

(A)
(B)
$+\frac{Q Y_{n}\left(\mathrm{NO}_{\mathrm{X}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+\left(\mathrm{b}_{\mathrm{n}}\right) \operatorname{SRT}(0.85)}+\mathrm{Q}(\mathrm{nbVSS})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)+\mathrm{Q}(\mathrm{TSS}-\mathrm{VSS})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
(C)
(D)
(E)
a. Define the input data for above equation.

For BOD removal, SRT = 4d:

$$
\begin{aligned}
& \mathrm{Q}=30,000 \mathrm{~m} 3 / \mathrm{d} \\
& \mathrm{Y}_{\mathrm{H}}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD} \\
& \mathrm{~S}_{0}-\mathrm{S} \sim \mathrm{~S}_{0}=1.6(140)=224 \mathrm{mg} / \mathrm{L} \mathrm{bCOD} \\
& \mathrm{~b}_{\mathrm{H}}=(0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{gVSS} \cdot \mathrm{~d})(1.04)^{12 \cdot 20}=0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& \mathrm{f}_{\mathrm{d}}=0.15 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS}
\end{aligned}
$$

For nitrification, SRT = 8 d
$Y_{n}=0.20 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{NH}_{4}-\mathrm{N}$ (accounting for both type of nitrifiers)
$b_{n}=(0.17 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d})(1.029)^{12-20}=0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
Wastewater characteristics

$$
\begin{aligned}
& Q=30,000 \mathrm{~m}^{3} / \mathrm{d} \\
& \mathrm{nbVSS}=25 \mathrm{~g} / \mathrm{m}^{3} \\
& \text { TSS-VSS }=10 \mathrm{~g} / \mathrm{m}^{3} \\
\text { b. } \quad & \text { Determine } P_{\mathrm{X}, \mathrm{vss}} \\
\mathrm{P}_{\mathrm{X}, \mathrm{TsS}}= & \frac{\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(224) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(4 \mathrm{~d})](0.85)} \\
+ & \frac{(0.15 \mathrm{~g} / \mathrm{g})(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})[(224) \mathrm{mg} / \mathrm{L}](4 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(4 \mathrm{~d})](0.85)} \\
& +\frac{\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.20 \mathrm{~g})\left(26.4-0.7 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{[1+(0.135 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(8 \mathrm{~d})](0.85)} \\
& +\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& +\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& \mathrm{P}_{\mathrm{X}, \mathrm{TSs}}=(2631.4+138.9+87.2+750+300) \mathrm{kg} / \mathrm{d}=3907.5 \mathrm{~kg} / \mathrm{d} \\
& \mathrm{P}_{\mathrm{X}, \mathrm{Bio}}=(2631.4+138.9) \mathrm{kg} / \mathrm{d}=2770.3 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

6. Determine the total oxygen required using Eq. (8-23), Table 8-10.

For BOD removal: $\mathrm{R}_{\mathrm{O}}=\mathrm{Q}\left(\mathrm{S}_{0}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{x}, \mathrm{Bio}}$
For Nitrification: $\mathrm{R}_{\mathrm{O}}=4.57 \mathrm{Q}(\mathrm{NOx})$
a. Determine total oxygen required for BOD removal
$R_{\mathrm{R}, \mathrm{BOD}}=\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(224 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)-1.42(2770.3 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)$
$\mathrm{R}_{\mathrm{O}, \mathrm{BOD}}=2,786,174 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}=2786 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}$
b. Determine the oxygen required for nitrification

$$
\begin{aligned}
\mathrm{R}_{\mathrm{o}, \text { intrifif }} & =\left(4.57 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \mathrm{NOx}\right)\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(26.4-0.7) \mathrm{gN} / \mathrm{m}^{3}\right] \\
& =3,523,470 \mathrm{~g} \mathrm{O}_{2} / \mathrm{d}=3524 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}
\end{aligned}
$$

7. Estimate the oxygen required in each MBBR stage.
a. Stage 1

Assume 90% of BOD is removed in stage 1 and no nitrification
$\mathrm{R}_{\mathrm{O}, 1}=0.90\left(2786 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)=2507.4 \mathrm{~kg} / \mathrm{d}$
b. Stage 2
$\mathrm{R}_{\mathrm{o}, 2}=0.10\left(2786 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)+3524 \mathrm{kgO}_{2} / \mathrm{d}=3802.6 \mathrm{~kg} / \mathrm{d}$

PROBLEM 9-18

Problem Statement - see text, page 1051

Solution

1. Determine the media volume and tank volume required for the nitrification reactors in Example 9-8 for nitrification tank DO $=3.0 \mathrm{mg} / \mathrm{L}$ instead of 4.0 mg / L. Note that this does not change the design of the BOD removal tanks preceding the nitrification tanks. From Example 9-8 the ammonia-N available for nitrification is $26.4 \mathrm{gN} / \mathrm{m}^{3}$.
a. From Fig. 9-25 the nitrification flux at DO limited condition for $\mathrm{DO}=3.0$ mg / L is $0.88 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}$ at $15^{\circ} \mathrm{C}$ and the critical $\mathrm{NH}_{4}-\mathrm{N}$ concentration for DO limitation is $0.80 \mathrm{~g} / \mathrm{m}^{3}$, so the nitrification rate for the first nitrification reactor will be DO limited.
b. adjust DO limited flux for temperature

$$
J_{N, 12}=\left(0.88 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(1.058)^{(12-15)}=0.743 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}
$$

c. Determine nitrification flux in 2nd nitrification reactor under ammonia limited conditions at $\mathrm{NH}_{4}-\mathrm{N}=0.70 \mathrm{mg} / \mathrm{L}$ from Eq. (9-52)

$$
\begin{aligned}
J_{\mathrm{N}, 15} & =\left[\frac{\mathrm{N}}{\left(2.2 \mathrm{~g} / \mathrm{m}^{3}+\mathrm{N}\right)}\right]\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right) \\
& =\left[\frac{\left(0.70 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(2.2 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(0.70 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)=0.797 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d} \\
J_{\mathrm{N}, 12} & =\left(0.797 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(1.098)^{(12-15)}=0.60 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}
\end{aligned}
$$

d. Design the two tanks with equal media area; thus will have same volume as they have the same fill volume fraction.

Media area $=\frac{(\mathrm{g} \mathrm{N} \mathrm{removed} / \mathrm{d})}{\text { flux }\left(\mathrm{g} \mathrm{N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$

Reactor 3

Media area $=A_{3}=\frac{\left[(26.4-X) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.743 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$,
where $\mathrm{X}=\mathrm{NH}_{4}-\mathrm{N}$ concentration in reactor
Reactor 4
Media area $=A_{4}=\frac{\left[(X-0.70) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.60 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$,
$\mathrm{A}_{3}=\mathrm{A}_{4}$
$\frac{\left[(26.4-X) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.743 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=\frac{\left[(X-0.70) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.60 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$
solve for $X ; X=12.18 \mathrm{gN} / \mathrm{m}^{3}$
Media area for each tank =

$$
\frac{\left[(26.4-12.18) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.743 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=574,158 \mathrm{~m}^{2}
$$

e. Media volume $=\frac{574,158 \mathrm{~m}^{2}}{\left(500 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=1148 \mathrm{~m}^{3}$
f. Nitrification reactors tank volume at 60 percent packing fill fraction

$$
=\frac{1148 \mathrm{~m}^{3}}{\left(0.60 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)}=1913 \mathrm{~m}^{3}
$$

g. Hydraulic retention time, $\tau=\mathrm{V} / \mathrm{Q}=\frac{1913 \mathrm{~m}^{3}}{30,000 \mathrm{~m}^{3}}\left(\frac{24 \mathrm{~h}}{\mathrm{~d}}\right)=1.53 \mathrm{~h}$
h. Compare the effect of the DO concentration.

By decreasing the DO concentration from 4.0 to $3.0 \mathrm{mg} / \mathrm{L}$, the media volume per each of the nitrification reactors was increased by $\left(1148 m^{3}-1030 m^{3}\right)=118 m^{3}$ or 11.5 percent. The reactor tank volume and hydraulic retention time increases by the same amount at the 60 percent packing fill fraction.
2. Determine the effect on the design if the packing volume fill fraction in Example $9-8$ is increased from 60 percent to 65 percent.
a. Determine the effect on the tank volume. Note that this does not change the media area required. Thus the tank volume and hydraulic retention time decrease by:

$$
\frac{(65-60) 100}{65}=7.7 \%
$$

PROBLEM 9-19

Problem Statement - see text, page 1051

Solution

The same wastewater characteristics and operating conditions for Example 9-8 are used with the only difference being that the temperature is $18^{\circ} \mathrm{C}$ instead of $12^{\circ} \mathrm{C}$.

1. Determine plastic media volume needed and tank volume for 1st reactor.
a. Determine the applied flux for BOD removal for the first two reactors at the higher temperature. Assume a similar temperature correction factor as used for the trickling filter fixed film biological degradation, Eq. (916), page 973

$$
\mathrm{k}_{\mathrm{T}}=\mathrm{k}_{20}(1.035)^{\mathrm{T}-20}
$$

Thus, $\mathrm{k}_{12}=\mathrm{k}_{20}(1.035)^{12-20}$ and $\mathrm{k}_{18}=\mathrm{k}_{20}(1.035)^{18-20}$
By equating K_{20} for the two temperatures,
$\mathrm{k}_{18}=\mathrm{k}_{12}(1.035)^{6}=1.23 \mathrm{k}_{12}$
$1^{\text {st }}$ reactor BOD removal flux $=1.23\left(12 \mathrm{~g} / \mathrm{m}^{2}-\mathrm{d}\right)=14.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}$
$2^{\text {nd }}$ reactor BOD removal flux $=1.23\left(4 \mathrm{~g} / \mathrm{m}^{2}-\mathrm{d}\right)=4.9 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}$

Applied BOD flux $=\frac{\text { BOD removal flux }}{(\% \text { BOD removal } / 100)}=\frac{\left(14.8 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}{0.75}=19.7 \mathrm{gBOD} / \mathrm{m}^{2} \cdot \mathrm{~d}$
b. Media area:

$$
=\frac{\text { BOD application rate }}{\text { Applied BOD flux }}=\frac{\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(140.0 \mathrm{~g} \mathrm{BOD} / \mathrm{m}^{3}\right)}{\left(19.7 .0 \mathrm{gBOD} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=213,198 \mathrm{~m}^{2}
$$

c. Media volume $=\frac{213,198 \mathrm{~m}^{2}}{500 \mathrm{~m}^{2} / \mathrm{m}^{3}}=426 \mathrm{~m}^{3}$
d. First reactor tank volume $=\frac{426 \mathrm{~m}^{3}}{\left(0.50 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)}=852 \mathrm{~m}^{3}$
e. Hydraulic retention time, $\tau=\mathrm{V} / \mathrm{Q}=\frac{852 \mathrm{~m}^{3}}{30,000 \mathrm{~m}^{3}}\left(\frac{24 \mathrm{~h}}{\mathrm{~d}}\right)=0.68 \mathrm{~h}$
2. Determine plastic media volume needed and tank volume for $2 n d$ reactor.
a. Applied BOD flux $=\frac{4.9 \mathrm{~g} / \mathrm{m}^{2} \cdot \mathrm{~d}}{0.90}=5.4 \mathrm{gBOD} / \mathrm{m}^{2} \cdot \mathrm{~d}$
b. Media area: BOD remaining to 2 nd reactor

$$
\begin{aligned}
= & 0.25\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)=1,050,000 \mathrm{~g} \mathrm{BOD} / \mathrm{d} \\
& =\frac{(1,050,000 \mathrm{gBOD} / \mathrm{d})}{\left(5.4 \mathrm{gBOD} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=194,444 \mathrm{~m}^{2}
\end{aligned}
$$

c. Media volume $=\frac{194,444 \mathrm{~m}^{2}}{\left(500 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=389 \mathrm{~m}^{3}$
d. Second reactor tank volume $=\frac{389 \mathrm{~m}^{3}}{\left(0.50 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)}=778 \mathrm{~m}^{3}$

Use same volume as first reactor $=852 \mathrm{~m}^{3}$
e. Hydraulic retention time, $\tau=\mathrm{V} / \mathrm{Q}=\frac{852 \mathrm{~m}^{3}}{30,000 \mathrm{~m}^{3}}\left(\frac{24 \mathrm{~h}}{\mathrm{~d}}\right)=0.68 \mathrm{~h}$
3. Determine available NH4-N for nitrification after nitrogen consumption for heterotrophic bacteria synthesis from BOD removal using Eq. (8-20), Table 8-10.
$P_{x, \text { bio }}=\frac{Q\left(Y_{H}\right)(B O D)}{\left(1+b_{H} S R T\right)}+\frac{f_{d}\left(b_{H}\right) Q\left(Y_{H}\right)(B O D) S R T}{\left(1+b_{H} S R T\right)}$

$$
\begin{aligned}
& \frac{P_{x, \text { bio }}}{Q}=\frac{\left(Y_{H}\right)(B O D)\left(1+f_{d}\left(b_{H}\right) S R T\right)}{\left(1+b_{H} S R T\right)} \\
& b_{H, 12}=b_{H, 20}(1.04)^{(12-20)}=(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.04)^{(12-20)}=0.087 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
& Y_{H}=0.45 \frac{\mathrm{gVSS}}{\mathrm{gbCOD}}\left(\frac{1.6 \mathrm{gbCOD}}{\mathrm{gBOD}}\right)=0.72 \mathrm{gVSS} / \mathrm{gBOD} \\
& \frac{P_{\mathrm{x}, \text { bio }}}{Q}=\frac{(0.72 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{BOD})\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)[1+0.15(0.087 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) 6 \mathrm{~d}]}{[1+0.15(0.087 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) 6 \mathrm{~d}]}=71.4 \mathrm{gVSS} / \mathrm{m}^{3}
\end{aligned}
$$

Ammonia available for nitrification (Eq. 8-25, Table 8-10):

$$
\begin{aligned}
& \mathrm{NH}_{\mathrm{o}}=\mathrm{TKN}-\left(\frac{0.12 \mathrm{gN}}{\mathrm{~g} \text { biomass }}\right) \frac{P_{\mathrm{x}, \text { bio }}}{\mathrm{Q}} \\
& \mathrm{NH}_{\mathrm{o}}=35.0 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}-0.12\left(71.4 \mathrm{gVSS} / \mathrm{m}^{3}\right)=26.4 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

4. Determine media volume and tank volume for nitrification reactors
a. Adjust DO limited flux for temperature

$$
\mathrm{J}_{\mathrm{N}, 12}=\left(1.07 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(1.058)^{(18-15)}=1.27 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}
$$

b. Determine nitrification flux in 2nd nitrification reactor under ammonia limited conditions from Eq. (9-52)

$$
\begin{aligned}
\mathrm{J}_{\mathrm{N}, 15}= & {\left[\frac{\mathrm{N}}{\left(2.2 \mathrm{~g} / \mathrm{m}^{3}+\mathrm{N}\right)}\right]\left(3.3 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right) } \\
& =\left[\frac{\left(0.70 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(2.2 \mathrm{~g} / \mathrm{m}^{3}+0.70 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]\left(3.3 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)=0.797 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{~d} \\
\mathrm{~J}_{\mathrm{N}, 12} & =\left(0.797 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)(1.098)^{(18-15)}=1.06 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}
\end{aligned}
$$

c. Design the two tanks with equal media area; thus will have same volume as they have the same fill volume fraction.

Media area $=\frac{(\mathrm{gN} \mathrm{removed} / \mathrm{d})}{\text { flux }\left(\mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$

Reactor 3

Media area $=A_{3}=\frac{\left[(26.4-X) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(1.27 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$,
where $\mathrm{X}=\mathrm{NH}_{4}-\mathrm{N}$ concentration in reactor
Reactor 4
Media area $=A_{4}=\frac{\left[(X-0.70) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(1.06 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$,
$\mathrm{A}_{3}=\mathrm{A}_{4}$
$\frac{\left[(26.4-X) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(1.27 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=\frac{\left[(\mathrm{X}-0.70) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(1.06 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}$
solve for $X ; X=12.39 \mathrm{gN} / \mathrm{m}^{3}$
Media area for each tank

$$
=\frac{\left[(12.39-0.70) \mathrm{gN} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(1.06 \mathrm{gN} / \mathrm{m}^{2} \cdot \mathrm{~d}\right)}=330,850 \mathrm{~m}^{2}
$$

d. Media volume $=\frac{330,850 \mathrm{~m}^{2}}{\left(500 \mathrm{~m}^{2} / \mathrm{m}^{3}\right)}=662 \mathrm{~m}^{3}$
e. Nitrification reactors tank volume $=\frac{662 \mathrm{~m}^{3}}{\left(0.60 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)}=1103 \mathrm{~m}^{3}$
f. Hydraulic retention time, $\tau=\mathrm{V} / \mathrm{Q}=\frac{1103 \mathrm{~m}^{3}}{30,000 \mathrm{~m}^{3}}\left(\frac{24 \mathrm{~h}}{\mathrm{~d}}\right)=0.88 \mathrm{~h}$
5. Comparison of the media volume at $12^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$

Reactor	Function	$12^{\circ} \mathrm{C}$, m^{3}	$18^{\circ} \mathrm{C}$, m^{3}
1	BOD removal	525	426
2	BOD removal	473	389
3	Nitrification	1030	662
4	Nitrification	1030	662
	Total	3058	2139

Comparison of the tank volume at $12^{\circ} \mathrm{C}$ and $18^{\circ} \mathrm{C}$

Reactor	Function	$12^{\circ} \mathrm{C}$, m^{3}	$18^{\circ} \mathrm{C}$, m^{3}
1	BOD removal	1050	850
2	BOD removal	1050	850
3	Nitrification	1720	1100
4	Nitrification	1720	1100
	Total	5540	3900

Operation at $18^{\circ} \mathrm{C}$ requires about 30% less volume than operation at $12^{\circ} \mathrm{C}$.

PROBLEM 9-20

Problem Statement - see text, page 1051

Solution

Problem Inputs

Wastewater characteristics are the same as for Example 9-8 and the soluble BOD concentration is $80 \mathrm{mg} / \mathrm{L}$.

Summary of influent wastewater characteristics

Design parameter	Unit	Design value
Average flow	$\mathrm{m}^{3} / \mathrm{d}$	30,000
BOD	$\mathrm{g} / \mathrm{m}^{3}$	140
Soluble BOD	$\mathrm{g} / \mathrm{m}^{3}$	80
TKN	$\mathrm{g} / \mathrm{m}^{3}$	35
Nonbiodegradable VSS	$\mathrm{g} / \mathrm{m}^{3}$	25
TSS	$\mathrm{g} / \mathrm{m}^{3}$	70
VSS	$\mathrm{g} / \mathrm{m}^{3}$	60
Minimum design temperature	${ }^{\circ} \mathrm{C}$	12.0

Other assumptions and inputs

1. Effluent BOD $\leq 20 \mathrm{mg} / \mathrm{L}$
2. Media depth $=2 \mathrm{~m}$
3. Hydraulic application rate $=6.0 \mathrm{~m} / \mathrm{h}$
4. Use 4 cells and 1 standby
5. BOD loading $=3.5 \mathrm{~kg} \mathrm{BOD} / \mathrm{m}^{3} \cdot \mathrm{~d}$
6. Actual oxygen transfer efficiency $=6.0$ percent
7. Fraction of influent VSS destroyed $=0.25$
8. Backwash water flush rate is $40 \mathrm{~m} / \mathrm{h}$ for $15 \mathrm{~min} / \mathrm{d}$
9. Determine the BAF volume and dimensions.
a. Determine the volume

$$
\begin{aligned}
\text { Volume } & =\frac{\text { BOD applied }}{\text { Design BOD loading }} \\
& =\frac{\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left(3.5 \mathrm{kgBOD} / \mathrm{m}^{3} \cdot \mathrm{~d}\right)}
\end{aligned}
$$

Volume $=1200 \mathrm{~m}^{3}$
b. Determine the area per cell and dimensions

Area based on organic loading $=\frac{1200 \mathrm{~m}^{3}}{2 \mathrm{~m}}=600 \mathrm{~m}^{2}$
Area based on hydraulic application rate (HAR):
$H A R=\frac{Q}{A}$
$\frac{6 \mathrm{~m}}{\mathrm{~h}}=\frac{\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\mathrm{A}(24 \mathrm{~h} / \mathrm{d})}, \mathrm{A}=208.3 \mathrm{~m}^{2}$
Thus BOD loading and media depth control the area.
Use Area $=600 \mathrm{~m}^{2}$
Area $/$ cell $=\frac{600 \mathrm{~m}^{2}}{4 \text { cells }}=150 \mathrm{~m}^{2} /$ cell
Assuming square configuration, $L=W$
$\mathrm{L}^{2}=150 \mathrm{~m}^{2}$
$\mathrm{L}=12.25 \mathrm{~m}$
4 cells +1 standby at $12.25 \mathrm{~m} \times 12.25 \mathrm{~m} \times 2 \mathrm{~m}$

Add underdrain and freeboard depth per specific manufacturer's design details.
c. Determine the equivalent hydraulic retention time based on empty bed contact volume
Equivalent HRT $=\frac{\left(1200 \mathrm{~m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})}{\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.96 \mathrm{~h}$
2. Determine the oxygen required and air supply rate to each cell.
a. Determine the oxygenation rate required from Eq. (9-51).

$$
\begin{aligned}
\mathrm{OR} & =0.82 \frac{\mathrm{sBOD}_{\mathrm{o}}}{\mathrm{TBOD}_{\mathrm{o}}}+\frac{1.6\left(\mathrm{BF}_{\mathrm{Vss}}\right) \mathrm{X}_{0}}{\mathrm{TBOD}_{\mathrm{o}}} \\
\mathrm{OR} & =0.82\left[\frac{\left(80 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)}\right]+\frac{1.6(0.25)\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)} \\
& =0.64 \mathrm{gO}_{2} / \mathrm{gBOD} \text { applied }
\end{aligned}
$$

Oxygenation rate required

$$
\begin{aligned}
& =\left(0.64 \mathrm{gO}_{2} / \mathrm{gBOD} \text { applied }\right)\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(140 \mathrm{gBOD} / \mathrm{m}^{3}\right) \\
& =2,699,000 \mathrm{gO}_{2} / \mathrm{d} \\
& =2688 \mathrm{kgO}_{2} / \mathrm{d}
\end{aligned}
$$

b. Determine the air supply rate in $\mathrm{m}^{3} /$ min per treatment unit at standard conditions of $20^{\circ} \mathrm{C}$ and 1.0 atm .
i. The oxygenation rate per unit

$$
\frac{\left(2688 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)}{4 \operatorname{unit}(1440 \mathrm{~min} / \mathrm{d})}=0.46 \mathrm{kgO}_{2} / \mathrm{min} \cdot \text { unit }
$$

ii. The density of air at standard conditions is $1.204 \mathrm{~kg} / \mathrm{m}^{3}$ per

Appendix B-3

iii. The fraction by weight of oxygen in air is 0.2318 per Appendix B-2
iv. The oxygen content of the air at standard condition

$$
\begin{aligned}
& =0.231 \frac{\mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \text { air }}\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right) \\
& =0.279 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{m}^{3} \text { air }
\end{aligned}
$$

v. Air flow rate at 100% efficiency

$$
\begin{aligned}
& =\frac{\left(0.46 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{min}\right)}{\left(0.279 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{m}^{3} \text { air }\right)} \\
& =1.65 \mathrm{~m}^{3} / \mathrm{min} \cdot \text { unit }
\end{aligned}
$$

vi. Air flow rate at 6% efficiency

$$
=\frac{\left(1.65 \mathrm{~m}^{3} / \mathrm{min} \bullet u n i t\right)}{0.06}=27.5 \mathrm{~m}^{3} / \mathrm{min} \cdot \text { unit }
$$

vii. Total air flow rate $=4(27.5)=110 \mathrm{~m}^{3} / \mathrm{min}$
3. Determine the sludge production rate using Eq. (9-52).

$$
\begin{aligned}
P_{\mathrm{X}, \mathrm{VSS}} & =\left[0.60\left(\mathrm{sBOD}_{\mathrm{o}}\right)+\left(1-\mathrm{BF}_{\mathrm{VSS}}\right)\left(\mathrm{X}_{\mathrm{o}}\right)\right] \mathrm{Q} \\
\mathrm{P}_{\mathrm{X}, \mathrm{VSS}} & =\left[0.60\left(80 \mathrm{~g} / \mathrm{m}^{3}\right)+(1-0.25)\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right) \\
& =[\quad(\text { biomass })+(\text { remaining VSS })]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right) \\
P_{\mathrm{X}, \mathrm{VSS}} & =0.60\left(80 \mathrm{~g} / \mathrm{m}^{3}\right)\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)+(1-0.25)\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right) \\
& =1,440,000 \mathrm{~g} / \mathrm{d}+1,350,000 \mathrm{~g} / \mathrm{d}
\end{aligned}
$$

Biomass is about 85 percent volatile

$$
\begin{aligned}
& P_{X, T S S}=\frac{(1,440,000 \mathrm{~g} / \mathrm{d})}{(0.85 \mathrm{gVSS} / \mathrm{gTSS})}+1,350,000 \mathrm{~g} / \mathrm{d}+\left[(70-60) \mathrm{gTSS} / \mathrm{m}^{3}\right]\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right) \\
& \quad P_{X, T S S}=3,344,117 \mathrm{gTSS} / \mathrm{d}=3344 \mathrm{~kg} \text { TSS } / \mathrm{d}
\end{aligned}
$$

4. Determine the amount of backwash water used daily per unit.

Backwash volume/d•unit $=\frac{40 \mathrm{~m}}{\mathrm{~h}}\left(150 \mathrm{~m}^{2} /\right.$ unit $)\left(\frac{1 \mathrm{~h}}{60 \mathrm{~min}}\right)\left(\frac{15 \mathrm{~min}}{\mathrm{~d}}\right)$

$$
=1500 \mathrm{~m}^{3} / \text { d•unit }
$$

Total backwash volume $=(4$ units $)\left(1500 \mathrm{~m}^{3} / \mathrm{d} \cdot \mathrm{unit}\right)=6000 \mathrm{~m}^{3} / \mathrm{d}$
5. Determine the backwash water TSS concentration.

Daily solids production $=3,344,112 \mathrm{~g}$ TSS/ d
Assume effluent TSS $=10 \mathrm{mg} / \mathrm{L}$
Daily solids loss in effluent $=\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)\left(30,000 \mathrm{~m}^{3} / \mathrm{d}\right)=300,000 \mathrm{~g} / \mathrm{d}$
Solids removed daily in backwash water

$$
=(3,344,117-300,000) \mathrm{g} \text { TSS } / \mathrm{d}=3,044,117 \mathrm{~g} \mathrm{TSS} / \mathrm{d}
$$

TSS concentration $=\frac{(3,044,117 \mathrm{~g} \mathrm{TSS} / \mathrm{d})}{\left(6000 \mathrm{~m}^{3} / \mathrm{d}\right)}=507 \mathrm{mg} / \mathrm{L}$
6. Prepare a summary table.

Parameter	Unit	Value
Media volume	m^{3}	1200
Total area	m^{2}	600
\# active units	-	4
Area/unit	$\mathrm{m}^{2} / \mathrm{unit}$	150
Length and width	m	12.25×12.25
Equivalent HRT	h	0.96
Oxygen required	kg / d	2688
Total air application rate	$\mathrm{m}^{3} / \mathrm{min}$	110
Air application rate /unit	$\mathrm{m}^{3} / \mathrm{min}$	27.5
Sludge production rate	$\mathrm{kg} \mathrm{TSS} / \mathrm{d}$	3344
Total backwash water	$\mathrm{m}^{3} / \mathrm{d}$	6000
Backwash water /unit	$\mathrm{m}^{3} / \mathrm{d}$	1500
Backwash water TSS concentration	mg / L	507

PROBLEM 9-21

Problem Statement - see text, page 1051

Solution (Effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration $=\mathbf{2 . 0} \mathbf{~ m g} / \mathrm{L}$)

Wastewater characteristics

Item	Unit	Value
Flowrate	$\mathrm{m}^{3} / \mathrm{d}$	5000
TSS	$\mathrm{g} / \mathrm{m}^{3}$	15
$\mathrm{NO}_{3}-\mathrm{N}$	$\mathrm{g} / \mathrm{m}^{3}$	30
Temperature	${ }^{\circ} \mathrm{C}$	18

Assumptions in problem statement:

1. Synthesis yield with methanol $=0.25 \mathrm{~g} \mathrm{VSS} / \mathrm{g}$ CODr
2. The half-order nitrate removal kinetic coefficient $=0.30 \mathrm{mg} / \mathrm{L} \cdot \mathrm{min}$
3. Effluent TSS concentration $=5.0 \mathrm{mg} / \mathrm{L}$

Solution

1. Determine the denitrification filter media volume.
a. Determine filter size based on nitrogen loading (NL). Apply Eq. (9-59):

$$
\begin{aligned}
& \mathrm{NL}=\frac{-0.5 \mathrm{~K}\left(1.44 \mathrm{NO}_{\mathrm{o}}\right)}{\left(\mathrm{NO}_{\mathrm{e}}\right)^{0.5}-\left(\mathrm{NO}_{\mathrm{o}}\right)^{0.5}} \\
& \mathrm{NL}=\frac{-0.5\left(0.30 \mathrm{~g} / \mathrm{m}^{3} \cdot \mathrm{~min}\right)(1.44)\left(30.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(2.0 \mathrm{~g} / \mathrm{m}^{3}\right)^{0.5}-\left(30.0 \mathrm{~g} / \mathrm{m}^{3}\right)^{0.5}}=1.60 \mathrm{~kg} \mathrm{NO}
\end{aligned} 3-\mathrm{N} / \mathrm{m}^{3} \cdot \mathrm{~d} \mathrm{l}
$$

$$
\mathrm{NO}_{3}-\mathrm{N} \text { applied }=\left(30.0 \mathrm{~g} / \mathrm{m}^{3}\right)\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)
$$

$$
=150 \mathrm{~kg} / \mathrm{d}
$$

$$
\text { Volume }=\frac{(150 \mathrm{~kg} / \mathrm{d})}{\left(1.60 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}\right)}=93.75 \mathrm{~m}^{3}
$$

$$
\begin{aligned}
\text { Area } & =\mathrm{V} / \mathrm{D}=93.75 \mathrm{~m}^{3} / 1.6 \mathrm{~m} \\
& =58.6 \mathrm{~m}^{2}
\end{aligned}
$$

b. Determine filter size based on filtration hydraulic loading bases.

Hydraulic application rate $=4 \mathrm{~m} / \mathrm{h}$
Flowrate $=5000 \mathrm{~m}^{3} / \mathrm{d}=208.33 \mathrm{~m}^{3} / \mathrm{h}$
Filter area $=\left(208.33 \mathrm{~m}^{3} / \mathrm{h}\right) /(4 \mathrm{~m} / \mathrm{h})$

$$
=52.1 \mathrm{~m}^{2}
$$

Thus, the filter size is controlled by the nitrogen loading; Area $=58.6$ m^{2}.
2. Determine filter dimensions assuming square tanks.
a. Assume 5 filters installed with 1 filter used as standby so that loading is only increased by about 30\% when one filter is taken out for backwashing.
Area $/$ filter $=\frac{58.6 \mathrm{~m}^{2}}{4}=14.65 \mathrm{~m}^{2}$
Use a square configuration.
Filter bed dimensions $=3.83 \times 3.83 \times 1.6 \mathrm{~m}$
(check supplier standard modules)
3. Determine the methanol dose
a. Nitrate removal $=\left(30.0 \mathrm{~g} / \mathrm{m}^{3}-2.0 \mathrm{~g} / \mathrm{m}^{3}\right)\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)=140 \mathrm{~kg} / \mathrm{d}$
b. Calculate methanol dose from Eq. (8-69)

$$
\begin{aligned}
& \begin{aligned}
\mathrm{C}_{\mathrm{R}, \mathrm{NO} 3} & =\frac{2.86}{1-1.42\left(\mathrm{Y}_{\mathrm{H}}\right)}=\frac{2.86}{1-1.42(0.25 \mathrm{gVSS} / \mathrm{gCOD})} \\
& =4.43 \mathrm{~g} \text { methanol } \mathrm{COD} / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}
\end{aligned} \\
& \text { Methanol dose }=\frac{\left(4.43 \mathrm{~g} \text { methanol COD } / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}\right)}{(1.5 \mathrm{~g} \mathrm{COD} / \mathrm{g} \text { methanol })}=2.95 \mathrm{~g} \text { methanol } / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}
\end{aligned}
$$

Methanol $=(2.95 \mathrm{~kg} / \mathrm{kg})(140 \mathrm{~kg} / \mathrm{d})=413 \mathrm{~kg} / \mathrm{d}$
Provisions for an additional amount to be added to consume DO and $\mathrm{NO}_{2}-\mathrm{N}$ in the influent should be made.
4. Determine the amount of solids produced.

Solids $=$ filtered solids + biomass production
Effluent TSS $=5 \mathrm{~g} / \mathrm{m}^{3}$
Filtered solids $=\left[(15-5) \mathrm{g} / \mathrm{m}^{3}\right]\left(5000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$ $=50 \mathrm{~kg} / \mathrm{d}$

Biomass production: based on $0.25 \mathrm{gVSS} / \mathrm{g}$ methanol
Biomass produced =
$\left.P_{\mathrm{X}, \text { bio }}=\frac{\left(\frac{0.25 \mathrm{~g} \mathrm{VSS}}{\mathrm{g} \mathrm{COD}}\right)\left(\frac{1.5 \mathrm{~g} \mathrm{COD}}{\mathrm{g} \mathrm{CH} 3} \mathrm{OH}\right.}{}\right)\left(413 \mathrm{~kg} \mathrm{CH}_{3} \mathrm{OH} / \mathrm{d}\right), ~(0.85 \mathrm{gVSS} / \mathrm{gTSS}) \quad=182.2 \mathrm{kgTSS} / \mathrm{d}$
Total solids produced in filter $=50 \mathrm{kgTSS} / \mathrm{d}+182.2 \mathrm{kgTSS} / \mathrm{d}=232.2$ kgTSS/d
These solids will be removed daily by backwashing the filters.

PROBLEM 9-22
Problem Statement - see text, page 1052

Solution

1. Determine the effect of using glycerol on the effluent $\mathrm{NO}_{3}-\mathrm{N}$ concentration due to the higher half-order nitrate removal kinetics with glycerol.
a. Apply Eq. (9-59) using the nitrogen load (NL) resulting from the filter volume determined in Example 9-9. Use the higher value for K with glycerol and calculate the effect on the effluent $\mathrm{NO}_{3}-\mathrm{N}\left(\mathrm{NO}_{e}\right)$ concentration.

$$
\mathrm{NL}=\frac{-0.5 \mathrm{~K}\left(1.44 \mathrm{NO}_{0}\right)}{\left(\mathrm{NO}_{\mathrm{e}}\right)^{0.5}-\left(\mathrm{NO}_{\mathrm{o}}\right)^{0.5}}
$$

The resulting nitrogen loading for Example 9-9:

$$
\mathrm{NL}=\frac{\mathrm{Q}\left(\mathrm{NO}_{0}\right)}{\mathrm{A}(\mathrm{D})}=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(25 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{\left(83.3 \mathrm{~m}^{2}\right)(2.0 \mathrm{~m})}=1.2 \mathrm{~kg} \mathrm{NO}
$$

b. NL if $\mathrm{NO}_{e}=0 \mathrm{mg} / \mathrm{L}$
$\mathrm{NL}=\frac{-0.5\left(0.40 \mathrm{~g} / \mathrm{m}^{3} \cdot \mathrm{~min}\right)(1.44)\left(25.0 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(0.0 \mathrm{~g} / \mathrm{m}^{3}\right)^{0.5}-\left(25.0 \mathrm{~g} / \mathrm{m}^{3}\right)^{0.5}}=1.44 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}$
Using the design equation with glycerol kinetics the allowable $\mathrm{NO}_{3}-\mathrm{N}$ loading can be higher than the design loading of $1.2 \mathrm{~kg} \mathrm{NO}_{3}-\mathrm{N} / \mathrm{m}^{3} \cdot \mathrm{~d}$ in Example 9-9. Thus, the higher kinetics using glycerol will reduce the $\mathrm{NO}_{3}-\mathrm{N}$ concentration to its minimal value where the $\mathrm{NO}_{3}-\mathrm{N}$ concentration is rate limiting, likely $<0.20 \mathrm{mg} / \mathrm{L}$.
2. Determine the carbon dose requirement for using glycerol given that the synthesis yield is 0.36 g VSS $/ \mathrm{g}$ CODr.
a. From Example 9-9: Nitrate removal $=\left(25.0 \mathrm{~g} / \mathrm{m}^{3}-1.0 \mathrm{~g} / \mathrm{m}^{3}\right)(8000$ $\mathrm{m}^{3} / \mathrm{d}$)
$=192 \mathrm{~kg} / \mathrm{d}$
b. Calculate glycerol dose from Eq. (8-69)

$$
\begin{aligned}
\mathrm{C}_{\mathrm{R}, \mathrm{NO} 3} & =\frac{2.86}{1-1.42\left(\mathrm{Y}_{\mathrm{H}}\right)}=\frac{2.86}{1-1.42(0.36 \mathrm{~g} \mathrm{VSS} / \mathrm{gCOD})} \\
& =5.85 \mathrm{~g} \text { glycerol } \mathrm{COD} / \mathrm{g} \mathrm{NO}_{3}-\mathrm{N} \\
& \text { add } 10 \% \text { for } \mathrm{DO} \text { and } \mathrm{NO}_{2}-\mathrm{N} \text { in influent }
\end{aligned}
$$

Glycerol dose $=(1.1) 5.85=6.44 \mathrm{~g}$ glycerol COD $/ \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}$
Glycerol COD dose $=(6.44 \mathrm{~kg} / \mathrm{kg})(192 \mathrm{~kg} / \mathrm{d})=1236.5 \mathrm{~kg}$ glycerol COD/d
c. Determine COD of glycerol and determine dose as glycerol.
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+3.5 \mathrm{O}_{2}=3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
MW of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}=92$
$\frac{\mathrm{g} \mathrm{COD}}{\mathrm{g} \text { glycerol }}=\frac{3.5(32)}{92}=1.217 \mathrm{gCOD} / \mathrm{g}$ glycerol
Carbon dose as glycerol $=1236.5 \mathrm{~kg}$ COD/1.217 kg COD/kg glycerol Glycerol dose $=1016 \mathrm{~kg}$ glycerol $/ \mathrm{d}$
3. Calculate the solids production rate using glycerol

Solids $=$ filtered solids + biomass production
Use effluent TSS $=5 \mathrm{mg} / \mathrm{L}\left(\mathrm{g} / \mathrm{m}^{3}\right)$ (given value)
Filter solids $=\left[(20-5) \mathrm{g} / \mathrm{m}^{3}\right]\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$

$$
=120 \mathrm{~kg} / \mathrm{d}
$$

Biomass production: based on $0.36 \mathrm{gVSS} / \mathrm{g}$ methanol COD (given)
Biomass produced =

$$
P_{\mathrm{x}, \mathrm{bio}}=\frac{\left(\frac{0.36 \mathrm{~g} \mathrm{VSS}}{\mathrm{~g} \mathrm{COD}}\right)(1236.5 \mathrm{~kg} \text { glycerol COD } / \mathrm{d})}{(0.85 \mathrm{gVSS} / \mathrm{g} \mathrm{TSS})}=523.7 \mathrm{kgTSS} / \mathrm{d}
$$

Total solids $=120 \mathrm{kgTSS} / \mathrm{d}+523.7 \mathrm{kgTSS} / \mathrm{d}=643.7 \mathrm{kgTSS} / \mathrm{d}$
Denite filter volume $=\left(83.3 \mathrm{~m}^{2}\right)(2 \mathrm{~m})=166.6 \mathrm{~m}^{3}$

Solids storage/24h

$$
=\left(\frac{643.7 \mathrm{~kg} \mathrm{TSS}}{\mathrm{~d}}\right)\left(\frac{\text { filters }}{166.6 \mathrm{~m}^{3}}\right)=3.9 \mathrm{~kg} \mathrm{TSS} / \mathrm{m}^{3}
$$

This amount of solids storage exceeds the typical accumulation capacity given on page 1034 and thus the filters would have to be backwashed more than once per day.

ANAEROBIC SUSPENDED AND ATTACHED GROWTH BIOLOGICAL TREATMENT PROCESSES

PROBLEM 10-1

Problem Statement - see text, page 1109

Solution

1. Define the conditions that determine the anaerobic reactor pH .

It is safe to assume that the pH is below 8.0 and by referring to Fig. F-1 in Appendix F (page 1927) all of the alkalinity must be present as bicarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$. The corresponding carbonate equilibrium relationship is defined by Eq. (10-3):

$$
\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]}=\mathrm{K}_{\mathrm{a} 1}
$$

The value of first acid dissociation constant $\mathrm{K}_{\mathrm{a} 1}$ at $30^{\circ} \mathrm{C}$ is 4.677×10^{-7} mole/L. Rearrange Eq. (10-3) to solve for $\left[\mathrm{H}^{+}\right]$.

$$
\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}
$$

2. Determine the carbonic acid concentration
a. Determine the concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ using Eq. (2-46) in Chap. 2.

$$
\mathrm{x}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{H}} \mathrm{p}_{\mathrm{g}}
$$

Determine the value of the Henry's constant in atm at $30^{\circ} \mathrm{C}$ using Eq. (248) as indicated in Example 10-1.
$\log _{10} H=\frac{-A}{T}+B$
From Table 2-7, the values of A and B are 1012.40 and 6.606, respectively.

$$
\log _{10} H=\frac{-A}{T}+B=\frac{-1012.40}{273.15+30}+6.606=3.27
$$

$\mathrm{H}=10^{3.27}=1862.1 \mathrm{~atm}$
Note that the value given in Table F-1 of Appendix F is 1847, which is within 1 percent.

$$
\mathrm{x}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{H}} \mathrm{p}_{\mathrm{g}}=\frac{(1 \mathrm{~atm})(0.35)}{1862.1 \mathrm{~atm}}=1.88 \times 10^{-4}
$$

Because one liter of water contains 55.6 mole [$1000 \mathrm{~g} /(18 \mathrm{~g} / \mathrm{mole})$], the mole fraction of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is equal to:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{\operatorname{mole} \text { gas }\left(\mathrm{n}_{\mathrm{g}}\right)}{\text { mole gas }\left(\mathrm{n}_{\mathrm{g}}\right)+\text { mole water }\left(\mathrm{n}_{\mathrm{w}}\right)} \\
& 1.88 \times 10^{-4}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+(55.6 \text { mole } / \mathrm{L})}
\end{aligned}
$$

Because the number of moles of dissolved gas in a liter of water is much less than the number of moles of water,

$$
\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \approx\left(1.88 \times 10^{-4}\right)(55.6 \mathrm{~mole} / \mathrm{L}) \approx 10.45 \times 10^{-3} \mathrm{~mole} / \mathrm{L}
$$

3. Solve for pH .

$$
\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=\frac{\left(4.677 \times 10^{-7} \mathrm{moles} / \mathrm{L}\right)\left(10.45 \times 10^{-3} \mathrm{moles} / \mathrm{L}\right)}{\left[\mathrm{HCO}_{3}^{-}\right]}
$$

a. Determine moles $/ \mathrm{L}$ of HCO_{3} for alkalinity $=2200 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} $\mathrm{meq} / \mathrm{L}$ of alkalinity $=(2200 \mathrm{mg} / \mathrm{L}) /(50 \mathrm{mg} / \mathrm{meq})=44 \mathrm{meq} / \mathrm{L}$ Because valence of HCO3 equal 1 , the meq/L = moles $/ \mathrm{L}$
Thus moles/L of $\mathrm{HCO}_{3}=44.0 \times 10^{-3}$
b. Determine the H^{+}concentration and pH .

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=\frac{\left(4.677 \times 10^{-7} \mathrm{moles} / \mathrm{L}\right)\left(10.45 \times 10^{-3} \mathrm{moles} / \mathrm{L}\right)}{\left(44.0 \times 10^{-3} \mathrm{moles} / \mathrm{L}\right)}} \\
& {\left[\mathrm{H}^{+}\right]=1.11 \times 10^{-7} \mathrm{moles} / \mathrm{L}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.11 \times 10^{-7} \mathrm{moles} / \mathrm{L}\right)=7.0-0.05 \\
& \mathrm{pH}=6.95
\end{aligned}
$$

PROBLEM 10-2

Problem Statement - see text, page 1109-1110

Solution: Part A Anaerobic Process

4. Determine the alkalinity required to maintain the pH of the anaerobic process at a value of 7.0, and the corresponding cost.
a. Determine the concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ using Eq. (2-46) in Chap. 2.
$\mathrm{X}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{H}} \mathrm{p}_{\mathrm{g}}$
Determine the value of the Henry's constant in atm at $35^{\circ} \mathrm{C}$ using Eq. (248) as shown in Example 10-1.
$\log _{10} H=\frac{-A}{T}+B$
From Table 2-7, the values of A and B are 1012.40 and 6.606, respectively.

$$
\begin{aligned}
& \log _{10} H=\frac{-A}{T}+B=\frac{-1012.40}{273.15+35}+6.606=3.32 \\
& H=10^{3.32}=2092 \mathrm{~atm} \\
& \mathrm{X}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{\mathrm{P}_{\mathrm{T}}}{H} p_{\mathrm{g}}=\frac{(1 \mathrm{~atm})(0.35)}{2092 \mathrm{~atm}}=1.67 \times 10^{-4}
\end{aligned}
$$

Because one liter of water contains 55.6 mole [1000 g/(18 g/mole)], the mole fraction of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is equal to:

$$
\mathrm{x}_{\mathrm{H}_{2} \mathrm{CO}_{3}}=\frac{\text { mole gas }\left(\mathrm{n}_{\mathrm{g}}\right)}{\text { mole gas }\left(\mathrm{n}_{\mathrm{g}}\right)+\text { mole water }\left(\mathrm{n}_{\mathrm{w}}\right)}
$$

$$
1.67 \times 10^{-4}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+(55.6 \mathrm{~mole} / \mathrm{L})}
$$

Because the number of moles of dissolved gas in a liter of water is much less than the number of moles of water,

$$
\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \approx\left(1.67 \times 10^{-4}\right)(55.6 \mathrm{~mole} / \mathrm{L}) \approx 9.29 \times 10^{-3} \mathrm{~mole} / \mathrm{L}
$$

b. Determine the concentration of $\mathrm{HCO}_{3}{ }^{-}$required to maintain the pH at a value of 7.0 using Eq. (10-3).
$\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\mathrm{K}_{\mathrm{a} 1}$
where, $\mathrm{K}_{\mathrm{a} 1}=4.85 \times 10^{-7}$ (Table F-2) and $\mathrm{H}^{+}=10^{-7}$ mole $/ \mathrm{L}$
$\left[\mathrm{HCO}_{3}^{-}\right]=\frac{\left(4.85 \times 10^{-7}\right)\left(9.29 \times 10^{-3} \mathrm{~mole} / \mathrm{L}\right)}{\left(10^{-7} \mathrm{~mole} / \mathrm{L}\right)}$
$=0.045 \mathrm{~mole} / \mathrm{L}$
$\mathrm{HCO}_{3}{ }^{-}=0.045 \mathrm{~mole} / \mathrm{L}(61 \mathrm{~g} / \mathrm{mole})\left(10^{3} \mathrm{mg} / \mathrm{1g}\right)=2745 \mathrm{mg} / \mathrm{L}$
c. Determine the amount of alkalinity required per day

Equivalents of $\mathrm{HCO}_{3}{ }^{-}=\frac{(2.745 \mathrm{~g} / \mathrm{L})}{(61 \mathrm{~g} / \mathrm{eq})}=0.045 \mathrm{eq} / \mathrm{L}$
1 eq. $\mathrm{CaCO}_{3}=\frac{\mathrm{m} \cdot \mathrm{w} .}{2}=\frac{(100 \mathrm{~g} / \mathrm{mole})}{2}=50 \mathrm{~g} \mathrm{CaCO} 3 / \mathrm{eq}$
Alkalinity as $\mathrm{CaCO}_{3}=(0.045 \mathrm{eq} / \mathrm{L})(50 \mathrm{~g} / \mathrm{eq}) 10^{3} \mathrm{mg} / \mathrm{g}$

$$
=2250 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}
$$

Alkalinity needed $=(2250-200) \mathrm{mg} / \mathrm{L}$

$$
=2050 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}
$$

Daily alkalinity addition $=\left(2050 \mathrm{~g} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1 \mathrm{~kg} / 1^{3} \mathrm{~g}\right)$

$$
=8200 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{d}
$$

Alkalinity addition as HCO_{3} :

$$
=\frac{\left(8200 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{d}\right)\left(61 \mathrm{~g} \mathrm{HCO}_{3} / \mathrm{eq}\right)}{\left(50 \mathrm{~g} \mathrm{CaCO}_{3}\right)}=10,004 \mathrm{~kg} \mathrm{HCO}_{3} / \mathrm{d}
$$

d. Determine the daily cost for the needed alkalinity.

Alkalinity cost $=(10,004 \mathrm{~kg} / \mathrm{d})(\$ 0.90 / \mathrm{kg})=\$ 9004 / \mathrm{d}$
2. Determine the amount of energy, and the corresponding cost, required to raise the temperature of the sludge from 20 to $35^{\circ} \mathrm{C}$ using a specific heat value of $4200 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ (see inside of back cover). Heat transfer efficiency $=$ 80 percent (given).
a. Energy required

$$
\begin{aligned}
\mathrm{q} & =\left[\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left[(35-20)^{\circ} \mathrm{C}\right]\left(4200 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\right] / 0.80 \\
& =31.5 \times 10^{10} \mathrm{~J} / \mathrm{d}
\end{aligned}
$$

b. Cost of the required energy at $\$ 0.08 / \mathrm{kWh}$ (given)
$1.0 \mathrm{kWh}=3.6 \mathrm{MJ}$ (Table A-2)
Cost $=\frac{\left(31.5 \times 10^{10} \mathrm{~J} / \mathrm{d}\right)(\$ 0.08 / \mathrm{kWh})}{\left(3.6 \times 10^{6} \mathrm{~J} / \mathrm{kWh}\right)}=\$ 6776 / \mathrm{d}$
3. Determine the amount of methane produced per day at a COD concentration of $\mathbf{1 0 , 0 0 0} \mathrm{mg} / \mathrm{L}$ and the corresponding value of the methane.
a. Gas production. Ignoring biomass production, the methane production at $35^{\circ} \mathrm{C}=0.40 \mathrm{~m}^{3} / \mathrm{kg}$ COD removed. The methane production rate at a COD removal efficiency 95 percent (given) is:
$=\left(0.40 \mathrm{~m}^{3} / \mathrm{kg}\right)\left(10,000 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1.0 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)(0.95)$
$=15,200 \mathrm{~m}^{3} / \mathrm{d}$
At $0^{\circ} \mathrm{C}$, the methane volume is:
Volume, $0^{\circ} \mathrm{C}=\frac{\left(15,200 \mathrm{~m}^{3} / \mathrm{d}\right)(273.25)}{(273.15+35)}=13,473.6 \mathrm{~m}^{3} / \mathrm{d}$
Energy content of methane at standard conditions $=38,846 \mathrm{~kJ} / \mathrm{m}^{3}$
(Example problem 10-2)
b. Energy value produced

$$
=\left(13,473.6 \mathrm{~m}^{3} / \mathrm{d}\right)\left(38,846 \mathrm{~kJ} / \mathrm{m}^{3}\right)=523.4 \times 10^{6} \mathrm{~kJ} / \mathrm{d}
$$

c. Value of methane.

$$
=\left(523.4 \times 10^{6} \mathrm{~kJ} / \mathrm{d}\right)\left(\$ 5 / 10^{6} \mathrm{~kJ}\right)=\$ 2,615 / \mathrm{d}
$$

d. Use of digester gas for heating water. To reduce the cost of electrical energy for heating the water, the energy contained in the digested gas will be used instead.

Energy required to heat water (from Step 2a) $=31.5 \times 10^{10} \mathrm{~J} / \mathrm{d}$
Energy available to heat water (Step 3b, above) $=52.34 \times 10^{10} \mathrm{~J} / \mathrm{d}$
Fraction of methane produced needed to heat the digester:
$=\frac{\left(31.5 \times 10^{10} \mathrm{~J} / \mathrm{d}\right)}{\left(52.34 \times 10^{10} \mathrm{~J} / \mathrm{d}\right)}=0.60$
Excess methane at Std. conditons $=(1-0.60)\left(13,473.6 \mathrm{~m}^{3} / \mathrm{d}\right)$
$=5389.4 \mathrm{~m}^{3} / \mathrm{d}$
Value of excess methane $=$
$\left(5389.4 \mathrm{~m}^{3} / \mathrm{d}\right)\left(38,846 \mathrm{~kJ} / \mathrm{m}^{3}\right)\left(\$ 5 / 10^{6} \mathrm{~kJ}\right)=\$ 1046 / \mathrm{d}$

Solution: Part B Aerobic Process

4. Determine the oxygen required to treat the waste, and the corresponding energy cost.
a. O_{2} required

$$
\begin{aligned}
& =\left(10,000{\left.\mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1.0 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)(0.99)\left(1.2 \mathrm{~g} / \mathrm{g} \mathrm{O}_{2}\right)}^{=47,520 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}}\right.
\end{aligned}
$$

b. Cost of aeration

$$
=\frac{\left(47,520 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)(\$ 0.08 / \mathrm{kWh})}{\left(1.2 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kWh}\right)}=\$ 3168 / \mathrm{d}
$$

5. Determine the daily net sludge production, and the corresponding processing cost.
a. Sludge production
$=\left(10,000 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1.0 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)(0.3 \mathrm{~g} \mathrm{TSS} / \mathrm{g} \mathrm{COD})$
$=12,000 \mathrm{~kg} \mathrm{TSS} / \mathrm{d}$
b. Cost of sludge processing
$=(12,000 \mathrm{~kg} \mathrm{TSS} / \mathrm{d})(\$ 0.10 / \mathrm{kg}$ TSS $)=\$ 1200 / \mathrm{d}$

Solution: Comparison of Anaerobic and Aerobic Process

6. Prepare a summary table to compare the anaerobic and aerobic processes.

	Treatment process cost, \$/d		
	Anaerobic without internal use of digester gas	Anaerobic with internal use digester gas	Aerobic
Item	$<9,004>$	$<9004>$	
Required alkalinity	$<6,776>$	0	
Raise temperature	2,615	1,046	
Methane produced	$<13,165>$	$<7,958>$	$<3,168>$
Net cost			$<1,200>$
Aeration		$<4,368>$	
Sludge processing			
Net cost			

Comment

In this problem, the importance of the organic concentration, alkalinity cost, and temperature of the wastewater is illustrated. The economic benefit of using of digester gas for heating is also illustrated. The need to add alkalinity is a major negative cost for the anaerobic process in this case.

PROBLEM 10-3

Problem Statement - See text, page 11110

Solution (flowrate of $1000 \mathrm{~m}^{3} / \mathrm{d}$)

1. Determine the amount of substrate degradation that will occur.
$\mathrm{C}_{50} \mathrm{H}_{75} \mathrm{O}_{20} \mathrm{~N}_{5}$ S removed $=(0.95)(4000 \mathrm{mg} / \mathrm{L})=3800 \mathrm{mg} / \mathrm{L}$
2. Write a balanced equation for substrate degradation using Eq. (10-4).

$$
\begin{aligned}
& \mathrm{C}_{50} \mathrm{H}_{75} \mathrm{O}_{20} \mathrm{~N}_{5} \mathrm{~S}+\left(50-\frac{75}{4}+\frac{20}{2}+\frac{3(5)}{4}+\frac{1}{2}\right) \mathrm{H}_{2} \mathrm{O} \rightarrow \\
& \quad\left(\frac{50}{2}+\frac{75}{8}+\frac{20}{4}+\frac{3(5)}{8}+\frac{1}{4}\right) \mathrm{CH}_{4} \\
& \quad+\left(\frac{50}{2}-\frac{75}{8}+\frac{20}{4}+\frac{3(5)}{8}+\frac{1}{4}\right) \mathrm{CO}_{2} \\
& \quad+(5) \mathrm{NH}_{3}+\text { (1) } \mathrm{H}_{2} \mathrm{~S}
\end{aligned}
$$

$$
\mathrm{C}_{50} \mathrm{H}_{75} \mathrm{O}_{20} \mathrm{~N}_{5} \mathrm{~S}+45.5 \mathrm{H}_{2} \mathrm{O} \rightarrow 41.5 \mathrm{CH}_{4}+22.75 \mathrm{CO}_{2}+5 \mathrm{NH}_{3}+1 \mathrm{H}_{2} \mathrm{~S}
$$

3. Write the pertinent reaction for the formation of alkalinity as the substrate is degraded using Eq. (10-5).

$$
\begin{aligned}
& \mathrm{C}_{50} \mathrm{H}_{75} \mathrm{O}_{20} \mathrm{~N}_{5} \mathrm{~S}+45.5 \mathrm{H}_{2} \mathrm{O} \rightarrow 41.5 \mathrm{CH}_{4}+22.75 \mathrm{CO}_{2}+5 \mathrm{NH}_{3}+1 \mathrm{H}_{2} \mathrm{~S} \\
+ & \left.5\left(\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right) \rightarrow 5 \mathrm{NH}_{4}^{+}+5 \mathrm{HCO}_{3}^{-}\right) \\
\hline & \mathrm{C}_{50} \mathrm{H}_{75} \mathrm{O}_{20} \mathrm{~N}_{5} \mathrm{~S}+50.5 \mathrm{H}_{2} \mathrm{O} \rightarrow 41.5 \mathrm{CH}_{4}+17.75 \mathrm{CO}_{2}+5 \mathrm{NH}_{4}^{+}+1 \mathrm{H}_{2} \mathrm{~S}+5 \mathrm{HCO}_{3}^{-}
\end{aligned}
$$

The amount of alkalinity (expressed as CaCO_{3}) produced per g / L of substrate degraded is $250 / 1097=0.23 \mathrm{~g} / \mathrm{L}$ as CaCO_{3}.
4. Determine the amount of alkalinity produced per day for an average flowrate of $1000 \mathrm{~m}^{3} / \mathrm{d}$.

$$
\begin{aligned}
\text { Alk prod. } & =\left(\frac{3.8 \mathrm{~g}}{\mathrm{~L}}\right)\left(\frac{0.23 \mathrm{~g} / \mathrm{L}}{\mathrm{~g} / \mathrm{L}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(\frac{10^{3} \mathrm{~m}^{3}}{\mathrm{~d}}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right) \\
& =874 \mathrm{~kg} / \mathrm{d} \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

Summary of results for various flowrates

Flowrate, $\mathrm{m}^{3} / \mathrm{d}$	Alkalinity produced, kg/d as CaCO_{3}
1000	874
2000	1748
3000	2622

5. Determine the approximate mole fraction of $\mathrm{CO}_{2}, \mathrm{CH}_{4}$, and $\mathrm{H}_{2} \mathrm{~S}$ in the gas phase using Eqs. (10-6), (10-7), and (10-8), respectively.
$\mathrm{f}_{\mathrm{CO}_{2}}=\frac{4(50)-75+2(20)-5(5)+2(1)}{8(50-5+1)}=0.386$
$\mathrm{f}_{\mathrm{CH}_{4}}=\frac{4(50)+75-2(20)-5(5)-2(1)}{8(50-5+1)}=0.565$
$\mathrm{f}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{1}{8(50-5+1)}=0.003$

PROBLEM 10-4

Problem Statement - See text, page 1110
Instructors Note: The discussion in the text that accompanies Eq. (10-16) and the data presented in Fig. 10-7 are not correct. The percent $\mathrm{H}_{2} \mathrm{~S}$ should be on the right axis and the HS^{-}on the left axis. Thus, at a pH of 7 , about 40% of the $\mathrm{H}_{2} \mathrm{~S}$ present is gaseous $\mathrm{H}_{2} \mathrm{~S}$.

Solution

1. Determine the amount of COD that will be used for sulfate reduction at 98 percent degradation.
COD used $=0.98\left(\frac{0.89 \mathrm{mg} \mathrm{COD}}{\mathrm{mg} \text { sulfate }}\right)\left(\frac{500 \mathrm{mg} \text { sulfate }}{\mathrm{L}}\right)=436 \mathrm{mg} \mathrm{COD} / \mathrm{L}$
2. For the influent COD value of $\mathbf{4 0 0 0} \mathbf{~ m g} / \mathrm{L}$, compute the amount of methane gas that will be generated (a) with and (b) without the presence of sulfate.
a. Determine the amount of methane produced accounting for the COD removed by sulfate reduction. The COD remaining after sulfate reduction and considering the 95 percent COD degradation is
$C O D$ remaining $=0.95(4000 \mathrm{mg} / \mathrm{L})-436 \mathrm{mg} / \mathrm{L}=3364 \mathrm{mg} / \mathrm{L}$
Methane produced $=\left(\frac{3.364 \mathrm{~g} \mathrm{COD}}{\mathrm{L}}\right)\left(\frac{0.40 \mathrm{~L} \mathrm{CH}_{4}}{\mathrm{~g} \mathrm{COD}}\right)=1.35 \mathrm{LCH}_{4} / \mathrm{L}$

At the flowrate of $2000 \mathrm{~m} 3 / \mathrm{d}$, the total amount of methane produced per day is

Methane produced $=\left(\frac{1.35 \mathrm{~m}^{3} \mathrm{CH}_{4}}{\mathrm{~m}^{3}}\right)\left(\frac{2000 \mathrm{~m}^{3}}{\mathrm{~d}}\right)=2691 \mathrm{~m}^{3} / \mathrm{d}$
b. Determine the amount of methane produced without accounting for the COD removed by sulfate reduction. The COD remaining assuming 95 percent COD degradation is

COD remaining $=0.95(4000 \mathrm{mg} / \mathrm{L})=3800 \mathrm{mg} / \mathrm{L}$
Methane produced $=\left(\frac{3.8 \mathrm{~g} \mathrm{COD}}{\mathrm{L}}\right)\left(\frac{0.40 \mathrm{~L} \mathrm{CH}_{4}}{\mathrm{~g} \mathrm{COD}}\right)=1.52 \mathrm{~L} \mathrm{CH}_{4} / \mathrm{L}$
At the flowrate of $2000 \mathrm{~m} 3 / \mathrm{d}$, the total amount of methane produced per day is

Methane produced $=\left(\frac{1.52 \mathrm{~m}^{3} \mathrm{CH}_{4}}{\mathrm{~m}^{3}}\right)\left(\frac{2000 \mathrm{~m}^{3}}{\mathrm{~d}}\right)=3,040 \mathrm{~m}^{3} / \mathrm{d}$
3. Compute the amount of $\mathrm{H}_{2} \mathrm{~S}$ in the gas phase at a reactor pH value of 7.0.
a. Determine the total amount of $\mathrm{H}_{2} \mathrm{~S}$ produced (hydrogen sulfide gas and hydrogen sulfide ion) from sulfate reduction.
$\mathrm{H}_{2} \mathrm{~S}$ prod. $=\left(\frac{0.4 \mathrm{~m}^{3} \mathrm{H}_{2} \mathrm{~S}}{\mathrm{~kg} \mathrm{COD}}\right)\left(\frac{0.436 \mathrm{~kg} \mathrm{COD}}{\mathrm{m}^{3}}\right)\left(\frac{2000 \mathrm{~m}^{3}}{\mathrm{~d}}\right)=349 \mathrm{~m}^{3} / \mathrm{d}$
b. Compute the percent of $\mathrm{H}_{2} \mathrm{~S}$ in the gas phase at pH 7 and $35^{\circ} \mathrm{C}$.

For a reactor temperature of $35^{\circ} \mathrm{C}$, the acid equilibrium constant for $\mathrm{H}_{2} \mathrm{~S}$, $\mathrm{K}_{\mathrm{a} 1}$, must be interpolated between the temperatures of 30 and $40^{\circ} \mathrm{C}$, as given in Table 10-11. Plotting the $K_{a 1}$ values on log-paper as a function of temperature results in a value of 1.88 for $\mathrm{K}_{\mathrm{a} 1}$ at $35^{\circ} \mathrm{C}$. The percent $\mathrm{H}_{2} \mathrm{~S}$ is then determined using Eq. (10-16).

$$
\mathrm{H}_{2} \mathrm{~S}, \%=\frac{100}{1+\mathrm{K}_{\mathrm{a} 1} /\left[\mathrm{H}^{+}\right]} \frac{100}{1+\left(1.88 \times 10^{-7}\right) /\left[10^{-7}\right]}=35 \%
$$

c. Determine the total amount of $\mathrm{H}_{2} \mathrm{~S}$ in the gas phase produced in the reactor.

$$
\mathrm{H}_{2} \mathrm{~S} \text { gas produced }=349 \mathrm{~m} 3 / \mathrm{d} \times 0.35=122 \mathrm{~m} 3 / \mathrm{d}
$$

4. Summary of values for all influent COD concentrations

Item	Unit	Influent COD		
		4000	6000	8000
COD remaining after sulfate reduction	mg/L	3364	5264	7164
Methane produced accounting sulfate reduction	$\mathrm{m}^{3} / \mathrm{d}$	2691	4211	5731
Methane produced without accounting for sulfate reduction	$\mathrm{m}^{3} / \mathrm{d}$	3040	4560	6080

PROBLEM 10-5

Problem Statement - See text, page 1110

Solution

1. Summarize the possible causes and mechanisms for a decrease in the methane gas production rate.

Cause	Mechanism
Nutrient limitation	The concentration of nitrogen, phosphorus, or sulfur may be insufficient to support anaerobic biomass growth.
Micronutrient limitation	Trace metals, such as iron, cobalt, nickel, and zinc, may be not present or bioavailable.
Alkalinity limitation	Because of the high concentration of dissolved CO_{2}, alkalinity is needed to buffer the pH in an anaerobic reactor. Alkalinity will need to be added if the wastewater does not contain sufficient alkalinity to maintain a neutral pH.
Ammonia toxicity	High concentrations of ammonia (toxicity threshold of 100 mg / L as $\left.\mathrm{NH}_{3}-\mathrm{N}\right)$, are inhibitory to methanogenic activity. Proteins and amino acids may be degraded to produce ammonium
Sulfide toxicity	High concentrations (50 to 250 mg/L) of $\mathrm{H}_{2} \mathrm{~S}$ has been shown to decrease methanogenic activity.
General toxicity	The presence of other toxic or inhibitory substances in wastewater may reduce methanogenic reaction rates.

PROBLEM 10-6

Problem Statement - See text, page 1110-1111
Instructors Note: Students should be instructed to assume a value for the percent COD removal. For the following example a value of 90 percent was selected.

Solution (wastewater 1):

1. For a degradable COD concentration of $\mathbf{4 0 0 0} \mathbf{~ m g} / \mathrm{L}$ and a temperature of $25^{\circ} \mathrm{C}$, determine the SRT.

At 90 percent COD removal the effluent COD is:

$$
=(1.0-0.9)(4000 \mathrm{mg} / \mathrm{L})=400 \mathrm{mg} / \mathrm{L}
$$

The given effluent TSS concentration is $120 \mathrm{mg} / \mathrm{L}$.
Effluent COD from TSS = $(120 \mathrm{mg} / \mathrm{L}) 1.8 \mathrm{~g}$ COD/g TSS $=216 \mathrm{mg} / \mathrm{L}$
Allowable effluent soluble COD $=(400-216) \mathrm{mg} / \mathrm{L}=184 \mathrm{mg} / \mathrm{L}$
Rearranging Eq. (7-70) and substituting $\mathrm{kY}=\mu$ [Eq. (7-16)]:
SRT $=\left[\frac{\mu_{\mathrm{m}} \mathrm{S}_{0}}{\mathrm{~K}_{\mathrm{s}}+\mathrm{S}_{\mathrm{e}}}-\mathrm{b}\right]^{-1}$
Use kinetic coefficients from Table 10-13,
$\mu_{\mathrm{m}}=0.20 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{S}}=120 \mathrm{mg} / \mathrm{L}$
$\mathrm{b}=0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
SRT $=\left\{\frac{(0.20 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(184 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(120+184) \mathrm{g} / \mathrm{m}^{3}\right]}-0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}\right\}^{-1}$
SRT $=11.0 \mathrm{~d}$
Use a factor of safety of 1.5
Design SRT $=1.5(11.0)=16.5 \mathrm{~d}$
2. Determine the amount of sludge that will need to be wasted daily

Use Eq. (8-21) in Table 8-10 to determine solids production:
$P_{X, T S S}=\frac{Q Y\left(S_{o}-S\right)}{[1+b(S R T)](0.85)}+\frac{f_{d}(b) Q Y\left(S_{o}-S\right) S R T}{(1+b S R T)(0.85)}+Q(n b V S S)$
$\mathrm{S}_{0}-\mathrm{S}=$ degradable COD $=4000 \mathrm{mg} / \mathrm{L}-184 \mathrm{mg} / \mathrm{L}=3816 \mathrm{mg} / \mathrm{L}$
Use coefficients from Table 10-13 and assume $f_{d}=0.15$
$\mathrm{Y}=0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g}$ COD
$\mathrm{b}=0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$

$$
\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}=\frac{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(3816 \mathrm{mg} \mathrm{COD} / \mathrm{L})}{[1+0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(16.5 \mathrm{~d})](0.85)}+
$$

$$
\frac{0.15 \mathrm{~g} / \mathrm{g}(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} / \mathrm{g})(3816 \mathrm{mg} / \mathrm{L})(16.5 \mathrm{~d})}{[1+0.03(16.5 \mathrm{~d})](0.85)}+0 \mathrm{~g} / \mathrm{d}
$$

$=480,472 \mathrm{~g} / \mathrm{d}+35,675 \mathrm{~g} / \mathrm{d}+0 \mathrm{~g} / \mathrm{d}$
$P_{X, T S S}=516,147 \mathrm{~g} / \mathrm{d}=516.1 \mathrm{~kg} / \mathrm{d}$
3. Determine reactor volume and τ
a. Determine the volume using Eq. (7-57)

$$
\text { Volume }=\frac{\left(\mathrm{P}_{\mathrm{X}, \mathrm{Tss}}\right)(\mathrm{SRT})}{\mathrm{MLSS}}
$$

Assume MLSS $=5000 \mathrm{~g} / \mathrm{m}^{3}$

$$
\text { Volume }=\frac{(516,147 \mathrm{~g} / \mathrm{d})(16.5 \mathrm{~d})}{\left(5,000 \mathrm{~g} / \mathrm{m}^{3}\right)}=1703 \mathrm{~m}^{3}
$$

b. Determine the hydraulic detention time, τ

$$
\tau=\frac{V}{Q}=\frac{1703 \mathrm{~m}^{3}}{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.85 \mathrm{~d}
$$

4. Determine the methane gas production rate

Assume $0.4 \mathrm{~m}^{3} \mathrm{gas} / \mathrm{kg} \mathrm{COD}$ at $35^{\circ} \mathrm{C}$
At $25^{\circ} \mathrm{C}$ gas production rate $=(0.4) \frac{(273.15+25)}{(273.15+35)}=0.39 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{COD}$
Amount of COD removed in waste sludge
$=\frac{(516,147 \mathrm{gTSS} / \mathrm{d})(0.85 \mathrm{gVSS} / \mathrm{gTSS})(1.42 \mathrm{gCOD} / \mathrm{gVSS})}{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}$
$=312 \mathrm{gCOD} / \mathrm{m}^{3}$

The methane gas production
$=\left(0.39 \mathrm{~m}^{3} / \mathrm{kg}\right)\left(3816-312 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1.0 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$=2733 \mathrm{~m}^{3} / \mathrm{d}$
5. Determine the methane gas production rate

Methane production $=\frac{\left(2733 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d}\right)}{\left(0.65 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{m}^{3} \text { gas }\right)}=4,205 \mathrm{~m}^{3} / \mathrm{d}$
6. Determine nutrient requirements

Biomass production $=P_{X, T S S}=516,547 \mathrm{~g}$ TSS/d
$N=12 \%, P=2 \%$ of VSS
N required $=(516,547)(0.12)(0.85)=52,787 \mathrm{~g} / \mathrm{d}$
P required $=(516,547)(0.02)(0.85)=8,781 \mathrm{~g} / \mathrm{d}$

Repeat the solution for $35^{\circ} \mathrm{C}$

For a degradable COD concentration of $4000 \mathrm{mg} / \mathrm{L}$ and a temperature of $35^{\circ} \mathrm{C}$, determine the SRT.

At 90 percent COD removal the effluent COD is:

$$
=(1.0-0.9)(4000 \mathrm{mg} / \mathrm{L})=400 \mathrm{mg} / \mathrm{L}
$$

The given effluent TSS concentration is $120 \mathrm{mg} / \mathrm{L}$.
Effluent COD from TSS $=(120 \mathrm{mg} / \mathrm{L}) 1.8 \mathrm{~g}$ COD $/ \mathrm{g} \mathrm{TSS}=216 \mathrm{mg} / \mathrm{L}$
Allowable effluent soluble COD $=(400-216) \mathrm{mg} / \mathrm{L}=184 \mathrm{mg} / \mathrm{L}$
Rearranging Eq. (7-70) and substituting kY $=\mu$ [Eq. (7-16)]:
$\mathrm{SRT}=\left[\frac{\mu_{\mathrm{m}} \mathrm{S}_{\mathrm{o}}}{\mathrm{K}_{\mathrm{s}}+\mathrm{S}_{\mathrm{e}}}-\mathrm{b}\right]^{-1}$
Use kinetic coefficients from Table 10-13,
$\mu_{\mathrm{m}}=0.35 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{S}}=120 \mathrm{mg} / \mathrm{L}$
$\mathrm{b}=0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$
SRT $=\left\{\frac{(0.35 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(184 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left[(120+184) \mathrm{g} / \mathrm{m}^{3}\right]}-0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}\right\}^{-1}$
SRT $=5.5 \mathrm{~d}$
Use a factor of safety of 1.5
Design SRT $=1.5(5.5)=8.3 \mathrm{~d}$
2. Determine the amount of sludge that will need to be wasted daily Use Eq. (8-21) in Table 8-10 to determine solids production:
$P_{X, T S S}=\frac{Q Y\left(S_{0}-S\right)}{[1+b(S R T)](0.85)}+\frac{f_{d}(b) Q Y\left(S_{0}-S\right) S R T}{(1+b S R T)(0.85)}+Q(n b V S S)$
$\mathrm{S}_{0}-\mathrm{S}=$ degradable COD $=4000 \mathrm{mg} / \mathrm{L}-184 \mathrm{mg} / \mathrm{L}=3816 \mathrm{mg} / \mathrm{L}$
Use coefficients from Table 10-13 and assume $f_{d}=0.15$
$\mathrm{Y}=0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$
$b=0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}$

$$
\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}=\frac{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(3816 \mathrm{mg} \mathrm{COD} / \mathrm{L})}{[1+0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(8.3 \mathrm{~d})](0.85)}+
$$

$$
\frac{0.15 \mathrm{~g} / \mathrm{g}(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} / \mathrm{g})(3816 \mathrm{mg} / \mathrm{L})(8.3 \mathrm{~d})}{[1+0.03(8.3 \mathrm{~d})](0.85)}+0 \mathrm{~g} / \mathrm{d}
$$

$$
=575,104 \mathrm{~g} / \mathrm{d}+21,480 \mathrm{~g} / \mathrm{d}+0 \mathrm{~g} / \mathrm{d}
$$

$$
P_{X, T S S}=596,584 \mathrm{~g} / \mathrm{d}=596.6 \mathrm{~kg} / \mathrm{d}
$$

3. Determine reactor volume and τ
a. Determine the volume using Eq. (7-57)

Volume $=\frac{\left(P_{\mathrm{X}, \mathrm{TSS}}\right)(\mathrm{SRT})}{\mathrm{MLSS}}$
Assume MLSS $=5000 \mathrm{~g} / \mathrm{m}^{3}$

$$
\text { Volume }=\frac{(596,584 \mathrm{~g} / \mathrm{d})(8.3 \mathrm{~d})}{\left(5,000 \mathrm{~g} / \mathrm{m}^{3}\right)}=990 \mathrm{~m}^{3}
$$

b. Determine the hydraulic detention time, τ

$$
\tau=\frac{V}{Q}=\frac{990 \mathrm{~m}^{3}}{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.50 \mathrm{~d}
$$

4. Determine the methane gas production rate

Assume $0.4 \mathrm{~m}^{3} \mathrm{gas} / \mathrm{kg} \mathrm{COD}$ at $35^{\circ} \mathrm{C}$

Amount of COD removed in waste sludge $=$
$=\frac{(596,584 \mathrm{gTSS} / \mathrm{d})(0.85 \mathrm{gVSS} / \mathrm{gTSS})(1.42 \mathrm{gCOD} / \mathrm{gVSS})}{\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)}=360 \mathrm{gCOD} / \mathrm{m}^{3}$

The methane gas production $=$
$=\left(0.40 \mathrm{~m}^{3} / \mathrm{kg}\right)\left(3816-360 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)\left(2000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1.0 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)$
$=2765 \mathrm{~m}^{3} / \mathrm{d}$
5. Determine the methane gas production rate

Methane production $=\frac{\left(2765 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d}\right)}{\left(0.65 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{m}^{3} \mathrm{gas}\right)}=4254 \mathrm{~m}^{3} / \mathrm{d}$
6. Determine nutrient requirements

Biomass production $=\mathrm{P}_{\mathrm{x}, \mathrm{Tss}}=596,584 \mathrm{gTSS} / \mathrm{d}$
$N=12 \%, P=2 \%$ of VSS
N required $=(596,584)(0.12)(0.85)=60,851 \mathrm{~g} / \mathrm{d}$
Prequired $=(596,584)(0.02)(0.85)=10,142 \mathrm{~g} / \mathrm{d}$

Summary

The solutions for 25 and $35^{\circ} \mathrm{C}$ for wastewater 1 is summarized in the following table.

Parameter	Unit	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
Design SRT	d	16.5	8.3

Reactor volume	m^{3}	1703	990
Detention time, τ	d	0.85	0.50
CH_{4} production rate	$\mathrm{m} 3 / \mathrm{d}$	2733	2765
Total gas production rate	$\mathrm{m} 3 / \mathrm{d}$	4205	4254
Solids to be wasted	kg / d	516	597
Nitrogen requirements	kg / d	52.6	60.8
Phosphorus requirements	kg / d	8.8	10.1

PROBLEM 10-7

Problem Statement - See text, page 1111

Solution:

1. It is stated in the problem that 95 percent of the influent soluble COD is degraded at a 30 d SRT and an effluent VSS concentration $=\mathbf{1 0 0} \mathbf{~ m g} / \mathbf{L}$. Thus, effluent $S=0.05 S_{0}$ and $S_{0}-S=0.95 S_{0}$.
2. Using Eq. (8-20) in Table 8-10 for biomass solids production, the yield and decay coefficients in Table 10-10, assuming $f_{d}=0.15 \mathrm{~g} / \mathrm{g}$ and $\mathrm{S}=0.95 \mathrm{~S}_{0}$, the influent concentration S_{O} is calculated as follows.
$P_{X, V S S}=\frac{Q Y\left(S_{0}-S\right)}{1+b(S R T)}+\frac{f_{d}(b) Q Y\left(S_{0}-S\right) S R T}{1+b(S R T)}$
$\frac{P_{X, \text { VSS }}}{Q}=X_{e}=\frac{Y\left(0.95 S_{0}\right)}{1+b(S R T)}+\frac{f_{d}(b) Y\left(0.95 S_{o}\right) \text { SRT }}{1+b(S R T)}$
$100 \mathrm{~g} / \mathrm{m}^{3}=\frac{(0.08 \mathrm{~g} / \mathrm{g})\left(0.95 \mathrm{~S}_{0}\right)}{[1+(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(30 \mathrm{~d})]}$
$+\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d}))(0.08 \mathrm{~g} / \mathrm{g})\left[\left(0.95 \mathrm{~S}_{0}\right) \mathrm{g} / \mathrm{m}^{3}\right](30 \mathrm{~d})}{[1+(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})(30 \mathrm{~d}]}$
$100=0.04 \mathrm{~S}_{\mathrm{o}}+0.0054 \mathrm{~S}_{\text {。 }}$
$\mathrm{S}=2203 \mathrm{~g} / \mathrm{m}^{3}$
3. The solution for effluent VSS concentrations of 100,150 , and $200 \mathrm{mg} / \mathrm{L}$ are summarized in the following table.

Effluent VSS, mg / L	Influent sCOD, mg / L
100	2203
150	3304
200	4405

PROBLEM 10-8

Problem Statement - See text, page 1111-1112

Solution (Wastewater 1):

1. Define the wastewater components and amount of COD removed.

Particulate COD $=0.40\left(6000 \mathrm{~g} / \mathrm{m}^{3}\right)=2400 \mathrm{~g} / \mathrm{m}^{3}$
Particulate COD degraded $=0.60\left(2400 \mathrm{~g} / \mathrm{m}^{3}\right)=1440 \mathrm{~g} / \mathrm{m}^{3}$
Soluble COD $=0.60\left(6000 \mathrm{~g} / \mathrm{m}^{3}\right)=3600 \mathrm{~g} / \mathrm{m}^{3}$
Soluble COD degraded $=0.97\left(3600 \mathrm{~g} / \mathrm{m}^{3}\right)=3492 \mathrm{~g} / \mathrm{m}^{3}$
Total amount of COD degraded $=1440+3492=4932 \mathrm{~g} / \mathrm{m}^{3}$

Non degraded particulate COD $=0.40\left(2400 \mathrm{~g} / \mathrm{m}^{3}\right)=960 \mathrm{~g} / \mathrm{m}^{3}$
Non degraded VSS $=\frac{\left(960 \mathrm{gCOD} / \mathrm{m}^{3}\right)}{(1.8 \mathrm{gCOD} / \mathrm{g} \mathrm{VSS})}=533.33 \mathrm{~g} / \mathrm{m}^{3}$
2. Determine the reactor process volume.
a. Determine the reactor volume based on the maximum upflow velocity Eq. (10-18) and Eq. (10-19)

$$
\begin{aligned}
& A=\frac{Q}{v}=\frac{\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)}{(0.50 \mathrm{~m} / \mathrm{h})(24 \mathrm{~h} / \mathrm{d})}=41.67 \mathrm{~m}^{2} \\
& V_{v}=A(H)=41.67 \mathrm{~m}^{2}(8 \mathrm{~m})=333.3 \mathrm{~m}^{3}
\end{aligned}
$$

b. Determine the reactor volume based on the organic loading rate.

From Eq. (10-20)

$$
V_{O L R}=\frac{Q_{0}}{O L R}=\frac{\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(6.0 \mathrm{~kg} \mathrm{COD} / \mathrm{m}^{3}\right)}{\left(6.0 \mathrm{~kg} \mathrm{COD} / \mathrm{m}^{3} \mathrm{ad}\right)}=500 \mathrm{~m}^{3}
$$

The organic loading rate controls the reactor volume design.
3. Determine the process hydraulic retention time.
$\frac{V}{Q}=\frac{500 \mathrm{~m}^{3}}{\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)}=1.0 \mathrm{~d}$
4. Determine the reactor dimensions.
a. Reactor Area $=\frac{V}{H}=\frac{500 \mathrm{~m}^{3}}{8 \mathrm{~m}}=62.5 \mathrm{~m}^{2}$

$$
\frac{\pi \mathrm{D}}{4}=62.5 \mathrm{~m}^{2}, \mathrm{D}=8.92 \mathrm{~m}
$$

b. Total reactor height

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{T}}=\text { process hgt + clear zone hgt + separator hgt (see Example 10-3) } \\
& \mathrm{H}_{\mathrm{T}}=8 \mathrm{~m}+0.5 \mathrm{~m}+2.5 \mathrm{~m}=11 \mathrm{~m} \\
& \text { Reactor dimensions }=8.92 \mathrm{~m} \text { dia. } \times 11 \mathrm{~m} \text { height }
\end{aligned}
$$

5. Determine the reactor SRT.
a. From Eq. $(7-56),(X) V=P_{X} S R T$
b. From Eq. (8-20),

$$
P_{X}=\frac{Q\left(Y_{H}\right)\left(S_{o}-S\right)}{1+b_{H}(S R T)}+\frac{f_{d} b_{H}(Q)\left(Y_{H}\right)\left(S_{0}-S\right)(S R T)}{1+b(S R T)}+(n b V S S) Q
$$

c. Substituting Eq. (8-20) into Eq. (7-56),

$$
\mathrm{X}_{\mathrm{vSS}}(\mathrm{~V})=\frac{\mathrm{Q}\left(\mathrm{Y}_{\mathrm{H}}\right)\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right)(\mathrm{SRT})\left[1+\mathrm{f}_{\mathrm{d}} \mathrm{~b}_{\mathrm{H}}(\mathrm{SRT})\right]}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+(\mathrm{nbVSS}) \mathrm{Q}(\mathrm{SRT})
$$

From Step $1, \mathrm{~S}_{\mathrm{o}}-\mathrm{S}=4932 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}$
From Table 10-13,
$Y_{H}=0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$
$\mathrm{b}_{\mathrm{H}}=0.03 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$

$$
\begin{aligned}
& \left(50,000 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)\left(500 \mathrm{~m}^{3}\right)= \\
& \frac{\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})\left(4932 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)(\mathrm{SRT})(1+0.15(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}) \mathrm{SRT})}{1+(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(\mathrm{SRT})} \\
& +533.3 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\left(500 \mathrm{~m}^{3} / \mathrm{d}\right) \text { SRT }
\end{aligned}
$$

Solving: SRT = 71.5 d
6. Determine the daily sludge production rate from Eq. (7-56).

$$
\begin{aligned}
P_{\mathrm{X}, \text { vss }} & =\frac{X_{\text {VSS }}(\mathrm{V})}{\text { SRT }} \\
& =\frac{\left(50,000 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)\left(500 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{71.5 \mathrm{~d}} \\
\mathrm{P}_{\mathrm{X}, \mathrm{vss}} & =349.65 \mathrm{~kg} \text { VSS } / \mathrm{d}
\end{aligned}
$$

7. Determine the excess sludge daily waste volume.

$$
\begin{aligned}
& P_{X, \text { vss }}=Q\left(X_{e}\right)+(X) Q_{W} \\
& \begin{aligned}
Q_{W} & =\frac{P_{X, v s s}-Q\left(X_{e}\right)}{X} \\
& =\frac{(349,650 \mathrm{~g} \mathrm{VSS} / \mathrm{d})-\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)}{\left(50,000 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)} \\
Q_{W} & =5.0 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
\end{aligned}
$$

8. Determine the methane gas production rate by COD balance.
COD removal = methane COD + biomass COD

$$
P_{X, \text { bio }}=P_{X, v s s}-n b V S S(Q)
$$

$$
P_{\mathrm{X}, \text { bio }}=349,650 \mathrm{~g} \mathrm{VSS} / \mathrm{d}-533.3 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)
$$

$$
P_{X, \text { bio }}=349,650 \mathrm{~g} \text { VSS } / \mathrm{d}-266,650 \mathrm{~g} \mathrm{VSS} / \mathrm{d}
$$

= 83,000 g VSS/d

Methane COD $=$ COD removed - biomass COD

CH_{4} COD/d

$$
\begin{aligned}
& =500 \mathrm{~m}^{3} / \mathrm{d}\left(4932 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)-1.42 \mathrm{~g} \mathrm{COD} / \mathrm{g} \operatorname{VSS}(83,000 \mathrm{~g} \mathrm{VSS} / \mathrm{d}) \\
& =(2,466,000-117,860) \mathrm{g} \mathrm{COD} / \mathrm{d} \\
& \mathrm{CH}_{4} \mathrm{COD}=2,348,140 \mathrm{~g} \mathrm{CH}_{4} \mathrm{COD} / \mathrm{d}
\end{aligned}
$$

At standard conditions, methane production rate $=$ $\left(2,348,140 \mathrm{~g} \mathrm{CH}_{4} \mathrm{COD} / \mathrm{d}\right)\left(0.35 \mathrm{~L} \mathrm{CH}_{4} / \mathrm{g} \mathrm{COD}\right)\left(\mathrm{m}^{3} / 10^{3} \mathrm{~L}\right)$

$$
=821.8 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d} \text { at } 0^{\circ} \mathrm{C}
$$

Methane production rate at $30^{\circ} \mathrm{C}=$

$$
\left(821.8 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d}\right)\left[\frac{(273.15+30)^{\circ} \mathrm{C}}{273.15^{\circ} \mathrm{C}}\right]=912 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d}
$$

8. Determine the total gas production rate; Percent methane $=(100-35) \%$ = 65\%

$$
\text { Total gas production rate }=\frac{\left(912 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d}\right)}{\left(0.65 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{m}^{3} \text { gas }\right)}=1403 \mathrm{~m}^{3} \text { gas } / \mathrm{d}
$$

9. Energy content of methane production

$$
\text { Energy }=\left(38,846 \mathrm{~kJ} / \mathrm{m}^{3}\right)\left(821.8 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{d}\right)=31.9 \times 10^{6} \mathrm{~kJ} / \mathrm{d}
$$

10. Determine alkalinity requirements.

$$
\begin{aligned}
& \text { Assume } \mathrm{pH}=7.0 \\
& \text { From Table } 10-7 \text { at } \mathrm{pH}=7.0, \mathrm{~T}=30^{\circ} \mathrm{C}, \\
& \text { percent } \mathrm{CO}_{2}=35 \% \text {, alkalinity }=2465 \mathrm{~g} / \mathrm{m}^{3} \text { as } \mathrm{CaCO}_{3} \\
& \text { Influent alkalinity }=300 \mathrm{~g} / \mathrm{m}^{3} \text { as } \mathrm{CaCO}_{3} \\
& \begin{aligned}
\text { Alkalinity needed } & =(2465-300) \mathrm{g} / \mathrm{m}^{3} \text { as } \mathrm{CaCO}_{3} \\
& =2165 \mathrm{~g} / \mathrm{m}^{3} \text { as } \mathrm{CaCO}_{3}
\end{aligned} \\
& \begin{aligned}
\text { Alkalinity in } \mathrm{kg} / \mathrm{d} & =\left(2165 \mathrm{~g} / \mathrm{m}^{3}\right)\left(500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right) \\
& =1083 \mathrm{~kg} / \mathrm{d}
\end{aligned}
\end{aligned}
$$

Summary of Results

Parameter	Unit	Value
Reactor process volume	m^{3}	500.0
Reactor total height	m	11.0
Reactor diameter	m	8.92
Hydraulic retention time	d	1.0
SRT	d	71.5
Excess waste sludge	$\mathrm{m}^{3} / \mathrm{d}$	5.0
Total gas production rate	$\mathrm{m}^{3} / \mathrm{d}$	1403
Methane production rate	$\mathrm{m}^{3} / \mathrm{d}$	912
Energy production rate	kJ / d	31.9×10^{6}
Alkalinity needed as CaCO_{3}	$\mathrm{~kg} / \mathrm{d}$	1083

PROBLEM 10-9

Problem Statement - See text, page 1112

Solution (Wastewater 1):

1. Determine the reactor dimensions.
a. Determine the reactor volume based on upflow velocity, Eq. (10-18) and Eq. (10-19).
Upflow velocity $=0.7 \mathrm{~m} / \mathrm{h}$ from Table 10-17.
$A=\frac{Q}{v}=\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(0.70 \mathrm{~m} / \mathrm{h})(24 \mathrm{~h} / \mathrm{d})}=178.6 \mathrm{~m}^{2}$
Use reactor height $=5 \mathrm{~m}$ from Table 10-17.
$\mathrm{V}=\mathrm{A}(\mathrm{H})=178.6 \mathrm{~m}^{2}(5 \mathrm{~m})=892 \mathrm{~m}^{3}$
Hydraulic retention time $=\frac{892.9 \mathrm{~m}^{3}}{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.3 \mathrm{~d}=7.1 \mathrm{~h}$
b. Determine the organic loading rate.

$$
\mathrm{OLR}=\frac{\mathrm{QS}_{\mathrm{o}}}{\mathrm{~V}}=\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(450 \mathrm{~g} \mathrm{COD} / \mathrm{m}^{3}\right)}{892.9 \mathrm{~m}^{3}}=1.51 \mathrm{~kg} \mathrm{COD} / \mathrm{m}^{3} \cdot \mathrm{~d}
$$

From Fig. $10-10$, this is an acceptable organic loading rate at $25^{\circ} \mathrm{C}$.
c. Determine reactor dimensions
i. Reactor diameter

$$
\frac{\pi D^{2}}{4}=178.6 \mathrm{~m}^{2}, \mathrm{D}=15.1 \mathrm{~m}
$$

ii. Reactor height

Assume per Example 10-3: Clear zone height $=0.5 \mathrm{~m}$ and gassolids separator $=2.5 \mathrm{~m}$.

Height $=5 \mathrm{~m}+0.5 \mathrm{~m}+2.5 \mathrm{~m}=8.0 \mathrm{~m}$
Reactor dimension $=15.1 \mathrm{~m}$ dia $\times 8.0 \mathrm{~m}$ height
2. Effluent BOD and TSS from UASB reactor. From p1091, effluent TSS concentration may range from 50 to $150 \mathrm{mg} / \mathrm{L}$. At 85 percent VSS/TSS and $0.5 \mathrm{~g} \mathrm{BOD} / \mathrm{gVSS}$, the effluent particulate BOD may range from 21 to 63 mg / L. The effluent soluble BOD is mainly from volatile fatty acids (VFA). VFA concentration from UASB reports may range from 20 to $50 \mathrm{mg} / \mathrm{L}$ at long SRT and thus the soluble BOD may range from
$\left(1.07 \frac{\mathrm{~g} \mathrm{COD}}{\mathrm{g} \text { acetate }}\right)\left(\frac{1 \mathrm{~g} \mathrm{BOD}}{1.6 \mathrm{~g} \mathrm{COD}}\right)(20-50)$
$=13$ to $40 \mathrm{mg} / \mathrm{L}$
Thus the total effluent BOD may range from 34 to $100 \mathrm{mg} / \mathrm{L}$.
3. Post UASB treatment to obtain a secondary treatment effluent quality. The challenge is treating what could be a relatively weak wastewater with a possibility of a significant VSS concentration as dispersed solids.

Conventional activated sludge process may have limited success due to the limitations on developing a flocculent suspension to capture the dispersed solids. A biological aerated filter (Sec. 9-6) or moving bed bioreactor (MBBR, Sec. 9-5) with chemical addition before the clarifier would be the better choice.
4. Based on review of the literature, alkalinity is typically not limited as alkalinity is produced and the high hydraulic throughput rate minimizes dissolved CO_{2} concentrations.

PROBLEM 10-10

Problem Statement - See text, page 1112

Solution

1. Determine the reactor volume and dimensions.
a. A COD loading rate of $5 \mathrm{~kg} \mathrm{COD} / \mathrm{m}^{3} \cdot \mathrm{~d}$ is given.
b. Determine the reactor volume.

$$
\text { Reactor volume }=\frac{\left(4 \mathrm{~kg} \mathrm{COD} / \mathrm{m}^{3}\right)\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(5 \mathrm{~kg} \mathrm{COD} / \mathrm{m}^{3} \cdot \mathrm{~d}\right)}=800 \mathrm{~m}^{3}
$$

c. Determine the reactor area given reaction depth of 4 m .

Area $=800 \mathrm{~m}^{3} / 4 \mathrm{~m}=200 \mathrm{~m}^{2}$
Assume 3 reactors in parallel to limit area needed for flow distribution,
Area each $=66.7 \mathrm{~m}^{2}=\pi \mathrm{D}^{2} / 4$
Diameter $=\left[(4)\left(66.7 \mathrm{~m}^{2}\right) / 3.14\right] 0.5=9.2 \mathrm{~m}$
Assume at least 1 m above media for freeboard and gas collection
3 reactors at 9.2 m dia $\times 5.0 \mathrm{~m}$ height
2. Determine the methane gas production rate ignoring COD in biomass production.
a. Determine the biological COD consumption rate at 90 percent removal.

COD consumption rate $=(1000 \mathrm{~m} 3 / \mathrm{d})\left(4000 \mathrm{~g} / \mathrm{m}^{3}\right)(0.9)=3,600,000 \mathrm{~g} / \mathrm{d}$
b. Determine the methane production rate.

Methane production at $35^{\circ} \mathrm{C}=0.40 \mathrm{CH}_{4} \mathrm{~L} / \mathrm{g}$ COD
Methano production rate $=\left(0.40 \mathrm{CH}_{4} \mathrm{~L} / \mathrm{g} \mathrm{COD}\right)(3,600,000 \mathrm{~g} \mathrm{COD} / \mathrm{d})$

$$
\begin{aligned}
& =1,440,000 \mathrm{~L} / \mathrm{d} \\
& =1440 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

3. Determine the effluent TSS concentration using Eq. (8-20).

$$
P_{X, T S S}=\frac{Q Y\left(S_{0}-S\right)}{[1+b(S R T)](0.85)}+\frac{f_{d}(b) Q Y\left(S_{0}-S\right) S R T}{[1+b(S R T)](0.85)}+Q(n b T S S)
$$

Assume nbTSS $=0$

$$
\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}=\frac{\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD})(3600 \mathrm{mg} \mathrm{COD} / \mathrm{L})}{[1+0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}(30 \mathrm{~d})](0.85)}+
$$

$\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.03 \mathrm{~g} / \mathrm{g} \cdot \mathrm{d})\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.08 \mathrm{~g} / \mathrm{g})(3600 \mathrm{mg} / \mathrm{L})(30 \mathrm{~d})}{[1+0.03(30 \mathrm{~d})](0.85)}+0 \mathrm{~g} / \mathrm{d}$
$P_{X, \text { tss }}=202,402 \mathrm{~g} / \mathrm{d}$
Effluent TSS $=(202,402 \mathrm{~g} / \mathrm{d}) /(1000 \mathrm{~m} / \mathrm{d})=202 \mathrm{mg} / \mathrm{L}$
Effluent VSS $=0.85(202 \mathrm{mg} / \mathrm{L})=171.7 \mathrm{mg} / \mathrm{L}$
4. Determine methane production rate when accounting for COD in biomass produced.
a. COD conversion rate to biomass = $(1000 \mathrm{~m} 3 / \mathrm{d})\left(171.7 \mathrm{~g} \mathrm{VSS} / \mathrm{m}^{3}\right)(1.42 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS})=243,814 \mathrm{~g} / \mathrm{d}$
b. COD consumption rate (step 2 a) $=3,600,000 \mathrm{~g} / \mathrm{d}$
c. Determine the methane production rate.

Methane production rate $=(0.40 \mathrm{~L} / \mathrm{d})[(3,600,000-243,8140) \mathrm{g} \mathrm{COD} / \mathrm{d}]$

$$
\begin{aligned}
& =1,342,594 \mathrm{~L} / \mathrm{d} \\
& =1343 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

PROBLEM 10-11

Problem Statement - See text, page 1112
Problem Analysis

Process	Compatibility with high concentrations of COD and nbVSS	Potential impact of influent solids
UASB	The UASB process is compatible with high COD wastewaters, specific loading rate dependant on temperature	Influent solids can inhibit the formation of dense, granulated sludge. A
prefermentation step may be		
helpful.		

PROBLEM 10-12

Problem Statement - See text, page 1113
The instructor should suggest reference sources for the students. Journal articles from Bioresource Technology, Journal of Bioscience and Bioengineering, Separation and Purification Technology, and Biomass and Bioenergy would be appropriate sources.

PROBLEM 10-13

Problem Statement - See text, page 1113
The instructor should suggest reference sources for the students. Journal articles from Bioresource Technology, Water Science and Technology, Biomass and Bioenergy and Water Environment Research would be appropriate sources.

PROBLEM 11-1

Problem Statement - See text, page 1278
Instructors Note: Before assigning this problem, the use of arithmetic and logarithmic probability paper should be discussed. The graphical determination of the geometric mean and standard deviation is discussed in the Section 3-3. As an aid in solving this problem, the procedure used to determine the useable sand from a stock sand is given on the following page. In addition, the students can be referred to the section on filtration in Fair and Geyer (1954) or Fair et al. (1968).

Solution

Part a

1. Plot the cumulative weight passing values for sample $\mathbf{1}$ versus the corresponding sieve size opening on arithmetic and logarithmic probability paper. The geometric mean size $\left(M_{g}\right)$ corresponds to the value at d_{50} and the geometric standard deviation $\left(s_{g}\right)$ is equal to the $d_{84.1} / M_{g}$ or $M_{g} / d_{15.9}$. The effective size is equal to the value at d_{10} and the uniformity coefficient is d_{60} / d_{10}.

Modifying Stock Sand To Produce Desired Filter Sand

Sand obtained from river bottoms or from coastal areas will generally not be suitable for use as a filter sand unless modified by removing the material that is too coarse or too fine. The material that is too coarse is generally removed by sieving. The material that is too fine is removed using a sand washer in which the material that is too fine is carried out with the wash water. Fine material can also be removed after the sand is placed in the filter by backwashing. To determine the amount of usable sand the following terms are defined.
$p_{1}=$ percent of stock sand that is smaller than the desired effective size
(i.e. d_{10})
$\mathrm{p}_{2}=$ percent of stock sand that is smaller than the desired 60 percentile size (i.e. d_{60})

Because the difference between the d_{60} and d_{10} sizes represents 50 percent of useable filter sand, the percent of stock sand that is useable is:

$$
\begin{aligned}
\mathrm{p}_{3} & =\text { percent of stock sand that is useable } \\
& =2\left(p_{2}-p_{1}\right)
\end{aligned}
$$

Because 10 percent of the useable sand will be below the d_{10} size, the percent below which the stock sand is too fine is:

$$
\begin{aligned}
\mathrm{p}_{4} & =\text { percent below which the stock sand is too fine } \\
& =\mathrm{p}_{1}-0.1 \mathrm{p}_{3}=\mathrm{p}_{1}-0.2\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)
\end{aligned}
$$

The percent of the sand that has been accounted for is equal to $p_{3}+p_{4}$, of which p_{3} is useable and p_{4} is too fine. Thus, the percent of the sand that is too coarse is given is by
$\mathrm{p}_{5}=$ percent of stock sand that is too coarse

$$
=p_{3}+p_{4}=p_{1}-1.8\left(p_{2}-p_{1}\right)
$$

Adapted from: Fair, G. M., and J. C. Geyer (1954) Water Supply and Waste-Water Disposal, John Wiley \& Sons, Inc., New York.

Summary of results for Problem 1, Part 1a.

	Sample			
Parameter	1	1	3	4
$\mathrm{~d}_{10}$	0.30	0.20	0.31	0.13
$\mathrm{~d}_{15.9}$	0.36	0.22	0.36	0.16
$\mathrm{~d}_{50}$	0.81	0.49	0.72	0.41
$\mathrm{~d}_{60}$	1.05	0.60	0.90	0.60
$\mathrm{~d}_{84.1}$	1.90	1.05	1.30	1.00
M_{g}	0.81	0.49	0.72	0.41
$\mathrm{~s}_{\mathrm{g}}$	2.3	2.2	2.0	2.6
ES	0.30	0.20	0.31	0.13
UC	3.5	3.0	2.9	4.6

Part b

To determine the amount of usable sand in stock sand sample 1, draw a line that represents the characteristics of the desired filter sand.

The amount of stock sand with a diameter less than the desired effective size (P_{10}) and the desired $\mathrm{d}_{60}\left(\mathrm{P}_{60}\right)$ is 25 and 42.5 percent, respectively. Because the amount of stock sand between d_{60} and d_{10} represents 50 percent of the specified sand, the percentage of usable stock sand is

$$
P_{\text {usable }}=2\left(P_{60}-P_{10}\right)=2(42.5 \%-25 \%)=35 \%
$$

The amount of stock sand A needed to produce 1 ton of the specified sand (ES = 0.45 mm and $\mathrm{UC}=1.6$) is

Stock sand needed $=1$ ton $/ 0.35=2.86$ ton
Summary of results for Problem 1, Part 1b.

Sand sample	P_{10}	P_{60}	$P_{\text {usable }}$	Amount stock sand needed to produce one ton of specified sand, ton
1	25	42.5	35	2.86
2	48	73	50	2.00
3	25	50	50	2.00
4	55	73	36	2.78

Part c

The specified sand may contain 10 percent below the specified effective size. The percentage of stock sand $\mathbf{1}$ that is too fine is
$P_{\text {too fine }}=25 \%-0.1(35 \%)=21.5 \%$

The $P_{\text {too fine }}$ value corresponds to a sand diameter of 0.44 mm . Because $P_{\text {usable }}$ and $P_{\text {too }}$ fine are now known, the percentage above which the sand is too coarse is

$$
P_{\text {too coarse }}=P_{\text {usable }}+P_{\text {too fine }}=35 \%+21.5 \%=56.5 \%
$$

The $\mathrm{P}_{\text {too }}$ coarse value corresponds to a sand diameter of 0.92 mm .
A number 18 or 20 sieve with hole diameters of 0.841 and 1.00 mm , respectively, should be sufficient for removing the excess coarse sand.

Summary of results for Problem 1, Part 1c

Sand sample	$\mathrm{P}_{\text {too fine, }}$ p_{1}	$\mathrm{P}_{\text {too coarse, }}$ p_{2}	Minimum sand size, mm	Maximum sand size, mm	U.S. sieve number
1	21.5	56.5	0.44	0.92	18 or 20
2	43	93	0.4	1.2	16
3	20	70	0.41	1.02	18
4	51.4	87.4	0.42	1.1	16 or 18

Part d

The backwash rise rate of the backwashing filter must not exceed the settling velocity of the smallest particle to be retained in the filter. Fig. 5-20 may be used to estimate the backwash rise rate for sand 1, assuming a shape factor of 0.85 , a specific gravity of 2.65 , and settling in water at $20^{\circ} \mathrm{C}$ (kinematic viscosity $=1.003 \mathrm{x}$ $\left.10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$. For a sand particle with diameter of 0.44 mm , the backwash rise rate is $0.073 \mathrm{~m} / \mathrm{s}$. Alternately, the particle settling velocity may be calculated following the method outlined in Example 5-4.

Summary table for Problem 1, Part 1d.

Sand sample	Backwash rise rate needed to eliminate excess fine material, m / s
1	0.073
2	0.064
3	0.067
4	0.069

Part e

The value for $\mathrm{P}_{\text {too }}$ fine from Problem 1c is used to solve this problem.
Fraction remaining to be removed $=P_{\text {too }}$ fine $/ P_{\text {too coarse }}$
$=21.5 / 56.5=0.381$
Assuming that the coarse material has been eliminated with a sieve and that the fine material is to be removed during backwashing, the amount of sieved sand needed to result in a bed of usable sand with a depth of 600 mm is
Depth of sieved sand needed $=(600 \mathrm{~mm}) /(1-0.381)=969 \mathrm{~mm}$
Summary table for Problem 1, Part 1e

Sand sample	$P_{\text {too fine }}$	$P_{\text {too coarse }}$	Fraction to be removed	Depth of sieved sand needed to get 600 mm of usable sand, mm
1	21.5	56.5	0.381	969
2	43	93	0.462	1116
3	20	70	0.286	840
4	51.4	87.4	0.588	1457

Part f

Compute the size distribution of the modified sand 1.

Size, mm	Original sand retained, \%	Modified sand retained, \%	Modified cumulative weight, $\%$
0.44	0	0	0
0.59	10.5	30	30
0.84	20	57	87
0.92	4.5	13	100
	35	100	

Part g

Use the modified form of the Rose equation to determine the headloss.
Determine the clean-water headloss using Eq. (11-5).

$$
\mathrm{h}=\frac{1.067}{\phi} \frac{L v_{\mathrm{s}}^{2}}{\alpha^{4} \mathrm{~g}} \sum \mathrm{C}_{\mathrm{d}} \frac{\mathrm{p}}{\mathrm{~d}_{\mathrm{g}}}
$$

Set up a computation table to determine the summation term in Eq. (11-5).

Sieve size or number	Fraction of sand retained	Geometric mean size, mm	Reynolds number, N_{R}	C_{d}	$\mathrm{C}_{\mathrm{d}}(\mathrm{p} / \mathrm{d}), \mathrm{m}^{-1}$
$12-14$	0.005	1.54	3.07	9.87	32
$14-16$	0.015	1.30	2.58	11.50	133
$16-18$	0.07	1.09	2.18	13.41	860
$18-20$	0.13	0.92	1.83	15.68	2,223
$20-25$	0.2	0.77	1.54	18.33	4,745
$25-30$	0.28	0.65	1.30	21.49	9,259
$30-35$	0.14	0.55	1.09	25.28	6,490
$35-40$	0.09	0.46	0.91	29.74	5,841
$40-45$	0.052	0.38	0.76	35.16	4,769
$45-50$	0.018	0.32	0.64	41.41	2,312
Sum					36,665

Determine the clean-water headloss through the stratified filter bed using Eq. (115).

$$
\mathrm{h}=\frac{1.067}{(0.75)} \frac{(0.6 \mathrm{~m})(0.00267 \mathrm{~m} / \mathrm{s})^{2}}{(0.40)^{4}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\left(36,665 \mathrm{~m}^{-1}\right)=0.89 \mathrm{~m}
$$

PROBLEM 11-2

Problem Statement - See text, page 1279

Solution

1. Determine the sphericity of filter medium 1 using equation Eq. (11-1).
$v=1.0574 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ (see Table C-1, Appendix C)
$v_{s}=\frac{\left(240 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)}{(60 \mathrm{~s} / \mathrm{min})\left(1000 \mathrm{~L} / \mathrm{m}^{3}\right)}=0.004 \mathrm{~m} / \mathrm{s}$
$N_{R}=\frac{\phi d v_{s}}{v}=\frac{(1)(0.00055 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})}{1.0574 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=2.08$
$f=150 \frac{1-\alpha}{\alpha^{3}}+1.75=150 \frac{1-0.4}{0.4^{3}}+1.75=45.01$

$$
\mathrm{h}=\frac{\mathrm{f}}{\phi} \frac{1-\alpha}{\alpha^{3}} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{v_{\mathrm{s}}^{2}}{\mathrm{~g}}=\frac{(45.01)(1-0.4)(0.6 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(1)(0.4)^{3}(0.00055 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.751 \mathrm{~m}
$$

2. Determine the headloss using the Fair-Hatch equation Eq. (11-2).

$$
\begin{aligned}
h & =k v S^{2} \frac{(1-\alpha)^{2}}{\alpha^{3}} \frac{L}{d^{2}} \frac{v_{s}}{g} \\
& =(5)\left(1.0574 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)(6)^{2} \frac{(1-0.4)^{2}(0.6 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})}{(0.4)^{3}(0.00055 \mathrm{~m})^{2}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.866 \mathrm{~m}
\end{aligned}
$$

3. Determine the headloss using the Rose equation Eq. (11-5).

$$
\begin{aligned}
& C_{d}=\frac{24}{N_{R}}+\frac{3}{\sqrt{N_{R}}}+0.34=\frac{24}{2.08}+\frac{3}{\sqrt{2.08}}+0.34=13.96 \\
& h=\frac{1.067}{\phi} C_{d} \frac{1}{\alpha^{4}} \frac{L}{d} \frac{v_{s}^{2}}{g}=\frac{(1.067)(1)(0.6 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(1)(0.4)^{4}(0.00055 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.035 \mathrm{~m}
\end{aligned}
$$

4. Summary of results from Problem 11-2

Equation	Clean-water headloss, m
Carman-Kozeny	0.751
Fair-Hatch	0.866
Rose	1.035

PROBLEM 11-3

Problem Statement - See text, page 1280

Solution

1. Determine the headloss using the Kozeny equation Eq. (11-4).

$$
\begin{aligned}
& v=1.139 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}(\text { see Table C-1, Appendix C) } \\
& \mathrm{v}_{\mathrm{s}}=\frac{\left(240 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)}{(60 \mathrm{~s} / \mathrm{min})\left(1000 \mathrm{~L} / \mathrm{m}^{3}\right)}=0.004 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~N}_{\mathrm{R}}=\frac{\phi \mathrm{dv}_{\mathrm{s}}}{v}=\frac{(1)(0.00055 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})}{1.139 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}}=1.93
\end{aligned}
$$

$$
\begin{aligned}
& \quad f=150 \frac{1-\alpha}{\alpha^{3}}+1.75=150 \frac{1-0.4}{0.4^{3}}+1.75=45.01 \\
& h=\frac{k}{g} v \frac{(1-\alpha)^{2}}{\alpha^{3}}\left(\frac{6}{d}\right)^{2} L v_{s} \\
& =\frac{(5)\left(1.139 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)(1-0.4)^{2}}{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.4)^{3}}\left(\frac{6}{0.00055 \mathrm{~m}}\right)^{2}(0.6 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})=0.932 \mathrm{~m}
\end{aligned}
$$

2. Determine the headloss using the Ergun equation Eq. (11-9).

$$
\begin{aligned}
h & =\frac{f}{\phi} \frac{(1-\alpha)}{\alpha^{3}} \frac{L}{d} \frac{v_{s}^{2}}{g} \\
& =\left(\frac{45.01}{1}\right) \frac{(1-0.4)(0.6 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(0.4)^{3}(0.00055 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.751 \mathrm{~m}
\end{aligned}
$$

3. Determine the headloss using the Rose equation Eq. (11-5).

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{d}}=\frac{24}{\mathrm{~N}_{\mathrm{R}}}+\frac{3}{\sqrt{\mathrm{~N}_{R}}}+0.34=\frac{24}{1.93}+\frac{3}{\sqrt{1.93}}+0.34=13.55 \\
& \mathrm{~h}=\frac{1.067}{\phi} \mathrm{C}_{\mathrm{d}} \frac{1}{\alpha^{4}} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{\mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{~g}}=\frac{(1.067)(13.55)(1)(0.6 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(1)(0.4)^{4}(0.00055 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=1.00 \mathrm{~m}
\end{aligned}
$$

4. Summary of results from Problem 11-2

Equation	Clean-water headloss, m
Kozeny	0.932
Ergun	0.751
Rose	1.00

PROBLEM 11-4

Problem Statement - See text, page 1280
Instructors Note: Problem 11-6 should be assigned along with Problem 11-4.

Solution

1. Determine the headloss for a sand diameter of 0.4 mm using the Rose equation Eq. (11-5).

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{R}}=\frac{\phi \mathrm{d} \mathrm{v}_{\mathrm{s}}}{v}=\frac{(1)(0.00040 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})}{\left(1.306 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)}=1.23 \\
& \mathrm{C}_{\mathrm{d}}=\frac{24}{\mathrm{~N}_{\mathrm{R}}}+\frac{3}{\sqrt{\mathrm{~N}_{\mathrm{R}}}}+0.34=\frac{24}{1.23}+\frac{3}{\sqrt{1.23}}+0.34=22.64 \\
& \mathrm{~h}=\frac{1.067}{\phi} \mathrm{C}_{\mathrm{d}} \frac{1}{\alpha^{4}} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{\mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{~g}}=\frac{(1.067)(22.64)(1)(0.75 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(1)(0.4)^{4}(0.0004 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=2.89 \mathrm{~m}
\end{aligned}
$$

2. Summary table for Problem 11-4

Sand diameter, mm	Clear-water headloss, m
0.4	2.89
0.45	2.30
0.5	1.88
0.6	1.33

PROBLEM 11-5

Problem Statement - See text, page 1280
Instructors Note: The instructor should specify the sand diameter(s) from Problem 114 to be used for solving Problem 11-5.

Solution

1. Construct a logarithmic probability plot with a line that represents the specified filter sand. The cumulative percent values that correspond to standard U.S. sieve sizes are then determined and used to construct a computation table.
Computation table to determine clear-water headloss for filter sand with an effective size of 0.4 and a uniformity coefficient of 1.5.

Sieve size or number	Geometric mean size, mm	Percent of Cumulative sand retained	Fraction of percent passing	Reynolds seand retained	number, N_{R}	C_{d}	$\mathrm{C}_{\mathrm{d}}(\mathrm{p} / \mathrm{d})$, m^{-1}
$10-12$	1.83	0	100	0	5.61	5.88	0
$12-14$	1.54	0	99.96	0	4.71	6.81	0
$14-16$	1.30	0.04	98.5	0.0004	3.97	7.90	2
$16-18$	1.09	1.46	94	0.0146	3.34	9.16	123
$18-20$	0.92	4.5	84	0.045	2.81	10.67	524
$20-25$	0.77	10	58	0.1	2.37	12.43	1609
$25-30$	0.65	26	33	0.26	1.99	14.52	5809
$30-35$	0.55	25	20	0.25	1.67	17.03	7805
$35-40$	0.46	13	5	0.13	1.40	19.97	5666
$40-45$	0.38	15	0.9	0.15	1.17	23.55	9212
$45-50$	0.32	4.1	0.125	0.041	0.99	27.66	3518
$50-60$	0.27	0.775	0.06	0.00775	0.83	32.38	921
$60-70$	0.23	0.065	0	0.00065	0.70	38.12	108
$70-80$	0.19	0.06	0	0.0006	0.59	44.89	140
Sum							34,267

Determine the clean-water headloss through the stratified filter bed using Eq. (115).

$$
\mathrm{h}=\frac{1.067}{(1)} \frac{(0.75 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(0.40)^{4}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\left(34,267 \mathrm{~m}^{-1}\right)=1.75 \mathrm{~m}
$$

Summary of results for Problem 11-5

Sand effective size, mm	Clean-water headloss, m
0.4	1.75
0.45	1.43
0.5	1.17
0.6	0.83

PROBLEM 11-6
Problem Statement - See text, page 1280

Instructors Note: The solution for Problem 11-3 is needed to complete Problem 11-6. The filtration rate is $240 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}$. The shape factor is 0.73 .

Solution

1. Determine the headloss for anthracite with diameter of 2 mm using the Rose equation Eq. (11-5).

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{R}}=\frac{\phi \mathrm{dv} \mathrm{v}_{\mathrm{s}}}{v}=\frac{(0.73)(0.002 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})}{\left(1.306 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)}=4.47 \\
& \mathrm{C}_{\mathrm{d}}=\frac{24}{\mathrm{~N}_{\mathrm{R}}}+\frac{3}{\sqrt{\mathrm{~N}_{R}}}+0.34=\frac{24}{4.47}+\frac{3}{\sqrt{4.47}}+0.34=7.13 \\
& \mathrm{~h}=\frac{1.067}{\phi} C_{d} \frac{1}{\alpha^{4}} \frac{\mathrm{~L}}{\mathrm{~d}} \frac{v_{\mathrm{s}}^{2}}{\mathrm{~g}}=\frac{(1.067)(7.13)(1)(0.3 \mathrm{~m})(0.004 \mathrm{~m} / \mathrm{s})^{2}}{(0.73)(0.5)^{4}(0.002 \mathrm{~m})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.0408 \mathrm{~m}
\end{aligned}
$$

2. The clean-water headloss ratio of anthracite to sand is then determined

Clean-water headloss ratio $=0.0408 \mathrm{~m} / 2.89 \mathrm{~m}=0.014$
Summary table for Problem 11-5

Sand diameter, mm	Clean-water headloss ratio
0.4	0.014
0.45	0.018
0.5	0.022
0.6	0.031

3. The potential for intermixing to occur can be estimated using the relationship presented in Eq. (11-28). The recommended particle diameter can be calculated assuming a typical density (1.7) for the anthracite, alternately the anthracite density needed for a particle diameter of 2 mm can be computed.

$$
d_{1}=d_{2}\left(\frac{\rho_{2}-\rho_{w}}{\rho_{1}-\rho_{w}}\right)^{0.667}=0.4\left(\frac{2.65-1}{1.7-1}\right)^{0.667}=0.71 \mathrm{~mm}
$$

4. Summary of anthracite characteristics needed to avoid intermixing

Sand diameter, mm	Recommended diameter for anthracite (with density of 1.7), mm	Required density for anthracite with a diameter of 2 mm
0.4	0.71	1.15
0.45	0.8	1.18
0.5	0.89	1.21
0.6	1.06	1.27

PROBLEM 11-7

Problem Statement - See text, page 1280
Instructors Note: Students should be advised that they will need to make assumptions for the computation of the clean-water headloss to complete Problem 11-7. The following values were used in the solution presented below. $\mathrm{v}_{\mathrm{s}}=160 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}, \phi=0.85$, $\alpha=0.40$

Solution

1. Compute the cumulative percent passing for sand 1:

Sieve number	Geometric mean size, mm	Percent retained	Cumulative percent passing
$6-8$	2.828	2	98
$8-10$	2.182	8	90
$10-14$	1.679	10	80
$14-20$	1.089	30	50
$20-30$	0.707	26	24
$30-40$	0.500	14	10
$40-60$	0.324	8	2
Pan		2	

2. Plot the cumulative percent passing versus the corresponding sieve size opening.

3. Determine the effective size and the uniformity coefficient.
a. The d_{10} and d_{60} are obtained from the plot.

$$
\begin{aligned}
& d_{10}=0.51 \mathrm{~mm} \\
& \mathrm{~d}_{60}=1.1 \mathrm{~mm}
\end{aligned}
$$

b. The effective size and uniformity coefficient are:

Effective size $=\mathrm{d}_{10}=0.51 \mathrm{~mm}$
Uniformity coefficient $=\mathrm{d}_{10} / \mathrm{d}_{60}=1.1 / 0.51=2.2$
4. Compute the clean-water headloss through the filter bed using Eq. (11-6). The method and parameters outlined in Example (11-1) are used to solve for the cleanwater headloss through sand 1.
$\mathrm{h}=\frac{1.067}{\phi} \frac{\mathrm{Lv}_{s}^{2}}{\alpha^{4} \mathrm{~g}} \sum \mathrm{C}_{\mathrm{d}} \frac{\mathrm{p}}{\mathrm{d}_{\mathrm{g}}}$
5. Set up a computation table to determine the summation term in Eq. (11-6).

Sieve size or number	Fraction of sand retained	Geometric mear size, mm	Reynolds number, N_{R}	C_{d}	$\mathrm{C}_{\mathrm{d}}(\mathrm{p} / \mathrm{d}), \mathrm{m}^{-1}$
$6-8$	2.828	0.02	6.39	5.28	37
$8-10$	2.182	0.08	4.93	6.56	240
$10-14$	1.679	0.1	3.79	8.20	489
$14-20$	1.089	0.3	2.46	12.00	3,307

$20-30$	0.707	0.26	1.60	17.73	6,515
$30-40$	0.500	0.14	1.13	24.41	6,835
$40-60$	0.324	0.08	0.73	36.62	9,041
$60-100$	0.193	0.02	0.44	59.91	6,208
Sum					32,673

6. Determine the headloss through the stratified filter bed using Eq. (11-6)
$\mathrm{L}=0.6 \mathrm{~m}$
$v_{\mathrm{s}}=0.00267 \mathrm{~m} / \mathrm{s}$
$\phi=0.85$
$\alpha=0.40$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{h}=\frac{1.067}{(0.85)} \frac{(0.6 \mathrm{~m})(0.00267 \mathrm{~m} / \mathrm{s})^{2}}{(0.40)^{4}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}\left(32,673 \mathrm{~m}^{-1}\right)=0.7 \mathrm{~m}$
7. Determine the recommended anthracite effective size needed to minimize intermixing using Eq. (11-28).
$d_{1}=d_{2}\left(\frac{\rho_{2}-\rho_{w}}{\rho_{1}-\rho_{w}}\right)^{0.667}=0.51\left(\frac{2.65-1}{1.7-1}\right)^{0.667}=0.90 \mathrm{~mm}$
8. Summary table of results for Problem 11-7

		Sand			
Parameter	Unit	1	2	3	4
ES $=\mathrm{d}_{10}$	mm	0.51	0.38	0.240	0.3
$\mathrm{~d}_{60}$	mm	1.1	0.7	0.700	0.7
UC		2.2	1.8	2.9	2.3
h	m	0.7	1.1	2.03	1.72
Anthracite d_{10}	mm	0.90	0.67	0.43	0.53

PROBLEM 11-8

Problem Statement - See text, page 1280
Instructors Note: The method outlined in the revised Example 11-2 is used to solve this problem. The kinematic viscotiy at $20^{\circ} \mathrm{C}$ is $1.006 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, sand porosity of 0.4 should be assumed.

Solution

1. Set up computation table to determine the summation term in Eq. (11-19)

$$
\frac{L_{e}}{L}=(1-\alpha) \sum \frac{p}{\left(1-\alpha_{e}\right)}\left(\frac{1}{100}\right)
$$

Sieve size number	Percent of sand retained $^{\mathrm{a}}$	Geometric Mean Size, $\mathrm{mm}^{\text {b }}$	Settling velocity $\left(v_{s}\right), \mathrm{m} / \mathrm{s}$	v/vs	$\boldsymbol{\alpha}_{\text {e }}$	$\mathrm{p} /\left(1-\alpha_{\mathrm{e}}\right)$
8-10	10	2,18 ${ }^{\text {c }}$	0,304	0,0411	0,496	19,82
10-12	10	1,83	0,27	0,0463	0,509	20,35
12-18	30	1,3	0,21	0,0595	0,538	64,87
18-20	10	0,92	0,157	0,0796	0,573	23,42
20-30	34	0,71	0,123	0,1016	0,605	86,01
30-40	5	0,5	0,085	0,1471	0,656	14,53
40-50	1	0,35	0,055	0,2273	0,722	3,60
Summation						232,61

a. Determine the particle settling velocity using Fig. 5-20 in Chap. 5. Alternatively the particle settling velocity can be computed as illustrated in Example 5-5. The settling velocity values from Fig. 5-20 are entered in the computation table.
b. Determine the values of $y / y s$ and enter the computed values in the computation table.

The backwash velocity is:
$v=0.75 \mathrm{~m} / \mathrm{min}=0.0125 \mathrm{~m} / \mathrm{s}$
c. Determine the values of α_{e} using Eq. (11-16) and enter the computed values in the computation Table.

$$
\alpha_{e}=\left(\frac{0.0175}{0.304}\right)^{0.22}=0.496
$$

d. Determine the values for column 7 and enter the computed values in the computation table.

$$
\frac{p}{\left(1-\alpha_{e}\right)}=\frac{10}{(1-0.496)}=19.82
$$

2. Determine the expanded bed depth using Eq. (11-19)

$$
L_{e}=(0.9 m)(1-0.4)(232.61)\left(\frac{1}{100}\right)=1.17 m
$$

3. Becase the expanded porosity of the largest size bed fraction (0.496) is greater than the normal porosity of the filter material, the entire filter bed will be expanded.

PROBLEM 11-9

Problem Statement - See text, page 1281

Solution

1. The required plots for Plants 1,2,3 and 4 are shown on the following figure

2. The geometric mean, Mg , and geometric standard deviation, sg , values for the four plants are shown on the above plot.
3. The probability of exceeding a turbidity value of 2.5 , again obtained from the above plot is as follows.
Plant 1, probability of exceeding 2.5 NTU = 100-99.1 = 0.90\%
Plant 2, probability of exceeding 2.5 NTU = 100-99.8 = 0.20\%
Plant 3, probability of exceeding 2.5 NTU = 100-99.3 = 0.70\%
Plant 4, probability of exceeding 2.5 NTU = 100-98.0 = 2.00\%

PROBLEM 11-10

Problem Statement - See text, page 1281

Solution

1 Plot the individual and combined distributions on the same plot. The required figure is shown on the following page
2. Impact of using all of the data.

As shown in the plot the geometric mean of the combined data set lies between the two individual data sets.
$1: \mathrm{Mg}=1.92$ NTU, $2: \mathrm{Mg}=1.25$ NTU, Combined sample: 1.51 NTU
However, what is more significant is that the geometric standard, sg, of the combined distribution is greater than either Sample 1 or 2 (see Problem 11-9).
$1: s g=1.09,2: s g=1.28$, Combined sample: $s g=1.36(\mathrm{P} 84.1 / \mathrm{P} 50=2.05 / 1.51)$.

Thus the use of limited data can lead to misleading conclusions. For example, based on the combined data set the turbidity limit of 2.5 NTU would be exceeded more often, 4 percent (100-96) of the time versus 0.9 percent based on sample 1 and 0.2 percent based on sample 2.

PROBLEM 11-11

Problem Statement - See text, page 1281

Solution

1. Determine the total filter surface area needed for the filtration of $24,000 \mathrm{~m}^{3} / \mathrm{d}$ at filtration rates of $200 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}$ and $240 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}$.

Surface area $=\frac{\left(24,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.2 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)(1440 \mathrm{~min} / \mathrm{d})}=83.3 \mathrm{~m}^{2}$
Surface area $=\frac{\left(24,000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(0.24 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)(1440 \mathrm{~min} / \mathrm{d})}=69.4 \mathrm{~m}^{2}$
2. Select a filter size and the number of filter units needed to allow one filter to be taken out of service for backwashing while not exceeding the maximum filtration rate applied to the remaining operational filters.
Four filters with surface areas of $25 \mathrm{~m}^{2}$ each will be sufficient for meeting the requirements.
3. Determine the percentage of filter output used for washing at backwashing rates of 960 and $40 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}$.
$\left[\begin{array}{l}\text { Fraction of } \\ \text { filter output }\end{array}\right]=\frac{\left(0.960 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)\left(100 \mathrm{~m}^{2}\right)(30 \mathrm{~min} / \mathrm{d})}{\left(24,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.12$
$\left[\begin{array}{l}\text { Fraction of } \\ \text { filter output }\end{array}\right]=\frac{\left(0.04 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}\right)\left(100 \mathrm{~m}^{2}\right)(30 \mathrm{~min} / \mathrm{d})}{\left(24,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=0.005$
The percentage of filter output used for backwashing is 12 and 0.5 percent, for backwashing rates of 960 and $40 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~min}$, respectively.
4. Summary Table of results for problem 11-11

Flow	Backwashing rates, $\mathrm{L} / \mathrm{m}^{2} \cdot \mathrm{~min}$	
	960	40
	Filter output use for backwashing, \%	
16,000	18	0.75
20,000	14.4	0.60
24,000	12	0.5

PROBLEM 11-12

Problem Statement - See text, page 1281

1. Determine the rejection and log rejection for each microorganism group for water 1.

	Water 1		Answer	
	Feed water, org $/ \mathrm{mL}$	Permeate. org $/ \mathrm{mL}$	Rejection, $\%$	Log rejection
Microorganism	6.5×10^{7}	3.3×10^{2}	99.99949	5.29
HPC	2			
Total coliform	3.4×10^{6}	100	99.99706	4.53
Enteric virus	7×10^{3}	6.6×10^{3}	5.71429	0.026

2. Determine the percent rejection using Eq. (11-34)

$$
\begin{aligned}
& R, \%=\left(1-\frac{C_{p}}{C_{f}}\right) \times 100 \\
& R, \%=\left(1-\frac{3.3 \times 10^{2}}{6.5 \times 10^{7}}\right) \times 100=99.99949
\end{aligned}
$$

3. Determine the log rejection using Eq. (11-35)

$$
R_{\log }=-\log (1-R)=\log \left(\frac{C_{f}}{C_{p}}\right)
$$

$$
R_{\log }=\log \left(\frac{6.5 \times 10^{7}}{3.3 \times 10^{2}}\right)=5.29
$$

4. Summary Table for Water 2

	Water 2		Answer	
	Feed water, org $/ \mathrm{mL}$	Permeate. org $/ \mathrm{mL}$	Rejection, $\%$	Log rejection
Microorganism	8.6×10^{7}	1.5×10^{2}	99.99983	5.76
HPC	5.0×10^{6}	60	100	104.92
Total coliform	5.0×10^{3}	9.1×10^{3}	54.5	0.34
Enteric virus	2.0×1			

PROBLEM 11-13

Problem Statement - See text, page 1282

Solution: Part a

1. Determine feed stream flowrate at the entrance
1.1 Calculate the cross-sectional area of one fiber lumen.

$$
A_{\text {fiber }}=\frac{\pi}{4} d^{2}=\frac{\pi}{4}\left(1.0 \times 10^{-3} \mathrm{~m}\right)^{2}=7.85 \times 10^{-7} \mathrm{~m}^{2}
$$

1.2 Calculate feed flow to 1 fiber using Eq. (11-38).

$$
Q_{p}=(v)\left(A_{\text {fiber }}\right)=(1 \mathrm{~m} / \mathrm{s})\left(7.85 \times 10^{-7} \mathrm{~m}^{2}\right)=7.85 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}
$$

1.3 Determine the total flow by multiplying Qp , the result of the step 1.2 , by the number of fibers in the module.

$$
Q_{F}=(6000 \text { fibers })\left(7.85 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{s}\right)(3600 \mathrm{~s} / \mathrm{h})=16.96 \mathrm{~m}^{3} / \mathrm{h}
$$

Solution: Part b

1. Determine the permeate flowrate
1.1 Calculate the inside surface area of one fiber.

$$
\mathrm{A}_{\mathrm{fs}}=\pi \mathrm{dL}=\pi\left(1 \times 10^{-3} \mathrm{~m}\right)(1.25 \mathrm{~m})=3.93 \times 10^{-3} \mathrm{~m}^{2}
$$

1.2 Calculate permeate flow from 1 fiber using Eq. (11-32).

$$
Q_{\text {fiber }}=\left(100 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)\left(3.93 \times 10^{-3} \mathrm{~m}^{2}\right)=0.393 \mathrm{~L} / \mathrm{h}
$$

1.3 Determine the total permeate flow, Qp, by multiplying the result from step b, by the number of fibers in the module.

$$
Q_{P}=(6000 \text { fibers })(0.393 \mathrm{~L} / \mathrm{h})\left(10^{-3} \mathrm{~m}^{3} / \mathrm{L}\right)=2.35 \mathrm{~m}^{3} / \mathrm{h}
$$

Solution: Part c

1. Determine the retentate cross-flow velocity
1.1 Calculate the retentate flow by mass balance using Eq. (11-36).

$$
\begin{aligned}
& Q_{F}=Q_{P}+Q_{R} \\
& Q_{R}=Q_{F}-Q_{P}=16.96 \mathrm{~m}^{3} / \mathrm{h}-2.35 \mathrm{~m}^{3} / \mathrm{h}=14.61 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

1.2 Calculate the retentate cross-flow velocity.

$$
v_{R}=\frac{Q_{R}}{N_{f} a_{f}}=\frac{\left(14.61 \mathrm{~m}^{3} / \mathrm{h}\right)}{(6000 \text { fibers })\left(7.85 \times 10^{-7} \mathrm{~m}^{2}\right)(3600 \mathrm{~s} / \mathrm{h})}=0.861 \mathrm{~m} / \mathrm{s}
$$

Solution: Part d

1. Determine the ratio of the velocity through the membrane surface to the cross flow velocity
1.1 Calculate the ratio of the feed velocity to the permeate velocity.

$$
\text { Ratio }=\frac{v_{\mathrm{fs}}}{v_{\mathrm{p}}}=\frac{(1 \mathrm{~m} / \mathrm{s})\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)(3600 \mathrm{~s} / \mathrm{h})}{\left(100 \mathrm{~L} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)}=36,000
$$

1.2 Comment:

The water velocity parallel to the membrane surface is 36,000 times greater than the velocity toward the membrane. This high cross-flow velocity results in a strong shear force that is not present in dead-end filtration. The shear force helps to reduce the accumulation of particles at the membrane surface.
As a result, cross-flow filters foul at a slower rate than dead-end filters and are typically able to operate at a higher average flux.

Solution: Part e

1. Determine the ratio of the permeate flowrate to the feed stream flowrate,
1.1 Ratio:

Ratio $=\frac{Q_{P}}{Q_{F}}=\frac{\left(2.35 \mathrm{~m}^{3} / \mathrm{h}\right)}{\left(16.96 \mathrm{~m}^{3} / \mathrm{h}\right)}=0.139$

1.2 Comment:

The permeate flow is only 13.9 percent of the feed flow. Thus this membrane would not be suitable in reuse applications

PROBLEM 11-14

Problem Statement - See text, page 1282

Solution

1. Calculate the log rejection for microorganisms with no broken fibers using Eq. (11-35).

$$
R_{\log }=\log \left(\frac{C_{f}}{C_{p}}\right)=\log \left(\frac{6.7 \times 10^{7} \mathrm{org} / \mathrm{L}}{5 \mathrm{org} / \mathrm{L}}\right)=7.13
$$

2. Determine the number of broken fibers.
a. Prepare a mass balance diagram for the condition with the broken fibers

b. Write mass balance equation for microorganisms in the effluent from the membrane and solve for effluent microorganism concentration

$$
\begin{aligned}
Q_{b m f} & =\frac{C_{e} Q_{e}-C_{u m f} Q_{e}}{C_{b m f}-C_{u m f}} \\
& =\frac{(200 \mathrm{org} / \mathrm{L})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)-(5 \mathrm{org} / \mathrm{L})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}{6.7 \times 10^{7} \mathrm{org} / \mathrm{L}-5 \mathrm{org} / \mathrm{L}} \\
& =0.01164 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

c. Calculate the number of broken fibers

Broken fibers $=\left[\frac{\left(0.01164 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}\right] 5000=0.0146$ fibers

Thus, the increase in the organism count cannot be attributed to a broken fiber. A more likely explanation for the observed increase in the number of microorganisms in the effluent is membrane deterioration
3. Based on the computations presented in Example 11-5, the impact of the observed membrane deterioration would be unmeasurable.

PROBLEM 11-15

Problem Statement - See text, page 1282

Solution

Advantages	Disadvantages
Depth filtration	
- Well established technology - Particle removal efficiency depends on the nature of the pretreatment process(es)	- Relatively high head loss - Relatively expensive if concrete construction is used - Backwash water storage required - High backwash water percentage (e.g., 8 to 15 percent of applied flow)

Surface filtration

- Low head loss (e.g., 250 to 300 mm)
- Lower in cost as compared to depth filters or microfiltation
- Different cloths are available for different applications
- Very low backwash water percentage (e.g., 2 to 4 percent of applied flow)
- Newer technology
- Easy to retrofit into existing traveling bridge filter basins

	Microfiltration	
-Predictable effluent particle size distribution	•	Relatively high pressure or vacuum required
-Partial removal of indicator organisms (total and fecal colifirms)	•	Relatively complex mechanically

PROBLEM 11-16

Problem Statement - See text, page 1282
Instructors Note: The method outlined in the revised Example 11-6 is used to solve this problem. The following mass transfer coefficients should be used:
$\mathrm{kw}=1 \times 10^{-6} \mathrm{~m} / \mathrm{s} \cdot$ bar and $\mathrm{k}_{\mathrm{i}}=6 \times 10^{-8} \mathrm{~m} / \mathrm{s}$

Solution

1. Estimate the membrane area using Eq. (11-38) for water 1.

$$
\begin{aligned}
\mathrm{F}_{\mathrm{w}} & =\mathrm{kw}(\Delta \mathrm{~Pa}-\Delta \Pi) \\
& =\left(1.0 \times 10^{-6} \mathrm{~m} / \mathrm{s} \cdot \text { bar }\right)(27.50 \mathrm{bar})=2.75 \times 10^{-5} \mathrm{~m} / \mathrm{s} \\
\mathrm{Q}_{\mathrm{p}} & =\mathrm{F}_{\mathrm{w}} \times \mathrm{A}
\end{aligned}
$$

$$
A=\frac{\left(0.88 \times 4000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 86,400 \mathrm{~s})}{\left(2.75 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)}=1,481 \mathrm{~m}^{2}
$$

2. Estimate the permeate TDS concentration using Eq. (11-39) and the area computed in Step 1.

$$
F_{\mathrm{s}}=\mathrm{k}_{\mathrm{s}} \Delta \mathrm{C}_{\mathrm{s}}=\frac{\mathrm{Q}_{\mathrm{p}}\left(10^{-3} \mathrm{~m}^{3} / \mathrm{L}\right) \mathrm{C}_{\mathrm{p}}}{\mathrm{~A}}
$$

Substituting for $\Delta \mathrm{Ci}$ and solving for Cp yields:

$$
C_{p}=\frac{k_{s}\left[\left(C_{f}+C_{c}\right) / 2\right] A}{Q_{p}+k_{s} A}
$$

Assume $\mathrm{Cc} \approx 10 \mathrm{Cf}$ (Note: If the estimated Cc value and the computed value of Cc , as determined below, are significantly different, the value of C_{p} must be recomputed)

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{p}}=\left(0.88 \times 4000 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 86,400 \mathrm{~s})=0.0407 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{C}_{\mathrm{p}}=\frac{\left(6 \times 10^{-8} \mathrm{~m} / \mathrm{s}\right)\left[\left(2.85 \mathrm{~kg} / \mathrm{m}^{3}+28.5 \mathrm{~kg} / \mathrm{m}^{3}\right) / 2\right]\left(1481 \mathrm{~m}^{2}\right)}{\left(0.0407 \mathrm{~m}^{3} / \mathrm{s}\right)+\left(6 \times 10^{-8} \mathrm{~m} / \mathrm{s}\right)\left(1481 \mathrm{~m}^{2}\right)}=0.034 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Because the permeate solute concentration is less than the required value $(0.200$ $\mathrm{kg} / \mathrm{m} 3$), the membrane area can be reduced by blending the permeate flow with a portion of the influent feed.
3. Perform a materials balance around the membrane system to determine the amount of influent feed flow $\left(\mathrm{Q}_{\mathrm{r}}\right)$ that is to be blended with the permeate flow to obtain the desired effluent concentration (Cblend).

$$
\begin{aligned}
Q_{r} & =\frac{\left(Q_{f} R C_{p}\right)-\left(C_{\text {blend }} Q_{f} R\right)}{\left[C_{\text {blend }}(1-R)-C_{f}+R C_{p}\right]} \\
& =\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.88)\left(0.034 \mathrm{~kg} / \mathrm{m}^{3}\right)-\left(0.200 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.88)}{\left.\left[\left(0.200 \mathrm{~kg} / \mathrm{m}^{3}\right)(1-0.88)\right]-\left(2.85 \mathrm{~kg} / \mathrm{m}^{3}\right)+(0.88)\left(0.034 \mathrm{~kg} / \mathrm{m}^{3}\right)\right]} \\
& =208.8 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

4. Compute the membrane area using the new feed flow rate ($4000 \mathrm{~m}^{3} / \mathrm{d}-208.8$ $\mathrm{m}^{3} / \mathrm{d}=3791.2 \mathrm{~m}^{3} / \mathrm{d}$).
$Q_{p}=F w \times A$

$$
A=\frac{\left(0.88 \times 3791.2 \mathrm{~m}^{3} / \mathrm{d}\right)(1 \mathrm{~d} / 86,400 \mathrm{~s})}{\left(2.75 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right)}=1,404.1 \mathrm{~m}^{2}
$$

5. Compute the new permeate concentration, as outlined above, using the new membrane area.
$Q_{p}=F w \times A$

$$
\begin{aligned}
C_{p} & =\frac{\left(6 \times 10^{-8} \mathrm{~m} / \mathrm{s}\right)\left[\left(2.85 \mathrm{~kg} / \mathrm{m}^{3}+28.5 \mathrm{~kg} / \mathrm{m}^{3}\right) / 2\right]\left(1404 \mathrm{~m}^{2}\right)}{\left(0.0386 \mathrm{~m}^{3} / \mathrm{s}\right)+\left(6 \times 10^{-8} \mathrm{~m} / \mathrm{s}\right)\left(1404 \mathrm{~m}^{2}\right)} \\
& =0.034 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Because the permeate concentration is the same as determined in Step 2 above, blending $209 \mathrm{~m}^{3} / \mathrm{d}$ of feed water with the permeate, will result in a blended product water with a TDS of about $0.200 \mathrm{~kg} / \mathrm{m}^{3}$.
3. Estimate the rejection rate using Eq. (11-41).

$$
\begin{aligned}
& R, \%=\frac{C_{f}-C_{p}}{C_{f}} \times 100 \\
& R=\frac{\left(2.85 \mathrm{~kg} / \mathrm{m}^{3}-0.034 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(2.85 \mathrm{~kg} / \mathrm{m}^{3}\right)} \times 100=98.8 \%
\end{aligned}
$$

4. Estimate the concentrate stream TDS using Eq. (11-44).

$$
\begin{aligned}
C_{c} & =\frac{Q_{f} C_{f} \cdot Q_{p} C_{p}}{Q_{c}} \\
C_{c} & =\frac{\left(0.0439 \mathrm{~m}^{3} / \mathrm{s}\right)\left(2.85 \mathrm{~kg} / \mathrm{m}^{3}\right)-\left(0.0439 \mathrm{~m}^{3} / \mathrm{s}\right)(0.88)\left(0.034 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(0.0439 \mathrm{~m}^{3} / \mathrm{s}\right)(1-0.88)} \\
& =23.5 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

5. Summary of results from Problem 11-16.

		Water				
Parameter	Unit	1	2	3	4	
Qr	$\mathrm{m}^{3} / \mathrm{d}$	208.8	785.7	3639.9	725.1	
Area	m^{2}	1481	2292	7358	3318	
R	$\%$	98.8	98.7	98.8	99.2	
Cc	$\mathrm{kg} / \mathrm{m}^{3}$	23.5	31.6	18.0	19.1	

PROBLEM 11-17

Problem Statement - See text, page 1282

Solution

1. Determine the permeate flowrate with Eq. (11-43) and estimate the feed water TDS with Eq. (11-44) for water 1.

$$
\begin{aligned}
& Q_{p}=Q_{f}-Q_{c}=4000 \mathrm{~m}^{3} / \mathrm{d}-350 \mathrm{~m}^{3} / \mathrm{d}=3650 \mathrm{~m}^{3} / \mathrm{d} \\
& C_{f}=\frac{Q_{p} C_{p}+Q_{c} C_{c}}{Q_{f}} \\
& C_{f}=\frac{\left(3650 \mathrm{~m}^{3} / \mathrm{d}\right)\left(65 \mathrm{~g} / \mathrm{m}^{3}\right)+\left(350 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1500 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}=191 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

2. The recovery rate is found with Eq. (11-40).

$$
r, \%=\frac{Q_{p}}{Q_{f}} \cdot 100=\frac{\left(3650 m^{3} / d\right)}{\left(4000 m^{3} / d\right)} \times 100=91 \%
$$

3. Estimate the rejection rate using Eq. (11-41).

$$
\begin{aligned}
& R, \%=\frac{C_{f}-C_{p}}{C_{f}} \cdot 100 \\
& R=\frac{\left[(191-65) \mathrm{g} / \mathrm{m}^{3}\right]}{\left(191 \mathrm{~kg} / \mathrm{m}^{3}\right)} \times 100=66 \%
\end{aligned}
$$

4. Summary of results for Problem 11-17

		Reverse osmosis unit				
Item	Unit	1	2	3	4	
C_{f}	$\mathrm{g} / \mathrm{m}^{3}$	191	329	1742	2583	
Q_{p}	$\mathrm{m}^{3} / \mathrm{d}$	3650	5400	500	1000	
r	$\%$	91	90	6	10	
R	$\%$	66	73	93	93	

PROBLEM 11-18

Problem Statement - See text, page 1283

Solution

1. Determine the permeate flowrate for water 1 using Eq. (11-40).

$$
Q_{p}=\frac{r \cdot Q_{f}}{100}=\frac{(88 \%)\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)}{100}=3520 \mathrm{~m}^{3} / \mathrm{d}
$$

2. Rearrange Eq. (11-38) to compute the water mass transfer coefficient, k_{w}.

$$
\begin{aligned}
\mathrm{k}_{\mathrm{w}}=\frac{\left(\mathrm{Q}_{\mathrm{p}}\right)}{(\mathrm{A})\left(\Delta \mathrm{P}_{\mathrm{a}}-\Delta \Pi\right)} & =\frac{\left(3520 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(1600 \mathrm{~m}^{2}\right)\left(2.7 \times 10^{6} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}\right)(86,400 \mathrm{~s} / 1 \mathrm{~d})} \\
= & 9.09 \times 10^{-9} \mathrm{~s} / \mathrm{m}
\end{aligned}
$$

3. Estimate the concentrate stream TDS using Eq. (11-44).
$C_{c}=\frac{Q_{f} C_{f} \cdot Q_{p} C_{p}}{Q_{c}}$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{c}} & =\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2500 \mathrm{~g} / \mathrm{m}^{3}\right)-\left(3520 \mathrm{~m}^{3} / \mathrm{d}\right)\left(20 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(4000 \mathrm{~m}^{3} / \mathrm{d}-3520 \mathrm{~m}^{3} / \mathrm{d}\right)} \\
& =20,687 \mathrm{~g} / \mathrm{m}^{3}=20.69 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

4. Compute the solute concentration gradient and mass transfer rate coefficient using Eq. (11-39).

$$
\begin{aligned}
\Delta C & =\left[\frac{C_{f}+C_{c}}{2}\right]-C_{p}=\left[\frac{2.5 \mathrm{~kg} / \mathrm{m}^{3}+20.69 \mathrm{~kg} / \mathrm{m}^{3}}{2}\right]-0.02 \mathrm{~kg} / \mathrm{m}^{3} \\
& =11.57 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{k}_{\mathrm{i}} & =\frac{\left(\mathrm{Q}_{\mathrm{p}}\right)\left(\mathrm{C}_{\mathrm{p}}\right)}{(\mathrm{A})(\Delta \mathrm{C})}=\frac{\left(3520 \mathrm{~m}^{3} / \mathrm{d}\right)\left(0.02 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(1600 \mathrm{~m}^{2}\right)\left(11.57 \mathrm{~kg} / \mathrm{m}^{3}\right)(86,400 \mathrm{~s} / \mathrm{d})}=4.4 \times 10^{-8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. Summary of results from Problem 11-18.

		Reverse osmosis unit			
Item	Unit	1	2	3	4
Q_{p}	$\mathrm{m}^{3} / \mathrm{d}$	3,520	4,950	17,800	8,600
k_{w}	s / m	9.09×10^{-9}	1.35×10^{-8}	7.66×10^{-9}	6.03×10^{-9}
C_{C}	$\mathrm{kg} / \mathrm{m}^{3}$	20.7	32.6	47.9	19.1
$\Delta \mathrm{C}$	$\mathrm{kg} / \mathrm{m}^{3}$	11.6	17.9	26.5	10.9
k_{i}	m / s	4.4×10^{-8}	9.43×10^{-8}	3.23×10^{-8}	3.82×10^{-8}

PROBLEM 11-19

Problem Statement - See text, page 1283

Solution

1. To compute the SDI, a minimum sample volume of 1 L must be filtered. Eq. (11$45)$ is used to compute the SDI for water sample 1.
2. Plot the cumulative volume filtered for water sample $\mathbf{1}$ as a function of run time and determine the time required to filter the initial and final 500 mL .

3. Calculate the SDI using Eq. (11-45)

$$
\mathrm{SDI}=\frac{100\left[1-\left(\mathrm{t}_{\mathrm{i}} / \mathrm{t}_{\mathrm{f}}\right)\right]}{\mathrm{t}}=\frac{100[1-(3.0 \mathrm{~min} / 3.8 \mathrm{~min})]}{20 \mathrm{~min}}=1.05
$$

Because the SDI value is less than 3 , water sample 1 will not require pretreatment before reverse osmosis treatment will be effective.
3. Summary of results from Problem 11-19

	Water sample			
Item	1	2	3	4
SDI	1.05	0.66	1.14	2.46
Pretreatment required	No	No	No	No

PROBLEM 11-20

Problem Statement - See text, page 1283

1. Prepare data for Samples 1 and 2 to determine the modified fouling index (MFI).

	Water 1			Water 2			
Time, min	Filtered volume, L	Incremental volume, L	Inverse flow, s / L	Filtered volume L		Incremental volume, L	
0				0	Inverse flow, s / L		
0.5	1.50	1.50	20.0	1.50	1.50	20.0	
1.0	2.50	1.00	30.0	2.50	1.00	30.0	
1.5	3.45	0.95	31.6	3.48	0.98	30.6	

2.0	4.36	0.91	33.0	4.40	0.92	32.6
2.5	5.22	0.86	34.8	5.37	0.97	30.9
3.0	6.03	0.81	37.0	6.28	0.91	32.9
3.5	6.78	0.75	40.0	7.17	0.89	33.7
4.0	7.48	0.70	42.9	8.03	0.86	34.9
4.5	8.08	0.60	50.0	8.87	0.84	35.7
5.0	8.57	0.49	61.2	9.67	0.80	37.5
5.5				10.34	0.97	44.8
6.0				10.97	0.63	49.6
6.5				11.47	0.50	60.0

2. Prepare a plot of the data prepared in Step 2 for Samples 1 and 2 to determine the modified fouling index (MFI). The required plot is given below.

3. Determine the MFI values using the values from the above plot
a. For Water 1
$\mathrm{MFI}=\frac{37-30}{6.03-2.5}=1.98 \mathrm{~s} / \mathrm{L}^{2}$
Based on the data presented in Table 11-26, water 1 can be used with nanofiltration and both hollow fiber and spiral wound reverse osmosis membranes
a. For Water 2
$\mathrm{MFI}=\frac{37.5-30}{9.8-2.5}=1.03 \mathrm{~s} / \mathrm{L}^{2}$
Based on the data presented in Table 11-26, water 2 can be used with nanofiltration and both hollow fiber and spiral wound reverse osmosis membranes

PROBLEM 11-21

Problem Statement - See text, page 1283

Solution

1. Calculate the current for $\mathbf{4 0 0}$ cell pairs using Eq. (11-49)

$$
\begin{aligned}
& i=\frac{F Q_{p} N_{\text {inf }} E_{r}}{n E_{c}} \\
&=\frac{(96,485 \mathrm{~A} \cdot \mathrm{~s} / \mathrm{g}-\mathrm{eq})(28.9 \mathrm{~L} / \mathrm{s})(0.13 \mathrm{~g}-\mathrm{eq} / \mathrm{L})(0.5)}{(400)(0.90)} \\
&=504.08 \mathrm{~A}
\end{aligned}
$$

2. Determine the power required using Eq. (11-50)

$$
\begin{aligned}
& P=R(i)^{2} \\
& P=(5.0 \Omega)(504.16 A)^{2}=1,270,468 \mathrm{~W}=1270 \mathrm{~kW}
\end{aligned}
$$

3. Determine the power requirement per m 3 of treated water

$$
\text { Power consumption }=\frac{(1270 \mathrm{~kW})(24 \mathrm{~h} / \mathrm{d})}{\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)(0.9)}=13.55 \mathrm{kWh} / \mathrm{m}^{3}
$$

4. Determine the daily cost to operate the electrodialysis unit

$$
\text { Cost }=(\$ 0.13 / \mathrm{kWh})\left(13.55 \mathrm{kWh} / \mathrm{m}^{3}\right)\left(2500 \mathrm{~m}^{3} / \mathrm{d}\right)=\$ 4,404 / \mathrm{d}
$$

PROBLEM 11-22

Problem Statement - See text, page 1283

Solution

1. Review the three artciles related to disposal of nanofiltration, reverse osmosis, and elecetrodialysis.
2. Prepare a table to discuss the type of process combinations that are being proposed accoring to the article review.
Processes used to deal with brine from nanofiltration, reverse osmosis and electrodialysis in no special order.

Process	Brine treament/disposal
Nanofiltration	Discharge to collection system, depending on quantity, concentration with forward osmosis, solar evaporation, thermal evaporation
Reverse osmosis	Discharge to collection system, depending on quantity, concentration with forward osmosis, solar evaporation, thermal evaporation, combination of evaporator and crystallizer, recovery of salts, chemical (lime typically) precipitation, deep subsurface well injection, disposal to the ocean via a brine outfall
Electrodialysis	Discharge to collection system, depending on quantity, concentration with forward osmosis, solar evaporation, thermal evaporation, recovery of salts

PROBLEM 11-23-See text, page 1284

Solution

1. Following Example 11-11, construct a computation table for the values needed to plot the Freundlich and Langmuir isotherms for water 1.

Adsorbate concentration, mg/L			$\mathrm{x} / \mathrm{m}, \mathrm{mg} / \mathrm{g}$	$\mathrm{C}_{\mathrm{e}} /(\mathrm{x} / \mathrm{m})$
C	$\mathrm{C}_{\text {e }}$	$\mathrm{C}_{0}-\mathrm{C}_{\text {e }}$		
140	5	135	135	0.0370
250	12	238	238	0.0504
300	17	283	283	0.0601
340	23	317	317	0.0726
370	29	341	341	0.0850
400	36	364	364	0.0989
450	50	400	400	0.1250

2. Plot the Freundlich and Langmuir adsorption isotherms using the data developed in step 1.

3. Because the plot for the Langmuir isotherm is linear, the Langmuir isotherm is more suitable to describe the data.
4. Summary of results for Problem 11-23

	Water sample			
	1	2	3	4
Best fit isotherm	Langmuir	Langmuir	Langmuir	Freundlich

PROBLEM 11-24

Problem Statement - See text, page 1284

Solution

1. Derive the values needed to plot the Freundlich and Langmuir adsorption isotherms using the batch adsorption test data. The required table for Sample 1 is shown below:

Adsorbate concentration, mg / L					
	C_{0}	C_{e}	$\mathrm{C}_{0}-\mathrm{C}_{\mathrm{e}}$	m, g	$\mathrm{x} / \mathrm{m}, \mathrm{mg} / \mathrm{g}$
$\mathrm{Cem} /(\mathrm{x} / \mathrm{m})$					
5.8	5.8	0	0.000	--	--
5.8	3.9	1.9	0.001	1900	0.002053
5.8	0.97	4.83	0.010	483	0.002008
5.8	0.12	5.68	0.100	56.8	0.002113
5.8	0.022	5.778	0.500	11.556	0.001904

2. Plot the Freundlich and Langmuir adsorption isotherms using the data developed in Step 1 and determine which isotherm best fits the data.
a. The required plots for Sample $\mathbf{1}$ are given below.

Freundlich isotherm plot

Langmuir isotherm plot
b. From the above plots, the experimental data are best represented by the Freundlich isotherm as indicated by the linear curve fit. Because the plot for the Langmuir isotherm is not linear, use of the Langmuir adsorption isotherm is inappropriate.
c. For reference, the plots for Samples 2 (Freundlich), 3 (Freundlich), and 4 (Langmuir) are shown below.

Sample 2:

Sample 3:

Sample 4:

3. Determine the adsorption isotherm model parameters. The values of the isotherm coefficients can be determined using the spreadsheet function such as "Add Trendline" in Excel.
a. Sample 1 is characterized by the Freundlich isotherm with the form

$$
\frac{x}{m}=490.18 C_{e}^{0.99051}, \text { thus } K f=490.18, \text { and } n=1 / 0.99051=1.0096
$$

b. Sample $\mathbf{2}$ is characterized by the Freundlich isotherm with the form
$\frac{\mathrm{x}}{\mathrm{m}}=92.915 \mathrm{C}_{\mathrm{e}}^{2.1929}$, thus $\mathrm{Kf}=92.915$, and $\mathrm{n}=1 / 2.1929=0.456$.
c. Sample $\mathbf{3}$ is characterized by the Freundlich isotherm with the form

$$
\frac{\mathrm{x}}{\mathrm{~m}}=930.15 \mathrm{C}_{\mathrm{e}}^{1.5023}
$$

$$
\text { , thus } \mathrm{Kf}=930.15, \text { and } \mathrm{n}=1 / 1.5023=0.666
$$

d. Sample 4 is characterized by the Langmuir isotherm with the form

$$
\frac{C_{e}}{(x / m)}=0.0517-0.00316 C_{e}
$$

$$
x 316.5)=0.0611
$$

PROBLEM 11-25

Problem Statement - See text, page 1284
Instructors Note: Problem 11-25 should be assigned along with Problem 11-24

Solution

1. Estimate the amount of carbon needed to reduce the wastewater COD from 30 mg / L to $2 \mathrm{mg} / \mathrm{L}$ using Eq. $(11-55)$ and Eq. $(11-57)$. The required computations for Samples 1, 2, 3, and 4 are shown below.
Sample 1:
$m=\frac{x}{K_{f} C_{e}^{1 / n}}=\frac{(30 \mathrm{mg} / \mathrm{L}-2 \mathrm{mg} / \mathrm{L})\left(4800 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}{(490.18)\left(2^{0.99051}\right)\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=138.0 \mathrm{~kg} / \mathrm{d}$
Sample 2:

$$
\mathrm{m}=\frac{\mathrm{x}}{\mathrm{~K}_{\mathrm{f}} \mathrm{C}_{\mathrm{e}}^{1 / \mathrm{n}}}=\frac{(30 \mathrm{mg} / \mathrm{L}-2 \mathrm{mg} / \mathrm{L})\left(4800 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}{(92.915)\left(2^{2.1929}\right)\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=316.3 \mathrm{~kg} / \mathrm{d}
$$

Sample 3:

$$
m=\frac{x}{K_{f} C_{e}^{1 / n}}=\frac{(30 \mathrm{mg} / \mathrm{L}-2 \mathrm{mg} / \mathrm{L})\left(4800 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)}{(930.15)\left(2^{1.5023}\right)\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=51.0 \mathrm{~kg} / \mathrm{d}
$$

Sample 4:
$m=\frac{(x)\left(1+b C_{e}\right)}{a b C_{e}}=\frac{(134,400,000 \mathrm{mg} / \mathrm{d})[1+(0.0611)(2 \mathrm{mg} / \mathrm{L})]}{(316.5)(0.0611)(2 \mathrm{mg} / \mathrm{L})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=3900 \mathrm{~kg} / \mathrm{d}$

PROBLEM 11-26

Problem Statement - See text, page 1284
Instructors Note: It should be noted that the responses will vary regarding the number of contacts, mode of operation, other design variables. Several of the processes may not be feasible due to the low adsorption capacity for some of the compounds.

Solution

1. Develop design data for the carbon adsorption system based on the procedure presented in Example 10-12. The following data is shown for chloroform.
a. Estimate the GAC usage rate for chloroform. Assuming the adsorption would follow the Freundlich isotherm, the GAC usage rate is estimated using Eq. (11-60) and Eq. (11-55). From Table 10-42, Kf = $2.6(\mathrm{mg} / \mathrm{g})$

$$
\begin{aligned}
& \frac{m_{G A C}}{Q t}=\frac{C_{0}-C_{e}}{q_{e}}=\frac{C_{o}-C_{e}}{K_{f} C_{e}^{1 / n}} \\
& =\frac{(0.00045 \mathrm{mg} / \mathrm{L})}{(2.6(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mathrm{mg})](0.00005 \mathrm{mg} / \mathrm{L})^{0.73}} \\
& =0.239 \mathrm{~g} \mathrm{GAC} / \mathrm{L}
\end{aligned}
$$

b. Determine the mass of carbon required for a 10 min EBCT.

The mass of GAC in the bed $=\mathrm{Vb} \rho \mathrm{GAC}=\mathrm{EBCT} \times \mathrm{Q} \times \rho \mathrm{GAC}$
Carbon required $=10 \mathrm{~min}(2777,78) \mathrm{L} / \mathrm{min})(450 \mathrm{~g} / \mathrm{L})=1.25 \times 10^{7} \mathrm{~g}$
c. Determine the volume of water treated using a 10 min EBCT.

Volume of water treated $=\frac{\text { Mass of GAC for given EBCT }}{\text { GAC usage rate }}$
Volume of water treated $=\frac{1.25 \times 10^{7} \mathrm{~g}}{(0.239 \mathrm{~g} \mathrm{GAC} / \mathrm{L})}=5.24 \times 10^{7} \mathrm{~L}$
d. Determine the bed life.

Bed life $=\frac{\text { Volume of water treated for given EBCT }}{Q}$

$$
\text { Bed life }=\frac{5.24 \times 10^{7} \mathrm{~L}}{(2777,78 \mathrm{~L} / \mathrm{min})(1440 \mathrm{~min} / \mathrm{d})}=13.1 \mathrm{~d}
$$

2. Select the number of contactors to be used, mode of operation, and the carbon requirements
a. The number of contactors used will depend on the desired reliability and practicality of replacing the carbon media. In general, a minimum of two contactors should be used, with the second contactor serving as a standby unit.
b. The mode of operation will depend on the desire to maximize the use of carbon and the volume of flow that can be processed by each contactor. For example, two parallel trains of carbon contactors arranged in series will allow for reliable operation several weeks before carbon replacement was needed and also allow one train to be taken off-line for maintenance while the other train remains on-line.
c. The carbon requirement, as determined in Step 1a is

$$
(0.239 \mathrm{~g} \mathrm{GAC} / \mathrm{L}) \cdot\left(4 \times 10^{6} \mathrm{~L} / \mathrm{d}\right) \cdot\left(10^{-3} \mathrm{Kg} / \mathrm{g}\right)=955,10 \mathrm{Kg} / \mathrm{d}
$$

3. Prepare a summary table of the results

Parameter	Unit	Chloroform	Heptachlor	Methylene chloride	NDMA
Kf	$(\mathrm{mg} / \mathrm{g})(\mathrm{L} / \mathrm{mg}) 1 / \mathrm{n}$	2.6	1220	1.3	220
$1 / \mathrm{n}$	-	0.73	0.95	1.16	0.37
Flowrate	$\mathrm{m}^{3} / \mathrm{d}$	4000	4500	5000	6000
Co	ng / L	500	50	2000	200
Ce	ng / L	50	10	10	10
GAC	g / L	450	450	450	450
EBCT	min	10	10	10	10
Usage rate	$\mathrm{g} \mathrm{GAC} / \mathrm{L}$	0.239	0.002	965.85	2.73×10^{-3}
Mass of carbon for 10 min EBCT Volume of water treated	g	1.25×10^{7}	1.41×10^{7}	1.56×10^{7}	1.88×10^{7}

Bed life
Carbon
requirements
d
kg/d

$$
d
$$

13.1

955

1695
8.3
$4,83 \times 10^{6} \quad 1.64 \times 10^{1}$

PROBLEM 11-27

Problem Statement - See text, page 1284

Solution

The adsorbability of the compounds listed in Table 11-42 can be determined by inspection of the isotherm parameters (i.e.: Freundlich capacity factor) or by calculating the amount of carbon required for removal. The compounds are presented in the following list.

Five more	
readily absorbable	Five less readily absorbable
PCB	N-Dimethylnitrosamine
Heptachlor	Chloroethene
PCB 1232	Benzene
DDT	Methylene chloride
PCB 1221	$1,1,1$-Trichloroethane

PROBLEM 11-28

Problem Statement - See text, page 1284

Solution

1. For water 1, determine the empirical constants from the plot constructed in Problem 11-23. Because the Langmuir isotherm was found to be suitable for water 1, the constants will be determined from the Langmuir isotherm plot using Eq. (1158).
$\frac{C_{e}}{(x / m)}=\frac{1}{a b}+\frac{1}{a} C_{e}$

The slope of the line is $1 / \mathrm{a}$ and for water 1 is equal to 0.00195 . The intercept when $C_{e}=0$ is the value of $1 / a b$ and is equal to 0.0275 . Thus the values for the constants a and b are 506.8 and 0.0728 , respectively.
2. Estimate the amount of carbon needed to reduce the wastewater COD from 120 to $20 \mathrm{mg} / \mathrm{L}$ using Eq. (11-58).

$$
\mathrm{m}=\frac{(\mathrm{x})\left(1+\mathrm{bC}_{\mathrm{e}}\right)}{\mathrm{abC}}=\frac{\left(5 \times 10^{8} \mathrm{mg}\right)[1+(0.0728)(20 \mathrm{mg} / \mathrm{L})]}{(506.8)(0.0728)(20 \mathrm{mg} / \mathrm{L})\left(10^{6} \mathrm{mg} / 1 \mathrm{~kg}\right)}=1,664 \mathrm{~kg} / \mathrm{d}
$$

3. Summary of results for Problem 11-28

	Constants				
Water	Langmuir		Freundlich		Mass of activated
carbon needed,					
sample	a	b	K_{f}	$1 / \mathrm{n}$	kg / d
1	506.8	0.073			1,664
2	330.6	0.064			2,693
3	424.8	1.152			1,228
4			69.4	0.414	2,085

PROBLEM 11-29

Problem Statement - See text, page 1285

Solution

Derive the values needed to plot the Freundlich adsorption isotherm using the test data for water 1.

Carbon dose, mg/L	$\mathrm{C}_{\mathrm{e}}, \mathrm{mg} / \mathrm{L}$	$\begin{gathered} \left(C_{o}-C_{e}\right), \\ m g / \mathrm{L} \end{gathered}$	$\mathrm{x} / \mathrm{m}, \mathrm{mg} / \mathrm{g}$
0	25.9	0	
5	17.4	8.5	1700
10	13.2	12.7	1270
25	10.2	15.7	628
50	3.6	22.3	446
100	2.5	23.4	234
150	2.1	23.8	159
200	1.4	24.5	123

2. Plot the Freundlich adsorption isotherm using the data developed in Step 1 for water 1.

3. Determine the adsorption isotherm coefficients. When x / m versus C_{e} is plotted on log-log paper, the intercept when $C_{e}=1.0$ is the value of x / m and the slope of the line is equal to $1 / n$. Thus, $x / m=90$, and $K_{f}=90$. When $x / m=1.0, C_{e}=0.011$, and $1 / n=0.99$. The resulting expression of the Freundlich isotherm is $\mathrm{x} / \mathrm{m}=90 \mathrm{C}_{\mathrm{e}}{ }^{0.99}$

Summary of results from Problem 11-29

Water	K_{f}	$1 / \mathrm{n}$
1	90.2	0.992
2	133.1	0.413
3	24.8	0.6
4	162.6	0.288
5	89.7	0.252
6	161.2	0.366

PROBLEM 11-30

Problem Statement - See text, page 1285

Solution

Instructors Note: Two solutions are presented for Problem 11-30 because of the differing volatility of organic compounds including those in this problem. The first
solution, Part A, is based on using the pressure drop diagram (Fig. 11-67) to determine the required column sizing. The second solution, Part \mathbf{B}, is for compounds that are extremely volatile (i.e., with large Henry's law constants). Extremely volatile compounds require so little air flow that the pressure drop is not an issue and hence Fig. 11-67 does not apply. Although extremely volatile compounds can be stripped by natural draft alone, it is common practice to use a minimum air to water ratio (e.g., $20: 1$). The procedure for chloroethene, an extremely volatile compound, is illustrated in Part B.

Solution - Part A

The methods outlined in Examples 11-15 and 11-16 are used as a template for the following solution for trichloroethylene (TCE) in water 1.

1. Determine the influent and effluent mole fractions of TCE in the liquid using Eq. (2-3).

$$
\mathrm{X}_{\mathrm{B}}=\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}}
$$

where $x_{B}=$ mole fraction of solute B
$n_{B}=$ number of moles of solute B
$\mathrm{n}_{\mathrm{A}}=$ number of moles of solute A

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{o}}=\frac{\left[\left(1 \times 10^{-4}\right) / 131.39\right]}{\left\{55.5+\left[\left(1 \times 10^{-4}\right) / 131.39\right]\right\}}=1.37 \times 10^{-8} \mathrm{~mole} \mathrm{TCE} / \mathrm{mole} \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{\mathrm{e}}=\frac{\left[\left(5 \times 10^{-6}\right) / 131.39\right]}{\left\{55.5+\left[\left(5 \times 10^{-6}\right) / 131.39\right]\right\}}=6.87 \times 10^{-10} \mathrm{~mole} \text { TCE } / \mathrm{mole} \mathrm{H}
\end{aligned}
$$

2. Convert the Henry's law constant from Table 2-7, page 100, to the form used in Eq. (11-79) using Eq. (2-51) and determine the effluent mole fraction of TCE in the air leaving the tower using Eq. (11-79).

$$
\begin{aligned}
& H_{u}=\frac{H}{R T}=\frac{\left(0.00553 \mathrm{~m}^{3} / \mathrm{atm} \cdot \mathrm{~mole}\right)}{\left(8.206 \times 10^{-5}\right)(293.15 \mathrm{~K})}=0.23 \\
& H=\left(\mathrm{H}_{\mathrm{u}}\right)(4.559)(293.15 \mathrm{~K})=307.4 \mathrm{~atm} \\
& y_{e}=\frac{H}{P_{T}} C_{o}=\left(\frac{307.4 \mathrm{~atm}}{1 \mathrm{~atm}}\right) 1.37 \times 10^{-8}=4.22 \times 10^{6} \mathrm{~mole} \mathrm{TCE} / \mathrm{mole} \text { air } .
\end{aligned}
$$

Determine the gas to liquid ratio using Eq. (11-81) rearranged as follows
$\frac{G}{L}=\frac{P_{T}}{H} \times \frac{\left(C_{o}-C_{e}\right)}{C_{0}}=\frac{\left(C_{o}-C_{e}\right)}{y_{e}}$
$\frac{\mathrm{G}}{\mathrm{L}}=\frac{\left[\left(1.37 \times 10^{-8}-6.86 \times 10^{-10}\right) \mathrm{mole} \text { TCE } / \mathrm{mole} \mathrm{H}_{2} \mathrm{O}\right]}{\left(4.22 \times 10^{-6} \mathrm{~mole} \text { TCE } / \mathrm{mole} \text { air }\right)}$
$\frac{\mathrm{G}}{\mathrm{L}}=0.00309 \frac{\text { mole air }}{\mathrm{moleH}_{2} \mathrm{O}}$
4. Convert the moles of air and water to liters of air and water.

For air at $20^{\circ} \mathrm{C}$:
0.00309 mole $\times 24.1 \mathrm{~L} / \mathrm{mole}=0.0745 \mathrm{~L}$

For water:
$1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times\left(\frac{18 \mathrm{~g}}{\text { mole }}\right)\left(\frac{1 \mathrm{~L}}{10^{3} \mathrm{~g}}\right)=0.018 \mathrm{~L}$
$\frac{\mathrm{G}}{\mathrm{L}}=\frac{0.0745 \mathrm{~L}}{0.018 \mathrm{~L}}=4.137 \mathrm{~L} / \mathrm{L}=4.137 \mathrm{~m}^{3} / \mathrm{m}^{3}$
5. Determine the total quantity of air required based on ideal conditions.

$$
\text { Air required }=\frac{\left(4.14 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(1440 \mathrm{~min} / \mathrm{d})}=8.62 \mathrm{~m}^{3} / \mathrm{min}
$$

6. To determine the height of the stripping tower, several assumptions must be made.
a. Select a packing material. Assume a packing factor of 50.
b. Select a stripping factor. Assume a stripping factor of 3.
c. Select an acceptable pressure drop. Assume a pressure drop of 200 ($\mathrm{N} / \mathrm{m}^{2}$)/m (see Table 11-45)
7. Determine the cross-sectional area of the stripping tower using the pressure drop plot given in Fig. 11-67.
a. Determine the value of the ordinate for a stripping factor of 3.

$$
S=\frac{G}{L} \times \frac{H}{P_{T}}=\frac{G \text { mole air }}{L \text { mole water }} \times \frac{307.4 \mathrm{~atm}}{1.0 \mathrm{~atm}}=\frac{G \text { mole air }}{L \text { mole water }} \times 307.4
$$

$$
\begin{aligned}
& \mathrm{S}=307.4 \times\left(\frac{\mathrm{G} \text { mole air }}{\mathrm{L} \text { mole water }}\right)\left(\frac{28.8 \mathrm{~g}}{\text { mole air }}\right)\left(\frac{\text { mole water }}{18 \mathrm{~g}}\right)=491.9 \frac{\mathrm{G}^{\prime} \mathrm{g}}{\mathrm{~L}^{\prime} \mathrm{g}} \\
& \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}=\frac{(491.9 \mathrm{~kg} / \mathrm{kg})}{3}=164 \\
& \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{L}}-\rho_{\mathrm{G}}}\right)^{1 / 2} \approx \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{L}}}\right)^{1 / 2}=(164 \mathrm{~kg} / \mathrm{kg})\left[\frac{\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(998.2 \mathrm{~kg} / \mathrm{m}^{3}\right)}\right]^{1 / 2} \\
& \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{L}}}\right)^{1 / 2}=5.7
\end{aligned}
$$

b. Determine the corresponding value on the abscissa. For an ordinate value of 5.7 and a pressure drop of $200\left(\mathrm{~N} / \mathrm{m}^{2}\right) / \mathrm{m}$, the abscissa value is 0.0015 .
c. Using an abscissa value 0.0015 , determine the loading rate using Eq. (11103)
$G^{\prime}=\left[\frac{(\text { value from y axis })\left(\rho_{\mathrm{G}}\right)\left(\rho_{\mathrm{L}}-\rho_{\mathrm{G}}\right)}{\left(\mathrm{C}_{\mathrm{f}}\right)\left(\mu_{\mathrm{L}}\right)^{0.1}}\right]^{1 / 2}$
$G^{\prime}=\left[\frac{(0.0015)(1.204)(998.2-1.204)}{(50)(0.001)^{0.1}}\right]^{1 / 2}=0.268 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$
$\mathrm{L}^{\prime}=164 \mathrm{G}^{\prime}=164 \times 0.268 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}=43.9 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$
d. Substitute known values and solve for the diameter of the tower

$$
D=\left\{\frac{4}{3.14} \times \frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(998.2 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left[(0.268+43.9) \mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}\right]} \times \frac{1 \mathrm{~d}}{86,400 \mathrm{~s}}\right\}^{1 / 2}=1.0 \mathrm{~m}
$$

8. Determine the height of the transfer unit using Eq. (11-96)
$\mathrm{HTU}=\frac{\mathrm{L}}{\mathrm{K}_{\mathrm{L}} \mathrm{aA}}=\left\{\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(0.0176 / \mathrm{s})\left[(3.14 / 4)(1.0)^{2}\right]}\right\} \times \frac{1 \mathrm{~d}}{86,400 \mathrm{~s}}=2.52 \mathrm{~m}$
9. Determine the number of transfer unit using Eq. (11-98)

$$
\mathrm{NTU}=\left[\frac{3}{3-1}\right] \ln \left[\frac{(100 / 5)(3-1)+1}{3}\right]=3.92
$$

10. Determine the theoretical height of the stripping tower packing using Eq. (11-95)

$$
\mathrm{Z}=\mathrm{HTU} \times \mathrm{NTU}=2.52 \times 3.92=9.9 \mathrm{~m}
$$

11. Summary table of results from Problem 11-30

	Water 1			Water 2		
Compound	Air, $\mathrm{m}^{3} / \mathrm{min}$	D, m	Z, m	Air, $\mathrm{m}^{3} / \mathrm{min}$	D, m	Z, m
Chlorobenzene	12.89	1.07	9.23	12.78	1.07	8.70
Chloroethene $^{\mathrm{a}}$	0.75	1.29	7.34	0.76	1.29	8.45
TCE	8.62	1.00	9.87	8.57	1.00	9.48
Toluene	7.41	0.96	9.13	7.21	0.96	7.76

${ }^{\text {a }}$ Based on assumed air to water ratio ($\mathrm{G}^{\prime} / \mathrm{L}^{\prime}$) of $20 \mathrm{~m}^{3}$ air/m ${ }^{3}$ water (see Solution Part B).

Solution - Part B

The methods outlined in Examples 11-15 and 11-16 are used as a template for the following solution for chloroethene in water A.

1. Determine the influent and effluent mole fractions of chloroethene in the liquid using Eq. (2-2).
$\mathrm{x}_{\mathrm{B}}=\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}}$
where $x_{B}=$ mole fraction of solute B
$n_{B}=$ number of moles of solute B
$\mathrm{n}_{\mathrm{A}}=$ number of moles of solute A
$C_{0}=\frac{\left[\left(1 \times 10^{-4}\right) / 62.5\right]}{\left\{55.5+\left[\left(1 \times 10^{-4}\right) / 62.5\right]\right\}}=2.88 \times 10^{-8} \mathrm{~mol}$ chloroethene $/ \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$
$C_{e}=\frac{\left[\left(5 \times 10^{-6}\right) / 62.5\right]}{\left\{55.5+\left[\left(5 \times 10^{-6}\right) / 62.5\right]\right\}}=1.44 \times 10^{9} \mathrm{~mol}$ chloroethene $/ \mathrm{mole} \mathrm{H}_{2} \mathrm{O}$
2. Convert the Henry's law constant from Table 16-12, page 1769, to the form used in Eq. (11-79) using Eq. (2-51) and determine the effluent mole fraction of chloroethene in the air leaving the tower using Eq. (11-79).

$$
\begin{aligned}
\mathrm{H}_{u} & =\frac{\mathrm{H}}{\mathrm{RT}}=\frac{\left(0.064 \mathrm{~m}^{3} / \mathrm{atm} \cdot \mathrm{~mole}\right)}{\left(8.206 \times 10^{-5}\right)(293.15 \mathrm{~K})}=2.66 \\
\mathrm{H} & =\left(\mathrm{H}_{\mathrm{u}}\right)(4.559)(293.15 \mathrm{~K})=3556 \mathrm{~atm} \\
\mathrm{y}_{\mathrm{e}} & =\frac{\mathrm{H}}{\mathrm{P}_{\mathrm{T}}} \mathrm{C}_{0}=\left(\frac{3556 \mathrm{~atm}}{1 \mathrm{~atm}}\right) 2.88 \times 10^{-8} \\
& =1.03 \times 10^{-4} \text { mole chloroethene } / \text { mole air }
\end{aligned}
$$

3. Determine the gas to liquid ratio using Eq. (11-81) rearranged as follows

$$
\begin{aligned}
\frac{G}{L} & =\frac{P_{T}}{H} \times \frac{\left(C_{0}-C_{e}\right)}{C_{0}}=\frac{\left(C_{0}-C_{e}\right)}{y_{e}} \\
\frac{G}{L} & =\frac{\left[\left(2.88 \times 10^{-8}-1.44 \times 10^{-9}\right) \text { mole chloroethene } / \mathrm{mole}_{2} \mathrm{O}\right]}{\left(1.44 \times 10^{-9} \frac{\text { mole chloroethene }}{\text { mole air }}\right)} \\
\frac{G}{L} & =0.000267 \frac{\text { mole air }}{\text { mole }_{2} \mathrm{O}}
\end{aligned}
$$

4. Convert the moles of air and water to liters of air and water.

For air at $20^{\circ} \mathrm{C}$:
$(0.000267$ mole $)(24.1 \mathrm{~L} / \mathrm{mole})=0.006435 \mathrm{~L}$
For water:
$1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times\left(\frac{18 \mathrm{~g}}{\mathrm{~mole}}\right)\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~g}}\right)=0.018 \mathrm{~L}$
$\frac{G}{L}=\frac{0.006435 \mathrm{~L}}{0.018 \mathrm{~L}}=0.357 \mathrm{~L} / \mathrm{L}=0.357 \mathrm{~m}^{3} / \mathrm{m}^{3}$
5. Determine the total quantity of air required based on ideal conditions.

Air required $=\frac{\left(0.357 \mathrm{~m}^{3} / \mathrm{m}^{3}\right)\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{(1440 \mathrm{~min} / \mathrm{d})}=0.745 \mathrm{~m}^{3} / \mathrm{min}$
6. To determine the height of the stripping tower, several assumptions must be made.
a. Select a packing material. Assume a packing factor of 50.
b. Select a stripping factor. Assume a stripping factor of 3 .
c. Select an acceptable pressure drop. Assume a pressure drop of 200 ($\mathrm{N} / \mathrm{m}^{2}$)/m (see Table 11-45)
7. Determine the cross-sectional area of the stripping tower using the pressure drop plot given in Fig. 11-67. Because chloroethene is extremely volatile, the stripping tower can not be designed using the procedure outlined in Example 11-16. An alternate method, in which the air to water ratio is assumed to be $20 \mathrm{~m}^{3} \mathrm{air} / \mathrm{m}^{3}$ water, is used below to compute the dimensions of the stripping tower.
a. Determine the value of the ordinate for Fig. 11-67.

$$
\begin{aligned}
& \frac{\mathrm{G}^{\prime}}{\mathrm{L}^{\prime}}=\left(\frac{20 \mathrm{~m}^{3} \text { air }}{\mathrm{m}^{3} \text { water }}\right)\left(\frac{1.204 \mathrm{~kg}}{\mathrm{~m}^{3} \text { air }}\right)\left(\frac{\mathrm{m}^{3} \text { water }}{1000 \mathrm{~kg}}\right)=0.0241 \mathrm{~kg} \text { air } / \mathrm{kg} \text { water } \\
& \frac{\mathrm{L}^{\prime}}{\mathrm{G}^{\prime}}=\frac{1}{(0.0241 \mathrm{~kg} / \mathrm{kg})}=41.5 \\
& \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{L}}-\rho_{\mathrm{G}}}\right)^{1 / 2} \approx \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{L}}}\right)^{1 / 2}=(41.5 \mathrm{~kg} / \mathrm{kg})\left(\frac{1.204 \mathrm{~kg} / \mathrm{m}^{3}}{998.2 \mathrm{~kg} / \mathrm{m}^{3}}\right)^{1 / 2} \\
& \frac{\mathrm{~L}^{\prime}}{\mathrm{G}^{\prime}}\left(\frac{\rho_{\mathrm{G}}}{\rho_{\mathrm{L}}}\right)^{1 / 2}=1.44
\end{aligned}
$$

b. Determine the corresponding value on the abscissa. For an ordinate value of 1.44 and a pressure drop of $200\left(\mathrm{~N} / \mathrm{m}^{2}\right) / \mathrm{m}$, the abscissa value is 0.008 .
c. Using an abscissa value 0.008, determine the loading rate using Eq. (11-103)
$G^{\prime}=\left(\frac{(\text { value from y axis })\left(\rho_{G}\right)\left(\rho_{\mathrm{L}}-\rho_{\mathrm{G}}\right)}{\left(\mathrm{C}_{\mathrm{f}}\right)\left(\mu_{\mathrm{L}}\right)^{0.1}}\right)^{1 / 2}$
$G^{\prime}=\left(\frac{(0.008)(1.204)(998.2-1.204)}{(50)(0.001)^{0.1}}\right)^{1 / 2}=0.619 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$
$\mathrm{L}^{\prime}=41.5 \mathrm{G}^{\prime}=41.5 \times 0.619 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}=25.7 \mathrm{~kg} / \mathrm{m}^{2} \cdot \mathrm{~s}$
d. Substitute known values and solve for the diameter of the tower
$D=\left[\left(\frac{4}{3.14}\right)\left\{\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(998.2 \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left[(0.619+25.7) \mathrm{kg} / \mathrm{m}^{2} \cdot \mathrm{~s}\right]}\right\}\left(\frac{1 \mathrm{~d}}{86,400 \mathrm{~s}}\right)\right]^{1 / 2}=1.3 \mathrm{~m}$
8. Determine the height of the transfer unit using Eq. (11-96)

$$
\mathrm{HTU}=\frac{\mathrm{L}}{\mathrm{~K}_{\mathrm{L}} \mathrm{aA}}=\left\{\frac{\left(3000 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left[(0.0141 / \mathrm{s})\left[(3.14 / 4)(1.0)^{2}\right]\right.}\right\}\left(\frac{1 \mathrm{~d}}{86,400 \mathrm{~s}}\right)=1.87 \mathrm{~m}
$$

9. Determine the number of transfer unit using Eq. (11-98)

$$
\text { NTU }=\left[\frac{3}{3-1}\right] \ln \left[\frac{(100 / 5)(3-1)+1}{3}\right]=3.92
$$

10. Determine the theoretical height of the stripping tower packing using Eq. (11-95)
$Z=H T U \times N T U=1.87 \times 3.92=7.34 \mathrm{~m}$

PROBLEM 11-31

Problem Statement - See text, page 1285

Solution

Write the basic exchange and equilibrium reactions using Eq. (11-114).
$\mathrm{RNa}+\mathrm{K}^{+} \rightarrow \mathrm{RK}+\mathrm{Na}^{+}$
$1.46=\frac{\left[\mathrm{Na}^{+}\right] \mathrm{X}_{\mathrm{RK}}}{\left[\mathrm{K}^{+}\right] \mathrm{X}_{\mathrm{RNa}}}$
2. Determine the residual potassium concentration.

$$
\begin{aligned}
& X_{\mathrm{RK}}=\frac{\mathrm{n}_{\mathrm{K}}}{\mathrm{n}_{\mathrm{Na}}+\mathrm{n}_{\mathrm{K}}} \quad \mathrm{X}_{\mathrm{RK}}=\frac{\mathrm{n}_{\mathrm{Na}}}{\mathrm{n}_{\mathrm{Na}}+\mathrm{n}_{\mathrm{K}}} \\
& 1.46=\frac{\left[\mathrm{Na}^{+}\right] \mathrm{n}_{\mathrm{K}}}{\left[\mathrm{~K}^{+}\right] \mathrm{n}_{\mathrm{Na}}} \\
& {\left[\mathrm{~K}^{+}\right]=2-\mathrm{n}_{\mathrm{K}}} \\
& \mathrm{n}_{\mathrm{a}}=5 \mathrm{~g} \times \frac{4 \mathrm{meq}}{\mathrm{~g}}-\mathrm{n}_{\mathrm{K}}=20 \mathrm{meq}-\mathrm{n}_{\mathrm{K}}
\end{aligned}
$$

$\left[\mathrm{Na}^{+}\right]=\mathrm{n}_{\mathrm{K}}+0.5 \mathrm{meq}$
3. Substitute and solve by successive trials.

$$
\begin{aligned}
& 1.46=\frac{\left(n_{\mathrm{K}}+0.5\right) n_{\mathrm{K}}}{\left(2-\mathrm{n}_{\mathrm{K}}\right)\left(20-\mathrm{n}_{\mathrm{K}}\right)} \\
& 1.46=\frac{\mathrm{n}_{\mathrm{K}}^{2}+0.5 \mathrm{n}_{\mathrm{K}}}{\left(20-22 \mathrm{n}_{\mathrm{K}}+\mathrm{n}_{\mathrm{K}}^{2}\right)}
\end{aligned}
$$

$n_{K}=1.838$
Residual potassium concentration $=2-1.838=0.162 \mathrm{meq}$

PROBLEM 11-32

Problem Statement - See text, page 1285-1286

Solution

Instructors Note: The amount of resin used in the column study was not provided in the problem statement. For the solution below, a value of 0.1 kg is used, following Example 11-17.

Solution

1. Prepare a plot of the normalized concentrations of Cl^{-}and Ca^{+2} as a function of the throughput volume. The required plot for resin A is given below.

2. Determine the exchange capacity.

The exchange capacity (EC) of the resin in meq/kg is:
$E C=\frac{V C O_{0}}{R}$
$E C=\frac{(40 \mathrm{~L}-14 \mathrm{~L})\left[\frac{(40 \mathrm{mg} / \mathrm{L})}{(20 \mathrm{mg} / \mathrm{meq})}\right]}{0.1 \mathrm{~kg} \text { of resin }}=520 \mathrm{meq} / \mathrm{kg}$ of resin
3. Determine the mass and volume of resin required to treat $4000 \mathrm{~m}^{3}$ of water to reduce the Ca^{2+} concentration from $125 \mathrm{mg} / \mathrm{L}$ to $45 \mathrm{mg} / \mathrm{L}$.
a. Determine the meq of Ca^{2+}.

$$
\mathrm{Ca}^{2+}, \mathrm{meq} / \mathrm{L}=\frac{(125-45) \mathrm{mg} / \mathrm{L} \text { as } \mathrm{Ca}^{2+}}{(20 \mathrm{mg} / \mathrm{meq})}=4 \mathrm{meq} / \mathrm{L}
$$

b. The required exchange capacity is equal to $(4.0 \mathrm{meq} / \mathrm{L})\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)=16 \times 10^{6} \mathrm{meq}$
c. The required mass of resin is:

$$
R_{\text {mass }}, \mathrm{kg}=\frac{16 \times 10^{6} \mathrm{meq}}{(520 \mathrm{meq} / \mathrm{kg} \text { of resin })}=30,769 \mathrm{~kg} / \mathrm{d} \text { of resin }
$$

d. Assume the density of the resin is $700 \mathrm{~kg} / \mathrm{m}^{3}$ and determine the required volume of resin.

$$
\mathrm{R}_{\text {vol }}, \mathrm{m}^{3}=\frac{30,769 \mathrm{~kg} \text { of resin }}{\left(700 \mathrm{~kg} / \mathrm{m}^{3}\right)}=44 \mathrm{~m}^{3} / \mathrm{d} \text { of resin }
$$

4. Summary of results for Problem 11-32

Item	Resin 1	Resin 2
EC, meq/kg	520	394
Mass, kg / d	30,769	40,609
Volume, $\mathrm{m}^{3} / \mathrm{d}$	44	58

PROBLEM 11-33

Problem Statement - See text, page 1286

Solution

Use the resin properties determined in Problem 11-32.

1. Determine the mass and volume of resin required to treat $5,500 \mathrm{~m}^{3}$ of water to reduce the Mg^{2+} concentration from 115 to $15 \mathrm{mg} / \mathrm{L}$, using resin 1 .
a. Determine the meq of Mg^{2+}.

$$
\mathrm{Mg}^{2+}, \mathrm{meq} / \mathrm{L}=\frac{\left[(115-15) \mathrm{mg} /{\mathrm{Las} \mathrm{Mg}^{2+}}^{2+}\right.}{(12.15 \mathrm{mg} / \mathrm{meq})}=8.2 \mathrm{meq} / \mathrm{L}
$$

b. The required exchange capacity is equal to

$$
(8.2 \mathrm{meq} / \mathrm{L})\left(5500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~L} / \mathrm{m}^{3}\right)=45.3 \times 10^{6} \mathrm{meq}
$$

c. The required mass of resin is:

$$
\mathrm{R}_{\text {mass }}, \mathrm{kg}=\frac{45.3 \times 10^{6} \mathrm{meq}}{(520 \mathrm{meq} / \mathrm{kg} \text { of resin })}=87,052 \mathrm{~kg} / \mathrm{d} \text { of resin }
$$

d. Assume the density of the resin is $700 \mathrm{~kg} / \mathrm{m}^{3}$ and determine the required volume of resin.

$$
\mathrm{R}_{\mathrm{vol},}, \mathrm{~m}^{3}=\frac{87,052 \mathrm{~kg} \text { of resin }}{\left(700 \mathrm{~kg} / \mathrm{m}^{3}\right)}=124.4 \mathrm{~m}^{3} / \mathrm{d} \text { of resin }
$$

2. Summary of results for Problem 11-33

	Resin 1	Resin 2
EC, meq/kg	520	394
Mass, kg / d	87,053	114,892
Volume, $\mathrm{m}^{3} / \mathrm{d}$	124	164

PROBLEM 11-34

Problem Statement - See text, page 1286

Solution

1. Setup a computation table to compute the values needed to solve the problem, the values for wastewater 1 are shown below.

Wastewater 1

Cation	Conc., mg / L	$\mathrm{mg} / \mathrm{meq}$	$\mathrm{meq} / \mathrm{L}$	Anion	Conc., mg / L	$\mathrm{mg} / \mathrm{meq}$	$\mathrm{meq} / \mathrm{L}$
Ca^{2+}	82.2	20.04	4.10	$\mathrm{HCO}_{3}{ }^{-}$	304.8	61.02	5.00

Mg ${ }^{2+}$	17.9	12.15	1.47	$\mathrm{SO}_{4}{ }^{2-}$	0	48.03	0.00
Na^{+}	46.4	23.00	2.02	Cl	58.1	35.45	1.64
K+	15.5	39.10	0.40	$\mathrm{NO}_{3}{ }^{-}$	82.5	62.01	1.33
		Σ cations	7.99			Eanions	7.96

2. Estimate the selectivity coefficient (see Table 11-49). To apply Eq. (11-129) the system must be reduced to two components. For this purpose, $\mathrm{HCO}_{3}{ }^{-}$and Cl^{-}are combined into a single component. Using a selectivity value of 4 for nitrate, the selectivity coefficient is estimated as follows:
$\mathrm{K}_{\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{NO}_{3}^{-}}=\frac{4.0}{0.4}=10.0$
$\mathrm{K}_{\mathrm{Cl}^{-} \rightarrow \mathrm{NO}_{3}^{-}}=\frac{4.0}{1.0}=4.0$
$\mathrm{K}_{\left[\left(\mathrm{HCO}_{3}^{-}\right)(\mathrm{CO})\right] \rightarrow \mathrm{NO}_{3}^{-}}=7.0 \quad$ (estimated)
3. For the equilibrium condition $\left(C_{e} / C_{o}=1.0\right)$, estimate the nitrate equivalent fraction in solution.
$X_{\mathrm{NO}_{3}^{-}}=\frac{1.33}{7.96}=0.167$
4. Compute the equilibrium resin composition using Eq. (11-129).

$$
\begin{aligned}
& \frac{\overline{\mathrm{X}}_{\mathrm{B}^{+}}}{1-\overline{\mathrm{X}}_{\mathrm{B}^{+}}}=\left[\mathrm{K}_{\mathrm{A}^{+} \rightarrow \mathrm{B}^{+}}\right]\left[\frac{\mathrm{X}_{\mathrm{B}^{+}}}{1-\mathrm{X}_{\mathrm{B}^{+}}}\right] \\
& \frac{\overline{\mathrm{X}}_{\mathrm{NO}_{3}^{-}}}{1-\overline{\mathrm{X}}_{\mathrm{NO}_{3}^{-}}}=7.0\left[\frac{0.167}{1-0.167}\right] \\
& \overline{\mathrm{X}}_{\mathrm{NO}_{3}}=0.584
\end{aligned}
$$

Thus, 58 percent of the exchange sites on the resin can be used for the removal of nitrate
5. Determine the limiting operating capacity of the resin for the removal of nitrate.

Limiting operating capacity $=(1.8 \mathrm{eq} / \mathrm{L}$ of resin $)(0.584)=1.05 \mathrm{eq} / \mathrm{L}$ of resin

PROBLEM 11-35

Problem Statement - See text, page 1286

Solution

1. Setup a computation table to compute the values needed to solve the problem, the values for wastewater 1 are shown below.

Wastewater 1

Cation	Conc., mg / L	$\mathrm{mg} / \mathrm{meq}$	$\mathrm{meq} / \mathrm{L}$	Anion	Conc., mg / L	$\mathrm{mg} / \mathrm{meq}$	$\mathrm{meq} / \mathrm{L}$
Ca^{2+}	82.2	20.04	4.10	$\mathrm{HCO}_{3}{ }^{-}$	321	61.02	5.26
Mg^{2+}	17.9	12.15	1.47	$\mathrm{SO}_{4}{ }^{2-}$	65	48.03	1.35
Na^{+}	46.4	23.00	2.02	Cl^{-}	22	35.45	0.62
$\mathrm{~K}^{+}$	15.5	39.10	0.40	$\mathrm{NO}_{3}{ }^{-}$	46	62.01	0.74
		\sum cations	7.99			年nions	7.97

2. Estimate the selectivity coefficient (see Table 11-49). To apply Eq. (11-129) the system must be reduced to two components. For this purpose, $\mathrm{HCO}_{3}{ }^{-}, \mathrm{Cl}^{-}$, and $\mathrm{NO}_{3}{ }^{-}$are combined into a single monovalent component. The selectivity coefficient is estimated as follows:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{2-}}=\frac{0.15}{0.4}=0.4 \\
& \mathrm{~K}_{\mathrm{Cl}^{-} \rightarrow \mathrm{SO}_{4}^{2-}}=\frac{0.15}{1.0}=0.15 \\
& \mathrm{~K}_{\mathrm{NO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{2-}}=\frac{0.15}{4.0}=0.04 \\
& \mathrm{~K}_{\left[\left(\mathrm{NO}_{3}^{-}\right)\left(\mathrm{HCO}_{3}^{-}\right)\left(\mathrm{Cl}^{-}\right)\right] \rightarrow \mathrm{SO}_{4}^{2-}}=0.2 \quad \text { (estimated) }
\end{aligned}
$$

3. For the equilibrium condition $\left(C_{e} / C_{0}=1.0\right)$, estimate the sulfate equivalent fraction in solution.

$$
\mathrm{X}_{\mathrm{SO}_{4}^{2-}}=\frac{1.35}{7.97}=0.17
$$

4. Compute the equilibrium resin composition using Eq. (11-129).

$$
\begin{aligned}
& \frac{\overline{\mathrm{X}}^{2-}}{\left(1-\overline{\mathrm{X}}_{\mathrm{B}^{2-}}\right)^{2}}=\left[\mathrm{K}_{\mathrm{A}^{-} \rightarrow \mathrm{B}^{2-}}\right] \frac{\overline{\mathrm{C}}}{\mathrm{C}}\left[\frac{\mathrm{X}_{\mathrm{B}^{2-}}}{\left(1-\mathrm{X}_{\mathrm{B}^{2}-}\right)^{2}}\right] \\
& \frac{\overline{\mathrm{X}}_{\mathrm{SO}_{4}^{2-}}^{\left(1-\overline{\mathrm{X}}_{\mathrm{SO}_{4}^{2-}}\right)^{2}}=0.17 \frac{2.5}{0.00798}\left[\frac{0.17}{(1-0.17)^{2}}\right]}{\overline{\mathrm{X}}_{\mathrm{SO}_{4}^{2-}}=0.78}
\end{aligned}
$$

Thus, 78 percent of the exchange sites on the resin will be in the divalent form at equilibrium. The relative amount of NO_{3} - can be estimated by assuming that the remaining 22 percent of the resin sites are in equilibrium with a solution of $\mathrm{NO}_{3}{ }^{-}$, $\mathrm{HCO}_{3}{ }^{-}$, and CL^{-}with the same relative concentration as the feed.
The equivalent fraction of nitrate in the solution will then be:

$$
\mathrm{X}_{\mathrm{NO}_{3}^{-}}=\frac{0.74}{6.62}=0.112
$$

The selectivity coefficient for the monovalent system is estimated:

$$
\mathrm{K}_{\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{NO}_{3}^{-}}=\frac{4.0}{0.4}=10.0
$$

$$
\mathrm{K}_{\mathrm{Cl}^{\prime} \rightarrow \mathrm{NO}_{\overline{3}}^{-\overline{3}}}=\frac{4.0}{1.0}=4.0
$$

$$
\mathrm{K}_{\left[\left(\mathrm{HCO}_{3}^{3}\right)\left(\mathrm{Cl}^{-}\right)\right] \rightarrow \mathrm{NO}_{3}^{-}}=7.0 \quad \text { (estimated) }
$$

Compute the equilibrium resin composition using Eq. (11-129).
$\frac{\overline{\mathrm{X}}_{\mathrm{B}^{+}}^{\prime}}{1-\overline{\mathrm{X}}_{\mathrm{B}^{+}}^{\prime}}=\left[\mathrm{K}_{\mathrm{A}^{+} \rightarrow \mathrm{B}^{+}}\right]\left[\frac{\mathrm{X}_{\mathrm{B}^{+}}^{\prime}}{1-\mathrm{X}_{\mathrm{B}^{+}}^{\prime}}\right]$

$$
\begin{aligned}
& \frac{\bar{X}_{\mathrm{NO}_{3}^{-}}^{\prime}}{1-\overline{\mathrm{X}}_{\mathrm{NO}_{3}^{-}}^{\prime}}=7.0\left[\frac{0.112}{1-0.112}\right] \\
& \overline{\mathrm{X}}_{\mathrm{NO}_{3}^{-}}^{\prime}=0.47
\end{aligned}
$$

The fraction of the total resin capacity in the nitrate form is then computed.

$$
\bar{X}_{\mathrm{NO}_{3}^{-}}=\left(1-\bar{X}_{\mathrm{SO}_{4}^{2-}}\right)\left(\bar{X}_{\mathrm{NO}_{3}^{-}}^{\prime}\right)=(0.22)(0.47)=0.105
$$

4. Determine the limiting operating capacity of the resin for the removal of nitrate.

Limiting operating capacity $=(2.5 \mathrm{eq} / \mathrm{L}$ of resin $)(0.105)=0.26 \mathrm{eq} / \mathrm{L}$ of resin
5. Determine the volume of water that can be treated during a service cycle.

$$
\begin{aligned}
\text { Vol } & =\frac{(\text { nitrate removal capacity of resin, eq } / \mathrm{L} \text { of resin })}{(\text { nitrate in solution, eq/L of water) }} \\
& =\frac{(0.26 \mathrm{eq} / \mathrm{L} \text { of resin })}{\left(0.798 \times 10^{-3} \mathrm{eq} / \mathrm{L} \text { of water }\right)}=355 \frac{\mathrm{~L} \text { of water }}{\mathrm{L} \text { of resin }}
\end{aligned}
$$

6. Summary of results for Problem 11-35

Wastewater	Volume of water treated per service cycle, L water/L resin
1	355
2	$0^{\text {a }}$
3	279
4	154

${ }^{a}$ Removal of sulfate will exhaust the resin exchange capacity

PROBLEM 11-36

Problem Statement - See text, page 1286

Solution

1. Prepare a table to summarize the chemical properties of importance for determining the advanced treatment process that should be considered. For some of the compounds to be investigated, the data presented in Table 16-12, page

1769, may be used to find chemical properties, other compounds will require review of other literature references.

Compound	Formula	mw	H, m^{3}-atm/mole	Solubility, mg / L
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.1	$5.5 \mathrm{E}-3$	1,780
Chloroform	CHCl_{3}	119.4	$3.1 \mathrm{E}-3$	7,840
Dieldrin	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{O}$	380.9	$1.0 \mathrm{E}-5$	0.195
Heptachlor	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Cl}_{7}$	373.3	$2.9 \mathrm{E}-4$	0.18
N -Nitrosodi-	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}$	74.1	No data	$1,000,000$
methylamine	$\mathrm{C}_{2} \mathrm{HCl}_{3}$	131.4	$9.9 \mathrm{E}-3$	1,280
Trichloroethylene	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$	62.5	$2.8 \mathrm{E}-2$	8,800
Vinyl chloride				

2. Prepare a table to summarize the compounds and the treatment processes that are expected to be effective for removal of that compound. Table 11-3 may be useful as a guide in process selection.

Compound	Advanced treatment processes for removal of specified compound ${ }^{\text {a }}$
Benzene	Adsorption, may be possible with reverse osmosis, electrodialysis, gas stripping.
Chloroform	Adsorption, reverse osmosis, electrodialysis, gas stripping.
Dieldrin	Adsorption, reverse osmosis, electrodialysis.
Heptachlor	Adsorption, reverse osmosis, electrodialysis.
N-Nitrosodi- methylamine	May be possible with adsorption, significant removal has been achieved with reverse osmosis, electrodialysis, advanced oxidation (especially with UV generation of hydroxyl radicals)
Trichloroethylene	Adsorption, reverse osmosis, electrodialysis, advanced oxidation, gas stripping, Adsorption, may be possible with reverse osmosis, electrodialysis, advanced oxidation, gas stripping,
Vinyl chloride	ade
Descriptions of the various processes are presented in the following table	

Advanced treatment process discussed in Chap. 11 and their applications.

Advanced treatment process	Typical applications
Depth filtration	Removal of suspended and colloidal constituents by exclusion based on constituent size.
Surface filtration	Removal of particulate matter suspended in a liquid by

	passing the liquid through a thin septum, usually a cloth or metal medium.
Membrane filtration processes (Micro and ultra filtration)	Removal of suspended and colloidal constituents by exclusion based on constituent size.
Membrane filtration processes (reverse osmosis)	Removal of dissolved constituents by preferential diffusion using a pressure-driven,semipermeable membrane.
Electrodialysis	Removal of suspended, colloidal, and dissolved constituents by exclusion in ion selective membranes.
Adsorption	Removal of dissolved organic materials by sequestration on a solid phase medium. See Table 11-40.
Gas stripping	Removal of volatile compounds by transfer from the liquid phase to the air phase. Compounds with a low Henry's constant are the most amenable to stripping.
Ion exchange	Removal of cationic and anion compounds by displacement of other ions on a prepared medium
Distillation	Removal of suspended and dissolved compounds by water vaporization and condensation, volatile compounds may carry-over into effluent.

PROBLEM 12-1

Problem Statement - See text, page 1434

Solution

1. Plot $-\log \left(N_{t} / N_{0}\right)$ versus time

2. Solve for the constant k in Chicks law

$$
\log \left(N_{t} / N_{o}\right)=-k t
$$

$$
-5=-(\mathrm{k} / \mathrm{min})(9.2 \mathrm{~min})
$$

$$
\mathrm{k}=0.543 / \mathrm{mim}
$$

Water	$\mathrm{k} / \mathrm{min}$
1	0.543
2	0.172
3	0.239
4	0.360

3. Use the van't Hoff-Arrhenius equation [Eq. (12-7)] to determine the new innactivation constatnts at $12^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{E\left(T_{2}-T_{1}\right)}{R T_{1} T_{2}} \\
& k_{2}=k_{1} \exp \left[\frac{E\left(T_{2}-T_{1}\right)}{R T_{1} T_{2}}\right] \\
& k_{2}=(0.543 / \mathrm{min}) \exp \left[\frac{(52 \mathrm{~kJ} / \mathrm{mole})\left(10^{3} \mathrm{~J} / \mathrm{kJ}\right)(285-293)}{(8.3444 \mathrm{Jmole} \cdot \mathrm{~K})(285)(293)}\right] \\
& \\
& =0.299 / \mathrm{min}
\end{aligned}
$$

Water	$\mathrm{k}_{20^{\circ} \mathrm{C}} / \mathrm{min}^{-1}$	$\mathrm{k}_{12^{\circ} \mathrm{C}} / \mathrm{min}^{-1}$
1	0.543	0.299
2	0.172	0.095
3	0.239	0.131
4	0.360	0.198

PROBLEM 12-2

Problem Statement - See text, page 1434
Instructors Note: A chlorine residual was was not given in Problem 1. In the following solution for effluent sample 1 of Problem 1, the chlorine residual at 60 min was assumed to be $2 \mathrm{mg} / \mathrm{L}$. Other values can be specified. The key learning of this problem is see how important temperature and time is in the disinfection process.

Solution

1. Determine the chlorine dose at 60 min and $20^{\circ} \mathrm{C}$. Assume Eqs. (12-3) and (12-6) can be used.
2. Determine the value of the specific lethality Λ for Sample 1.

For the purpose of this analysis, assume the coefficient n in Eq. (12-3) is equal to 1.0 .
$k=\Lambda C^{n}$
For effluent sample 1 , the k value is $0.543 / \mathrm{min}$ (base 10) at $20^{\circ} \mathrm{C}$ with a residual chlorine concentration of $2.0 \mathrm{mg} / \mathrm{L}$. Thus,
$\Lambda=k / C=(0.543 / \mathrm{min}) /(2 \mathrm{mg} / \mathrm{L})=0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{min}$
3. Determine the required residual chlorine concentration at $20^{\circ} \mathrm{C}$ using Eq. (12-5)

$$
\begin{aligned}
& -\log \frac{N_{t}}{N_{o}}=\left(\Lambda_{\text {base } 10}\right) \mathrm{Ct} \\
& -\log 10^{-5}=(0.272)(\mathrm{C})(60 \mathrm{~min}) \\
& C=-(-5) /(0.272)(60 \mathrm{~min})=0.306 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

4. Determine the specific lethality Λ at 15 and $25^{\circ} \mathrm{C}$ using Eq. (12-7)

$$
\ln \frac{\Lambda_{2}}{\Lambda_{1}}=\frac{E\left(T_{2}-T_{1}\right)}{R T_{2} T_{1}}
$$

a. $\quad \Lambda$ at $15^{\circ} \mathrm{C}(288 \mathrm{~K})$

$$
\begin{aligned}
& \ln \frac{(0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min})}{\Lambda_{15}}=\frac{(52,000 \mathrm{~J} / \mathrm{mole})[(293-288) \mathrm{K}]}{(8.3144 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K})(293)(288)} \\
& \frac{(0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min})}{\Lambda_{15}}=\mathrm{e}^{0.371}=1.449 \\
& \Lambda_{15}=(0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min}) / 1.449=0.188 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min}
\end{aligned}
$$

a. $\quad \Lambda$ at $25^{\circ} \mathrm{C}(298 \mathrm{~K})$

$$
\begin{aligned}
& \ln \frac{(0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min})}{\Lambda_{25}}=\frac{(52,000 \mathrm{~J} / \mathrm{mole})[(293-298) \mathrm{K}]}{(8.3144 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K})(293)(298)} \\
& \frac{(0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min})}{\Lambda_{25}}=\mathrm{e}^{-0.358}=0.699
\end{aligned}
$$

$$
\Lambda_{25}=(0.272 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min}) / .699=0.389 \mathrm{~L} / \mathrm{mg} \cdot \min
$$

5. Determine the required residual chlorine concentration at 15 and $25^{\circ} \mathrm{C}$ using Eq. (12-6)

$$
-\log \frac{N_{t}}{N_{0}}=\left(\Lambda_{\text {base } 10}\right) C t=D
$$

a. Concentration, C , at $15^{\circ} \mathrm{C}$

$$
\begin{aligned}
& -\log 10^{-4}=(0.188 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min})(\mathrm{C})(60 \mathrm{~min}) \\
& C=-(-4) /(0.188 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{~min})(60 \mathrm{~min})=0.35 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

b. Concentration, C , at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& -\log 10^{-4}=(0.699 \mathrm{~L} / \mathrm{mg} \cdot \min)(\mathrm{C})(60 \mathrm{~min}) \\
& \mathrm{C}=-(-4) /(0.389 \mathrm{~L} / \mathrm{mg} \cdot \min)(60 \mathrm{~min})=0.17 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

PROBLEM 12-3

Problem Statement - See text, page 1434

Solution

Part a

1. Plot $\log \left(N_{t} / N_{0}\right)$ versus $C T$

2. The coefficient of specific lethality in Eq. (12-6) is equal to the slope of the linear curve through the plotted data.

$$
\log \left(\frac{N_{t}}{N_{0}}\right)=-\Lambda_{\text {base10 }}(C T) \text { for dilution constant } n=1
$$

3. Determine the time required to achieve desired residual coliform.

Log reduction to achieve 200 MPN/100 mL:

$$
\log \left(\frac{N_{t}}{N_{0}}\right)=3.7
$$

Log reduction to achieve 1000 MPN/100 mL:

$$
\log \left(\frac{N_{t}}{N_{o}}\right)=3.0
$$

Use the coefficient of specific lethality calculated in part 2 to find the required contact time.

		$\mathrm{CT}, \mathrm{mg}-\mathrm{min} / \mathrm{L}$ given residual coliform	
Sample	$\Lambda_{\text {base } 10}$	$200 \mathrm{MPN} / 100 \mathrm{~mL}$	$1000 \mathrm{MPN} / 100 \mathrm{~mL}$
1	-0.0185	200	162
2	-0.0152	244	198
3	-0.0120	309	250

Part b

1. Given the average winter flowrate of 26,000 the volume required to achieve a 60 minute contact time is

$$
26,000 \mathrm{~m}^{3} / \mathrm{d} \times \frac{60 \mathrm{~min}}{[(60 \mathrm{~min} / \mathrm{h}) /(24 \mathrm{~h} / \mathrm{d})]}=1083 \mathrm{~m}^{3}
$$

2. The minimum dose required to achieve desired residual coliform is

$$
\mathrm{C}=\mathrm{CT} / \mathrm{T}
$$

	Chlorine concentration, mg / L given residual coliform	
Sample	$200 \mathrm{MPN} / 100 \mathrm{~mL}$	$1000 \mathrm{MPN} / 100 \mathrm{~mL}$
1	4798	3891
2	5848	4743
3	7412	6011

3. The mass of chlorine required annually to achieve the desired residual coliform for average and peak flowrates are
Cl_{2} required $=\left(\mathrm{C}_{\mathrm{C}}, \mathrm{mg} / \mathrm{L}\right)\left(\mathrm{Q}, \mathrm{m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~L} / \mathrm{m}^{3}\right)\left(10^{-6} \mathrm{~kg} / \mathrm{mg}\right)(365 \mathrm{~d} / \mathrm{y})$

For average flowrate,

Sample	Chlorine mass, kg / y given residual coliform	
	$200 \mathrm{MPN} / 100 \mathrm{~mL}$	$1000 \mathrm{MPN} / 100 \mathrm{~mL}$
1	$40,276,072$	$32,665,368$
2	$49,094,749$	$39,817,637$
3	$62,221,980$	$50,464,302$

For peak flowrate,

	Chlorine mass, kg / y given residual coliform	
Sample	$200 \mathrm{MPN} / 100 \mathrm{~mL}$	$1000 \mathrm{MPN} / 100 \mathrm{~mL}$
1	$80,552,143$	$65,330,735$
2	$98,189,498$	$79,635,275$
3	$124,443,959$	$100,928,604$

PROBLEM 12-4

Problem Statement - See text, page 1435
Instructors Note: Although "time" is listed in the data table the correct heading should be CT, mg•min/L

Solution

1. Plot $-\log \left(N_{t} / N_{0}\right)$ versus $C T$ for the selected water sample. Sample 1 is shown on the plot below.

2. Determine the value of b and n in Eq. (12-27). The coefficient values are given in the table below for $C T>b$. Note that n is equal to the negative slope of the curve while b is the log-transformed x -intercept.

Wastewater	b	n
1	1.194	3.885
2	2.938	2.771
3	1.350	3.122
4	1.587	2.853

3. Check coefficients for Water 1. The CT value is equal to 42.3 for a 6 log reduction.

$$
\begin{aligned}
-\log \left(N / N_{o}\right) & =n[\log (C T)-\log (b)] \\
& =3.885[\log (42.3)-\log (1.194)]=6.0 \mathrm{ok}
\end{aligned}
$$

4. Determine the innactivation achieved for a CT value of 10 for Water 1 as further check.

$$
\begin{aligned}
-\log \left(N / N_{o}\right) & =n[\log (C T)-\log (b)] \\
& =3.885[\log (10)-\log (1.194)]=3.6 \text { ok (see above plot) }
\end{aligned}
$$

PROBLEM 12-5

Problem Statement - See text, page 1435

Solution

1. Determine effective chlorine dose for Sample $\mathbf{1}$ taking into account losses:
a. Summer

Effective chlorine dosage $=(20-2.0) \mathrm{mg} / \mathrm{L}=18.0 \mathrm{mg} / \mathrm{L}$
b. Winter

Effective chlorine dosage $=(10.0-2.0) \mathrm{mg} / \mathrm{L}=8.0 \mathrm{mg} / \mathrm{L}$
2. Estimate the effluent coliform concentration using the Collins-Selleck Model, Eq. (12-27) and the given coefficients.
$N / N_{0}=(C T / b)^{-n}$
a. Summer

$$
\begin{aligned}
& N_{t} / 10^{7}=(18 \times 45 / 4.0)^{-2.8}=3.48 \times 10^{-7} \\
& N_{t}=3.48 / 100 \mathrm{~mL}
\end{aligned}
$$

b. Winter

$$
\begin{aligned}
& N_{t} / 10^{7}=(8 \times 45 / 4.0)^{-2.8}=3.37 \times 10^{-6} \\
& N_{t}=3.37 / 100 \mathrm{~mL}
\end{aligned}
$$

PROBLEM 12-6

Problem Statement - See text, page 1435-1536

Solution

1. Plot the given chlorination data

2. The dosage at the breakpoint is:

Wastewater	Dosage, mg / L
1	3.1
2	8.5
3	5.75
4	7.5

3. Chlorine dose to obtain a free residual of $1.0 \mathrm{~g} / \mathrm{m}^{3}$

Wastewater	Dosage, mg / L
1	4.1

2	9.8
3	7.1
4	8.9

PROBLEM 12-7

Problem Statement - See text, page 1436

Solution

1. Estimate the required Cl_{2} dosage using the molecular ratio developed in Example 12-3, page 1319
$\mathrm{kg} \mathrm{Cl}_{2} / \mathrm{d}=\left(4800 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(4-1) \mathrm{g} / \mathrm{m}^{3}\right](7.6 \mathrm{~g} / \mathrm{g})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=109.4 \mathrm{~kg} / \mathrm{d}$
2. Determine the alkalinity required
a. When using lime to neutralize the acidity, the required
alkalinity ratio is 14.3 as developed in Example 12-3, page 1319
b. The required alkalinity is

$$
\begin{aligned}
\text { Alk } & =\frac{\left.\left[(14.3 \mathrm{mg} / \mathrm{L} \text { alk }) /\left(\mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}^{+}\right)\right](4-1) \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}^{+}\right]\left(4800 \mathrm{~m}^{3} / \mathrm{d}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)} \\
& =205.9 \mathrm{mg} / \mathrm{L} \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

3. Determine whether sufficient alkalinity is available to neutralize the acid during breakpoint chlorination

Because the available alkalinity (125, 145, and $165 \mathrm{mg} / \mathrm{L})$ are all less than the required alkalinity ($205.9 \mathrm{mg} / \mathrm{L}$), alkalinity will have to added to complete the reaction.
4. Determine the increment of TDS added to the reclaimed water. Using the data reported in Table 12-10, the TDS increase per mg / L of ammonia consumed when CaO is used to neutralize the acid formed is equal to 12.2 to 1 .

TDS increment $=12.2(4-1) \mathrm{mg} / \mathrm{L}=36.6 \mathrm{mg} / \mathrm{L}$

PROBLEM 12-8

Problem Statement - See text, page 1436

Solution

Instructors Note: Although a number of agencies switched from gaseous chlorine to hypochlorite for reasons of safety, it should be noted that some large agencies have switched back to gaseous chlorine.

PROBLEM 12-9

Problem Statement - See text, page 1436-1437

Solution

1. Prepare a plot of the given tracer data (Note this plot is not required, but is included to allow selection of the individual tracer curve).

2. Determine the mean hydraulic residence time, and variance for the tracer response data using equations given in Table 12-19.
a. Set up the required computation table. In setting up the computation table given below for Sample 1, the Δt value was omitted as it appears in both the numerator and in the denominator of the equations used to compute the residence time and the corresponding variance.

Time, t,	Conc., C, ppb	$\mathrm{t} \times \mathrm{C}$	$\mathrm{t}^{2} \times \mathrm{C}$	Cumulative min

0	0	0	0	0	0.0
10	0	0	0	0	0.0
20	3.5	70	1400	3.5	6.8
30	7.6	228	6840	11.1	21.7
40	7.8	312	12,480	18.9	37.0
50	6.9	345	17,250	25.8	50.5
60	5.9	354	21,240	31.7	62.0
70	4.8	336	23,520	36.5	71.4
80	3.8	304	24,320	40.3	78.9
90	3.0	270	24,300	43.3	84.7
100	2.4	240	24,000	45.7	89.4
110	1.9	209	22,990	47.6	93.2
120	1.5	180	21,600	49.1	96.1
130	1.0	130	16,900	50.1	98.0
140	0.6	84	11,760	50.7	99.2
150	0.3	45	6750	51	99.8
160	0.1	16	2560	51.1	100.0
Total	51.1	3123	237,910		

b. Determine the mean hydraulic residence time

$$
\mathrm{t}_{\mathrm{m}} \simeq \frac{\sum \mathrm{t}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \Delta \mathrm{t}_{\mathrm{i}}}{\sum \mathrm{C}_{\mathrm{i}} \Delta \mathrm{t}_{\mathrm{i}}}=\frac{3123}{51.1}=61.1 \mathrm{~min}
$$

c. Determine the variance
$\sigma_{\mathrm{t}}^{2} \simeq \frac{\sum \mathrm{t}_{\mathrm{i}}^{2} \mathrm{C}_{\mathrm{i}} \Delta \mathrm{t}_{\mathrm{i}}}{\sum \mathrm{C}_{\mathrm{i}} \Delta \mathrm{t}_{\mathrm{i}}}-\left(\tau_{\Delta \mathrm{c}}\right)^{2}=\frac{237910}{51.1}-(61.1)^{2}=922.6 \mathrm{~min}^{2}$
$\sigma_{\mathrm{t}}=30.4 \mathrm{~min}$
d. Determine the t_{10} time using the cumulative percentage values.

Because of the short time interval, a linear interpolation method can be used.
$(21.7 \%-6.8 \%) /(30 \mathrm{~min}-20 \mathrm{~min})=1.49 \% / \mathrm{min}$
$20 \mathrm{~min}+(10 \%-6.8 \%) /(1.48 \% / \mathrm{min})=22.2 \mathrm{~min}$
e. Identify the mean hydraulic residence and t_{10} times on the tracer curve for Basin 1.

2. Another technique that can be used to obtain the above times is to plot the cumulative concentration data on log-probability paper. Such a plot is also useful for determining the MDI. The required plot is given below

The mean hydraulic retention and t_{10} times are read directly from the above plot

$$
\begin{aligned}
& \mathrm{t}_{50}=50 \mathrm{~min} \\
& \mathrm{t}_{10}=22 \mathrm{~min}
\end{aligned}
$$

3. Determine the MDI and the corresponding volume efficiency using the expressions given in Table 12-19 and the values from the plot given in Step 2 above.
a. The Morrill Dispersion Index is:

Morrill Dispersion Index, MDI $=\frac{t_{90}}{t_{10}}=\frac{100}{23}=4.35$
Because a MDI value below 2.0 has been established by the U.S. EPA as an effective design (U.S. EPA, 1986), the performance of Basin 2 would be classified as poor.
b. The corresponding volumetric efficiency for the chlorine contact basin is

Volumetric efficiency, $\%=\frac{1}{\mathrm{MDI}}=\frac{1}{4.35} \times 100=23 \%$

PROBLEM 12-10

Problem Statement - See text, page 1437

Solution

1. Plot the dose-response data for enteric virus.

2. Set up a computation table to determine the number of organisms remaining in the effluent for chlorine contact basin 1.

	Tracer					
Time,						
min	conc., mg / L	$\mathrm{C} \Delta \mathrm{t}$	$\mathrm{E}(\mathrm{t})$	$\mathrm{C}_{\mathrm{r}} \mathrm{t}$	Number of organisms remaining,	Number of organisms remaining in

					$\mathrm{N}(\theta) \mathrm{MPN} / 100$ mL	effluent, $\Delta \mathrm{N}$ $\mathrm{MPN} / 100 \mathrm{~mL}$
0	0	0	0	0	$9,860,000$	0.0
10	0	0	0	50	$3,916,844$	0.0
20	0	0	0	100	$1,555,950$	0.0
30	0.1	1	0.004	150	618,095	2247.6
40	2	20	0.073	200	245,535	$17,857.1$
50	7.3	73	0.265	250	97,538	$25,891.9$
60	7	70	0.255	300	38,747	9862.8
70	5.2	52	0.189	350	15,392	2910.5
80	3.3	33	0.120	400	6114	733.7
90	1.7	17	0.062	450	2429	150.2
100	0.7	7	0.025	500	965	24.6
110	0.2	2	0.007	550	383	2.8
120	0	0	0	600	152	0.0
130	0	0	0	650	60	0.0
140	0	0	0	700	24	0.0
150	0	0	0	750	10	0.0
160	0	0	0	800	4	0.0
Sum		275	1.000			$59,681.1$

The number of organisms remaining in the effluent leaving the chlorine contact basin is $\Sigma[N(\theta) \times E(t) \Delta t]=59,681 \mathrm{MPN} / 100 \mathrm{~mL}$
3. Estimate the chlorine residual needed to achieve 4 log removal.

Using the plot presented in step 1 , a CT value of $500 \mathrm{mg} / \mathrm{L} \cdot \mathrm{min}$ results in 4 log removal. The theoretical detention time for basin 1 is 80 min . The estimated chlorine residual needed is $500 \mathrm{mg} / \mathrm{L} \cdot \mathrm{min} / 80 \mathrm{~min}=6.25 \mathrm{mg} / \mathrm{L}$.

Chlorine contact basin	Number of organisms remaining in effluent	Chlorine residual needed to $10^{4} \log$ removal
1	59,681	6.25
2	17,238	5.88
3	8,777	5.56
4	3,364	5.00

PROBLEM 12-11

Problem Statement - See text, page 1438

Solution

1. Determine the amount of chlorine to be removed each year for treated effluent with a chlorine residual of $5.0 \mathrm{mg} / \mathrm{L}$ as Cl_{2} and a plant with a flowrate of $1400 \mathrm{~m}^{3} / \mathrm{d}$, for example.
Cl_{2} removed $=\left(\frac{5 \times 10^{-6} \mathrm{~kg}}{\mathrm{~L}}\right)\left(\frac{1400 \mathrm{~m}^{3}}{\mathrm{~d}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(\frac{365 \mathrm{~d}}{\mathrm{y}}\right)=2,555 \mathrm{~kg} / \mathrm{y}$
2. Write the pertinent reactions for the dechlorination of chlorine residual as Cl_{2} and determine the stoichiometric amount of the dechlorinating agent needed.
a. Sulfur dioxide
$\mathrm{SO}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+4 \mathrm{Cl}^{-}+4 \mathrm{H}^{+}$
(64) (71)

The amount of sulfur dioxide needed per $\mathrm{mg} / \mathrm{L} \mathrm{of}_{\mathrm{Cl}}^{2}$ is $64 / 71=0.9$
mg / L. The annual amount of sulfur dioxide needed is $0.9 \times 2555 \mathrm{~kg} / \mathrm{y}=$ 2300 kg.

	Amount of sulfur dioxide needed			
Flow rate, $\mathrm{m}^{3} / \mathrm{d}$	5.0	6.5	8.0	7.7
1400	2300	2989	3679	3542
3800	6242	8114	9986	9612

4500	7392	9608	11,826	11,382
7600	12,483	16,228	19,973	19,224

b. Sodium sulfite

$$
\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HCl}
$$

(126)

The amount of sulfur sulfite needed per mg / L of Cl_{2} is $126 / 71=1.78$ mg / L. The annual amount of sodium sulfite needed is $1.78 \times 2555 \mathrm{~kg} / \mathrm{y}$ $=4548 \mathrm{~kg}$.

	Amount of sodium sulfite needed			
Flow rate,	Chlorine residual as $\mathrm{Cl}_{2}, \mathrm{mg} / \mathrm{L}$			
3 m d	5.0	6.5	8.0	7.7
1400	4548	5913	7277	7004
3800	12,344	16,048	19,751	19,010
4500	14,619	19,003	23,389	22,512
7600	24,689	32,095	39,502	38,021

c. Sodium bisulfite
$\mathrm{NaHSO}_{3}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaHSO}_{4}+2 \mathrm{HCl}$
(104)

The amount of sulfur bisulfite needed per $\mathrm{mg} / \mathrm{L}^{\text {of } \mathrm{Cl}_{2}}$ is $104 / 71=1.46$ mg / L. The annual amount of sodium bisulfite needed is 1.46×2555 $\mathrm{kg} / \mathrm{y}=3730 \mathrm{~kg}$.

	Amount of sodium bisulfite needed			
Flow rate,	Chlorine residual as $\mathrm{Cl}_{2}, \mathrm{mg} / \mathrm{L}$			
3 d	5.0	6.5	8.0	7.7
1400	3730	4850	5968	5745
3800	10,125	13,163	16,200	15,593
4500	11,991	15,587	19,184	18,465
7600	20,250	26,325	32,400	31,186

d. Sodium metabisulfite

$$
\begin{equation*}
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}+\mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaHSO}_{4}+4 \mathrm{HCl} \tag{190}
\end{equation*}
$$

The amount of sodium metabisulfite needed per $\mathrm{mg} / \mathrm{L}^{\text {of } \mathrm{Cl}_{2}}$ is $190 / 71=$ $2.68 \mathrm{mg} / \mathrm{L}$. However, sodium metabisulfite does not follow stoichiometric ratios due to the pH dependence of this reaction. Use the value of 1.34 as presented in Table 12-15. The annual amount of sodium metabusulfite needed is $1.34 \times 2555 \mathrm{~kg} / \mathrm{y}=3424 \mathrm{~kg}$.

	Amount of sodium metabisulfite needed			
Flow rate,	Chlorine residual as $\mathrm{Cl}_{2}, \mathrm{mg} / \mathrm{L}$			
3 m d	5.0	6.5	8.0	7.7
1400	3424	4451	5478	5273
3800	9293	12,081	14,869	14,311
4500	11,005	14,306	17,608	16,947
7600	18,586	24,162	29,737	28,622

e. Activated carbon
$\mathrm{C}+2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HCL}+\mathrm{CO}_{2}$
(12) $2(71)$

The amount of carbon needed per mg / L of Cl_{2} is $12 / 142=0.085 \mathrm{mg} / \mathrm{L}$.
The annual amount of carbon needed is $0.085 \times 2555 \mathrm{~kg} / \mathrm{y}=217 \mathrm{~kg}$.

	Amount of activated carbon needed			
Flow rate, $\mathrm{m}^{3} / \mathrm{d}$	5.0	6.5	8.0	7.7
1000	217	282	347	334
3800	589	766	943	908
4500	698	907	1117	1075
7600	1179	1533	1886	1816

PROBLEM 12-12

Problem Statement - See text, page 1438

Solution

1. The immediate ozone demand is determined by plotting the steady-state test results.
a. The immediate ozone demand corresponds to the x-intercept. From the plot below, the values are as follows,

Wastewater number	Immediate ozone demand, mg / L
1	9.1
2	2.2
3	5.2
4	2.2

2. The first order decay equation for $25^{\circ} \mathrm{C}$ is determined by plotting the decay data on a log-normal scale.
a. The required plot is given below.

b. The corresponding first order decay equations are as follows,

Wastewater number	First-order equation
1	$C_{\text {residual ozone }}=(9.1 \mathrm{mg} / \mathrm{L}) e^{-0.101 t}$
2	$\mathrm{C}_{\text {residual ozone }}=(2.2 \mathrm{mg} / \mathrm{L}) e^{-0.134 t}$
3	C residual ozone $=(5.2 \mathrm{mg} / \mathrm{L}) e^{-0.073 t}$
4	$\mathrm{C}_{\text {residual ozone }}=(2.2 \mathrm{mg} / \mathrm{L}) e^{-0.067 t}$

where $\mathrm{t}=$ contact time, min
3. Determine the degree of inactivation for an ozone contactor at $15^{\circ} \mathrm{C}$ given 4 compartments after ozone injection and the following,
a. $\quad \Lambda_{25^{\circ} \mathrm{C}}=0.15 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{min}$

HRT $=3$ min each compartment
$\mathrm{E}=48 \mathrm{~kJ} / \mathrm{mole}=48,000 \mathrm{~J} / \mathrm{mole}$
b. Refer to Eq. (12-6) to determine the degree of inactivation.
$\log \frac{N_{t}}{N_{0}}=-\Lambda_{\text {base } 10} \mathrm{CT}$
c. The coefficient of specific lethality for the new temparature is determined using Eq. (12-7)

$$
\begin{aligned}
& \ln \frac{\Lambda_{2}}{\Lambda_{1}}=\frac{E\left(T_{2}-T_{1}\right)}{R T_{2} T_{1}}=\frac{(48,000 \mathrm{~J} / \mathrm{mole})[(298-288) \mathrm{K}]}{(8.3144 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{~K})(298)(288)}=-0.6727 \\
& \Lambda_{15}=\left(\Lambda_{25}\right)\left(\mathrm{e}^{-0.6727}\right)=(0.15)(0.5104)=0.077
\end{aligned}
$$

d. Estimate the ozone residual in each compartment using the decay curve above.

$$
\mathrm{C}=(9.1 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.101 \times \mathrm{t}}=(9.1 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.101 \times 3}=6.75 \mathrm{mg} / \mathrm{L}
$$

Compartment	Time	Ozone residual, mg/L			
	\min	1	2	3	4
2	3	6.75	1.45	4.17	1.81
3	6	4.99	0.97	3.35	1.48
4	9	3.68	0.65	2.69	1.21
5	12	2.72	0.43	2.16	0.99

e. Using the data from the table above, determine the CT value for the ozone contactor, noting that a typical $\mathrm{t}_{10} / \mathrm{t}$ ratio of 0.6 can be used as determined in Example 12-8.

$$
\begin{aligned}
\mathrm{CT} & =\sum_{i=2}^{b} \mathrm{C}_{i} \mathrm{~T}_{i}=[(6.75+4.99+3.68+2.72) \mathrm{mg} / \mathrm{L}](3 \mathrm{~min} \times 0.6) \\
& =32.65 \mathrm{mg} \cdot \mathrm{~min} / \mathrm{L}
\end{aligned}
$$

Wastewater number	$\mathrm{CT}, \mathrm{mg}-\mathrm{min} / \mathrm{L}$
1	32.65
2	6.29
3	22.26
4	9.91

f. Compute the degree of inactivation using the coefficient of specific lethality and CT values determined above.

$$
\log \frac{N_{t}}{N_{o}}=-\Lambda_{\text {base } 10} C T=(0.29)(32.65)=9.6
$$

Wastewater number	$\log \left(\mathrm{N}_{\mathrm{t}} / \mathrm{N}_{0}\right)$
1	2.5
2	0.48
3	1.7
4	0.76

PROBLEM 12-13

Problem Statement - See text, page 1438-1439
Instructors Note: Assume the contact time in each reactor is 3 min and the t_{10} / t ratio is 0.6 .

Solution

1. The immediate ozone demand is determined by plotting the steady-state test results.
a. The immediate ozone demand corresponds to the x-intercept and is equal to $3.95 \mathrm{mg} / \mathrm{L}$.

2. The first order decay equation for $20^{\circ} \mathrm{C}$ is determined by plotting the decay data on a log-normal scale.
a. The required plot is given below.

b. The corresponding first order decay equation is
$\mathrm{C}_{\text {residual ozone }}=(3.95 \mathrm{mg} / \mathrm{L}) e^{-0.090 t}$
where $t=$ contact time, min
3. Estimate the log reduction in Cryptosporidium that can be achieved at $5^{\circ} \mathrm{C}$ given a 4-compartment ozone contactor and the following,
a. Find the coefficient of specific lethality from Table 12-11
$\Lambda_{20^{\circ} \mathrm{C}}=0.24 \mathrm{~L} / \mathrm{mg} \cdot \mathrm{min}$

$$
\mathrm{E}=54 \mathrm{~kJ} / \mathrm{mole}=54,000 \mathrm{~J} / \mathrm{mole}
$$

b. To determine the log reduction refer to Eq. (12-6).

$$
\log \frac{N_{t}}{N_{o}}=-\Lambda_{\text {base } 10} C T
$$

c. The coefficient of specific lethality for the new temparature is determined using Eq. (12-7)
$\ln \frac{\Lambda_{20}}{\Lambda_{5}}=\frac{E\left(T_{20}-T_{5}\right)}{R T_{20} T_{5}}=\frac{54,000 \mathrm{~J} / \mathrm{mole}(293-278) \mathrm{K}}{(8.3144 \mathrm{~J} / \mathrm{mole} \cdot \mathrm{K})(293)(278)}=1.196$
$\Lambda_{5}=\frac{\Lambda_{20}}{e^{1.196}}=\frac{0.24}{3.31}=0.073$
d. Estimate the ozone residual in each compartment using the decay curve above.
$C=(4.72 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.090 \times \mathrm{t}}=(4.72 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.090 \times 3 \mathrm{~min}}=3.6 \mathrm{mg} / \mathrm{L}$

Compartment	Time	Ozone residual,
2	\min	mg / L
3	3	3.6
4	3	2.8

e. Using the data from the table above, determine the CT value for the ozone contactor, noting that a typical $\mathrm{t}_{10} / \mathrm{t}$ ratio of 0.6 can be used.

$$
\begin{aligned}
\mathrm{CT} & =\sum_{i=2}^{b} \mathrm{C}_{i} \mathrm{~T}_{i}=[(3.6+2.8+2.1) \mathrm{mg} / \mathrm{L}](3 \mathrm{~min} \times 0.6) \\
& =15.22 \mathrm{mg} \cdot \mathrm{~min} / \mathrm{L}
\end{aligned}
$$

f. Compute the degree of inactivation using the coefficient of specific lethality at $5^{\circ} \mathrm{C}$ and CT value determined above.

$$
\log \frac{N_{t}}{N_{o}}=-\Lambda_{\text {base } 10} C T=(0.073)(15.22)=1.1 \log \text { inactivation }
$$

PROBLEM 12-14

Problem Statement - See text, page 1439

Solution

1. The first order decay equation is determined by plotting the decay data on a log-normal scale.
a. The required plot is given below.

b. The corresponding first order decay equations are

Test 1: $\mathrm{C}_{\text {residual ozone }}=(3.28 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.068 \mathrm{t}}$
Test 2: $C_{\text {residual ozone }}=(1.53 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.098 \mathrm{t}}$
Test 3: $\mathrm{C}_{\text {residual ozone }}=(3.32 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.107 \mathrm{t}}$
Test 4: $\mathrm{C}_{\text {residual ozone }}=(2.60 \mathrm{mg} / \mathrm{L}) \mathrm{e}^{-0.033 \mathrm{t}}$
where $\mathrm{t}=$ contact time, min
3. Compute the ozone residual through each successive compartment using the decay curve given the theoretical detention time in each basin is 3 min, $t_{10} / t=0.65$ and the following,
a. The immediate ozone demand is given by the y-intercept from the above decay equations.
b. The contact time required to achieve a 3 -log reduction is given in Table $12-5$ is between 12 and $13 \mathrm{mg}-\mathrm{min} / \mathrm{L}$.
c. The resulting CTs and required number of compartments are given in the table below.

Compartment no.	Time, min	Ozone residual, mg/L			
		Test number			
		1	2	3	4
2	3	2.68	1.14	2.41	2.35
3	3	2.18	0.85	1.75	2.13
4	3	1.78	0.63	1.27	1.93
5	3	-	0.47	0.92	-
Required No. of Compartments:		13.0	8.6	12.4	12.5
		3	NA	4	3

PROBLEM 12-15

Problem Statement - See text, page 1439
Solution
Instructors Note: The use of ozone for the disinfection of secondary effluents has not proven to be cost effective due to the demand of the residual organic matter. Although ozone has been used for the disinfection of tertiary treated effluents there are, at present, no full scale installations.

The following are useful sources of information
Bataller, M. E Veliz, L. .A Fernandez, C. Hernandez, I. Fernandez, C. Alvarez, and E. Sanchez (2005) "Secondary Effluent Treatment with Ozone," proceedings 17th World Ozone Congress, Strabourg, IOA 17th World Ozone Congress - Strasbourg, France

Leverenz, H., J. Darby, and G. Tchobanoglous (2006) Evaluation of Disinfection Units for Onsite Wastewater Treatment Systems, Center for Environmental and Water Resources Engineering (2006-1), University of California, Davis.

Paraskeva, P., S.D. Lambert, and N.J. D Graham (1998) "Influence of Ozonation Conditions on Treatability of Secondary Effluents," Ozone Sci. Engr. 20, 2, 133-150.

Paraskeva, P., and N.J. D Graham (2002) "Ozonation of Municipal Wastewater Effluents," Water Environ. Res., 74, 6, 569-581.

Xu, P., M.L. Janex, P. Savoye, A. Cockx, and V Lazarova (2008) "Wastewater Disinfection by Ozone: main Parameters for process Design," Water Res., 36, 4, 1043-1055.

PROBLEM 12-16

Problem Statement - See text, page 1439

Solution

The following are useful sources of information
Antonelli M, S. Rossi, V. Mezzanotte, and C. Nurizzo (2006) "Secondary Effluent Disinfection: PAA long Term Efficiency," Environ. Sci. Technol., 40, 15, 4771-4775.

Caretti C., and C. Lubello (2003) "Wastewater Disinfection with PAA and UV Combined Treatment: a Pilot Plant Study," Water Res., 37, 10, 2365-2371.

City of Ames (2009) Wastewater Disinfection Technologies Study, Report prepared by Stanley Consultants, Ames, IA.

Gehr, R., M. Wagner M., P. Veerasubramanian, and P. Payment P. (2003) "Disinfection Efficiency of Peracetic Acid, UV and Ozone after Enhanced Primary Treatment of Municipal Wastewater," Water Res. 37, 19, 45734586.

Kitis, M. (2004) "Disinfection of Wastewater With Peracetic Acid: A Review," Environment International, 30, 1, 47-55.

Rossi S, M. Antonelli, V. Mezzanotte, and C. Nurizzo (2007) "Peracetic Acid Disinfection: A Feasible Alternative to Wastewater Chlorination," Water Environ. Res., 79, 4, 341-350.

Zanetti, F., G. De Luca, R. Sacchetti, and S. Stampi (2007) "Disinfection Efficiency of Peracetic Acid (PAA): Inactivation of Coliphages and Bacterial Indicators in a Municipal Wastewater Plant," Environ. Technol., 28, 11, 1265-1271.

PROBLEM 12-17

Problem Statement - See text, page 1439

Solution

1. Using Eq. (12-65) estimate the delivered dose
$D_{C B}=I_{o} t(1-R) P_{f}\left[\frac{\left(1-10^{-k_{254} d}\right)}{2.303\left(k_{254} d\right)}\right]\left(\frac{L}{L+d}\right)$
$D=(10 \times 30)(1-0.025)(0.94)\left[\frac{\left(1-10^{-0.065 \times 1}\right)}{2.303(0.065 \times 1)}\right]\left(\frac{48}{48+1}\right)$
$\mathrm{D}=(300)(0.975)(0.94)(0.928)(0.976)=250.1 \mathrm{~mJ} / \mathrm{cm}^{2}$
2. Determine the best estimate of uncertainty for the computed UV dose. The uncertainty of the computed dose can be estimated using Eq. (12-67). The procedure is illustrated for one of the variables and summarized for the remaining variables.
a. Consider the variability in the measured time, t. The partial derivative of the expression used in step one with respect to t is

$$
\begin{aligned}
& U_{t}=U_{t_{e}} \frac{\partial E}{\partial V_{n}}=t_{e}\left\{I_{m}(1-R) P_{f}\left[\frac{\left(1-10^{-\alpha d}\right)}{2.303(\alpha d)}\right]\left(\frac{L}{L+d}\right)\right\} \\
& U_{t}=1.0\left\{D=(10)(1-0.025)(0.94)\left[\frac{\left(1-10^{-0.065 \times 1}\right)}{2.303(0.065 \times 1)}\right]\left(\frac{48}{48+1}\right)\right\} \\
& U_{t}=8.34 \mathrm{~mJ} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
\text { Percent }=100 U_{t} / D=(100 \times 8.34) / 250.1=3.33 \%
$$

b. Similarly for the remaining variables the corresponding values of the partial derivatives are as given below

$$
\mathrm{U}_{\mathrm{m}}=12.51 \mathrm{~mJ} / \mathrm{cm}^{2} \text { and } 5.0 \%
$$

$$
\begin{aligned}
& U_{P_{f}}=5.32 \mathrm{~mJ} / \mathrm{cm}^{2} \text { and } 2.13 \% \\
& U_{a}=-1.40 \mathrm{~mJ} / \mathrm{cm}^{2} \text { and }-0.56 \% \\
& U_{d}=-1.17 \mathrm{~mJ} / \mathrm{cm}^{2} \text { and }-0.47 \% \\
& U_{L}=0.053 \mathrm{~mJ} / \mathrm{cm}^{2} \text { and } 0.02 \%
\end{aligned}
$$

c. The best estimate of uncertainty using Eq. (12-68) is

$$
\begin{aligned}
& U=\left[(8.34)^{2}+(12.51)^{2}+(5.32)^{2}+(-1.40)^{2}+(-1.17)^{2}+(0.053)^{2}\right]^{1 / 2} \\
& U=16.05 \mathrm{~mJ} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
\text { Percent }=(100 \times 16.05) / 250.1=6.42 \text { percent }
$$

3. Based on the above uncertainty computation the most likely UV dose is $250.1 \pm 16.1 \mathrm{~mJ} / \mathrm{cm}^{2}$

PROBLEM 12-18

Problem Statement - See text, page 1439
Instructors Note: The correct derivation of the formula for the average intensity is given in Example 2-5 and corresponds to the first moment about the y axis as follows:

$$
I_{\text {avg }}=I_{0} \times \frac{-k \int_{0}^{d} e^{-k x} d x}{-k \int_{0}^{d} d x}=I_{0} \times \frac{\left(1-e^{-k d}\right)}{k d}
$$

where $\mathrm{k}=$ absorbance coefficient $=(2.306)(\mathrm{a} . \mathrm{u} . / \mathrm{cm})$
a.u. $=$ absorbance units, cm^{-1}

Solution

1. Select an absorbance value and solve corrected equation from derivation in Example 2-5 for the average UV intensity. Absorbance values ranging from 0.35 to 0.10 are representative of raw wastewater.

$$
\begin{aligned}
I_{\text {avg }} & =I_{0} \times \frac{\left(1-e^{-k d}\right)}{k d} \\
& =\left(12 \mathrm{~mW} / \mathrm{cm}^{2}\right)\left[\frac{\left(1-e^{-0.115 \mathrm{~cm}^{-1} \times 1.0 \mathrm{~cm}}\right)}{\left(0.115 \mathrm{~cm}^{-1} \times 1.0 \mathrm{~cm}\right)}\right]=11.34 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned}
$$

		Average intensity, $\mathrm{mW} / \mathrm{cm}^{2}$				
Absorbance, Absorbance au/cm coefficient, cm^{-1}	Depth, cm					
0.05	0.1150	11.34	2.2	1.4	1.5	1.6
0.1	0.2303	10.72	9.41	10.26	10.15	10.04
0.2	0.4606	9.62	7.54	8.84	8.66	8.49
0.3	0.6909	8.66	6.17	7.69	7.47	7.26

PROBLEM 12-19

Problem Statement - See text, page 1439

Solution

1. Compute the average UV intensities at the depths of 10 and 20 mm using the formula given in Problem 12-18.
a. For a depth of 10 mm and an absorbance value of $0.05 \mathrm{~cm}^{-1}$:

$$
\begin{aligned}
& I_{\text {avg }}=I_{0} \times \frac{\left(1-e^{-k d}\right)}{k d} \\
& I_{\text {avg }}=\left(8 \mathrm{~mW} / \mathrm{cm}^{2}\right)\left[\frac{\left(1-e^{-0.115 \mathrm{~cm}^{-1} \times 1.0 \mathrm{~cm}}\right)}{\left(0.115 \mathrm{~cm}^{-1} \times 1.0 \mathrm{~cm}\right)}\right]=7.56 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned}
$$

b. For a depth of 20 mm and an absorbance value of $0.05 \mathrm{~cm}^{-1}$:

$$
I_{\mathrm{avg}}=\left(8 \mathrm{~mW} / \mathrm{cm}^{2}\right)\left\lfloor\frac{\left(1-\mathrm{e}^{-0.115 \mathrm{~cm}^{-1} \times 2.0 \mathrm{~cm}}\right)}{\left(0.115 \mathrm{~cm}^{-1} \times 2.0 \mathrm{~cm}\right)}\right\rfloor=7.15 \mathrm{~mW} / \mathrm{cm}^{2}
$$

2. Determine the ratio of UV intensity (lavg) at 10 and 20 mm to correct the applied UV dose reported in Problem 12-18.
$\frac{I_{\text {avg }, 20 \mathrm{~mm}}}{I_{\text {avg }, 10 \mathrm{~mm}}}=\frac{\left(7.15 \mathrm{~mW} / \mathrm{cm}^{2}\right)}{\left(7.56 \mathrm{~mW} / \mathrm{cm}^{2}\right)}=0.946$
3. The effect of the increased depth would be an average light intensity 95.6% that at 10 mm for a water with absorbance of $0.05 \mathrm{~cm}^{-1}$. The relationship between light intensiy at 10 and 20 mm for the various absorbance values are given in the table below.

Absorbance, cm^{-1}	Absorbance coefficient, k	Average i	, mW/cm ${ }^{2}$	Ratio, \%
		Depth, cm		
		1	2	
0.05	0.115	7.557	7.147	94.6
0.1	0.230	7.146	6.411	89.7
0.2	0.461	6.411	5.228	81.5
0.3	0.691	5.777	4.336	75.1

PROBLEM 12-20

Problem Statement - See text, page 1440

Solution

1. Determine the mean, standard deviation, confidence interval and prediction interval for the dose response data. Because the data are normally distributed, student-t statistics may be applied.
a. Determine the average and standard deviation for each investigated dose.
For the dose of $\mathbf{6 0}$, the average log reduction is 3.50
For the dose of 60 the standard deviation is 1.02
The observed mean and standard deviation for each dose is provided in the following table.

Applied UV dose, $\mathrm{mJ} / \mathrm{cm}^{2}$	Log reduction, $-\log \mathrm{N} / \mathrm{N}_{0}$					Mean	Standard deviation
	Test						
	1	2	3	4	5		
20	0.9	1.7	1.4	1.1	1.0	1.22	0.29
40	1.7	3.3	2.6	2.2	1.8	2.32	0.58
60	2.4	5.2	4.1	3.0	2.8	3.50	1.02
80	3.5	6.5	5.1	4.3	3.7	4.62	1.09
100	4.3			5.5	4.7	4.83	0.50
120	4.9			6.2	5.4	5.50	0.54

b. Determine the 75% confidence interval.
i. For a dose of $\mathbf{6 0}$, the 75% confidence interval is calculated using the following expression:
75% confidence limit $=\bar{x} \pm t_{0.125}\left(\frac{s}{\sqrt{n}}\right)$
where $\quad x=$ mean log reduction for UV dose of $\mathbf{6 0}=3.50$
$t^{\mathrm{t}} 0.125=$ student t value associated with a 75% level of confidence 1.344 .
Note that the degrees of freedom are $\mathrm{n}-1=4$.
$\mathrm{n}=$ number of replicates $=5$.
$s=$ sample standard deviation $=1.02$.
75% confidence limit $=3.50 \pm 1.344\left(\frac{1.02}{\sqrt{5}}\right)=3.50 \pm 0.6130$
ii. The 75% confidence interval associated with each investigated UV dose are provided in the table given below.

Applied UV dose, $\mathrm{mJ} / \mathrm{cm}^{2}$	Log reduction, $-\log \left(\mathrm{N} / \mathrm{N}_{0}\right)$	
	Lower 75\% C.I.	Upper 75\% C.I.
40	0.763	1.008
60	1.619	1.803
80	2.465	2.609
100	3.291	3.435
120	4.097	4.281

b. Determine the 75% prediction interval.
i. The 75% prediction interval is calculated using a standard statisitcal analysis program.

Applied UV dose, $\mathrm{mJ} / \mathrm{cm}^{2}$	Log reduction, $-\log \left(\mathrm{N} / \mathrm{N}_{0}\right)$	
	Lower 75\% P.I.	Upper 75\% P.I.
20	0.677	1.095
40	1.519	1.904
60	2.353	2.721
80	3.179	3.547
100	3.996	4.381
120	4.805	5.223

2. Using the lower 75% prediction interval given in the above table, a design UV dose of $100.12 \pm 0.50 \mathrm{~mJ} / \mathrm{cm}^{2}$ is required to obtain a 4-log removal of MS2.

PROBLEM 12-21

Problem Statement - See text, page 1440

Solution

1. The required plot is shown below.

2. The difference between the two dose response curves is minimal. The inactivation achieved at each dose is fairly consistent across the experimental data although the two curves diverge for lower UV doses. It is not necessary to perform a unique dose response curve for every UV disinfection system manufactured because often the target log inactivation is 4 or 5 , where the data are very similar. It is adequate to use a standard dose response curve for equipment testing purposes.

PROBLEM 12-22

Problem Statement - See text, page 1440-1441

Solution

Solution Water 1

1. Perform a log transformation of the phage data for water 1. The required transformations are presented below.

		Water 1, phage $/ \mathrm{mL}$			
Flowrate, L/min	Replicate	Inlet	Log transform	Outlet	Log transform
200	1	9.65×10^{6}	6.98	1.88×10^{2}	2.27
200	2	1.00×10^{7}	7.00	1.54×10^{2}	2.19
200	3	1.15×10^{7}	7.06	1.68×10^{2}	2.23
Average			7.01		
400	1	1.00×10^{7}	7.00	3.65×10^{2}	2.56
400	2	1.29×10^{7}	7.11	3.39×10^{2}	2.53
400	3	9.55×10^{6}	6.98	3.29×10^{2}	2.53
Average			7.03		
600	1	1.23×10^{7}	7.09	1.12×10^{4}	4.05
600	2	1.05×10^{7}	7.02	9.03×10^{3}	3.96
600	3	1.25×10^{6}	7.10	8.56×10^{3}	3.93
Average			7.07		
800	1	1.13×10^{7}	7.05	4.79×10^{4}	4.68
800	2	1.08×10^{7}	7.03	8.35×10^{4}	4.92
800	3	8.95×10^{6}	6.95	6.61×10^{4}	4.82
Average			7.01		

2. Prepare a statistical analysis of the a log transformed data developed in

Step 1. The results of the required statistical analysis are presented below.

Flowrate, L/min	Replicate	Log inactivation	Average log inactivation	Standard deviation	75% confidence
200	1	4.74			
200	2	4.82	4.78	0.04	4.74
200	3	4.78			
400	1	4.47			
400	2	4.50	4.49	0.02	4.47
400	3	4.50			
600	1	3.02			
600	2	3.11	3.09	0.06	3.03
600	3	3.14			
800	1	2.33			
800	2	2.09	2.20	0.11	2.09
800	3	2.19			

The 75% confidence interval is determined as follows
75% confidence limit $=\bar{x} \pm t_{0.125}\left(\frac{\mathrm{~s}}{\sqrt{n}}\right)$
where $x=$ mean log reduction
$t_{0.125}=$ student t value associated with a 75% level of confidence is 1.604 for two degrees of freedom ($n-1=2$, where $n=3$).

For example, for a flowrate of $200 \mathrm{~L} / \mathrm{min}$
75% confidence limit $=4.78 \pm 1.604\left(\frac{0.04}{\sqrt{3}}\right)=4.78 \pm 0.04$
3 Assign UV dosages to the hydraulic loading rates, and present results graphically.
a. Prepare a summary table

Flowrate, L/min	Hydraulic loading rate, L/min•lamp	75\% confidence log-inactivation	Equivalent UV dose $^{\mathrm{b}}, \mathrm{mJ} / \mathrm{cm}^{2}$
200	50	4.74	113
400	100	4.47	106
600	150	3.03	69
800	200	2.09	45

b. Determine the equivalent dose using the inactivation equation from Example 12-12. The equation of the linear regression used to determine the required dose as a function of \log MS2 inactivation is follows.

$$
\text { UV dose }=\frac{\log \text { inactivation }-0.326}{0.0389}
$$

For example for a flowrate of $200 \mathrm{~L} / \mathrm{min}$
Dose, $\mathrm{mJ} / \mathrm{cm}^{2}=\frac{\log \text { inactivation }-0.326}{0.0389}=\frac{4.74-0.323}{0.0389}=113 \mathrm{~mJ} / \mathrm{cm}^{2}$
c. Plot the UV dosages determined in the previous step. The results are plotted in the following figure.

4. Determine the flow per lamp over which the system will deliver $100 \mathrm{~mJ} / \mathrm{cm}^{2}$. From the plot given above, the system is capable of delivering a dose of 80 $\mathrm{mJ} / \mathrm{cm}^{2}$ within the range of 50 to $120 \mathrm{~L} / \mathrm{min} \cdot l a m p$.

Solution Water 2

1. Perform a log transformation of the phage data for water 2. The required transformations are presented below.

Flowrate,		Water 2, phage/mL			
	L/min	Replicate	Inlet	Log	Outlet

		transform			
200	1	1.05×10^{7}	7.02	2.19×10^{2}	transform
200	2	6.98×10^{6}	6.84	1.54×10^{2}	2.19
200	3	1.15×10^{7}	7.06	1.70×10^{2}	2.23
Average			6.97		
400	1	1.00×10^{7}	7.00	3.75×10^{2}	2.57
400	2	1.23×10^{7}	7.09	3.62×10^{2}	2.56
400	3	1.12×10^{7}	7.05	3.08×10^{2}	2.49
Average			7.05		
600	1	1.20×10^{7}	7.08	1.32×10^{4}	4.12
600	2	1.05×10^{7}	7.02	1.05×10^{4}	4.02
600	3	9.55×10^{6}	6.98	9.95×10^{3}	4.00
Average			7.03		
800	1	1.03×10^{7}	7.01	5.95×10^{4}	4.77
800	2	1.19×10^{7}	7.08	1.00×10^{5}	5.00
800	3	1.11×10^{7}	7.05	7.68×10^{4}	4.89
Average			7.05		

2. Prepare a statistical analysis of the a log transformed data developed in Step 1. The results of the required statistical analysis are presented below.

Flowrate, L/min	Replicate	Log inactivation	Average log inactivation	Standard deviation	75% confidence
200	1	4.63			
200	2	4.78	4.72	0.07	4.65
200	3	4.74			
400	1	4.48			
400	2	4.49	4.51	0.04	4.47
400	3	4.56			
600	1	2.91			
600	2	3.01	2.98	0.06	2.92
600	3	3.03			
800	1	2.28			
800	2	2.05	2.16	0.10	2.06
800	3	2.16			

3. Assign UV dosages to the hydraulic loading rates, and present results graphically.

a. Prepare a summary table

Flowrate, L/min	Hydraulic loading rate, L/min•lamp	75\% confidence log-inactivation	Equivalent UV dose $^{\mathrm{b}}, \mathrm{mJ} / \mathrm{cm}^{2}$
200	50	4.65	111
400	100	4.47	106
600	150	2.92	66
800	200	2.06	44

b. Determine the equivalent dose using the inactivation equation from Example 12-12. The equation of the linear regression used to determine the required dose as a function of \log MS2 inactivation is follows.

UV dose $=\frac{\log \text { inactivation }-0.326}{0.0389}$
For example for a flowrate of $200 \mathrm{~L} / \mathrm{min}$
Dose, $\mathrm{mJ} / \mathrm{cm}^{2}=\frac{\log \text { inactivation }-0.326}{0.0389}=\frac{4.65-0.326}{0.0389}=111 \mathrm{~mJ} / \mathrm{cm}^{2}$
c. Plot the UV dosages determined in the previous step. The results are plotted in the following figure.

4. Determine the flow per lamp over which the system will deliver $100 \mathrm{~mJ} / \mathrm{cm}^{2}$. From the plot given above, the system is capable of delivering a dose of 80 $\mathrm{mJ} / \mathrm{cm}^{2}$ within the range of 50 to $115 \mathrm{~L} / \mathrm{min} \bullet l a m p$.

PROBLEM 12-23

Problem Statement - See text, page 1441

Solution

1. The student can chose a dose response curve to use. The standard NWRI (2012) dose response curve is used here.

UV dose $=\frac{\log \text { inactivation }-0.5464}{0.0368}$
2. Calculate the assigned UV dose using the chosen dose response curve.
3. Correct for lamp fouling by multiplying UV dose by 60%.
4. Plot the flowrate in units of L/min-lamp and the assigned UV dose in units of $\mathrm{mJ} / \mathrm{cm}^{2}$. The resulting plot and tabulation table are below.

Ballast output, \%	Flowrate, L/min-lamp	Avg. log inactivation			Log transformed values		
			Assigned UV dose, $\mathrm{mJ} / \mathrm{cm}^{2}$		Flowrate L/minlamp	Assigned UV dose, $\mathrm{mJ} / \mathrm{cm}^{2}$	
			No Fouling	Fouling		No Fouling	Fouling
100	30	7.7559	195.9	117.5	1.477	2.292	1.375
100	67	6.3555	157.9	94.71	1.824	2.198	1.319
100	93	5.5775	136.7	82.03	1.970	2.136	1.281
100	122	5.0718	123.0	73.78	2.086	2.090	1.254
80	30	6.7445	168.4	101.1	1.477	2.226	1.336
80	67	5.3830	131.4	78.86	1.824	2.119	1.271
80	93	4.7606	114.5	68.71	1.970	2.059	1.235
80	122	4.2549	100.8	60.46	2.086	2.003	1.202
50	30	5.4219	132.5	79.49	1.477	2.122	1.273
50	67	5.3830	131.4	78.86	1.824	2.119	1.271
50	93	3.5547	81.75	49.05	1.970	1.912	1.147
50	122	3.2046	72.23	43.34	2.086	1.859	1.115

5. The maximum flowrates over which the UV disinfection system will deliver the required dose for each ballast setting, taking into account fouling and aging, are taken from the plot and given in the summary table below.

Ballast output, \%	Max. flowrate, L/min-lamp
100	58
80	102
50	104

PROBLEM 12-24

Problem Statement - See text, page 1441

Solution

1. Perform a multiple linear regression analyis using a standard statistial analysis program. The regression equation can be expressed in both logtransformed and non-transformed values. The results of the multiple linear regression analysis are given in the tables below. Both the lower 75 percent Cl and PI values are also given. The corresponding regression equation is: Inactivation $=2.107-(4.089 \times$ Flow $)+(5.730 \times$ Ballast $)$
where inactivation, flow, and ballast values are the log-transformed values or

Inactivation $=\left(10^{2.109}\right)\left[(\text { Flow })^{-4.089}\right]\left[(\text { Ballast })^{5.730}\right]$
where inactivation, flow, and ballast values are in actual units

Log-transformed values				
Flowrate, L/min-lamp	Average log inactivation	Predicted log inactivation	Predicted, 75\% C.I. log inactivation	Predicted, 75\% P.I. log inactivation
100 \% ballast output				
1.477	7.756	7.531	7.219	6.940
1.824	6.356	6.112	5.901	5.568
1.970	5.578	5.515	5.288	4.964
2.086	5.072	5.040	4.778	4.474
80 \% ballast output				
1.477	6.745	6.975	6.701	6.403
1.824	5.383	5.556	5.405	5.032
1.970	4.761	4.959	4.787	4.429
2.086	4.255	4.484	4.268	3.938
50% ballast output				
1.477	5.422	5.805	5.472	5.203
1.824	5.383	4.386	4.144	3.829
1.970	3.555	3.789	3.533	3.226
2.086	3.205	3.315	3.027	2.737

2. The measured inactivation values at a 100% ballast ouput, the regression curve, and lower $75^{\text {th }}$ percent Cl and PI regression curves are plotted below. Note that the true design curve must take lamp aging and fouling into consideration.

PROBLEM 12-25

Problem Statement - See text, page 1441

Solution

Instructor Note: Cleaning is a major issue in the application of low-pressure low-intensity and low-pressure high-intensity UV disinfection systems. In lowpressure low-intensity lamp systems, the UV lamps are cleaned externally from the UV reactor whereas in low-pressure high-intensity cleaning of the lamps are cleaned in place with an integral wiper system.

This problem may not be feasible unless the date is set back to 1995. Little comparative work on the difference between low-pressure low-intensity and lowpressure high-intensity UV lamps has been published in the last 5-10 years. Alternatively, the students could be asked to review the City of Ames and/or the URS Corporation et al. reports, given below, and comment briefly on how the UV disinfection option was assessed and/or faired against other disinfection technologies.

The following are useful sources of information
Chen, Z. El Jack, W. Horvath, J.F. Stahl, and J.F. Kuo (1999) Low-Pressure High-Intensity UV Lamps Used on Tertiary Effluent, County Sanitation Districts of Los Angeles County, Whittier, CA.

City of Ames (2009) Wastewater Disinfection Technologies Study, Report prepared by Stanley Consultants, Ames, IA.

URS Corporation, Stan Tec, Inc., and University at Buffalo (2004) Evaluation of Ultraviolet (UV) Radiation Disinfection Technologies for Wastewater Treatment Plant Effluent, Report prepared For New York State Energy Research and Development Authority, National Grid Corporation, and Erie County Department of Environment and Planning Southtowns Sewage Agency

Moreland, V., and P. Ono (2001) Primary Effluent Disinfection - Necessary
Procedures In UV System Design for Low Water Quality Applications (To Pilot or not to Pilot?)," 394-408, Proceedings of the Water Environment Federation Annual Conference 2001 Water Environment Federation, Alaxandria, VA.

Schwartzel, D.T., and G. Sakamoto (1996) "Pilot Testing High-Intensity UV Lamp Technology to Meet California Wastewater Reclamation Criteria,"
Proceedings Disinfecting Wastewater for Discharge and Reuse, Water Environment Federation, Portland, OR.

Kwan, A.; J. Archer; F. Soroushian; A. Mohammed; and G. Tchobanoglous (1996) "Factors for Selection of a High-Intensity UV Disinfection System for a Large-Scale Application." Proceedings Water Environment Federation (WEF) Speciality Conference: Disinfecting Wastewater for Discharge and Reuse, Water Environment Federation, Portland, OR.

Darby, J., M. Heath, J. Jacangelo, F. Loge, P. Swaim, and G. Tchobanoglous, Comparison of UV Irradiation to Chlorination: Guidance for Achieving Optimal UV Performance, Project 91-WWD-1, Water Environment Research Foundation, Alexandria, Virginia, 1995

PROBLEM 12-26

Problem Statement - See text, page 1441

Solution

1. Find D , the time required to achieve 1 -log reduction at $82{ }^{\circ} \mathrm{C}$, using Eq. (1276). Use D and T values for MS2 coliphage given on Table 12-36; the values are $D=14 \mathrm{~s}$ at $\mathrm{T}=70^{\circ} \mathrm{C}$ where $\mathrm{Z}=10^{\circ} \mathrm{C}$.
$\log \left(\frac{D_{1}}{D_{2}}\right)=\frac{\left(T_{2}-T_{1}\right)}{Z}$
$D_{2}=D_{1} / 10^{\left[\frac{\left.T_{2}-T_{1}\right)}{Z}\right]}=14 \mathrm{~s} / 10^{\left[\frac{88-70}{10}\right]}=0.88 \mathrm{~s}$
2. Assuming a log-linear response (i.e. no shoulder or tailing effects), the time required for a $4-\log$ reduction is $(4)(0.88 \mathrm{~s})=3.5 \mathrm{~s}$.
3. \quad The CDPH requirement is adequate (factor of safety $=2.8$).

PROBLEM 12-27

Problem Statement - See text, page 1441

Solution

1. Plot the log reduction per second for each temperature to find D.

Plot for $60^{\circ} \mathrm{C}$:

Plot for $65^{\circ} \mathrm{C}$:

Plot for $70^{\circ} \mathrm{C}$:

2. The D values are obtained by fitting a linear curve to the data and solving for the independent variable, time, when the dependent variable, log reduction, is set to one.

Temp., ${ }^{\circ} \mathrm{C}$	D value,s
60	24
65	5.4
70	1.6

3. Using a log-normal scale, plot the D value for each temperature to find Z.

4. The Z value is obtained by fitting a curve to the data. The curve is exponential.

$$
D=2.53 \times 10^{8} \cdot \mathrm{e}^{-0.27 T}
$$

5. To achieve a 1-log reduction in D , the temperatures must be obtained for two D vaues that are $1-\log$ apart. Chose $\mathrm{D}=10 \mathrm{~s}$ and $\mathrm{D}=1 \mathrm{~s}$.
a. For $\mathrm{D}=10 \mathrm{~s}$, the temperature is:

$$
\begin{aligned}
T_{1} & =\frac{\ln \left(D / 2.53 \times 10^{8}\right)}{-0.27} \\
& =\frac{\ln \left(10 / 2.53 \times 10^{8}\right)}{-0.27}=63.1^{\circ} \mathrm{C}
\end{aligned}
$$

b. For $\mathrm{D}=1 \mathrm{~s}$, the temperature is:

$$
T_{2}=\frac{\ln \left(1 / 2.53 \times 10^{8}\right)}{-0.27}=71.6^{\circ} \mathrm{C}
$$

6. Obtain Z from Eq. (12-77).
$Z=\left(T_{2}-T_{1}\right)=71.6-63.1=8.5^{\circ} \mathrm{C}$
This Z value is reasonable given the ranges of typical values in Table 12-36.
7. Find D , the time required to achieve 1 -log reduction at $68^{\circ} \mathrm{C}$, using Eq. (1276). Use any D and T values; here those for $65^{\circ} \mathrm{C}$ are used.
$\log \left(\frac{D_{1}}{D_{2}}\right)=\frac{\left(T_{2}-T_{1}\right)}{Z}$
$D_{2}=D_{1} / 10^{\left[\frac{\left(T_{2}-T_{1}\right)}{Z}\right]}=5.4 \mathrm{~s} / 10^{\left[\frac{68-65)}{8.5}\right]}=2.4 \mathrm{~s}$
8. Assuming a log-linear response (i.e. no shoulder or tailing effects), the time required for a 4-log reduction is (4) $(2.4 \mathrm{~s})=9.6 \mathrm{~s}$.

TREATMENT AND PROCESSING OF RESIDUALS AND BIOSOLIDS

PROBLEM 13-1

Problem Statement - See text, page 1554

Solution

1. Determine the percent reduction in volume using the approximate method.
$\frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}}$
where $\quad \mathrm{V}_{1}, \mathrm{~V}_{2}=$ sludge volumes

$$
P_{1}, P_{2}=\text { percent of solid matter }
$$

Percent reduction $=\left(\frac{V_{1}-V_{2}}{V_{1}}\right) 100$

$$
\begin{aligned}
& =\left(\frac{V_{1}-V_{2}}{V_{1}}\right) 100=\left(1-\frac{P_{1}}{P_{2}}\right) 100 \\
& =\left(1-\frac{0.02}{0.05}\right) 100=60 \%
\end{aligned}
$$

2. Determine the average specific gravity of all the solids in the sludge using Eq. (13-1).
$\frac{W_{s}}{S_{s} \rho_{w}}=\frac{W_{f}}{S_{f} \rho_{w}}+\frac{W_{v}}{S_{v} \rho_{w}}$
$\frac{W_{S}}{S_{s}}=\frac{W_{f}}{S_{f}}+\frac{W_{v}}{S_{v}}$
$\frac{1}{\mathrm{~S}_{\mathrm{s}}}=\frac{0.30}{2.00}+\frac{0.70}{1.00}=0.85$
$\mathrm{S}_{\mathrm{s}}=\frac{1}{0.85}=1.18$
3. Determine the specific gravity of the sludge.
a. At 98 percent water content:

$$
\begin{aligned}
& \frac{1}{\mathrm{~S}_{\mathrm{sl}}}=\frac{0.02}{1.18}+\frac{0.98}{1.00}=0.997 \\
& \mathrm{~S}_{\mathrm{sl}}=\frac{1}{0.997}=1.003
\end{aligned}
$$

b. At 95 percent water content:

$$
\begin{aligned}
& \frac{1}{\mathrm{~S}_{\mathrm{sl}}}=\frac{0.05}{1.18}+\frac{0.95}{1.00}=0.993 \\
& \mathrm{~S}_{\mathrm{sl}}=\frac{1}{0.993}=1.008
\end{aligned}
$$

4. Determine the volume of a kilogram of sludge using Eq. (14-2).
$\mathrm{V}=\frac{\mathrm{W}_{\mathrm{s}}}{\rho_{\mathrm{w}} \mathrm{S}_{\mathrm{sl}} \mathrm{P}_{\mathrm{s}}}$
a. At 98 percent water content:

$$
V=\frac{1 \mathrm{~kg}}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.003)(0.02)}=0.0499 \mathrm{~m}^{3}
$$

b. At 95 percent water content.

$$
V=\frac{1 \mathrm{~kg}}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.003)(0.05)}=0.0199 \mathrm{~m}^{3}
$$

5. Determine the percentage volume reduction.

$$
\begin{aligned}
\text { Percent reduction } & =\left(\frac{V_{1}-V_{2}}{V_{1}}\right) 100 \\
& =\left(1-\frac{0.0199}{0.0499}\right) 100=60.2 \%
\end{aligned}
$$

PROBLEM 13-2

Problem Statement - See text, page 1554

Solution

1. Determine the volume of sludge pumped if the primary and waste activated sludge (WAS) are pumped separately and the WAS is not thickened.
a. The mass of primary sludge on a wet basis is:

$$
\text { Mass }=\frac{\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)\left(40,000 \mathrm{~m}^{3} / \mathrm{d}\right)(0.60)}{(0.05)\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=96,000 \mathrm{~kg} / \mathrm{d}
$$

b. The volume of primary sludge (using the specific gravity for primary sludge from table 13-7) is:

Volume $=\frac{(96,000 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.02)}=94.1 \mathrm{~m}^{3} / \mathrm{d}$
c. The volume of WAS is $400 \mathrm{~m}^{3} / \mathrm{d}$ (given).
d. The total amount of sludge pumped to the digester is:

Volume $=(94.1+400) \mathrm{m}^{3} / \mathrm{d}=494.1 \mathrm{~m}^{3} / \mathrm{d}$
2. Determine the volume of sludge pumped if the WAS is thickened separately in a gravity belt thickener.
a. The dry mass of WAS (using the specific gravity for WAS from Table 13-7) is:

Mass of WAS $=\left(400 \mathrm{~m}^{3} / \mathrm{d}\right)(1.05)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.005)=2100 \mathrm{~kg} / \mathrm{d}$
b. The volume of WAS after thickenening (TWAS) to 6% is:

$$
\text { Volume }=\frac{(2100 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.05)(0.06)}=33.3 \mathrm{~m}^{3} / \mathrm{d}
$$

c. The volume of sludge pumped to the digester is:

$$
\text { Volume }=(94.1+33.3) \mathrm{m}^{3} / \mathrm{d}=127.4 \mathrm{~m}^{3} / \mathrm{d}
$$

3. Determine the percent reduction in the daily volume of sludge pumped to the digester resulting from thickening the waste activated sludge.

Reduction, $\%=\frac{[(494.1-127.4) \mathrm{kg} / \mathrm{d}]}{(494.1 \mathrm{~kg} / \mathrm{d})}(100)=74.2$

PROBLEM 13-3

Problem Statement - See text, page 1554

Solution

1. Calculate the maximum amount of dilution water allowable.

Pertinent data: Maximum hydraulic loading rate $=12 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$ (given)
Hydraulic loading rate without dilution water $=7.13 \mathrm{~m}^{3} / \mathrm{m}^{2} . \mathrm{d}$ (step 4 of Example 14-4)
Dilution water $=(12-7.13) \mathrm{m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}=4.87 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~d}$
With a total gravity thickening surface area of $409.7 \mathrm{~m}^{2}$, the total dilution flowrate is $1995 \mathrm{~m}^{3} /$ day.

PROBLEM 13-4

Problem Statement - See text, pages 1554

Solution

1. Determine the required digester volume using the volatile solids loading method.
a. Determine the volume of VSS per day knowing that the sludge production is $5700 \mathrm{~kg} / \mathrm{d}$ from example 13-5
Volume of VSS $/ \mathrm{d}$ to digester $=(5700 \mathrm{~kg} / \mathrm{d})(0.75 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{TSS})$
$=4275 \mathrm{~kg}$ VSS $/ \mathrm{d}$
b. Determine the required digester volume

$$
\text { Volume }=\frac{(4275 \mathrm{~kg} \mathrm{VSS} / \mathrm{d})}{\left(2.4 \mathrm{~kg} \mathrm{VSS} / \mathrm{m}^{3} \cdot \mathrm{~d}\right)}=1781 \mathrm{~m}^{3}
$$

2. Determine the required digester volume using population basis.

Volume $=(70,000$ people $)\left(50 \mathrm{~m}^{3} / 10^{3}\right)=3500 \mathrm{~m}^{3}$
3. Prepare a summary table to compare the three methods used to estimate the required digester volume.

Method	Volume, m^{3}
Example 14-5	1677
Volatile solids loading	1781
Population basis	3500

PROBLEM 13-5

Problem Statement - See text, page 1555

Solution

1. Determine the mass of sludge produced each day.

$$
\text { Mass }=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)}{(0.04)\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=40,000 \mathrm{~kg} / \mathrm{d}
$$

2. Determine the daily volume of sludge produced.
a. Using Eq. (13-1, the specific gravity of the solids is:

$$
\begin{aligned}
& \frac{1}{\mathrm{~S}_{\mathrm{s}}}=\frac{0.25}{2.60}+\frac{0.75}{1.30}=0.67 \\
& \mathrm{~S}_{\mathrm{s}}=\frac{1}{0.67}=1.49
\end{aligned}
$$

b. The specific gravity of the sludge is:

$$
\begin{aligned}
& \frac{1}{\mathrm{~S}_{\mathrm{sl}}}=\frac{0.04}{\mathrm{~S}_{\mathrm{s}}}+\frac{0.96}{\mathrm{~S}_{\mathrm{w}}} \\
& \frac{1}{\mathrm{~S}_{\mathrm{sl}}}=\frac{0.04}{1.49}+\frac{0.96}{1.00}=0.987 \\
& \mathrm{~S}_{\mathrm{sl}}=\frac{1}{0.987}=1.013
\end{aligned}
$$

c. The sludge volume is:

$$
\text { Volume }=\frac{(40,000 \mathrm{~kg} / \mathrm{d})}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.013)}=39.5 \mathrm{~m}^{3} / \mathrm{d}
$$

3. Determine the required digester volume using a hydraulic detention time (τ) of 20 d .

Digester Volume $=\left(39.5 \mathrm{~m}^{3} / \mathrm{d}\right)(20 \mathrm{~d})=790 \mathrm{~m}^{3}$
4. Determine the minimum digester capacity using the volatile solids loading factors given in Table 13-29, page 1510.
Volatile solids loading factor $=1.4 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}$
($\tau=20 \mathrm{~d}$, sludge concentration $=4 \%$)
a. The amount of volatile solids produced per day is:

$$
\text { Mass }_{\text {VSS }}=\frac{\left(8000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(200 \mathrm{~g} / \mathrm{m}^{3}\right)(0.75)}{\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=1200 \mathrm{~kg} / \mathrm{d}
$$

b. The minimum required digester volume is:

$$
\text { Digester volume }=\frac{(1200 \mathrm{~kg} / \mathrm{d})}{\left(1.4 \mathrm{~kg} / \mathrm{m}^{3}\right)}=857 \mathrm{~m}^{3} / \mathrm{d}
$$

5. Determine the minimum digester capacity:
a. Using a $3.2 \mathrm{~kg} \mathrm{VSS} / \mathrm{m}^{3} \cdot \mathrm{~d}$ loading parameter (Table 13-28, point in midrange), the required digester volume is:

$$
\text { Digester volume }=\frac{(1200 \mathrm{~kg} / \mathrm{d})}{\left(3.2 \mathrm{~kg} / \mathrm{m}^{3} \cdot \mathrm{~d}\right)}=375 \mathrm{~m}^{3}
$$

PROBLEM 13-6

Problem Statement - See text, page 1555

Solution

1. The theortetical temperature increase can be determined using Fig. 13-16 by knowing the specific quicklime dosage.

$$
\text { Quicklime dosage }=\frac{300 \mathrm{~kg} \mathrm{CaO}}{(750 \mathrm{~kg} \text { dry sludge/d })}=0.4 \mathrm{~kg} \mathrm{CaO} / \mathrm{kg} \text { dry sludge }
$$

2. From Table 13-16, the theoretical temperature increase is $28^{\circ} \mathrm{C}$.
3. The advantages and disadvantages of switching from lime stabilization to anaerobic digestion are listed below:

Advantages

- Anaerobic digestion followed by dewatering will reduce the total volume required for transport. Mass to dewatering will also be less
- Anaerobic digestion allows for energy recovery potential
- Eliminates costs required to purchase quicklime

Disadvantages

- Major capital cost with building anaerobic digesters
- Anaerobic digestion consumes a larger footprint
- Anearobic digestion requires more skilled operation staff

PROBLEM 13-7

Problem Statement - See text, page 1555

1. Calculate the net mass of cell tissue produced using Eq. (13-13).
$\mathrm{S}_{\mathrm{o}}=300 \mathrm{~kg} / \mathrm{d}$
$S=(300 \mathrm{~kg} / \mathrm{d})(1-0.75)=75 \mathrm{~kg} / \mathrm{d}$
$S_{0}-S=(300-75) \mathrm{kg} / \mathrm{d}=225 \mathrm{~kg} / \mathrm{d}$
$P_{x}=\frac{(0.10)(225 \mathrm{~kg} / \mathrm{d})}{[1+(0.02 / \mathrm{d})(40 \mathrm{~d})]}=12.5 \mathrm{~kg} / \mathrm{d}$
2. Calculate the volume of methane produced using Eq. (13-12) and a conversion factor at $35^{\circ} \mathrm{C}=0.40$.
$V_{C H_{4}}=(0.40)\left[\left(S_{0}-S\right)(Q)\left(10^{3} \mathrm{~g} / \mathrm{kg}^{-1}-1.42 P_{\mathrm{x}}\right]\right.$
$\mathrm{V}_{\mathrm{CH}_{4}}=(0.40)[(225 \mathrm{~kg} / \mathrm{d})-1.42(12.5 \mathrm{~kg} / \mathrm{d})]=62 \mathrm{~m}^{3} / \mathrm{d}$

PROBLEM 13-8

Problem Statement - See text, page 1555
Instructors Note: The answer to this question will vary depending upon the sources of reference material investigated.

Problem Analysis and/or Resolution

1. These three parameters (volatile acids concentration, pH , and alkalinity) along with gas production should be monitored simultaneously and correlated in terms of observed changes such as an increase in the volatile acids concentration and a drop in pH , alkalinity, and gas production. Plots of volatile acids and alkalinity will track trends in digester performance and indicate when changes in either or both parameters (an increase in volatile acids and a decrease in alkalinity) may result in possible instability.
2. Volatile acids concentration is perhaps the best parameter because of the rapid response time of the test.
3. Similarly, plots of methane and carbon dioxide composition in the digester gas are also helpful in measuring digester performance and detecting possible instability.
A useful reference is "Operation of Municipal Wastewater Treatment Plants," $7^{\text {th }}$ ed., published by the Water Environment Federation, 2007.

PROBLEM 13-9

Problem Statement - See text, page 1555

Solution

1. Determine the heat requirement to raise the temperature of the incoming sludge to $35^{\circ} \mathrm{C}$.
Assume the specific gravity of the sludge to be 1.02
Assume the existing contents of the digester are at a temperature of $35^{\circ} \mathrm{C}$
a. The mass flow of the sludge is:

Density of water at $14^{\circ} \mathrm{C}=999.2 \mathrm{~kg} / \mathrm{m}^{3}$ [Appendix C, Table C-1]
Mass flow $=\left(15 \mathrm{~m}^{3} / \mathrm{d}\right)(1.02)\left(999.2 \mathrm{~kg} / \mathrm{m}^{3}\right)=15,288 \mathrm{~kg} / \mathrm{d}$
b. Compute the heating requirement for sludge
$\mathrm{q}=(15,288 \mathrm{~kg} / \mathrm{d})\left[(35-14)^{\circ} \mathrm{C}\right]\left(4200 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$
$q=13.48 \times 10^{8} \mathrm{~J} / \mathrm{d}$
2. Determine the area of the walls, roof, and floor.
a. Wall area.
i Above ground

$$
A_{\text {wall (above) }}=\pi(11 \mathrm{~m})(4 \mathrm{~m})=138.2 \mathrm{~m}^{2}
$$

ii. Below ground

$$
\mathrm{A}_{\text {wall (above) }}=\pi(11 \mathrm{~m})(4 \mathrm{~m})=138.2 \mathrm{~m}^{2}
$$

b. Roof area.

$$
A_{\text {roof }}=\pi\left(\frac{11 \mathrm{~m}}{2}\right) \sqrt{\left(\frac{11 \mathrm{~m}}{2}\right)^{2}+(0.6 \mathrm{~m})^{2}}=95.6 \mathrm{~m}^{2}
$$

c. Floor area.

$$
A_{\text {floor }}=\pi\left(\frac{11 \mathrm{~m}}{2}\right) \sqrt{\left(\frac{11 \mathrm{~m}}{2}\right)^{2}+(1.2 \mathrm{~m})^{2}}=97.3 \mathrm{~m}^{2}
$$

3. Determine the heat losses by conduction using Equation 13-17, page 1525.
$q=U A \Delta T$
where $q=$ heat loss, J / d

$$
\mathrm{U}=\text { overall coefficient of heat transfer, } \mathrm{W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}(\text { Note: } \mathrm{W}=\mathrm{J} / \mathrm{s})
$$

$\mathrm{A}=$ cross-sectional area, m^{2}
$\Delta \mathrm{T}=$ temperature drop across surface, ${ }^{\circ} \mathrm{C}$
a. Walls
i. Above ground

$$
\begin{aligned}
& \mathrm{q}_{\text {above }}=\left(0.85 \mathrm{~W} / \mathrm{m}^{2 \cdot}{ }^{\circ} \mathrm{C}\right)\left(138.2 \mathrm{~m}^{2}\right)\left[35-(-15)^{\circ} \mathrm{C}\right](86,400 \mathrm{~s} / \mathrm{d})(\mathrm{J} / \mathrm{W} \cdot \mathrm{~s}) \\
& \quad=5.07 \times 10^{8} \mathrm{~J} / \mathrm{d}
\end{aligned}
$$

ii. Below ground

$$
\begin{aligned}
\mathrm{q}_{\text {below }} & =\left(1.2 \mathrm{~W} / \mathrm{m}^{2 \cdot}{ }^{\circ} \mathrm{C}\right)\left(138.2 \mathrm{~m}^{2}\right)\left[(35-5)^{\circ} \mathrm{C}\right](86,400 \mathrm{~s} / \mathrm{d})(\mathrm{J} / \mathrm{W} \cdot \mathrm{~s}) \\
& =4.30 \times 10^{8} \mathrm{~J} / \mathrm{d}
\end{aligned}
$$

b. Roof

$$
\begin{aligned}
\mathrm{q}_{\text {roof }} & =\left(1.0 \mathrm{~W} / \mathrm{m}^{2 \cdot}{ }^{\circ} \mathrm{C}\right)\left(95.5 \mathrm{~m}^{2}\right)\left[35-(-15)^{\circ} \mathrm{C}\right](86,400 \mathrm{~s} / \mathrm{d})(\mathrm{J} / \mathrm{W} \cdot \mathrm{~s}) \\
& =4.13 \times 10^{8} \mathrm{~J} / \mathrm{d}
\end{aligned}
$$

c. Floor

$$
\begin{aligned}
\mathrm{q}_{\text {floor }} & =\left(1.2 \mathrm{~W} / \mathrm{m}^{2 \cdot}{ }^{\circ} \mathrm{C}\right)\left(97.3 \mathrm{~m}^{2}\right)\left[(35-5)^{\circ} \mathrm{C}\right](86,400 \mathrm{~s} / \mathrm{d})(\mathrm{J} / \mathrm{W} \cdot \mathrm{~s}) \\
& =3.03 \times 10^{8} \mathrm{~J} / \mathrm{d}
\end{aligned}
$$

d. Total losses

$$
q_{t}=\left[(5.07+4.30+4.13+3.03) \times 10^{8}\right] \mathrm{J} / \mathrm{d}=16.53 \times 10^{8} \mathrm{~J} / \mathrm{d}
$$

4. Determine the required capacity of the heat exchanger.

$$
\begin{aligned}
\mathrm{q}_{\mathrm{he}} & =\left[\left(13.48 \times 10^{8}\right)+\left(16.53 \times 10^{8}\right)\right] \mathrm{J} / \mathrm{d} \\
& =30.01 \times 10^{8} \mathrm{~J} / \mathrm{d}=3 \times 10^{6} \mathrm{~kJ} / \mathrm{d}
\end{aligned}
$$

PROBLEM 13-10

Problem Statement - See text, pages 1555-1556

Solution

1. Determine the volume of sludge at current conditions going into the digester

$$
\text { Volume }=\frac{(25,000 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)(0.05)}=485.4 \mathrm{~m}^{3} / \mathrm{d}
$$

2. Determine current HRT when one digester is out of service

$$
\mathrm{HRT}=\frac{\left(6200 \mathrm{~m}^{3}\right)(2)}{\left(485.4 \mathrm{~m}^{3} / \mathrm{d}\right)}=25.5 \mathrm{~d}
$$

3. Determine the volume of sludge at future conditions (based on data set 1) going into the digester
Volume $=\frac{(55,000 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)(0.05)}=1068.0 \mathrm{~m}^{3} / \mathrm{d}$
4. Determine total required digester volume to maintain 15 d HRT

Digester Volume $=(15 \mathrm{~d})\left(1068.0 \mathrm{~m}^{3} / \mathrm{d}\right)=16,020 \mathrm{~m}^{3}$
5. Determine additional digester volume required

Additional Digester Volume $=16,020 \mathrm{~m}^{3}-2\left(6200 \mathrm{~m}^{3}\right)=3620 \mathrm{~m}^{3}$
Note: One additional $6200 \mathrm{~m}^{3}$ digester could be added if it was
desired to have the new digester be the same size as the existing tanks.
6. If thermal hydrolysis was added and the solid content going to the digester was 9% then the volume would be:

$$
\text { Volume }=\frac{(55,000 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)(0.09)}=593.3 \mathrm{~m}^{3} / \mathrm{d}
$$

7. Determine the digester HRT

$$
\mathrm{HRT}=\frac{\left(6200 \mathrm{~m}^{3}\right)(2)}{\left(593.3 \mathrm{~m}^{3} / \mathrm{d}\right)}=20.9 \mathrm{~d}
$$

With thermal hydrolysis the existing digester volume is sufficent
8. Determine the theoretical thermal hydrolysis steam requirement

$$
\frac{M_{\text {steam }}}{M_{s}}=\frac{\left(C_{\text {PS }}+\frac{C_{P W}}{W_{S}}-C_{P W}\right)\left(T_{H}-T_{\text {raw }}\right)}{H-C_{P W}\left(T_{H}-T_{\text {ref }}\right)}
$$

$$
\begin{aligned}
\frac{\mathrm{M}_{\text {Steam }}}{\mathrm{M}_{\mathrm{S}}}= & \frac{\left[(1.5 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C})+\frac{(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C})}{0.16}-(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C})\right]\left[(110-10)^{\circ} \mathrm{C}\right]}{(2785 \mathrm{~kJ} / \mathrm{kg})-(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{C})\left[(110-0)^{\circ} \mathrm{C}\right]} \\
& =1.0(\mathrm{~kg} \text { steam }) /(\mathrm{kg} \text { sludge }) \\
& M_{\text {Steam }}=\left(\frac{1.0 \mathrm{~kg} \text { steam }}{\mathrm{kg} \text { sludge }}\right)(55,000 \mathrm{~kg} / \mathrm{d})=55,000 \mathrm{~kg} \text { steam } / \mathrm{d}
\end{aligned}
$$

PROBLEM 13-11

Problem Statement - See text, page 1556

Solution

1. Determine the current and future volumetric flowrates (using data set 1)
$\operatorname{Volume}($ current $)=\frac{(500 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.01)(0.01)}=49.5 \mathrm{~m}^{3} / \mathrm{d}$
Volume (future) $=\frac{(1500 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.01)(0.01)}=148.5 \mathrm{~m}^{3} / \mathrm{d}$
2. Determine the current and future Digester HRTs. Note that since there is no decanting, HRT = SRT

$$
\begin{aligned}
& \operatorname{HRT}(\text { current })=\frac{3000 \mathrm{~m}^{3}}{\left(49.5 \mathrm{~m}^{3} / \mathrm{d}\right)}=60.6 \mathrm{~d} \\
& \operatorname{HRT}(\text { future })=\frac{3000 \mathrm{~m}^{3}}{\left(148.5 \mathrm{~m}^{3} / \mathrm{d}\right)}=20.2 \mathrm{~d}
\end{aligned}
$$

3. Determine the current aeration requirements
a. First base this on summer requirements and use Fig. 13-35 to determine VSR. The $(\mathrm{T})(\mathrm{SRT})=\left(25^{\circ} \mathrm{C}\right)(60 \mathrm{~d})=1500^{\circ} \mathrm{C} \cdot \mathrm{d}$ which is about 50% VSR.
b. Determine the oxygen requirement
O_{2} requirement $=(2.3)(500 \mathrm{~kg} / \mathrm{d})(0.65 \mathrm{gVSS} / \mathrm{gTSS})(0.5)$

$$
=373.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}
$$

c. Determine the air requirement. For the density of air, see Appendix B-1.

$$
\text { Air requirement }=\frac{\left(373.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)}{\left(0.232 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \text { air }\right)\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right)}=1338 \mathrm{~m}^{3} / \mathrm{d}
$$

d. Determine the required blower size assuming 10\% oxygen transfer efficiency

Blower $=\frac{\left(1338 \mathrm{~m}^{3} / \mathrm{d}\right)}{(0.1)(1440 \mathrm{~min} / \mathrm{d})}=9.29 \mathrm{~m}^{3} / \mathrm{min}$
e. Determine the required blower size to meet mixing requirement (From Table 13-44 mixing requirements are approximately $0.03 \mathrm{~m}^{3} / \mathrm{m}^{3} \cdot \mathrm{~min}$)

Blower $=\left(0.03 \mathrm{~m}^{3} / \mathrm{m}^{3} \cdot \mathrm{~min}\right)\left(3000 \mathrm{~m}^{3}\right)=90 \mathrm{~m}^{3} / \mathrm{min}$
Blower is sized to meet mixing requirements
4. Determine the future aeration requirements
a. If future conditions are anticipated to remain 50% VSR
O_{2} req. $=(2.3)(1500 \mathrm{~kg} / \mathrm{d})(0.65 \mathrm{VSS} / \mathrm{TSS})(0.5)=1121.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}$
c. Determine the air requirement using the same density as part 3.c.

$$
\text { Air requirement }=\frac{\left(1121.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{d}\right)}{\left(0.232 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \text { air }\right)\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right)}=4014.6 \mathrm{~m}^{3} / \mathrm{d}
$$

d. Determine the required blower size assuming 10\% oxygen transfer efficiency
Blower $=\frac{\left(4014.6 \mathrm{~m}^{3} / \mathrm{d}\right)}{(0.1)(1440 \mathrm{~min} / \mathrm{d})}=27.9 \mathrm{~m}^{3} / \mathrm{min}$
The existing blower is sufficiently sized to meet the future required oxygen demand for aerobic digestion
5. One possible option is to build a new aerobic digester tankage. The new volume required is

New Digester Volume $=(60 \mathrm{~d})\left(148.5 \mathrm{~m}^{3} / \mathrm{d}\right)-\left(3000 \mathrm{~m}^{3}\right)=5910 \mathrm{~m}^{3}$

Two additional $3000 \mathrm{~m}^{3}$ digester reactors could be installed at the site.
6. An alternative option is to thicken the sludge in the current aerobic digester. The percent solids required is.

Solids required, $\%=\frac{(1338 \mathrm{~kg} / \mathrm{d})(60 \mathrm{~d})}{\left(3000 \mathrm{~m}^{3}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.01)}(100)=2.97$
Thickening the waste activated sludge prior to entering the digester is one option to consider. If this option is employed the diffusers and blower should be checked to ensure it's compatible with the higher solids content. Also it may be possible to increase capacity by adding in decanting cycles.

The option of thickening verses building new reactors would likely save costs and also reduce plant footprint which can be critical at some sites.

BIOSOLIDS PROCESSING, RESOURCE RECOVERY, AND BENEFICIAL USE

PROBLEM 14-1

Problem Statement - See text, page 1651

Solution

1. Compute the number and size of belt filter presses required
a. Determine the wet mass of thickened biosolids produced

Biosolids mass flow (wet) $=(55,000 \mathrm{~L} / \mathrm{d})(1 \mathrm{~kg} / \mathrm{L})(1.02)=56,100 \mathrm{~kg} / \mathrm{d}$
b. Determine the hourly mass flowrate on a wet and dry basis for $8 \mathrm{~h} / \mathrm{d}$ and 5 d/wk operation

Hourly flowrate (wet) $=(56,100 \mathrm{~kg} / \mathrm{d})(7 \mathrm{~d} / \mathrm{wk} / 5 \mathrm{~d} / \mathrm{wk})(1 \mathrm{~d} / 8 \mathrm{~h})$
$=9818 \mathrm{~kg} / \mathrm{h}$
@ 2.8\% dry solids
Hourly flowrate $($ dry $)=(9818 \mathrm{~kg} / \mathrm{h})(0.028)=274.9 \mathrm{~kg} / \mathrm{h}$
c. Determine the required belt filter press width

Belt filter width $=(274.9 \mathrm{~kg} / \mathrm{h}) /(280 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{h})=0.98 \mathrm{~m}$
Based the loading rate requirements either one operational 1-m belt filter press or two $0.5-\mathrm{m}$ belt filter presses are required. To account for equipment redundancy one additional unit could also be incorporated.
For the purpose of this problem it will be assumed that two 1-m belt fitler presses will be provided (1 duty +1 standby)
2. Determine the capture rate - To determine the capture rate a mass balance around the belt filter press needs to be set up. There are two unknowns; the dewatered cake production (define as DC kg/h) and the filtrate flowrate (define as $\mathrm{FL} / \mathrm{min}$). Two equations need to be set up to
a. First set up a dry solids mass balance

Dry solids in = dry solids out + dry solids in filtrate
$274.9 \mathrm{~kg} / \mathrm{h}=(0.26)(\mathrm{DC} \mathrm{kg} / \mathrm{h})+(\mathrm{F} \mathrm{L} / \mathrm{min})(800 \mathrm{mg} / \mathrm{L})\left(1 \mathrm{~kg} / 10^{6} \mathrm{mg}\right)(60$ $\mathrm{min} / \mathrm{h}$)
$274.9 \mathrm{~kg} / \mathrm{h}=(0.26) \mathrm{DC} \mathrm{kg} / \mathrm{h}+0.048 \mathrm{~F}(\mathrm{~kg} / \mathrm{h})$
b. Second set up a total mass balance

Sludge in + washwater in = sludge out + filtrate out
$9,818 \mathrm{~kg} / \mathrm{h}+(90 \mathrm{~L} / \mathrm{min})(1 \mathrm{~kg} / \mathrm{L})(60 \mathrm{~min} / \mathrm{h})$
$=(F \mathrm{~L} / \mathrm{min})(1 \mathrm{~kg} / \mathrm{L})(1.01)(60 \mathrm{~min} / \mathrm{h})+\mathrm{DC} \mathrm{kg} / \mathrm{h}$
$15,218 \mathrm{~kg} / \mathrm{h}=60.6 \mathrm{~F}(\mathrm{~kg} / \mathrm{h})+\mathrm{DC} \mathrm{kg} / \mathrm{h}$
c. Solve equation from part a. for DC
$D C=\frac{274.9-0.048 \mathrm{~F}}{0.26}$
d. Plug equation from Part c. into equation from Part b. and solve for
F.
$15,218=60.6 \mathrm{~F}+\frac{274.9-0.048 \mathrm{~F}}{0.26}$
$15,218=60.42 \mathrm{~F}+1,057.31$
$\mathrm{F}=234.4 \mathrm{~L} / \mathrm{min}$
e. Solve for DC using equation derived in part c.
$D C=\frac{274.9-0.048(234.4)}{0.26}=1014 \mathrm{~kg} / \mathrm{h}$
f. Determine the dry solids production
$(1,014 \mathrm{~kg} / \mathrm{h})(0.26)=263.6 \mathrm{~kg} / \mathrm{h}$
g . Determine the solids capture rate
Capture rate, \% = (dry solids out)/(dry solids in)(100)
Capture rate, $\%=(263.6 \mathrm{~kg} / \mathrm{h}) /(274.9 \mathrm{~kg} / \mathrm{h})(100)$
Capture rate, \% = 95.9
3. Determine daily number of hours required for a sustained 5 -d peak solids load

From Fig. 3-13(b) the peaking factor for a 5-d peak for TSS is approximately 2 . Based on this the loading at a 5 -d peak is:
$5-\mathrm{d}$ sustained peak $=(56,100 \mathrm{~kg} / \mathrm{d})(2)(0.028)=3142 \mathrm{~kg} / \mathrm{d}$

If 5-d per week operation is maintained then the press would need to process: $(3142 \mathrm{~kg} / \mathrm{d})(7 / 5)=4398 \mathrm{~kg} / \mathrm{d}$
With one unit in operation:
Daily hours $=(4398 \mathrm{~kg} / \mathrm{d}) /(280 \mathrm{~kg} / \mathrm{h})=15.7 \mathrm{~h} / \mathrm{d}$
If both the duty and standby unit are operating
Daily hours $=(4398 \mathrm{~kg} / \mathrm{d}) /[(280 \mathrm{~kg} / \mathrm{h})(2)]=7.9 \mathrm{~h} / \mathrm{d}$

PROBLEM 14-2

Problem Statement - See text, page 1652

Solution

1. Determine the molecular formula of the dried sludge.
a. For 100 g of sludge the mass of each element is:

$$
\begin{aligned}
\mathrm{C} & =52.1 \mathrm{~g} \\
\mathrm{O} & =38.3 \mathrm{~g} \\
\mathrm{H} & =2.7 \mathrm{~g} \\
\mathrm{~N} & =6.9 \mathrm{~g}
\end{aligned}
$$

b. For 100 g of sludge the number of moles of each element is:

$$
\begin{aligned}
& \mathrm{C}=52.1 \mathrm{~g} /(12 \mathrm{~g} / \mathrm{mole})=4.34 \mathrm{moles} \\
& \mathrm{O}=38.3 \mathrm{~g} /(16 \mathrm{~g} / \mathrm{mole})=2.39 \mathrm{moles} \\
& \mathrm{H}=2.7 \mathrm{~g} /(1 \mathrm{~g} / \mathrm{mole})=2.70 \text { moles } \\
& \mathrm{N}=6.9 \mathrm{~g} /(14 \mathrm{~g} / \mathrm{mole})=0.49 \mathrm{moles}
\end{aligned}
$$

c. The molecular formula of the sludge is:

$$
\mathrm{C}_{4.34} \mathrm{O}_{2.39} \mathrm{H}_{2.70} \mathrm{~N}_{0.49}
$$

2. Determine the amount of O_{2} required to oxidize the sludge completely using Equation 14-3, page 1603.
$\mathrm{C}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{H}_{\mathrm{c}} \mathrm{N}_{\mathrm{d}}+(\mathrm{a}+0.25 \mathrm{c}-0.5 \mathrm{~b}) \mathrm{O}_{2} \rightarrow \mathrm{a} \mathrm{CO}_{2}+0.5 \mathrm{c} \mathrm{H}_{2} \mathrm{O}+0.5 \mathrm{~d} \mathrm{~N} 2$
$\mathrm{C}_{4.34} \mathrm{O}_{2.39} \mathrm{H}_{2.70} \mathrm{~N}_{0.49}+3.82 \mathrm{O}_{2} \rightarrow 4.34 \mathrm{CO}_{2}+1.35 \mathrm{H}_{2} \mathrm{O}+0.25 \mathrm{~N}_{2}$
Mass of $\mathrm{O}_{2}=\left(3.82 \mathrm{~mole}_{2}\right) \times\left(32 \mathrm{~g} \mathrm{O}_{2} / \mathrm{mole}_{2}\right)$
O_{2} required $=\frac{122.2 \mathrm{~g} \mathrm{O}_{2}}{100 \mathrm{~g} \text { sludge }}=1.222 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g}$ sludge
3. Determine the amount of air required.

Assume that air contains 23 percent oxygen (mass).
Air required $=\frac{\left(1.222 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \text { sludge }\right)}{\left(0.23 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \text { air }\right)}=5.31 \mathrm{gO}_{2} / \mathrm{g}$ sludge
$=5.31 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg}$ sludge

PROBLEM 14-3

Problem Statement - See text, page 1652

Solution

1. Determine the fuel value of the primary sludge using Eq. (14-5).
$Q=33.83 \mathrm{C}+144.7(\mathrm{H}-\mathrm{O} / 8)+9.42 \mathrm{~S}$
Pertinent data: $\mathrm{C}=0.645$
$\mathrm{H}=0.085$
$\mathrm{O}=0.21$
$S=0.04$
$Q=\{33.83(0.645)+144.7[0.085-(0.21 / 8)]+9.42(0.04)\} \mathrm{MJ} / \mathrm{kg}$
$\mathrm{Q}=21.82+8.5+0.37=30.69 \mathrm{MJ} / \mathrm{kg}$
The computed value is at the high end of the range given in Table 14-17.

PROBLEM 14-4

Problem Statement - See text, page 1652

Solution

NOTE: The solution provided below is based on the 20% solids content factor

1. Convert the volumetric flowrate to a mass flowrate and calculate the dry sludge production
Sludge production $($ wet $)=M_{\text {wet }}=\left(1000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.05)$
$M_{\text {wet }}=1,050,000 \mathrm{~kg} / \mathrm{d}$ (wet)

Sludge production $($ dry $)=(1,050,000 \mathrm{~kg} / \mathrm{d})(0.2)$
$M_{\text {dry }}=210,000 \mathrm{~kg} / \mathrm{d}$ (dry)
2. Deterine the daily mass of water to heat

Water $=1,050,000 \mathrm{~kg} / \mathrm{d}-210,000 \mathrm{~kg} / \mathrm{d}$
$M_{w, T o t}=840,000 \mathrm{~kg} / \mathrm{d}$
3. Deterine the daily mass of water to evaporate

Water evap $=1,050,000 \mathrm{~kg} / \mathrm{d}-(210,000 \mathrm{~kg} / \mathrm{d}) / 0.92$
$M_{W, \text { Evap }}=821,739 \mathrm{~kg} / \mathrm{d}$
3. Determine theoretical drying heat requirement $\left(Q_{\text {тH }}\right)$ using the following equation
$Q=\left(M_{\text {dry }} C p_{\text {dry }}+M_{w, \text { Tot }} C p_{w}\right)\left(T_{\text {out }}-T_{\text {in }}\right)+M_{w, \text { Evap }} H_{w, \text { Evap }}$
Where,
$\mathrm{Cp}_{\text {dry }}$ (dry solids heat capacity) $=1.5 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Cp_{w} (heat capacity of water) $=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
$\mathrm{H}_{\mathrm{W}, \text { Evap }}$ (latent heat of evaporation) $=2,260 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{T}_{\text {in }}=20^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {out }}=100^{\circ} \mathrm{C}$
$Q_{T H}=\left[(210,000 \mathrm{~kg} / \mathrm{d})\left(1.5 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)+(840,000 \mathrm{~kg} / \mathrm{d})\left(4.18 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)\right]$
$x\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)+(821,739 \mathrm{~kg} / \mathrm{d})(2260 \mathrm{~kJ} / \mathrm{kg})$
$Q_{\text {TH }}=2.16 \times 10^{9} \mathrm{~kJ} / \mathrm{d}$ (or approx $25,000 \mathrm{~kW}$)
4. Determine the fuel requirement assuming 5% heat loss and 85% heater efficiency ($\eta_{\text {Heater }}$)
Heat loss $=Q_{L}=\left(2.16 \times 10^{9} \mathrm{~kJ} / \mathrm{d}\right)(0.05)=1.08 \times 10^{8} \mathrm{~kJ} / \mathrm{h}$
Total fuel requirement $=\left(Q_{T H}+Q_{L}\right) / \eta_{\text {Heater }}$
$=\left[\left(2.16 \times 10^{9}+1.08 \times 10^{8}\right) \mathrm{kJ} / \mathrm{h}\right] / 0.85=2.66 \times 10^{9} \mathrm{~kJ} / \mathrm{h}(\sim 30,800 \mathrm{~kW})$

PROBLEM 14-5

Problem Statement - See text, page 1652

Solution

1. Determine the amount of compostable solid waste (SW) generated each day.
$\mathrm{SW}_{\text {total }}=(25,000$ people $)(2 \mathrm{~kg} /$ person $\cdot \mathrm{d})(0.55)=27,500 \mathrm{~kg} / \mathrm{d}$
2. Determine the dry weight of the compostable solids and the weight of water in the compostable fraction.
$S W_{\text {dry }}=(1-0.22) 27,500 \mathrm{~kg} / \mathrm{d}=21,450 \mathrm{~kg} / \mathrm{d}$
$\mathrm{SW}_{\mathrm{H}_{2} \mathrm{O}}=0.22(27,500)=6,050 \mathrm{~kg} / \mathrm{d}$
3. Solve for the weight of sludge solids, $S_{\text {total }}$ that must be added to achieve a final moisture content of 55%.

$$
0.55=\frac{\mathrm{S}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{SW}_{\mathrm{H}_{2} \mathrm{O}}}{\mathrm{~S}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{S}_{\mathrm{dry}}+\mathrm{SW}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{SW}_{\mathrm{dry}}}
$$

$$
0.55=\frac{\mathrm{S}_{\mathrm{H}_{2} \mathrm{O}}+6050 \mathrm{~kg} / \mathrm{d}}{\mathrm{~S}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{S}_{\mathrm{dry}}+27,500 \mathrm{~kg} / \mathrm{d}}
$$

$$
\text { But } \mathrm{S}_{\mathrm{H}_{2} \mathrm{O}}=(1-0.22)\left(\mathrm{S}_{\mathrm{H}_{2} \mathrm{O}}+\mathrm{S}_{\mathrm{dry}}\right)
$$

$$
\mathrm{S}_{\mathrm{H}_{2} \mathrm{O}}=3.55 \mathrm{~S}_{\mathrm{dry}}
$$

$$
0.55=\frac{3.55 \mathrm{~S}_{\mathrm{dry}}+6050 \mathrm{~kg} / \mathrm{d}}{3.55 \mathrm{~S}_{\mathrm{dry}}+\mathrm{S}_{\mathrm{dry}}+27,500 \mathrm{~kg} / \mathrm{d}}
$$

$$
2.50 \mathrm{~S}_{\mathrm{dry}}+15,125 \mathrm{~kg} / \mathrm{d}=3.55 \mathrm{~S}_{\mathrm{dry}}+6050 \mathrm{~kg} / \mathrm{d}
$$

$$
1.05 \mathrm{~S}_{\mathrm{dry}}=9075 \mathrm{~kg} / \mathrm{d}
$$

$$
S_{d r y}=8643 \mathrm{~kg} / \mathrm{d}
$$

$$
S_{\text {total }}=(8643 \mathrm{~kg} / \mathrm{d}) / 0.22=39,286 \mathrm{~kg} / \mathrm{d}
$$

Therefore, $39,286 \mathrm{~kg} / \mathrm{d}$ of sludge at 22 percent solids are needed to achieve the required final moisture content of 55%.
4. Determine the amount of sludge produced each day.
$S_{d r y}=(0.12 \mathrm{~kg} /$ person $\cdot \mathrm{d})(25,000$ people $)=3000 \mathrm{~kg} / \mathrm{d}$
$\mathrm{S}_{\text {total }}=(3000 \mathrm{~kg} / \mathrm{d}) / 0.05=60,000 \mathrm{~kg} / \mathrm{d}$
Therefore, an excess amount of sludge is available for mixing with the solids waste for composting.

PROBLEM 14-6

Problem Statement - See text, page 1652
Instructors Note: This problem is intended to have the student consider the various factors, economic as well as non-economic, in developing alternative solutions and recommendations for a practical application. In making a recommendation in actual practice, a number of conditions will have to be considered that are site specific and include cost and environmental factors. Some of those conditions are cited under the solution below. The instructor may want to add other factors or constraints to the problem. Because a community size of 200,000 people was specified, the treatment plant is of medium size and a reasonable level of operating skills can be assumed in the analysis.

Solution

1. Determine the amount and characteristics of the biosolids to be processed. Because the biosolids are a mixture of digested primary and waste activated sludge, dewatering to obtain a specific moisture content of the dewatered biosolids may be an important consideration.
2. Evaluate the general operating performance and advantages and disadvantages of the three specified types of sludge dewatering equipment: belt press dewatering, centrifugation, and pressure filter press dewatering. The advantages and disadvantages cited in Table 14-2 will be helpful as a starting point. Other references where case studies are cited would be useful. Because of the size of the system, newer dewatering technologies such as rotary presses and screw presses may require numerous units
which may make the required footprint and total cost prohibititive but they should be considered in the items listed in part 3 below.
3. Determine the cost factors that will be needed in a life cycle cost analysis such as:
a. Number and size of units
b. Equipment cost
c. Operating and maintenance cost factors
d. Space requirements
e. Ancillary equipment such as chemical feeders, process water, pumping systems, conveying and materials handling equipment, and odor control
f. Impact of the amount and quality of return flows from the dewatering units
4. Determine the general characteristics of the dewatered biosolids and how they relate to meeting the requirements for transport to the disposal site and the conditions for disposal.

Evaluate environmental considerations such as noise, odor control, traffic for sludge trucks, disposal site characteristics that affect system selection

PROBLEM 14-7

Problem Statement - See text, pages 1653
Instructors Note: This problem is intended to help the student understand in detail the solids balance procedure. A spreadsheet program can be used to solve the problem or successive iterations can be used in a manner similar to Example 14-3.

Solution - for Data Set 1

A summary table is given below for three iterations using the same procedure as Example 14-3. Detailed computations are given after the summary table.

	VSS ${ }_{\text {M }}$ destroyed	kg/d	5,291	5,853	5,876
	Mass flow to the digester, primary	$\mathrm{m}^{3} / \mathrm{d}$	204,750	222,033	222,733
	Mass flow to the digester, secondary	$\mathrm{m}^{3} / \mathrm{d}$	87,275	81,875	82,450
	Mass flow to the digester, total	$\mathrm{m}^{3} / \mathrm{d}$	292,025	303,908	305,183
	Fixed solids	kg/d	5,194	4,891	4,910
	Total solids in digested sludge	kg/d	10,485	10,744	10,786
	Gas produced	kg/d	5,219	6,776	6,803
	Mass output	kg/d	286,806	297,132	298,380
	Supernatant solids to plant influent	kg/d	428	457	459
	Digested solids to dewatering	kg/d	10,057	10,287	10,327
	Supernatant flowrate to plant influent	$\mathrm{m}^{3} / \mathrm{d}$	85.6	91.4	91.8
	Digested sludge flowrate	$\mathrm{m}^{3} / \mathrm{d}$	201.1	205.7	206.5
	$\mathrm{BOD}_{\mathrm{M}}$ recycled to plant influent	kg/d	86	91	92
	TSS ${ }_{M}$ recycled to plant influent	kg/d	428	457	459
f.	Sludge dewatering				
	Sludge cake solids	kg/d	9,353	9,567	9,604
	Sludge cake volume	$\mathrm{m}^{3} / \mathrm{d}$	40	41	41.2
	Centrate flowrate to plant influent	$\mathrm{m}^{3} / \mathrm{d}$	161	164.7	165.3
	Centrate $\mathrm{BOD}_{\mathrm{M}}$ to plant influent	kg/d	322	329	331
	Centrate TSS $_{\text {M }}$ to plant influent	kg/d	704	720	723
g.	Summary of recycle flows and loads				
	Flowrate	$\mathrm{m}^{3} / \mathrm{d}$	966.1	528.2	529.7
	$\mathrm{BOD}_{\mathrm{M}}$	kg/d	631	648	653
	$\mathrm{TSS}_{\mathrm{M}}$	kg/d	1,481	1,541	1,528

Computation procedure

1. Convert the given constituent concentrations to daily mass values.
a. $\mathrm{BOD}_{\mathrm{M}}$ in influent.

$$
\mathrm{BOD}_{\mathrm{M}}=\frac{\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(340 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=18,360 \mathrm{~kg} / \mathrm{d}
$$

b. Total suspended solids $\left(\mathrm{TSS}_{\mathrm{M}}\right)$ in influent.

$$
\mathrm{TSS}_{\mathrm{M}}=\frac{\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(350 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=18,900 \mathrm{~kg} / \mathrm{d}
$$

c. Total suspended solids after grit removal.

$$
\mathrm{TSS}_{\mathrm{M}}=\frac{\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(325 \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=17,550 \mathrm{~kg} / \mathrm{d}
$$

2. Prepare the first iteration of the solids balance. [Note: Values with an asterisk (*) are operating parameters from Example 14-3)].
a. Primary settling.
i. $\quad B O D_{M}$ removed $=0.33^{*}(18,360 \mathrm{~kg} / \mathrm{d})=6059 \mathrm{~kg} / \mathrm{d}$
ii. $\quad B O D_{M}$ to secondary $=(18,360-6059) \mathrm{kg} / \mathrm{d}=12,301 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ removed $=0.7^{*}(17,550 \mathrm{~kg} / \mathrm{d})=12,285 \mathrm{~kg} / \mathrm{d}$
iv. \quad TSS $_{\mathrm{M}}$ to secondary $=(17,550-12,285) \mathrm{kg} / \mathrm{d}=5265 \mathrm{~kg} / \mathrm{d}$
b. Determine the volatile fraction of the primary sludge.
i. Volatile suspended solids $\left(\mathrm{VSS}_{\mathrm{M}}\right)$ in influent prior to grit removal, kg/d
$\operatorname{VSS}_{\mathrm{M}}=\left(0.67^{*}\right)(18,900 \mathrm{~kg} / \mathrm{d})=12,663 \mathrm{~kg} / \mathrm{d}$
ii. $\quad \mathrm{VSS}_{\mathrm{M}}$ removed in grit chamber

$$
\operatorname{VSS}_{M}=\left(0.10^{*}\right)(18,900-17,550) \mathrm{kg} / \mathrm{d}=135 \mathrm{~kg} / \mathrm{d}
$$

iii. $V S S_{M}$ in secondary influent

$$
\operatorname{VSS}^{M}=\left(0.85^{*}\right)(5265 \mathrm{~kg} / \mathrm{d})=4475 \mathrm{~kg} / \mathrm{d}
$$

iv. $\mathrm{VSS}_{\mathrm{M}}$ in primary sludge

$$
\operatorname{VSS}_{M}=(12,663-135-4475) \mathrm{kg} / \mathrm{d}=8053 \mathrm{~kg} / \mathrm{d}
$$

v. Volatile fraction in primary sludge

Volatile fraction $=\frac{(8053 \mathrm{~kg} / \mathrm{d})}{(12,285 \mathrm{~kg} / \mathrm{d})}(100 \%)=65.6 \%$
c. Secondary process.
i. Determine the $B O D$ influent concentration $\left(\mathrm{BOD}_{\mathrm{C}}\right)$ to the aeration tank. (Note: the flowrate of the primary clarifier underflow is neglected).

$$
\mathrm{BOD}_{\mathrm{C}}=\frac{(12,301 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)}=228 \mathrm{mg} / \mathrm{L}
$$

ii. Determine the mass of VSS produced that must be wasted using Eq. (8-19).

$$
\begin{aligned}
& P_{x, V S S}=\frac{Y_{o b s} Q\left(S_{0}-S\right)}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)} \\
& P_{x, V S S}=\frac{\left(0.3125^{*}\right)\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left[\left(228-6.2^{*}\right) \mathrm{g} / \mathrm{m}^{3}\right]}{\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=3743 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

iii. Determine the $\mathrm{TSS}_{\mathrm{M}}$ that must be wasted.
$\mathrm{TSS}_{\mathrm{M}}=(3743 \mathrm{~kg} / \mathrm{d}) / 0.80^{*}=4679 \mathrm{~kg} / \mathrm{d}$
iv. Determine the effluent mass quantities.
$B O D_{M}=\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(20 \mathrm{~g} / \mathrm{m}^{3 \star}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=1080 \mathrm{~kg} / \mathrm{d}$
$\operatorname{TSS}_{M}=\left(54,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(22 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=1188 \mathrm{~kg} / \mathrm{d}$
v. Determine the waste quantities discharged to the thickener (assume wasting from the aeration tank).
TSS $_{\mathrm{M}}=(4679-1188) \mathrm{kg} / \mathrm{d}=3491 \mathrm{~kg} / \mathrm{d}$
Flowrate $=\frac{(3491 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(4375 \mathrm{~g} / \mathrm{m}^{3}\right)^{*}}=798 \mathrm{~m}^{3} / \mathrm{d}$
d. Flotation thickener.
i. Determine the flowrate of the thickened sludge.

Flowrate $=\frac{(3491 \mathrm{~kg} / \mathrm{d})\left(0.9^{*}\right)}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(0.04)^{*}}=78.5 \mathrm{~m}^{3} / \mathrm{d}$
ii. Determine the flowrate recycled to the plant influent.

Recycled flowrate $=(798-78.5) \mathrm{m}^{3} / \mathrm{d}=719.5 \mathrm{~m}^{3} / \mathrm{d}$
iii. Determine the $\mathrm{TSS}_{\mathrm{M}}$ to the digester.
$\mathrm{TSS}_{\mathrm{M}}=(3491 \mathrm{~kg} / \mathrm{d})\left(0.9^{*}\right)=3142 \mathrm{~kg} / \mathrm{d}$
iv. Determine the suspended solids recycled to the plant influent.
$\mathrm{TSS}_{\mathrm{M}}=(3491-3142) \mathrm{kg} / \mathrm{d}=349 \mathrm{~kg} / \mathrm{d}$
iv. Determine the BOD concentration and mass in the recycled flow.
$\mathrm{TSS}_{\mathrm{C}}=\frac{(349 \mathrm{~kg} / \mathrm{d})}{\left(719.5 \mathrm{~m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)^{*}}=485 \mathrm{~g} / \mathrm{m}^{3}$ in recycle flow
$\mathrm{BOD}_{\mathrm{C}}$ of $\mathrm{TSS}=\left(485 \mathrm{~g} / \mathrm{m}^{3}\right)\left(0.65^{*}\right)\left(1.42^{*}\right)\left(0.68^{*}\right)=304 \mathrm{~g} / \mathrm{m}^{3}$
Total BOD ${ }_{C}=(304+6.2) \mathrm{g} / \mathrm{m}^{3}=310 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{BOD}_{\mathrm{M}}=\left(719.5 \mathrm{~m}^{3} / \mathrm{d}\right)\left(310 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=223 \mathrm{~kg} / \mathrm{d}$
e. Sludge digestion.
i. Determine the total solids fed to the digester and the corresponding flow.
$\mathrm{TSS}_{\mathrm{M}}=(12,285+3,491) \mathrm{kg} / \mathrm{d}=15,776 \mathrm{~kg} / \mathrm{d}$

$$
=292 \mathrm{~m}^{3} / \mathrm{d}
$$

ii. Determine the VSS fed to the digester.
$V_{S S}=0.656(12,285 \mathrm{~kg} / \mathrm{d})+0.80(3491 \mathrm{~kg} / \mathrm{d})=10,582 \mathrm{~kg} / \mathrm{d}$
iii. Determine the VSS destroyed.
$\mathrm{VSS}_{\mathrm{M}}$ destroyed $=0.5^{*} \times 10,582 \mathrm{~kg} / \mathrm{d}=5291 \mathrm{~kg} / \mathrm{d}$
iv. Determine the mass flow to the digester.

Primary sludge:
Mass flowrate $=\frac{(12,285 \mathrm{~kg} / \mathrm{d})}{(0.06)}=204,750 \mathrm{~kg} / \mathrm{d}$
Thickened waste activated sludge:

Mass flowrate $=\frac{(3491 \mathrm{~kg} / \mathrm{d})}{(0.04)}=87,275 \mathrm{~kg} / \mathrm{d}$
Total mass flow $=(204,750+87,275) \mathrm{kg} / \mathrm{d}=292,025 \mathrm{~kg} / \mathrm{d}$
v. Determine the mass quantities of gas and sludge after digestion.

Fixed solids $=$ TSS $_{\mathrm{M}}-$ VSS $_{\mathrm{M}}=(15,776-10,582) \mathrm{kg} / \mathrm{d}$

$$
=5194 \mathrm{~kg} / \mathrm{d}
$$

$\mathrm{TSS}_{\mathrm{M}}$ in digested sludge $=[5194+0.5(10,582)] \mathrm{kg} / \mathrm{d}$

$$
=10,485 \mathrm{~kg} / \mathrm{d}
$$

Gas production $=$
$=\left(1.12 \mathrm{~m}^{3} / \mathrm{kg}{ }^{*}\right)(0.5)(10,582 \mathrm{~kg} / \mathrm{d})(0.86)\left(1.024 \mathrm{~kg} / \mathrm{m}^{3 *}\right)$
$=5219 \mathrm{~kg} / \mathrm{d}$
Mass balance of digester output (solids and liquid)
Mass input $\quad 292,025 \mathrm{~kg} / \mathrm{d}$
Less gas $\quad-5219 \mathrm{~kg} / \mathrm{d}$
Mass output $\quad 286,806 \mathrm{~kg} / \mathrm{d}$
vi. Determine the flowrate distribution between supernatant and digested sludge ($\mathrm{S}=$ supernatant).
$\frac{\mathrm{S}}{0.005}=\frac{(10,485 \mathrm{~kg} / \mathrm{d})-\mathrm{S}}{(0.05)}=286,806$
$S+1049-0.1 S=1434 \mathrm{~kg} / \mathrm{d}$
S $=428 \mathrm{~kg} / \mathrm{d}$
Digested solids $=(10,485-428) \mathrm{kg} / \mathrm{d}=10,057 \mathrm{~kg} / \mathrm{d}$
Supernatant flowrate $=\frac{(428 \mathrm{~kg} / \mathrm{d})}{(0.005)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=85.6 \mathrm{~m}^{3} / \mathrm{d}$
Digested sludge flowrate $=\frac{(10,057 \mathrm{~kg} / \mathrm{d})}{(0.05)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=201.1 \mathrm{~m}^{3} / \mathrm{d}$
vii. Establish the characteristics of the recycle flow to the plant influent.

Flowrate $=85.6 \mathrm{~m}^{3} / \mathrm{d}$

$$
\begin{aligned}
& \mathrm{BOD}_{\mathrm{M}}=\left(85.6 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=86 \mathrm{~kg} / \mathrm{d} \\
& \mathrm{TSS}_{\mathrm{M}}=\left(85.6 \mathrm{~m}^{3} / \mathrm{d}\right)\left(5000 \mathrm{~g} / \mathrm{m}^{3}\right)\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=428 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

f. Sludge dewatering
i. Determine the sludge cake characteristics.

Digested solids $=10,057 \mathrm{~kg} / \mathrm{d}(0.93)=9353 \mathrm{~kg} / \mathrm{d}$ Volume $=\frac{(9353 \mathrm{~kg} / \mathrm{d})}{(0.22)(1.06)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=40 \mathrm{~m}^{3} / \mathrm{d}$
ii. Determine the centrate characteristics.

Flowrate $=(201-40) m^{3} / \mathrm{d}=161 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{BOD}_{\mathrm{M}}=\left(161 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=322 \mathrm{~kg} / \mathrm{d}$
$\mathrm{TSS}_{\mathrm{M}}=(10,057 \mathrm{~kg} / \mathrm{d})(0.07)=704 \mathrm{~kg} / \mathrm{d}$
g. Prepare a summary table of the recycle flows and waste characteristics for the first iteration.

Operation	Flow, $\mathrm{m}^{3} / \mathrm{d}$	$\mathrm{BOD}, \mathrm{kg} / \mathrm{d}$	$\mathrm{TSS}, \mathrm{kg} / \mathrm{d}$
Flotation thickener	719.5	223	349
Digester supernatant	85.6	86	428
Centrate	161.0	322	704
Totals	966.1	631	1481

3. Prepare the second iteration of the solids balance.
a. Primary settling
i. Operating parameters = same as those in the first iteration.
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ and $\mathrm{BOD}_{\mathrm{M}}$ entering the primary tanks.

$$
\begin{aligned}
\mathrm{TSS}_{\mathrm{M}} & =\text { Influent } \mathrm{TSS}_{\mathrm{M}}+\text { recycled } \mathrm{TSS}_{\mathrm{M}} \\
= & (17,550+1481) \mathrm{kg} / \mathrm{d}=19,031 \mathrm{~kg} / \mathrm{d} \\
\text { Total } \mathrm{BOD}_{\mathrm{M}} & =\text { influent } \mathrm{BOD}_{\mathrm{M}}+\text { recycled } \mathrm{BOD}_{\mathrm{M}} \\
& =(18,360+631) \mathrm{kg} / \mathrm{d}=18,991 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

iii. $\quad B O D_{M}$ removed $=0.33(18,991 \mathrm{~kg} / \mathrm{d})=6267 \mathrm{~kg} / \mathrm{d}$
iv. $\quad \mathrm{BOD}_{\mathrm{M}}$ to secondary $=(18,991-6267) \mathrm{kg} / \mathrm{d}=12,724 \mathrm{~kg} / \mathrm{d}$
v. $\quad \mathrm{TSS}_{\mathrm{M}}$ removed $=0.7(19,031 \mathrm{~kg} / \mathrm{d})=13,322 \mathrm{~kg} / \mathrm{d}$
vi. $\quad \operatorname{TSS}_{\mathrm{M}}$ to secondary $=(19,301-13,322) \mathrm{kg} / \mathrm{d}=5709 \mathrm{~kg} / \mathrm{d}$
b. Volatile fraction of the primary sludge and effluent suspended solids; use volatile fraction from first iteration.
c. Secondary process
i. Operating parameters = same as those for the first iteration and as follows:
Aeration tank volume $=4700 \mathrm{~m}^{3} \quad$ SRT $=10 \mathrm{~d}$
$\mathrm{Y}=0.50 \mathrm{~kg} / \mathrm{kg}$
$k_{d}=0.06 \mathrm{~d}^{-1}$
ii. Determine the $\mathrm{BOD}_{\mathrm{C}}$ in the influent to the aeration tank

Flowrate to aeration tank $=$ influent flowrate + recycle flowrate

$$
=(54,000+966) \mathrm{m}^{3} / \mathrm{d}=54,966 \mathrm{~m}^{3} / \mathrm{d}
$$

$$
\mathrm{BOD}_{\mathrm{C}}=\frac{(12,724 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(54,966 \mathrm{~m}^{3} / \mathrm{d}\right)}=231 \mathrm{~g} / \mathrm{m}^{3}
$$

iii. Determine the new concentration of mixed liquor VSS.

$$
X_{\text {VSS }}=\frac{(10 \mathrm{~d})\left(54,966 \mathrm{~m}^{3} / \mathrm{d}\right)(0.5)\left[(231-6.2) \mathrm{g} / \mathrm{m}^{3}\right]}{4700 \mathrm{~m}^{3}\left[1+\left(0.06 \mathrm{~d}^{-1}\right)(10 \mathrm{~d})\right]}=8216 \mathrm{~g} / \mathrm{m}^{3}
$$

iv. Determine the mixed liquor TSS.

$$
\mathrm{X}_{\mathrm{TSS}}=8216 / 0.8=10,270 \mathrm{~g} / \mathrm{m}^{3}
$$

v. Determine the cell growth.

$$
P_{x, \text { Vss }}=Y_{o b s} Q\left(S_{o}-S\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)
$$

$$
\begin{aligned}
& =\frac{0.3125\left(54,966 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(231-6.2) \mathrm{g} / \mathrm{m}^{3}\right]}{\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=3861 \mathrm{~kg} / \mathrm{d} \\
\mathrm{P}_{\mathrm{x}, \text { TSS }} & =3861 / 0.8=4827 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

vi. Determine the waste quantities discharged to the thickener.

Effluent $\mathrm{TSS}_{\mathrm{M}}=1188 \mathrm{~kg} / \mathrm{d}$ (specified in the first iteration)
Total TSS $_{\mathrm{M}}$ to be wasted to the thickener $=(4827-1188) \mathrm{kg} / \mathrm{d}$
Total TSS $_{\text {M }}=3639 \mathrm{~kg} / \mathrm{d}$
Flowrate $=\frac{(3639 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(10,270 \mathrm{~g} / \mathrm{m}^{3}\right)}=354 \mathrm{~m}^{3} / \mathrm{d}$
d. Flotation thickeners
i. Operating parameters: same as first iteration
ii. Determine the flowrate of the thickened sludge.

Flowrate $=\frac{(3639 \mathrm{~kg} / \mathrm{d})(0.9)}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(0.04)}=81.9 \mathrm{~m}^{3} / \mathrm{d}$
iii. Determine the flowrate recycled to the plant influent.

Recycled flowrate $=(354-81.9) \mathrm{m}^{3} / \mathrm{d}=272.1 \mathrm{~m}^{3} / \mathrm{d}$
iv. Determine the TSS $_{\mathrm{M}}$ to the digester.
$\mathrm{TSS}_{\mathrm{M}}=(3639 \mathrm{~kg} / \mathrm{d})(0.9)=3275 \mathrm{~kg} / \mathrm{d}$
v. Determine the $\mathrm{TSS}_{\mathrm{M}}$ recycled to the plant influent.
$\mathrm{TSS}_{\mathrm{M}}=(3639-3275) \mathrm{kg} / \mathrm{d}=364 \mathrm{~kg} / \mathrm{d}$
vi. Determine the $\mathrm{BOD}_{\mathrm{C}}$ of the suspended solids in the recycled flow

TSS $_{\mathrm{C}}$ in recycle flow $=\frac{(364 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(272.1 \mathrm{~m}^{3} / \mathrm{d}\right)}=1337 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{BOD}_{\mathrm{C}}$ of suspended solids $=\left(1337 \mathrm{~g} / \mathrm{m}^{3}\right)(0.65)(1.42)(0.68)$

$$
=839 \mathrm{~g} / \mathrm{m}^{3}
$$

$B^{\prime} D_{M}=\left(839 \mathrm{~g} / \mathrm{m}^{3}\right)\left(272.1 \mathrm{~m}^{3} / \mathrm{d}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=228 \mathrm{~kg} / \mathrm{d}$
e. Sludge digestion
i. Operating parameters - same as first iteration
ii. Determine the total solids fed to the digester and the corresponding flowrate.
$\mathrm{TSS}_{\mathrm{M}}=\mathrm{TSS}_{\mathrm{M}}$ from primary settling plus waste $\mathrm{TSS}_{\mathrm{M}}$ from thickener
$\operatorname{TSS}_{\mathrm{M}}=(13,322+3275) \mathrm{kg} / \mathrm{d}=16,597 \mathrm{~kg} / \mathrm{d}$

$$
\begin{aligned}
\text { Total flowrate } & =\frac{(13,322 \mathrm{~kg} / \mathrm{d})}{0.06\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\frac{(3275 \mathrm{~kg} / \mathrm{d})}{0.04\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)} \\
& =(222+81.9) \mathrm{m}^{3} / \mathrm{d}=303.9 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

iii. Determine the total $\mathrm{VSS}_{\mathrm{M}}$ fed to the digester.
$\mathrm{VSS}_{\mathrm{M}}=0.682(13,322 \mathrm{~kg} / \mathrm{d})+0.80(3275 \mathrm{~kg} / \mathrm{d})$

$$
=(9086+2620) \mathrm{kg} / \mathrm{d}=11,706 \mathrm{~kg} / \mathrm{d}
$$

$\%$ VSS in mixture fed to digester $=\frac{(11,706 \mathrm{~kg} / \mathrm{d})}{(16,597 \mathrm{~kg} / \mathrm{d})}(100)=70.5 \%$
iv. Determine the $\mathrm{VSS}_{\mathrm{M}}$ destroyed.
$\mathrm{VSS}_{\mathrm{M}}$ destroyed $=0.5(11,706 \mathrm{~kg} / \mathrm{d})=5853 \mathrm{~kg} / \mathrm{d}$
v. Determine the mass flow to the digester.

Primary sludge at 6% solids:
Mass flow $=\frac{(13,322 \mathrm{~kg} / \mathrm{d})}{0.06}=222,033 \mathrm{~kg} / \mathrm{d}$
Thickened waste activated sludge at 4% solids:
Mass flow $=\frac{(3275 \mathrm{~kg} / \mathrm{d})}{0.04}=81,875 \mathrm{~kg} / \mathrm{d}$
Total mass flow $=(222,033+81,875) \mathrm{kg} / \mathrm{d}=303,908 \mathrm{~kg} / \mathrm{d}$
vi. Determine the mass quantities of gas and sludge after digestion.

Fixed solids $=$ TSS $_{M}-$ VSS $_{M}=(16,597-11,706) \mathrm{kg} / \mathrm{d}$

$$
=4891 \text { kg/d }
$$

TSS in digested sludge $=4891 \mathrm{~kg} / \mathrm{d}+0.5(11,706) \mathrm{kg} / \mathrm{d}$

$$
=10,744 \mathrm{~kg} / \mathrm{d}
$$

Gas production assuming that the density of digester gas is equal to 0.86 times that of air $\left(1.202 \mathrm{~kg} / \mathrm{m}^{3}\right)$:

Gas $=\left(1.12 \mathrm{~m}^{3} / \mathrm{kg}\right)(5853 \mathrm{~kg} / \mathrm{d})(0.86)\left(1.202 \mathrm{~kg} / \mathrm{m}^{3}\right)=6776 \mathrm{~kg} / \mathrm{d}$ Mass balance of digester output:

Mass input $\quad 303,908 \mathrm{~kg} / \mathrm{d}$
Less gas $\quad-6776 \mathrm{~kg} / \mathrm{d}$

Mass output $297,132 \mathrm{~kg} / \mathrm{d}$ (solids and liquid)
vii. Determine the flowrate distribution between the supernatant at $5,000 \mathrm{mg} / \mathrm{L}$ and digested sludge at 5 percent solids. Let $\mathrm{S}=\mathrm{kg} / \mathrm{d}$ of supernatant suspended solids.
$\frac{S}{0.005}=\frac{(10,744 \mathrm{~kg} / \mathrm{d})-S}{(0.05)}=297,132$
$S+1074-0.1 S=1486 \mathrm{~kg} / \mathrm{d}$
$\mathrm{S}=457 \mathrm{~kg} / \mathrm{d}$
Digested solids $=(10,744-457) \mathrm{kg} / \mathrm{d}=10,287 \mathrm{~kg} / \mathrm{d}$
Supernatant flowrate $=\frac{(457 \mathrm{~kg} / \mathrm{d})}{(0.005)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=91.4 \mathrm{~m}^{3} / \mathrm{d}$

Digested sludge flowrate $=\frac{(10,287 \mathrm{~kg} / \mathrm{d})}{(0.05)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=205.7 \mathrm{~m}^{3} / \mathrm{d}$
viii. Establish the characteristics of the recycled flow (supernatant).

$$
\begin{aligned}
& \mathrm{BOD}_{\mathrm{M}}=\left(91.4 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=91 \mathrm{~kg} / \mathrm{d} \\
& \mathrm{TSS}_{\mathrm{M}}=\left(91.4 \mathrm{~m}^{3} / \mathrm{d}\right)\left(5000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=457 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

f. Sludge dewatering.
i. Determine the sludge cake characteristics.

$$
\text { Digested solids }=10,287 \mathrm{~kg} / \mathrm{d}(0.93)=9567 \mathrm{~kg} / \mathrm{d}
$$

$$
\text { Volume }=\frac{(9567 \mathrm{~kg} / \mathrm{d})}{(0.22)(1.06)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=41 \mathrm{~m}^{3} / \mathrm{d}
$$

ii. Determine the centrate characteristics.

Flowrate $=(205.7-41) \mathrm{m}^{3} / \mathrm{d}=164.7 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{BOD}_{\mathrm{M}}=\left(164.7 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=329 \mathrm{~kg} / \mathrm{d}$
$\operatorname{TSS}_{\mathrm{M}}=(10,287 \mathrm{~kg} / \mathrm{d})(0.07)=720 \mathrm{~kg} / \mathrm{d}$
g. Prepare a summary table of the recycle flows and waste characteristics for the second iteration

				Change from previous iteration		

4. Prepare the third iteration of the solids balance.
a. Primary settling.
i. Operating parameters = same as those in the second iteration.
ii. TSSM and BODM entering the primary tanks.

TSSM = Influent TSS $_{M}+$ recycled TSS $_{M}$

$$
=(17,550+1541) \mathrm{kg} / \mathrm{d}=19,091 \mathrm{~kg} / \mathrm{d}
$$

Total $B O D_{M}=$ influent $B O D_{M}+$ recycled $B O D_{M}$

$$
=(18,360+648) \mathrm{kg} / \mathrm{d}=19,008 \mathrm{~kg} / \mathrm{d}
$$

iii. $\quad B O D D_{M}$ removed $=0.33(19,008 \mathrm{~kg} / \mathrm{d})=6273 \mathrm{~kg} / \mathrm{d}$
iv. B_{M} to secondary $=(19,008-6273) \mathrm{kg} / \mathrm{d}=12,735 \mathrm{~kg} / \mathrm{d}$
v. \quad TSS $_{M}$ removed $=0.7(19,091 \mathrm{~kg} / \mathrm{d})=13,364 \mathrm{~kg} / \mathrm{d}$
vi. $\quad \mathrm{TSS}_{\mathrm{M}}$ to secondary $=(19,091-13,364) \mathrm{kg} / \mathrm{d}=5727 \mathrm{~kg} / \mathrm{d}$
b. Volatile fraction of the primary sludge and effluent suspended solids; use volatile fraction from second iteration.
c. Secondary process
i. Operating parameters = same as those for the second iteration and as follows:

$$
\begin{array}{ll}
\text { Aeration tank volume }=4700 \mathrm{~m}^{3} & \text { SRT }=10 \mathrm{~d} \\
Y=0.50 \mathrm{~kg} / \mathrm{kg} & k_{d}=0.06 \mathrm{~d}^{-1}
\end{array}
$$

ii. Determine the $B O D_{C}$ in the influent to the aeration tank

Flowrate to aeration tank = influent flowrate + recycle flowrate

$$
=(54,000+528) \mathrm{m}^{3} / \mathrm{d}=54,528 \mathrm{~m}^{3} / \mathrm{d}
$$

$$
\mathrm{BOD}_{\mathrm{C}}=\frac{(12,735 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(54,528 \mathrm{~m}^{3} / \mathrm{d}\right)}=234 \mathrm{~g} / \mathrm{m}^{3}
$$

iii. Determine the new concentration of mixed liquor VSS.

$$
X_{\mathrm{Vss}}=\frac{(10 \mathrm{~d})\left(54,528 \mathrm{~m}^{3} / \mathrm{d}\right)(0.5)\left[(234-6.2) \mathrm{g} / \mathrm{m}^{3}\right]}{4700 \mathrm{~m}^{3}\left[1+\left(0.06 \mathrm{~d}^{-1}\right)(10 \mathrm{~d})\right]}=8259 \mathrm{~g} / \mathrm{m}^{3}
$$

iv. Determine the mixed liquor TSS.

$$
\mathrm{X}_{\mathrm{TSS}}=8,259 / 0.8=10,323 \mathrm{~g} / \mathrm{m}^{3}
$$

v. Determine the cell growth.

$$
\begin{aligned}
P_{\mathrm{X}, \mathrm{VSS}} & =Y_{\mathrm{obs}} Q\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right) \\
& =\frac{0.3125\left(54,528 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(234-6.2) \mathrm{g} / \mathrm{m}^{3}\right]}{\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=3882 \mathrm{~kg} / \mathrm{d} \\
P_{\mathrm{X}, \mathrm{TSS}} & =3882 / 0.8=4852 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

vi. Determine the waste quantities discharged to the thickener.

Effluent TSS $_{M}=1188 \mathrm{~kg} / \mathrm{d}$ (specified in the first iteration)
Total TSS $_{\mathrm{M}}$ to be wasted to the thickener $=(4852-1188) \mathrm{kg} / \mathrm{d}$
$=3664 \mathrm{~kg} / \mathrm{d}$
Flowrate $=\frac{(3664 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(10,323 \mathrm{~g} / \mathrm{m}^{3}\right)}=355 \mathrm{~m}^{3} / \mathrm{d}$
d. Flotation thickeners
i. Operating parameters: same as second iteration
ii. Determine the flowrate of the thickened sludge.

Flowrate $=\frac{(3664 \mathrm{~kg} / \mathrm{d})(0.9)}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(0.04)}=82.4 \mathrm{~m}^{3} / \mathrm{d}$
iii. Determine the flowrate recycled to the plant influent.

Recycled flowrate $=(355-82.4) \mathrm{m}^{3} / \mathrm{d}=272.6 \mathrm{~m}^{3} / \mathrm{d}$
iv. Determine the TSS $_{\mathrm{M}}$ to the digester.
$\mathrm{TSS}_{\mathrm{M}}=(3664 \mathrm{~kg} / \mathrm{d})(0.9)=3298 \mathrm{~kg} / \mathrm{d}$
v. Determine the $\mathrm{TSS}_{\mathrm{M}}$ recycled to the plant influent.
$\mathrm{TSS}_{\mathrm{M}}=(3664-3298) \mathrm{kg} / \mathrm{d}=366 \mathrm{~kg} / \mathrm{d}$
vi. Determine the $B O D_{C}$ and $B O D_{M}$ of the TSS in the recycled flow

TSS $_{C}$ in recycle flow $=\frac{(366 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(272.6 \mathrm{~m}^{3} / \mathrm{d}\right)}=1343 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{BOD}_{\mathrm{C}}$ of TSS $=\left(1343 \mathrm{~g} / \mathrm{m}^{3}\right)(0.65)(1.42)(0.68)=843 \mathrm{~g} / \mathrm{m}^{3}$
$B^{B O D}=\left(843 \mathrm{~g} / \mathrm{m}^{3}\right)\left(272.6 \mathrm{~m}^{3} / \mathrm{d}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=230 \mathrm{~kg} / \mathrm{d}$
e. Sludge digestion
i. Operating parameters - same as second iteration
ii. Determine the total solids fed to the digester and the corresponding flowrate.
$\mathrm{TSS}_{\mathrm{M}}=\mathrm{TSS}_{\mathrm{M}}$ from primary settling + waste $\mathrm{TSS}_{\mathrm{M}}$ from thickener

$$
\begin{aligned}
& \mathrm{TSS}_{\mathrm{M}}=(13,364+3298) \mathrm{kg} / \mathrm{d}=16,662 \mathrm{~kg} / \mathrm{d} \\
& \begin{aligned}
\text { Total flowrate } & =\frac{(13,364 \mathrm{~kg} / \mathrm{d})}{0.06\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\frac{(3298 \mathrm{~kg} / \mathrm{d})}{0.04\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)} \\
& =(223+82) \mathrm{m}^{3} / \mathrm{d}=305 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
\end{aligned}
$$

iii. Determine the total $\mathrm{VSS}_{\mathrm{M}}$ fed to the digester.

$$
\begin{aligned}
\mathrm{VSS}_{\mathrm{M}} & =0.682(13,364 \mathrm{~kg} / \mathrm{d})+0.80(3298 \mathrm{~kg} / \mathrm{d}) \\
& =(9114+2638) \mathrm{kg} / \mathrm{d}=11,752 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

$\%$ VSS in mixture fed to digester $=\frac{(11,752 \mathrm{~kg} / \mathrm{d})}{(16,662 \mathrm{~kg} / \mathrm{d})}(100)=70.5 \%$
iv. Determine the $\mathrm{VSS}_{\mathrm{M}}$ destroyed.

VSS $_{\mathrm{M}}$ destroyed $=0.5(11,752 \mathrm{~kg} / \mathrm{d})=5876 \mathrm{~kg} / \mathrm{d}$
v. Determine the mass flow to the digester

Primary sludge at 6\% solids:
Mass flow $=\frac{(13,364 \mathrm{~kg} / \mathrm{d})}{0.06}=222,733 \mathrm{~kg} / \mathrm{d}$
Thickened waste activated sludge at 4% solids:
Mass flow $=\frac{(3298 \mathrm{~kg} / \mathrm{d})}{0.04}=82,450 \mathrm{~kg} / \mathrm{d}$
Total mass flow $=(222,733+82,450) \mathrm{kg} / \mathrm{d}=305,183 \mathrm{~kg} / \mathrm{d}$
vi. Determine the mass quantities of gas and sludge after digestion.

Fixed solids $=\mathrm{TSS}_{\mathrm{M}}-\mathrm{VSS}_{\mathrm{M}}=(16,662-11,752) \mathrm{kg} / \mathrm{d}$

$$
=4910 \mathrm{~kg} / \mathrm{d}
$$

TSS in digested sludge $=4910 \mathrm{~kg} / \mathrm{d}+0.5(11,752) \mathrm{kg} / \mathrm{d}$

$$
=10,786 \mathrm{~kg} / \mathrm{d}
$$

Gas production assuming that the density of digester gas is equal to 0.86 times that of air $\left(1.202 \mathrm{~kg} / \mathrm{m}^{3}\right)$:

Gas $=\left(1.12 \mathrm{~m}^{3} / \mathrm{kg}\right)(5876 \mathrm{~kg} / \mathrm{d})(0.86)\left(1.202 \mathrm{~kg} / \mathrm{m}^{3}\right)=6803 \mathrm{~kg} / \mathrm{d}$ Mass balance of digester output:

Mass input	$305,183 \mathrm{~kg} / \mathrm{d}$ Less gas
$-6803 \mathrm{~kg} / \mathrm{d}$	
Mass output	$298,380 \mathrm{~kg} / \mathrm{d}$
(solids and liquid)	

vii. Determine the flowrate distribution between the supernatant at $5000 \mathrm{mg} / \mathrm{L}$ and digested sludge at 5 percent solids. Let $\mathrm{S}=\mathrm{kg} / \mathrm{d}$ of supernatant suspended solids.
$\frac{\mathrm{S}}{0.005}=\frac{(10,786 \mathrm{~kg} / \mathrm{d})-\mathrm{S}}{(0.05)}=298,380 \mathrm{~kg} / \mathrm{d}$
$\mathrm{S}+1079-0.1 \mathrm{~S}=1492 \mathrm{~kg} / \mathrm{d}$
S $=459 \mathrm{~kg} / \mathrm{d}$
Digested solids $=(10,786-459) \mathrm{kg} / \mathrm{d}=10,327 \mathrm{~kg} / \mathrm{d}$
Supernatant flowrate $=\frac{(459 \mathrm{~kg} / \mathrm{d})}{(0.005)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=91.8 \mathrm{~m}^{3} / \mathrm{d}$
Digested sludge flowrate $=\frac{(10,327 \mathrm{~kg} / \mathrm{d})}{(0.05)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=202 \mathrm{~m}^{3} / \mathrm{d}$
viii. Establish the characteristics of the recycled flow (supernatant).
$B_{M}=\left(91.8 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=92 \mathrm{~kg} / \mathrm{d}$
$\operatorname{TSS}_{\mathrm{M}}=\left(91.8 \mathrm{~m}^{3} / \mathrm{d}\right)\left(5000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=459 \mathrm{~kg} / \mathrm{d}$
f. Sludge dewatering.
i. Determine the sludge cake characteristics.

Digested solids $=(10,327 \mathrm{~kg} / \mathrm{d})(0.93)=9604 \mathrm{~kg} / \mathrm{d}$
Volume $=\frac{(9604 \mathrm{~kg} / \mathrm{d})}{(0.22)(1.06)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=41.2 \mathrm{~m}^{3} / \mathrm{d}$
ii. Determine the centrate characteristics.

$$
\begin{aligned}
& \text { Flowrate }=(206.5-41.2) \mathrm{m}^{3} / \mathrm{d}=165.3 \mathrm{~m}^{3} / \mathrm{d} \\
& \mathrm{BOD}_{\mathrm{M}}=\left(165.3 \mathrm{~m}^{3} / \mathrm{d}\right)\left(2000 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=331 \mathrm{~kg} / \mathrm{d} \\
& \mathrm{TSS}_{\mathrm{M}}=(10,327 \mathrm{~kg} / \mathrm{d})(0.07)=723 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

g. Prepare a summary table of the recycle flows and waste characteristics for the third iteration.

| | | | Incremental change from
 previous iteration | | | |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Operation/process | Flow,
 $\mathrm{m} 3 / \mathrm{d}$ | $\mathrm{BOD}_{\mathrm{M}}$,
 kg / d | $\mathrm{TSS}_{\mathrm{M}}$,
 kg / d | Flow,
 $\mathrm{m} 3 / \mathrm{d}$ | $\mathrm{BOD}_{\mathrm{M}}$,
 kg / d | $\mathrm{TSS}_{\mathrm{M}}$,
 kg / d |
| Flotation thickener | 272.6 | 230 | 368 | 0.5 | 2 | 2 |
| Digester
 supernatant | 91.8 | 92 | 454 | 0.4 | 1 | 2 |
| Centrate | 165.3 | 331 | 702 | 0.6 | 2 | 3 |
| Totals | 529.7 | 653 | 1,524 | 1.5 | 5 | 7 |

Because the incremental change is less than 5%, this is the final iteration.

PROBLEM 14-8

Problem Statement - See text, pages 1653

Solution - for Parameter series A

1. Determine the daily $\mathrm{TSS}_{\mathrm{M}}$ loading rate.
$\mathrm{TSS}_{\mathrm{M}}=\frac{\left(4000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~g} / \mathrm{m}^{3}\right)}{\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}=4000 \mathrm{~kg} / \mathrm{d}$
2. Prepare the first iteration of the solids balance.
a. Primary settling
i. Suspended solids removed and sent to the thickener

$$
\mathrm{TSS}_{\mathrm{M}}=0.75(4,000 \mathrm{~kg} / \mathrm{d})=3,000 \mathrm{~kg} / \mathrm{d}
$$

ii. Volume of sludge $=\frac{(3000 \mathrm{~kg} / \mathrm{d})}{(0.07)(1.1)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=39.0 \mathrm{~m}^{3} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to filter $=(4000-3000) \mathrm{kg} / \mathrm{d}=1000 \mathrm{~kg} / \mathrm{d}$
iv. Volume of filter influent $=(4000-39.0) \mathrm{m}^{3} / \mathrm{d}=3961 \mathrm{~m}^{3} / \mathrm{d}$
b. Alum addition
i. \quad Dosage $=\left(3961 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=39.6 \mathrm{~kg} / \mathrm{d}$
ii. \quad Volume $=\frac{(39.6 \mathrm{~kg} / \mathrm{d})}{(0.5 \mathrm{~kg} / \mathrm{L} \text { solution })}=79.1 \mathrm{~L} / \mathrm{d}=0.079 \mathrm{~m}^{3} / \mathrm{d}$
c. Filter operation.
i. $\quad \mathrm{TSS}_{\mathrm{M}}$ in influent $=(600+39.6) \mathrm{kg} / \mathrm{d}=639.6 \mathrm{~kg} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ removed $=(0.90)(639.6 \mathrm{~kg} / \mathrm{d})=575.6 \mathrm{~kg} / \mathrm{d}$
iii. Backwash volume $=\frac{(575.6 \mathrm{~kg} / \mathrm{d})}{(0.06)(1.08)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=8.9 \mathrm{~m}^{3} / \mathrm{d}$
iv. Effluent TSS mass and concentration
$\mathrm{TSS}_{\mathrm{M}}=(639.6-575.6) \mathrm{kg} / \mathrm{d}=64 \mathrm{~kg} / \mathrm{d}$
Volume of effluent $=(3956+0.079-8.9) \mathrm{m}^{3} / \mathrm{d}=3,947 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{TSS}_{\mathrm{C}}=\frac{(64 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(3947 \mathrm{~m}^{3} / \mathrm{d}\right)}=16.2 \mathrm{~g} / \mathrm{m}^{3}$
d. Thickener
i. Determine the solids distribution from the thickener.
a) Solids balance.

$$
\begin{aligned}
& 3400 \mathrm{~kg} / \mathrm{d}=0.12 \mathrm{~S}+\left[\left(500 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) \mathrm{V}\right] \\
& \text { where } \mathrm{S}=\text { mass of sludge, } \mathrm{kg} / \mathrm{d} \\
& \mathrm{~V}=\text { volume of effluent, } \mathrm{m}^{3} / \mathrm{d}
\end{aligned}
$$

b) Volume balance.

$$
44.2 \mathrm{~m}^{3} / \mathrm{d}=\frac{\mathrm{S}}{(1.25)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\mathrm{V}
$$

Solving for S and V : $S=28,244 \mathrm{~kg} / \mathrm{d}$

$$
V=21.6 \mathrm{~m}^{3} / \mathrm{d}
$$

ii. \quad TSS $_{\mathrm{M}}$ to filter press $=0.12(28,244 \mathrm{~kg} / \mathrm{d})=3389.2 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to plant influent $=(3400-3389.2) \mathrm{kg} / \mathrm{d}=10.8 \mathrm{~kg} / \mathrm{d}$
iv. Volume of thickened sludge $=\frac{(3389.2 \mathrm{~kg} / \mathrm{d})}{(0.12)(1.25)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=22.6 \mathrm{~m}^{3} / \mathrm{d}$
v. Volume of effluent $=21.6 \mathrm{~m}^{3} / \mathrm{d}$
e. Ferric chloride addition
i. \quad Ferric chloride dosage $=(0.01)(3389.2 \mathrm{~kg} / \mathrm{d})=33.9 \mathrm{~kg} / \mathrm{d}$
ii. Volume of dosage $=\frac{(33.9 \mathrm{~kg} / \mathrm{d})}{(2.0)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=0.016 \mathrm{~m}^{3} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ sent to filter press $=(3389.2+33.9) \mathrm{kg} / \mathrm{d}=3,423.1 \mathrm{~kg} / \mathrm{d}$
f. Filter press
i. Determine the solids distribution.
a) Solids balance.
$3423.1 \mathrm{~kg} / \mathrm{d}=0.4 \mathrm{~S}+\left[\left(200 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) \mathrm{V}\right]$
where $S=$ mass of sludge, kg / d
$V=$ volume of effluent, $\mathrm{m}^{3} / \mathrm{d}$
b) Volume balance.
$22.6 \mathrm{~m}^{3} / \mathrm{d}=\frac{\mathrm{S}}{(1.6)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\mathrm{V}$
Solving for S and V : $S=8549.1 \mathrm{~kg} / \mathrm{d} ; \mathrm{V}=17.3 \mathrm{~m}^{3} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ in cake $=(0.40)(8549.1 \mathrm{~kg} / \mathrm{d})=3419.6 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ in filtrate $=(3423.1-3419.6) \mathrm{kg} / \mathrm{d}=3.5 \mathrm{~kg} / \mathrm{d}$
iv. Volume of cake $=\frac{(3419.6 \mathrm{~kg} / \mathrm{d})}{(0.40)(1.6)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=5.3 \mathrm{~m}^{3} / \mathrm{d}$
v. Volume of filtrate $=17.3 \mathrm{~kg} / \mathrm{d}$
g. Prepare a summary of the recycle flows and suspended solids for the first iteration.

Operation/process	Flow, $\mathrm{m}^{3} / \mathrm{d}$	$\mathrm{TSS}_{\mathrm{M}}, \mathrm{kg} / \mathrm{d}$

Filter	8.9	575.6
Thickener	21.6	10.8
Filter press	17.3	3.5
Total	47.8	589.8

3. Prepare the second iteration of the solids balance.
a. Primary settling
i. Influent TSS $_{\mathrm{M}}=(4000+589.9) \mathrm{kg} / \mathrm{d}=4589.9 \mathrm{~kg} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ removed $=(0.85)(4589.9 \mathrm{~kg} / \mathrm{d})=3901.4 \mathrm{~kg} / \mathrm{d}$
iii. Volume of sludge $=\frac{(3901.4 \mathrm{~kg} / \mathrm{d})}{(0.07)(1.1)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=50.7 \mathrm{~m}^{3} / \mathrm{d}$
iv. $\quad \mathrm{TSS}_{\mathrm{M}}$ to filter $=(4589.9-3901.4) \mathrm{kg} / \mathrm{d}=688.5 \mathrm{~kg} / \mathrm{d}$
iv. Volume of filter influent $=(4000+47.8-50.7) \mathrm{m}^{3} / \mathrm{d}$

$$
=3997.1 \mathrm{~m}^{3} / \mathrm{d}
$$

b. Alum addition
i. \quad Dosage $=\left(3,997.1 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)=40.0 \mathrm{~kg} / \mathrm{d}$
ii. Volume $=\frac{(40.0 \mathrm{~kg} / \mathrm{d})}{(0.5 \mathrm{~kg} / \text { Lsolution })}=80 \mathrm{~L} / \mathrm{d}=0.080 \mathrm{~m}^{3} / \mathrm{d}$
c. Filter operation
i. $\quad \mathrm{TSS}_{\mathrm{M}}$ in influent $=(688.5+40.0) \mathrm{kg} / \mathrm{d}=728.5 \mathrm{~kg} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ removed $=(0.90)(728.5 \mathrm{~kg} / \mathrm{d})=655.6 \mathrm{~kg} / \mathrm{d}$
iii. Backwash volume $=\frac{(655.6 \mathrm{~kg} / \mathrm{d})}{(0.06)(1.08)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=10.1 \mathrm{~m}^{3} / \mathrm{d}$
iv. Effluent TSS mass and concentration
$\mathrm{TSS}_{\mathrm{M}}=(728.5-655.6) \mathrm{kg} / \mathrm{d}=72.9 \mathrm{~kg} / \mathrm{d}$
Volume of effluent $=3,987.1 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{TSS}_{\mathrm{C}}=\frac{(72.9 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right)}{\left(3987.1 \mathrm{~m}^{3} / \mathrm{d}\right)}=18.3 \mathrm{~g} / \mathrm{m}^{3}$
d. Thickener
i. Determine the solids distribution from the thickener.
a) Solids balance
$3901.4 \mathrm{~kg} / \mathrm{d}=0.12 \mathrm{~S}+\left[\left(500 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) \mathrm{V}\right]$
b) Volume balance
$50.7 \mathrm{~m}^{3} / \mathrm{d}=\frac{\mathrm{S}}{1.25\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\mathrm{V}$
Solving for S and V: $S=32,408 \mathrm{~kg} / \mathrm{d} ; \mathrm{V}=24.8 \mathrm{~m}^{3} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to filter press $=0.12(32,408 \mathrm{~kg} / \mathrm{d})=3889.0 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to plant influent $=(3901.4-3889.0) \mathrm{kg} / \mathrm{d}=12.4 \mathrm{~kg} / \mathrm{d}$
iv. Volume of thickened sludge =

$$
=\frac{(3889.0 \mathrm{~kg} / \mathrm{d})}{0.12(1.25)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=25.9 \mathrm{~m}^{3} / \mathrm{d}
$$

v. Volume of effluent $=24.8 \mathrm{~m}^{3} / \mathrm{d}$
e. Ferric chloride addition
i. \quad Ferric chloride dosage $=0.01(3,889.0 \mathrm{~kg} / \mathrm{d})=38.9 \mathrm{~kg} / \mathrm{d}$
ii. Volume of dosage $=\frac{(38.9 \mathrm{~kg} / \mathrm{d})}{(2.0)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=0.019 \mathrm{~m}^{3} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ sent to filter press $=(3889.0+38.9) \mathrm{kg} / \mathrm{d}=3927.9 \mathrm{~kg} / \mathrm{d}$

f. Filter press

i. Determine the solids distribution.
a) Solids balance.
$3927.9 \mathrm{~kg} / \mathrm{d}=0.4 \mathrm{~S}+\left[\left(200 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / \mathrm{kg}\right) \mathrm{V}\right]$
b) Volume balance.
$25.9 \mathrm{~m}^{3} / \mathrm{d}=\frac{\mathrm{S}}{(1.6)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+V$
Solving for S and V : $\mathrm{S}=9809.9 \mathrm{~kg} / \mathrm{d}$; $\mathrm{V}=19.8 \mathrm{~m}^{3} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ in cake $=0.40(8809.9 \mathrm{~kg} / \mathrm{d})=3924.0 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ in filtrate $=(3927.9-3924.0) \mathrm{kg} / \mathrm{d}=3.9 \mathrm{~kg} / \mathrm{d}$
iv. Volume of cake $=\frac{(3924.0 \mathrm{~kg} / \mathrm{d})}{(0.40)(1.6)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=6.1 \mathrm{~m}^{3} / \mathrm{d}$
v. Volume of filtrate $=19.8 \mathrm{~kg} / \mathrm{d}$
g. Prepare a summary of the recycle flows and suspended solids for the second iteration.

			Incremental values	
Operation/process	Flow, $\mathrm{m}^{3} / \mathrm{d}$	TSS, kg/d	Flow, $\mathrm{m}^{3} / \mathrm{d}$	$\mathrm{TSS}, \mathrm{kg} / \mathrm{d}$
Filter	10.1	656.6	1.2	80.0
Thickener	24.8	12.4	3.2	1.6
Filter press	19.8	3.9	2.5	0.4
Total	54.7	671.9	6.9	82.0

4. Prepare the third iteration of the solids balance.
a. Primary settling
i. Influent suspended solids $=(4000+671.9) \mathrm{kg} / \mathrm{d}=4671.9 \mathrm{~kg} / \mathrm{d}$
ii. \quad Suspended solids removed $=(0.85)(4671.9 \mathrm{~kg} / \mathrm{d})=3971.1 \mathrm{~kg} / \mathrm{d}$
iii. Volume of sludge $=\frac{(3971.1 \mathrm{~kg} / \mathrm{d})}{(0.07)(1.1)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=51.6 \mathrm{~m}^{3} / \mathrm{d}$
iv. Suspended solids to filter $=(4671.9-3971.1) \mathrm{kg} / \mathrm{d}=700.8 \mathrm{~kg} / \mathrm{d}$
v. Volume of filter influent $=(4000+54.7-51.6) \mathrm{m}^{3} / \mathrm{d}$

$$
=4003.1 \mathrm{~m}^{3} / \mathrm{d}
$$

b. Alum addition
i. Dosage $=\left(4003.1 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=40.0 \mathrm{~kg} / \mathrm{d}$
ii. Volume $=\frac{(40.0 \mathrm{~kg} / \mathrm{d})}{(0.5 \mathrm{~kg} / \mathrm{L} \text { solution })}=80 \mathrm{~L} / \mathrm{d}=0.080 \mathrm{~m}^{3} / \mathrm{d}$
c. Filter operation
i. \quad Total solids in influent $=(700.8+40.0) \mathrm{kg} / \mathrm{d}=740.8 \mathrm{~kg} / \mathrm{d}$
ii. \quad Suspended solids removed $=(0.90)(740.8 \mathrm{~kg} / \mathrm{d})=666.7 \mathrm{~kg} / \mathrm{d}$
iii. Backwash volume $=\frac{(666.7 \mathrm{~kg} / \mathrm{d})}{(0.06)(1.1)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=10.1 \mathrm{~m}^{3} / \mathrm{d}$
iv. Effluent TSS mass and characteristics
$\mathrm{TSS}_{\mathrm{M}}=(740.8-666.7) \mathrm{kg} / \mathrm{d}=74.1 \mathrm{~kg} / \mathrm{d}$
Volume of effluent $=(4003.1+0.1-10.1) \mathrm{m}^{3} / \mathrm{d}=3993.1 \mathrm{~m}^{3} / \mathrm{d}$ $\mathrm{TSS}_{\mathrm{C}}=\frac{(74.1 \mathrm{~kg} / \mathrm{d})\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}{\left(3993.1 \mathrm{~m}^{3} / \mathrm{d}\right)}=18.6 \mathrm{~g} / \mathrm{m}^{3}$
d. Thickener
i. Determine the solids distribution from the thickener.
a) Solids balance.
$3971.1 \mathrm{~kg} / \mathrm{d}=0.12 \mathrm{~S}+\left[\left(500 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) \mathrm{V}\right]$
b) Volume balance.
$51.6 \mathrm{~m}^{3} / \mathrm{d}=\frac{\mathrm{S}}{(1.25)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\mathrm{V}$
Solving for S and $V: S=32,988 \mathrm{~kg} / \mathrm{d} ; \mathrm{V}=25.2 \mathrm{~m}^{3} / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to filter press $=0.12(32,988 \mathrm{~kg} / \mathrm{d})=3958.5 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to plant influent $=(3971.1-3958.5) \mathrm{kg} / \mathrm{d}=12.6 \mathrm{~kg} / \mathrm{d}$
iv. Volume of thickened sludge

$$
=\frac{(3958.5 \mathrm{~kg} / \mathrm{d})}{(0.12)(1.25)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=26.4 \mathrm{~m}^{3} / \mathrm{d}
$$

v. Volume of effluent $=25.2 \mathrm{~m}^{3} / \mathrm{d}$
e. Ferric chloride addition
i. \quad Ferric chloride dosage $=0.01(3958.5 \mathrm{~kg} / \mathrm{d})=39.6 \mathrm{~kg} / \mathrm{d}$
ii. Volume of dosage $=\frac{(39.6 \mathrm{~kg} / \mathrm{d})}{(2.0)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=0.020 \mathrm{~m}^{3} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ to filter press $=(3958.5+39.6) \mathrm{kg} / \mathrm{d}=3998.1 \mathrm{~kg} / \mathrm{d}$
f. Filter press
i. Determine the solids distribution.
a) Solids balance.
$3998.1 \mathrm{~kg} / \mathrm{d}=0.4 \mathrm{~S}+\left[\left(200 \mathrm{~g} / \mathrm{m}^{3}\right) /\left(10^{3} \mathrm{~g} / 1 \mathrm{~kg}\right) \mathrm{V}\right]$
b) Volume balance.
$26.4 \mathrm{~m}^{3} / \mathrm{d}=\frac{\mathrm{S}}{(1.6)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}+\mathrm{V}$
Solving for S and V : $S=9985.2 \mathrm{~kg} / \mathrm{d} ; \mathrm{V}=20.2 \mathrm{~m} 3 / \mathrm{d}$
ii. $\quad \mathrm{TSS}_{\mathrm{M}}$ in cake $=0.40(9985.2 \mathrm{~kg} / \mathrm{d})=3994.1 \mathrm{~kg} / \mathrm{d}$
iii. $\quad \mathrm{TSS}_{\mathrm{M}}$ in filtrate $=(3998.1-3944.1) \mathrm{kg} / \mathrm{d}=4.0 \mathrm{~kg} / \mathrm{d}$
iv. Volume of cake $=\frac{(3994.1 \mathrm{~kg} / \mathrm{d})}{(0.40)(1.6)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=6.2 \mathrm{~m}^{3} / \mathrm{d}$
v. Volume of filtrate $=20.2 \mathrm{~kg} / \mathrm{d}$
g. Prepare a summary of the recycle flows and suspended solids for the third iteration.

			Incremental values	
Operation/process	Flow, $\mathrm{m}^{3} / \mathrm{d}$	$\mathrm{TSS}_{\mathrm{M}}, \mathrm{kg} / \mathrm{d}$	Flow, $\mathrm{m}^{3} / \mathrm{d}$	$\mathrm{TSS}_{\mathrm{M}}, \mathrm{kg} / \mathrm{d}$
Filter	10.1	666.7	0.0	11.1
Thickener	25.2	12.6	0.4	0.2
Filter press	20.2	4.0	0.4	0.1
Total	55.5	683.3	0.8	11.4

Because the incremental change is less than 5%, this is the final iteration.

PROBLEM 14-9

Problem Statement - See text, page 1654
The HHV for the biosolids in Example14-2 (on a dry basis) was $17.88 \mathrm{MJ} / \mathrm{kg}$ based on the lab measurements. In order to estimate the heating value for the solids for 25% solids the solids percentage can simply be applied to the HHV on
a dry basis which equals $4.47 \mathrm{MJ} / \mathrm{kg}$. At 25% solids, 75% of the biosolids going to the incinerator are water and would require $2.3 \mathrm{MJ} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}$ of latent heat to evaporate. Although there is sufficent energy in the biosolids to meet the latent heat requirements to evaporate the water, this does not account for all of the heating requirmements in the system. Besides evaporating water, the energy to heat the flue gas, ash, and water vapor to the desired operating temperture also have to be considered as well as heat losses from the system. This heat balance is shown in Eq. 14-9. As can be found by comparing the heating requirements at various solid contents, as the solid content goes up the amount of energy produced drops and the need for supplemental energy may not be required.

In addition, many modern incinerators, also incorporate heat recovery where combustion air to the incinerator is preheated with flue gas exiting the incinerator. This preheating system improves the overall efficiency of the incinerator and can allow biosolids with higher moisure contents to be burned autothermally where in other cases they may not be.

PROBLEM 14-10

Problem Statement - See text, page 1654

Solution

1. Determine the biosolids application rate for the first year.
a. Determine the amount of biosolids that must be applied during the first year to meet the nitrogen requirement.
From Table 14-29, the nitrogen uptake for Reed canary grass is about $400 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y}$.
Compute the biosolids application rate for the first year. A nitrogen mineralization rate of 30% occurs during the first year (given in problem statement). Let $X=$ biosolids application rate.

Nitrogen uptake rate $(400 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y})(1 \mathrm{y})=\mathrm{X}(0.03)(0.30)$

Biosolids application rate $=\frac{(400 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y})(1 \mathrm{y})}{(0.03)(0.30)}=44,444 \mathrm{~kg} / \mathrm{ha}$
b. The amount of nitrogen applied is $(44,444 \mathrm{~kg} / \mathrm{ha})(0.03)=1,333 \mathrm{~kg} / \mathrm{ha}$
c. The residual nitrogen remaining at the end of year 1 is:

Residual nitrogen $=(1333-400) \mathrm{kg} / \mathrm{ha}=933 \mathrm{~kg} / \mathrm{ha}$
d. The residual nitrogen remaining from the first year application that is mineralized and is available for crop uptake for year 2 is:
Nitrogen available for crop uptake $=(0.15) 933 \mathrm{~kg} / \mathrm{ha}=140 \mathrm{~kg} / \mathrm{ha}$
Residual nitrogen $=(933-140) \mathrm{kg} / \mathrm{ha}=793 \mathrm{~kg} / \mathrm{ha}$
Crop uptake nitrogen for year $2=(400-140) \mathrm{kg} / \mathrm{ha}=260 \mathrm{~kg} / \mathrm{ha}$
2. Determine the application rate of biosolids for year 2 to supply the nitrogen needed for crop uptake and the residual nitrogen.
a. Determine the amount of biosolids that must be applied during the second year to meet the nitrogen requirement.

Biosolids application rate $=\frac{(260 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y})(1 \mathrm{y})}{(0.03)(0.30)}=28,889 \mathrm{~kg} / \mathrm{ha}$
b. The amount of nitrogen applied is $(28,889 \mathrm{~kg} / \mathrm{ha})(0.03)=867 \mathrm{~kg} / \mathrm{ha}$
c. The residual nitrogen for year 2 is:

Residual nitrogen $=[(1-0.30) 867+793] \mathrm{kg} / \mathrm{ha}=1400 \mathrm{~kg} / \mathrm{ha}$

1. A computation table for these and subsequent years is given below.

Application	Biosolids applied, kg/ha	Nitrogen, kg/ha		Annual mineralization rate	Nitrogen, kg/ha	
		Applied in biosolids	Residual from prior year's application		Crop uptake	Residual
Year 1	44,444	1,333	0	0.30	400	933
Year 2						
Residual from year 1			933	0.15	140	793
New application	28,889	867		0.30	260	607
Year 3						
Residual from year 1			793	0.05	40	753
Residual from year 2			607	0.15	91	516
New application	29,889	897		0.30	269	628

Year 4					
Residual from year 1		753	0.05	38	715
Residual from year 2		516	0.05	26	490
Residual from year 3		628	0.15	94	534
New application	26,889	807		0.30	242
Year 5				565	
Residual from year 1		415	0.05	36	679
Residual from year 2		490	0.05	25	465
Residual from year 3		534	0.05	27	507
Residual from year 4		565	0.15	85	480
New application	25,222	757		0.30	227

PROBLEM 14-11

Problem Statement - See text, page 1654

Solution

1. Determine the yearly allowable mass loading to the soil.

Loading rate $=\frac{(10 \mathrm{~kg} / \mathrm{ha})}{(50 \mathrm{y})}=0.2 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y}$
2. Determine the yearly allowable biosolids application rate. Note: $50 \mathrm{ppm}=$ $50 \mathrm{~kg} / 10^{6} \mathrm{~kg}$.

Application rate $=\frac{(0.2 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y})}{\left(50 \mathrm{~kg} / 10^{6} \mathrm{~kg}\right)}=4000 \mathrm{~kg} / \mathrm{ha} \cdot \mathrm{y}$

PROBLEM 14-12

Problem Statement - See text, page 1654

Solution

Advantages	Disadvantages
Liquid biosolids transport	
-Ease and speed of loading and unloading -Dual-purpose, self-contained tank trucks equipped with subsurface injectors can be used, thus eliminating intermediate storage and pumping - Tank trucks are less susceptible to spills and odors Dewatered biosolids transport hauling distances (less than one hour one-way travel time)	
- Fewer trips to disposal site are needed	Durpose vehicles can only carry relatively small amounts of liquid biosolids
-Longer haul distances are more economical than liquid transport	Special water-tight truck bodies are required to prevent leakage
-Sludge cake less susceptible to load shifting than liquid sludge	Re-handling and transfer to spreading equipment often is required

PROBLEM 14-13

Problem Statement - See text, page 1654

Solution

1. The advantages and limitations are summarized in the following table.

Advantages	Limitations
- Depending on the biosolids characteristics and specific site conditions, biosolids can be transported long distances - Pipeline facilities may be less expensive than truck hauling for long distance transport of biosolids - Pipelines may have a less environmental impact than truck hauling	- Hydraulic characteristics of biosolids can vary widely and have to be investigated carefully to identify critical design parameters - Special pumping equipment may be required and must be designed for high and variable friction losses - Maintenance provisions must be included for cleaning of pipeline and servicing, repair, and replacement of pumping equipment and other appurtenances - Rights-of-way and easements for pipeline may be difficult to obtain - Thickening characteristics at receiving point may be adversely affected by pumping and transport - Corrosion protection of pipeline must be considered

2. The types of facilities required include:

- Pumping station typically containing a sludge grinder or sludge screen, sludge pumps (for types and application see Table 13-13 of text), source of flushing water, cleaning station for insertion of a cleaning tool (commonly termed a "pig"), and ancillary valves and controls, especially to control pressure surges (water hammer) in the case of emergency shutdown of pumping equipment.
- For long pipelines, an intermediate cleaning station for reception and insertion of a cleaning tool, and, in some cases, a booster pumping station.
- At the terminus of the pipeline, a biosolids storage tank and sludge transfer pumping facilities
- For liquid sludge application, a vehicle similar to one of the types shown on Fig. 14-35

3. Operation and maintenance considerations include odor control at the biosolids storage tank and the land application site, uniform application of biosolids at proper application rates, redundant equipment, and good housekeeping.

PROBLEM 14-14

Problem Statement - See text, pages 1654
Instructors Note: This problem is intended to help the student understand in detail the solids balance procedure. It is recommended for the student to work in groups and set up a spreadsheet program to solve the problem. For the computations presented below, the unit $\mathrm{g} / \mathrm{m}^{3}$ is used in lieu of mg / L.

Solution

Before starting the problem a process flow diagram of the treatment plant should be set up similar to the one shown below.

To fully solve the problem it is recommended that the student use a spreadsheet software to set up the mass balance calculations. An output matrix from a sheet may look similar to the one shown below. The output matrix shows conditions at Annual Average without accounting for Reycle (AA-NR), Annual Average with Recycle (AA-WR). The matrix also shows the mass balance at Max Month, Max Week and Max Day conditions. Details of the specific calcuations are shown below this table. The specific caclulations are shown with and without the impact of the recycle stream at average daily conditions. Alternatively, the iterative procedure could also be used as shown in Example 14-3.

Stream	Para- meter	Units	AA - NR	AA - WR	Max Month	Max Week	Max Day
Influent (A)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	500,000	500,000	650,000	700,000	750,000
	Flow (wet)	kg / d	$500,000,00$ 0	$500,000,00$ 0	$650,000,00$ 0	$700,000,00$ 0	$750,000,00$ 0
	TSS	mg / L	430	430	430	430	430
	VSS	mg / L	345	345	345	345	345
	BOD	mg / L	335	335	335	335	335
	TSS	kg / d	215,000	215,000	279,500	301,000	322,500
	VSS	kg / d	172,500	172,500	224,250	241,500	258,750
	BOD	kg / d	167,500	167,500	217,750	234,500	251,250

Influent + recycle (B)	Flow	m ${ }^{3}$ /d	500,000	513,512	667,566	718,917	770,268
	Flow (wet)	kg/d	$\begin{gathered} 500,000,00 \\ 0 \end{gathered}$	$\begin{gathered} 513,512,25 \\ 0 \end{gathered}$	$\begin{gathered} 667,565,92 \\ 4 \end{gathered}$	$\begin{gathered} 718,917,14 \\ 9 \end{gathered}$	$\begin{gathered} 770,268,37 \\ 4 \end{gathered}$
	TSS	mg/L	430	446	446	446	446
	VSS	mg/L	345	355	355	355	355
	BOD	mg/L	335	345	345	345	345
	TSS	kg/d	215,000	229,157	297,904	320,819	343,735
	VSS	kg/d	172,500	182,520	237,275	255,527	273,779
	BOD	kg/d	167,500	177,127	230,266	247,978	265,691
Secondary treatment influent (C)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	492,833	505,874	657,636	708,223	758,811
	Flow (wet)	kg/d	$\begin{gathered} 492,833,33 \\ 3 \end{gathered}$	$\begin{gathered} 505,873,69 \\ 2 \end{gathered}$	$\begin{gathered} 657,635,79 \\ 9 \end{gathered}$	$\begin{gathered} 708,223,16 \\ 8 \end{gathered}$	$\begin{gathered} 758,810,53 \\ 7 \end{gathered}$
	TSS	mg/L	218	226	226	226	226
	VSS	mg/L	175	180	180	180	180
	BOD	mg/L	238	245	245	245	245
	TSS	kg/d	107,500	114,578	148,952	160,410	171,868
	VSS	kg/d	86,250	91,260	118,638	127,764	136,890
	BOD	kg/d	117,250	123,989	161,186	173,585	185,984
Primary sludge (D)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	7167	7639	9930	10,694	11,458
	Flow (wet)	kg/d	7,166,667	7,638,558	9,930,125	10,693,981	11,457,837
	$\begin{gathered} \hline \text { \% TSS } \\ \text { rem } \end{gathered}$	\%	50\%	50\%	50\%	50\%	50\%
	$\begin{gathered} \text { \% BOD } \\ \text { rem } \end{gathered}$	\%	30\%	30\%	30\%	30\%	30\%
	TSS	mg/L	15,000	15,000	15,000	15,000	15,000
	VSS	mg/L	12,035	11,947	11,947	11,947	11,947
	BOD	mg/L	7012	6957	6957	6957	6957
	TSS	kg/d	107,500	114,578	148,952	160,410	171,868
	VSS	kg/d	86,250	91,260	118,638	127,764	136,890
	BOD	kg/d	50,250	53,138	69,080	74,394	79,707
Secondary effluent (E)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	486,816	499,502	649,353	699,303	749,254
	BOD	mg / L	10	10	10	10	10
Waste activated sludge (F)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	6017	6371	8283	8920	9557
	Flow (wet)	kg/d	6,017,232	6,371,274	8,282,657	8,919,784	9,556,912
	$\mathrm{Y}_{\text {obs }}$	$\begin{gathered} \mathrm{g} \\ \mathrm{VSS} / \mathrm{g} \\ \mathrm{BOD} \end{gathered}$	0.375	0.375	0.375	0.375	0.375
	VS/TS \%	$\begin{gathered} \hline \% \\ \text { vS/TS } \end{gathered}$	70\%	70\%	70\%	70\%	70\%
	TSS	mg/L	10,000	10,000	10,000	10,000	10,000

	VSS	mg/L	7000	7000	7000	7000	7000
	TSS	kg/d	60,172	63,713	82,827	89,198	95,569
	VSS	kg/d	42,121	44,599	57,979	62,438	66,898
Thickened primary sludge (G)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	1983	2114	2748	2959	3170
	Flow (wet)	kg/d	2,042,500	2,176,989	2,830,086	3,047,785	3,265,484
	S.G.		1.03	1.03	1.03	1.03	1.03
	Capture rate	\%	95\%	95\%	95\%	95\%	95\%
	TS	kg/d	102,125	108,849	141,504	152,389	163,274
	VS	kg/d	81,938	86,697	112,706	121,376	130,045
	TS	\% TS	5\%	5\%	5\%	5\%	5\%
	VS\%	\% VS	80.2\%	79.6\%	79.6\%	79.6\%	79.6\%
Gravity thickener effluent (H)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	5124	5462	7100	7646	8192
	Flow (wet)	kg/d	5,124,167	5,461,569	7,100,040	7,646,197	8,192,353
	TSS	mg/L	1049	1049	1049	1049	1049
	VSS	mg/L	842	835	835	835	835
	BOD	mg/L	658	658	658	658	658
	TSS	kg/d	5375	5729	7448	8020	8593
	VSS	kg/d	4313	4563	5932	6388	6844
	BOD	kg/d	3374	3596	4674	5034	5394
Thickened waste activated sludge (I)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	925	979	1273	1371	1469
	Flow (wet)	kg/d	952,728	1,008,785	1,311,421	1,412,299	1,513,178
	S.G.		1.03	1.03	1.03	1.03	1.03
	Capture rate	\%	95\%	95\%	95\%	95\%	95\%
	TS	kg/d	57,164	60,527	78,685	84,738	90,791
	VS	kg/d	40,015	42,369	55,080	59,317	63,553
	TS	\% TS	6\%	6\%	6\%	6\%	6\%
	VS\%	\% VS	70.0\%	70.0\%	70.0\%	70.0\%	70.0\%
Gravity belt thickener effluent (J)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	5065	5362	6971	7507	8044
	Flow (wet)	kg/d	5,064,504	5,362,489	6,971,236	7,507,485	8,043,734
	TSS	mg/L	594	594	594	594	594
	VSS	mg/L	416	416	416	416	416
	BOD	mg/L	373	373	373	373	373
	TSS	kg/d	3009	3186	4141	4460	4778
	VSS	kg/d	2106	2230	2899	3122	3345
	BOD	kg/d	1888	1999	2599	2799	2999

Combined primary and activated sludge (K)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	2908	3093	4021	4330	4639
	Flow (wet)	kg/d	2,995,228	3,185,774	4,141,506	4,460,084	4,778,661
	S.G.		1.03	1.03	1.03	1.03	1.03
	TS	kg/d	159,289	169,377	220,190	237,127	254,065
	VS	kg/d	121,952	129,066	167,786	180,692	193,599
	TS	\% TS	5.3\%	5.3\%	5.3\%	5.3\%	5.3\%
	VS\%	\% VS	76.6\%	76.2\%	76.2\%	76.2\%	76.2\%
	Tank volume	m^{3}	40	40	40	40	40
	HRT	min	19.8	18.6	14.3	13.3	12.4
Digester	$\begin{gathered} \hline \text { Dig } \\ \text { Volume } \end{gathered}$	m^{3}	12,490	12,490	12,490	12,490	12,490
	No. of digesters		4	4	5	5	5
	HRT	d	17.2	16.2	15.5	14.4	13.5
	VSS LR	$\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{~d}$	2.4	2.6	2.7	2.9	3.1
	Sludge heating	kJ/d	$3.77 \mathrm{E}+08$	$4.01 \mathrm{E}+08$	5.22E+08	5.62E+08	6.02E+08
Digested sludge (L)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	2,849	3,030	3,939	4,242	4,545
	Flow (wet)	kg/d	2,934,252	3,121,241	4,057,614	4,369,738	4,681,862
	VSR	\% VSR	50\%	50\%	50\%	50\%	50\%
	VSR	kg/d	60,976	64,533	83,893	90,346	96,799
	S.G.		1.03	1.03	1.03	1.03	1.03
	TS	kg/d	98,313	104,844	136,297	146,781	157,266
	VS	kg/d	60,976	64,533	83,893	90,346	96,799
	TS	\% TS	3.4\%	3.4\%	3.4\%	3.4\%	3.4\%
	VS\%	\% VS	62.0\%	61.6\%	61.6\%	61.6\%	61.6\%
Dewatered sludge production (M)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	394	420	547	589	631
	Flow (wet)	kg/d	406,074	433,050	562,965	606,270	649,575
		tonne/d	406	433	563	606	650
	S.G.		1.03	1.03	1.03	1.03	1.03
	Capture rate	\%	95\%	95\%	95\%	95\%	95\%
	TS	kg/d	93,397	99,601	129,482	139,442	149,402
	VS	kg/d	57,927	61,306	79,698	85,829	91,959
	TS	\% TS	23\%	23\%	23\%	23\%	23\%
	VS\%	\% VS	62.0\%	61.6\%	61.6\%	61.6\%	61.6\%

Centrifuge effluent (N)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	2528	2688	3495	3763	4032
	Flow (wet)	kg/d	2,528,178	2,688,191	3,494,649	3,763,468	4,032,287
	TSS	mg/L	1944	1950	1950	1950	1950
	VSS	mg/L	1206	1200	1200	1200	1200
	BOD	mg/L	1500	1500	1500	1500	1500
	TSS	kg/d	4916	5242	6815	7339	7863
	VSS	kg/d	3049	3227	4195	4517	4840
	BOD	kg/d	3792	4032	5242	5645	6048
Total recycled flow (O)	Flow	$\mathrm{m}^{3} / \mathrm{d}$	12,717	13,512	17,566	18,917	20,268
	Flow (wet)	kg/d	12,716,849	13,512,250	17,565,924	18,917,149	20,268,374
	TSS	mg/L	1046	1048	1048	1048	1048
	VSS	mg/L	744	742	742	742	742
	BOD	mg/L	712	712	712	712	712
	TSS	kg/d	13,299	14,157	18,404	19,819	21,235
	VSS	kg/d	9,467	10,020	13,025	14,027	15,029
	BOD	kg/d	9,054	9,627	12,516	13,478	14,441
Biogas production (P)	Flow	$\mathrm{m}^{3} / \mathrm{h}$	2414	2554	3321	3576	3832
	Gas prod.	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{kg} \\ & \mathrm{VSR} \end{aligned}$	0.95	0.95	0.95	0.95	0.95
	Gas heat value	$\mathrm{kJ} / \mathrm{m}^{3}$	22,400	22,400	22,400	22,400	22,400
	$\begin{aligned} & \text { Energy In } \\ & \text { gas } \end{aligned}$	kJ/d	$1.30 \mathrm{E}+09$	1.37E+09	$1.79 \mathrm{E}+09$	1.92E+09	$2.06 \mathrm{E}+09$
	Boiler Output	kJ/d	$1.04 \mathrm{E}+09$	1.10E+09	$1.43 \mathrm{E}+09$	$1.54 \mathrm{E}+09$	$1.65 \mathrm{E}+09$
	$\eta_{\text {boiler }}$	\%	80\%	80\%	80\%	80\%	80\%
	$\begin{gathered} \hline \text { CHP } \\ \text { electric } \end{gathered}$	kW	5,707	6,040	7,852	8,456	9,060
	$\eta_{\text {el }}$	\%	38\%	38\%	38\%	38\%	38\%
	CHP thermal	kJ/d	$5.19 \mathrm{E}+08$	$5.49 \mathrm{E}+08$	7.14E+08	$7.69 \mathrm{E}+08$	$8.24 \mathrm{E}+08$
	$\eta_{\text {th }}$	\%	40\%	40\%	40\%	40\%	40\%

As shown in the matrix above, the BOD, TSS and VSS loads in the recycle stream are; $9627 \mathrm{~kg} / \mathrm{d}, 14,157 \mathrm{~kg} / \mathrm{d}$ and $10,020 \mathrm{~kg} / \mathrm{d}$ respectively. The flowrate of recycle is approximately $13,512 \mathrm{~m}^{3} / \mathrm{d}$.

1. To determine the amount of primary sludge, PS (stream D):

Without recycle:

PS $=\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(430 \mathrm{~g} / \mathrm{m}^{3}\right)(0.5)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=107,500 \mathrm{~kg} / \mathrm{d}$
Assume the VSS/TSS ratio in the influent is also the same as the primary sludge which is $(345 / 430)=0.8$
At 1.5% TS (or $15,000 \mathrm{mg} / \mathrm{L}$ TSS concentration), the volume of primary sludge is
Volume PS $=\frac{(107,500 \mathrm{~kg} / \mathrm{d})}{\left(15,000 \mathrm{~g} / \mathrm{m}^{3}\right)}\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=7167 \mathrm{~m}^{3} / \mathrm{d}$
With recycle, account for impact from total recycle (stream O), which based on the mass balance output includes $14,157 \mathrm{~kg} / \mathrm{d}$ of TSS in the plant recycle:

$$
\begin{gathered}
\text { PS }=\left[\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(430 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)+(14,157 \mathrm{~kg} / \mathrm{d})\right](0.5) \\
=114,578 \mathrm{~kg} / \mathrm{d}
\end{gathered}
$$

It is known that the VSS/TSS in the influent is 0.8 . The VSS/TSS in the recycle sludge is 0.71 . The VSS/TSS of the primary sludge with recycle is

$$
\% \mathrm{VS} / \mathrm{TS}=\frac{\left[\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(345 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)+(14,157 \mathrm{~kg} / \mathrm{d})(0.71)\right](0.5)}{(114,578 \mathrm{~kg} / \mathrm{d})}
$$

=79.7\%VS / TS

At 1.5% TS (or $15,000 \mathrm{mg} / \mathrm{L}$ TSS concentration), the volume of primary sludge with recycle is:
Volume PS $=\frac{(114,580 \mathrm{~kg} / \mathrm{d})}{\left(15,000 \mathrm{~g} / \mathrm{m}^{3}\right)}\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=7639 \mathrm{~m}^{3} / \mathrm{d}$
2. Determine the average amount of WAS produced (stream F).

Before determining the waste activated sludge production the secondary treatment influent (stream C) needs to be determined in terms of volume, mass, TSS and BOD concentration
Without recycle the BOD and TSS loads are:

BOD $=\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(335 \mathrm{~g} / \mathrm{m}^{3}\right)(1-0.3)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=117,250 \mathrm{~kg} / \mathrm{d}$
$\operatorname{TSS}=\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(430 \mathrm{~g} / \mathrm{m}^{3}\right)(1-0.5)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)=107,500 \mathrm{~kg} / \mathrm{d}$
In order to determine concentration, the volumetric flow needs to be determined:

Volume to secondary $=(500,000-7167) \mathrm{m}^{3} / \mathrm{d}=492,833 \mathrm{~m}^{3} / \mathrm{d}$
$B O D_{c}=\left[\frac{(117,250 \mathrm{~kg} / \mathrm{d})}{\left(492,833 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=238 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{TSS}_{\mathrm{c}}=\left[\frac{(107,500 \mathrm{~kg} / \mathrm{d})}{\left(492,833 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=218 \mathrm{~g} / \mathrm{m}^{3}$
With recycle, accounting for $9,627 \mathrm{~kg} / \mathrm{d}$ BOD and $14,157 \mathrm{~kg} / \mathrm{d}$ TSS

$$
\begin{aligned}
\mathrm{BOD} & =\left[\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(335 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)+(9627 \mathrm{~kg} / \mathrm{d})\right](1-0.3) \\
& =123,989 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

TSS $=\left[\left(500,000 \mathrm{~m}^{3} / \mathrm{d}\right)\left(430 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)+(14,157 \mathrm{~kg} / \mathrm{d})\right](1-0.5)$ $=114,578 \mathrm{~kg} / \mathrm{d}$

Volume to secondary $=(500,000+13,512-7,639) \mathrm{m}^{3} / \mathrm{d}=505,874 \mathrm{~m}^{3} / \mathrm{d}$

$$
\begin{aligned}
& \mathrm{BOD}_{\mathrm{c}}=\left[\frac{(123,989 \mathrm{~kg} / \mathrm{d})}{\left(505.873 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=245 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{TSS}_{\mathrm{c}}=\left[\frac{(114,578 \mathrm{~kg} / \mathrm{d})}{\left(505,873 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)=226 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

After knowing the secondary treament influent characteristics, the WAS production (stream F) in terms of VSS content $\left(\mathrm{P}_{\mathrm{x}}\right)$ can be determined using Eq. (8-19), where the substrate S is BOD

$$
P_{x}=Y_{o b s} Q\left(S_{0}-S\right)
$$

First $\mathrm{Y}_{\mathrm{obs}}$ needs to be determined from Eq. 7-58, Part A.

$$
=\frac{0.6}{1+\left(0.06 \mathrm{~d}^{-1}\right)(10 \mathrm{~d})}=0.375
$$

Using the calculated $\mathrm{Y}_{\text {obs }}$, and knowing the VSS/TSS ratio in the WAS is 0.7 the WAS production can be estimated.

Without recycle:

$$
\begin{aligned}
P_{x} & =(0.375)\left[(117,250 \mathrm{~kg} / \mathrm{d})-\left(492,833 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)\right] \\
& =42,121 \mathrm{~kg} \mathrm{VSS} / \mathrm{d}
\end{aligned}
$$

WAS $=\frac{(42,121 \mathrm{~kg} \mathrm{VSS} / \mathrm{d})}{(0.7 \mathrm{~kg} \mathrm{VSS} / \mathrm{kg} \mathrm{TSS})}=60,172 \mathrm{~kg} / \mathrm{d}$
With recycle:

$$
\begin{aligned}
& \begin{aligned}
P_{\mathrm{x}}= & (0.375)\left[(123,989 \mathrm{~kg} / \mathrm{d})-\left(505,873 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10 \mathrm{~g} / \mathrm{m}^{3}\right)\left(\frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}\right)\right] \\
& =44,599 \mathrm{kgVSS} / \mathrm{d}
\end{aligned} \\
& \text { WAS }=\frac{(44,599 \mathrm{~kg} \mathrm{VSS} / \mathrm{d})}{(0.7 \mathrm{~kg} \mathrm{VSS} / \mathrm{kg} \mathrm{TSS})}=63,713 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

3. Determine the average amount of thickened primary sludge (TPS) as shown for (stream G)
Without accounting for recycle:

$$
\begin{aligned}
\text { TPS } & =(107,500 \mathrm{~kg} / \mathrm{d})(0.95)=102,125 \mathrm{~kg} / \mathrm{d}(\mathrm{dry}) \\
& =(102,125 \mathrm{~kg} / \mathrm{d}) /(0.05)=2,042,500 \mathrm{~kg} / \mathrm{d}(\text { wet })
\end{aligned}
$$

Accounting for recycle:

$$
\begin{aligned}
\mathrm{TPS} & =(114,578 \mathrm{~kg} / \mathrm{d})(0.95)=108,849 \mathrm{~kg} / \mathrm{d}(\mathrm{dry}) \\
& =(108,849 \mathrm{~kg} / \mathrm{d}) /(0.05)=2,176,989 \mathrm{~kg} / \mathrm{d}(\text { wet })
\end{aligned}
$$

The volume of overflow returned to the primary clarifer can be determined

Volume overflow $=\left[\frac{(114,580 \mathrm{~kg} / \mathrm{d})}{[0.015(1.5 \%)]}-(2,176,989 \mathrm{~kg} / \mathrm{d})\right]\left(\frac{\mathrm{m}^{3}}{10^{3} \mathrm{~kg}}\right)=5462 \mathrm{~m}^{3} / \mathrm{d}$ The mass of TSS in the overflow is $5729 \mathrm{~kg} / \mathrm{d}\left(\mathrm{TSS}_{\mathrm{C}}=1049 \mathrm{~g} / \mathrm{m}^{3}\right)$ and it can be assumed that the TSS/VSS ratio is the same as primary sludge. The overflow needs to be accounted for in the recycle load.
4. Determine the average amount of thickened waste activated sludge (TWAS) as shown for (stream I)
Without accounting for recycle:
TWAS $=(60,172 \mathrm{~kg} / \mathrm{d})(0.95)=57,164 \mathrm{~kg} / \mathrm{d}$ (dry)

$$
=(57,164 \mathrm{~kg} / \mathrm{d}) /(0.06)=952,728 \mathrm{~kg} / \mathrm{d}(\text { wet })
$$

Accounting for recycle:
TWAS $=(63,713 \mathrm{~kg} / \mathrm{d})(0.95)=60,527 \mathrm{~kg} / \mathrm{d}(\mathrm{dry})$

$$
=(60,527 \mathrm{~kg} / \mathrm{d}) /(0.06)=1,008,785 \mathrm{~kg} / \mathrm{d}(\text { wet })
$$

The volume of filtrate returned to the primary clarifer can be determined

Volume filtrate $=\left[\frac{(63,713 \mathrm{~kg} / \mathrm{d})}{[0.01(1.0 \%)]}-(1,008,785 \mathrm{~kg} / \mathrm{d})\right]\left(\frac{\mathrm{m}^{3}}{10^{3} \mathrm{~kg}}\right)=5362 \mathrm{~m}^{3} / \mathrm{d}$

The mass of TSS in the filtrate is $3,186 \mathrm{~kg} / \mathrm{d}\left(\mathrm{TSS}_{\mathrm{C}}=594 \mathrm{mg} / \mathrm{L}\right)$ and it can be assumed that the TSS/VSS ratio is the same as WAS. The filtrate needs to be accounted for in the recycle load.
5. Combined Primary and Activated Sludge (CPAS) shown as (stream K) Determine the combined solid content (\% TS), combined volatile content (\% VS), and volume flow out of the CPAS. Use that information to determine CPAS HRT
Without accounting for recycle:
CPAS (dry) $=(102,125+57,164) \mathrm{kg}($ dry $) / \mathrm{d}=159,289 \mathrm{~kg}(\mathrm{dry}) / \mathrm{d}$
CPAS (wet) $=(2,042,500+952,723) \mathrm{kg}(\mathrm{dry}) / \mathrm{d}=2,995,228 \mathrm{~kg}($ wet $) / \mathrm{d}$
$\mathrm{TS}, \%=\frac{(159,289 \mathrm{~kg} / \mathrm{d})}{(2,995,228 \mathrm{~kg} / \mathrm{d})}(100)=5.3$

To determine combined volatile content it is known that the VSS/TSS ratio in the influent is also the same as the primary sludge which is $(345 / 430)=$ 0.8 and that the VSS/TSS ratio in the waste activated sludge is 0.7 .

VS $/ \mathrm{TS}, \%=\left\{\frac{[(102,125)(0.8)+(57,164)(0.7) \mathrm{kg} / \mathrm{d}]}{(159,289 \mathrm{~kg} / \mathrm{d})}\right\}(100)=76.6$
The volumetric flow to the CPAS tank and HRT are calculated as:

$$
\begin{aligned}
& Q_{\text {CPAS }}=\frac{(2,995,223 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)}=2908 \mathrm{~m}^{3} / \mathrm{d} \\
& H R T=\left[\frac{\left(40 \mathrm{~m}^{3}\right)}{\left(2908 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{1440 \mathrm{~min}}{1 \mathrm{~d}}\right)=19.8 \mathrm{~min}
\end{aligned}
$$

Accounting for recycle:
CPAS (dry) $=(108,849+60,527) \mathrm{kg}(\mathrm{dry}) / \mathrm{d}=169,377 \mathrm{~kg}(\mathrm{dry}) / \mathrm{d}$ CPAS (wet) $=(2,176,982+1,008,789) \mathrm{kg}(\mathrm{dry}) / \mathrm{d}=3,185,774 \mathrm{~kg}($ wet $) / \mathrm{d}$ $\%$ TS $=\left[\frac{(169,377 \mathrm{~kg} / \mathrm{d})}{(3,185,774 \mathrm{~kg} / \mathrm{d})}\right](100 \%)=5.3 \%$ TS
It has been previously calculated that the VSS/TSS ratio in the primary sludge is 0.797 and that the VSS/TSS ratio in the waste activated sludge is 0.7 .

$$
\mathrm{VS} / \mathrm{TS}, \%=\left\{\frac{[(108,849)(0.797)+(60,527)(0.7) \mathrm{kg} / \mathrm{d}]}{(169,377 \mathrm{~kg} / \mathrm{d})}\right\}(100)=76.2
$$

The volumetric flow to the CPAS tank and HRT are calculated as:

$$
\begin{aligned}
& Q_{\text {CPAS }}=\frac{(3,185,774 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)}=3093 \mathrm{~m}^{3} / \mathrm{d} \\
& \text { HRT }=\left[\frac{40 \mathrm{~m}^{3}}{\left(3093 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{1440 \mathrm{~min}}{1 \mathrm{~d}}\right)=18.6 \mathrm{~min}
\end{aligned}
$$

6. Anaerobic Digestion Complex Calculations - For the sake of simplicity the calculations below are shown only for the loadings accounting for recycle. First calculate the usable volume of the the anaerobic digester using the following equation.
$V_{\text {Dig }}=\frac{\pi \mathrm{D}^{2}}{4} S W D+\frac{1}{3} \frac{\pi \mathrm{D}^{2}}{4} \mathrm{H}_{\text {cone }}$
All values are given and the cone depth ($\mathrm{H}_{\text {cone }}$) can be determined from the slope

$$
\begin{aligned}
& \mathrm{H}_{\text {cone }}=\frac{\mathrm{D}}{(2)(10)}=\frac{(37 \mathrm{~m})}{(2)(10)}=1.85 \mathrm{~m} \\
& \mathrm{~V}_{\text {Dig }}=\frac{\pi(37 \mathrm{~m})^{2}}{4}(11 \mathrm{~m})+\frac{1}{3} \frac{\pi(37 \mathrm{~m})^{2}}{4} 1.85 \mathrm{~m}=12,490 \mathrm{~m}^{3}
\end{aligned}
$$

a. Determine number of digesters - The digester inlet flow (stream K) with recycle which is $3,185,774 \mathrm{~kg}$ (wet)/d or $3093 \mathrm{~m}^{3} / \mathrm{d}$ and because the max month peaking factor is 1.3 , the flow at max month conditions can be estimated to be $\left(3093 \mathrm{~m}^{3} / \mathrm{d}\right)(1.3)=4021$ $\mathrm{m}^{3} / \mathrm{d}$. Knowing the flow, the number of digesters ($\mathrm{N}_{\mathrm{Dig}}$) can be estimated below.

$$
N_{\text {Dig }}=\frac{(H R T)(Q)}{V_{\text {Dig }}}=\frac{(15 \mathrm{~d})\left(4021 \mathrm{~m}^{3} / \mathrm{d}\right)}{12,490 \mathrm{~m}^{3}}=4.8
$$

Based on the computed value at least 5 digesters should be provided. A sixth digester may also be recommended if full redundancy is desired at max month conditions.
b. The number of digesters required to operate at annual average conditions, assuming 15 day HRT is desired is

$$
N_{\text {Dig }}=\frac{(15 \mathrm{~d})\left(3093 \mathrm{~m}^{3} / \mathrm{d}\right)}{12,490 \mathrm{~m}^{3}}=3.7
$$

At least four digesters should be in service during annual average conditions
c. To determine the volatile loading rate, the The VS load to the digester at average conditions needs to be determined.

VS $=(169,377 \mathrm{~kg} / \mathrm{d})(0.762)=129,066 \mathrm{~kg} / \mathrm{d}$
At max month conditions, the $\mathrm{VS}_{\text {мм }}$ load can be estimated assuming the VS/TS content is the same at both annual average and max month conditions

$$
\mathrm{VS}_{\text {мм }}=(129,066 \mathrm{~kg} / \mathrm{d})(1.3)=167,786 \mathrm{~kg} / \mathrm{d}
$$

The VS loading rate at average conditions, assuming 4 digesters in service is:
VS loading rate $(A A)=\frac{(129,066 \mathrm{~kg} / \mathrm{d})}{(4)\left(12,490 \mathrm{~m}^{3}\right)}=2.6 \mathrm{~kg} / \mathrm{m}^{3} \circ \mathrm{~d}$
If 5 digesters are in service the VS loading rate is:
VS loading rate $(A A)=\frac{(129,066 \mathrm{~kg} / \mathrm{d})}{(5)\left(12,490 \mathrm{~m}^{3}\right)}=2.1 \mathrm{~kg} / \mathrm{m}^{3} \circ \mathrm{~d}$
At max month conditions with 5 digesters in service, the VS loading rate is:
VS loading rate $(M M)=\frac{(167,786 \mathrm{~kg} / \mathrm{d})}{(5)\left(12,490 \mathrm{~m}^{3}\right)}=2.7 \mathrm{~kg} / \mathrm{m}^{3} \circ \mathrm{~d}$
At all conditions, the VS loading rate is within the normal range (1.6 - 4.8) $\mathrm{kg} / \mathrm{m}^{3} \cdot \mathrm{~d}$ as listed in Table 13-28.
d. The energy requirement to heat the sludge at annual average conditions from $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ is:
$\mathrm{q}=(3,185,774 \mathrm{~kg} / \mathrm{d})\left(4.2 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)(35-5)^{\circ} \mathrm{C}=4.01 \times 10^{8} \mathrm{~kJ} / \mathrm{d}$
For a real world design, the digester heat loss would not be zero and a heat loss calculation similar to what is shown in Example 137 should be performed. The calculations can be repeated at other conditions such as max month, max week or max day depending on desired design criteria for heating system.
e. At max day conditions the following parameters; flow ($Q_{\text {CPAS }}$ at max day) and volatile loading ($\mathrm{VS}_{\text {мо }}$) are needed and can be estimated if it is assumed that the TS and VS concentrations are the same at max day as annual average conditions.
$Q_{\text {CPAS }}$ at max day $=\left(3093 \mathrm{~m}^{3} / \mathrm{d}\right)(1.5)=4639 \mathrm{~m}^{3} / \mathrm{d}$
$V_{\text {MD }}=(129,066 \mathrm{~kg} / \mathrm{d})(1.5)=193,599 \mathrm{~kg} / \mathrm{d}$
With 5 digesters in service the HRT would be:
$H R T=\frac{(5)\left(12,490 \mathrm{~m}^{3}\right)}{\left(4639 \mathrm{~m}^{3} / \mathrm{d}\right)}=13.5 \mathrm{~d}$

And the VS loading rate would be:
VS loading rate $(M D)=\frac{(193,599 \mathrm{~kg} / \mathrm{d})}{(5)\left(12,490 \mathrm{~m}^{3}\right)}=3.1 \mathrm{~kg} / \mathrm{m}^{3} \circ \mathrm{~d}$
At max day conditions, the HRT drops below the 15 d threshold for Class B but the volatile loading rate is still within the stated range according to Table 13-28. Because the max day loading is likely short instantaneous peak, maintaining the digester in service could be suitable as the relatively large volume and HRT will help buffer instantaneous peaks. If the peak loading is sustained and the digester becomes overloaded, sludge could be bypassed around the digester and either hauled or dewatered and hauled but these type practices are generally avoided except for emergency situations. Some plants have provisions for alkaline stabilization as back up processing outlets.
NOTE: The assumption for TS and VS concentration being the same at max day loadings is not always accurate and more detailed plant records should be consulted when setting the plant design basis and accounting for peak loads.
7. The amount of biogas produced $\left(\mathrm{V}_{\mathrm{DG}}\right)$ at average conditions as shown in (Stream P) is:

Without accounting for recycle:

$$
\begin{aligned}
V_{D G} & =\left(0.95 \mathrm{~m}^{3} / \mathrm{kg} \text { VSR }\right)(159,289 \mathrm{~kg} / \mathrm{d})(0.766 \mathrm{~kg} \text { VS/kg TS })(0.5)(1 \mathrm{~d} / 24 \mathrm{~h}) \\
& =2414 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

Accounting for recycle:

$$
\begin{aligned}
V_{D G} & =\left(0.95 \mathrm{~m}^{3} / \mathrm{kg} \text { VSR }\right)(169,377 \mathrm{~kg} / \mathrm{d})(0.762 \mathrm{~kg} \text { VS/kg TS })(0.5)(1 \mathrm{~d} / 24 \mathrm{~h}) \\
& =2554 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

8. The CHP calculations presented below are just shown for annual average conditions accounting for recycle.
a. The amount of electricity that can be produced is:

$$
\text { Electricity }=\left(2554 \mathrm{~m}^{3} / \mathrm{h}\right)\left(22,400 \mathrm{~kJ} / \mathrm{m}^{3}\right)(0.38)(1 \mathrm{~h} / 3600 \mathrm{~s})=6040 \mathrm{~kW}
$$

b. The amount of heat that can be recovered from CHP is:

Heat $=\left(2554 \mathrm{~m}^{3} / \mathrm{h}\right)\left(22,400 \mathrm{~kJ} / \mathrm{m}^{3}\right)(0.4)(24 \mathrm{~h} / 1 \mathrm{~d})=5.49 \times 10^{8} \mathrm{~kJ} / \mathrm{d}$ Beause the wintertime heat requirement to heat the sludge is 4.01 $\times 10^{8} \mathrm{~kJ} / \mathrm{d}$, there is sufficient energy available in the heat recovery from the CHP system. However, it should be noted that the digester heat requirement does not account for digester heat losses which must be considered for real world plant design.
9. The calculation below estimates how much gas is not used for digester heating ($\mathrm{H}_{\mathrm{DLO}}$), if the digester gas is heated with a boiler fired on digester gas. The calculation is shown for annual average wintertime conditions accounting for recycle:

$$
\begin{aligned}
\mathrm{H}_{\text {DLO }} & =\left(2554 \mathrm{~m}^{3} / \mathrm{h}\right)\left(22,400 \mathrm{~kJ} / \mathrm{m}^{3}\right)(24 \mathrm{~h} / 1 \mathrm{~d})-\left(4.01 \times 10^{8} \mathrm{~kJ} / \mathrm{d}\right) / 0.8 \\
& =8.72 \times 10^{8} \mathrm{~kJ} / \mathrm{d}
\end{aligned}
$$

The amount of electricity that can be produced with the leftover gas is:
Electricity $=\left(8.72 \times 10^{8} \mathrm{~kJ} / \mathrm{d}\right)(0.38)(1 \mathrm{~d} / 86400 \mathrm{~s})=3,833 \mathrm{~kW}$
10. Based on the energy management options, the scenario resulting from part 8 provides a higher electrical potential then from part 9 while also satisfying the thermal requirements for digestion. From an energy management standpoint, scenario 8 is more favorable.
11. Dewatering Calculations
a. The dry solids loading going to the centrifuges after digestion (stream L) is:
Without accounting for recycle:
Cent. feed $(\mathrm{VS})=(159,289 \mathrm{~kg} / \mathrm{d})(0.766 \mathrm{~kg}$ VS/kg TS $)(1-0.5)$

$$
=60,976 \mathrm{~kg} \mathrm{VS} / \mathrm{d}
$$

Assume inert solids pass through
Cent feed (inert) =
$159,289 \mathrm{~kg} / \mathrm{d}-(159,289 \mathrm{~kg} / \mathrm{d})(0.766 \mathrm{~kg}$ VS/kg TS $)$
$=37,337 \mathrm{~kg}$ inert $/ \mathrm{d}$
Cent Feed $(T S)=$ VS + inert $=(60,976+37,274) \mathrm{kg} / \mathrm{d}$

$$
=98,313 \mathrm{~kg} / \mathrm{d}
$$

Accounting for recycle:

Cent. feed $(V S)=(169,377 \mathrm{~kg} / \mathrm{d})(0.762 \mathrm{~kg}$ VS/kg TS $)(1-0.5)$

$$
=64,533 \mathrm{~kg} \mathrm{VS} / \mathrm{d}
$$

Assume inert solids pass through
Cent feed (inert) =

$$
\begin{gathered}
169,377 \mathrm{~kg} / \mathrm{d}-(169,377 \mathrm{~kg} / \mathrm{d})(0.762 \mathrm{~kg} \text { VS/kg TS }) \\
=40,311 \mathrm{~kg} \text { inert/d }
\end{gathered}
$$

Cent feed $(T S)=$ VS + inert $=(64,533+40,312) \mathrm{kg} / \mathrm{d}$

$$
=104,844 \mathrm{~kg} / \mathrm{d}
$$

b. The volatile solids content of the digested biosolids is:

Without accounting for recycle
$\mathrm{VS} / \mathrm{TS}, \%=\frac{(60,976 \mathrm{~kg} \mathrm{VS} / \mathrm{d})}{(98,313 \mathrm{~kg} / \mathrm{d})}(100)=62.0$
Accounting for recycle:
VS $/ \mathrm{TS}, \%=\frac{(64,533 \mathrm{~kg} \mathrm{VS} / \mathrm{d})}{(104,844 \mathrm{~kg} / \mathrm{d})}(100 \%)=61.6$
c. To estimate the solid content of the digested biosolids, assume that the all of the water passes through the digester to the digester effluent.
Without accounting for recycle:
Water In feed sludge = 2,995,228 kg (wet)/d - 159,289 kg (dry)/d

$$
=2,835,939 \mathrm{~kg} / \mathrm{d}
$$

TS, $\%=\frac{(98,313 \mathrm{~kg} / \mathrm{d})}{[(98,313+2,835,939) \mathrm{kg} / \mathrm{d}]}(100)=3.4$
Accounting for recycle:
Water In feed sludge $=3,185,774 \mathrm{~kg}($ wet $) / \mathrm{d}-169,377 \mathrm{~kg}(\mathrm{dry}) / \mathrm{d}$

$$
=3,016,397 \mathrm{~kg} / \mathrm{d}
$$

TS, $\%=\left\{\frac{(104,844 \mathrm{~kg} / \mathrm{d})}{[(104,844+3,016,397) \mathrm{kg} / \mathrm{d}]}\right\}(100)=3.4$
d. Volumetric Flow of digested sludge can be calculated as the following.
Without accounting for recycle:

Volume digested $=\frac{[(98,313+2,835,939) \mathrm{kg} / \mathrm{d}]}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)}=2849 \mathrm{~m}^{3} / \mathrm{d}$
Accounting for recycle:
Volume digested $=\frac{[(104,844+3,016,397) \mathrm{kg} / \mathrm{d}]}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.03)}=3030 \mathrm{~m}^{3} / \mathrm{d}$
e. Centrifuge design:

The wet tonnes of sludge cake that are produced at average daily conditions are:
Without accounting for recycle:
Wet tonnes (cake) $=\left[\frac{(98,313 \mathrm{~kg} / \mathrm{d})(0.95)}{(0.23)}\right]\left(\frac{1 \text { tonne }}{10^{3} \mathrm{~kg}}\right)=406$ tonne $/ \mathrm{d}$
Accounting for recycle:
Wet tonnes $($ cake $)=\left[\frac{(104,844 \mathrm{~kg} / \mathrm{d})(0.95)}{(0.23)}\right]\left(\frac{1 \text { tonne }}{10^{3} \mathrm{~kg}}\right)=433$ tonne $/ \mathrm{d}$
The centrate calculations are shown below only for the scenario with recycle. If the iterative approach were used a similar methodology could be used for the conditions without recycle initially before repeating the steps. Before determining the volume and solid content of the recycle stream, the total mass of the recycle stream first needs to be determined.

Centrate $=[(104,844+3,016,397) \mathrm{kg} / \mathrm{d}]-\left[\frac{(104,844 \mathrm{~kg} / \mathrm{d})(0.95)}{(0.23)}\right]$
Centrate $=2,688,191 \mathrm{~kg} / \mathrm{d}$
Assuming a specific gravity of 1.0 the volumetric flow of the recycle stream is:
Volume centrate $=\frac{(2,688,191 \mathrm{~kg} / \mathrm{d})}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)}=2688 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{TS}, \%=\left\{\frac{(104,844 \mathrm{~kg} / \mathrm{d})(1-0.95)}{[(2,688,191 \mathrm{~kg} / \mathrm{d}) \mathrm{kg} / \mathrm{dd}]}\right\}(100)=0.195$ or $1950 \mathrm{mg} / \mathrm{L}$ It is given that the BOD concentration is $1500 \mathrm{mg} / \mathrm{L}$ in the centrate meaning the mass of BOD recycled is $4032 \mathrm{~kg} / \mathrm{d}$. The mass of TSS in the centrate is $5242 \mathrm{~kg} / \mathrm{d}$.
To fully carry out the iterative solution, the total recycle stream (stream O) must be accounted for in the overall mass balance. In order to estimate the BOD concentration in the gravity thickener overflow and the gravity belt filtrate, it can be assumed that 65% of the solids are biodegradable and that the value of $B O D_{c}$ can be obtained by multiplying the value of UBOD by a factor of 0.68 .
For the gravity thickener overflow with a TSS load of $5729 \mathrm{~kg} / \mathrm{d}$, the BOD in the recycle:

$$
\begin{aligned}
\text { BOD }(\text { GT overflow }) & =(5729 \mathrm{~kg} / \mathrm{d})(0.65)(1.42)(0.68) \\
& =3596 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

For the gravity belt thickener filtrate with a TSS load of $3,186 \mathrm{~kg} / \mathrm{d}$, the BOD in the recycle:

$$
\begin{aligned}
\mathrm{BOD}(\mathrm{GBT} \text { overflow }) & =(3186 \mathrm{~kg} / \mathrm{d})(0.65)(1.42)(0.68) \\
& =1999 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

A table of the recycle flows is shown below:

Parameter	Units	Gravity thickener	Gravity belt thickener	Centrate	Total recycle
Flow	$\mathrm{m}^{3} / \mathrm{d}$	5462	5362	2688	13,512
TSS	kg / d	5729	3186	5242	14,157
\%VS/TS	$\%$	79.6	70	61.6	70.8
VSS	kg / d	4563	2230	3227	10,020
BOD	kg / d	3596	1999	4032	9627

15

PLANT RECYCLE FLOW TREATMENT AND NUTRIENT RECOVERY

Problem 15-1

Problem Statement - see text on page 1728
Instructors Note: In the water balance, reactions involving water during anaerobic digestion are not included in the calculations for simplicity. See Eq. (10-2), Chap. 10, for chemical reaction stoichiometry. Water is also consumed in the formation of bicarbonate from CO_{2}. Digester gas will be saturated with water, which also contributes to water loss. In total, a 1 to 2 percent error is introduced if these mechanisms for water loss are not included in the water mass balance. In the calculation of sidestream total suspended solids, the conventional method of calculating the solids capture efficiency across the solids dewatering process is used as follows.

Capture efficiency $=\frac{\text { Feed solids }- \text { sidestream suspended solids }}{\text { Feed solids }} \times 100 \%$
The total solids concentration of the digested solids is used typically in this calculation rather than suspended solids due to the difficulty of filtering the digested solids sample for the suspended solids measurement. During the measurement of total solids, ammonium bicarbonate thermally decomposes, resulting in a loss of mass from the sample. The measured total solids concentration can be corrected by adding a calculated ammonium bicarbonate mass to the total solids (sidestream ammonium-N data are used for this correction). The sidestream suspended solids concentration is calculated with measured and corrected measured digested solids total solids concentrations to illustrate the magnitude of ammonium bicarbonate mass loss on the total solids measurement.

Solution

1. The average daily sidestream volume and constituent concentrations are calculated by performing solids, water and nutrient balances across the digestion and solids dewatering processes as follows.
a. Calculate the solids and water mass rates to the digester using the information presented in the problem statement.
Total solids $=\left(530 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.02 \mathrm{~kg} / \mathrm{kg})(0.045 \mathrm{~kg} \mathrm{TS} / \mathrm{kg})$ $=24,327 \mathrm{~kg} / \mathrm{d}$
Volatile solids $=(24,327 \mathrm{~kg} / \mathrm{d})(0.78 \mathrm{~kg} \mathrm{VS} / \mathrm{kg}$ TS $)=18,975 \mathrm{~kg} / \mathrm{d}$
Fixed solids $=24,327 \mathrm{~kg} / \mathrm{d}-18,975 \mathrm{~kg} / \mathrm{d}=5352 \mathrm{~kg} / \mathrm{d}$
Water $=\left(530 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.02 \mathrm{~kg} / \mathrm{kg})(1-0.045)$
$=516,273 \mathrm{~kg} / \mathrm{d}$
b. Calculate the soluble TKN created during digestion.

Soluble TKN mass $=(18,975 \mathrm{~kg}$ VS/d) $(0.065 \mathrm{~kg} \mathrm{~N} / \mathrm{kg}$ VS $)-$
$(9488 \mathrm{~kg} \mathrm{VS} / \mathrm{d})(0.065 \mathrm{~kg} \mathrm{~N} / \mathrm{kg}$ VS $)=617 \mathrm{~kg} \mathrm{~N} / \mathrm{d}$
Soluble $T K N$ concentration $=\frac{(617 \mathrm{~kg} \mathrm{~N} / \mathrm{d})\left(10^{6} \mathrm{mg} / 1 \mathrm{~kg}\right)}{\left(516,273 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{d}\right)(1 \mathrm{~L} / 1 \mathrm{~kg})}$
$=1195 \mathrm{mg}$ N/L
c. Calculate phosphate created during digestion assuming that organically bound soluble phosphorus is insignificant in comparison to phosphate.
$\mathrm{PO}_{4}-\mathrm{P}$ mass $=(18,975 \mathrm{~kg}$ VS/d) $(0.015 \mathrm{~kg} \mathrm{P/kg} \mathrm{VS})$

- (9488 kg VS/d)(0.015 kg P/kg VS) $=142 \mathrm{~kg} \mathrm{P/d}$

$$
\mathrm{PO}_{4}-\mathrm{P} \text { concentration }=\frac{(142 \mathrm{~kg} \mathrm{P} / \mathrm{d})\left(10^{6} \mathrm{mg} / 1 \mathrm{~kg}\right)}{\left(516,273 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{d}\right)(1 \mathrm{~L} / \mathrm{kg})}
$$

$$
=275 \mathrm{mg}-\mathrm{P} / \mathrm{L}
$$

d. Calculate digester effluent solids and water mass rates. Measured and corrected measured total solids mass rates are calculated as follows.

$$
\begin{aligned}
\text { Volatile solids } & =(18,975 \mathrm{~kg} / \mathrm{d})\left(1-\frac{50 \% \text { destruction efficiency }}{100 \%}\right) \\
& =9488 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

Measured total solids $=9488 \mathrm{~kg}$ VSS/d +5352 kg fixed solids $/ \mathrm{d}$

$$
=14,840 \mathrm{~kg} / \mathrm{d}
$$

Water $=516,273 \mathrm{~kg} / \mathrm{d}$ (water loss by reactions and evaporation are ignored)
e. The corrected total solids are calculated as follows. For simplicity, 100 percent of the soluble TKN calculated above is assumed to be ammoniaN.

Total solids, corrected $=$ measured total solids

+ ammonium bicarbonate
$=14,840 \mathrm{~kg} / \mathrm{d}+3481 \mathrm{~kg} \mathrm{NH}_{4} \mathrm{HCO}_{3} / \mathrm{d}$
$=18,321 \mathrm{~kg} / \mathrm{d}$
f. Calculate the sidestream total suspended solids mass rates based on measured and corrected measured feed total solids as follows.

Capture efficiency, $\%=\frac{\text { Feed solids }- \text { sidestream suspended solids }}{\text { Feed solids }}(100)$
Rearranging and simplifying this equation gives:
Sidestream suspended solids $=($ Feed solids $)\left(1-\frac{\text { capture efficiency }}{100}\right)$
Sidestream suspended solids based on measured feed total solids
$=(14,840 \mathrm{~kg} / \mathrm{d})\left(1-\frac{95}{100}\right)=742 \mathrm{~kg} / \mathrm{d}$

Sidestream suspended solids based on corrected measured feed total solids $=(18,321 \mathrm{~kg} / \mathrm{d})\left(1-\frac{95}{100}\right)=916 \mathrm{~kg} / \mathrm{d}$
g. Calculation of the sidestream flow requires the calculation of the dewatered biosolids cake water content. Because the conventional method of calculating capture efficiency was used in the estimation of the sidestream suspended solids, the cake total solids is the difference between the feed total solids and the sidestream suspended solids. For simplicity, the measured feed total solids are used as follows.

Cake total solids $=14,840 \mathrm{~kg} / \mathrm{d}-742 \mathrm{~kg} / \mathrm{d}=14,098 \mathrm{~kg} / \mathrm{d}$
Water content of cake $=\frac{(14,098 \mathrm{~kg} / \mathrm{d})\left(1-\frac{22 \%}{100 \%}\right)}{\left(\frac{22 \%}{100 \%}\right)}=49,984 \mathrm{~kg} / \mathrm{d}$
h. Calculate the sidestream flow, total suspended solids concentration and TKN concentration.

Water mass rate $=516,273 \mathrm{~kg} / \mathrm{d}-49,647 \mathrm{~kg} / \mathrm{d}=466,626 \mathrm{~kg} / \mathrm{d}$ Assuming a specific gravity of 1.0 :

Sidestream flowrate $=(466,626 \mathrm{~kg} / \mathrm{d})\left(\frac{1 \mathrm{~L}}{\mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)$

$$
=466.6 \mathrm{~m}^{3} / \mathrm{d}
$$

Sidestream suspended solids concentration based on measured feed total solids $=\left[\frac{(742 \mathrm{~kg} / \mathrm{d})}{\left(466.6 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)=1590 \mathrm{mg} / \mathrm{L}$

Sidestream suspended solids concentration based on corrected measured feed total solids $=\left[\frac{(916 \mathrm{~kg} / \mathrm{d})}{\left(466.6 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)=1963 \mathrm{mg} / \mathrm{L}$

The TKN concentration of the sidestream is the sum of the particulate TKN and the soluble TKN. The nitrogen content of the digested volatile solids is provided in the problem statement.
Volatile fraction of suspended solids $=\frac{(9488 \mathrm{~kg} \mathrm{VS} / \mathrm{d})}{(14,840 \mathrm{~kg} \mathrm{TS} / \mathrm{d})}=0.639$
Sidestream volatile suspended solids concentration

$$
=(1590 \mathrm{mg} \text { TSS/L) }(0.639)=1016 \mathrm{mg} \text { VSS/L }
$$

TKN $=(1016 \mathrm{mg}$ VSS/L) $(0.065 \mathrm{mg} \mathrm{N} / \mathrm{mg}$ VSS $)+1195 \mathrm{mg} \mathrm{N} / \mathrm{L}$

$$
=1261 \mathrm{mg} \mathrm{~N} / \mathrm{L}
$$

i. Summary of sidestream flow and nutrient concentrations:

Flow rate $=466.6 \mathrm{~m}^{3} / \mathrm{d}$
TKN concentration $=1261 \mathrm{mg} / \mathrm{L}$
Soluble TKN concentration = $1195 \mathrm{mg} / \mathrm{L}$
Soluble phosphorus concentration $=275 \mathrm{mg} / \mathrm{L}$
TSS concentration = $1590 \mathrm{mg} / \mathrm{L}$
2. The sidestream flow and constituent concentrations at the peak solids rate to the digester are calculated similarly. For simplicity, the calculations are based on the digester effluent measured total solids concentration. If the corrected measured total solids concentration is used, the procedure shown above for correction of the total solids is employed.
a. Calculate the solids and water mass rates to the digester:

Total solids $=\left(700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.02 \mathrm{~kg} / \mathrm{kg})(0.045 \mathrm{~kg} \mathrm{TS} / \mathrm{kg})$

$$
=32,130 \mathrm{~kg} / \mathrm{d}
$$

Volatile solids $=(32,130 \mathrm{~kg} / \mathrm{d})(0.78 \mathrm{~kg} \mathrm{VS} / \mathrm{kg}$ TS $)=25,061 \mathrm{~kg} / \mathrm{d}$
Fixed solids $=32,130 \mathrm{~kg} / \mathrm{d}-25,061 \mathrm{~kg} / \mathrm{d}=7069 \mathrm{~kg} / \mathrm{d}$
Water $=\left(700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)(1.02 \mathrm{~kg} / \mathrm{kg})(1-0.045)$
$=681,870 \mathrm{~kg} / \mathrm{d}$
b.Calculate digester effluent solids and water mass rates.

Volatile solids $=(25,061 \mathrm{~kg} / \mathrm{d})(1-0.45)=13,784 \mathrm{~kg} / \mathrm{d}$

Total solids $($ measured $)=13,784 \mathrm{~kg} / \mathrm{d}+7069 \mathrm{~kg}$ fixed solids $/ \mathrm{d}$
$=20,853 \mathrm{~kg} / \mathrm{d}$
Water $=681,870 \mathrm{~kg} / \mathrm{d}$
c. Calculate soluble TKN created during digestion.

Soluble TKN mass $=(25,061 \mathrm{~kg} \mathrm{VS} / \mathrm{d})(0.065 \mathrm{~kg} \mathrm{~N} / \mathrm{kg} \mathrm{VS})$

$$
-(13,784 \mathrm{~kg} \text { VS / d)(0.065 kg N / kg VS) }
$$

$$
=733 \mathrm{~kg} \mathrm{~N} / \mathrm{d}
$$

Soluble TKN concentration $=\frac{(733 \mathrm{~kg} \mathrm{~N} / \mathrm{d})\left(10^{6} \mathrm{mg} / 1 \mathrm{~kg}\right)}{\left(681,870 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{d}\right)(1 \mathrm{~L} / 1 \mathrm{~kg})}$

$$
=1075 \mathrm{mg} \text { N/L }
$$

d. Calculate phosphate created during digestion:
$\mathrm{PO}_{4}-\mathrm{P}$ mass $=(25,061 \mathrm{~kg} \mathrm{VS} / \mathrm{d})(0.015 \mathrm{~kg} \mathrm{P} / \mathrm{kg} \mathrm{VS})$

$$
\begin{aligned}
&-(13,784 \mathrm{~kg} \mathrm{VS} / \mathrm{d})(0.015 \mathrm{~kg} \mathrm{P} / \mathrm{kg} \mathrm{VS})=169 \mathrm{~kg} \mathrm{P} / \mathrm{d} \\
& \mathrm{PO}_{4}-\mathrm{P} \text { concentration }\left.=\frac{(169 \mathrm{~kg} \mathrm{P} / \mathrm{d})\left(10^{6} \mathrm{mg} / 1 \mathrm{~kg}\right)}{(681,870 \mathrm{~kg} \mathrm{H}} \mathrm{O} / \mathrm{d}\right)(1 \mathrm{~L} / 1 \mathrm{~kg}) \\
&=248 \mathrm{mg} \mathrm{P} / \mathrm{L}
\end{aligned}
$$

e. Calculate the sidestream suspended solids mass rate.

Sidestream suspended solids $=(20,853 \mathrm{~kg} / \mathrm{d})\left(1-\frac{95}{100}\right)=1043 \mathrm{~kg} / \mathrm{d}$
f. Calculate dewatered biosolids cake solids and water mass rates.

Total solids $=20,853 \mathrm{~kg} / \mathrm{d}-1043 \mathrm{~kg} / \mathrm{d}=19,810 \mathrm{~kg} / \mathrm{d}$
Water mass rate $=\frac{(19,810 \mathrm{~kg} / \mathrm{d})(1-0.22)}{0.22}=70,325 \mathrm{~kg} / \mathrm{d}$
g. Calculate the sidestream flow, total suspended solids concentration and TKN concentration.

Water mass rate $=681,870 \mathrm{~kg} / \mathrm{d}-70,235 \mathrm{~kg} / \mathrm{d}=611,635 \mathrm{~kg} / \mathrm{d}$

$$
\begin{aligned}
\text { Sidestream flowrate } & =(611,636 \mathrm{~kg} / \mathrm{d})\left(\frac{1 \mathrm{~L}}{\mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right) \\
& =611.6 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

Sidestream suspended solids concentration $=\left[\frac{(1043 \mathrm{~kg} / \mathrm{d})}{\left(611.6 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)$

$$
=1705 \mathrm{mg} / \mathrm{L}
$$

h. Calculate the TKN concentration.

Volatile fraction of suspended solids $=\frac{(13,784 \mathrm{~kg} \mathrm{VS} / \mathrm{d})}{(20,853 \mathrm{~kg} \mathrm{TS} / \mathrm{d})}=0.661$
Sidestream volatile suspended solids concentration

$$
=(1705 \mathrm{mg} \text { TSS/L) })(0.661)=1127 \mathrm{mg} \text { VSS/L }
$$

$\mathrm{TKN}=(1127 \mathrm{mg}$ VSS/L) $(0.065 \mathrm{mg} \mathrm{N} / \mathrm{mg}$ VSS $)+1075 \mathrm{mg} \mathrm{N} / \mathrm{L}=1148 \mathrm{mg} \mathrm{N} / \mathrm{L}$
i. Summary of sidestream flow and nutrient concentrations:

Flow rate $=611.6 \mathrm{~m}^{3} / \mathrm{d}$
TKN concentration $=1148 \mathrm{mg} / \mathrm{L}$
Soluble TKN concentration $=1075 \mathrm{mg} / \mathrm{L}$
Soluble phosphorus concentration $=248 \mathrm{mg} / \mathrm{L}$
TSS concentration $=1705 \mathrm{mg} / \mathrm{L}$

Problem 15-2

Problem Statement— see text on page 1728

Solution

Given information:
Flow rate during biosolids dewatering, $\mathrm{Q}_{\mathrm{dw}}=83 \mathrm{~m}^{3} / \mathrm{h}$
Run time, $\mathrm{t}_{\text {run }}=6 \mathrm{~d} / \mathrm{w}$ and $8 \mathrm{~h} / \mathrm{d}$

1. Calculate the tank volume required for full equalization of the sidestream so that the equalized flow is returned continuously at constant flowrate to the mainstream plant.

Apply Eq. (15-1).

$$
\begin{aligned}
& N=2 d \\
& D_{d w}=6 d / w \\
& V_{e q}=(N)\left(Q_{d w}\right)\left(\frac{1}{7} D_{d w}\right) \\
& Q_{d w}=\left(83 \mathrm{~m}^{3} / \mathrm{h}\right)(8 \mathrm{~h} / \mathrm{d})=664 \mathrm{~m}^{3} / \mathrm{d} \\
& V_{e q}=(2 d)\left(664 \mathrm{~m}^{3} / d\right)\left[\frac{(6 \mathrm{~d} / \mathrm{w})}{(7 \mathrm{~d} / \mathrm{w})}\right]=1138 \mathrm{~m}^{3}
\end{aligned}
$$

2. Calculate the required volume if the equalized sidestream is to be returned to the mainstream plant seven days per week between the hours of $10 \mathrm{p} . \mathrm{m}$. and 6 a.m.

The equalization volume is identical to the volume calculated in Part 1. The only difference in the equalization tank design is the capacity of the pump that sends sidestream to the plant.

Problem 15-3

Problem Statement—see text on page 1729

Solution

1. Estimate FeCl_{3} demand at a dosage rate of $2 \mathrm{~kg} \mathrm{Fe} / \mathrm{kg} \mathrm{P}$ for the sidestream ortho-P $=190 \mathrm{mg} / \mathrm{L}$ presented in Problem 15-2.

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{dw}}=\left(83 \mathrm{~m}^{3} / \mathrm{h}\right)(8 \mathrm{~h} / \mathrm{d})=664 \mathrm{~m}^{3} / \mathrm{d} \\
& \begin{aligned}
\text { Phosphate-P load } & =\left(664 \mathrm{~m}^{3} / \mathrm{d}\right)(190 \mathrm{mg} / \mathrm{L})\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right) \\
& =126 \mathrm{~kg}-\mathrm{P} / \mathrm{d}
\end{aligned}
\end{aligned}
$$

Fe requirement $=(126 \mathrm{~kg}-\mathrm{P} / \mathrm{d})(2 \mathrm{~kg} \mathrm{Fe} / \mathrm{kg} \mathrm{P})$

$$
=252 \mathrm{~kg}-\mathrm{Fe} / \mathrm{d}
$$

Molecular weight of ferric chloride $=162.3 \mathrm{~g} / \mathrm{mole}$
2. Estimate struvite production rate for a crystallizer effluent $\mathrm{PO}_{4}-\mathrm{P}$ concentration is $15 \mathrm{mg} / \mathrm{L}$ and 100% struvite recovery efficiency.

First, calculate the molecular weight of $\mathrm{MgNH}_{4} \mathrm{PO}_{4}-6 \mathrm{H}_{2} \mathrm{O}$.
Molecular weight $=24.3+18+95+6(18)=245.3$
Calculate struvite production:
Crystallizer effluent $\mathrm{PO}_{4}-\mathrm{P}=15 \mathrm{mg} / \mathrm{L}$

$$
\begin{aligned}
\text { Phosphate removed } & =\left(664 \mathrm{~m}^{3} / \mathrm{d}\right)(190 \mathrm{mg} \mathrm{P} / \mathrm{L}-15 \mathrm{mg} \mathrm{P} / \mathrm{L})\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right) \\
& =116 \mathrm{~kg}-\mathrm{P} / \mathrm{d}
\end{aligned}
$$

$$
\text { Struvite mass }=(116 \mathrm{~kg} \mathrm{P} / \mathrm{d})\left(\frac{245.3 \mathrm{~kg} \text { struvite }}{31 \mathrm{~kg} \mathrm{P}}\right)
$$

$$
=918 \text { kg struvite } / \mathrm{d}
$$

Problem 15-4

Problem Statement—see text on page 1729

Solution

1. Calculate $\mathrm{NH}_{3}-\mathrm{N}$ in crystallizer effluent using the struvite production rate calculated in Problem 15-3.

$$
\begin{aligned}
\mathrm{N} \text {-removed } & =(918 \mathrm{~kg} \text { struvite } / \mathrm{d})\left(\frac{14 \mathrm{~kg} \mathrm{~N}}{245.3 \mathrm{~kg} \text { struvite }}\right) \\
& =52.4 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

$$
\text { Ammonia- } \mathrm{N}=(1050 \mathrm{mg} / \mathrm{L})-\left[\frac{(52.4 \mathrm{~kg} \mathrm{~N} / \mathrm{d})}{\left(664 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)
$$

$$
=971 \mathrm{mg}-\mathrm{N} / \mathrm{L}
$$

$$
\begin{aligned}
& \mathrm{FeCl}_{3} \text { requirement }=(252 \mathrm{~kg} \mathrm{Fe} / \mathrm{d})\left(\frac{162.3 \mathrm{~kg} \mathrm{FeCl}_{3}}{55.8 \mathrm{~kg} \mathrm{Fe}}\right) \\
& =733 \mathrm{~kg} \mathrm{FeCl} 3 / \mathrm{d} \\
& \text { Solution volume }=\left(733 \mathrm{~kg} \mathrm{FeCl}_{3} / \mathrm{d}\right)\left(\frac{1 \mathrm{~kg} \text { solution }}{0.37 \mathrm{~kg} \mathrm{FeCl}_{3}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~kg}}\right)\left(\frac{1}{1.4}\right) \\
& =1.415 \mathrm{~m}^{3} / \mathrm{d}
\end{aligned}
$$

2. Estimate the deammonification SBR volume requirement using the sidestream equalized flow rate calculated in Problem 15-2 and the given data presented in Problem 15-3(b).
a. The first step is to calculate the sidestream volume fed to the SBR during each cycle:

Given operating conditions: 3 SBR cycles/d
Equalized sidestream flow rate, $Q_{d w}=664 \mathrm{~m}^{3} / \mathrm{d}$

$$
\begin{aligned}
\text { Feed volume/cycle } & =\left(664 \mathrm{~m}^{3} / \mathrm{d}\right)\left(\frac{1 \mathrm{~d}}{3 \text { SBR cycles }}\right) \\
& =221.3 \mathrm{~m}^{3} / \text { cycle }
\end{aligned}
$$

b. In the second step, calculate the total oxygen demand per SBR cycle:

Total oxygen demand $=$ nitrogenous oxygen demand + carbonaceous oxygen demand

For a crystallizer effluent ammonia-N concentration of $971 \mathrm{mg} / \mathrm{L}$ and 100% ammonia removal, the nitrogenous oxygen demand per SBR cycle is
(221.3 m^{3} /cycle)(971 $\left.\mathrm{mg} \mathrm{N} / \mathrm{L}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1.83 \mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~kg} \mathrm{~N}}\right)$
$=393 \mathrm{~kg} \mathrm{O}_{2} /$ cycle
The carbonaceous oxygen demand is 8% of the nitrogenous oxygen demand (given condition):

Carbonaceous oxygen demand

$$
=(0.08)\left(393 \mathrm{~kg} \mathrm{O}_{2} / \text { cycle }\right)=31 \mathrm{~kg} \mathrm{O}_{2} / \text { cycle }
$$

Total oxygen demand per cycle $=31 \mathrm{~kg} \mathrm{O}_{2}+393 \mathrm{~kg} \mathrm{O}_{2}=424 \mathrm{~kg} \mathrm{O}_{2}$
c. Calculate the duration of each SBR cycle when the SBR is being aerated:

For 3 SBR cycles per day with 1 h settle and 1 h decant periods, the fill/react time per cycle $=6 \mathrm{~h} / \mathrm{cycle}$

Aerobic time per SBR cycle $=(6 \mathrm{~h} /$ cycle $)(0.66)$
$=3.96 \mathrm{~h} / \mathrm{cycle}$
d. Calculate the minimum SBR liquid volume based on a maximum OUR of $150 \mathrm{mg} / \mathrm{L} \cdot \mathrm{h}$ for the aeration system and the maximum liquid volume with sidestream volume treated per SBR cycle:

Actual Oxygen Rate $(\mathrm{AOR})=\left(424 \mathrm{~kg} \mathrm{O}_{2} /\right.$ cycle $)(1$ cycle $/ 3.96$ aerobic h$)$ $=107 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}$
Min. liquid volume $=\left(107 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{\mathrm{L} \mathrm{h}}{139 \mathrm{mg}}\right)$

$$
\begin{aligned}
& =769,800 \mathrm{~L} \\
& =769.8 \mathrm{~m}^{3}
\end{aligned}
$$

Max. liquid volume $=769.8+221.3=991 \mathrm{~m}^{3}$

Problem 15-5

Problem Statement—see text on page 1729-1730
Instructors Note: The purpose of this problem is to illustrate the importance of biological heat generation in biological processes treating sidestream or high strength industrial wastewaters.

Solution

1. Calculate the heat released by nitrification-denitrification, nitritationdenitritation and deammonification using the performance criteria presented in the problem statement.
i. Nitrification-Denitrification

The first step is to calculate the ammonia load and the ammonia removed in the process. The following conditions apply:
$Q=600 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{NH}_{3}-\mathrm{N}=900 \mathrm{mg} / \mathrm{L}$
$95 \% \mathrm{NH}_{3}-\mathrm{N}$ removal;

Ammonia-N load =

$$
\begin{aligned}
\text { Ammonia-N load } & =\left(600 \mathrm{~m}^{3} / \mathrm{d}\right)(900 \mathrm{mg} \mathrm{~N} / \mathrm{L})\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right) \\
& =540 \mathrm{~kg}-\mathrm{N} / \mathrm{d}
\end{aligned}
$$

Ammonia-N load $=\left(600 \mathrm{~m}^{3} / \mathrm{d}\right)(900 \mathrm{mg} \mathrm{N} / \mathrm{L})\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)$

$$
=540 \mathrm{~kg}-\mathrm{N} / \mathrm{d}
$$

The COD required for denitrification is calculated using the following conditions:
$95 \% \mathrm{NO}_{3}$ - N removal
$\mathrm{Y}_{\mathrm{H}}=0.2 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{COD}$

Calculate the nitrate- N mass that is denitrified:

$$
\begin{aligned}
\mathrm{NO}_{3}-\mathrm{N} \text { load } & =(513 \mathrm{~kg} \mathrm{~N} / \mathrm{d})(0.95) \\
& =487 \mathrm{~kg}-\mathrm{N} / \mathrm{d}
\end{aligned}
$$

Apply Eq. (7-126) to calculate the COD required to denitrify 1 kg of nitrateN :

COD $/ \mathrm{N}=\frac{2.86}{1-1.42(0.2)}=3.99 \mathrm{~kg} \mathrm{COD} / \mathrm{kg} \mathrm{N}$
Calculate the biological heat produced by nitrification and denitrification using the information in Table 15-9:

Biological heat production

$$
\begin{aligned}
& =\left(513 \frac{\mathrm{~kg} \mathrm{~N}}{\mathrm{~d}}\right)\left(-21.8 \frac{\mathrm{MJ}}{\mathrm{~kg} \mathrm{~N}}\right) \\
& \quad+\left(3.99 \frac{\mathrm{~kg} \mathrm{COD}}{\mathrm{~kg} \mathrm{~N}}\right)\left(487 \frac{\mathrm{~kg} \mathrm{~N}}{\mathrm{~d}}\right)\left\{[(-13.6)+(20.7)(0.2)] \frac{\mathrm{MJ}}{\mathrm{~kg} \mathrm{COD}}\right\} \\
& =-29,565 \mathrm{MJ} / \mathrm{d}
\end{aligned}
$$

ii. Nitritation-Denitritation

Based on the performance criteria, the ammonia removal efficiency for nitritation-denitritation is equal to nitrification-denitrification. Therefore, Ammonia load removed $=513 \mathrm{~kg} / \mathrm{d}$ (calculated above)

Calculate the nitrite-N load that is removed based on a 95\% removal efficiency:
$\mathrm{NO}_{2}-\mathrm{N}$ removed $=(513 \mathrm{~kg} \mathrm{~N} / \mathrm{d})(0.95)=487 \mathrm{~kg} / \mathrm{d}$
Use Eq. $(15-12)$ to calculate the COD required to reduce 1 kg of nitrite-N.
$\mathrm{COD} / \mathrm{N}=\frac{1.71}{1-1.42(0.2)}=2.39 \mathrm{~kg} \mathrm{COD} / \mathrm{kg} \mathrm{N}$

Calculate the biological heat produced by nitrification and denitrification using the information in Table 15-9:
Biological heat generation $=$

$$
\begin{aligned}
& =\left(513 \frac{\mathrm{~kg} \mathrm{~N}}{\mathrm{~d}}\right)\left(-14.3 \frac{\mathrm{MJ}}{\mathrm{~kg} \mathrm{~N}}\right) \\
& \quad+\left(2.39 \frac{\mathrm{~kg} \mathrm{COD}}{\mathrm{~kg} \mathrm{~N}}\right)\left(487 \frac{\mathrm{~kg} \mathrm{~N}}{\mathrm{~d}}\right)\left\{[(-17.0)+(25.5)(0.2)] \frac{\mathrm{MJ}}{\mathrm{~kg} \mathrm{COD}}\right\} \\
& =-21,187 \mathrm{MJ} / \mathrm{d}
\end{aligned}
$$

iii. Deammonification

The ammonia-N load removed by the deammonification process is identical to nitrification-denitrification and nitritation-denitritation:

Ammonia load removed $=513 \mathrm{~kg} / \mathrm{d}$ (calculated above)

Using the information in Table 15-9, calculate the heat generated by deammonification:
Biological heat generation $=(513 \mathrm{~kg} / \mathrm{d})(-18.6 \mathrm{MJ} / \mathrm{kg} \mathrm{N})$

$$
=-9542 \mathrm{MJ} / \mathrm{d}
$$

2. Calculate the fraction of heat that must be removed from each process to avoid an operating temperature from increasing above $38^{\circ} \mathrm{C}$. The sidestream temperature is $35^{\circ} \mathrm{C}$.

i. Nitrification-Denitrification

The heat that can be retained by the process is the heat that increases the sidestream from $35^{\circ} \mathrm{C}$ to the maximum reactor temperature of $38^{\circ} \mathrm{C}$. The sensible heat is calculated as follows, using the density of pure water as an approximation of sidestream density:

Heat capacity of water at $35^{\circ} \mathrm{C}=4.178 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
Density of water $=994 \mathrm{~kg} / \mathrm{m}^{3}$ (Appendix C)
Heat required to increase the sidestream temperature from 35 to $38^{\circ} \mathrm{C}$ is:

$$
\begin{aligned}
\text { Heat required } & =\left(4.178 \frac{\mathrm{~J}}{\mathrm{~g} \mathrm{o}^{\circ} \mathrm{C}}\right)\left(\frac{1 \mathrm{MJ}}{10^{6} \mathrm{~J}}\right)\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{994 \mathrm{~kg}}{1 \mathrm{~m}^{3}}\right)\left(3^{\circ} \mathrm{C}\right) \\
& =12.5 \mathrm{MJ} / \mathrm{m}^{3}
\end{aligned}
$$

In the next step, the heat generated per unit volume of sidestream is calculated using the heat generation rate calculated in Part 1(i) above.

Heat generation per volume sidestream $=\frac{(-29,565 \mathrm{MJ} / \mathrm{d})}{\left(600 \mathrm{~m}^{3} / \mathrm{d}\right)}=-49.3 \mathrm{MJ} / \mathrm{m}^{3}$
The fraction of the heat generated by nitrification-denitrification that must be removed or lost is calculated as follows:

Fraction of heat that must be lost or removed

$$
=\frac{\left(49.3 \mathrm{MJ} / \mathrm{m}^{3}-12.5 \mathrm{MJ} / \mathrm{m}^{3}\right)}{\left(49.3 \mathrm{MJ} / \mathrm{m}^{3}\right)}=0.746, \text { or } 74.6 \%
$$

ii. Nitritation-Denitritation

The heat that must be removed from the nitritation-denitritation process is calculated similarly.

Heat generation per volume sidestream $=\frac{(-21,186 \mathrm{MJ} / \mathrm{d})}{\left(600 \mathrm{~m}^{3} / \mathrm{d}\right)}=-35.3 \mathrm{MJ} / \mathrm{m}^{3}$
Fraction of heat removed/lost

$$
=\frac{\left(35.3 \mathrm{MJ} / \mathrm{m}^{3}-12.5 \mathrm{MJ} / \mathrm{m}^{3}\right)}{\left(35.3 \mathrm{MJ} / \mathrm{m}^{3}\right)}=0.646, \text { or } 64.6 \%
$$

iii. Deammonification

The heat that must be removed from the deammonification process is similarly calculated.
Heat generation $=\frac{(-9542 \mathrm{MJ} / \mathrm{d})}{\left(600 \mathrm{~m}^{3} / \mathrm{d}\right)}=-15.9 \mathrm{MJ} / \mathrm{m}^{3}$
Fraction of heat removed/lost

$$
=\frac{\left(15.9 \mathrm{MJ} / \mathrm{m}^{3}-12.5 \mathrm{MJ} / \mathrm{m}^{3}\right)}{\left(15.9 \mathrm{MJ} / \mathrm{m}^{3}\right)}=0.214, \text { or } 21.4 \%
$$

Problem 15-6

Problem Statement-see text on page 1730

Solution

1. Nitrification-Denitrification

The first step in the calculation of aeration energy is the calculation of nitrogenous and carbonaceous oxygen demands per SBR cycle using the information provided in the problem statement.

Sidestream volume per SBR cycle $=\frac{\left(600 \mathrm{~m}^{3} / \mathrm{d}\right)}{3 \mathrm{~d}}=200 \mathrm{~m}^{3}$

$$
\begin{aligned}
\text { Ammonia-N load per SBR cycle } & =\left(200 \mathrm{~m}^{3} / \text { cycle }\right)(900 \mathrm{mg} / \mathrm{L})\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right) \\
& =180 \mathrm{~kg} \mathrm{~N} / \text { cycle }
\end{aligned}
$$

In the calculation of nitrogenous oxygen demand, the ammonia-N removed for cell mass growth would be removed from the ammonia-N load to reduce the amount of ammonia that is nitrified and denitrified. For simplicity, nitrogen removal for cell mass synthesis is ignored in the calculations shown below. However, the students may account for nitrogen removal by assimilation using the net heterotrophic yield provided in one of the tables in the problem statement and using a nitrogen content of $0.1 \mathrm{~kg} \mathrm{~N} / \mathrm{kg}$ VSS. Under the warm conditions of
a sidestream reactor at a total SRT greater than 5 days, the net yield of autotrophic biomass is sufficiently low that ammonia removed for autotrophic cell mass synthesis can be ignored.

Nitrogenous oxygen requirement $=\left(180 \frac{\mathrm{~kg} \mathrm{~N}}{\text { cycle }}\right)\left(4.57 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~kg} \mathrm{~N}}\right)=822.6 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}$

In the calculation of carbonaceous oxygen demand, the student may assume the COD destroyed aerobically is proportional to the aerobic fraction of the fill/react period where the reactor is being filled continuously during this period. In reality, the fraction of the COD that is degraded aerobically is dependent on the relative aerobic and anoxic degradation rates, but assuming equal reaction rates for simplicity only introduces a small error in the calculation of the overall oxygen demand.

$$
\begin{aligned}
\text { COD load per SBR cycle } & =\left(200 \mathrm{~m}^{3} / \text { cycle }\right)(200 \mathrm{mg} / \mathrm{L})\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right) \\
& =40 \mathrm{~kg} / \text { cycle }
\end{aligned}
$$

Carbonaceous Oxygen requirement $=\left(40 \frac{\mathrm{~kg}}{\text { cycle }}\right)\left[1-\left(1.42 \frac{\mathrm{~kg}}{\mathrm{~kg}}\right)\left(0.2 \frac{\mathrm{~kg} \mathrm{VSS}}{\mathrm{kg} \mathrm{COD}}\right)\right](0.66)$

$$
=18.9 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}
$$

After calculation of the nitrogenous and carbonaceous oxygen demands, the minimum liquid volume is calculated using the maximum OUR of $150 \mathrm{mg} / \mathrm{L} \cdot \mathrm{h}$ for the aeration system. Assuming 100\% ammonia and COD removal in the calculation of reactor volume is common in the design of a SBR for sidestream treatment since it provide a conservative estimate of the minimum liquid volume requirement. In the calculation of aeration energy performed later in the problem solution, the ammonia and COD removal efficiencies are applied.

Aerobic time per SBR cycle $=\left(6 \frac{\mathrm{~h}}{\text { cycle }}\right)(0.66)=3.96 \frac{\mathrm{~h}}{\text { cycle }}$

$$
\begin{aligned}
\text { Minimum liquid volume } & =\left[822.6 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{cycle}}+18.9 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{cycle}}\right]\left(\frac{\text { cycle }}{3.96 \mathrm{~h}}\right)\left(\frac{\mathrm{Lch}}{150 \mathrm{mg}}\right)\left(\frac{10^{6} \mathrm{mg}}{\mathrm{~kg}}\right) \\
& =1,416,667 \mathrm{~L}=1417 \mathrm{~m}^{3}
\end{aligned}
$$

The maximum liquid volume of the SBR is the minimum volume plus the sidestream and dilution water volumes per SBR cycle.

Maximum liquid volume $=\left(\right.$ minimum volume, $\left.\mathrm{m}^{3}\right)+\left(\right.$ volume per cycle, $\mathrm{m}^{3} /$ cycle $)$

$$
\begin{aligned}
& =1417 \mathrm{~m}^{3}+\left[\left(200 \frac{\mathrm{~m}^{3}}{\mathrm{~d}}\right)\left(\frac{1 \mathrm{~d}}{3 \text { cycles }}\right)+\left(200 \frac{\mathrm{~m}^{3}}{\text { cycle }}\right)\right] \\
& =1684 \mathrm{~m}^{3}
\end{aligned}
$$

The dimensions of the SBR are determined to estimate the average sidewater depth during the fill/react period. The average depth is also used to estimate the average aeration energy per SBR cycle. An accurate estimate of aeration energy would account for non-linearity in aeration energy with diffuser submergence depth, in which the air flow calculation would be conducted incrementally from the minimum to the maximum depth and integrated over the fill/react period. However, in the absence of data on the Specific Oxygen Transfer Efficiency (SOTE) as a function of depth, the average aeration energy can be estimated by calculating the air flow rate at the average fill depth during each SBR cycle.
For a maximum sidewater depth of 7 m :
Surface area $=\frac{1684 \mathrm{~m}^{3}}{7 \mathrm{~m}}=240.6 \mathrm{~m}^{2}$
Minimum sidewater depth $=\frac{1417 \mathrm{~m}^{3}}{240.6 \mathrm{~m}^{2}}=5.89 \mathrm{~m}$
Average sidewater depth $=\frac{7 \mathrm{~m}+5.89 \mathrm{~m}}{2}=6.45 \mathrm{~m}$
Average diffuser submergence $=6.45 \mathrm{~m}-0.25 \mathrm{~m}=6.2 \mathrm{~m}$

Eq. (5-70) is applied to calculate the AOTR to SOTR ratio:

$$
\operatorname{AOTR}=\operatorname{SOTR}\left(\frac{\tau \beta \Omega \mathrm{C}_{\infty, 20}^{*}-\mathrm{C}}{\mathrm{C}_{\infty, 20}^{*}}\right) \theta^{\mathrm{T}-20} \alpha \mathrm{~F}
$$

where

$$
\begin{aligned}
& \tau=\frac{\mathrm{C}_{\mathrm{s}, \mathrm{~T}}^{*}}{\mathrm{C}_{\mathrm{s}, 20}} \text {, and } \\
& \quad \mathrm{C}_{\mathrm{S}, \mathrm{~T}}^{*}\left(34^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)=7.05 \mathrm{mg} / \mathrm{L} \quad \text { (Appendix E) } \\
& \mathrm{C}_{\mathrm{S}, \mathrm{~T}}^{*}\left(20^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)=9.08 \mathrm{mg} / \mathrm{L} \quad \text { (Appendix E) } \\
& \tau=\frac{\mathrm{C}_{\mathrm{s}, \mathrm{~T}}^{*}}{\mathrm{C}_{\mathrm{s}, 20}^{*}}=\frac{(7.05 \mathrm{mg} / \mathrm{L})}{(9.08 \mathrm{mg} / \mathrm{L})}=0.776 \\
& \Omega=\frac{\mathrm{P}_{\mathrm{b}}}{\mathrm{P}_{\mathrm{s}}}=\frac{99.97 \mathrm{kPa}}{101.325 \mathrm{kPa}}=0.987 \\
& \mathrm{C}_{\infty, 20}^{*}=\mathrm{C}_{\mathrm{s}, 20}^{*}\left[1+\mathrm{C}_{\mathrm{e}}\left(\frac{\mathrm{D}_{\mathrm{f}}}{\mathrm{P}_{\mathrm{s}}}\right)\right]
\end{aligned}
$$

where $d_{e}=0.4 ; D_{f}=$ diffuser submergence, m; and $P_{s}=10.33 \mathrm{~m}$

$$
\mathrm{C}_{\infty, 20}^{*}=\left(\mathrm{C}_{\mathrm{s}, 20}^{*}\right)\left[1+\mathrm{d}_{\mathrm{e}}\left(\frac{\mathrm{D}_{\mathrm{f}}}{\mathrm{P}_{\mathrm{s}}}\right)\right]=(9.08 \mathrm{mg} / \mathrm{L})\left[1+0.4\left(\frac{6.2 \mathrm{~m}}{10.33 \mathrm{~m}}\right)\right]=11.26 \mathrm{mg} / \mathrm{L}
$$

Values of the remaining aeration parameters in Eq. (5-70) are provided in the problem statement.

$$
\begin{aligned}
\frac{\text { AOTR }}{\text { SOTR }} & =\left[\frac{\tau \beta \Omega \mathrm{C}_{\infty}^{*}, 20}{\mathrm{C}_{\infty, 20}^{*}-\mathrm{C}}\right] \theta^{\mathrm{T}-20} \alpha \mathrm{~F} \\
& =\left[\frac{(0.776)(0.95)(0.987)(11.26)-2.0}{11.26}\right]\left(1.024^{34-20}\right)(0.5)(0.85) \\
& =0.326
\end{aligned}
$$

In the next step, the AOTR for the aerated periods of the fill/react period is calculated with the nitrogeneous and carbonaceous oxygen demands calculated above and the actual ammonia and COD removal efficiencies provided in the problem statement.

AOTR $=\frac{\left[\left(822.6 \mathrm{~kg} \mathrm{O}_{2}\right)(0.9)+\left(18.9 \mathrm{~kg} \mathrm{O}_{2}\right)(0.95)\right]}{3.96 \mathrm{~h}}=191.5 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~h}}$
The SOTR is calculated with the AOTR to SOTR ratio as follows.
SOTR $=\frac{\left(191.5 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)}{0.326}=587.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}$
The air flow rate at the mid-fill depth is calculated using the SOTE value per unit depth. The value provided in the problem statement is common for fine bubble diffusers over a narrow depth change. The non-linearity of SOTE with depth requires significant detailed data. In the absence of this information, the error introduced by assuming that SOTE is linear from the minimum to the maximum sidewater depths is small and acceptable for this analysis.
Standard air flow rate $=\left(\frac{\text { SOTR }}{\text { SOTE }}\right) /\left[(\right.$ Density of air $\left.)\left(\frac{\text { Mass } \mathrm{O}_{2}}{\text { Mass air }}\right)\right]$
Where:
$\rho_{\text {air }, 20^{\circ} \mathrm{c}, \text { tatm }}=1.204 \frac{\mathrm{~kg} \text { air }}{\mathrm{m}^{3}}$, and
Fraction of air composed of oxygen $=0.2318 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~kg} \text { air }}$ (Appendix B).
SOTE $=(0.06 / \mathrm{m})(6.2 \mathrm{~m})=0.372$

$$
\begin{aligned}
\text { Standard air flow rate } & =\left[\frac{\left(587.4 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)}{0.372}\right]\left(\frac{\mathrm{m}^{3}}{1.204 \mathrm{~kg} \mathrm{air}}\right)\left(\frac{\mathrm{kg} \mathrm{air}}{0.2318 \mathrm{~kg} \mathrm{O}_{2}}\right) \\
& =5658 \mathrm{~m}^{3} / \mathrm{h}=1.57 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

In the final step, aeration energy is calculated by applying Eq. (5-77). The site ambient conditions are near standard conditions. A correction to actual conditions is typically performed, in which the air mass flow rate is calculated at the annual average ambient conditions (temperature, pressure and relative humidity). For simplicity, the students may calculate the power requirement for the air blower with standard air flow rate calculated above and the air density at standard conditions.
$\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{wRT}_{1}}{28.97 \mathrm{ne}}\left[\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right)^{0.283}-1\right]$
Where:
$\mathrm{p}_{\mathrm{w}}=$ power consumption, kW
$\mathrm{w}=$ air mass flow rate, kg / s
$\mathrm{T}_{1}=$ blower inlet temp, K
$\mathrm{p}_{1}=$ blower inlet pressure, atm
$\mathrm{p}_{2}=$ blower outlet pressure, atm
$\mathrm{n}=(\mathrm{k}-1) / \mathrm{k}=0.283$ (air)
$\mathrm{e}=$ total efficiency
R = 8.314, J/mole CK
The inlet blower pressure is the average ambient pressure minus the pressure drop across the blower inlet.
Blower inlet pressure $=99.97 \mathrm{kPa}-1.7 \mathrm{kPa}=98.27 \mathrm{kPa}$
The blower outlet pressure is calculated by summing the barometric pressure, the pressure drop through the air piping, values and diffusers, and the mid-fill diffuser submergence depth.

Blower outlet pressure $=\left(\frac{6.2 \mathrm{~m}}{10.33 \mathrm{~m}}\right)(101.325 \mathrm{kPa})+12 \mathrm{kPa}+99.97 \mathrm{kPa}$

$$
=172.78 \mathrm{kPa}
$$

Overallefficiency $=(0.90)(0.75)=0.675$
$\mathrm{w}=\left(1.57 \mathrm{~m}^{3} / \mathrm{s}\right)\left(1.204 \mathrm{~kg} / \mathrm{m}^{3}\right)=1.89 \mathrm{~kg} / \mathrm{s}$
$\mathrm{P}_{\mathrm{w}}=\frac{(1.89 \mathrm{~kg} / \mathrm{s})(8.314 \mathrm{~kJ} / \mathrm{kmole} \mathrm{K})(273.15 \mathrm{~K}+20 \mathrm{~K})}{(28.97)(0.283)(0.675)}\left[\left(\frac{172.78}{98.27}\right)^{0.283}-1\right]$
$=140.6 \mathrm{~kW}$
Aeration energy $=(140.6 \mathrm{~kW})\left(3.96 \frac{\mathrm{~h}}{\text { cycle }}\right)\left(3 \frac{\text { cycles }}{\mathrm{d}}\right)=16 \mathrm{kWh} / \mathrm{d}$
Mixing energy is calculated with the maximum liquid volume, as indicated in the problem statement. Because the mixer(s) only operate during the anoxic phase
of each aeration cycle, the total anoxic time is applied to the calculation as follows.

Mixing energy $=\frac{\left(4 \mathrm{~W} / \mathrm{m}^{3}\right)\left(1684 \mathrm{~m}^{3}\right)\left(2.04 \frac{\mathrm{~h}}{\text { cycle }}\right)\left(3 \frac{\text { cycle }}{\mathrm{d}}\right)\left(\frac{1 \mathrm{~kW}}{10^{3} \mathrm{~W}}\right)}{0.84}=49 \mathrm{kWh} / \mathrm{d}$

2. Nitritation-Denitritation

The procedure for calculating aeration and mechanical mixing energy consumption rates for nitritation-denitritation is identical to the procedure used above for the nitrification-denitrification operating condition.

Calculate the nitrogenous and carbonaceous oxygen demands for the calculation of the minimum liquid depth.

Nitrogenous Oxygen requirement $=\left(180 \frac{\mathrm{~kg} \mathrm{~N}}{\text { cycle }}\right)\left(3.43 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~kg} \mathrm{~N}}\right)=617.4 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}$ Carbonaceous Oxygen requirement $=18.9 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}$

Minimum Liquid volume $=\left[617.4 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}+18.9 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}\right]\left(\frac{\text { cycle }}{3.96 \text { AER } \mathrm{h}}\right)\left(\frac{\mathrm{Loh}}{150 \mathrm{mg}}\right)\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)$

$$
=1,071,212 \mathrm{~L}=1071 \mathrm{~m}^{3}
$$

Calculate the maximum liquid level and the mid-fill water depth as in Step 1.
Maximum Liquid volume $=1071 \mathrm{~m}^{3}+\left[\left(100 \frac{\mathrm{~m}^{3}}{\mathrm{~d}}\right)\left(\frac{\mathrm{d}}{3 \text { cycles }}\right)+200 \frac{\mathrm{~m}^{3}}{\text { cycle }}\right]=1304 \mathrm{~m}^{3}$

Maximumsidewater depth $=7 \mathrm{~m}$
Surface area $=\frac{1304 \mathrm{~m}^{3}}{7 \mathrm{~m}}=186.3 \mathrm{~m}^{2}$
Minimum sidewater depth $=\frac{1071 \mathrm{~m}^{3}}{186.3 \mathrm{~m}^{2}}=5.75 \mathrm{~m}$

Average sidewater depth $=\frac{7 \mathrm{~m}+5.75 \mathrm{~m}}{2}=6.38 \mathrm{~m}$
Average diffuser submergence $=(6.38 \mathrm{~m}-0.25 \mathrm{~m})=6.13 \mathrm{~m}$

Apply Eq. (5-70) to calculate the AOTR to SOTR ratio. Because the conditions used in the application of Eq. (5-70) are identical to the nitrification-denitrification SBR, the values of the aeration parameters are the same as used above.
$\mathrm{C}_{\mathrm{s}, \mathrm{T}}^{*}=7.05 \mathrm{mg} / \mathrm{L}$
$C_{\infty, 20}^{*}=(9.08 \mathrm{mg} / \mathrm{L})\left[1+0.4\left(\frac{6.13 \mathrm{~m}}{10.33 \mathrm{~m}}\right)\right]=11.24 \mathrm{mg} / \mathrm{L}$
$\Omega=0.987$
$\tau=0.776$
$\frac{\text { AOTR }}{\text { SOTR }}=\left[\frac{(0.776)(0.95)(0.987)(11.24)-0.5}{11.24}\right]\left(1.024^{34-20}\right)(0.5)(0.85)=0.405$

Calculate the AOTR with the nitrogenous and carbonaceous oxygen demands calculated above.
AOTR $=\frac{\left[\left(617.4 \mathrm{~kg} \mathrm{O}_{2}\right)(0.9)+\left(18.9 \mathrm{~kg} \mathrm{O}_{2}\right)(0.95)\right]}{3.96 \mathrm{~h}}=144.9 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}$

Using the AOTR to SOTR ratio calculated above, the SOTR and standard air flow rate are calculated as follows.

SOTR $=\frac{\left(144.9 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)}{0.405}=357.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}$
Air flow rate $\left.=\frac{\left(357.8 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)}{\left[\left(\frac{0.06}{\mathrm{~m}}\right)(6.13 \mathrm{~m})\left(1.204 \frac{\mathrm{~kg} \text { air }}{\mathrm{m}^{3}}\right)\left(0.2318 \frac{\mathrm{~kg} \mathrm{O}}{\mathrm{kg} \text { air }}\right)\right.}\right]$
$=3486 \mathrm{~m}^{3} / \mathrm{h}=0.968 \mathrm{~m}^{3} / \mathrm{s}$

The air blower power consumption rate is calculated with Eq. (5-77).
$\mathrm{w}=\left(0.968 \mathrm{~m}^{3} / \mathrm{s}\right)\left(1.204 \mathrm{~kg}\right.$ air $\left./ \mathrm{m}^{3}\right)=1.17 \mathrm{~kg} \mathrm{air} / \mathrm{s}$

Average blower outlet pressure $=\left(\frac{6.13 \mathrm{~m}}{10.33 \mathrm{~m}}\right)(101.325 \mathrm{kPa})+12 \mathrm{kPa}+99.97 \mathrm{kPa}$

$$
=172.10 \mathrm{kPa}
$$

$P_{w}=\left[\frac{(1.17 \mathrm{~kg} / \mathrm{s})(8.314 \mathrm{~kJ} / \mathrm{kmole} \mathrm{K})(273.15 \mathrm{~K}+20 \mathrm{~K})}{(28.97)(0.283)(0.675)}\right]\left[\left(\frac{172.78}{98.27}\right)^{0.283}-1\right]$
$=88.6 \mathrm{~kW}$
Aeration energy $=(88.6 \mathrm{~kW})\left(3.96 \frac{\mathrm{~h}}{\text { cycle }}\right)\left(3 \frac{\text { cycle }}{\mathrm{d}}\right)=1053 \frac{\mathrm{kWh}}{\mathrm{d}}$

The mixing energy is calculated at the maximum liquid depth for the anoxic periods.

Mixing energy $=\frac{\left(4 \mathrm{~W} / \mathrm{m}^{3}\right)\left(1304 \mathrm{~m}^{3}\right)\left(2.04 \frac{\mathrm{~h}}{\text { cycle }}\right)\left(3 \frac{\text { cycle }}{\mathrm{d}}\right)\left(\frac{1 \mathrm{~kW}}{1000 \mathrm{~W}}\right)}{0.84}=38 \mathrm{kWh} / \mathrm{d}$

3. Deammonification

The procedure for calculating aeration and mechanical mixing energy consumption rates for deammonification is identical to the procedure used above for the nitrification-denitrification and nitritation-denitritation operating conditions.

Calculate the nitrogenous and carbonaceous oxygen demands for the calculation of the minimum liquid depth.

Nitrogenous Oxygen Demand $=\left(180 \frac{\mathrm{~kg} \mathrm{~N}}{\text { cycle }}\right)\left(1.94 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~kg} \mathrm{~N}}\right)=349.2 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}$
CarbonaceousOxygenDemand $=18.9 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{cycle}}$

$$
\begin{aligned}
\text { Minimumliquidvolume } & =\left[349.2 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{cycle}}+18.9 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\text { cycle }}\right]\left(\frac{\text { cycle }}{3.96 \mathrm{~h}}\right)\left(\frac{\mathrm{L} \cdot \mathrm{~h}}{150 \mathrm{mg}}\right)\left(\frac{10^{6} \mathrm{mg}}{\mathrm{~kg}}\right) \\
& =619,697 \mathrm{~L}=620 \mathrm{~m}^{3}
\end{aligned}
$$

Calculate the maximum liquid level and the mid-fill water depth.
Maximum liquid volume $=620 \mathrm{~m}^{3}+200 \mathrm{~m}^{3}=820 \mathrm{~m}^{3}$
Maximumsidewater depth $=7 \mathrm{~m}$
Surface area $=\frac{820 \mathrm{~m}^{3}}{7 \mathrm{~m}}=117.1 \mathrm{~m}^{2}$
Minimum sidewater depth $=\frac{620 \mathrm{~m}^{3}}{117.1 \mathrm{~m}^{2}}=5.29 \mathrm{~m}$
Average sidewater depth $=\frac{7 \mathrm{~m}+5.29 \mathrm{~m}}{2}=6.15 \mathrm{~m}$
Average diffuser submergence $=(6.15 \mathrm{~m}-0.25 \mathrm{~m})=5.90 \mathrm{~m}$

Apply Eq. (5-70) to calculate the AOTR to SOTR ratio. Since the conditions used in the application of Eq. (5-70) are identical to the nitrification-denitrification and nitritation-denitritation SBR, the values of the aeration parameters are the same as used above.

$$
\begin{aligned}
& \mathrm{C}_{\infty, 20}^{*}=(9.08 \mathrm{mg} / \mathrm{L})\left[1+0.4\left(\frac{5.9 \mathrm{~m}}{10.33 \mathrm{~m}}\right)\right]=11.15 \mathrm{mg} / \mathrm{L} \\
& \frac{\text { AOTR }}{\text { SOTR }}=\left[\frac{(0.776)(0.95)(0.987)(11.15)-03}{(11.15)}\right]\left(1.024^{34-20}\right)(0.5)(0.85)=0.415 \\
& \text { AOTR }=\frac{\left[\left(349.2 \mathrm{~kg} \mathrm{O}_{2}\right)(0.9)+\left(18.9 \mathrm{~kg} \mathrm{O}_{2}\right)(0.95)\right]}{3.96 \mathrm{~h}}=83.9 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}
\end{aligned}
$$

Using the AOTR to SOTR ratio calculated above, the SOTR and standard air flow rate are calculated as follows.

SOTR $=\frac{\left(83.9 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)}{0.415}=202.2 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}$

$$
\begin{aligned}
\text { Air flow rate } & =\frac{\left(202.2 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{h}\right)}{\left[\left(\frac{0.06}{\mathrm{~m}}\right)(5.9 \mathrm{~m})\left(1.204 \frac{\mathrm{~kg} \text { air }}{\mathrm{m}^{3}}\right)\left(0.2318 \frac{\mathrm{~kg} \mathrm{O}_{2}}{\mathrm{~kg} \mathrm{air}}\right)\right]} \\
& =2047 \mathrm{~m}^{3} / \mathrm{h}=0.587 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

The air blower power consumption rate is calculated with Eq. (5-77).
$\mathrm{w}=\left(0.587 \mathrm{~m}^{3} / \mathrm{s}\right)\left(1.204 \mathrm{~kg} \mathrm{air} / \mathrm{m}^{3}\right)=0.707 \mathrm{~kg} \mathrm{air} / \mathrm{s}$
Average blower outlet pressure $=\left(\frac{5.9 \mathrm{~m}}{10.33 \mathrm{~m}}\right)(101.325 \mathrm{kPa})+12 \mathrm{kPa}+99.97 \mathrm{kPa}$

$$
=169.84 \mathrm{kPa}
$$

$P_{w}=\left[\frac{(0.707 \mathrm{~kg} / \mathrm{s})(8.314 \mathrm{~kJ} / \mathrm{kmole} \mathrm{K})(273.15 \mathrm{~K}+20 \mathrm{~K})}{(28.97)(0.283)(0.675)}\right]\left[\left(\frac{169.84}{98.27}\right)^{0.283}-1\right]$
$=51.9 \mathrm{~kW}$
Aeration energy $=(51.9 \mathrm{~kW})\left(3.96 \frac{\mathrm{~h}}{\text { cycle }}\right)\left(3 \frac{\text { cycle }}{\mathrm{d}}\right)=617 \frac{\mathrm{kWh}}{\mathrm{d}}$
The mixing energy is calculated at the maximum liquid depth for the anoxic periods.

Mixing energy $=\frac{\left(4 \mathrm{~W} / \mathrm{m}^{3}\right)\left(820 \mathrm{~m}^{3}\right)\left(2.04 \frac{\mathrm{~h}}{\text { cycle }}\right)\left(3 \frac{\text { cycle }}{\mathrm{d}}\right)\left(\frac{1 \mathrm{~kW}}{1000 \mathrm{~W}}\right)}{0.84}=24 \mathrm{kWh} / \mathrm{d}$

Problem 15-7

Problem Statement—see text on page 1731-1732

Instructors Note: In addition to the information presented in the problem statement, the students should assume the pressate is not pretreated and the pressate, gravity thickener overflow and dissolved air flotation subnatant will be pumped to the inlet of the primary sedimentation tank. In the calculation of solids balances across the primary sedimentation tank, primary sludge gravity thickener, anaerobic digester and screw press, the contribution of pressate suspended solids is not included in the calculations presented below. For the
purpose of estimating nutrient mass rates in the pressate and primary effluent, pressate solids can be excluded as the majority of the solids mass is considered inert and, therefore, will contribute to minimal additional ammonia and phosphate during anaerobic digestion. For the purpose of illustrating the impact of sidestream inert solids on the plant solids balance, the students may conduct an iterative calculation by including the pressate suspended solids mass load to the primary sedimentation tank and assume the solids capture efficiencies in the primary sedimentation tank and primary sludge gravity thickener apply. For the anaerobic digester, the solids contributed by the pressate are considered inert and would reduce the volatile solids destruction efficiency accordingly.

Solution

1. Calculate the flow and TSS concentration for gravity thickener overflow and dissolved air flotation subnatant.
i. Gravity Thickener Overflow

The first step in the calculation of the gravity thickener overflow flow rate and TSS concentration is to calculate the primary sludge flow and solids mass rate using the information provided in the problem statement.

Primary influent TSS mass rate $=\left(26,500 \mathrm{~m}^{3} / \mathrm{d}\right)(290 \mathrm{mg} / \mathrm{L})\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)$

$$
=7685 \mathrm{~kg} \text { TSS/d }
$$

TSS removal(primary sludge $)=(7685 \mathrm{~kg}$ TSS $/ \mathrm{d})(0.6)=4611 \mathrm{~kg} / \mathrm{d}$
Primary sludge flow $=\frac{(4611 \mathrm{~kg} / \mathrm{d})}{(0.01)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=461.1 \mathrm{~m}^{3} / \mathrm{d}$
With the primary sludge flow and solids mass rate, the gravity thickener mass balance is conducted using the performance information provided in the problem statement.

Gravity thickened primary sludge $=(4611 \mathrm{~kg} / \mathrm{d})(0.93)=4288 \mathrm{~kg} / \mathrm{d}$
GTO TSS $=4611 \mathrm{~kg} / \mathrm{d}-4288 \mathrm{~kg} / \mathrm{d}=323 \mathrm{~kg}$ TSS $/ \mathrm{d}$
Thickened primary sludge flow $=\frac{(4288 \mathrm{~kg} / \mathrm{d})}{(0.06)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=71.5 \mathrm{~m}^{3} / \mathrm{d}$
Note: In the calculation of thickened primary sludge flow, a specific gravity is typically estimated for the anticipated solids concentration and applied in the flow calculation. For simplicity, a specific gravity of 1.0 is assumed.

GTO Flow $=461.1 \mathrm{~m}^{3} / \mathrm{d}-71.5 \mathrm{~m}^{3} / \mathrm{d}=389.6 \mathrm{~m}^{3} / \mathrm{d}$
GTO TSS concentration $=\left[\frac{(323 \mathrm{~kg} \mathrm{TSS} / \mathrm{d})}{\left(389.6 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)=829 \mathrm{mg} / \mathrm{L}$
ii. Dissolved air flotation (DAF)

The first step is to calculate the secondary sludge production rate:
cBOD removal in primary sedimentation tanks
$=\left(26,500 \frac{\mathrm{~m}^{3}}{\mathrm{~d}}\right)\left(275 \frac{\mathrm{mg} \mathrm{cBOD}}{\mathrm{L}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{1000 \mathrm{~L}}{\mathrm{~m}^{3}}\right)(0.30)$
$=2186 \frac{\mathrm{~kg} \mathrm{cBOD}}{\mathrm{d}}$
Primary effluent $c B O D$ mass rate $=\left(\frac{2186 \mathrm{~kg} \mathrm{cBOD} / \mathrm{d}}{0.3}\right)(0.7)=5101 \mathrm{~kg} / \mathrm{d}$
Secondary sludge production $=(5101 \mathrm{~kg} / \mathrm{d}) \frac{(0.98)\left(0.55 \frac{\mathrm{~kg} \mathrm{VSS}}{\mathrm{kg} \mathrm{cBOD}}\right)}{\left(0.8 \frac{\mathrm{~kg} \mathrm{VSS}}{\mathrm{kg} \mathrm{TSS}}\right)}=3437 \mathrm{~kg} / \mathrm{d}$

WAS flow $=\frac{(3437 \mathrm{~kg} / \mathrm{d})}{(7500 \mathrm{mg} / \mathrm{L})\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)}=458.3 \mathrm{~m}^{3} / \mathrm{d}$
With the waste secondary solids flow and mass rate, the mass balance around the dissolved air flotation unit is performed as follows using the information in the problem statement:

Thickenedsolids massrate $=(3437 \mathrm{~kg} / \mathrm{d})(0.95)=3265 \mathrm{~kg} / \mathrm{d}$
Subnatant solidsmassrate $=3437 \mathrm{~kg} / \mathrm{d}-3265 \mathrm{~kg} / \mathrm{d}=172 \mathrm{~kg} / \mathrm{d}$
Thickened solids flow $=\frac{(3265 \mathrm{~kg} / \mathrm{d})}{(0.05)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=65.3 \mathrm{~m}^{3} / \mathrm{d}$
Note: In the calculation of thickened solids flow rate, a specific gravity should be estimated for this stream. For simplicity, the specific gravity is assumed to be 1.0.

Subnatant flow $=458.3 \mathrm{~m}^{3} / \mathrm{d}-65.3 \mathrm{~m}^{3} / \mathrm{d}=393 \mathrm{~m}^{3} / \mathrm{d}$
Subnatant TSS concentration $=\left[\frac{(172 \mathrm{~kg} / \mathrm{d})}{\left(393 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~m}^{3}}{10^{3} \mathrm{~L}}\right)=438 \mathrm{mg} / \mathrm{L}$
2. Calculate pressate flow and concentrations of soluble TKN, TSS, and soluble phosphate.
i. Anaerobic digester mass balances are conducted first to calculate the soluble TKN and soluble phosphorus concentrations in the digester, which will be equal to concentrations in the pressate from the screw press. The use of washwater in the screw press will impact the nutrient concentrations in the pressate if washwater is combined with the pressate. For simplicity, washwater is excluded from the mass balances conducted below.

Combined thickened sludge flow to the anaerobic digester:
$Q_{T}=71.5 \mathrm{~m}^{3} / \mathrm{d}+65.3 \mathrm{~m}^{3} / \mathrm{d}=136.8 \mathrm{~m}^{3} / \mathrm{d}$

Solids balance across the anaerobic digester:
Total solids mass rate $=4288 \mathrm{~kg} / \mathrm{d}+3437 \mathrm{~kg} / \mathrm{d}=7725 \mathrm{~kg} / \mathrm{d}$
Volatile solids mass rate $=(4288 \mathrm{~kg} / \mathrm{d})\left[\frac{(226 \mathrm{mg} / \mathrm{L})}{(290 \mathrm{mg} / \mathrm{L})}\right]+(3437 \mathrm{~kg} / \mathrm{d})(0.8)$
$=6091 \mathrm{~kg} / \mathrm{d}$
Fixed solids mass rate $=7725 \mathrm{~kg} / \mathrm{d}-6091 \mathrm{~kg} / \mathrm{d}=1634 \mathrm{~kg} / \mathrm{d}$

Volatile solids destroyed $=0.5(6091 \mathrm{~kg} / \mathrm{d})=3046 \mathrm{~kg} / \mathrm{d}$
Digested solids mass rate $=3046 \mathrm{~kg} / \mathrm{d}+1634 \mathrm{~kg} / \mathrm{d}=4680 \mathrm{~kg} / \mathrm{d}$
Nitrogen balance across the anaerobic digester:
Organic-N mass rate $=(4288 \mathrm{~kg} / \mathrm{d})\left[\frac{(226 \mathrm{mg} / \mathrm{L})}{(290 \mathrm{mg} / \mathrm{L})}\right](0.04)+(3437 \mathrm{~kg} / \mathrm{d})(0.8)(0.095)$ $=395 \mathrm{~kg} \mathrm{~N} / \mathrm{d}$

Digested solids N mass rate $=0.06(3046 \mathrm{~kg} / \mathrm{d})=183 \mathrm{~kg} / \mathrm{d}$
Soluble TKN generated $=395 \mathrm{~kg} \mathrm{~N} / \mathrm{d}-183 \mathrm{~kg} \mathrm{~N} / \mathrm{d}=212 \mathrm{~kg} \mathrm{~N} / \mathrm{d}$
Soluble TKN concentration $=\left[\frac{(212 \mathrm{~kg} \mathrm{~N} / \mathrm{d})}{\left(129,075 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{d}\right)(1 \mathrm{~L} / \mathrm{kg})}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)$ $=1642 \mathrm{mg} / \mathrm{L}$

Phosphorus balance across the anaerobic digester:
Organic P mass rate to digesters $=(4288 \mathrm{~kg} / \mathrm{d})\left[\frac{(226 \mathrm{mg} / \mathrm{L})}{(290 \mathrm{mg} / \mathrm{L})}\right](0.015)$
$+(3437 \mathrm{~kg} / \mathrm{d})(0.8)(0.02)$
$=105 \mathrm{~kg} \mathrm{P} / \mathrm{d}$
Digested solids P mass rate $=(3046 \mathrm{~kg}$ VSS $/ \mathrm{d})(0.018 \mathrm{~kg} \mathrm{P} / \mathrm{kg}$ VSS $)$

$$
=55 \mathrm{~kg} \mathrm{P} / \mathrm{d}
$$

P released to bulk water $=105 \mathrm{~kg} \mathrm{P} / \mathrm{d}-55 \mathrm{~kg} \mathrm{P} / \mathrm{d}=50 \mathrm{~kg} \mathrm{P} / \mathrm{d}$
Soluble P concentration $=\left[\frac{(50 \mathrm{~kg} \mathrm{P} / \mathrm{d})}{\left(129,075 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} / \mathrm{d}\right)(1 \mathrm{~L} / \mathrm{kg})}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)=387 \mathrm{mg} / \mathrm{L}$
ii. Screw press mass balances are conducted using the digester effluent mass rates calculated above to estimate pressate flow and TSS concentration:

Screw press cake solids mass rate $=0.95(4680 \mathrm{~kg} / \mathrm{d})=4446 \mathrm{~kg} / \mathrm{d}$
Pressate solids mass rate $=4680 \mathrm{~kg} / \mathrm{d}-4446 \mathrm{~kg} / \mathrm{d}=234 \mathrm{~kg} / \mathrm{d}$
Water to digester $=\left(136.8 \mathrm{~m}^{3} / \mathrm{d}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)-7725 \mathrm{~kg} / \mathrm{d}=129,075 \mathrm{~kg} / \mathrm{d}$

> Cake water mass rate $=\frac{(4446 \mathrm{~kg} / \mathrm{d})}{0.25}(0.75)=13,338 \mathrm{~kg} / \mathrm{d}$
> Pressate water mass rate $=129,075 \mathrm{~kg} / \mathrm{d}-13,338 \mathrm{~kg} / \mathrm{d}=115,737 \mathrm{~kg} / \mathrm{d}$
> Pressate flow $=\frac{(115,737 \mathrm{~kg} / \mathrm{d})}{\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}=116 \mathrm{~m}^{3} / \mathrm{d}$
> Pressate TSS concentration $=\frac{\left[\frac{(234 \mathrm{~kg} / \mathrm{d})}{\left(116 \mathrm{~m}^{3} / \mathrm{d}\right)}\right]\left(\frac{10^{6} \mathrm{mg}}{1 \mathrm{~kg}}\right)}{\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)}=2017 \mathrm{mg} / \mathrm{L}$
3. Contributions of pressate soluble TKN and P mass rates to the primary effluent nutrient mass rates, expressed as percentages, are calculated by conducting nutrient balances across the primary sedimentation tank for raw influent using the information presented in the problem statement. Once the "base load" of nutrients in the primary effluent are calculated, the soluble N and P mass loads are added to calculate their contribution the primary effluent nutrient mass rates. The contribution of pressate nutrients to the primary effluent is calculated based on the assumption that soluble constituents are not removed in the primary sedimentation tank, e.g. phosphate precipitation.

Primary sedimentation tank solids and flow balances:
Primary effluent TSS mass rate $=7685 \mathrm{~kg} / \mathrm{d}-4611 \mathrm{~kg} / \mathrm{d}=3074 \mathrm{~kg} / \mathrm{d}$
Primary effluent VSS mass rate $=(3074 \mathrm{~kg} / \mathrm{d})\left[\frac{(226 \mathrm{mg} / \mathrm{L})}{(290 \mathrm{mg} / \mathrm{L})}\right]=2396 \mathrm{~kg} / \mathrm{d}$
Primary effluent $Q=26,500 \mathrm{~m}^{3} / \mathrm{d}-461 \mathrm{~m}^{3} / \mathrm{d}=26,039 \mathrm{~m}^{3} / \mathrm{d}$

Primary sedimentation tank TKN mass balance:

Primary effluent particulate TKN mass rate $=(2396 \mathrm{~kg} / \mathrm{d})(0.04)=96 \mathrm{~kg} / \mathrm{d}$
Primary influent sTKN concentration $=40 \mathrm{mg} / \mathrm{L}-(226 \mathrm{mg}$ VSS/L $)(0.04)$

$$
=31 \mathrm{mg} / \mathrm{L}
$$

Primary influent soluble TKN mass rate

$$
=\left(26,039 \mathrm{~m}^{3} / \mathrm{d}\right)(31 \mathrm{mg} / \mathrm{L})\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)=807 \mathrm{~kg} / \mathrm{d}
$$

TKN mass rate $=807 \mathrm{~kg} / \mathrm{d}+96 \mathrm{~kg} / \mathrm{d}=903 \mathrm{~kg} / \mathrm{d}$
Soluble Pconcentration $=7 \mathrm{mg}$ P/L $-(226 \mathrm{mg}$ VSS/L $)(0.015)=3.6 \mathrm{mg}$ P/L
Particulate P mass rate $=(2396 \mathrm{~kg} / \mathrm{d})(0.015)=36 \mathrm{~kg} \mathrm{P} / \mathrm{d}$
Total P mass rate $=\left(26,039 \mathrm{~m}^{3} / \mathrm{d}\right)(3.6 \mathrm{mg} \mathrm{P} / \mathrm{L})\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)+(36 \mathrm{~kg} \mathrm{P/d})$ $=130 \mathrm{~kg} \mathrm{P} / \mathrm{d}$

From the pressate mass balance calculations:

$$
\begin{aligned}
\text { Pressate sTKN mass rate } & =\left(116 \mathrm{~m}^{3} / \mathrm{d}\right)(1642 \mathrm{mg} / \mathrm{L})\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right) \\
& =190 \mathrm{~kg} \mathrm{~N} / \mathrm{d}
\end{aligned}
$$

Pressate soluble P mass rate $=\left(116 \mathrm{~m}^{3} / \mathrm{d}\right)(387 \mathrm{mg} / \mathrm{L})\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)$

$$
=45 \mathrm{~kg} \mathrm{P} / \mathrm{d}
$$

The contribution of the pressate soluble TKN and soluble phosphorus to the primary effluent mass rates, expressed in percent, are calculated as follows:

$$
\begin{aligned}
& \mathrm{N}, \%=\frac{(190 \mathrm{~kg} \mathrm{~N} / \mathrm{d})(100)}{(190 \mathrm{~kg} \mathrm{~N} / \mathrm{d})+(903 \mathrm{~kg} \mathrm{~N} / \mathrm{d})}=17.4 \\
& \mathrm{P}, \%=\frac{(45 \mathrm{~kg} \mathrm{P} / \mathrm{d})(100)}{(45 \mathrm{~kg} \mathrm{P} / \mathrm{d})+(130 \mathrm{~kg} \mathrm{P/d})}=25.7
\end{aligned}
$$

Problem 15-8
Problem Statement—see text on page 1733
Instructors Note: The referenced equations in the problem statement should be Eq. (7-126) in Sec. 15-8 and Eq. (15-12) in Sec. 15-9. The students should assume the net solids yield of 0.2 kg VSS / kg COD for both nitrificationdenitrification and nitritation-denitritation.

Solution

The COD required to reduce 1 kg of $\mathrm{NO}_{2}-\mathrm{N}$ is calculated with Eq. (15-12) using a net yield of 0.2 kg VSS / kg COD as follows.
$\frac{\mathrm{bsCOD}}{\mathrm{NO}_{2}-\mathrm{N}}=\frac{1.71}{1-(1.42)(0.2)}=2.39 \frac{\mathrm{~kg} \mathrm{bsCOD}}{\mathrm{kg} \mathrm{NO}_{2}-\mathrm{N}}$

Similarly, the COD required to reduce 1 kg of NO3-N is calculated using Eq. (7126) using a net yield of 0.2 kg VSS / kg COD as follows.
$\frac{\mathrm{bsCOD}}{\mathrm{NO}_{3}-\mathrm{N}}=\frac{2.86}{1-(1.42)(0.2)}=3.99 \frac{\mathrm{~kg} \mathrm{bsCOD}}{\mathrm{kg} \mathrm{NO}_{3}-\mathrm{N}}$

Since both COD requirements as based on 1 kg of nitrogen, the two values are subtracted to obtain the COD reduction per kg of nitrogen reduced.

Reduction in COD requirement $=3.99-2.39=1.6 \frac{\mathrm{~kg} \mathrm{COD} \text { saved }}{\mathrm{kg} \mathrm{N} \text { reduced }}$

Methanol is selected as the carbon source. The equivalent mass of methanol that is saved by operating the process in nitritation-denitritation mode is calculated as follows.

Methanol mass savings per kg nitrogen reduced $=\frac{\left(1.6 \frac{\mathrm{~kg} \mathrm{COD} \text { saved }}{\mathrm{kg} \mathrm{N} \text { reduced }}\right)}{\left(1.5 \frac{\mathrm{~kg} \mathrm{COD}}{\mathrm{kg} \mathrm{methanol}}\right)}$

$$
=1.1 \frac{\mathrm{~kg} \text { methanol saved }}{\mathrm{kg} \mathrm{~N} \text { reduced }}
$$

Problem 15-9

Problem Statement-see text on page 1733

Solution

1. Estimate the sodium carbonate dosing rate required to achieve complete nitrification of the sidestream described in Problem 15-2.

From the Problem 15-2 statement:
Ammonia-N concentration $=1050 \mathrm{mg}-\mathrm{N} / \mathrm{L}$

From the solution to Problem 15-2:
Daily sidestream volume $=664 \mathrm{~m}^{3} / \mathrm{d}$

With the concentration and flow rate, the ammonia mass rate is calculated.

$$
\begin{aligned}
\text { Ammonia }-\mathrm{N} \text { mass rate } & =\left(1050 \frac{\mathrm{mg} \mathrm{~N}}{\mathrm{~L}}\right)\left(\frac{10^{3} \mathrm{~L}}{\mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(664 \frac{\mathrm{~m}^{3}}{\mathrm{~d}}\right) \\
& =697 \frac{\mathrm{~kg} \mathrm{~N}}{\mathrm{~d}}
\end{aligned}
$$

As shown in Eq. (7-93) in Sec. 15-8, approximately 1.98 moles of bicarbonate are consumed per mole of ammonia- N that is oxidized when autotrophic cell mass synthesis is included in the mass balance. To account for the reduction in autotrophic yield due to decay, the selected alkalinity basis is 2 moles of bicarbonate per mole of ammonia- N or 7.14 grams of CaCO_{3} per gram of ammonia-N oxidized. Using this value, the alkalinity consumed for complete oxidation of ammonia is calculated as follows.

$$
\begin{aligned}
\text { Alkalinity consumption rate } & =(697 \mathrm{~kg} \mathrm{~N} / \mathrm{d})\left(7.14 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{kg} \mathrm{~N}\right) \\
& =4977 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{d}
\end{aligned}
$$

The mass of alkalinity required from an external source is the difference between the alkalinity consumption rate and the rate of alkalinity added to the reactor with the sidestream.

Sidestream alkalinity mass rate $=\left(3750 \mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}\right)\left(\frac{10^{3} \mathrm{~L}}{1 \mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{~kg}}{10^{6} \mathrm{mg}}\right)\left(664 \mathrm{~m}^{3} / \mathrm{d}\right)$ $=2490 \mathrm{~kg} \mathrm{CaCO} 3 / \mathrm{d}$

Alkalinity to be provided by external source $=4977 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{d}-2490 \mathrm{~kg} \mathrm{CaCO} 3 / \mathrm{d}$

$$
=2487 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{d}
$$

The mass of sodium carbonate required to supply the alkalinity is calculated as follows.

Calcium carbonate:
Molecular weight $=100 \mathrm{~g} / \mathrm{mole}$
$1 \mathrm{~mole}=2 \mathrm{eq}$
Therefore, 50 g of $\mathrm{CaCO}_{3}=1$ equivalent
Sodium carbonate:
Molecular weight $=106 \mathrm{~g} / \mathrm{mole}$
1 mole = 2 equivalents
Therefore, 53 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}=1$ equivalent
On a basis of equivalents:
53 grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}=50 \mathrm{~g}$ of CaCO_{3}
The mass rate of sodium carbonate is calculated as follows.
$\begin{aligned} \text { Sodium carbonate mass rate } & =\left(2487 \mathrm{~kg} \mathrm{CaCO}_{3} / \mathrm{d}\right)\left(\frac{53 \mathrm{~kg} \mathrm{Na}_{2} \mathrm{CO}_{3}}{50 \mathrm{~kg} \mathrm{CaCO}_{3}}\right) \\ & =2636 \mathrm{~kg} \mathrm{NaCO}_{3} / \mathrm{d}\end{aligned}$
2. Describe how the soda ash dosing requirement would change if the sidestream treatment process is modified from nitrification-denitrification to nitritation-denitritation.

Because the acidity generated during nitrification occurs during the oxidation of ammonia to nitrite, modifying the separate sidestream treatment process from nitrification-denitrification to nitritation-denitritation will not affect the soda ash dosing requirement. If autotrophic cell mass synthesis is considered in the mass balance, a small reduction in inorganic carbon would occur as nitrite oxidizing bacteria are not growing in the nitritation-denitritation process, but this reduction is negligible.

AIR EMISSIONS FROM WASTEWATER TREATMENT FACILITIES AND THEIR CONTROL

PROBLEM 16-1

Problem Statement - See text, page 1793
Instructors Note: The total alkalinity required should be 14.68 instead of 10.87 mg / L as CaCO_{3}.

Solution

1. The pertinent reaction for the destruction of $\mathrm{H}_{2} \mathrm{~S}$ with chlorine is:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}+4 \mathrm{Cl}_{2}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HCl} \\
& 34.064 \times 70.91
\end{aligned}
$$

2. Determine the amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl formed for each mg / L of $\mathrm{H}_{2} \mathrm{~S}$ oxidized.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \text { formed }=\frac{(98.06 \mathrm{~g} / \mathrm{mole})(1 \mathrm{mg} / \mathrm{L})}{(34.06 \mathrm{~g} / \mathrm{mole})}=2.88 \mathrm{mg} / \mathrm{L} \\
& \mathrm{HCl} \text { formed }=\frac{8(36.5 \mathrm{~g} / \mathrm{mole})(1 \mathrm{mg} / \mathrm{L})}{(34.06 \mathrm{~g} / \mathrm{mole})}=8.57 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

3. The pertinent reactions for the amount of alkalinity expressed as CaCO_{3} needed to neutralize the acid formed in the destruction of the $\mathrm{H}_{2} \mathrm{~S}$ are:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& 98.06+100 \text { as } \mathrm{CaCO}_{3} \\
& 8 \mathrm{HCl}+4 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 4 \mathrm{CaCl}_{2}+4 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\
& 8 \times 36.54 \times 100 \text { as } \mathrm{CaCO}_{3}
\end{aligned}
$$

4. Determine the amount of alkalinity required as CaCO_{3}
a. For the $\mathrm{H}_{2} \mathrm{SO}_{4}$

Alkalinity for $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{(100 \mathrm{~g} / \mathrm{mole})(2.88 \mathrm{mg} / \mathrm{L})}{(98.06 \mathrm{~g} / \mathrm{mole})}=2.94 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
b. For the HCl

Alkalinity for $\mathrm{HCl}=\frac{4(100 \mathrm{~g} / \mathrm{mole})(8.57 \mathrm{mg} / \mathrm{L})}{8(36.5 \mathrm{~g} / \mathrm{mole})}=11.74 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}
c. Total alkalinity required $=(2.94+11.74) \mathrm{mg} / \mathrm{L}=14.68 \mathrm{mg} / \mathrm{L}$ as CaCO_{3}

PROBLEM 16-2

Problem Statement - See text, page 1793

Solution

1. The pertinent reaction for the destruction of $\mathrm{H}_{2} \mathrm{~S}$ with hydrogen peroxide is:

$$
\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{SO} \downarrow+2 \mathrm{H}_{2} \mathrm{O}
$$

34.06

34
2. Determine the amount of $\mathrm{H}_{2} \mathrm{O}_{2}$ needed for each mg / L of $\mathrm{H}_{2} \mathrm{~S}$ oxidized.

$$
\mathrm{H}_{2} \mathrm{O}_{2} \text { needed }=\frac{(34 \mathrm{~g} / \mathrm{mole})}{(34.06 \mathrm{~g} / \mathrm{mole})}=\frac{\left(1 \mathrm{mg} / \mathrm{L} \mathrm{H}_{2} \mathrm{O}_{2}\right)}{\left(1 \mathrm{mg} / \mathrm{LH}_{2} \mathrm{~S}\right)}
$$

PROBLEM 16-3

Problem Statement - See text, page 1793

Solution

1. Write the pertinent reaction for the destruction of $\mathrm{H}_{2} \mathrm{~S}$ with permanganate

$$
\begin{aligned}
& \quad 8 \cdot\left(\mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}\right) \\
& +\quad 3 \cdot\left(\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-}\right) \\
& \hline 8 \mathrm{MnO}_{4}^{-}+2 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 8 \mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{SO}_{4}^{2-} \\
& \begin{array}{l}
(8 \times 118.9) \quad(3 \times 34.1)
\end{array}
\end{aligned}
$$

2. Convert the gas concentration from $\mathrm{ppm}_{\mathrm{v}}$ to $\mathrm{g} / \mathrm{m}^{3}$.

$$
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \text { concentration }=\frac{\left(100 \mathrm{ppm}_{\mathrm{v}}\right)(34.1 \mathrm{~g} / \mathrm{mole})}{\left(10^{6}\right)\left(22.414 \cdot 10^{-3} \mathrm{~m}^{3} / \mathrm{mole}\right)}=0.152 \mathrm{~g} / \mathrm{m}^{3}
$$

3. Determine the amount of permanganate needed to oxidize $100 \mathrm{ppm}_{\mathrm{v}}$ of $\mathrm{H}_{2} \mathrm{~S}$ oxidized.

$$
\mathrm{MnO}_{4}^{-} \text {needed }=\frac{8(118.9 \mathrm{~g} / \text { mole })}{3(34.1 \mathrm{~g} / \mathrm{mole})}=\frac{\left(9.3 \mathrm{~g} / \mathrm{m}^{3} \mathrm{MnO}_{4}^{-}\right)}{\left(1 \mathrm{~g} / \mathrm{m}^{3} \mathrm{H}_{2} \mathrm{~S}\right)}
$$

4. Compute the amount of permanganate needed to oxidize $100 \mathrm{ppm}_{v} \mathrm{H}_{2} \mathrm{~S}$ with a gas flowrate of $1,500 \mathrm{~m}^{3} / \mathrm{min}\left(2.16 \times 10^{6} \mathrm{~m}^{3} / \mathrm{d}\right)$

$$
\mathrm{MnO}_{4}^{-} \text {needed }=\frac{\left(2.16 \cdot 10^{6} \mathrm{~m}^{3} / \mathrm{d}\right)\left(0.152 \mathrm{~g} / \mathrm{m}^{3} \mathrm{H}_{2} \mathrm{~S}\right)}{\left[\frac{\left(9.3 \mathrm{~g} / \mathrm{m}^{3} \mathrm{MnO}_{4}^{-}\right)}{\left(1 \mathrm{~g} / \mathrm{m}^{3} \mathrm{H}_{2} \mathrm{~S}\right)}\right]\left(\frac{10^{3} \mathrm{~g}}{\mathrm{~kg}}\right)}=35.3 \mathrm{~kg} \mathrm{MnO}_{4}^{-} / \mathrm{d}
$$

The amounts of permanganate needed for $\mathrm{H}_{2} \mathrm{~S}$ oxidation are summarized in the following table

Flowrate, $\mathrm{m}^{3} / \mathrm{d}$	Permanganate needed, kg / d
1500	35.3
1800	42.2
2000	47.1
2200	51.8

PROBLEM 16-4

Problem Statement - See text, page 1793

Solution

1. Write the pertinent reaction for the exchange reaction between $\mathrm{H}_{2} \mathrm{~S}$ and ferrous sulfide

$$
\begin{align*}
& \mathrm{FeS}+\mathrm{H}^{+} \leftrightarrow \mathrm{Fe}^{2+}+\underset{(34.1)}{\mathrm{H}_{2} \mathrm{~S}} \\
& (87.9) \tag{34.1}
\end{align*}
$$

2. Determine the amount of ferrous sulfate needed to remove $150 \mathrm{mg} / \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{~S}$.

$$
\begin{aligned}
& \mathrm{FeSO}_{4}=\left[\frac{\left(87.9 \mathrm{~g} / \mathrm{mole} \mathrm{FeS}^{(}\right)}{\left(34.1 \mathrm{~g} / \mathrm{mole} \mathrm{H}_{2} \mathrm{~S}\right)}\right]\left[\frac{\left(151.9 \mathrm{~g} / \mathrm{mole} \mathrm{FeSO}_{4}\right)}{(87.9 \mathrm{~g} / \mathrm{mole} \mathrm{FeS})}\right] \\
&\left.=\frac{(4.45 \mathrm{mg} / \mathrm{L} \mathrm{FeSO}}{4}\right) \\
&\left(1 \mathrm{mg} / \mathrm{L} \mathrm{H}_{2} \mathrm{~S}\right)
\end{aligned}
$$

The amount of FeSO_{4} needed is $(150)(4.45)=667.5 \mathrm{mg} / \mathrm{L}$

PROBLEM 16-5

Problem Statement - See text, page 1793

Solution

Determine the volume of gas occupied by one mole of a gas at a temperature of $28^{\circ} \mathrm{C}$ and a pressure of 1.0 atm using Eq. (2-44). The following solution is provided for Plant 1.

$$
V=\frac{n R T}{P}
$$

$$
\mathrm{V}=\frac{(1 \mathrm{~mole})(0.082057 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mole} \cdot \mathrm{~K})[(273.15+28) \mathrm{K}]}{1.0 \mathrm{~atm}}=24.7 \mathrm{~L}
$$

2. Estimate chlorine requirement.
a. Determine the amount of $\mathrm{H}_{2} \mathrm{~S}$ that must be treated per day. Using Eq. (2-45), convert the $\mathrm{H}_{2} \mathrm{~S}$ concentration from $\mathrm{ppm}_{\mathrm{v}}$ to $\mathrm{g} / \mathrm{m}^{3}$

$$
\begin{aligned}
& 75 \mathrm{ppm}_{\mathrm{v}}=\left(\frac{75 \mathrm{~m}^{3}}{10^{6} \mathrm{~m}^{3}}\right)\left[\frac{\left(34.08 \mathrm{~g} / \mathrm{moleH}_{2} \mathrm{~S}\right)}{\left(24.7 \times 10^{-3} \mathrm{~m}^{3} /{\left.\mathrm{mole} \mathrm{of} \mathrm{H}_{2} \mathrm{~S}\right)}\right]=0.103 \mathrm{~g} / \mathrm{m}^{3}}\right. \\
& \left(1000 \mathrm{~m}^{3} / \mathrm{min}\right)\left(0.103 \mathrm{~g} / \mathrm{m}^{3}\right)(1440 \mathrm{~min} / \mathrm{d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)=148.9 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

b. Estimate the sodium hypochlorite dose. From Eq. (16-3), $8.74 \mathrm{mg} / \mathrm{L}$ of sodium hypochlorite are required per mg / L of sulfide, expressed as hydrogen sulfide.

NaOCl required per day $=(148.9 \mathrm{~kg} / \mathrm{d}) \times(8.74)=1301.4 \mathrm{~kg} / \mathrm{d}$
3. Estimate the water requirement for the scrubbing tower
a. Determine the density of air at the given temperature using Appendix B-1 and B-3.

$$
\rho_{\mathrm{a}}=\frac{\mathrm{PM}}{R T}=\frac{\left(101,325 \mathrm{~N} / \mathrm{m}^{2}\right)(28.97 \mathrm{~kg} / \mathrm{kg} \cdot \mathrm{~mole})}{(8314 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{kg} \cdot \mathrm{~mole} \cdot \mathrm{~K})(273.15 \mathrm{~K}+28 \mathrm{~K})}=1.1724 \mathrm{~kg} / \mathrm{m}^{3}
$$

b. Determine the mass air flowrate
$\left(1000 \mathrm{~m}^{3} / \mathrm{min}\right)\left(1.1724 \mathrm{~kg} / \mathrm{m}^{3}\right)=1172.4 \mathrm{~kg} / \mathrm{min}$
c. Determine the water flowrate
$1172.4 \mathrm{~kg} / \mathrm{min} \times 1.85=2170 \mathrm{~kg} / \mathrm{min}=2.17 \mathrm{~m}^{3} / \mathrm{min}$
4. Determine the amount of sodium hydroxide (caustic) that must be added to replace the alkalinity consumed in the reaction.
a. From the reaction given by Eq. (16-3), $2.35 \mathrm{mg} / \mathrm{L}$ of NaOH is required for each mg / L of $\mathrm{H}_{2} \mathrm{~S}$ removed.
b. Determine the amount of NaOH required
$\mathrm{NaOH}=148.9 \mathrm{~kg} / \mathrm{d} \times 2.35=350 \mathrm{~kg} / \mathrm{d}$
c. Determine the volume of NaOH required. The amount of caustic per liter is
$\mathrm{NaOH}=1.0 \mathrm{~L} \times 1.52 \mathrm{~kg} / \mathrm{L} \times 0.50=0.76 \mathrm{~kg} / \mathrm{L}$

$$
\text { Volume of } \mathrm{NaOH}=\frac{(350 \mathrm{~kg} / \mathrm{d})}{(0.76 \mathrm{~kg} / \mathrm{L})}=460.6 \mathrm{~L} / \mathrm{d}
$$

5. Summary of results from problem 16-5

	Chemical needs	
Plant	$\mathrm{NaOCl}, \mathrm{kg} / \mathrm{d}$	$\mathrm{NaOH}, \mathrm{L} / \mathrm{d}$
1	1301.8	460.6
2	1920.8	679.5
3	3586.4	1268.8
4	1104.5	390.8

PROBLEM 16-6

Problem Statement - See text, page 1793

Solution

1. Determine the air flow to be scrubbed for a gas flowrate of $1500 \mathbf{m}^{3} / \mathbf{m i n}$

Flow $=1500 \mathrm{~m}^{3} / \mathrm{min}=90,000 \mathrm{~m}^{3} / \mathrm{h}$
2. Select a surface loading rate from Table 16-11; use $90 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h}$.
3. Select a filter bed depth from Table 16-11; use 1.0 m
4. Calculate the area needed for the filter bed.

Area = gas flow/ loading rate
Area $=\left(90,000 \mathrm{~m}^{3} / \mathrm{h}\right) /\left(90 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~h}\right)$
Area $=1000 \mathrm{~m}^{2}$
5. Check the empty bed residence time using Eq. (16-13)
$E B R T=\frac{V_{f}}{Q}=\frac{1000 \mathrm{~m}^{2}}{90,000 \mathrm{~m}^{3} / \mathrm{h}}=0.011 \mathrm{~h}=40 \mathrm{~s}$
6. Determine whether the volume of the biofilter determined in Step 5 is adequate to treat the $\mathrm{H}_{2} \mathrm{~S}$.
a. Determine the concentration of $\mathrm{H}_{2} \mathrm{~S}$ in $\mathrm{g} / \mathrm{m}^{3}$ using Eq. (2-45). The volume of gas occupied by one mole of a gas at a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 1.0 atm is 24.1 L . Thus, the concentration of $\mathrm{H}_{2} \mathrm{~S}$ is:

$$
\mathrm{g} / \mathrm{m}^{3}=\left(\frac{65 \mathrm{~L}^{3}}{10^{6} \mathrm{~L}^{3}}\right)\left[\frac{\left(34.08 \mathrm{~g} / \mathrm{mole} \mathrm{H}_{2} \mathrm{~S}\right)}{\left(24.1 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{mole} \mathrm{of}_{2} \mathrm{~S}\right)}\right]=0.092 \mathrm{~g} / \mathrm{m}^{3}
$$

b. Determine the mass loading rate of S in $g \mathrm{~S} / \mathrm{h}$

$$
M_{s}=\left(\frac{90,000 \mathrm{~m}^{3}}{\mathrm{~h}}\right)\left(\frac{0.092 \mathrm{~g}}{\mathrm{~m}^{3}}\right)\left(\frac{32 \mathrm{~g}}{34.08 \mathrm{~g}}\right)=7,768 \mathrm{~g} \mathrm{~S} / \mathrm{h}
$$

c. Determine the required volume assuming an elimination rate of $65 \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3} \cdot \mathrm{~h}$. The assume elimination rate is 50 percent of the maximum value reported on Page 1765.

$$
V=\frac{(7768 \mathrm{~g} \mathrm{~S} / \mathrm{h})}{\left(65 \mathrm{~g} \mathrm{~S} / \mathrm{m}^{3} \cdot \mathrm{~h}\right)}=119.5 \mathrm{~m}^{3}
$$

Because the volume of the bed ($1000 \mathrm{~m}^{3}$) is significantly greater than the required volume, the removal of $\mathrm{H}_{2} \mathrm{~S}$ will not be an issue.
7. Determine the mass of the buffer compound needed to neutralize the acid formed as a result of treatment within the filter
a. Determine the mass of $\mathrm{H}_{2} \mathrm{~S}$ in kg applied per year.
$\mathrm{H}_{2} \mathrm{~S}, \mathrm{~kg} / \mathrm{y}=\frac{\left(90,000 \mathrm{~m}^{3} / \mathrm{h}\right)\left(0.092 \mathrm{~g} / \mathrm{m}^{3}\right)(24 \mathrm{~h} / \mathrm{d})(365 \mathrm{~d} / \mathrm{y})}{\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)}=72,533 \mathrm{~kg} / \mathrm{y}$
b. Determine the mass of buffer compound required. Assume the following equation applies.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~S}+\underset{74.08}{\mathrm{Ca}(\mathrm{OH})_{2}}+2 \mathrm{O}_{2} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& 34.06
\end{aligned}
$$

Thus, about 2.05 kg of $\mathrm{Ca}(\mathrm{OH})_{2}$ will be required per kg of $\mathrm{H}_{2} \mathrm{~S}$. If the compost biofilter has a useful life of two years, then a total of 297,385 kg of $\mathrm{Ca}(\mathrm{OH})_{2}$ equivalent will be required to be added to the bed.
kg of $\mathrm{Ca}(\mathrm{OH})_{2}=2 \times(72,533 \mathrm{~kg} / \mathrm{y})(2.05)=297,385$

PROBLEM 16-7

Problem Statement - See text, page 1793
Instructors Note: The problem statement specified that average load by fuel oil is 35 percent. For the convenience of using the data from AP42, however, it should be corrected to 5 percent (to be consistent with the basis of emission factors presented in AP42.

The emission factors in Table 16-15 have errors for SI units (US customary units are correct). For the dual fuel engines, the emission factors for $\mathrm{CO}, \mathrm{NOx}$, and SO_{2} are $0.58,1.16$, and $0.0216 \mathrm{~S}_{1}+0.386 \mathrm{~S}_{2}$, respectively.
Because the emission factors presented in Table 16-15 are based on the fuel input, assumptions must be made for the average output and the efficiency of the engine. In this solution, 38% efficiency for the reciprocating engine (electrical power output to fuel input). For $\mathrm{SO}_{2}, \mathrm{~S}_{1}$ is weight percent of sulfur in the fuel oil, and S_{2} is weight percent of sulfur in natural gas. In this solution, 1.0 percent for fuel oil and 0.00077 percent for natural gas are assumed. Instructor may provide these values, or students may be tasked to find out the typical values and state their assumptions.
Alternatively, the original AP42 document may be used to find the emission factors based on the power output.

Solution

The specified engine is categorized as a large diesel and dual fuel reciprocating engine. The emission factors for $\mathrm{CO}, \mathrm{NOx}$ and SO_{2} are, $0.58,1.16$, and $\left(0.0216 \mathrm{~S}_{1}+0.386 \mathrm{~S}_{2}\right) \mathrm{kg} / \mathrm{GJ}$, respectively.

1. Determine the fuel consumption based on the assumed system efficiency and power output. (Assumed efficiency $=38$ percent.)

Annual output $=(2386 \mathrm{~kW})(8640 \mathrm{~h} / \mathrm{y})=20,615,040 \mathrm{kWh} / \mathrm{y}$
Fuel input $=(20,615,040 \mathrm{kWh} / \mathrm{y}) / 0.38=54,250,105 \mathrm{kWh} / \mathrm{y}$

$$
=(54,250,105 \mathrm{kWh} / \mathrm{y})(1 \mathrm{GJ} / 277.8 \mathrm{kWh})=195,285 \mathrm{GJ} / \mathrm{y}
$$

2. Estimate the emissions based on the fuel input from Step 1.

CO emission $=(0.58 \mathrm{~kg} / \mathrm{GJ})(195,285 \mathrm{GJ} / \mathrm{y})=113,265 \mathrm{~kg} / \mathrm{y} \approx 113$ tonne $/ \mathrm{y}$
NOx emission $=(1.16 \mathrm{~kg} / \mathrm{GJ})(195,285 \mathrm{GJ} / \mathrm{y})=226,531 \mathrm{~kg} / \mathrm{y} \approx 227$ tonne $/ \mathrm{y}$
3. Determine the emission factor for SO_{2}.

Assuming 1 and 0.00077 percent sulfur weight percent in fuel oil and natural gas, respectively, the emission factor is
$0.0216 \times 1+0.386 \times 0.00077=0.0219$
4. Estimate the SO_{2} emission based on the emission factor calculated in Step 3.
SO_{2} emission $=(0.0219 \mathrm{~kg} / \mathrm{GJ})(195,285 \mathrm{GJ} / \mathrm{y})=4276 \mathrm{~kg} / \mathrm{y} \approx 4.3$ tonne $/ \mathrm{y}$
Note: Emission factors based on the power output are also presented in AP42 (see Table 3.4-1). Using the emission factors based on the power output, the emissions are calculated as:
$\mathrm{CO}=(0.0075 \mathrm{lb} / \mathrm{hp} \cdot \mathrm{h})(3200 \mathrm{bhp})=24.0 \mathrm{lb} / \mathrm{h}=94,058 \mathrm{~kg} / \mathrm{y} \approx 94$ tonne $/ \mathrm{y}$
$\mathrm{NOx}=(0.018 \mathrm{lb} / \mathrm{hp} \cdot \mathrm{h})(3200 \mathrm{bhp})=57.6 \mathrm{lb} / \mathrm{h}=225,739 \mathrm{~kg} / \mathrm{y} \approx 226$ tonne $/ \mathrm{y}$
$\mathrm{SO}_{2}=\{[(0.000406)(1)+(0.00957)(0.00077)] \mathrm{lb} / \mathrm{hp} \cdot \mathrm{h}\}(3200 \mathrm{bhp})=1.32 \mathrm{lb} / \mathrm{h}=5184$ $\mathrm{kg} / \mathrm{y} \approx 5.2$ tonne $/ \mathrm{y}$

As noted in AP42, the power output and fuel input values were averaged independently from each other because of the use of actual brake-specific fuel consumption (BSFC) values for each data point. The resulting emissions are
somewhat similar in both calculations in this case, meaning the actual engines from which the data were collected had an average efficiency close to 38 percent.

PROBLEM 16-8

Problem Statement - See text, page 1794
Instructors Note: The reference to the example problem is to be corrected to Example 16-5. The available digester gas is more than the natural gas use in the existing condition from Example 16-5. The students may solve assuming only natural gas is replaced with the digester gas, or it can be assumed that the excess natural gas is used to generate electricity onsite, thereby reducing the purchase of electricity from the electrical grid. Both scenarios are presented in this solution.

Solution

1. Determine the energy content of digester gas flared and the reduction in natural gas use by using all natural gas for power generation.

Energy content of digester gas $=0.0224 \mathrm{GJ} / \mathrm{m}^{3}$
Digester gas previously flared and vented $=290,500+2400 \mathrm{~m}^{3} / \mathrm{y}$
$=292,900 \mathrm{~m}^{3} / \mathrm{y}$

Additional energy obtained from the additional digester gas use

$$
=\left(0.0224 \mathrm{GJ} / \mathrm{m}^{3}\right)\left(290,500 \mathrm{~m}^{3} / \mathrm{y}\right)=6507.2 \mathrm{GJ} / \mathrm{y}
$$

2. Determine the potential natural gas saving.

Energy content of natural gas $=0.0383 \mathrm{GJ} / \mathrm{m}^{3}$
Natural gas saved $=(6507.2 \mathrm{GJ} / \mathrm{y}) /\left(0.0383 \mathrm{GJ} / \mathrm{m}^{3}\right)=169,901 \mathrm{~m}^{3} / \mathrm{y}$

The annual consumption of natural gas is $17,300 \mathrm{~m}^{3} / \mathrm{y}$, which is less than the amount unutilized digester gas could supplement. Therefore natural gas saving is $17,300 \mathrm{~m}^{3} / \mathrm{y}$.
3. Calculate the GHG emissions for the energy sources determined in Step 2.
a. Determine the GHG emissions assuming that only natural gas use is replaced by the part of digester gas which was flared.
i. Digester gas required to replace $17,300 \mathrm{~m}^{3} / \mathrm{y}$ of natural gas

$$
=\left(17,300 \mathrm{~m}^{3} / \mathrm{y}\right) /\left[\left(0.0383 \mathrm{GJ} / \mathrm{m}^{3}\right) /\left(0.0224 \mathrm{GJ} / \mathrm{m}^{3}\right)\right]=10,118 \mathrm{~m}^{3} / \mathrm{y}
$$

ii. Calculate the GHG emissions from the digester gas use and flare

Digester gas used $=755,000+10,118 \mathrm{~m}^{3} / \mathrm{y}=765,118 \mathrm{~m}^{3} / \mathrm{y}$
Digester gas flared $=290,500-10,118 \mathrm{~m}^{3} / \mathrm{y}=280,382 \mathrm{~m}^{3} / \mathrm{y}$
iii. GHG emissions from digester gas used
iv. GHG emissions from digester gas flared
v. GHG emissions reduction by eliminating the natural gas use (from Step 1a of Example 16-5)

GHG reduction $=33.3$ tonne $\mathrm{CO}_{2} \mathrm{e} / \mathrm{y}$
Note: The GHG emissions from digester gas used and digester gas flared has a slightly different formula according to the LGO protocol but the resulting emissions are similar and the difference in the total emissions is negligible compared to the total emission.
b. Determine the GHG emissions assuming that the remaining digester gas is used at an engine generator to generate electricity, thereby reducing the use of electricity from electrical grid.
i. Estimate electrical power generation from the use of remaining unused digester gas. In this solution, 38 percent efficiency (i.e., electricity output to digester gas energy input) is assumed.

Remaining digester gas $=(290,500+2400-10,118) \mathrm{m}^{3} / \mathrm{y}$ $=282,782 \mathrm{~m}^{3} / \mathrm{y}$

Energy content $=\left(282,782 \mathrm{~m}^{3} / \mathrm{y}\right)\left(0.0224 \mathrm{GJ} / \mathrm{m}^{3}\right)=6334 \mathrm{GJ} / \mathrm{y}$
At 38 percent efficiency, electrical power generated
$=(6334 \mathrm{GJ} / \mathrm{y})(277.8 \mathrm{kWh} / 1 \mathrm{GJ})(0.38)=668,642 \mathrm{kWh} / \mathrm{y}$
ii. Estimate the GHG emissions from the reduced use of electrical power from the grid

Electrical power usage from the grid $=(14,100,000-668,642)$ $\mathrm{kWh} / \mathrm{y}=13,431,358 \mathrm{kWh} / \mathrm{y}$
iii. Calculate the GHG emissions from the use of grid electricity
$\mathrm{CO}_{2} \mathrm{e}$ emission
$=($ Electricity use, $\mathrm{kWh} / \mathrm{y})\left(\right.$ emission factor, $\left.\mathrm{g} \mathrm{CO}_{2} \mathrm{e} / \mathrm{kWh}\right)\left(1\right.$ tonne $\left./ 10^{6} \mathrm{~g}\right)$ $=(13,431,358 \mathrm{kWh} / \mathrm{y})(720 \mathrm{~g} / \mathrm{kWh})\left(1\right.$ tonne $\left./ 10^{6} \mathrm{~g}\right)$ =9671 tonne/y

From Step 2 of Example 16-5, $\mathrm{CO}_{2} \mathrm{e}$ emission from the use of electricity from power grid was 10,152 tonne/y. $\mathrm{CO}_{2} \mathrm{e}$ emission reduction $=10,152-9671=481$ tonne $/ \mathrm{y}$

As mentioned in Step 3a, the GHG emissions from digester gas used and digester gas flared has a slightly different formula according to the LGO protocol but the resulting emissions are similar and the difference in the total emissions is negligible compared to the total emission.
c. Summary

GHG emissions reduction by replacing natural gas with digester gas $=33.3$ tonne $\mathrm{CO}_{2} \mathrm{e} / \mathrm{y}$
(Available digester gas exceeds the total natural gas use)
GHG emissions reduction by generating electricity from remaining digester gas
$=481$ tonne $\mathrm{CO}_{2} \mathrm{e} / \mathrm{y}$

Note: Further to this analysis, waste heat from the engine generator could be used to replace the heat generated by boiler (with natural gas or digester gas), which will result in further reduction in the overall GHG emissions.

ENERGY CONSIDERATIONS IN WASTEWATER MANAGEMENT

PROBLEM 17-1

Instructors Note: The suggested articles in this solution are current as of September 2013. Instructors are advised to search for the latest articles at the time of the class.

Problem Statement - See text, page 1860

Solution

Examples of peer-reviewed articles that may be used include:
Blischke, J., A. Wong, and K. Matthews (2009) "Integrated Sustainable Solutions - Co-Diestion of Solid Waste at WWTPs and the BTA Process as a PreTreatment Step," Proceedings of the Water Environment Federation 82nd Annual Conference and Exposition, Orlando, FL.
Cabbai, V., M. Ballico, E. Aneggi, and D. Goi (2013) "BMP Tests of Source Selected OFMSW to Evaluate Anaerobic Codigestion with Sewage Sludge," Waste Manag., 33, 7, 1626-1632.

Kim, H.W., J.Y. Nam, and H.S. Shin (2011) "A Comparison Study on the HighRate Co-Digestion of Sewage Sludge and Food Waste Using a Temperature-Phased Anaerobic Sequencing Batch Reactor System," Bioresource Technol., 102, 15, 7272-7279.

Krupp, M., J. Schubert, and R. Widmann (2005) "Feasibility Study for CoDigestion of Sewage Sludge with OFMSW on Two Wastewater Treatment Plants in Germany," Waste Manag., 25, 4, 393-399.

Iacovidou, E., D.G. Ohandja, and N. Voulvoulis (2012) "Food Waste Co-
Digestion with Sewage Sludge - Realizing Its Potential in the UK," J.
Environ. Manag., 112, 267-274.

Razaviarani, V., I.D. Buchanan, S. Malik, and H. Katalambula (2013) "Pilot-Scale Anaerobic Co-Digestion of Municipal Wastewater Sludge with Restaurant Grease Trap Waste," J. Environ. Manag., 123, 7, 26-33.

Zhou, P., E. Elbeshbishy, and G. Nakhla (2013) "Optimization of Biological Hydrogen Production for Anaerobic Co-Digestion of Food Waste and Wastewater Biosolids," Bioresource Technol., 130, 2, 710-718.

Zhu, H., W. Parker, D. Condidi, R. Bansar, and P. Seto (2011) "Eliminating Methanogenic Activity in Hydrogen Reactor to Improve Biogas Production in a Two-Stage Anaerobic Digestion Process Co-Digesting Municipal Food-Waste and Sewage Sludge," Bioresource Technol., 102, 14, 70867092.

The following publications are examples of reports that contain useful information about the implementation and operation of co-digestion facilities.
City of San Jose (2007) Biomass-to-Energy Technology Evaluation, Final Report, Prepared by CH2M-HILL, City of San Jose, Environmental Services Department.
City of San Rafael and Central Marin Sanitation Agency (2008) Methane Capture Feasibility Study, Prepared by Kennedy/Jenks Consultants.
WERF (2008) State of Science Report: Energy and Resource Recovery from Sludge, Prepared for the Global Water Research Coalition, Water Environment Research Foundation, Alexandria, VA.
WERF (2010) Co-Digestion of Organic Waste Products with Wastewater Solids, Interim Report, WERF OWSO5R07a, Water Environment Research Foundation, Alexandria, VA.

Zhang, R., R. Romano, X. Chen, and H.S. Kim (2007) Anaerobic Digestion of Selected Food Waste Streams, Research Report, Biological and Agricultural Engineering Department, University of California, Davis, Prepared for Sacramento Municipal Utility District.

PROBLEM 17-2

Instructors Note: If U.S. customary units are used, unit conversion between U.S. customary and SI units is not necessary. With U.S. customary units, use the exact equations as given in the original publication (AWWARF, 2007, see page 1863).

The following solution is for 60 percent use of produced digester gas.

Problem Statement - See text, page 1861
Solution - This solution is for 60 percent use of produced digester gas.

1. Calculate the natural log of the source energy use value using Eq. (17-12)
on page 1815 and the given data:

$$
\begin{aligned}
\ln \left(\mathrm{E}_{\mathrm{s}}, \mathrm{kBtu} / \mathrm{y}\right)= & 15.8741 \\
& +0.8944 \times \ln (\text { influent average Mgal/d) } \\
& +0.4510 \times \ln (\text { influent BOD } \mathrm{mg} / \mathrm{L}) \\
& -0.1943 \times \ln (\text { effluent BOD } \mathrm{mg} / \mathrm{L}) \\
& -0.4280 \times \ln (\text { influent average flow } / \text { influent design flow } \times 100) \\
& -0.3256 \times(\text { trickling filter? Yes-1, No-0 }) \\
& +0.1774 \times(\text { nutrient removal? Yes-1, No-0 }) \\
\ln \left(\mathrm{E}_{\mathrm{s}} \mathrm{kBtu} / \mathrm{y}\right)= & 15.8741 \\
& +0.8944 \times \ln \left\{\left[24,000\left(\mathrm{~m}^{3} / \mathrm{d}\right)\right] /\left[3785\left(\mathrm{~m}^{3} / \mathrm{Mgal}\right)\right]\right\} \\
& +0.4510 \times \ln (120) \\
& -0.1943 \times \ln (6.2) \\
& -0.4280 \times \ln (24,000 / 30,000 \times 100) \\
& -0.3256 \times(0) \\
& +0.1774 \times(1) \\
= & 15.8741+1.6520+2.1592-0.3545-1.8755-0+0.1774 \\
= & 17.6327
\end{aligned}
$$

2. Calculate the adjustment factor from the value obtained in Step 1 using Eq. (17-13):

Adjustment factor $=17.6327 / 17.8=0.9906$
3. Calculate the natural log of the source energy use value using the energy usage data from the wastewater treatment plant and source energy factor in Table 17-6.
a. Calculate actual source energy use for the energy from outside sources (not counting digester gas use) using Eq. (17-14).

$$
\begin{aligned}
\mathrm{E}_{\mathrm{as}}(\text { no digester gas })= & (3,600,000 \mathrm{kWh} / \mathrm{y})(11.1 \mathrm{kBtu} / \mathrm{kWh}) \\
& +\left(372,700 \mathrm{~m}^{3} / \mathrm{y}\right)\left(35 \mathrm{MJ} / \mathrm{m}^{3}\right)(0.948 \mathrm{kBtu} / \mathrm{MJ}) \\
= & 39,960,000+12,366,186 \\
= & 52,326,186 \mathrm{kBtu} / \mathrm{y}
\end{aligned}
$$

4. Convert the source energy usage calculated in Step 3 to the natural log of the adjusted energy use using the adjustment factor from Step 2 and Eq.
a. Calculate $\ln \left(E_{\text {adj }}\right)$ without digester gas usage

$$
\begin{aligned}
\ln \left(E_{a d j}\right) & =\ln (52,326,196 \mathrm{kBtu} / \mathrm{y}) / 0.9906=17.77 / 0.9906 \\
& =17.94
\end{aligned}
$$

5. Using Fig. 17-5, find the benchmark score with and without digester gas usage.
Score without counting the use of digester gas $=37$
6. Calculate the reduction in natural gas usage when 60 percent of the digester gas is utilized to offset the natural gas usage.
a. Calculate the natural gas saving.

Assumed heating value for digester gas $=22 \mathrm{MJ} / \mathrm{m}^{3}$
$=\left(22 \mathrm{MJ} / \mathrm{m}^{3}\right)(0.948 \mathrm{kBtu} / \mathrm{MJ})=20.85 \mathrm{kBtu} / \mathrm{m}^{3}$
60 percent of digester gas $=\left(605,000 \mathrm{~m}^{3} / \mathrm{y}\right)(0.6)=363,000 \mathrm{~m}^{3} / \mathrm{y}$

$$
\left.=363,000 \mathrm{~m}^{3} / \mathrm{y}\right)\left(20.85 \mathrm{kBtu} / \mathrm{m}^{3}\right)=7,568,550 \mathrm{kBtu} / \mathrm{y}
$$

b. From Step 3, natural gas usage is $12,366,186 \mathrm{kBtu} / \mathrm{y}$. Digester gas will substitute $7,568,550 \mathrm{kBtu} / \mathrm{y}$ of natural gas. Therefore natural gas use is 12,366,186-7,658,550 = 4,707,636 kBtu/y
7. Repeat the calculations in Steps 3 through 5 with the new natural gas usage.
a. Calculate actual source energy use for the energy from outside sources (not counting digester gas use) using Eq. (17-14).

$$
\begin{aligned}
\mathrm{E}_{\mathrm{as}}=39,960,000 & +4,707,636 \\
& =44,667,636 \mathrm{kBtu} / \mathrm{y}
\end{aligned}
$$

b. Calculate $\ln \left(E_{a d j}\right)$ without digester gas usage
$\ln \left(E_{\text {adj }}\right)=\ln (44,667,636 \mathrm{kBtu} / \mathrm{y}) / 0.9906=17.61 / 0.9906$
$=17.78$
Score counting the use of digester gas $=52$

PROBLEM 17-3

Problem Statement - See text, page 1861

Solution

1. As in Steps 1 and 2 of Example 17-5, $\ln \left(E_{s}\right)$ and the adjustment factor are 19.33 and 1.086, respectively.
2. Determine the potential electricity production from unused (flared + vented) digester gas.
Digester gas production $=1,047,900 \mathrm{~m}^{3} / \mathrm{y}$
Digester gas used $=755,000 \mathrm{~m}^{3} / \mathrm{y}$
Digester gas flared or vented $=292,900 \mathrm{~m}^{3} / \mathrm{y}$
Assumptions:

- Digester gas LHV $=22 \mathrm{MJ} / \mathrm{m}^{3}$.
- From the data shown on Table 17-8, use 35 percent efficiency for electrical power generation and assume additional 35 percent of the energy is recovered (overall efficiency with $\mathrm{CHP}=70$ percent) as heat to lower the natural gas use.
a. Calculate the electrical power that can be generated by $292,900 \mathrm{~m}^{3} / \mathrm{y}$ digester gas.
Power generation $=\left(292,900 \mathrm{~m}^{3} / \mathrm{y}\right)\left(22 \mathrm{MJ} / \mathrm{m}^{3}\right)(0.35)=2,255,330 \mathrm{MJ} / \mathrm{y}$ $=(2,255,330 \mathrm{MJ} / \mathrm{y})(1 \mathrm{kWh} / 3.6 \mathrm{MJ})=626,481 \mathrm{kWh} / \mathrm{y}$

3. Calculate the potential natural gas saving by using all digester gas generated and heat recovered.
Assumptions:

- Assume boiler efficiency $=85$ percent
- Natural gas LHV $=35.2 \mathrm{MJ} / \mathrm{m}^{3}$.

Heat recovered $=\left(292,900 \mathrm{~m}^{3} / \mathrm{y}\right)\left(22 \mathrm{MJ} / \mathrm{m}^{3}\right)(0.35)=2,255,330 \mathrm{MJ} / \mathrm{y}$ Natural gas saving $==\frac{(2,255,330 \mathrm{MJ} / \mathrm{y})}{\left(35.2 \mathrm{MJ} / \mathrm{m}^{3}\right)(0.85)}=75,379 \mathrm{~m}^{3} / \mathrm{y}$
Because annual natural gas consumption is $17,300 \mathrm{~m}^{3} / \mathrm{y}$, the heat recovered from engine generator is enough to offset all natural gas use. Note: In reality, natural gas use is seasonal and there may be periods when recovered heat from the engine generator is not sufficient and natural gas needs to be used to supplement the heat supply.
4. Calculate the natural log of the source energy use value using the energy usage data from the wastewater treatment plant and source energy factor in Table 17-6.
a. Calculate actual source energy use for the energy from outside sources (no digester gas) using Eq. (17-14). As in Example 17-5
$\mathrm{E}_{\text {as }}$ (no digester gas) $=156,510,000+626,135+14,528,358$

$$
=171,664,493 \mathrm{kBtu} / \mathrm{y}
$$

b. Calculate source energy use for the energy including digester gas usage.
Electrical power consumption $=(14,100,000-626,481) \mathrm{kWh} / \mathrm{y}$

$$
=13,473,519 \mathrm{kWh} / \mathrm{y}
$$

Natural gas consumption $=0 \mathrm{~m}^{3} / \mathrm{y}$
Fuel oil consumption $=390 \mathrm{~m}^{3} / \mathrm{y}$
$\mathrm{E}_{\text {as }}($ without digester gas $)=(13,473,519 \mathrm{kWh})(11.1 \mathrm{kBtu} / \mathrm{kWh})$

$$
\begin{aligned}
& +\left(0 \mathrm{~m}^{3} / \mathrm{y}\right)\left(35.31 \mathrm{ft}^{3} / 1 \mathrm{~m}^{3}\right)\left(1.025 \mathrm{kBtu} / \mathrm{ft}^{3}\right) \\
& +\left(390 \mathrm{~m}^{3} / \mathrm{y}\right)(264.2 \mathrm{gal})(141 \mathrm{kBtu} / \mathrm{gal}) \\
& =149,556,061+0+14,528,358 \mathrm{kBtu} / \mathrm{y}
\end{aligned}
$$

$$
\begin{aligned}
& =164,084,419 \mathrm{kBtu} / \mathrm{y} \\
\mathrm{E}_{\mathrm{as}}(\text { with digester gas })= & (13,473,519 \mathrm{kWh})(11.1 \mathrm{kBtu} / \mathrm{kWh}) \\
& +\left(0 \mathrm{~m}^{3} / \mathrm{y}\right)\left(35.31 \mathrm{ft}^{3} / 1 \mathrm{~m}^{3}\right)\left(1.025 \mathrm{kBtu} / \mathrm{ft}^{3}\right) \\
& +\left(390 \mathrm{~m}^{3} / \mathrm{y}\right)(264.2 \mathrm{gal})(141 \mathrm{kBtu} / \mathrm{gal}) \\
& +\left(1,047,900 \mathrm{~m}^{3} / \mathrm{y}\right)\left(35.31 \mathrm{ft}^{3} / 1 \mathrm{~m}^{3}\right)\left(0.6 \mathrm{kBtu} / \mathrm{ft}^{3}\right) \\
= & 149,556,061+0+14,528,358+22,200,809
\end{aligned}
$$

kBtu/y

$$
=186,285,228 \mathrm{kBtu} / \mathrm{y}
$$

5. Convert the source energy usage calculated in Step 4 to the natural log of the adjusted energy use using the adjustment factor from Step 1 and Eq. (17-15).
a. Calculate $\ln \left(\mathrm{E}_{\mathrm{adj}}\right)$ not including energy generated from digester gas.
$\ln \left(E_{\text {adj }}\right)=\ln (164,084,419) / 1.086=17.42$
b. Calculate $\ln (E a d j)$ including energy generated from digester gas.
$\ln \left(E_{\text {adj }}\right)=\ln (186,285,228) / 1.086=17.53$
6. Using Fig. 17-5, find the benchmark score.

Score not counting the use of energy generated from digester gas $=81$
Score counting the use of energy generated from digester gas $=73$

PROBLEM 17-4

Problem Statement - See text, page 1861

Solution

1. From Figure 17-19, the recommended hydroturbine type is crossflow.
2. Using Eq. (17-8), calculate the hydraulic energy that can be recovered.

$$
P_{e}=\rho Q g \Delta H \eta_{t} \eta_{e}
$$

Total head $\Delta \mathrm{H}=(2.5 \mathrm{bar})\left(10 \mathrm{~m} \mathrm{H}_{2} \mathrm{O} / 1 \mathrm{bar}\right)+(1.5 \mathrm{~m} / \mathrm{s})^{2} /\left(2 \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
=25.1 \mathrm{~m}
$$

Assuming $\eta_{\mathrm{t}} \eta_{\mathrm{e}}=0.40$,

$$
\begin{aligned}
\mathrm{P}_{\mathrm{e}} & =\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(7500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(25.1 \mathrm{~m})(0.4) \\
& =738,693,000 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~d} \\
& =738.7 \mathrm{MJ} / \mathrm{d}
\end{aligned}
$$

3. The two critical challenges of using raw wastewater for hydroturbine are (1) the variation in incoming flow, (2) debris in raw wastewater that may clog the turbine. Pelton type turbines are less susceptible to the abrasives and fibrous materials compared to other types of turbines but they typically require high net head [typically greater than 20m, see Fig. 17-19(b)].

PROBLEM 17-5

Problem Statement - See text, page 1861

Solution

1. Estimate the air requirement.
a. Estimate the stoichiometric requirement to oxidize completely the sludge, assuming $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{2}$, and SO_{2} are the only combustion products. Set up a computation table to determine the moles of oxygen and kg of air required per kg of biosolids.

Component	Weight fraction	Atomic weight, $\mathrm{kg} /$ mole	Atomic weight units, ${ }^{\text {a }}$ mole/kg	Moles O_{2} required ${ }^{b}$	Combustion reaction and products	Product gas formed, mole/kg
Carbon	0.133	0.012	11.08	11.08	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$	11.83
Hydrogen	0.009	0.001	9.00	2.25	$4 \mathrm{H}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	4.5
Oxygen	0.049	0.016	3.06	-1.53	$2 \mathrm{O} \rightarrow \mathrm{O}_{2}$	0
Nitrogen	0.003	0.014	0.214	-	$2 \mathrm{~N} \rightarrow \mathrm{~N}_{2}$	0.11
Sulfur	0.004	0.0321	0.125	0.062	$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$	0.12
Water	$0.719^{\text {c }}$	0.018			$\mathrm{H}_{2} \mathrm{O}$ (vapor)	39.9
Inerts	0.083					
Total	1.000			11.86		56.46

[^0]${ }^{\mathrm{b}}$ Moles required $=$ atomic weight unit \times mole of O_{2} required per atom being oxidized based on the combustion reaction. For oxygen, O_{2} saved due to oxygen in the biosolids is recorded, indicated with a negative sign.
${ }^{c}$ in the problem statement, the rounded value of 72 percent, was used for water. The value 0.719 is used in this solution so the total is 100.0 percent.

From the calculations above, 1 kg of biosolids will require 11.9 moles of O_{2}. Oxygen content in the air $=20.7$ percent by volume at $20^{\circ} \mathrm{C}$ and 50 percent humidity, and assuming mole fraction = volume fraction, moles of air required is:
Air required $=11.93 / 0.207=57.6$ mole air $/ \mathrm{kg}$ biosolids
b. Determine the amount of gas generated from combustion of 1 kg biosoloids.

For $\mathrm{CO}_{2}, 1$ mole C is converted to 1 mole CO_{2}. From the summary above, CO_{2} formed is 11.08 mole/kg biosolids (assuming complete combustion). Similarly, $\mathrm{H}_{2} \mathrm{O}$ from hydrogen, N_{2} from nitrogen, and SO_{2} from sulfur are calculated and summarized in the table. Note that the water content in biosolids (72 percent) also becomes water vapor.
2. Develop a heat balance for a unit mass of biosolids. Ignore SO_{2} for the rest of the calculations.
a. Determine air flows.

From Step 1, stoichiometric air requirement is 57.6 mole/kg biosolids
b. Determine heat content of added air.

From air composition and enthalpy data given in Example 17-6, heat content of added air at $20^{\circ} \mathrm{C}$ without excess air is:
$H=[(8.53 \times 0.771+8.54 \times 0.207+(9.18 \times 0.0004)+9.74 \times 0.0117$
$(\mathrm{kJ} / \mathrm{mole})](57.6 \mathrm{~mole}$ air $/ \mathrm{kg}$ biosolids $)=487 \mathrm{~kJ} / \mathrm{kg}$ biosolids $=0.487$
$\mathrm{MJ} / \mathrm{kg}$ biosolids
c. Determine the heat content in biosolids at $20^{\circ} \mathrm{C}$

Solid content of biosolids is 28.1 percent and specific heat of dry biosolids is given in the problem statement. Thus the heat content is $(0.281)(1.26)(20)=7.08 \mathrm{~kJ} / \mathrm{kg}$ biosolids. Water content of biosolids is 71.9 percent. Thus, the heat content is $(0.719)(4.19)(20)=60.25 \mathrm{~kJ} / \mathrm{kg}$
biosolids. Total heat content is $7.08+60.25=67.3 \mathrm{~kJ} / \mathrm{kg}$ biosolids $=0.067 \mathrm{MJ} / \mathrm{kg}$ biosolids
d. Determine the flue gas composition and calculate heat content at $850^{\circ} \mathrm{C}$.
i. Determine gas composition
N_{2} : N_{2} from N in biosolids $)+\left(\mathrm{N}_{2}\right.$ in the air) $=0.11$ (mole $/ \mathrm{kg}$ biosolids)
+57.6 (mole air/kg biosolids)(0.771) $=44.5$ mole $/ \mathrm{kg}$ biosolids
O_{2} : With no excess air, all oxygen in the air is used. For 1 kg of biosolids, 11.9 moles of oxygen is used
CO_{2} : 11.08 (mole/kg biosolids) +57.6 (mole air/kg biosolids $)(0.0004)=11.1$ mole $/ \mathrm{kg}$-biosolids
$\mathrm{H}_{2} \mathrm{O}: \quad[4.50+39.9$ (mole/kg biosolids) $]+57.6$ (mole air/kg biosolids) $\times 0.011=45.1$ (mole $/ \mathrm{kg}$ biosolids)
ii. Calculate the heat content using the data given in the problem statement
$\mathrm{N}_{2}: 44.5 \times 34.2=1522 \mathrm{~kJ} / \mathrm{kg}$ biosolids
$\mathrm{O}_{2}: 0 \times 35.7=0 \mathrm{~kJ} / \mathrm{kg}$ biosolids
$\mathrm{CO}_{2}: \quad 11.1 \times 49.6=550 \mathrm{~kJ} / \mathrm{kg}$ biosolids
$\mathrm{H}_{2} \mathrm{O}: \quad 45.1 \times 41.1=1853 \mathrm{~kJ} / \mathrm{kg}$ biosolids
Total $=1522+0+550+1853=3925 \mathrm{~kJ} / \mathrm{kg}$ biosolids $=3.925 \mathrm{MJ} / \mathrm{kg}$ biosolids
e. Calculate the heat content remaining in the ash

Assuming complete combustion, ash = inert. Heat content is:
$(0.083)(1.05)(850)=74.1 \mathrm{~kJ} / \mathrm{kg}$ biosolids $=0.074 \mathrm{MJ} / \mathrm{kg}$ biosolids
f. Estimate the heat released from combustion of biosolids, assuming complete combustion.
Using Eq. (2-66) and elemental analysis data given in the problem statement, estimate the heat contents of the solids:

HHV $(\mathrm{MJ} / \mathrm{kg})=34.91 \mathrm{C}+117.83 \mathrm{H}-10.34 \mathrm{O}-1.51 \mathrm{~N}+10.05 \mathrm{~S}-2.11 \mathrm{~A}$

$$
\begin{aligned}
\mathrm{HHV}(\mathrm{MJ} / \mathrm{kg})= & (34.91 \times 0.133)+(117.83 \times 0.009)-(10.34 \times 0.049) \\
& -(1.51 \times 0.003)+(10.05 \times 0.004)-(2.11 \times 0.083+ \\
& =5.057(\mathrm{MJ} / \mathrm{kg} \text {-biosolids })
\end{aligned}
$$

g. Estimate evaporative cooling from the vaporization of water in biosolids and water formed by combustion of biosolids

From 1 kg of biosolids, $4.5+39.9=44.4$ moles of water is formed. Latent heat of vaporization is $2257 \mathrm{~kJ} / \mathrm{kg}$. Therefore, latent heat of vaporization associated with every kg of biosolids is:
[(44.4 $\times 18) / 1000](2257)=1806 \mathrm{~kJ} / \mathrm{kg}$-biosolids $=1.806 \mathrm{MJ} / \mathrm{kg}$-biosolids.
h. Estimate the heat loss. Assume 0.5 percent of gross heat input.

Gross heat input $=$ (heat of biosolids) + (heat of inlet air) + (heat of combustion) - (heat loss from evaporation). Note that latent heat of vaporization should be subtracted from the gross heat input as the heat of combustion calculated in Step f above is HHV.
Gross heat loss $=(0.487+0.067+5.057-1.806)(0.005)=0.019 \mathrm{MJ} / \mathrm{kg}-$ biosolids
3. Evaluate the heat balance to determine if the system can maintain the operating temperature at $850^{\circ} \mathrm{C}$.

From the summary table below, energy balance is slightly negative with stoichiometric air flow. Therefore, to maintain $850{ }^{\circ} \mathrm{C}$ operating temperature, water contents of the biosolids needs to be lowered, or temperature of incoming air raised. In this case, preheating of inlet air may be sufficient as the energy balance is close to zero.

Item	Unit	Stoichiometric air flow
Air added	mole/kg biosolids	57.6
Flue gas composition		
N_{2}	mole/kg biosolids	44.5
O_{2}	mole/kg biosolids	0
CO_{2}	mole/kg biosolids	11.1
$\mathrm{H}_{2} \mathrm{O}$	mole/kg biosolids	45.1

Heat content of added air at 20C	$\mathrm{MJ} / \mathrm{kg}$ biosolids	0.487
Heat content of biosolids at 20C	$\mathrm{MJ} / \mathrm{kg}$ biosolids	0.067
Flue gas heat content at 850 C	$\mathrm{MJ} / \mathrm{kg}$ biosolids	3.925
Ash heat content at 850 C	$\mathrm{MJ} / \mathrm{kg}$ biosolids	0.074
Energy released from combustion	$\mathrm{MJ} / \mathrm{kg}$ biosolids	5.057
Heat loss by evaporation of water	$\mathrm{MJ} / \mathrm{kg}$ biosolids	1.806
System heat loss	$\mathrm{MJ} / \mathrm{kg}$ biosolids	0.019
Net energy balance		-0.212

Note: Because values presented in the table were calculated on a spreadsheet and rounded, some values may not match exactly with manual calculations.

PROBLEM 17-6

Problem Statement - See text, page 1862
Solution - for Heating requirement $=\mathbf{2 0 0}$ kW and total power requirement for pumps $=40 \mathrm{~kW}$

1. Calculate the COP for the heat pump.

Power input $=0.24 \mathrm{~kW}$ per 1 kW of output
$\mathrm{COP}=\frac{1.0}{0.24}=4.2$
Heat output $=200 \mathrm{~kW} \times 4.2 /(4.2-1)=263 \mathrm{~kW}$
Power input $=263 \mathrm{~kW} / 4.2=62.5 \mathrm{~kW}$
2. Calculate the COP for the entire system

$$
\begin{aligned}
\mathrm{COP} & =\frac{263 \mathrm{~kW}}{(62.5 \mathrm{~kW}+40 \mathrm{~kW})} \\
& =2.6
\end{aligned}
$$

3. Calculate the wastewater flowrate to be transferred to the heat pump system.
Heating requirement $=200 \mathrm{~kW}$
COP = 2.6
Heat to be extracted from water $=200-(200 / 2.6)=123 \mathrm{~kW}$
$123 \mathrm{~kW}=123 \mathrm{~kJ} / \mathrm{s}$

Specific heat of water $=4.2 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$
Assume density of water $=1.0$

$$
\begin{aligned}
\text { Wastewater flow required } & =\frac{(123 \mathrm{~kJ} / \mathrm{s})}{\left(4.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{c}^{\circ} \mathrm{C}\right)\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(4{ }^{\circ} \mathrm{C}\right)} \\
& =\frac{123}{4.20^{3} \odot 4}=0.00732 \mathrm{~m}^{3} / \mathrm{s} \\
& =\left(0.00732 \mathrm{~m}^{3} / \mathrm{s}\right)(3600 \mathrm{~s} / 1 \mathrm{~h})=26 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

PROBLEM 17-7

Problem Statement - See text, page 1862

Solution

Discussion points include:

1. Location of heat source and the point of use:

Heat in raw wastewater may be extracted at the location along the wastewater collection system, where extracted heat could be utilized or added to an existing district heating system.
2. Quality of raw wastewater:

Due to solid contents, debris, and oil, fat and grease, design of heat exchanger between raw wastewater and the intermediate heating medium requires careful considerations to prevent malfunction of the heat exchangers. The structure to extract wastewater and discharge the cooled wastewater back to the collection system should not create stagnant raw wastewater, which could become septic quickly. If heat extraction is seasonal, there must be a mechanism to flush out raw wastewater before the heat extraction is ceased and the heat exchanger maintained when it is off-line to prevent deterioration of the system such as corrosion.
3. Temperature of wastewater influent:

Depending on the wastewater temperature and the amount of heat extracted, it is possible especially in the cold seasons that incoming wastewater temperature at the wastewater treatment facility may become
lower than it is designed to maintain biological treatment in the optimal conditions.

PROBLEM 17-8

Instructors Note: The problem statement did not provide the reduction in TSS and VSS. Students are asked to estimate the TSS and VSS reduction from the given information. The most logical approach is to assume that the reduction of BOD and COD is only on particulate matters, and estimate other parameters, as presented in this solution.
There is an error in the first print in page 1855. The discharge pressure should be corrected from 121.5 to 156.5 kPa .

Assumed blower efficiency should be added to the table in Example 17-10.
Blower efficiency was assumed to be 85 percent. Correction is to be made to the table.

Using these corrected values, the air requirements and energy requirements for the DO set point of $3.5 \mathrm{mg} / \mathrm{L}$ and $2.0 \mathrm{mg} / \mathrm{L}$ are $117.7 \mathrm{~kg} / \mathrm{min}$ and 57.7 kW , and $98.6 \mathrm{~kg} / \mathrm{min}$ and 74.0 kW , respectively.

The solution presented below is based on the corrected values.

Problem Statement - See text, page 1862

Solution - for $\mathbf{2 0}$ percent reduction

1. Estimate the characteristics of wastewater entering the activated sludge process after filtration. Assume all reduction of BOD is from the removal of particulate matter, and percent reduction in VSS is same as the percent reduction in particulate BOD.
a. Before filtration,

$$
\begin{aligned}
& \mathrm{BOD}=140 \mathrm{~g} / \mathrm{m}^{3}, \mathrm{sBOD}=70 \mathrm{mg} / \mathrm{L} \\
& \mathrm{COD}=300 \mathrm{mg} / \mathrm{L}, \mathrm{sCOD}=132 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{pBOD}=\mathrm{BOD}-\mathrm{sBOD}=(140-70) \mathrm{g} / \mathrm{m}^{3}=70 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{pCOD}=\mathrm{COD}-\mathrm{sCOD}=(300-132) \mathrm{g} / \mathrm{m}^{3}=168 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

pCOD/pBOD $=168 / 70=2.4$
TSS $=70 \mathrm{~g} / \mathrm{m}^{3}$
VSS $=60 \mathrm{~g} / \mathrm{m}^{3}$
b. After filtration,

$$
\begin{aligned}
& \mathrm{BOD}=\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)(0.8)=112 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{sBOD}=70 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{pBOD}=(112-70) \mathrm{g} / \mathrm{m}^{3}=42 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

Assume $\mathrm{pCOD} / \mathrm{pBOD}$ ratio remains the same after filtration.
$\mathrm{pCOD}=\left(42 \mathrm{~g} / \mathrm{m}^{3}\right)(2.4)=100.8 \mathrm{~g} / \mathrm{m}^{3}$
sCOD $=132 \mathrm{~g} / \mathrm{m}^{3}$
COD $=\mathrm{pCOD}+\mathrm{sCOD}=100.8+132=232.8 \mathrm{~g} / \mathrm{m}^{3}$
Recuction in pBOD $=70-42=28 \mathrm{~g} / \mathrm{m}^{3}$, or 40 percent.
Assume VSS percent reduction $=\mathrm{pBOD}$ percent reduction $=40$ percent, and TSS/VSS ratio remains the same.

VSS $=\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)(1-0.4)=36 \mathrm{~g} / \mathrm{m}^{3}$
TSS $=\left(36 \mathrm{~g} / \mathrm{m}^{3}\right)(70 / 60)=42 \mathrm{~g} / \mathrm{m}^{3}$
2. Develop the wastewater characteristics needed for design.
a. Find $b C O D$.

$$
\mathrm{bCOD}=1.6(\mathrm{BOD})=1.6\left(112 \mathrm{~g} / \mathrm{m}^{3}\right)=179.2 \mathrm{~g} / \mathrm{m}^{3}
$$

b. Find nbCOD using Eq. (8-12).

$$
\mathrm{nbCOD}=\mathrm{COD}-\mathrm{bCOD}=(232.8-179.2) \mathrm{g} / \mathrm{m}^{3}=53.6 \mathrm{~g} / \mathrm{m}^{3}
$$

c. Find effluent nonbiodegradable sCOD.

$$
\begin{aligned}
\text { nbsCODe }= & \text { sCOD }-1.6 \mathrm{sBOD} \\
& =\left(132 \mathrm{~g} / \mathrm{m}^{3}\right)-(1.6)\left(70 \mathrm{~g} / \mathrm{m}^{3}\right)=20 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

d. Find nbVSS using Eqs. (8-7, 8-8, and 8-9).

$$
\begin{aligned}
\text { nbpCOD }=\text { TCOD } & -\mathrm{bCOD}-\mathrm{nbsCOD}_{\mathrm{e}} \\
& =(232.8-179.2-20) \mathrm{g} / \mathrm{m}^{3}=33.6 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{VSS}_{\mathrm{COD}} & =\frac{\mathrm{TCOD}-\mathrm{sCOD}}{\mathrm{VSS}} \\
& =\frac{\left[(232.8-132) \mathrm{g} / \mathrm{m}^{3}\right]}{\left(36 \mathrm{~g} / \mathrm{m}^{3}\right)}=2.8 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS} \\
\mathrm{nbVSS} & =\frac{\mathrm{nbpCOD}}{\mathrm{VSS}_{\mathrm{COD}}} \\
& =\frac{\left(33.6 \mathrm{~g} / \mathrm{m}^{3}\right)}{(2.8 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS})}=12 \mathrm{~g} \mathrm{nbVSS} / \mathrm{m}^{3}
\end{aligned}
$$

e. Find iTSS.

$$
\mathrm{iTSS}=\mathrm{TSS}-\mathrm{VSS}=42-36=6 \mathrm{~g} / \mathrm{m}^{3}
$$

3. Design suspended growth system for BOD removal only.
a. Define biomass production using Eq. (8-20) in Table 8-10.

$$
\begin{aligned}
& P_{X, \text { Bio }}=\frac{Q Y_{H}\left(S_{o}-S\right)}{1+b_{H}(S R T)}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{1+b_{H}(S R T)} \\
& Q=22,700 \mathrm{~m}^{3} / \mathrm{d} \\
& S_{0}=179.2 \mathrm{~g} / \mathrm{m}^{3} \\
& Y_{H}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD} \\
& f_{d}=0.15
\end{aligned}
$$

b. Determine S from Eq. (7-46) in Table 8-10.

$$
\mathrm{S}=\frac{\mathrm{K}_{\mathrm{S}}\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right]}{\mathrm{SRT}\left(\mu_{\max }-\mathrm{b}_{\mathrm{H}}\right)-1}
$$

From Table 8-14, at $20^{\circ} \mathrm{C}$,
$\mu_{\text {max }}=6.0 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$
$\mathrm{b}_{\mathrm{H}}=0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{d}$
$\mathrm{K}_{\mathrm{s}}=8.0 \mathrm{~g} / \mathrm{m}^{3}$
At $12^{\circ} \mathrm{C}$, using Eq. (1-44),

$$
\begin{aligned}
\mu_{\mathrm{m}, \mathrm{~T}} & =\mu_{\max } \theta^{(\mathrm{T}-20)} \\
& =6.0(1.07)^{(12-20)}=3.5 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{b}_{\mathrm{H}, \mathrm{~T}} & =\mathrm{b}_{\mathrm{H}, 20} \theta^{(\mathrm{T}-20)} \\
& =(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(1.04)^{(12-20)}=0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d} \\
\mathrm{~S}= & \frac{\left(8.0 \mathrm{~g} / \mathrm{m}^{3}\right)[1+0(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}{(5 \mathrm{~d})(3.5 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d}-0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})-1}=0.7 \mathrm{~g} \mathrm{bCOD} / \mathrm{m}^{3}
\end{aligned}
$$

c. Substitute the above values in the expression given above and solve for $P_{X, \text { bio. }}$

$$
\begin{aligned}
P_{X, \text { Bio }} & =\frac{Q Y_{H}\left(S_{0}-S\right)}{1+b_{H}(S R T)}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{0}-S\right) S R T}{1+b_{H}(S R T)} \\
= & \frac{\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(179.2-0.7) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(179.2-0.7) \mathrm{g} / \mathrm{m}^{3}\right](5 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+(0.088 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})} \\
P_{\mathrm{X}, \text { bio }}= & (1266.2+83.6) \mathrm{kg} / \mathrm{d}=1349.8 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

4. Determine the mass in terms of VSS and TSS in the aeration basin. Te mass of VSS and TSS can be determined using Eqs. (8-20), (8-21), and (757) in Table 8-10.

$$
\text { Mass }=P_{x}(S R T)
$$

a. Determine $P_{x, v s s}$ and $P_{x, \text {,ss }}$ using Eq. (8-20) and (8-21) including parts
A, B and D. Part $C=0$ because there is no nitrification.
From Eq. (8-20), $\mathrm{P}_{\mathrm{X}, \mathrm{VSS}}$ is

$$
\begin{aligned}
P_{X, v s s} & =P_{X, \text { bio }}+Q(n b V S S) \\
P_{X, v S S} & =1349.8 \mathrm{~kg} / \mathrm{d}+\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(12 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& =(1349.8+272.4) \mathrm{kg} / \mathrm{d}=1622.2 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

From Eq. (8-21), $\mathrm{P}_{\mathrm{X}, \mathrm{TSS}}$ is

$$
\begin{aligned}
P_{X, T S S}= & \frac{Q Y_{H}\left(S_{0}-S\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{0.85\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right]}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) \mathrm{QY}_{H}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \mathrm{SRT}\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{0.85\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right]} \\
& +\mathrm{Q}(\mathrm{nbVSS})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)+\mathrm{Q}\left(\mathrm{TSS}_{\mathrm{o}}-\mathrm{VSS}_{\mathrm{o}}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{\mathrm{X}, \text { TSS }}= & \frac{(1266.2 \mathrm{~kg} / \mathrm{d})}{0.85}+\frac{(83.6 \mathrm{~kg} / \mathrm{d})}{0.85} \\
& +\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left(12 \mathrm{~g} / \mathrm{m}^{3}\right)\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
& +\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(42-36) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right) \\
= & (1489.6+98.4+272.4+136.2) \mathrm{kg} / \mathrm{d} \\
\mathrm{P}_{\mathrm{X}, \text { TSS }}= & 1996.6 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

b. Calculate the mass of VSS and TSS in the aeration basin.
i. Mass of MLVSS using Eq. (7-57) in Table 8-10

$$
\begin{aligned}
\left(\mathrm{X}_{\mathrm{VSS}}\right)(\mathrm{V}) & =\left(\mathrm{P}_{\mathrm{X}, \mathrm{Vss}}\right) \text { SRT } \\
& =(1622.2 \mathrm{~kg} / \mathrm{d})(5 \mathrm{~d})=8111 \mathrm{~kg}
\end{aligned}
$$

ii. Mass of MLSS using Eq. (7-57) in Table 8-10

$$
\begin{aligned}
\left(\mathrm{X}_{\mathrm{TSS}}\right)(\mathrm{V}) & =\left(\mathrm{P}_{\mathrm{X}, \mathrm{Tss}}\right) \mathrm{SRT} \\
& =(1996.6 \mathrm{~kg} / \mathrm{d})(5 \mathrm{~d})=9983 \mathrm{~kg}
\end{aligned}
$$

Note: the size of reactor has been set at $4445.7 \mathrm{~m}^{3}$. Therefore MLSS concentration will be $2246 \mathrm{mg} / \mathrm{L}$ when SRT is maintained at 5 d .
5. Calculate the O_{2} demand using Eq. (8-23) in Table 8-10.

$$
\begin{aligned}
& \text { Ro }=\mathrm{Q}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{x}, \mathrm{bio}}+4.57(\mathrm{Q}) \mathrm{NOx} \\
& =\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(179.2-0.7) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)-1.42(1349.8 \mathrm{~kg} / \mathrm{d}) \\
& =(4052.0-1916.7) \mathrm{kg} / \mathrm{d}=(2135.3 \mathrm{~kg} / \mathrm{d})(1 \mathrm{~d} / 24 \mathrm{~h})=89.0 \mathrm{~kg} / \mathrm{h}
\end{aligned}
$$

6. Determine the air flowrate using the information from above calculations and information given in Example 8-3.

Parameter	Unit	Value
Required oxygen transfer rate, OTR $_{\mathrm{f}}$	kg / h	89.0
α	-	0.50
F	-	0.90
β	-	0.95
Dissolved oxygen surface saturation concentration at $12^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{st}}$	mg / L	10.78
Dissolved oxygen surface saturation concentration at standard	mg / L	9.09
temperature $\left(20^{\circ} \mathrm{C}\right), \mathrm{C}_{\mathrm{s} 20}$		
Pressure correction factor, $\mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{s}}$		0.94
Steady-state DO saturation concentration, $\mathrm{C}^{*}{ }_{\propto 20}$	10.64	
Empirical temperature correction factor, θ		1.024

Temperature of mixed liquor	${ }^{\circ} \mathrm{C}$	12
Ambient temperature	${ }^{\circ} \mathrm{C}$	15
Oxygen in the air	$\mathrm{kg} / \mathrm{kg}$ air	0.232
Oxygen transfer efficiency, OTE	$\%$	25
Universal gas constant	$\mathrm{kJ} / \mathrm{kmole}$	8.314
Blower inlet absolute pressure	kPa	101.3
Compressor efficiency		0.85
Blower discharge absolute pressure	kPa	156.5

a. Determine the SOTR for DO in aeration basin $=2.0$ using Eq. (5-70).

$$
\text { SOTR }=\left[\frac{\text { OTR }_{f}}{(\alpha)(F)}\right]\left[\frac{\mathrm{C}_{\infty 20}^{*}}{(\beta)\left(\mathrm{C}_{\mathrm{st}} / \mathrm{C}_{\mathrm{s} 20}^{*}\right)\left(\mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{s}}\right)\left(\mathrm{C}_{\infty 20}^{*}\right)-\mathrm{C}}\right]\left[(1.024)^{20-\mathrm{t}}\right]
$$

Using the data given above, SOTR is calculated as

$$
\operatorname{SOTR}=\left[\frac{(89.0 \mathrm{~kg} / \mathrm{h})}{(0.50)(0.90)}\right]\left\{\frac{10.64}{\left[0.95\left(\frac{10.78}{9.09}\right)(0.94)(10.64)-2.0\right]}\right\}\left(1.024^{20-12}\right)=274.5 \mathrm{~kg} / \mathrm{h}
$$

b. Determine air flowrate in terms of $\mathrm{kg} / \mathrm{min}$.

$$
\text { Air flowrate, } \begin{aligned}
\mathrm{kg} / \min & \left.\left.=\frac{(\mathrm{SOTR} \mathrm{~kg} / \mathrm{h})}{[(\mathrm{E})(60 \mathrm{~min} / \mathrm{h})(0.232 \mathrm{~kg} \mathrm{O}} / \mathrm{kg} \text { air }\right)\right] \\
& =\frac{274.5}{(0.25)(60)(0.232)}=78.9 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

c. Calculate an estimated power requirement using Eq. (5-77a) in Chap. 5.

$$
\mathrm{P}_{\mathrm{w}}=\frac{\mathrm{wRT}_{1}}{28.97 \mathrm{ne}}\left[\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\mathrm{n}}-1\right]
$$

Using the data give above, P_{w} is calculated as

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}}, \mathrm{~kW} & =\left\{\frac{(78.9 \mathrm{~kg} / \mathrm{min})(1 \mathrm{~min} / 60 \mathrm{~s})(8.314 \mathrm{~J} / \mathrm{mole} \mathrm{~K})[(273.15+15) \mathrm{K}]}{(28.97 \mathrm{~g} / \mathrm{mole})(0.283)(0.85)}\right\}\left[\left(\frac{156.5 \mathrm{kPa}}{101.3 \mathrm{kPa}}\right)^{0.283}-1\right] \\
& =59.2 \mathrm{~kW}
\end{aligned}
$$

7. Compare the energy demand.

Compared to the result of Example 17-10, the oxygen requirement was reduced from $98.6 \mathrm{~kg} / \mathrm{min}$ to $78.9 \mathrm{~kg} / \mathrm{min}$. Energy demand was reduced from 74.0 kW to 59.2 kW . The reduction is about 25 percent. The energy requirements presented in Example 17-10 and this problem are significantly lower than the typical energy requirement for aeration presented in Table 17-3.

The energy requirement calculated in this problem does not include air requirements for other parts of the treatment facility such as aerated grit chamber, return sludge aeration, etc., and assumed relatively high efficiency for new equipment. In existing facilities, the mechanical equipment generally operates at lower efficiencies, and there are other causes of inefficiencies such as leaks. The reduction in aeration energy requirement by reducing particulate BOD in the primary effluent is significant based on the calculations in this problem. The cost and added energy requirement for removing particulate BOD, and potential increase in the energy production from increased recovery of biodegradable particulate for anaerobic digestion should be assessed to determine if the use of primary effluent filtration is cost effective.

PROBLEM 17-9

Instructors Note: Similar to Problem 17-8, students are asked to estimate the wastewater characteristics based on limited information provided in the problem statement. For the 60 percent loading condition, assume the flowrate and mass loadings of all constituents are 60 percent of the values given in Example 8-3 (i.e., concentrations are same). After implementation of the food garbage grinders, the flowrate will remain the same, but the organic concentration will increase. In this problem, only COD removal is considered in the activated sludge process and it is not necessary to estimate the increase in nitrogen and phosphorus.

The problem statement in the first printing did not specify the temperature to be assumed to calculate the energy requirements. An assumed average wastewater temperature of $20^{\circ} \mathrm{C}$ and ambient temperature of $18^{\circ} \mathrm{C}$ are used in this solution.

Problem Statement - See text, page 1862

Solution - for 600 kg/d increase in biodegradable COD

1. Determine the characteristics of wastewater entering the activated sludge process.
a. Before implementation of food waste grinders,

Flowrate $=\left(22,700 \mathrm{~m}^{3} / \mathrm{d}\right)(0.6)=13,620 \mathrm{~m}^{3} / \mathrm{d}$
$\mathrm{BOD}=140 \mathrm{~g} / \mathrm{m}^{3}, \mathrm{sBOD}=70 \mathrm{mg} / \mathrm{L}$
COD $=300 \mathrm{mg} / \mathrm{L}, \mathrm{sCOD}=132 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{pBOD}=\mathrm{BOD}-\mathrm{sBOD}=(140-70) \mathrm{g} / \mathrm{m}^{3}=70 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{pCOD}=\mathrm{COD}-\mathrm{sCOD}=(300-132) \mathrm{g} / \mathrm{m}^{3}=168 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{bCOD}=1.6(\mathrm{BOD})=1.6\left(140 \mathrm{~g} / \mathrm{m}^{3}\right)=224 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{pCOD} / \mathrm{pBOD}=168 / 70=2.4$
TSS $=70 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{VSS}=60 \mathrm{~g} / \mathrm{m}^{3}$
b. After implementation of food waste grinders,

The increase in bCOD in raw wastewater $=600 \mathrm{~kg} / \mathrm{d}$, of which 75 percent is removed by primary settling.
i. Increase in bCOD in primary effluent $=(600 \mathrm{~kg} / \mathrm{d})(1-0.75)=150$
kg/d
$=150,000 \mathrm{~g} / \mathrm{d}$
ii. Increase in organic loading to the digester due to increased primary sludge $=(600-150) \mathrm{kg} / \mathrm{d}=450 \mathrm{~kg}$ bCOD/d.
iii. Flowrate $=13,620 \mathrm{~m}^{3} / \mathrm{d}$ (assume flowrate stays the same)
iv. bCOD in primary effluent $=\left[\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)\left(224 \mathrm{~g} / \mathrm{m}^{3}\right)\right.$

$$
\begin{aligned}
& +(150,000 \mathrm{~g} / \mathrm{d})] /\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right) \\
= & 235.0 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

v. Assume the BOD to COD ratio and the ratio of particulate to soluble BOD remain the same,

$$
\begin{aligned}
& \mathrm{BOD}=\left(235.0 \mathrm{~g} / \mathrm{m}^{3}\right) / 1.6=146.9 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{sBOD}=\left(146.9 \mathrm{~g} / \mathrm{m}^{3}\right)(70 / 140)=73.4 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{pBOD}=73.4 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

vi. Assume $\mathrm{pCOD} / \mathrm{pBOD}$ ratio remains the same.
$\mathrm{pCOD}=\left(73.4 \mathrm{~g} / \mathrm{m}^{3}\right)(2.4)=176.2 \mathrm{~g} / \mathrm{m}^{3}$
Increase in $\mathrm{PCOD}=176.2-168=8.2 \mathrm{~g} / \mathrm{m}^{3}$, or 4.9 percent.
vii. Assume percent increase in VSS = percent increase in pCOD and TSS/VSS ratio remains the same.

$$
\begin{aligned}
& \mathrm{VSS}=\left(60 \mathrm{~g} / \mathrm{m}^{3}\right)(1+0.049)=62.9 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{TSS}=\left(62.9 \mathrm{~g} / \mathrm{m}^{3}\right)(70 / 60)=73.4 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

2. Develop the wastewater characteristics needed for the estimate of aeration requirement for the wastewater with food waste grinders.
a. Find nbCOD.

Assuming the same biodegradable fraction, total COD after
implementation of food waste grinders is:
$C O D=235.0(300 / 224) \mathrm{g} / \mathrm{m}^{3}=314.7 \mathrm{~g} / \mathrm{m}^{3}$
$\mathrm{nbCOD}=\mathrm{COD}-\mathrm{bCOD}=(314.7-235.0) \mathrm{g} / \mathrm{m}^{3}=79.7 \mathrm{~g} / \mathrm{m}^{3}$
c. Find effluent nonbiodegradable sCOD.

$$
\begin{aligned}
& \mathrm{sCOD}=\mathrm{COD}-\mathrm{pCOD}=(314.7-176.2) \mathrm{g} / \mathrm{m}^{3}=138.5 \mathrm{~g} / \mathrm{m}^{3} \\
& \begin{aligned}
\mathrm{nbsCOD} \\
\mathrm{e}
\end{aligned} \\
& =\mathrm{sCOD}-1.6 \mathrm{sBOD} \\
& \\
& =\left(138.5 \mathrm{~g} / \mathrm{m}^{3}\right)-(1.6)\left(73.4 \mathrm{~g} / \mathrm{m}^{3}\right)=21.1 \mathrm{~g} / \mathrm{m}^{3}
\end{aligned}
$$

d. Find nbVSS using Eqs. (8-7, 8-8, and 8-9).
$n b p C O D=T C O D-b C O D-n b s C O D$ e

$$
\begin{aligned}
& =(314.7-235.0-21.1) \mathrm{g} / \mathrm{m}^{3}=58.6 \mathrm{~g} / \mathrm{m}^{3} \\
\mathrm{VSS}_{\mathrm{COD}} & =\frac{\mathrm{TCOD}-\mathrm{sCOD}}{\mathrm{VSS}} \\
& =\frac{\left[(314.7-138.5) \mathrm{g} / \mathrm{m}^{3}\right]}{\left(62.9 \mathrm{~g} / \mathrm{m}^{3}\right)}=2.8 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS} \\
\mathrm{nbVSS} & =\frac{\mathrm{nbpCOD}}{\mathrm{VSS}_{\mathrm{COD}}} \\
& =\frac{\left(58.6 \mathrm{~g} / \mathrm{m}^{3}\right)}{(2.8 \mathrm{~g} \mathrm{COD} / \mathrm{g} \mathrm{VSS})}=20.9 \mathrm{~g} \mathrm{nbVSS} / \mathrm{m}^{3}
\end{aligned}
$$

e. Find iTSS.

$$
\mathrm{iTSS}=\mathrm{TSS}-\mathrm{VSS}=73.4-62.9=10.5 \mathrm{~g} / \mathrm{m}^{3}
$$

3. Determine the biomass production at 60 percent loading without food waste grinder.
a. Define biomass production using Eq. (8-20) in Table 8-10.

$$
\begin{aligned}
& P_{X, B i o}=\frac{Q Y_{H}\left(S_{o}-S\right)}{1+b_{H}(S R T)}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{1+b_{H}(S R T)} \\
& Q=13,620 \mathrm{~m}^{3} / \mathrm{d} \\
& S_{o}=224 \mathrm{~g} / \mathrm{m}^{3} \\
& Y_{H}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \text { bCOD } \\
& f_{d}=0.15
\end{aligned}
$$

b. Determine S from Eq. (7-46) in Table 8-10.

$$
\mathrm{S}=\frac{\mathrm{K}_{\mathrm{S}}\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right]}{\mathrm{SRT}\left(\mu_{\max }-\mathrm{b}_{\mathrm{H}}\right)-1}
$$

From Table 8-14, at $20^{\circ} \mathrm{C}$,

$$
\mu_{\max }=6.0 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d}
$$

$$
\mathrm{b}_{\mathrm{H}, 20}=0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d}
$$

$$
\mathrm{K}_{\mathrm{s}}=8.0 \mathrm{~g} / \mathrm{m}^{3}
$$

$$
S=\frac{\left(8.0 \mathrm{~g} / \mathrm{m}^{3}\right)\left[1+\left(0.12 \mathrm{~g} / \mathrm{g}^{\circ} \mathrm{d}\right)(5 \mathrm{~d})\right]}{(5 \mathrm{~d})\left[\left(6.0 \mathrm{~g} / \mathrm{g}^{\circ} \mathrm{d}\right)-\left(0.12 \mathrm{~g} / \mathrm{g}^{\circ} \mathrm{d}\right)\right]-1}=0.45 \mathrm{~g} \mathrm{bCOD} / \mathrm{m}^{3}
$$

c. Substitute the above values in the expression given above and solve for $\mathrm{P}_{\mathrm{X}, \text { bio. }}$.

$$
\begin{aligned}
P_{X, \text { Bio }} & =\frac{Q Y_{H}\left(S_{o}-S\right)}{1+b_{H}(S R T)}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{1+b_{H}(S R T)} \\
& =\frac{\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(224-0.45) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(224-0.45) \mathrm{g} / \mathrm{m}^{3}\right](5 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})}
\end{aligned}
$$

$$
P_{\mathrm{x}, \text { bio }}=(856.3+77.1) \mathrm{kg} / \mathrm{d}=933.4 \mathrm{~kg} / \mathrm{d}
$$

4. Calculate the O_{2} demand using Eq. (8-23) in Table 8-10.

$$
\begin{aligned}
& \text { Ro }=Q\left(S_{o}-S\right)-1.42 P_{\text {X,bio }}+4.57(Q) N O x \\
& =\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(224-0.45) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)-1.42(933.4 \mathrm{~kg} / \mathrm{d})+0 \\
& =(3044.8-1325.4) \mathrm{kg} / \mathrm{d}=(1719.4 \mathrm{~kg} / \mathrm{d})(1 \mathrm{~d} / 24 \mathrm{~h})=71.6 \mathrm{~kg} / \mathrm{h}
\end{aligned}
$$

5. Determine the air flowrate using the information from above calculations and information given in Example 8-3.

Parameter	Unit	Value
Required oxygen transfer rate, $\mathrm{OTR}_{\mathrm{f}}$	kg / h	89.0
α	-	0.50
F	-	0.90
β	-	0.95
Dissolved oxygen surface saturation concentration at $20^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{st}}$	mg / L	10.78
Dissolved oxygen surface saturation concentration at standard	mg / L	9.09
temperature $\left(20^{\circ} \mathrm{C}\right), \mathrm{C}^{*} \mathrm{~s} 20$		
Pressure correction factor, $\mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{s}}$		0.94
Steady-state DO saturation concentration, $\mathrm{C}^{*}{ }_{\infty 20}$		10.64
Empirical temperature correction factor, θ		1.024
Temperature of mixed liquor	${ }^{\circ} \mathrm{C}$	20
Ambient temperature	${ }^{\circ} \mathrm{C}$	18
Oxygen in the air	$\mathrm{kg} / \mathrm{kg}$ air	0.232
Oxygen transfer efficiency, OTE	$\%$	25
Universal gas constant	$\mathrm{kJ} / \mathrm{kmole}$	8.314
Blower inlet absolute pressure	kPa	101.3
Blower discharge absolute pressure	kPa	156.5

a. Determine the SOTR for DO in aeration basin $=2.0$ using Eq. (5-70).

$$
\text { SOTR }=\left[\frac{\mathrm{OTR}_{\mathrm{f}}}{(\alpha)(\mathrm{F})}\right]\left[\frac{\mathrm{C}_{\infty 20}^{*}}{(\beta)\left(\mathrm{C}_{\mathrm{st}} / \mathrm{C}_{\mathrm{s} 20}^{*}\right)\left(\mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{s}}\right)\left(\mathrm{C}_{\infty 20}^{*}\right)-\mathrm{C}}\right]\left[(1.024)^{20-\mathrm{t}}\right]
$$

Using the data given above, SOTR is calculated as
$\operatorname{SOTR}=\left[\frac{(71.6 \mathrm{~kg} / \mathrm{h})}{(0.50)(0.90)}\right]\left\{\frac{10.64}{\left[0.95\left(\frac{9.09}{9.09}\right)(0.94)(10.64)-2.0\right]}\right\}\left(1.024^{20-20}\right)=225.7 \mathrm{~kg} / \mathrm{h}$
b. Determine air flowrate in terms of $\mathrm{kg} / \mathrm{min}$.

$$
\text { Air flowrate, } \begin{aligned}
\mathrm{kg} / \mathrm{min} & =\frac{(\mathrm{SOTR} \mathrm{kg/h)}}{\left[(\mathrm{E})(60 \mathrm{~min} / \mathrm{h})\left(0.232 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \text { air }\right)\right]} \\
& =\frac{225.7}{(0.25)(60)(0.232)}=64.8 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

c. Calculate an estimated power requirement using Eq. (5-77a) in Chap. 5.

$$
P_{w}=\frac{w R T_{1}}{28.97 n e}\left[\left(\frac{p_{2}}{p_{1}}\right)^{n}-1\right]
$$

Using the data give above, P_{w} is calculated as

$$
\begin{aligned}
\mathrm{P}_{\mathrm{w}}, \mathrm{~kW} & =\left\{\frac{(64.8 \mathrm{~kg} / \mathrm{min})(1 \mathrm{~min} / 60 \mathrm{~s})(8.314 \mathrm{~J} / \mathrm{mole} \mathrm{KK})[(273.15+18) \mathrm{K}]}{(28.97 \mathrm{~g} / \mathrm{mole})(0.283)(0.85)}\right\}\left[\left(\frac{156.5 \mathrm{~atm}}{101.3 \mathrm{~atm}}\right)^{0.283}-1\right] \\
& =49.1 \mathrm{~kW}
\end{aligned}
$$

6. Determine the biomass production at 60 percent loading with food waste grinder.
a. Define biomass production using Eq. (8-20) in Table 8-10.

$$
\begin{aligned}
& P_{X, \text { Bio }}=\frac{Q Y_{H}\left(S_{o}-S\right)}{1+b_{H}(S R T)}+\frac{\left(f_{d}\right)\left(b_{H}\right) Q Y_{H}\left(S_{o}-S\right) S R T}{1+b_{H}(S R T)} \\
& Q=13,620 \mathrm{~m}^{3} / \mathrm{d} \\
& S_{0}=235 \mathrm{~g} / \mathrm{m}^{3} \\
& Y_{H}=0.45 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{bCOD} \\
& f_{d}=0.15
\end{aligned}
$$

b. Determine S from Eq. (7-46) in Table 8-10.

$$
\mathrm{S}=\frac{\mathrm{K}_{\mathrm{S}}\left[1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})\right]}{\mathrm{SRT}\left(\mu_{\max }-\mathrm{b}_{\mathrm{H}}\right)-1}
$$

From Table 8-14, at $20^{\circ} \mathrm{C}$,

$$
\begin{aligned}
& \mu_{\max }=6.0 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d} \\
& \mathrm{~b}_{\mathrm{H}, 20}=0.12 \mathrm{~g} \mathrm{VSS} / \mathrm{g} \mathrm{VSS} \cdot \mathrm{~d} \\
& \mathrm{~K}_{\mathrm{s}}=8.0 \mathrm{~g} / \mathrm{m}^{3} \\
& \mathrm{~S}=\frac{\left(8.0 \mathrm{~g} / \mathrm{m}^{3}\right)[1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})]}{(5 \mathrm{~d})[(6.0 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})-(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})]-1}=0.45 \mathrm{gbCOD} / \mathrm{m}^{3}
\end{aligned}
$$

c. Substitute the above values in the expression given above and solve for $P_{x, \text { bio }}$.

$$
\begin{aligned}
P_{\mathrm{X}, \mathrm{Bio}}= & \frac{Q Y_{\mathrm{H}}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right)}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})}+\frac{\left(\mathrm{f}_{\mathrm{d}}\right)\left(\mathrm{b}_{\mathrm{H}}\right) Q \mathrm{Y}_{\mathrm{H}}\left(\mathrm{~S}_{\mathrm{o}}-\mathrm{S}\right) \text { SRT }}{1+\mathrm{b}_{\mathrm{H}}(\mathrm{SRT})} \\
= & \frac{\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left((235-0.45) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})} \\
& +\frac{(0.15 \mathrm{~g} / \mathrm{g})(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)(0.45 \mathrm{~g} / \mathrm{g})\left[(235-0.45) \mathrm{g} / \mathrm{m}^{3}\right](5 \mathrm{~d})\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)}{1+(0.12 \mathrm{~g} / \mathrm{g} \cdot \mathrm{~d})(5 \mathrm{~d})} \\
\mathrm{P}_{\mathrm{X}, \mathrm{bio}}= & (898.5+80.8) \mathrm{kg} / \mathrm{d}=979.3 \mathrm{~kg} / \mathrm{d}
\end{aligned}
$$

7. Calculate the O_{2} demand using Eq. (8-23) in Table 8-10.
$\mathrm{Ro}=\mathrm{Q}\left(\mathrm{S}_{\mathrm{o}}-\mathrm{S}\right)-1.42 \mathrm{P}_{\mathrm{X}, \text { bio }}+4.57(\mathrm{Q}) \mathrm{NOX}$
$=\left(13,620 \mathrm{~m}^{3} / \mathrm{d}\right)\left[(235-0.45) \mathrm{g} / \mathrm{m}^{3}\right]\left(1 \mathrm{~kg} / 10^{3} \mathrm{~g}\right)-1.42(979.3 \mathrm{~kg} / \mathrm{d})+0$
$=(3194.6-1390.6) \mathrm{kg} / \mathrm{d}=(1804 \mathrm{~kg} / \mathrm{d})(1 \mathrm{~d} / 24 \mathrm{~h})=75.2 \mathrm{~kg} / \mathrm{h}$
8. Determine the air flowrate using the information from above calculations and information given in Example 8-3, and calculate the increase in energy demand.
a. Determine the SOTR for DO in aeration basin $=2.0$ using Eq. (5-70).

$$
\mathrm{SOTR}=\left[\frac{\mathrm{OTR}_{\mathrm{f}}}{(\alpha)(\mathrm{F})}\right]\left[\frac{\mathrm{C}_{\infty 20}^{*}}{(\beta)\left(\mathrm{C}_{\mathrm{st}} / \mathrm{C}_{\mathrm{s} 20}^{*}\right)\left(\mathrm{P}_{\mathrm{b}} / \mathrm{P}_{\mathrm{s}}\right)\left(\mathrm{C}_{\infty 20}^{*}\right)-\mathrm{C}}\right]\left[(1.024)^{20-\mathrm{t}}\right]
$$

Using the data given above, SOTR is calculated as
$\operatorname{SOTR}=\left[\frac{(75.2 \mathrm{~kg} / \mathrm{h})}{(0.50)(0.90)}\right]\left\{\frac{10.64}{\left[0.95\left(\frac{9.09}{9.09}\right)(0.94)(10.64)-2.0\right]}\right\}\left(1.024^{20-20}\right)=237.0 \mathrm{~kg} / \mathrm{h}$
b. Determine air flowrate in terms of $\mathrm{kg} / \mathrm{min}$.

$$
\text { Air flowrate, } \begin{aligned}
\mathrm{kg} / \mathrm{min} & =\frac{(\text { SOTR } \mathrm{kg} / \mathrm{h})}{\left[(E)(60 \mathrm{~min} / \mathrm{h})\left(0.232 \mathrm{~kg} \mathrm{O}_{2} / \mathrm{kg} \text { air }\right)\right]} \\
& =\frac{237.0}{(0.25)(60)(0.232)}=68.1 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

c. Calculate an estimated power requirement using Eq. (5-77a) in Chap. 5.

$$
P_{w}=\frac{w R T_{1}}{28.97 n e}\left[\left(\frac{p_{2}}{p_{1}}\right)^{n}-1\right]
$$

Using the data give above, P_{w} is calculated as
$\mathrm{P}_{\mathrm{w}}, \mathrm{kW}=\left\{\frac{(68.1 \mathrm{~kg} / \mathrm{min})(1 \mathrm{~min} / 60 \mathrm{~s})(8.314 \mathrm{~J} / \mathrm{mole} \mathrm{K})[(273.15+18) \mathrm{K}]}{(28.97 \mathrm{~g} / \mathrm{mole})(0.283)(0.85)}\right\}\left[\left(\frac{156.5 \mathrm{~atm}}{101.3 \mathrm{~atm}}\right)^{0.283}-1\right]$

$$
=51.6 \mathrm{~kW}
$$

The increase in power requirement as a result of food waste grinder is (51.6 - 49.1) kW = 2.5 kW , or $(2.5 \mathrm{~kW})(24 \mathrm{~h} / 1 \mathrm{~d})=60 \mathrm{kWh} / \mathrm{d}$
9. Determine the increase in biogas production.
a. Increase in bCOD to the digester $=450 \mathrm{~kg} / \mathrm{d}$
b. From Eq. (7-142), 64 g of bCOD is converted to one mole of CH_{4} by anaerobic digestion, or $0.35 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{kg} \mathrm{COD}$ at standard conditions $\left(0^{\circ} \mathrm{C}\right.$ at 1 atm). Assuming 50 percent of the bCOD introduced to the digester from the food waste grinder is converted to CH_{4}, the amount of CH_{4} produced is
CH_{4} produced $=(450 \mathrm{~kg} \mathrm{COD} / \mathrm{d})\left(0.35 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{COD}\right)=157.5 \mathrm{~kg} / \mathrm{d}$
c. Using the heating value for methane at $35,846 \mathrm{~kJ} / \mathrm{m}^{3}$, the energy in the produced methane is

Energy content in produced $\mathrm{CH}_{4}(\mathrm{~kJ} / \mathrm{d})$

$$
\begin{aligned}
& =\left(157.5 \mathrm{~m}^{3} / \mathrm{d}\right)\left(35,846 \mathrm{~kJ} / \mathrm{m}^{3}\right) \\
& =5,645,745 \mathrm{~kJ} / \mathrm{d}=5.6 \mathrm{GJ} / \mathrm{d}
\end{aligned}
$$

10. Estimate the increased energy production from the increased biogas production.
From Table 17-8, assume typical efficiency of reciprocating engine of 35 percent.

Energy recovered from the increased methane production
$=0.35(5.6 \mathrm{GJ} / \mathrm{d})=2.0 \mathrm{GJ} / \mathrm{d}$.
Convert the unit to compare with the increased energy consumption for aeration
2.0 GJ/d $=(2.0 \mathrm{GJ} / \mathrm{d})(277.8 \mathrm{kWh} / \mathrm{GJ})=555.6 \mathrm{kWh} / \mathrm{d}$

Comment

Based on this assessment, theoretically, the use of food waste grinder can result in a significant increase in the energy production, while only $60 \mathrm{kWh} / \mathrm{d}$ increase in the aeration energy requirement. It should be noted this assessment did not count for the increased energy requirements for other parts of wastewater treatment facility.

PROBLEM 17-10

Problem Statement - See text, page 1862

Solution

The use of on/off control results in a varied wet well water depth, and therefore a varied head to the operating pumps. The use of VFD with a set wet-well level will allow the pumps to be operated at constant head which will allow operation of the pumps at an efficient point of the pump curve.

WASTEWATER MANAGEMENT: FUTURE CHALLENGES AND OPPORTUNITIES

PROBLEM 18-1

Problem Statement - See text, page 1899

Solution

1. Some possible sources of information are:
www.epa.gov/ogwdw/smallsystems/pdfs/guide smallsystems asset mgmnt .pdf
http://www.epa.gov/owm/assetmanage/assets training.htm
www.epa.gov/cupss/index.html
www.epa.gov/npdes/pubs/assetmanagement.pdf
http://208.88.129.72/wil.aspx?ekmensel=c57dfa7b 8201541
Old Forge Wastewater Treatment Plant and NYSDEC (2008) Wastewater Infrastructure Asset Management Plan Village of Old Forge, Albany, NY.

PROBLEM 18-2

Problem Statement - See text, page 1899

Solution

1. Some advantages and disadvantages, in no special order, are:
Advantages Disadvantages

- Treated effluent could be used locally.
- Sludge could be transported to larger downstream plant for processing similar to what occurs in the Los Angeles area (see Fig. 18-3).
- Small footprint if sludge is processed at larger downstream plant.
- Savings in pumping costs if purified wastewater is to be used for direct potable reuse

Disadvantages

- More personnel are required for two plants as compared to one large plant.
- Less opportunity to reap benefits of economy of scale.
- More costly to build and operate two separate treatment plants.

PROBLEM 18-3

Problem Statement - See text, page 1899

Solution

1. Investigate whether the collection system has any storage capacity. If excess capacity is available in gravity flow collection system, determine if excess capacity can be utilized by installing control structures (e.g. dams and weirs). If the collection system contains pump stations, it may be possible to sequence the pumps so that the storage capacity in the collection system can be utilized.
2. Investigate whether any unused tankage is available at the wastewater treatment plant, and whether it could be utilized for peak flow equalization.
3. Investigate whether all of the secondary clarifiers are being utilized. Any unused clarifiers should be brought online during storm events.
4. Investigate whether some of the primary sedimentation tanks could be converted to secondary clarifiers during storm events.
5. Consider installation of tunnel storage (see Table 18-7) within the collection system.
6. Consider installation of online or offline flow equalization on or near wastewater treatment plant.
7. If a conventional plug-flow activated sludge process is used, consider converting it to step feed prior to and during storm events.

PROBLEM 18-4

Problem Statement - See text, page 1899

Solution

1. Some advantages and disadvantages, in no special order, are:

Advantages	Disadvantages
- Improved treatment can be provided for wastewater and stormwater. - The cost of treating of stormwater with complete secondary treatment can be reduced. - A higher level of treatment could be provided for the smaller wastewater flowrate.	- Enormously expensive. - Disruptive to the public for extended period of time that would be needed for the construction of the separate stormwater collections system. - Because of reduced flowrates, solids deposition may occur in the wastewater collection system, which would reqire periodic flushing. - Right of way may be difficult to obtain. - More personnel would be required to manage the separate wastewater and stormwater treatment plants. - Securing appropriate rights of way easements may be difficult and costly

PROBLEM 18-5

Problem Statement - See text, page 1899

Solution

1. Some advantages and disadvantages, in no special order, are:
Advantages Disadvantages

- A single treatment facility could be operated.
- Untreated stormwater discharges could potentially be eliminated.

Disadvantages

- Depending of the rainfall pattern, excess plant capacity would not be utilized during extended periods of the year.
- Disruptive to the public for extended period of time that would be needed to construction a combined collection system.
- Serious operational problems can occur in a plant subject to peak storm events if flow equalization is not available.

PROBLEM 18-6

Problem Statement - See text, page 1899

Solution

1. Some benefits and drawbacks, in no special order, are:

Benefits	Drawbacks
Separate collection systems (Problem 18-4)	
- Smaller treatment facility for the treatment of wastewater system.	- Two different agencies or departments may be responsible for operation and management functions. - Because more staff are required, a larger supervisory staff would be required. - Enormously expensive to construct separate collection system. Beyond the financial, means of most communities.
Combined collection system (Problem 18-5)	
- Centralized agency responsible for management of both wastewater and stormwater - Potentially improved treatment of stormwater.	- New rate structure must be developed to deal with combined flows - Enormously expensive to construct combined collection system to handle both wastewater and stormwater. Beyond the financial, means of most communities

[^0]: ${ }^{\text {a }}$ Atomic weight unit = weight fraction / atomic weight

