

Treatment of Contaminated Sites with In Situ Chemical Oxidation

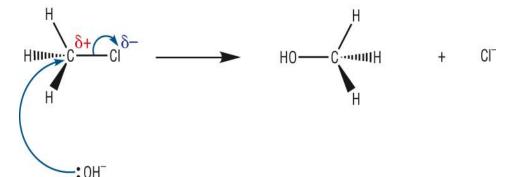
Brant A. Smith P.E., Ph.D. Technical Applications Manager: ISCO PeroxyChem

Presentation Overview

- Principles of Remediation
- Concepts of Chemical Oxidation
- Primary Chemical Oxidation Technologies
 - Catalyzed Hydrogen Peroxide (Fenton's Reagent)
 - Permanganate
 - Klozur[®] Persulfate
- Potential Issues
- Conclusions

Principles of Remediation

- Remediation methods work to exploit a characteristic of the contamination
 - Vapor pressure
 - Air Sparging/Soil Vapor Extraction (AS-SVE)
 - Boiling point/vapor pressure:
 - Thermally enhanced SVE
 - Chemical transformations
 - Bioremediation
 - Chemical oxidation
 - Nucleophilic transformation
 - Chemical reduction
 - Chemical precipitation/Metals stabilization
- Remediation methods often selected based on chemical characteristics and site conditions that favor a particular method



Reaction Pathways

- Oxidative
 - Electrons are taken from contaminants $\rightarrow CO_2$
- Reductive
 - Electrons are donated to the contaminants $\rightarrow CH_4$
- Nucleophilic

- Substitution reaction (electron neutral)

IN SITU CHEMICAL OXIDATION: OVERVIEW

What is ISCO

- In Situ Chemical Oxidation (ISCO)
 - Transform/degrade contamination in place in the subsurface

Massive supply of thermodynamically powerful electron acceptors

- Addition of chemicals that take electrons from, or oxidizing, contaminants of concern (COCs)
- Reductive (electron donating) and nucleophilic pathways are also present with certain technologies
 - Allows for treatment of multiple types of contaminants
 - Technology and activation method specific

Why ISCO?

- Many in situ remediation technologies to choose from, why pick ISCO?
 - <u>Cost</u>: Often the lowest cost alternative
 - <u>Time</u>: Provides results quickly, usually within weeks to months of an application
 - <u>Effectiveness</u>: ISCO can treat a wide assortment of typical COCs
 - <u>Contaminant Mass</u>: ISCO can treat a wide variety of contaminant concentrations including heavily impacted areas that may inhibit bioremediation

Examples of Contaminants Destroyed by Klozur Persulfate

(not all ISCO reagents treat all compounds listed)

Chlorinated Solvents PCE, TCE, DCE TCA, DCA Vinyl chloride Carbon tetrachloride Chloroform Chloroethane Chloromethane Dichloropropane Trichloropropane Methylene chloride

Others

Environmental

Solutions

Carbon disulfide Aniline 1,4-Dioxane

ТРН
BTEX
GRO
DRO
ORO
creosote

TDU

Oxygenates MTBE TBA

Perflourinated

Freon PFOS PFOA PFBA

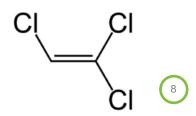
Chlorobenzenes

Chlorobenzene Dichlorobenzene Trichlorobenzene

Phenols

Phenol Chlorophenols Nitrophenols

PAHs


Anthracene Benzopyrene Styrene Naphthalene Pyrene Chrysene Trimethylbenzene

Pesticides

DDT Chlordane Heptachlor Lindane Toxaphene MCPA Bromoxynil

Energetics

Trinitrotoluene (TNT) Dinitrotoluene (DNT) RDX

Where is ISCO Applied?

 ISCO is a mass reduction technology usually used to target low mg/Kg to greater than 10,000 mg/Kg contamination

– GW concentrations depend upon solubility

- ISCO can be used to target
 - Source area (typical)
 - Plume (often depends on contaminant concentration)
- To treat both oxidized and reduced contamination

Key to Success for Field Applications

- Reactions are known to take place on the laboratory scale
 - 100% contact between ISCO and contamination

ISCO works by establishing contact between a sufficient mass of activated oxidant with the contaminant mass in the subsurface

Field Applications

Sufficient Mass of Oxidant

1. Target demand

Environmental

Solutions

- 1. Contaminant type and mass
- 2. Non-target demand
- 3. Uncertainties and variability
 - 1. Target Demand
 - 2. Non-target demand
 - 3. Contaminant distribution
- Remedial goals

Establishing Contact

- Site Geology
- Contaminant distribution
- Reagent distribution
- Injection network
- Injection strategy
- Injection volume
- Contact time
- Groundwater velocity

Progression to a Field Application

Typical Path

- Path
 - Bench scale tests
 - Design Optimization (Pilot scale tests)
 - Full scale applications
 - Achievement of goals or transition to another technology as part of a treatment train approach

Bench Scale Tests

- Evaluate potential interactions between the site geochemistry and the ISCO process chemistry
- Objectives include:
 - Developing design parameters
 - Confirm treatment efficacy
 - Satisfy regulatory concerns
- Specific tests will vary for each ISCO technology

Environmental Solutions

Design Optimization (Pilot Scale Test)

- Target Area
 - Typically a subset of the full scale area
 - For a small area, may be the first application in the entire area
- Objective
 - Older Objective: Proof of concept for new and emerging technologies
 - <u>Current Objective:</u>
 Confirming site specific performance and design parameters

- Critical Field Parameters
 - Treatment efficacy
 - Injection rate
 - Injection pressure
 - Distribution of reagents
 - Active oxidant
 - Inactive oxidant
 - Potential issues
- Monitoring program
 - Typically more extensive than full scale
 - Intended to monitor treatment efficacy and field parameters

Full Scale Applications

Full Scale Application

• Objective

Environmental

Solutions

- Progress toward remedial goals
- Monitoring Program
 - Monitor progress toward remedial goals
 - Monitor effect of each ISCO application
 - Mass reduction not always represented by groundwater concentrations

Expectations

- Is 99 percent reduction a success?
- Mass reduction
 - Will depend upon
 - Dosage/ability to contact contamination
 - Initial concentrations
- Typically 80 to 99 percent per successful application
- Multiple applications and, potentially, multiple technologies are typically necessary for greater than 1 to 2 order of magnitude reductions

Combined Remedies/Treatment Train

- ISCO can be used as a mass reduction technology and be followed by:
 - Monitored natural attenuation
 - In situ bioremediation
 - In situ biogeochemical remediation
- ISCO used following:

Environmental

Solutions

- Thermal technologies
- Surfactant/solvent enhanced extraction
- Extraction systems (dual phase extraction)
- Treatment train approach works to maximize the strengths of different technologies to reflect the changing site situation
 - ISCO: Mass reduction (fast acting, large quantities of oxidant in injection solution) when contact can be established
 - ISB/ISCR/etc: Persistence
 - 6 months to 1 year following ISCO

PeroxvChem

Monitoring Programs

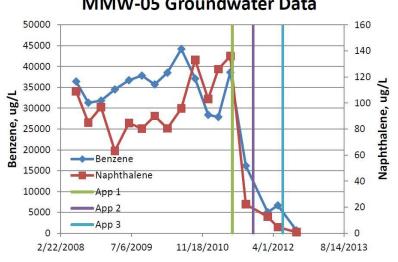
- Critical aspect to ISCO design
- Objectives

Environmental

- Progress toward remedial goals
- Assessing effectiveness of ISCO application
- Monitoring Phase
 - Soil and groundwater typical
 - Phase monitored may be different for each objective
 - Progress of ISCO best measured by total mass reduced (GW mass plus Soil mass)
- Soil
 - Discrete/grab
 - Composite

- Frequency
 - Allow time:
 - ISCO to react
 - Groundwater, soil and NAPL reequilibrate
 - Can have biotic activity following ISCO
 - Minimum 2-3 months post application recommended
 - Multiple monitoring events recommended
- Parameters
 - Contaminant
 - Residual oxidant
 - Geochemical parameters
 - DO, temperature, conductivity, pH, ORP
 - Others, as needed

IN SITU CHEMICAL OXIDATION: TECHNOLOGIES



MGP Site in Illinois

- Contaminant:
 - ~17,000 mg/Kg TPH
 - ~45,000 μg/L Benzene
 - ~140 µg/L Naphthalene
- Remedial goals:
 - TPH to less than 9,000 mg/Kg
 - Reduce benzene in ____ groundwater by greater than 90 percent
- Applied 46,200 lbs of AAP to site over 3 applications
 - 32 g Klozur per Kg soil

Courtesy of XDD, LLC

- **Results:**
 - Less than 2,500 mg/Kg TPH
 - Benzene in groundwater reduced by greater than 98 percent
 - State of Illinois issue a No Further Action letter

MMW-05 Groundwater Data

Active Industrial Site

- PCE, 1,1,1-TCA, and 1,4dioxane (DNAPL source)
- AAP does not produce gas during treatment
- Treated with two applications totaling 31,000 Kg Klozur[®]
 - 25 g Klozur per Kg soil
- Remedial goal of less than 1 mg/L for each contaminant

	Average Contaminant Concentrations (μ g/L)			
Contaminants	Baseline	Post 1st Application	Post 2nd Application	Total Percent Reduction
PCE	11,987	4,819	113	99.1
1,1,1-TCA	8,736	5,698	64	99.3
1,4-Dioxane	410	1,029	165	59.8

Primary ISCO Oxidants

- Hydrogen Peroxide (aka Fenton's reagent, catalyzed hydrogen peroxide)
- Permanganate
- Persulfate (activated)
 - Alkaline
 - Iron
 - Heat
 - Hydrogen Peroxide

Hydrogen Peroxide (Fenton's Reagent)

 Hydrogen Peroxide is catalyzed by transition metals to form the hydroxyl radical

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^{-} + OH^{-}$$

$$OH\bullet + H_2O_2 \rightarrow HO_2\bullet + OH^{-} + H^{+}$$

$$Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2\bullet + H^{+}$$

$$HO_2\bullet \leftrightarrow O_2\bullet^{-} + H^{+} \text{ (pKa 4.8)}$$

$$Fe^{3+} + O_2\bullet^{-} \rightarrow Fe^{2+} + O_2$$

• Forms:

Environmental

- Hydroxyl radical: Powerful oxidant (2.6 V)
- Superoxide radical: Reductant (-0.33 V) and nucleophile
- Hydroperoxide: Nucleophile

Hydrogen Peroxide: Key Characteristics

Characteristics

Environmental

- Capable of degrading most types of contamination
- Relatively inexpensive
- Forms oxidants, reductants, and nucleophiles
- Decomposes to water and oxygen
- Common Issues
 - Sensitive to subsurface conditions (can decompose in minutes or persist for days)
 - If an issue, can impede successful distribution
 - Stabilization agents
 - Gas and heat evolution
 - Hydroxyl radical can be scavenged by naturally occurring carbonates

Hydrogen Peroxide: Bench Tests

- Acid buffering capacity of soils

 Look for presence of carbonates (pKa 6.1)
- Stability (half life) in presence of site soils
 - Stabilized

Environmental

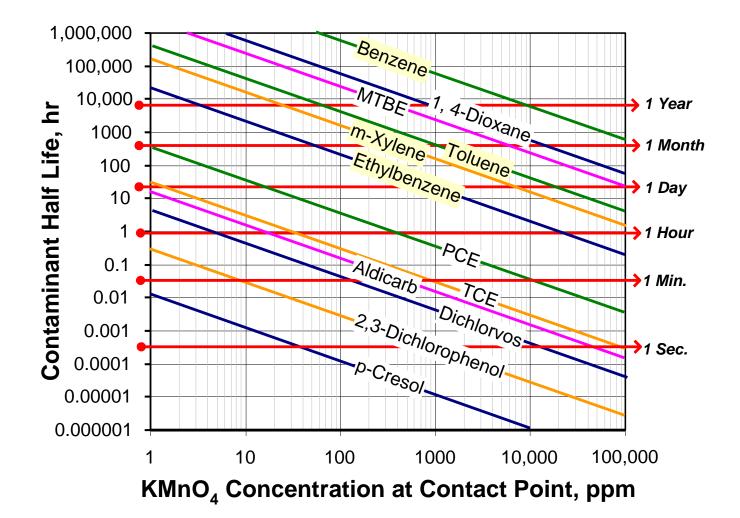
- Unstabilized
- Activated
- Gas and heat evolution
- Treatment efficacy
- Degradation ratio
 - Mass oxidant consumed per mass of contaminant degraded

Permanganate

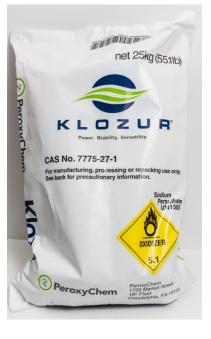
• Sodium or potassium permanganate

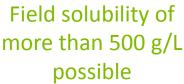
```
KMnO<sub>4</sub> or NaMnO<sub>4</sub> → MnO<sub>4</sub><sup>-</sup>
MnO<sub>4</sub><sup>-</sup> → MnO<sub>2</sub> (s)
```

- Dark purple at >0.5 g/L and pink even at 1 mg/L
- Permanganate has a redox potential of 1.7 V
- Primarily used for chloroethenes (TCE and PCE)


Permanganate Characteristics

- Characteristics and Common Issues
 - Direct oxidative pathway
 - Reactive with:
 - Chlorinated ethenes (TCE, PCE, etc), some PAHs, etc
 - Little to no reaction with many other compounds (chloromethanes, chloroethanes, benzene, MTBE, etc)
 - Kinetically aggressive reactions
 - Field solubility:
 - Potassium permanganate ~30 g/L
 - Sodium permanganate >400 g/L (typical application < 200 g/L)
 - Very stable, can persist for months to years, if oxidant demand is met

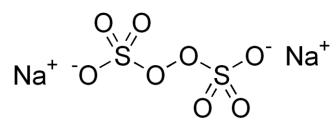

Permanganate Reactivity



Activated Klozur[®] Persulfate

Klozur[®] Persulfate is:

- Based on the sodium persulfate molecule
- A strong oxidant used for the destruction of contaminants in soil and groundwater
- Aggressive and fast acting chemistry with extended subsurface lifetime (weeks to months) and little to no heat or gas evolution
- Applicable across a broad range of organic contaminants
- •Highly soluble in water (significant oxidant mass is smaller volumes)


Why Activate?

Persulfate Anion

- Relatively stable
- Kinetically slow
 - Persistence of weeks to months
 - May not be kinetically aggressive with targeted contaminants
- Oxidative pathway
 - May not react with all contaminants

Radicals

- Kinetically aggressive
- Oxidative, reductive and nucleophilic pathways
 - Reacts with wide assortment of common contaminants of concern:
 - Oxidants more powerful than persulfate anion

Radical Formation

- Common activation methods include:
 - Alkaline activation
 - (OH•, SO₄•⁻, O₂•⁻)
 - Nascent iron, iron or iron chelate activation
 - (SO₄•⁻)
 - Heat activation
 - (Temperature dependent: OH●, SO₄●⁻, O₂●⁻)
 - Hydrogen peroxide activation
 - (OH•, SO₄•⁻, O₂•⁻)

Oxidant	Standard Reduction Potential (V)	Reference
Hydroxyl radical (OH•)	2.59	Siegrist et al.
Sulfate radical (SO₄•⁻)	2.43	Siegrist et al.
Ozone	2.07	Siegrist et al.
Persulfate anion	2.01	Siegrist et al.
Hydrogen Peroxide	1.78	Siegrist et al.
Permanganate	1.68	Siegrist et al.
Chlorine (HOCl)	1.48	CRC (76th Ed)
Oxygen	1.23	CRC (76th Ed)
Oxygen	0.82	Eweis (1998)
Fe (III) reduction	0.77	CRC (76th Ed)
Nitrate reduction	0.36	Eweis (1998)
Sulfate reduction	-0.22	Eweis (1998)
Superoxide (O₂• ⁻)	-0.33	Siegrist et al.
ZVI	-0.45	CRC (76th Ed)

Examples of Contaminants Destroyed by Klozur Persulfate

Chlorinated Solvents

PCE, TCE, DCE TCA, DCA Vinyl chloride Carbon tetrachloride Chloroform Chloroethane Chloromethane Dichloropropane Trichloropropane Methylene chloride

Others

Carbon disulfide Aniline 1,4-Dioxane TPH BTEX GRO DRO ORO creosote

Oxygenates MTBE TBA

Perflourinated

Freon PFOS PFOA PFBA

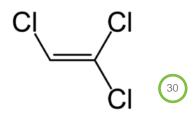
Chlorobenzenes

Chlorobenzene Dichlorobenzene Trichlorobenzene

Phenols

Phenol Chlorophenols Nitrophenols

PAHs


Anthracene Benzopyrene Styrene Naphthalene Pyrene Chrysene trimethylbenzene

Pesticides

DDT Chlordane Heptachlor Lindane Toxaphene MCPA Bromoxynil

Energetics

Trinitrotoluene (TNT) Dinitrotoluene (DNT) RDX

Activated Persulfate

- Key Design Characteristics
 - Dosing persulfate in excess of contaminant and non-target demand
 - Accounting for site uncertainties (safety factor)
 - Radicals and reaction pathways formed depend upon activation method
 - Depending upon activation method, can react with most common contaminants of concern
 - Highly soluble
 - Field > 500 g/L
 - Injection concentration of 200 g/L or more
 - High stability in the subsurface (weeks to months) if oxidant demand is met
 - Slow reaction with water
 - Acid formation during decomposition
 - If needed, can be neutralized (alkaline activated persulfate)

Persulfate: Bench Scale Tests

- Key Bench Scale Tests:
 - Base buffering capacity -pH > 10.5-Alkaline activation only
 - Non target demand
 - Treatment efficacy
 - Degradation ratio

General Oxidant Niches

• Permanganate

- Mostly chlorinated ethenes
- Cost effective injection concentrations and number of applications
- 10-30 g/L potassium permanganate
- High concentrations of sodium permanganate at small sites

Hydrogen peroxide

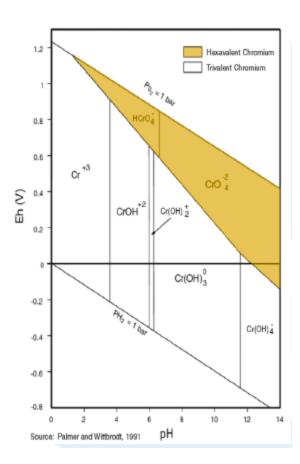
- Most contaminants
- Suitable soils (persistence/gas evolution)
- 4-10 percent stabilized hydrogen peroxide
- Activated persulfate
 - Applicable at most sites
 - Most contaminants and masses
 - 50-250 g/L Klozur Persulfate
 - Activator pulsed or inline injected

At this time, the distribution issues due to the stability of hydrogen peroxide has severely limited its wide scale use.

POTENTIAL ISSUES

Secondary MCLs

- Sulfate (250 mg/L)
 - Has not typically been an issue
 - Several fate mechanisms for sulfate depending upon site geochemical conditions
 - Persistence
 - Precipitation as a sulfate such as CaSO₄
 - Reduction and potential precipitation as metallic sulfide (FeS)
- Manganese (0.05 mg/L)
 - Under neutral pH, permanganate becomes solid Mn0₄
 - Under acidic conditions, reaction can result in Mn (II)


Metals Mobilization

- Metals solubility tends to follow pe-pH diagrams
- As geochemical conditions return to baseline, metal concentrations should also return
 - Will conditions return to baseline?
- If concerned, could be evaluated in the bench or design optimization phases
 - If bench, may need to mimic site returning to baseline conditions
 - If field, monitor long enough for geochemical conditions to recover
- Combined remedial

Environmental

Solutions

 Reduction technology (ISB/ISCR) could mitigate metals mobilization, if present

 ISCO consists of a series of technologies with decades of history of successfully remediating a wide variety of common contaminants of concern

Environmental

Solutions

 Each technology has unique characteristics that should be considered in the selection and design phases Common keys to success: Establishing contact of sufficient activated oxidant mass with the contamination

 Bench tests can be used to determine key design parameters

ISCO Resources

- SERDP-ESTCP (ER-0623-Siegrist, Crimi, and Simpkin)
 - Video Short Course/Workshop
 - Design Tool
 - Monograph: Siegrist et al (2011)"In Situ Chemical Oxidation for Groundwater Remediation" SERDP-ESTCP Monograph Series, Springer (ISBN: 978-1-4419-7825-7)
- Huling & Pivetz (2006) "In-Situ Chemical Oxidation-Engineering Issue" (EPA/600/R-06/072)
- Watts & Teel (2006) "Treatment of Contaminated Soils and Groundwater Using ISCO" J. Environ. Eng (10) 2-9

Background

- Located in the Chelsea neighborhood of New York City.
- Site uses included lumber yard, metal works facility, auto-repair facility, coal yard, piano manufacture, livery car service, and gasoline station.
- Leaking underground storage tanks observed at site.

Contractor: XDD, LLC Consultant: Fleming-Lee Shue

Target Area

- Approximately 6,500 ft² (185 ft x 35 ft).
- Treatment Interval of 9 to 14 ft bgs.
- Sandy and silty-sandy material.

Contaminants of Concern

• Average Concentration of Petroleum Hydrocarbons:

Environmental

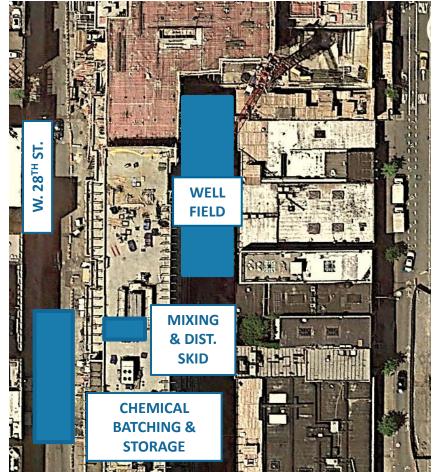
Solutions

- 3,000 $\mu g/L$ BTEX
- 140 μg/L Naphthalene
- 1,400 mg/kg GRO +
 DRO
- DRO and GRO up to 3,760 and 4,180 mg/kg, respectively.
- Variable GRO to DRO distribution indicated possible multiple releases.

Bench-Scale Tests

- Evaluated catalyzed hydrogen peroxide (CHP) and alkaline activated persulfate (AAP).
- CHP eliminated as peroxide decomposed rapidly even with stabilizing reagents, likely limiting subsurface distribution and resulting in rapid release of gas.
- Alkaline activated persulfate selected for effectiveness and chemical compatibility.
 - Reduced BTEX by 64-77%.
 - Reduced total TPH by 50%, with 50% percent of persulfate mass remaining.

Field Application Design

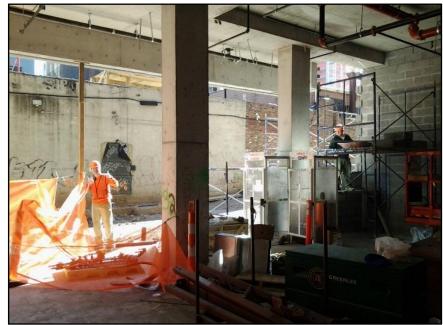

- Designed based on multiple applications with emphasis on achieving remedial goals in single application.
- Injection wells installed to be accessible upon completion.
- Design called for 100,000 to 180,000 lbs of persulfate.
 - 72,700 lbs in first application
 - 60,300 lbs of 50% sodium hydroxide
 - Approximately 35,000 gallons of reagent solution (250 g/L persulfate)
- Design incorporated the RemMetrik process utilizing Wavefront technology.

Field Application Logistics

- Difficult spatial constraints from construction activities
- Temporarily closed lane of W.
 28th St. each day for batching.
 Road was open during injection.
- Over 400 daily construction personnel
- Total access window of 9 days.

46

Batching

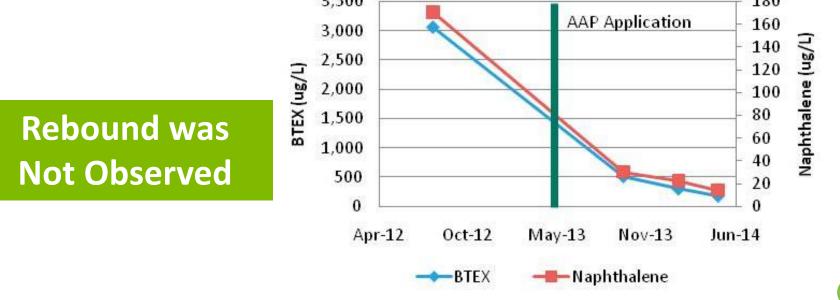


Mixing and Distribution Areas

Well Field

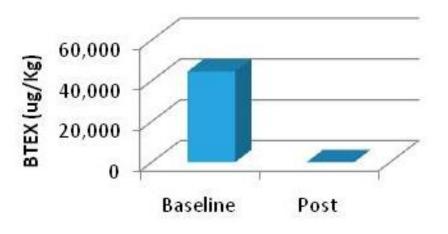
Field Application

- Occurred May 7 to 17, 2013
- Performed by XDD in cooperation with ZEBRA Environmental and Fleming-Lee Shue.
- 72,372 lbs of alkaline activated Klozur persulfate injected in 35,432 gallons of solution.
- Completed on schedule and within budget, with no impact to construction activities.



Groundwater Results

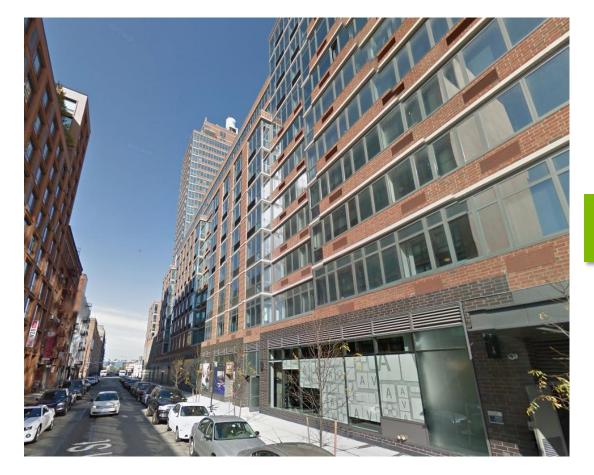
- Monitoring conducted approximately 5 months after the application in three quarterly events.
- BTEX and naphthalene GW concentrations decreased by 92 to 95%.



Soil Results

- Soil sampled approximately 5 months after the application.
- BTEX concentrations reduced by 99.9%.

DRO/GRO Soil Concentrations were reduced by an Average of 99.2 percent **BTEX on Soils**


Conclusions

- Single application of alkaline activated persulfate effectively treated BTEX, DRO and GRO
 - Up to 4,000 mg/Kg DRO and GRO
- No rebound observed after 3 quarterly monitoring events.
- Site closed by NY-DEC

Questions

Brant Smith, P.E., Ph.D Brant.Smith@peroxychem.com