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Abstract
The trebuchet, a medieval catapult driven by a falling, hinged counterweight, has been
simulated to progressively more accurate approximations by successively more realistic
physical models.  The first of these, a "black box" model in which the mechanism for the
transfer of the potential energy of the counter-weight to the kinetic energy of the released
projectile is left unspecified, led  to a definition of  a "Range Efficiency," Reff, equal to the
measured range of the projectile divided by the range of the black box model, given by
twice the ratio of the CW to projectile masses times the distance that the CW falls.  This
range efficiency can be used to compare actual trebuchets to simulated ones,  design "back
of the envelope" trebuchets, and is useful in understanding the results of more sophisticated
simulations.

The method used to arrive at the most accurate simulations is to use the Mathematica
programming language to derive the three coupled differential equations from the
Lagrangian for the system.  This method allows the sliding constraint equations to be
readily derived and translated into a form useful for other, faster, computer languages. The
equations, while consisting of many terms, are amenable to solution by Mathematica's
differential equation solver, as well as by a fourth-order Runge-Kutta method.  The
solution has been verified by various methods, including one that involves using the
solution to calculate the total energy of the system at every instant and showing that it is a
constant.

The physics of the release mechanism is also described in some detail, and the dependence
of the range on the finger angle and the coefficients of friction is given in approximate
terms.  The benefits of propping the counterweight, as opposed to letting it hang freely
from the end of the beam is also discussed.

A major result is the design of an efficient trebuchet, by exploring the design space by
doing thousands of simulations. The result indicates that one in which the beam is
initially at a 45° angle, the sling is equal in length to the length of the long arm of the
beam, and the long arm of the beam is four times as long as the short arm, is a reasonably
efficient one, and is therefore recommended as a "nominal" design.
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Introduction
The trebuchet is a medieval weapon of war--a catapult that is powered by a falling
massive counterweight.  Recently, it has undergone something of a revival of interest
among historians,  hobbyists, and assorted  show-offs.  While many have been
successfully built with a rather wide variety of designs, most work on their design has
been highly empirical--little work on the mathematical analysis on their operation and
design has appeared.  The object of this work is to obtain a fairly complete analysis of the
device, so that the ingenuity of the medieval engineers can be more fully appreciated, and
modern dabblers in the art can produce more reliable and powerful designs.

We will first describe the geometry of the full model, including the hinged counterweight
and the sliding sling.  Since the physics is rather complicated, however, our approach
will be to first briefly describe several simplified versions of the machine, with each
successive model more closely approximating the real device.

The Geometry
Refer to  the diagram shown in Fig. 1 to see the definition of the parts of the trebuchet
and the angles used to define the configuration.  It is shown here in an assumed initial
configuration, with the origin taken at the pivot of the beam.  The counterweight is
hinged and has a center of mass at a distance l4 from the end of the short arm of the
beam.  The beam is of uniform cross-section and has a mass mb.  The mass of the
projectile is m2 and it is at the end of a weightless sling at a distance l3 from the end of
the long arm of the beam, which has a length l2, as shown.   The three angles required to
describe the motion are (θ, φ, and ψ).  The main object of the simulation is to calculate
the values of these angles and their derivatives as a function of time from the initial values
of  the angles and the values of the eight parameters (l1, l2, l3, l4, l5, m1, m2, mb).
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Fig. 1  The geometry of the trebuchet, showing the three angles taken as the independent
variables, in a configuration at the start of the movement.

Operation of the Trebuchet
Upon release of the trigger holding the beam in its starting position (usually placed near
the end of l2), the counterweight falls, and in the first part of the motion, the projectile in
the sling slides along a horizontal trough beneath the beam.  As the counterweight
accelerates, the projectile leaves the trough, swinging freely through an arc.  At some
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point a mechanism of some sort (usually a peg and hook arrangement) releases one end
of the sling, freeing the projectile which then flies freely to the target.

Fig. 2.  The motion of the trebuchet at constant time intervals.

Limitations of the model:
All of the models to be described differ from real devices in two important respects.  First,
all of the parts are assumed to be rigid and the joints rotate perfectly around points.  The
model is assumed to be rigidly fastened to the ground.  In reality, there will be some
flexibility in all of the parts, and often, the model just sits on the ground.  Second, we
assume all of the parts are without friction. The projectile during the throw experiences air
resistance, and there is some unavoidable friction at axle.

While some of these effects (friction at the axle and the air resistance during the flight of the
projectile) could be readily added to the model, for many purposes we would prefer a
simpler model, with fewer adjustable parameters.  The model is more a tool for gaining a
qualitative understanding, than one for precisely replicating the results obtained on some
particular embodiment.

Some Elementary Analysis of the Trebuchet
Consider a projectile fired on a horizontal plane that has a velocity vo at an angle α with
respect to the horizontal.  It will have a range given by

R =  
 2 v0

2 sin α cos α
g  ,

where g is the acceleration due to gravity.  This has a maximum range for α = 45 ° which
is

Rm  =  
  v0

2 
g  .
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The kinetic energy in the projectile, having a mass m2,  at the start of the trajectory is then

KEproj  =  
m2 v0

2

2
.

A counterweight mass m1 at a height h above a reference plane has a potential energy given
by

PEcw = m1 g h.

The most efficient mechanism for a trebuchet would, clearly, be able to transform
all of the initial potential energy into kinetic energy of the projectile.  Assume that there is a
perfectly efficient mechanism that can do this--a sort of "black box".  The geometry is
shown in the Fig. 3.

h

Start after firing

R

m1

m2

v0

α
black box

Fig. 3.  The black box trebuchet with with the range and intial conditions shown

Thus, if the mass of the counterweight is initially at a height h above its lowest point,  the
maximum possible range that could be attained is obtained by equating the initial potential
energy in the counterweight with the kinetic energy in the projectile at the start of the
trajectory, yielding

Rm = 2 m1
m2

  h .

This theoretical maximum range is easily seen to be reasonable--it is larger for heavier
counterweights and lighter projectiles.  It is linear in the initial height of the counterweight.
Perhaps surprisingly, depending upon one's mechanical intuitions, it is independent of the
acceleration of gravity--it would throw just as far on the moon!

This simple equation can be very useful  in the preliminary design of any treb.  Decide on
how high you are willing to lift  the counterweight, and you have an estimate of how far
you can throw a projectile of a certain mass....



5

A real trebuchet will not, of course,  attain this theoretical maximum range because of
various factors such as the friction at the axle, the slide, the air resistance on the projectile,
rotational energy of the beam, and unutilized kinetic energy remaining in the swinging CW
after the projectile is fired.

Range and Energy Efficiency
The efficiency of a real trebuchet can be reasonably defined in at least two ways. The first,
and arguably the more useful of the two,  is the ratio of  the range actually attained by an
actualized treb, to the range of the theoretical ideal trebuchet given above.   This is termed
the "range efficiency", εR.   The range efficiency of a model with no air resistance will be
given by

εR = R
2 m1

m2
 h

 = m2
m1

 
v0

2 sin α cos α
g h

,

where h is the distance the counterweight can drop, and α is the angle that the projectile
makes with the horizontal at the start of its flight after leaving the trebuchet.

The distance that the counterweight can fall,  given by a little geometry, is readily seen to be

h = l1(1 - cos(θz)) =  l1(1 + sin(ψz))

when the sling is initially horizontal and the counterweight hangs vertically.  It is
independent of l2 and, perhaps surprisingly, l4 .

When the CW is initially propped, the initial angle between the CW and the beam is needed
in order to calculate h.  In this case, the distance that the CW can fall is given by

h = l1(1 - cos(θz)) +  l4(1+cos(θz + φz))

where θz and φz are the initial values for θ and φ, respectively.  There is some interest in
propped counterweights, and their impact on efficiency, range and the shock experienced
by the trebuchet when the CW is dropped, tending to tear the machine apart.  We will
discuss some of this in a later section.

The range efficiency of a real treb is easy to measure (measure R, m1, m2 and h) and
calculate for particular models.  It will, of course, be less than one.  For trebuchets that
misfire ( α > 90°), it could be less than zero!

Another possible useful definition of an efficiency for a trebuchet would be the fraction of
the potential energy in the counterweight that is actually deposited as kinetic energy in the
projectile.  Call this the energy efficiency, εE.

It is given by

εE = Eke
Epot

 = 
m2 v0

2/2
m1 g h

.
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The energy efficiency is always greater than zero, and is therefore not equivalent to the
range efficiency given above.  The relationship between the two measures is readily seen to
be

εR
εE

 = 2 sin α cos α.

Thus, when α = 45°,

εR
εE

 = 2 sin 45° cos 45° = 1

and the two efficiencies are equal.  The optimum release point for the projectile to achieve a
maximum range is seldom exactly 45°, so there is usually a small difference between the
two efficiencies--the range efficiency is generally slightly smaller than the energy
efficiency.

There is actually at least one other possible viewpoint on efficiency which would include
the beam as a part of the driving energy that should be considered.  Our method, discussed
above, views only the CW as the "fuel"--the potential energy stored in the cocked beam is
left out. The range efficiency definition is not only conceptually simpler, it is much easier to
compute in practice.  Very few builders know the position of the center of mass of the
beam, its mass, or its radius of gyration.  And since the energy of the CW is usually much
larger than that in the beam, the difference in the efficiency is not very large either.  Better
to keep it simple.

The major factors contributing to inefficiency of a real trebuchet are that due to the kinetic
energy in the beam and the counterweight at the time for optimum release of the projectile.
If the projectile could be released when the counterweight is at its lowest point and has a
very low velocity, then the efficiency would be relatively high.  This is the function of the
sling and the CW hinge, and as we shall see, the efficiency of real trebuchets can be
amazingly (for a medieval engine) high.

Dimensional Analysis
It is easy to see by a conventional dimensional analysis of the model (as described in the
figure) that the solutions of the equations can be put into the form

R = l1 f(l2/l1, l3/l1, l4/l1, m2/m1, mb/m1,θs,φs,ψs)

where f is some unknown function, and the s subscripts refer to the values of the angles at
the start.  Note that the range is invariant to the acceleration due to gravity, g.  More
importantly, this result allows us to greatly reduce the number of solutions to the equations
that need to be obtained to see representative behavior.  If all of the lengths (l1, l2, and l3)
and masses are doubled, for example, while the starting angles are unchanged, the range
will also be doubled--the function f is unchanged by this transformation, but l1 is doubled.

A similar approach for the times  during the motion for different models will clearly go as

T = Sqrt[ll/g] F(l2/l1, l3/l1,l4/l1,m2/m1, mb/m1,θs, φs, ψs),
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where F is some unknown function. The time from the beginning to the release thus
depends on g--a similar model with the masses and lengths all doubled, while the starting
angles are unchanged, would have the times increased by the square root of two.

While useful, this is not the whole story on scaling up models.  It is important to recognize
that larger trebuchets have larger counterweights--the counterweight box containing the
stone increases in volume as the cube of the dimensions, so the mass of the counterweight
and the lengths do not increase proportionately.

Now consider a treb with dimensions l and another dimensionally similar one with
dimensions L. That is, the height at the axle, height of the cw at the start, beam length and
sling length all scale as L/l. The angles between the parts of each trebuchet are the same in
both.  In real trebuchets, the weight of the counterweight and projectile would  (assuming
they are made out of the same stuff, having the same density) scale as (L/l)3.   The potential
energy in the cw at the start is proportional to the height and the weight of the
counterweight, so it scales as (L/l)4. The force required to cock the trebuchet will scale as
(L/l)2 because the weights scale as the cube, but the lever arms scale as L/l, reducing the
force required.

 As shown above for the "black-box" model,  and the dimensional analysis result, the range
will clearly scale as (L/l), because h is proportional to l. Thus, doubling the size of a treb
allows one to throw a projectile 8 times as heavy twice as far. The larger trebuchet would
contain 16 times as much energy as the smaller one.  This is why trebuchets are big.

The see-saw trebuchet
It is instructive to analyze a slightly more realistic version of the trebuchet--one that
eliminates the sling, but has a counterweight attached at one end, as shown in the figure.

     

θ

m2 g

m1 g

l1

l2

Fig. 4.  The "see-saw' trebuchet.  It has a fixed counterweight and no sling.

It has a massless beam as well.  During the movement of the trebuchet, it will experience a
torque due to the unbalanced weights, which has a magnitude

τ = m1 g l1 sinθ - m2 g l2 sinθ
= g sinθ (m1l1-m2l2)
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The moment of inertia about the axle is simply

I =  m1l1
2  +  m2l2

2,

so the equation of motion is

I θ = τ

θ = - 
g (m1 - m2)

m1
2 - m2

2
 sin(θ) =c sin(θ)

where c is a constant.  A negative sign was introduced in the latter equation because the
torque was defined to be positive in the clockwise direction, the direction of decreasing θ.
Note that when θ is zero, the trebuchet is pointed straight up, and the behavior beyond this
point is of little interest.

As an example, to be followed closely in the successive models, we will take some typical
values one might use for a model design: m1=100 lb, m2= 1 lb, l1= 1 ft, l2 = 4 ft, g = 32
ft s-2.  Then c = 26.48.  Use the initial condition that the start of the movement the beam is
stationary and θ is 135° .  We suppose for now that the projectile releases at θ = 45° .  The
velocity of the projectile is then

v0 =  l2 θ 
evaluated at the time when θ = π/4.

This can be readily solved to get θ and its derivative as a function of time by a variety of
numerical methods and programming languages.  The Mathematica programming language
from Wolfram Research Inc. is a particularly interesting route to take because it has an
unusual  combination of strengths in mathematical symbol manipulation (it will be used to
derive the equations for the more complex models) and powerful numerical routines for
solving differential equations.

This example is solved numerically in the Mathematica programming language and the
program with the output is shown in Appendix 1.  We see that the range is  37.5 ft when
the release is at  45.0° , and so  the efficiency is  11.0%.   The maximum range is obtained
when the release is a little later than this: when θ is 38.0°  it is 38.4 ft.  The increase in the
velocity due to the acceleration of the counterweight overcomes the less-than-optimal
release angle of 45°.  We can do much better with the addition of the sling and a hinged
counterweight.

The See-Saw with a Hinged Counterweight and No Sling
The preceding example can be made a little more realistic by arranging for the
counterweight to be hinged, rather than fixed to one end.  We suppose for our example that
it is attached by a  rod of length l4.
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Fig. 5.  The see-saw with a hinged counterweight.

This model requires a different approach to get the equations of motion--analysis by
torques and forces gets quite awkward.  An easy path is  to use the method of Lagrange.
In this approach, one requires the kinetic and potential energies of the system as a function
of the coordinates. The kinetic energy for the system (with a uniform beam of mass mb)
can be obtained by elementary methods to be

 T =  m1
2

  x4
2 + y4

2   + m2
2

  x2
2 + y2

2  +mb
6

 (l12 - l1l2 + l22) θ
2

and the potential energy is

V = m1 g y4(θ,φ) + m2 g y2(θ) - 
mbg (l1 - l2)

2
 cos(θ).

We choose to use θ and φ to be the coordinates that specify the configuration of the system,
which  are related to the Cartesian coordinates of the system as follows:

 The Cartesian coordinates of the end of the short arm of the beam are

x1(θ) =  l1 sin(θ), and  y1(θ) = -l1 cos(θ),

and, the coordinates of long end of  beam, where the projectile is, are given by

x2(θ) = -l2 sin(θ), and y2(θ) = l2 cos(θ).

The coordinates of the center of mass of the counterweight are

x4(θ,φ) = l1 sin(θ)-l4 sin(φ+θ) and y4(θ,φ) = -l1 cos(θ)+l4 cos(φ+θ).

The  Lagrangian is defined to be

L = T - V,



10

and we get the two simultaneous equations of motion by using the formulae

d
dt

 
∂L

∂θ
 - dL

dθ
 = 0,

and
d
dt

 
∂L

∂φ
 - dL

dφ
 = 0.

Though it is not difficult to do by hand, these equations are worked out in Appendix 2
using Mathematica.  The results, in "fortranese" are

-l1 l4 m1 (phi'' + 2 th'') Cos[phi] +
        l1 l4 m1 phi'' (phi'' + 2 th') Sin[phi] +
        1/6 (6 l4^2 m1 phi'' + 6 l1^2 m1 th'' + 6 l4^2 m1 th'' +
              6 l2^2 m2 th'' + 2 l1^2 mb th'' - 2 l1 l2 mb th'' +
              2 l2^2 mb th'' + 6 g l1 m1 Sin[th] -
              6 g l2 m2 Sin[th] + 3 g l1 mb Sin[th] -
              3 g l2 mb Sin[th] - 6 g l4 m1 Sin[phi + th]) == 0,
and

    l4 m1 (l4 phi'' + l4 th'' - l1 th'' Cos[phi] - l1 th'^2 Sin[phi] -
            g Sin[phi + th]) == 0

Here, primes indicate derivatives with respect to time, and the angles (θ,φ,ψ) are,
obviously, (th, phi, psi).

It is easy to see that when l4 = 0 and mb=0, they reduce to the single equation of motion
given previously for the see-saw.

The values for the parameters (the lengths and masses) for the trebuchet can be plugged
into these two equations, and they can be solved numerically for a suitable range of time.
For our example we can  use  appropriate initial conditions: at t = 0, the values of θ and φ
are taken to be 3 π/4 and π/4, respectively, so that the counter-weight  hangs straight

down; and the first time derivatives of θ and φ  at t=0 are zero.

The solution for this model shown in Appendix II.  It is interesting to compare the
solution obtained by assuming that the release takes place at the time when θ = π/4 with
that for the see-saw model.  The addition of the hinge to the counterweight increases the
range, when the projectile is released at θ= 45° , from 37 to 70 ft, and so the efficiency
roughly is doubled--a very significant improvement.  A little reflection shows that this is
mostly due to the decreased rotational kinetic energy in the counterweight allowed by the
addition of the hinge.

The solution for the range as a function of the time of release is also shown in the
Appendix II.  One can see that the maximum range obtainable is much greater than that
when the release is at θ = π/4.  The release can be delayed (in this example) to an angle of

θ = 22.6°.  The time difference between these two angles is, however, only 0.024 s
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compared to the time for the throw of about 0.36 s. The range as a function of time is
sharply peaked.  To get the maximum range out of a trebuchet that follows this model
would evidently require a very precise release mechanism .

The release mechanism can vary greatly from one trebuchet to another.  Its behavior can
be fairly complex, so for the time being we will just suppose for now that one exists that
can be tuned to release it at any desired moment (configuration) in the throw. Our strategy
will be to calculate the range for the projectile for every moment after the release of the
trigger, plotting it, and taking the maximum range found as the quantity of primary
interest.

The Treb with a Hinged CW and an Unconstrained Sling
The next most complex case to consider is to add a sling to the model just described. The
projectile is now at (x3,y3) at a constant distance l3, from the end of the beam at
(x2,x3). We can take l3 to be constant because the sling is under tension throughout the
throw.

θ

m2
m1

l1

l2

l4

(x1,y1)

(x2,y2)

(0,0)
φ

(x3,y3)

(x4,y4)

ψ

x5

x

y

l3

mb cw

Fig. 6.  The trebuchet with an unconstrained sling.

As before, the Cartesian coordinates of the parts of the treb with the angles and the
various lengths can be readily derived, and are the same as above, except that the
coordinates of the projectile are now given by

x3(θ,ψ) = -(l3 sin(ψ-θ) +l2 sin(θ)) and y3(θ,ψ) = -(l3 cos(ψ-θ) -l2 cos(θ)),

where ψ is the angle between the beam and the sling.

We suppose for this model that the sling is initially horizontal under the beam, and falls
freely into a slot, rather than sliding underneath the beam as in the usual actualization.
This would be expected to be an approximation to the much more complicated case that
involves the constrained sliding without friction.

The kinetic energy, T, and the potential energy, V, for this model of the trebuchet  is the
sum of the contributions from the counterweight, projectile and the beam:
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 T =  m1
2

  x4
2 + y4

2   + m2
2

  x3
2 + y3

2  +mb
6

 (l12 - l1l2 + l22) θ
2

V = m1 g y4(θ,φ) + m2 g y3(θ,ψ) - 
mbg (l1 - l2)

2
 cos(θ).

Since there are three degrees of freedom, the three equations  for the (unconstrained)
motion are

d
dt

 
∂L

∂θ
 - dL

dθ
 = 0,

d
dt

 
∂L

∂φ
 - dL

dφ
 = 0,

and 
d
dt

 
∂L

∂ψ
 - dL

dψ
 = 0.

These equations are now pretty lengthy.  One can show (using Mathematica) that in
"fortranese" the differential equation for θ is

        ((l1**2 - l1*l2 + l2**2)*mb*th'')/3. + (g*(l1 - l2)*mb*sin(th))/2. +
     -   g*m2*(-(l3*sin(psi - th)) - l2*sin(th)) -
     -   (m2*(2*(-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th))*
     -         (-(l3*(psi' - th')*sin(psi - th)) + l2*th'*sin(th)) +
     -        2*(-(l3*psi'*cos(psi - th)) +
     -           th'*(l3*cos(psi - th) - l2*cos(th)))*
     -         (l3*psi'*sin(psi - th) + th'*(-(l3*sin(psi - th)) - l2*sin(th)))
     -        ))/2. + (m2*(2*(-(l3*(psi' - th')*cos(psi - th)) -
     -           l2*th'*cos(th))*
     -         (-(l3*(psi' - th')*sin(psi - th)) + l2*th'*sin(th)) +
     -        2*(l3*cos(psi - th) - l2*cos(th))*
     -         (-(l3*(psi'' - th'')*cos(psi - th)) - l2*th''*cos(th) +
     -           l3*(psi' - th')**2*sin(psi - th) + l2*th'**2*sin(th)) +
     -        2*(-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th))*
     -         (l3*psi'*sin(psi - th) + th'*(-(l3*sin(psi - th)) - l2*sin(th)))
     -          + 2*(-(l3*sin(psi - th)) - l2*sin(th))*
     -         (l3*psi'*(psi' - th')*cos(psi - th) +
     -           th'*(-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th)) +
     -           l3*psi''*sin(psi - th) +
     -           th''*(-(l3*sin(psi - th)) - l2*sin(th)))))/2. +
     -   g*m1*(l1*sin(th) - l4*sin(phi + th)) -
     -   (m1*(2*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*
     -         (l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th)) +
     -        2*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*
     -         (-(l1*th'*sin(th)) + l4*(phi' + th')*sin(phi + th))))/2. +
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     -   (m1*(2*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*
     -         (l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th)) +
     -        2*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*
     -         (-(l1*th'*sin(th)) + l4*(phi' + th')*sin(phi + th)) +
     -        2*(l1*cos(th) - l4*cos(phi + th))*
     -         (l1*th''*cos(th) - l4*(phi'' + th'')*cos(phi + th) -
     -           l1*th'**2*sin(th) + l4*(phi' + th')**2*sin(phi + th)) +
     -        2*(l1*sin(th) - l4*sin(phi + th))*
     -         (l1*th'**2*cos(th) - l4*(phi' + th')**2*cos(phi + th) +
     -           l1*th''*sin(th) - l4*(phi'' + th'')*sin(phi + th))))/2.= 0

Similarly, the equation for phi is

       -(g*l4*m1*sin(phi + th)) - (m1*
     -      (2*l4*(phi' + th')*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*
     -         sin(phi + th) - 2*l4*(phi' + th')*cos(phi + th)*
     -         (l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th))))/2. +
     -   (m1*(2*l4*(phi' + th')*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*
     -         sin(phi + th) - 2*l4*(phi' + th')*cos(phi + th)*
     -         (l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th)) -
     -        2*l4*cos(phi + th)*(l1*th''*cos(th) - l4*(phi'' + th'')*cos(phi + th) -
     -           l1*th'**2*sin(th) + l4*(phi' + th')**2*sin(phi + th)) -
     -        2*l4*sin(phi + th)*(l1*th'**2*cos(th) - l4*(phi' + th')**2*cos(phi + th) +
     -           l1*th''*sin(th) - l4*(phi'' + th'')*sin(phi + th))))/2.= 0

and the equation for psi is

        g*l3*m2*sin(psi - th) - (m2*(2*l3*(psi' - th')*
     -         (-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th))*sin(psi - th) +
     -        2*(l3*psi'*cos(psi - th) - l3*th'*cos(psi - th))*
     -         (l3*psi'*sin(psi - th) + th'*(-(l3*sin(psi - th)) - l2*sin(th)))))/2. +
     -   (m2*(2*l3*(psi' - th')*(-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th))*
     -         sin(psi - th) - 2*l3*cos(psi - th)*
     -         (-(l3*(psi'' - th'')*cos(psi - th)) - l2*th''*cos(th) +
     -           l3*(psi' - th')**2*sin(psi - th) + l2*th'**2*sin(th)) +
     -        2*l3*(psi' - th')*cos(psi - th)*
     -         (l3*psi'*sin(psi - th) + th'*(-(l3*sin(psi - th)) - l2*sin(th))) +
     -        2*l3*sin(psi - th)*(l3*psi'*(psi' - th')*cos(psi - th) +
     -           th'*(-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th)) +
     -           l3*psi''*sin(psi - th) + th''*(-(l3*sin(psi - th)) - l2*sin(th)))))/2.= 0

For the solution to the trebuchet's motion, as before, we solve these three differential
equations simultaneously, subject to the initial conditions on the angles and their first
derivatives.  The results are shown in Appendix III.

Perhaps the most important result  illustrated in this example is the local minimum that
appears in the plot of θ vs. t.  The beam "wobbles" a little bit because the projectile at the
end of the sling has time to go through a pendulum-like oscillation, and pulls the beam
with it.  Not all values of the input parameters will yield this "wobble" in θ, but it is not
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uncommon.  In this case, the maximum possible range  occurs very close to the local
minimum in θ, but it often appears elsewhere.

The efficiency of the trebuchet increases by the addition of the sling (of this particular
length) from 59%  (for the previous example) up to 81%.  This is a substantial
improvement, and indicates that trebuchets can be surprisingly efficient machines.

The position of the beam for maximum release is also later--it is 20.8°  vs. 22.6° for the
slingless example.  One of the more interesting features of the range vs. time plot is that
there is now a fairly broad plateau at the top--this model appears to be a little more
forgiving in the release condition that gives a long range for the projectile.

The Trebuchet with a Sliding Sling

For a really realistic trebuchet model, we need to include the constraint on the sling that
makes it slide without friction along the trough under the beam during the first part of the
motion.  The solution must be obtained in two parts.  In the second part, the above three
equations can be used for the motion during the unconstrained portion of the motion,
after the projectile has left the slide, and before the projectile has left the sling.  The initial
conditions for this second phase come from the final conditions of the first part of the
throw.

For even more realism, we could add a third phase to the throw:  the motion of the
trebuchet after the release of the projectile.  This is of little interest at present, though it is
easily done.  We will stick with two phases and leave the three phase simulation as an
exercise for the reader.

During the first portion of the movement, before the projectile has left the slide, we need
to apply a suitable constraint to the motion.  Refer to the diagram to derive the constraint:

θ
φ

ψ

ψ−θ+π/2

Fup
(x2,y2)

a = l2 th''
(x1,y1)

(x3,y3)

l3

l2

l5= l2 sin(psis)

Fig. 7.  The geometry of the trebuchet during the sliding phase of the sling.
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We can calculate ψ when θ and φ, together with the starting angle for psi, ψs (= psis =

π/4 in our example), are given.  A little geometry shows that when the sling is in contact
with the slide,

ψ = θ −π/2+ Arcsin[(l2/l3) ( sin(ψs)+cos( θ))]

 Thus, only two simultaneous differential equations need to be solved during this phase
of the movement:  solving for θ as a function of time gives ψ immediately.

This phase of the movement ends when the force upward on the projectile (exerted by the
sling) exceeds the force downward on it due to gravity.  The upward force on the
projectile comes from the tension, T, in the sling rope.  A bit of geometry then shows that

m3 x3 = T cos(π/2+ψ−θ)

and

m3 y3 = T sin(π/2+ψ−θ)

Eliminating the unknown T between them yields

y3 = x3  tan(π/2+ψ−θ) = g

as the condition for liftoff of the projectile from the slide. The time for liftoff, t = tlv, is
when the projectile leaves the slide;  at that point we can take the values of the angles and
their derivatives as the initial condition for the second part of the motion.  The method is
to solve the two differential equations for θ and φ as functions of t, then (numerically)
calculate tlv.

This then enables one to calculate the initial conditions for input to the three unconstrained
differential equations derived above.  The solution then proceeds as for the unconstrained
model described above.

In the first phase of the movement, the Lagrangian equations are changed by the
constraint.  The method we use is given in many advanced textbooks in mechanics--the
extension of Lagrange's equations to holonomic constraints. It can be carried out without
too much difficulty as follows:

First, we put the constraint equation into a function

f(θ,φ,ψ) = ψ − θ +π/2 - Arcsin[(l2/l3) (sin(ψs)+cos( θ))]

and so we can verify that the  constraint equation with parameters ai satisfies the form

eqconstr = aθ θ ' + aφ φ' + aψ ψ' = 0

where the ai are calculated by
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aθ = (∂  f(θ,φ,ψ)/∂θ)φ,ψ, 

and similarly for aφ and aψ.

We get  aφ = 0,  aψ = 1,  and

aθ = -1 + (l2/l3) sin(θ) {1- ((l2/l3) ( cos(θ) + sin(ψs)))2}-1/2

One then uses  for the Lagrange equations, involving the Lagrange multiplier λ,

d
dt

 
∂L

∂θ
 - dL

dθ
 - λ aθ = 0,

d
dt

 
∂L

∂φ
 - dL

dφ
 - λ aφ = 0

,

where now, since aψ = 1,

λ = d
dt

 
∂L

∂ψ
 - dL

dψ
.

Using these results, the differential equation for th is found to be

       ((l1**2 - l1*l2 + l2**2)*mb*th'')/3. +
     -   (g*(l1 - l2)*mb*sin(th))/2. + g*m2*(-(l3*sin(psi - th)) - l2*sin(th)) -
     -   (m2*(2*(-(l3*(psi' - th')*cos(psi - th)) - 2*th'*cos(th))*
     -         (l3*(psi' - th')*sin(psi - th) - l2*th'*sin(th)) +
     -          2*(-(l3*(psi' - th')*cos(psi - th)) -
     -           l2*th'*cos(th))*(-(l3*(psi' - th')*sin(psi - th)) + l2*th'*sin(th))))/2. +
     -   (m2*(2*(-(l3*(psi' - th')*cos(psi - th)) -
     -           l2*th'*cos(th))*(l3*(psi' - th')*sin(psi - th) -
     -           l2*th'*sin(th)) +  2*(-(l3*(psi' - th')*cos(psi - th)) - l2*th'*cos(th))*
     -          (-(l3*(psi' - th')*sin(psi - th)) + l2*th'*sin(th)) +
     -           2*(l3*cos(psi - th) - l2*cos(th))*
     -           (-(l3*(psi'' - th'')*cos(psi - th)) - l2*th''*cos(th) +
     -           l3*(psi' - th')**2*sin(psi - th) +
     -           l2*th'**2*sin(th)) + 2*(-(l3*sin(psi - th)) - l2*sin(th))*
     -         (l3*(psi' - th')**2*cos(psi - th) - l2*th'**2*cos(th) +
     -           l3*(psi'' - th'')*sin(psi - th) -
     -           l2*th''*sin(th))))/2. - (-1 + (l2*sin(th))/(l3*Sqrt(1 -
     -           (l2**2*(cos(th) + sin(psis))**2)/l3**2)))*
     -    (g*l3*m2*sin(psi - th) - (m2*(2*l3*(psi' - th')*(-(l3*(psi' - th')*cos(psi - th)) -
     -              l2*th'*cos(th))*sin(psi - th) +  2*l3*(psi' - th')*
     -          cos(psi - th)*(l3*(psi' - th')*sin(psi - th) -
     -              l2*th'*sin(th))))/2. + (m2*(2*l3*(psi' - th')*



17

     -              (-(l3*(psi' - th')*cos(psi - th)) -
     -              l2*th'*cos(th))*sin(psi - th) + 2*l3*(psi' - th')*
     -              cos(psi - th)*(l3*(psi' - th')*sin(psi - th) -
     -              l2*th'*sin(th)) -  2*l3*cos(psi - th)*(-(l3*(psi'' - th'')*cos(psi - th)) -
     -              l2*th''*cos(th) + l3*(psi' - th')**2*sin(psi - th) + l2*th'**2*sin(th)) +
     -           2*l3*sin(psi - th)*(l3*(psi' - th')**2*cos(psi - th) - l2*th'**2*cos(th) +
     -              l3*(psi'' - th'')*sin(psi - th) - l2*th''*sin(th))))/2.) +
     -   g*m1*(l1*sin(th) - l4*sin(phi + th)) - (m1*(2*(l1*th'*cos(th) -
     -          l4*(phi' + th')*cos(phi + th))*(l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th)) +
     -        2*(l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*(-(l1*th'*sin(th)) +
     -           l4*(phi' + th')*sin(phi + th))))/2. + (m1*(2*(l1*th'*cos(th) -
     -          l4*(phi' + th')*cos(phi + th))*(l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th)) +
     -        2*(l1*th'*cos(th) -  l4*(phi' + th')*cos(phi + th))*(-(l1*th'*sin(th)) +
     -           l4*(phi' + th')*sin(phi + th)) + 2*(l1*cos(th) - l4*cos(phi + th))*
     -         (l1*th''*cos(th) - l4*(phi'' + th'')*cos(phi + th) - l1*th'**2*sin(th) +
     -           l4*(phi' + th')**2*sin(phi + th)) + 2*(l1*sin(th) - l4*sin(phi + th))*
     -         (l1*th'**2*cos(th) - l4*(phi' + th')**2*cos(phi + th) +
     -           l1*th''*sin(th) - l4*(phi'' + th'')*sin(phi + th))))/2..eq.0

and for the equation for phi is unchanged from before because aφ = 0:

        -(g*l4*m1*sin(phi + th)) - (m1*(2*l4*(phi' + th')*(l1*th'*cos(th) -
     -           l4*(phi' + th')*cos(phi + th))*sin(phi + th)- 2*l4*(phi' + th')*cos(phi + th)*
     -         (l1*th'*sin(th) - l4*(phi' + th')*sin(phi + th))))/2. + (m1*(2*l4*(phi' + th')*
     -         (l1*th'*cos(th) - l4*(phi' + th')*cos(phi + th))*sin(phi + th)
     -          - 2*l4*(phi' + th')*cos(phi + th)*(l1*th'*sin(th) -
     -           l4*(phi' + th')*sin(phi + th)) - 2*l4*cos(phi + th)*(l1*th''*cos(th) -
     -           l4*(phi'' + th'')*cos(phi + th) - l1*th'**2*sin(th) + l4*(phi' + th')**2*
     -           sin(phi + th)) - 2*l4*sin(phi + th)*(l1*th'**2*cos(th) -
     -          l4*(phi' + th')**2*cos(phi + th) +
     -           l1*th''*sin(th) - l4*(phi'' + th'')*sin(phi + th))))/2..eq.0

When using Mathematica, these two equations, together with the initial conditions,  are
sufficient input into the differential equation solver to get the values of the three angles
and their first derivatives as a function of time, which then yield all of the desired
characteristics of the throw.

When using other languages, one needs to choose and set up another differential equation
solver.  Fortunately, the differential equations are not stiff, so a simple fourth order
Runge-Kutta algorithm suffices.  In most of these methods, the equations for th, phi, and
psi given above need to be solved for their second derivatives, each of which are put into
functions called by the Runge-Kutta subroutine.  These  were solved for using
Mathematica and are given in Appendix IV.

The solution to the sliding sling model is fairly complex, and will not be described in all
of its details here. We use the same values as previously:  m1=100, m2=1, mb=0, 11=1,
l2=4, l3=3.25, l4=1, l5=4/sqrt[2];  θ[0]=135°, φ[0]=45° ,  and ψ[0]=45°. The results
are quite similar to those for the unconstrained model. The range  was 282.4 ft, giving an
efficiency of 83% compared to the previous 81%.  It would leave when θ = 18.4°  at a
time 0.40 s after the release.
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A Nominal Trebuchet
The results for a related design in which the mass of the beam is a more reasonable 5
times the mass of the projectile are shown in Appendix V. This particular design was
used for debugging the various implementations in other languages, and since the
Mathematica language is less accessible to many readers of this document, they are
included here.

In particular, the first set of graphs show the partition of energy into the parts of the treb
as a function of time.  The flatness of the total energy, shown in the very first graph, is a
very important verification of the model--it shows that the energy is conserved in the
solution, as it should be.  And there is no jog at the point where the projectile leaves the
slide, showing the constraint was properly done.

The graph for the kinetic energy in the CW is also interesting.  It shows that at one point
it is very low, nearly zero, implying that it is "stalled."  The beam stalls a little later.  This
implies a relatively efficient design.

The next graph is a parametric representation of the x-y positions of the projectile and the
center of mass of the counterweight.  The two dots are drawn at the time that the
projectile would leave in order to attain the maximum range.  Note that it is very close to
the time that the CW abruptly changes direction at the bottom of its travel.  This change
shows how close the release of the projectile  is to the "jerk" in the counterweight travel.
When it is very close, like this one is, the error in the simulation is probably greater
because of the increased error introduced by the approximations of assuming all the parts
are perfectly rigid.

The two graphs for the calculated range show that there is only a single maximum, and
that no complications due to the possible multi-valuedness of the range vs. psi occurs,
making this one a "nicer" design.

The graphs of the accelerations experienced by the projectile and counterweights are
shown next.  They show a very slight jog at the time the projectile comes off the slide,
implying that the numerical "match-up" condition is not perfect for some obscure reason.
It is sufficiently small, though, to not detract from our confidence in the model.  The
accelerations are given in m/s^2,  and are seen to be quite high (g is 9.8 m/s^2).  These
are surely overestimates of that actually experienced in a real trebuchet because of the
assumed perfect rigidness of all of the parts.

The appendix also shows for completeness the values obtained by the Mathematica
Program (Trebfornet5.04) for various other characteristics of the throw.  These are pretty
much self-explanatory.  One of particular interest (if you want to throw a cow or
something) gives the acceleration on the projectile just before release.

The effect of added mass in the beam
All of the models discussed up to now used mb = 0.  The effect of mass in the beam
would be expected to decrease the efficiency of the trebuchet, so we need to explore how
much it is affected and look for other effects.  A run with mb =5 was made (using the
unconstrained sling model) and the plot shows the result for θ[t] compared with that for
mb=0.  The mass in the beam has smoothed out the motion so that no minimum
occurred.  The efficiency dropped from the 83% obtained for mb=0 down to 67%.



19

Fig. 8.  A comparison of the θ(t) solutions for trebuchets with mass zero amd mb=5
compared.  The mb=0 case has a minimum at time 0.4.

A study of the dependence of the efficiency of the trebuchet using various masses for the
beam can also be easily carried out.  For the free sling case, we get the results shown in
the figure.  Increasing the mass of the beam decreases the efficiency quite dramatically.
A good design will have a beam as light as possible.  In all of the models considered so
far we used the simplest assumption of a uniform cross-section of the beam.  Other more
complicated shapes could be easily incorporated in the model. One needs to  calculate the
moment of inertia about the axle and the distance of the center of mass from the axle.
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Fig. 9.  The effect of the mass of the beam on the efficiency of the trebuchet.
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Summary of the models so far
We can summarize the results obtained up to now in Table I.

Table I.  A comparison of the results for the models discussed.  They all have a CW of
100 lb, projectile of 1 lb, short arm of 1 ft, long arm of 4 ft.  The + hcw model has a
hinged cw 1 ft long, the + sling, +sliding and + mb models also include a sling 3.25 ft
long.

see-saw +hcw +sling +sliding + mb = 5
R 38.4 ft 203 276 284 228

efficiency 11% 59 81 83 67
θ release 38.0° 22.6 20.8 18.4 19.3
t release 0.40 s 0.36 0.40 0.40 0.46

Minimum
in θ?

no no yes yes no

Modes of Behavior
The various modes of behavior of the sling in relation to the beam are of particular
interest in interpreting and understanding the trebuchet. Consider first, a model similar to
that shown before with the parameters m1=100, m2=1, mb=5, l1=1,l2=4, l3=3.25, and
l4=1.  We use the unconstrained sling model, with the usual initial conditions:  the beam
is at 45° with respect to the horizontal, and the counterweight hangs straight down. The
behavior of θ, ψ  and the range are shown in Fig. 10.

These parameters are chosen so that "good" throwing behavior results.  The resulting
angles are both a monotonic function of time.  The maximum range of 235 ft occurs
when the release occurs at 0.465 s.  This happens when the beam is almost vertical
(θ=13° ). The angle between the beam and the sling is then 145.6°.  There is a second
smaller maximum for the range after the global maximum, which occurs because the sling
continues to swing around (ψ keeps growing).
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Fig. 10.  The behavior of the trebuchet for a favorable set of parameters.

A somewhat more complicated movement occurs when the sling is shortened to 2 ft. as
shown in Fig. 11.  Now there is a small minimum in ψ that occurs in the vicinity of the
maximum in the range.
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Fig. 12.  The behavior of the trebuchet for a shortened sling.

Still more complex behavior ensues when the sling is shortened to 0.5 ft, as shown in
Fig. 13.  Here the sling and projectile get into a "twirling" mode--ψ keeps increasing

monotonically (up to about 6 π, or three circles) at about the time the beam is vertical.

Before this, there is a single broad maximum in ψ.
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Fig. 13.  The behavior when the sling is very short (0.5 ft in the example).

Evidently the behavior of the trebuchet can be quite complex.

The sling release mechanism
The mechanism that is used to release the sling is critical, of course, to the proper and
efficient functioning of the trebuchet.  The previous discussion of the models just assumed
that we could get the release to occur at the proper moment.  We have pointed out,
however, that simple mechanisms would release at the first occurrence of some preset angle
between the sling and the beam-- mainly because the mechanisms commonly used are not
able to do otherwise.  Not impossible to devise, however...

The usual arrangement for the release is to have a fixed projection from the beam (a  hook,
prong or a peg) over which a loop of the sling or a ring tied to one end of the sling slides
freely.  We will refer to the peg as a the "finger".  The other end of the sling is permanently
attached to the beam so it does not go flying off with the projectile.  When the beam is
horizontal and not moving, it would look something like that shown in Fig. 14.
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finger ring

sling

pouch

end view

side view

beam

Fig. 14.  The sling release mechanism in side and end views.

Although some designs rely on a loop of the sling slipped over the finger, it is probably
more reproducible to rely on a ring of metal, such as a metal washer, that is fastened to one
end of the sling.  The finger can be mounted on the top surface of the beam by some
means, or for smaller trebuchets it can be simply screwed into the end of the beam.  One
can use a clothesline type of hook that is straightened out, for example.

In general the finger is placed at some angle with respect to the beam.  It is useful to define
this angle, δ,  with respect to the extension of the beam (so that it is an acute angle).  A
closer view of this is shown in Fig. 15.

δ

Fig. 15.  Definition of the finger angle with respect to the beam.

First of all, it should be clear that in the absence of any friction, the ring will start to slide as
soon as the angle between the finger and the sling decreases below 90°.  In the  limiting
case in which  the finger is very short, and friction is neglected, one could set the finger
angle to be δ = ψr - 90°, where  ψr  is the sling/beam angle given as the optimal release
condition from the simulation. When friction cannot be neglected, the release will be
sometime after the sling/finger angle, is greater than 90°, and δ should be set to a smaller
angle than this.

Very often, the simulations give an optimal release angle of about  ψr = 160°, so to this

approximation, one would choose δ = 70°.
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 The influence of the static force of friction between the ring and the finger is rather easy to
be taken into account, and is worth looking at, and can give a better approximation of what
value δ should be set to.

The configuration of the sling during the motion of the beam, with the angle ψ, used

previously, and its relationship with δ is shown in Fig. 16.

Fs

Fn

α

ψ

beam

sling

rotation direction

A ring slides 
along the finger

δ
Fp

Fig. 16.  The configuration of the sling during the throw, before release, showing the
definition of the angles and forces involved.

Since the sling is made out of string or rope, it can only exert a tension force along itself, in
the direction shown--the rotating projectile exerts a force, Fs, on the ring, tending to pull
the ring along the finger.  In principle, this force can be obtained from the solution of the
differential equations given above, and depends on ψ(t).  It can be resolved into a force
normal to the finger, Fn, and one along the finger,  Fp.

The force tending to hold the ring fixed relative to the finger, resisting the pull  Fp, is the

force of friction, Ff = µ Fn, where µ is the static coefficient of friction between the ring and
the finger.  From the geometry shown, it can be seen that

Ff = µ Fn = µ Fs sin(α − ψ) 
where

α = δ+π
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The force exerted along the finger by the projectile, through the sling, is

 Fp =  Fs cos(α − ψ).

The ring just begins to slide when Fp = Ff.  That is,

 Fs cos(α − ψ) = µ Fs sin(α − ψ)
or

when cot(α − ψ) = µ
or 

cot(π+δ−ψ) = µ

Which leads to the final result, that the ring will begin to slide when

ψ =  π +  δ - arc cot µ,

where, of course, the angles are expressed in radians.

If we are content to assume that the length of the finger is close enough to zero and
therefore only need to take the static force of friction into account (i.e., release occurs at the
instant that the ring starts to slide), then we should set the finger at an angle

 δ = ψr - π + arc cot(µ).

Again,  when ψr =160° and µ = 0, this gives δ = 160° - π + arc cot (0) = 70°, which checks
with the result given above.

 For clean steel µ = 0.58, and for lubricated steel, µ = 0.1, so the corresponding angles

(i.e.,  arc cot µ ) are then 60° and 84°,  respectively, instead of 90° when µ=0.  For the

nominal case of ψr = 160°, therefore, we would therefore set the finger angle at 40° or 64°,
for clean or lubricated steel, respectively.

The condition for sliding is, unfortunately, not the same as the condition for release of the
sling, except in the limiting case where the length of the finger approaches zero.  For a
finger having a finite length, the differential equation for sliding with a (variable) force
coming from the sling acting on the ring, opposed by the sliding friction force, would have
to be solved.  Since the force varies with time during the sliding, another (simultaneous)
differential equation would be added to the ones already described. While this is doable, it
is perhaps more complex than necessary.

First, note that the sliding phase of the ring delays the release of the sling and the projectile.
This means that we would need to set the finger to a smaller angle than that calculated
above.  If we know how long the slide takes, and the average rate that the sling/beam angle
is changing, we can readily calculate how much to correct the finger angle.

The simulation can easily provide the acceleration of the projectile at the instant that sliding
starts.  This information can provide us with the tension in the sling, and therefore the
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pulling force and the acceleration of the ring.  If we make the approximation that this
acceleration is a constant, ar, then the time interval during which the ring slides is simply

ts ≈ 2 lf
ar

,

where lf is the length of the finger.  To the same approximation, therefore, the change in ψ
during the sliding is

ψs ≈ ts ψs ,

 and we would therefore set the finger angle to

 δ ≈ ψr - π + arc cot(µ) - ψr 2 lf/ar  .

The effective acceleration along the finger is readily seen to be

ar = ap [cos(π+δ−ψr) - µk sin(π+δ−ψr)]

where µk is the kinetic coefficient of friction, ap is the acceleration of the projectile when ψ
= ψr.

These last two equations can be solved numerically for the desired  δ when the coefficients
of friction, the finger length, the release angle and its rate of change are all known.  An
easy method is to plot the lhs of the equation

 ψr - π + arc cot(µ) - ψr 2 lf / (ap[cos(π+δ−ψr)-µksin(π+δ−ψr)]) - δ = 0

as a function of δ and find the zero.  Alternatively, the FindRoot function in Mathematica
can be used:

fingsol[del_,psir_,lf_,ap_,mu_,muk_,psidot_]:=
  psir-Pi+ArcCot[mu]-
    psidot*Sqrt[2*lf/(ap*(Cos[Pi+del-psir]-muk*Sin[Pi+del-psir]))]-del;
fingerangle=del/.FindRoot[fingsol[del,Pi*160/180,.1,280,.4,.1,18],{del,0,1}].

As an example we use the base case model, which has
l1=1 ft, l2=4,  l3=3.5,  l4=1, m1=100 lb, m2=1, mb=5.  We assume for our model that µ
= 0.4 and µk = 0.1 and the finger length lf = 10 cm, and we get the values ψr = 18 rad s-1,

and ar = 280 m s-2.   The graph produced is shown in Fig. 17, and gives a value for δ of
0.284 rad = 16.3°. Thus the sliding correction is not negligible.



28

0.1 0.2 0.3 0.4
delta

-0.1

0.1

0.2

0.3

0.4

Fig. 17.  Solution for the finger angle for the nominal case.

The coefficient of static friction is can vary quite a bit for different degrees of cleanliness of
the surfaces.  The value of 0.58 given above is an upper limit.  Some texts give numbers as
low as 0.15, and a coefficient of kinetic friction of 0.09.  The static coefficient of friction
can be readily determined for a real finger/ring arrangement.  Put the ring on the finger
while the finger is horizontal.  Then tilt it till it starts to slide.  The angle of the finger with
respect to the horizontal, s, is then measured.  The coefficient of friction is then µ = arc
tan(s).

To summarize, we can make a fairly good calculation of where to set the finger angle, and
can readily calculate it without having to solve any additional differential equations.
However, there are several approximations involved, and there is some room for error in
measuring the required friction coefficients, so the results should perhaps be taken not too
literally.   However, it would certainly appear from limited experience with the simulation
and real models, that a finger angle of 20° is generally not too bad a place to start.

Mathematical Correctness of the Model
All of models described, but especially the constrained sling model, are sufficiently
complex that one needs to carefully check them for correctness.  A number of checks can
be used.  One check that can be done involves the dimensional correctness--does a model
with lengths and masses doubled give twice the range?  The models pass this test.
Another involves the "reasonableness" of the movement.  Does it "look" right?
Animations of the solutions of both the constrained and unconstrained cases seem to be
impressively natural.  Another check involves using the solution for the variables and
their derivatives to calculate the potential and kinetic energy of all of the parts as a
function of time.  They should sum to a constant, independent of time.  The models
satisfy this check too.

Other tests would involve the behavior at limiting conditions, such as setting m1, m2 and
mb so that they very nearly balance when the beam is horizontal.  It should move very
slowly in the direction expected.  The models satisfy this check.  The same model written
up in two different languages on different platforms should also give results in good
agreement with one another.  This has been done for both the constrained and
unconstrained model.    Taken together, all of these observations point to the conclusion
that the models are correct with a high degree of confidence.
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Optimal Design Considerations
The mathematical model can be used to aid in the design of real trebuchets.  However,
since there are 7 parameters and three initial conditions, the parameter space one can
explore is quite large.  One help is to realize that one might as well only work with
"normalized" parameters by dividing all of the lengths by l1, and the masses by m2, say.
This reduces the problem to 5 parameters and three initial conditions, but still the
parameter space is large, and exploration requires a fast simulator.

One method is to use the "free sling" model in a do-loop in which one variable at a time is
varied.  Plots of the efficiency are perhaps the most useful.  Figs. 18 and 19 show such
plots generated around the nominal parameters used up to now: l1=1, l2=4,  l3=3.5,
l4=1, m1=100, m2=1, mb=5.  Evidently, from these plots a sling length of 3.5 and
counterweight mass of 100 are good.  Anything less than these values results in a fall-off
of efficiency.
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efficiency for 1,4,varies,1,100,1,5

Fig. 18.  The efficiency of the nominal trebuchet as the length of the sling varies.
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Fig.19.  The efficiency as a function of the counterweight mass.

Effect of Propped Counterweights
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The effect of propping the counterweight (making the starting CW/beam  angle, phiz,
something other than that for a freely hanging one) has been the subject of some
speculation.  Propping the counterweight necessarily makes its center of mass higher,
which, one would think,  would most likely make the range greater--the distance the CW
can fall is greater. Its effect on the range efficiency is not so clear because propping the
weight will induce a greater swinging tendency, leading to a lowered efficiency.  However,
perhaps the induced swinging could counteract the "natural" swing, leading to increased
efficiency.  This can only be settled by experiments or simulations--our physical intuition is
just not really good enough.

Figs. 20 a and b show the results of two such simulations.  One simulation (solid circles)
used the set
 { l,m} = {4,16,12, 2; 400, 2, 20} and the other (open circles) used  { l,m} = {1, 4, 3, 1;
100, 1, 5}, and the beam of both is at 45° with respect to the ground.  The simulations
were both carried out for a constrained, sliding sling model in which the "forbidden zone"
behavior of the sling release is ignored.  They used MacTreb 2.0.
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Fig. 20a  The range for two trebuchets:
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Fig. 20b.  Range efficiency for the two trebuchets in Fig. 20a.

It is clear from these two graphs that it is difficult to generalize.  For one, the range is
hardly affected over a considerable span of propping angle because an efficiency decrease
nearly cancels the increase in the distance the counterweight falls.  In the other, less
optimized treb, the range and range efficiency increase at the same time for propping angles
above 45°.  Evidently one considering constructing a propped CW design should carry out
a few simulations before-hand.

It is not clear from these graphs how much the shock on the machine during the course of
the throw would change by propping either.  This can be estimated for the models, but
require some extra calculations.  However, any decrease in the range efficiency such as that
shown for the smaller trebuchet, should make one hesitate to prop it to an angle of 100°, for
example.  Less efficient trebs surely are more at risk of shaking apart and/or breaking the
axle.

Monte Carlo Design
Another method of exploring the rather large parameter space is to use a "Monte Carlo"
approach, which involves calculating the results for randomly chosen parameters within
some region of the design space.

For this method to work, we need a faster method for calculating the results, and a Fortran
program, MonteCarloTreb1.f was devised.  This program can be downloaded from the
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"Algorithmic Beauty of Trebuchets" site. It uses a Runge-Kutta method with variable step
size, and is considerably faster than the previously published fortrtan program freeslcw3.0.
It does about 5 throws per second on a Power Mac 8500/180.

Since we are interested in allowing many of the parameters to vary, one needs a basis for
comparison of the goodness of different designs.  Obviously, a treb with a longer beam
and heavier counterweight will throw farther, so some other basis for comparison should
be used.  Range efficiency is, of course the desired quantity, but we must further work
with models that have the same input energy.  We will therefore keep constant the distance
that the counterweight can fall, and its mass a constant too.

For this example, we will also keep the projectile mass and the mass of the beam a
constant, and only optimize on the lengths.  We choose, based partly on the results shown
above, to make m1=100, m2=1, and mb=5 lbs.  We use the "free sling" model, which has
the sling initially horizontal, as usual, and the CW hanging vertically.

We want to let the angle of the beam with respect to the ground, psiz, vary between 30°
and 60°.  These angles correspond to a shallow and steep pitch of the beam.  Fixing psi
fixes the other angles as thz=psiz+π/2, and phiz = π - th = psi+π/2.  The distance the
counterweight falls, h, is given by h= l1 * (1 + sin(psiz)) and is assumed to be a
constant, so l1 is determined from this to be l1 = h/(1 + sin(psiz)).

An important design parameter is the ratio of the lengths of the long arm to the short arm
of the beam, l2/l1.  Most published designs and drawings appear to have this ratio
between 3 and 5, so we choose to explore this region as well.  Given the constraint on l1
just given, choosing a ratio randomly from within this range gives l2.  Then the height of
the axle is fixed as well at l5 = l2*sin(psiz).

For the length of the sling, we will look in the region where the sling length is about
equal to the length of the long arm of the beam:  l3/l2 = .5 to 1.5.  For the length of the
CW suspension, we choose, rather arbitrarily to look at l4/l1= 0.5 to 1.0.  This cannot be
made to be  too large--else the counterweight will crash into the ground.

To summarize, the space being explored has 4 dimensions: psiz, l2/l1, l3/l2, and l4/l2.
all of the other lengths and angles being determined from them.  And to reiterate,  we set
m1=100, m2=1, and mb=5 lbs.  Psiz varies from 30° to 60°, and we assume the CW falls
a constant distance for all of the proposed designs.  We set this distance, rather arbitrarily
to be h = 2 ft. This is Stage 1 of our exploration.

The Monte Carlo program was run for 200 trials chosen randomly within this 4-
dimensional space, and the range efficiency determined for each.  There are therefore four
graphs.  Fig. 20 shows the results as plots of the range efficiency vs. each of the varied
parameters.  Here we can see that the range efficiency for this collection of trebs ranged
from about 0.1 up to about 0.7.  Thus, guessing a single design within the bounds set
above, could lead to a very inefficient  treb.  It is better to design, than guess.
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The first and clearest conclusion reached from these four graphs is that the length of the
sling appears to have an optimum at about l3/l2=1.   The range efficiency varies greatly
for the other parameters,  with  a slight trend toward larger values of l4.

A little clearer picture emerges if we impose a further constraint:  a second stage of 200
trials was therefore carried out with l3/l2 now constrained to be unity.  This is also
shown in Fig. 20.  Now a fairly clear optimum in psiz appears--it is close to 45°.   Again,
the trend toward higher efficiency for larger values of l4 is apparent.  Making l3=l2 has
decreased the range of efficiencies very substantially.  It is now between 0.50 and 0.73.

The upward trend of efficiency with the length of the CW arm, l4, may be readily
explained:  the longer this arm, the less motion in the x-direction that the CW experiences
during its fall, and therefore the less wasted energy in the CW at the time of release.  A
very long counterweight arm, however, is not permitted in the usual design of a
trebuchet:  the counterweight cannot be allowed to hit the ground or the slide for the
projectile.  An efficient design would have l4 be such that the bottom of the CW just
misses hitting the ground.  If we say that the center of mass of the counterweight is in the
center of the counterweight, this means that  we must have (as a little geometry shows)

l4 <  (l1/2) *(l2*sin(psiz) - l1)/l1.

The results so far indicate that there is comparatively little impact of the choice of the long
arm to short arm of the beam (l2/l1) on the efficiency.  Only a shallow optimum is seen.
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Fig. 21.  Stages 3 and 4 of the Monte Carlo exploration.  In both of these simulations
psiz is constrained to 45° and the sling length/long arm ratio is unity.

Another Monte Carlo run with psiz constrained to be 45° and the sling length=long arm
length is shown in Fig. 21 as stage 3.  Now the efficiency ranges from 0.58 up to 0.73,
so some further gain in the probability that a treb designed within these constraints will
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have a high efficiency is seen.  The general trend of increasing efficiency with increasing
l4 is even more apparent than before, but the optimum l2/l1 is not so clearly evident.

Choosing l4 = l1 gives a treb with a counterweight arm that can clear the ground, and
gives a further constraint, yielding the Stage 4 results, as also shown in Fig. 21. The
range of efficiency in the 200 simulations has been further narrowed to 0.69 to 0.73 and
now a clear maximum in the range efficiency in found when l2/l1 = 3.75.

This design process can, of course, be adopted to various other sets of constraints
desired, and can be rather quickly carried out.  An even faster method, but one that does
not reveal much in the way of heuristics, is to set up the problem as for Stage 1, then run
a thousand or so simulations, and rank order the results by range efficiency.  Successive
stages need not be run, and the design parameters are taken from the most efficient
design.

Back of the Envelope Design
If you want to start the design of your very own, I would recommend that you play with
the equation for range efficiency in this form:

R = 2 
m1
m2

 h εR

Put in your  CW (m1) and projectile mass (m2) , assume a nominal efficiency of εR=0.5.
Decide how far you are willing to raise the counterweight  (h) by  some means, and
calculate R.  If you like what you see, calculate the length of the short arm of the beam,
assuming it is to be placed at a 45° angle with respect to the ground:

l1 = h/1.707.

Get the long arm of the beam by multiplying this by four, etc.  Choose your
counterweight material, and look up it's density.  Now draw a design for the
counterweight box, and be sure that it is not so long that it hits the ground when the beam
is vertical.  Determine its volume and  assume you fill it with your stuff. Can you get a
counterweight mass equal to the m1 assumed above?  Iterate this process a couple of
times.

When satisfied with the results, refine the design by doing some simulations using either
MacTreb or WinTreb simulators.  For this, you need the mass of the beam, mb.  This is
probably the hardest part, and is the most risky.  You know the length of the beam
required, so to get its mass, you need to estimate its required cross-section to get the
volume.  To get the cross-section, the best advice, in the absence of any available
scientific analysis is to peruse the pictures of previously constructed trebs on the internet,
and guess.

Now go build one and have some fun!

An Optimized Design
An alternative design method,  is to just use the results given above in the monte-carlo
section:

 l3/l2=1; l4/l1=1; l2/l1=3.75; l5 = 0.707*l2.
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This sets the beam at 45° with respect to the horizontal, and sets all of the proportions.
Choosing l1 to be some actual value then sets all of the other lengths.  Further, choosing
the material of the beam and its cross-section will determine its mass, mb.  Choose a
projectile that is one-fifth of that, and a counterweight that is 100 times the weight of the
projectile.    Use a finger angle of 20°.

This process should yield a trebuchet that is about as efficient as one can reasonably
expect--about 73 %.  Probably little is to be gained by further experimentation with the
length parameters--there is not a lot of room between 0.73 and 1.0, after all.  It is
probably better to spend one's time on construction.

This optimized design, is probably good enough to deserve a name--I call it the "Pretty
Darned Good Trebuchet", or the "PDG treb" for short.  I know that it works for l1 = 1 ft.

Nonuniform beams
All of the preceding discussion has been based on the assumption that the beam is uniform
in cross section.  This is generally true in smaller trebs, and is certainly easier to construct.
However the beam of the historical trebuchet is generally not uniform—it is usually
constructed so that the end nearest the counterweight is very thick, and the end near the
sling is much thinner.  This has two effects on the motion, both of which are beneficial.
The first is that the moment of inertia of the beam is decreased (below that for the uniform
beam we have been considering), which lowers the kinetic energy in the beam due to its
rotation about the axle.  The second advantage is that the center of mass of the beam is
closer to the axle, and so requires less energy to raise it to the position where the projectile
is released.  It is worthwhile to look at these modifications in a little more detail.

The changes in the simulation required for the non-uniform beam are pretty
straightforward, and add two more parameters to the model, increasing the complexity of
searching for optimum designs somewhat.  The required changes have been incorporated
into the MacTreb*3.0 and WinTrebStar applications, so this effect can be studied as well.

 The center of mass of a uniform beam is, obviously, at a distance (l1+ l2)/2 from the sling
end of the beam and the axle is a distance l2 from the same end, so the position of the
center of mass, measured from the axle along the beam  is rc = (l1+ l2)/2 – l2  =   (l1-l2)/2.

The potential energy of a mass mb at a height h above the axle is mb g h,  so for the
uniform beam the potential energy at a point in the movement when the beam is at an angle
θ with respect to the vertical is

 PEub = mb g h = mb g (l1-l2)/2 sin(θ−π/2) = -mb g (l1-l2)/2 cos(θ),

which is the expression used previously.  For an arbitrarily shaped beam with a center of
mass rc from the axle,  the potential energy is easily seen to be

PEb = -mb g rc cos(θ).

The position of the center of mass of the beam is relatively simple to measure:  balance the
beam on a pivot and measure the distance from the pivot to where the axle is going to go.
If it is on the long end of the beam, then rc is negative.
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The kinetic energy in the beam, since it doesn’t translate, but only rotates about the axle, is
given by

KEb =  I θ
2

2

Where I is the moment of inertia of the beam about the axle and theta dot is the rotational
velocity about the axle.  The moment of inertia of a beam is not as easy to measure as the
center of mass, but it is pretty simple to calculate.

Assume that the linear mass density  of the beam at a distance x from the axle is s(x).  Here
x is measured along the beam, and is positive toward the short end of the beam.  The linear
mass density is the mass per unit length of the beam at x.  For a uniform beam, it is given
by s(x) = mb/(l1+l2) for x = -l2 up to x=l1.  The moment of inertia of a thin beam (neglect
its thickness) is given by

I = s(x) x2

-l2

l1

dx

 which, for a uniform thin beam, is  then

I = mb
l1+l2

 x
3

3
 |-l2

l1  = 
mb (l12- l1 l2 +l22)

3  
A convenient  procedure is to compute the moment of inertia using the thin beam
approximation, and then use the radius of gyration, rg,  for  further calculations.  The
radius of gyration is  a length equal to the distance a point mass mb would have to be
placed from the axle to have the same moment of inertia.  Since the moment of inertia of a
point mass m  at a distance r from the center of rotation is m r 2 , the radius of gyration of a
thin beam about the axle is  simply

rg = I/mb

which, becomes for a uniform thin beam ,

rg = 
(l12- l1 l2 +l22)

3

For the nominal design, for example, where l1=1 and l2=4, we would have rg = sqrt(13/3)
= 2. 08.  Trebuchets with a tapered beam would have a smaller radius of gyration than this.
Unlike rc, which is zero when the arms of the beam are balanced on the axle,  the radius of
gyration is always non zero for beams.

For estimation purposes,  it is easy to derive simple formulas for beams that are non-
uniform to get the radius of gyration.  For example, suppose the thickness of the CW end
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of the beam is k times that of the sling end (both ends still treated as thin parallelpipeds).
That is, the beam is shaped like a wedge, as shown in Fig. A1.  The origin is taken to be at
the axle,  the fat end of the beam is l1 long, and the slender end is l2 long.

x
t

k t

l1

y

- l2
0

s(x) dx

Fig. 22.  The linear non-uniform beam with mass per unit length s(x), thickness t at the
sling end and k t at the CW end.

Then it is not hard to show that the mass per unit length as a function of x is

s(x) = 
2 (l1+k l2 + x (k-1)

(1+k)(l1+l2) 2

The radius of gyration of the beam is

rg = 
(1+3 k) l12 - 2 (1+k) l1 l2 + (3+k) l22

6 (1+k)

and the center of mass is at

xcm = 
-2 l1 + 2 (1+k2) l1 -2 k l2 + 2 (1+k2) l2

2 (k -1)

These three equations are seen to reduce to the ones for the uniform beam for k=1.  For
example, with l1=1, l2 = 4 and k = 4, we get rg = 1.68 and xcm = -0.808.  This is to be
compared with rg = 2.08 and xcm = -1.5 for the uniform beam.

Materials and strengths needed
All of the forgoing analysis assumes that the beam, axle, CW box, truss, sling  and other
parts are rigid and strong enough to withstand the forces involved.  A discussion of the
methods for  choosing the materials and dimensions of the the parts constitute a subject fit
for further analysis, and a discussion of this is available from the author in the manuscript
"Will it Break?".  It is a rather simple treatment of the required dimensions of the parts for
different designs, and offers some useful rules of thumb and guidlines.  See the
"Algorithmic Beauty of the Trebuchet" site for details.
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Conclusion
A good start on a mechanical analysis of the trebuchet has been described and has shown
how it can be applied to design a reasonably efficient trebuchet.  Two conclusions are
particularly important:  the sling length should be equal to the length of the long arm of
the beam, and the beam should be set at a 45° angle with respect to the horizontal.  The
length of the CW arm should be as long as possible, so it just misses hitting the ground
(with some margin for error).  Use a CW/projectile weight ratio of about 100.  You
won't go too far wrong!
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Appendix 1

(*  Solve the seesaw treb problem    *)
(*seesaw1.0.nb DB Siano  Aug. 21, 1997*)
m1=100;m2=1;l1=1;l2=4;g=32;(* the parameters*)

c=g*(l1  m1 - l2  m2)/(m1 l1 l1+ m2 l2 l2);

(*Solve the DE:*)
solss=NDSolve[{th''[t]==-c Sin[th[t]],th[0]==3 Pi/4,th'[0]==0},{th[t]},{t,0,
      1}];
(* get th and the velocity from this solution*)
thint[t_]=Chop[th[t]/.Flatten[solss][[1]]];
v[t_]=l2*thint'[t];(*tangential velocity of the projectile*)

Print["time when th=pi/4 is ",tsolss=t/.FindRoot[thint[t]==Pi/4,{t,.2,.4}]];

Print["vel at th=pi/4 is=",v0pi4=l2*thint'[tsolss]];
Print["range when release is at Pi/4 is  ",r=v0pi4^2/g," ft"];
Print["thoret max range=",rth=N[2 m1 l1 (1+Sin[3 Pi/4])/m2]," ft"];
Print["efficiency=",r/rth];
----
time when th=pi/4 is 0.381169
vel at th=pi/4 is=-34.619
range when release is at Pi/4 is  37.4523 ft
thoret max range = 341.421 ft
efficiency=0.109695
-----
(* Plot the results*)
Plot[{thint[t]},{t,0,.5},PlotLabel->"th[t]"];
(* plot the range as a function of the time at release*)
rang[t_]=2*v[t]*v[t]*Cos[thint[t]]*Sin[thint[t]]/g;
Plot[rang[t],{t,0,.5},PlotLabel->"range[t]"];
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Appendix II

(*  Solve the hinged cw treb problem    *)
(*hingedcw1.0 DB Siano  Aug. 21, 1997*)
th=.;phi=.;psi=.;
l1=.;l2=.;l3=.;l4=.;m1=.;m2=.;m3=.;mb=.;g=.
cn={l1,l2,l3,l4,m1,m2,mb};
x1[th_]:= l1 Sin[th];
y1[th_]:=-l1 Cos[th];
(*coords of long end of  beam*)
x2[th_]:=-l2 Sin[th];
y2[th_]:=l2 Cos[th];
(*coords of short end of counterweight*)
x4[th_,phi_]:=l1 Sin[th]-l4 Sin[phi+th];
y4[th_,phi_]:=-l1 Cos[th]+l4 Cos[phi+th];

(* PE, including the uniform beam of mass mb*)
vt[th_,phi_] :=m1 g y4[th,phi]+m2 g y2[th]-mb g ((l1-l2)/2) Cos[th];
(* KE of the trebuchet*)
ket[th_,phi_]:=

(m1/2 )*((Dt[x4[th,phi],t,Constants->cn])^2+(
              Dt[y4[th,phi],t,Constants->cn])^2)+

(m2/2) *((Dt[x2[th],t,Constants->cn])^2+
(Dt[y2[th],t,Constants->cn])^2 )+ 
(mb/6) (l2^2-l1 l2 +l1^2) Dt[th,t,Constants->cn]^2;

(* the Lagrangian*)
lagrt[th_,phi_]:=ket[th,phi]-vt[th,phi];
ltrr=lagrt[th,phi]/.{Dt[th,t,Constants\[Rule]{l1,l2,l3,l4,m1,m2,mb}]->thd,

Dt[phi,t,Constants\[Rule]{l1,l2,l3,l4,m1,m2,mb}]->phid};

(* set up the equations to solve, using the method of Lagrange *)
eqbig=Simplify[{ Dt[D[ltrr,thd],t]-D[ltrr,th]==0,
        Dt[D[ltrr,phid],t]-D[ltrr,phi]==0}/.{Dt[l1,t]->0,Dt[l2,t]->0,
        Dt[l3,t]->0,Dt[l4,t]->0,Dt[mb,t]->0,Dt[m1,t]->0,Dt[m2,t]->0,
        Dt[g,t]->0,

Dt[th,t]->thd,Dt[phi,t]->phid,Dt[thd,t]->thdd,Dt[phid,t]->phidd}]
---
{(-l1)l4m1((phidd + 2thdd))Cos[phi] +
      l1l4m1phid((phid + 2thd))Sin[phi] +
      1/6((6l4^2m1phidd + 6l1^2m1thdd + 6l4^2m1thdd +
              6l2^2m2thdd + 2l1^2mbthdd - 2l1l2mbthdd +
              2l2^2mbthdd + 6gl1m1Sin[th] -
              6gl2m2Sin[th] + 3gl1mbSin[th] -
              3gl2mbSin[th] - 6gl4m1Sin[phi + th])) == 0,

  l4m1((l4phidd + l4thdd - l1thddCos[phi] - l1thd^2Sin[phi] -
  gSin[phi + th])) == 0}
---

(* the parameters:*)
m1=100;m2=1;mb=0;l1=1;l2=4;l4=1;g=32;
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l5=l4/Sqrt[2];(*axle height*)

(*the initial conditions:*)
ths=3*Pi/4;(* sets the beam at 45° wrt ground*)
phis=-ths+Pi;(* this makes the cw dangle straight down*)

(* Now put the two equations into a form suitable for NDSolve*)
eqs=eqbig/.{
th->th[t],thd->th'[t],thdd->th''[t],phi->phi[t],phid->phi'[t],phidd->phi''[t]}
----

{100 Sin[phi[t]] phi'[t] (phi'[t] + 2 th'[t]) -
    100 Cos[phi[t]] (phi''[t] + 2 th''[t]) +
    (1 (18432 Sin[th[t]] - 19200 Sin[phi[t] + th[t]] +
         600 phi''[t] + 1296 th''[t])) / 6 == 0,

  100 (-32 Sin[phi[t] + th[t]] - Sin[phi[t]] th'[t] ^2 +
      phi''[t] + th''[t] - Cos[phi[t]] th''[t]) == 0}
-----

(*Solve the DE:*)
solhcw=NDSolve[
      Flatten[{eqs,th[0]==ths,phi[0]==phis,
          th'[0]==0,phi'[0]==0}],{th[t],phi[t]},{t,0.,1}];

(* get th and the velocity from this solution*)
thint[t_]=Chop[th[t]/.Flatten[solhcw][[1]]];
v[t_]=l2*thint'[t];(*tangential velocity of the projectile*)

Print["time when th=pi/4 is ",tsolss=t/.FindRoot[thint[t]==Pi/4,{t,.2,.4}]];

Print["vel at th=pi/4 is=",v0pi4=l2*thint'[tsolss]];
Print["range when release is at Pi/4 is  ",r=v0pi4^2/g," ft"];
Print["thoret max range=",rth=N[2 m1 l1 (1+Sin[3 Pi/4])/m2]," ft"];
Print["efficiency=",r/rth];

-----
time when th=pi/4 is 0.336743
vel at th=pi/4 is=-47.3121
range when release is at Pi/4 is  69.9512 ft
thoret max range=341.421 ft
efficiency=0.204882
-----

(* plot th and its derivative *)
Plot[{thint[t]},{t,0,.5},PlotLabel->"th[t]"];

gth=Plot[{thint'[t]},{t,0,.5},PlotLabel->"th'[t]"];
(* plot the range as a function of the time at release*)
range[t_]=2*v[t]*v[t]*Cos[thint[t]]*Sin[thint[t]]/g;
Plot[range[t],{t,0,.5},PlotLabel->"range[t]"];
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Appendix III

(*  Solve the sling+cwfree1.0 treb problem    *)
(*seesaw1.0.nb DB Siano  Aug. 21, 1997*)
th =. ; phi =. ; psi =. ; l1 =. ; l2 =. ; l3 =. ; l4 =. ;
  m1 =. ; m2 =. ; m3 =. ; mb =. ; g =.
cn = {l1, l2, l3, l4, m1, m2, mb};
  x1[th_] := l1 Sin[th];
  y1[th_] := -l1 Cos[th]; x2[th_] := -l2 Sin[th];
  y2[th_] := l2 Cos[th];
  x4[th_, phi_] := l1 Sin[th] - l4 Sin[phi + th];
  y4[th_, phi_] := -l1 Cos[th] + l4 Cos[phi + th];
  x3[th_, psi_] := -(l3 Sin[psi - th] + l2 Sin[th]);
  y3[th_, psi_] := -(l3 Cos[psi - th] - l2 Cos[th]);
  vt[th_, phi_, psi_] :=
                                              l1 - l2
   m1 g y4[th, phi] + m2 g y3[th, psi] - mb g ------- Cos[th]
                                                 2

ket[th_, phi_, psi_] :=

   m1                                     2
   -- (Dt[x4[th, phi], t, Constants -> cn]  +
   2
                                          2
       Dt[y4[th, phi], t, Constants -> cn] ) +

    m2                                     2
    -- (Dt[x3[th, psi], t, Constants -> cn]  +
    2
                                          2
       Dt[y3[th, psi], t, Constants -> cn] ) +

    mb    2             2                            2
    -- (l2  - l1 l2 + l1 ) Dt[th, t, Constants -> cn] ;
    6

  lagrt[th_, phi_] := ket[th, phi, psi] - vt[th, phi, psi];
  ltrr = lagrt[th, phi] /.
    {Dt[th, t, Constants -> {l1, l2, l3, l4, m1, m2, mb}] ->
      thd, Dt[phi, t, Constants ->
        {l1, l2, l3, l4, m1, m2, mb}] -> phid,
     Dt[psi, t, Constants ->
        {l1, l2, l3, l4, m1, m2, mb}] -> psid};

eqbig = Simplify[{Dt[D[ltrr, thd], t] - D[ltrr, th] == 0,
     Dt[D[ltrr, phid], t] - D[ltrr, phi] == 0,
     Dt[D[ltrr, psid], t] - D[ltrr, psi] == 0} /.
    {Dt[l1, t] -> 0, Dt[l2, t] -> 0, Dt[l3, t] -> 0,
     Dt[l4, t] -> 0, Dt[mb, t] -> 0, Dt[m1, t] -> 0,
     Dt[m2, t] -> 0, Dt[g, t] -> 0, Dt[th, t] -> thd,
     Dt[phi, t] -> phid, Dt[psi, t] -> psid,
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     Dt[thd, t] -> thdd, Dt[phid, t] -> phidd,
     Dt[psid, t] -> psidd}];

------------
 l4**2*m1*phidd - l3**2*m2*psidd +
     -    l1**2*m1*thdd + l4**2*m1*thdd + l2**2*m2*thdd +
     -    l3**2*m2*thdd + (l1**2*mb*thdd)/3. -
     -    (l1*l2*mb*thdd)/3. + (l2**2*mb*thdd)/3. -
     -    l1*l4*m1*(phidd + 2*thdd)*Cos(phi) +
     -    l2*l3*m2*(psidd - 2*thdd)*Cos(psi) +
     -    l1*l4*m1*phid**2*Sin(phi) +
     -    2*l1*l4*m1*phid*thd*Sin(phi) -
     -    l2*l3*m2*psid**2*Sin(psi) +
     -    2*l2*l3*m2*psid*thd*Sin(psi) -
     -    g*l3*m2*Sin(psi - th) + g*l1*m1*Sin(th) -
     -    g*l2*m2*Sin(th) + (g*l1*mb*Sin(th))/2. -
     -    (g*l2*mb*Sin(th))/2. - g*l4*m1*Sin(phi + th).eq.0,

l4*m1*(l4*phidd + l4*thdd - l1*thdd*Cos(phi) -
     -      l1*thd**2*Sin(phi) - g*Sin(phi + th)).eq.0,

 l3*m2*(l3*psidd - l3*thdd + l2*thdd*Cos(psi) -
     -      l2*thd**2*Sin(psi) + g*Sin(psi - th)).eq.0

-----------------
(* input the parameters here*)
m1 = 100; m2 = 1; mb = 0; l1 = 1; l2 = 4;
l3 = 3.25; l4 = 1; g = 32; l5 = l4/Sqrt[2];
(psis = ths - Pi/2; ); ths = (3*Pi)/4; phis = -ths + Pi;
(*set up the equations *)
eqs = eqbig /.
   {th -> th[t], thd -> Derivative[1][th][t],
    thdd -> Derivative[1][Derivative[1][th]][t],
    phi -> phi[t], phid -> Derivative[1][phi][t],
    phidd -> Derivative[1][Derivative[1][phi]][t],
    psi -> psi[t], psid -> Derivative[1][psi][t],
    psidd -> Derivative[1][Derivative[1][psi]][t]};

(*Solve the DE:*)
solslcw=NDSolve[
      Flatten[{eqs,th[0]==ths,phi[0]==phis,psi[0]==psis,
          th'[0]==0,phi'[0]==0,psi'[0]==0}],{th[t],phi[t],psi[t]},{t,0.,1}];

(* get th, psi and the velocity from this solution*)
thint[t_]=Chop[th[t]/.Flatten[solslcw][[1]]];
psiint[t_]=Chop[psi[t]/.Flatten[solslcw][[3]]];
Plot[thint[t],{t,0,.5},PlotLabel->"th[t]"];
Plot[psiint[t],{t,0,.5},PlotLabel->"psi[t]"];
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(* now to get the range, we first need to get the velocity of the projectile*)

vx3[t_]:=Chop[-l3 Cos[psiint[t]-thint[t]]*(psiint'[t]-thint'[t])-
      l2*Cos[thint[t]]*thint'[t]];
vy3[t_]:=Chop[
    l3*(psiint'[t]-thint'[t])*Sin[psiint[t]-thint[t]]-
      l2*thint'[t]*Sin[thint[t]]];
range[t_]=2 vx3[t]* vy3[t]/g;
Plot[range[t],{t,0,.5},PlotLabel->"range[t]"]
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(* get the maximum range *)
tstrt=0;tend=.5;del=.001;
rangetime=Table[{range[t],t},{t,tstrt,tend,del*(tend-tstrt)}];
allowedranges=Transpose[rangetime];
mallowedrange=Max[First[allowedranges]];
postallowedrange=First[Flatten[Position[rangetime,mallowedrange]]];
tallowedrange=Last[rangetime[[postallowedrange]]];
Print[" The maximum range is ",mallowedrange,"  at time ",
  tallowedrange, " s"];
Print["theta at time of release is ",180/Pi*thint[tallowedrange]," deg"];

Print["psi at time of release is ",180/Pi*psiint[tallowedrange]," deg"];
Print["thoret max range=",rth=N[2 m1 l1 (1+Sin[Pi/4])/m2]," ft"];
Print["efficiency=",mallowedrange/rth];
------
The maximum range is 275.793  at time 0.4045 s

theta at time of release is 20.7797 deg

psi at time of release is 169.201 deg

thoret max range=341.421 ft

efficiency=0.80778

Appendix IV

Equations for the second derivatives of the angles for the constrained portion of the throw
are shown here.  Subsidiary variables that are used to speed the calculation are defined
first.  The notation is to use "d" to mean first derivative and "dd" to mean the second
derivative; sq means second power, cu the third, qt the fourth, and qn the fifth power.

sth=sin(th)
cth=cos(th)
sphi=sin(phi)
cphi=cos(phi)
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thdsq=thd*thd
phidsq=phid*phid
sthsq=sth*sth
sthcu=sthsq*sth
cthsq=cth*cth
cthcu=cthsq*cth

cphisq=cphi*cphi

rad= Sqrt(1 - (l2sq*(cth + spsis)*(cth + spsis))/l3sq)
r2=rad*rad
r3=r2*rad
r4=r2*r2

// for th in the constrained portion of the throw:

c1=   -6*l2cu*l3sq*m2*r3*thdsq*cthcu + 6*l1*l3cu*l4*m1*phidsq*r4*sphi
c2=  12*l1*l3cu*l4*m1*phid*r4*thd*sphi + 6*l1*l3cu*l4*m1*r4*thdsq*sphi
c3=  -6*l1sq*l3cu*m1*r4*thdsq*cphi*sphi
c4= -6*l2cu*l3sq*m2*r3*thdsq*cthsq*spsis + 6*g*l1*l3cu*m1*r4*sth
c5=  3*g*l1*l3cu*mb*r4*sth - 3*g*l2*l3cu*mb*r4*sth
c6=  6*l2sq*l3cu*m2*r2*thdsq*cth*sth
c7=  -12*l2sq*l3cu*m2*r4*thdsq*cth*sth
c8=  12*l2cu*l3sq*m2*r3*thdsq*cth*sthsq
c9=  6*l2qn*m2*rad*thdsq*cthcu*sthsq
c10=  6*l2cu*l3sq*m2*r3*thdsq*spsis*sthsq
c11=  12*l2qn*m2*rad*thdsq*cthsq*spsis*sthsq
c12=  6*l2qn*m2*rad*thdsq*cth*spsissq*sthsq
c13=  -6*l2qt*l3*m2*thdsq*cth*sthcu - 6*l2qt*l3*m2*thdsq*spsis*sthcu
c14=  -6*g*l1*l3cu*m1*r4*cphi*Sin(phi + th)
cnum=c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13+c14

d1= -6*l1sq*l3cu*m1*r4 - 6*l2sq*l3cu*m2*r4 - 2*l1sq*l3cu*mb*r4
d2=  2*l1*l2*l3cu*mb*r4 - 2*l2sq*l3cu*mb*r4 + 6*l1sq*l3cu*m1*r4*cphisq
d3=  12*l2cu*l3sq*m2*r3*cthsq*sth
d4=  12*l2cu*l3sq*m2*r3*cth*spsis*sth - 6*l2sq*l3cu*m2*r2*sthsq
d5=  12*l2sq*l3cu*m2*r4*sthsq
ddenom=d1+d2+d3+d4+d5

//return the second derivative of th.
thddcret=cnum/ddenom
//---------------------------------------------------------------------------------------------------------

The equations for phi in the constrained portion of the throw:

a(1)=-(l1*l4cu*m1sq*phidsq*sphi) + cphi*l1sq*l4sq*m1sq*phidsq*sphi +
cphi*g*l1sq*l4*m1sq*sth
     a(2)=   -g*l1*l4sq*m1sq*sth + (cphi*g*l1sq*l4*m1*mb*sth)/2. -
(cphi*g*l1*l2*l4*m1*mb*sth)/2.
     a(3)=    -(g*l1*l4sq*m1*mb*sth)/2. + (g*l2*l4sq*m1*mb*sth)/2. -
2*l1*l4cu*m1sq*phid*sphi*thd
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     a(4)=    2*cphi*l1sq*l4sq*m1sq*phid*sphi*thd -
(cphi*cthcu*l1*l2cu*l4*m1*m2*thdsq)/(l3*rad)
     a(5)=   (cthcu*l2cu*l4sq*m1*m2*thdsq)/(l3*rad) - l1cu*l4*m1sq*sphi*thdsq
     a(6)=   -l1*l4cu*m1sq*sphi*thdsq + 2*cphi*l1sq*l4sq*m1sq*sphi*thdsq -
l1*l2sq*l4*m1*m2*sphi*thdsq
     a(7)=   -(l1cu*l4*m1*mb*sphi*thdsq)/3. + (l1sq*l2*l4*m1*mb*sphi*thdsq)/3.
     a(8)=   -(l1*l2sq*l4*m1*mb*sphi*thdsq)/3. -
(cphi*cthsq*l1*l2cu*l4*m1*m2*spsis*thdsq)/(l3*rad)
     a(9)=    (cthsq*l2cu*l4sq*m1*m2*spsis*thdsq)/(l3*rad) -
2*cphi*cth*l1*l2sq*l4*m1*m2*sth*thdsq
     a(10)=    2*cth*l2sq*l4sq*m1*m2*sth*thdsq +
(cphi*cth*l1*l2sq*l4*m1*m2*sth*thdsq)/r2
     a(11)=    -(cth*l2sq*l4sq*m1*m2*sth*thdsq)/r2
     a(12)=    (2*cthsq*l1*l2cu*l4*m1*m2*sphi*sth*thdsq)/(l3*rad)
     a(13)=    (2*cth*l1*l2cu*l4*m1*m2*sphi*spsis*sth*thdsq)/(l3*rad)
     a(14)=    -(cphi*cth*l1*l2qt*l4*m1*m2*sthcu*thdsq)/(l3sq*r4)
     a(15)=   (cth*l2qt*l4sq*m1*m2*sthcu*thdsq)/(l3sq*r4)
     a(16)=    -(cphi*l1*l2qt*l4*m1*m2*spsis*sthcu*thdsq)/(l3sq*r4)
     a(17)=    (l2qt*l4sq*m1*m2*spsis*sthcu*thdsq)/(l3sq*r4)
     a(18)=    (cphi*cthcu*l1*l2qn*l4*m1*m2*sthsq*thdsq)/(l3cu*r3)
     a(19)=    -(cthcu*l2qn*l4sq*m1*m2*sthsq*thdsq)/(l3cu*r3)
     a(20)=    (2*cphi*cth*l1*l2cu*l4*m1*m2*sthsq*thdsq)/(l3*rad)
     a(21)=    -(2*cth*l2cu*l4sq*m1*m2*sthsq*thdsq)/(l3*rad) +
2*l1*l2sq*l4*m1*m2*sphi*sthsq*thdsq
     a(22)=    -(l1*l2sq*l4*m1*m2*sphi*sthsq*thdsq)/r2
     a(23)=   (2*cphi*cthsq*l1*l2qn*l4*m1*m2*spsis*sthsq*thdsq)/(l3cu*r3)
     a(24)=   -(2*cthsq*l2qn*l4sq*m1*m2*spsis*sthsq*thdsq)/(l3cu*r3)
     a(25)=   (cphi*l1*l2cu*l4*m1*m2*spsis*sthsq*thdsq)/(l3*rad)
     a(26)=   -(l2cu*l4sq*m1*m2*spsis*sthsq*thdsq)/(l3*rad)
     a(27)=    (cphi*cth*l1*l2qn*l4*m1*m2*spsissq*sthsq*thdsq)/(l3cu*r3)
     a(28)=    -(cth*l2qn*l4sq*m1*m2*spsissq*sthsq*thdsq)/(l3cu*r3) -
g*l1sq*l4*m1sq*Sin(phi + th)
     a(29)=    cphi*g*l1*l4sq*m1sq*Sin(phi + th) - g*l2sq*l4*m1*m2*Sin(phi + th)
     a(30)=    -(g*l1sq*l4*m1*mb*Sin(phi + th))/3. + (g*l1*l2*l4*m1*mb*Sin(phi +
th))/3.
     a(31)=    -(g*l2sq*l4*m1*mb*Sin(phi + th))/3.
     a(32)=    (2*cthsq*g*l2cu*l4*m1*m2*sth*Sin(phi + th))/(l3*rad)
     a(33)=   (2*cth*g*l2cu*l4*m1*m2*spsis*sth*Sin(phi + th))/(l3*rad)
     a(34)=    2*g*l2sq*l4*m1*m2*sthsq*Sin(phi + th) -
(g*l2sq*l4*m1*m2*sthsq*Sin(phi + th))/r2

     b(1)=  -(l1sq*l4sq*m1sq) + cphisq*l1sq*l4sq*m1sq - l2sq*l4sq*m1*m2 -
(l1sq*l4sq*m1*mb)/3.
     b(2)=    (l1*l2*l4sq*m1*mb)/3. - (l2sq*l4sq*m1*mb)/3. +
(2*cthsq*l2cu*l4sq*m1*m2*sth)/(l3*rad)
     b(3)=   (2*cth*l2cu*l4sq*m1*m2*spsis*sth)/(l3*rad) + 2*l2sq*l4sq*m1*m2*sthsq
     b(4)=    -(l2sq*l4sq*m1*m2*sthsq)/r2
phiddtopc=0.
nitems=34
for i=1 to 34
phiddtopc=phiddtopc+a(i)
next
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phiddbotc=b(1)+b(2)+b(3)+b(4)

//return the second derivative of phi:
phiddcres=phiddtopc/phiddbotc
//-------------------------------------------------------------------------------------------------------

The three equations for the second dervatives of the angles during the unconstrained throw
are shown here.

//thdd
 a1=6*l1*l4*m1*phid*phid*sphi + 12*l1*l4*m1*phid*thd*sphi
  a2=6*l1*l4*m1*thd*thd*sphi - 6*l1sq*m1*thd*thd*cphi*sphi
  a3=-6*l2*l3*m2*psid*psid*spsi + 12*l2*l3*m2*psid*thd*spsi
  a4=-6*l2*l3*m2*thd*thd*spsi + 6*l2sq*m2*thd*thd*cpsi*spsi
  a5=-6*g*l2*m2*cpsi*(spsi*cth-sth*cpsi) + 6*g*l1*m1*sth - 6*g*l2*m2*sth
  a6=3*g*l1*mb*sth - 3*g*l2*mb*sth - 6*g*l1*m1*cphi*(sphi*cth+sth*cphi)
  thtop=a1+a2+a3+a4+a5+a6
  b1=-6*l1sq*m1 - 6*l2sq*m2 - 2*l1sq*mb + 2*l1*l2*mb - 2*l2sq*mb
  b2=6*l1sq*m1*cphi*cphi + 6*l2sq*m2*cpsi*cpsi
  thbot=b1+b2
  thdd=thtop/thbot

//phidd
   c1=-6*l1*l4sq*m1*phid*phid*sphi - 12*l1*l4sq*m1*phid*thd*sphi -
6*l1cu*m1*thd*thd*sphi
    c2=-6*l1*l4sq*m1*thd*thd*sphi - 6*l1*l2sq*m2*thd*thd*sphi -
2*l1cu*mb*thd*thd*sphi
    c3=2*l1sq*l2*mb*thd*thd*sphi - 2*l1*l2sq*mb*thd*thd*sphi +
6*l1sq*l4*m1*phid*phid*cphi*sphi
    c4=12*l1sq*l4*m1*phid*thd*cphi*sphi + 12*l1sq*l4*m1*thd*thd*cphi*sphi
    c5=6*l1*l2sq*m2*thd*thd*cpsi*cpsi*sphi + 6*l2*l3*l4*m2*psid*psid*spsi
    c6=-12*l2*l3*l4*m2*psid*thd*spsi + 6*l2*l3*l4*m2*thd*thd*spsi
    c7=-6*l1*l2*l3*m2*psid*psid*cphi*spsi + 12*l1*l2*l3*m2*psid*thd*cphi*spsi
    c8=-6*l1*l2*l3*m2*thd*thd*cphi*spsi - 6*l2sq*l4*m2*thd*thd*cpsi*spsi
    c9=6*l1*l2sq*m2*thd*thd*cphi*cpsi*spsi + 6*g*l2*l4*m2*cpsi*(spsi*cth-sth*cpsi)
    c10=-6*g*l1*l2*m2*cphi*cpsi*(spsi*cth-sth*cpsi) - 6*g*l1*l4*m1*sth +
6*g*l2*l4*m2*sth
    c11=-3*g*l1*l4*mb*sth + 3*g*l2*l4*mb*sth + 6*g*l1sq*m1*cphi*sth
    c12=-6*g*l1*l2*m2*cphi*sth + 3*g*l1sq*mb*cphi*sth - 3*g*l1*l2*mb*cphi*sth
    c13=-6*g*l1sq*m1*(sphi*cth+sth*cphi) - 6*g*l2sq*m2*(sphi*cth+sth*cphi) -
2*g*l1sq*mb*(sphi*cth+sth*cphi)
    c14=2*g*l1*l2*mb*(sphi*cth+sth*cphi) - 2*g*l2sq*mb*(sphi*cth+sth*cphi) +
6*g*l1*l4*m1*cphi*(sphi*cth+sth*cphi)
    c15=6*g*l2sq*m2*cpsi*cpsi*(sphi*cth+sth*cphi)

    d1=-6*l1sq*l4*m1 - 6*l2sq*l4*m2 - 2*l1sq*l4*mb + 2*l1*l2*l4*mb - 2*l2sq*l4*mb
    d2=6*l1sq*l4*m1*cphi*cphi + 6*l2sq*l4*m2*cpsi*cpsi

    phitop=c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c13+c14+c15
    phibot=d1+d2
   phidd=phitop/phibot
//--------------------------------------------------------------------------------------------------------
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//psidd

e1=l1*l3sq*l4cu*m1sq*m2*phid*phid*sphi + 2*l1*l3sq*l4cu*m1sq*m2*phid*thd*sphi
  e2=l1*l3sq*l4cu*m1sq*m2*thd*thd*sphi -
l1sq*l3sq*l4sq*m1sq*m2*thd*thd*cphi*sphi
  e3=-l1*l2*l3*l4cu*m1sq*m2*phid*phid*cpsi*sphi -
2*l1*l2*l3*l4cu*m1sq*m2*phid*thd*cpsi*sphi
  e4=-l1*l2*l3*l4cu*m1sq*m2*thd*thd*cpsi*sphi
  e5=l1sq*l2*l3*l4sq*m1sq*m2*thd*thd*cphi*cpsi*sphi -
l2*l3cu*l4sq*m1*m2sq*psid*psid*spsi
  e6=2*l2*l3cu*l4sq*m1*m2sq*psid*thd*spsi - l1sq*l2*l3*l4sq*m1sq*m2*thd*thd*spsi
  e7=-l2cu*l3*l4sq*m1*m2sq*thd*thd*spsi - l2*l3cu*l4sq*m1*m2sq*thd*thd*spsi
  e8=-(l1sq*l2*l3*l4sq*m1*m2*mb*thd*thd*spsi)/3. +
(l1*l2sq*l3*l4sq*m1*m2*mb*thd*thd*spsi)/3.
  e9=-(l2cu*l3*l4sq*m1*m2*mb*thd*thd*spsi)/3. +
l1sq*l2*l3*l4sq*m1sq*m2*thd*thd*cphi*cphi*spsi
  e10=l2sq*l3sq*l4sq*m1*m2sq*psid*psid*cpsi*spsi
  e11=-2*l2sq*l3sq*l4sq*m1*m2sq*psid*thd*cpsi*spsi
  e12=2*l2sq*l3sq*l4sq*m1*m2sq*thd*thd*cpsi*spsi +
g*l1sq*l3*l4sq*m1sq*m2*(spsi*cth-sth*cpsi)
  e13=g*l2sq*l3*l4sq*m1*m2sq*(spsi*cth-sth*cpsi) +
(g*l1sq*l3*l4sq*m1*m2*mb*(spsi*cth-sth*cpsi))/3.
  e14=-(g*l1*l2*l3*l4sq*m1*m2*mb*(spsi*cth-sth*cpsi))/3. +
(g*l2sq*l3*l4sq*m1*m2*mb*(spsi*cth-sth*cpsi))/3.
  e15=-g*l1sq*l3*l4sq*m1sq*m2*cphi*cphi*(spsi*cth-sth*cpsi) -
g*l2*l3sq*l4sq*m1*m2sq*cpsi*(spsi*cth-sth*cpsi)
  e16=g*l1*l3sq*l4sq*m1sq*m2*sth - g*l2*l3sq*l4sq*m1*m2sq*sth
  e17=(g*l1*l3sq*l4sq*m1*m2*mb*sth)/2. - (g*l2*l3sq*l4sq*m1*m2*mb*sth)/2.
  e18=-g*l1*l2*l3*l4sq*m1sq*m2*cpsi*sth + g*l2sq*l3*l4sq*m1*m2sq*cpsi*sth
  e19=-(g*l1*l2*l3*l4sq*m1*m2*mb*cpsi*sth)/2. +
(g*l2sq*l3*l4sq*m1*m2*mb*cpsi*sth)/2.
  e20=-g*l1*l3sq*l4sq*m1sq*m2*cphi*(sphi*cth+sth*cphi) +
g*l1*l2*l3*l4sq*m1sq*m2*cphi*cpsi*(sphi*cth+sth*cphi)

psitop=e1+e2+e3+e4+e5+e6+e7+e8+e9+e10+e11+e12+e13+e14+e15+e16+e17+e18+e19
+e20

  f1=-(l1sq*l3sq*l4sq*m1sq*m2) - l2sq*l3sq*l4sq*m1*m2sq -
(l1sq*l3sq*l4sq*m1*m2*mb)/3.
  f2=(l1*l2*l3sq*l4sq*m1*m2*mb)/3. - (l2sq*l3sq*l4sq*m1*m2*mb)/3.
  f3=l1sq*l3sq*l4sq*m1sq*m2*cphi*cphi
  f4=l2sq*l3sq*l4sq*m1*m2sq*cpsi*cpsi
  psibot=f1+f2+f3+f4
  psidd=psitop/psibot
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Appendix V
This shows the results from a Mathematica simulation for a "nominal" trebuchet in which,
l1=1, l2=4, l3=3.5, l4=1, l5=l2/sqrt(2), m1=100, m2=1, mb=5:
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nominal treb design

lshrt 0.6096 m llong 2.4384 m lsling 2.1336 m lcw 0.6096 m laxle 1.72421 m

l1 0.6096m l2 l1 4. l3 l1 3.5 l4 l1 1. l5 l1 2.82843

mcw 363.636 kg mproj 3.63636 kg mbeam 24.5455 kg

m2 3.63636 kg m1 m2 100. mb m2 6.75

The starting angles th, phi, psi were 135. 45. 45. degrees

The maximum range allowed is 140.693 m

The black box range is 208.13 m

The distance the CW fell is 1.04065 m

The range efficiency is 0.675984

It leaves at an angle wrt the horizontal at 43.8276 degrees at t 0.693559 s

with a velocity 37.1476 m s and an energy 2508.99 J.

It leaves the slide at time 0.270922

The available potential energy in the cw was 3708.51 J.

When the projectile leaves, the angles are 7.844, 208.4, 140.5 degrees

The fraction of the cw energy deposited in the projectile was 0.68

Total kinetic energy 2694.38 J.

The acceleration of the projectile at an instant just before release is 474.432 m s^ 2

The rate of change of psi at the same moment is 14.5774 rad s

The rate of change of th at the same moment is 1.48823 rad s

Set the finger angle steel on steel to 20.4505 degrees.


