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Abstract

The trebuchet, amedieva catapult driven by afalling, hinged counterweight, has been
simulated to progressively more accurate approximations by successively more redlistic
physical models. Thefirst of these, a"black box" model in which the mechanism for the
transfer of the potential energy of the counter-weight to the kinetic energy of the released
projectileisleft unspecified, led to adefinition of a"Range Efficiency," Reff, equal to the
measured range of the projectile divided by the range of the black box model, given by
twice theratio of the CW to projectile masses times the distance that the CW falls. This
range efficiency can be used to compare actua trebuchets to smulated ones, design "back
of the envelope” trebuchets, and is useful in understanding the results of more sophisticated
simulations.

The method used to arrive at the most accurate smulations isto use the Mathematica
programming language to derive the three coupled differential equations from the
Lagrangian for the system. This method allows the diding constraint equations to be
readily derived and trandated into aform useful for other, faster, computer languages. The
eguations, while consisting of many terms, are amenable to solution by Mathematica's
differential equation solver, aswell as by afourth-order Runge-Kutta method. The
solution has been verified by various methods, including one that involves using the
solution to calculate the total energy of the system at every instant and showing that it isa
constant.

The physics of the release mechanism is aso described in some detail, and the dependence
of the range on the finger angle and the coefficients of friction is given in approximate
terms. The benefits of propping the counterweight, as opposed to letting it hang freely
from the end of the beam is a so discussed.

A magjor result isthe design of an efficient trebuchet, by exploring the design space by
doing thousands of simulations. The result indicates that one in which the beam is
initialy at a45° angle, the ding is equal in length to the length of the long arm of the
beam, and the long arm of the beam is four times aslong as the short arm, is a reasonably
efficient one, and is therefore recommended as a"nominal™ design.



Introduction

The trebuchet is a medieval weapon of war--a catapult that is powered by afalling
massive counterweight. Recently, it has undergone something of arevival of interest
among historians, hobbyists, and assorted show-offs. While many have been
successfully built with arather wide variety of designs, most work on their design has
been highly empirical--little work on the mathematical analysis on their operation and
design has appeared. The object of thiswork isto obtain afairly complete analysis of the
device, so that the ingenuity of the medieval engineers can be more fully appreciated, and
modern dabblersin the art can produce more reliable and powerful designs.

We will first describe the geometry of the full model, including the hinged counterwei ght
and the diding ding. Since the physicsis rather complicated, however, our approach
will betofirst briefly describe several simplified versions of the machine, with each
successive model more closely approximating the real device.

The Geometry

Refer to the diagram shown in Fig. 1 to see the definition of the parts of the trebuchet
and the angles used to define the configuration. It is shown here in an assumed initial
configuration, with the origin taken at the pivot of the beam. The counterweight is
hinged and has a center of mass at a distance 14 from the end of the short arm of the
beam. The beam is of uniform cross-section and has amass mb. The mass of the
projectileism2 and it is at the end of aweightless ding at a distance I3 from the end of
the long arm of the beam, which hasalength 12, as shown. The three angles required to

describethemotion are (q, f, andy). The main object of the smulation isto calculate
the values of these angles and their derivatives as afunction of time from theinitial values
of the angles and the values of the eight parameters (11, 12, I3, 14, 15, m1, m2, mb).

projectile
Fig. 1 The geometry of the trebuchet, showing the three angles taken as the independent
variables, in a configuration at the start of the movement.

Operation of the Trebuchet

Upon release of the trigger holding the beam in its starting position (usually placed near
the end of 12), the counterweight falls, and in the first part of the motion, the projectilein
the dling dlides along a horizontal trough beneath the beam. Asthe counterweight
accelerates, the projectile leaves the trough, swinging freely through an arc. At some
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point a mechanism of some sort (usually a peg and hook arrangement) releases one end
of the ding, freeing the projectile which then flies fregly to the target.

Fig. 2. Themotion of the trebuchet at constant time intervals.

Limitations of the model:

All of the models to be described differ from real devicesin two important respects. First,
all of the parts are assumed to be rigid and the joints rotate perfectly around points. The
model is assumed to be rigidly fastened to the ground. In readlity, there will be some
flexibility in al of the parts, and often, the model just sits on the ground. Second, we
assume al of the parts are without friction. The projectile during the throw experiences air
resistance, and there is some unavoidablefriction at axle.

While some of these effects (friction at the axle and the air resistance during the flight of the
projectile) could be readily added to the model, for many purposes we would prefer a
simpler model, with fewer adjustable parameters. The model is more atool for gaining a
gualitative understanding, than one for precisely replicating the results obtained on some
particular embodiment.

Some Elementary Analysis of the Trebuchet

Consider a projectile fired on ahorizontal plane that has avelocity v, a an angle a with
respect to the horizontal. It will have arange given by

2vjsina cosa

R= g ,

where g isthe acceleration due to gravity. This hasamaximum rangefor a =45 ° which
is
Vo

R, = —-.
m g
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The kinetic energy in the projectile, having amass my, at the start of the trgjectory isthen

mo VCZ)

KEy o =
proj 2

A counterweight mass m; at a height h above areference plane has a potentia energy given
by

PEsw=my gh.

The most efficient mechanism for atrebuchet would, clearly, be able to transform
al of theinitial potential energy into kinetic energy of the projectile. Assumethat thereisa
perfectly efficient mechanism that can do this--a sort of "black box". The geometry is
shown in the Fig. 3.

Start after firing
ml vO
h
m2 2 _ o \
black box < = >

Fig. 3. The black box trebuchet with with the range and intial conditions shown

Thus, if the mass of the counterweight isinitially at aheight h above its lowest point, the
maximum possi ble range that could be attained is obtained by equating theinitia potential
energy in the counterweight with the kinetic energy in the projectile at the start of the
trgectory, yielding

_ M
Rm—ZW2 h.

Thistheoretical maximum range is easily seen to be reasonable--it islarger for heavier
counterweights and lighter projectiles. Itislinear intheinitial height of the counterweight.
Perhaps surprisingly, depending upon one's mechanical intuitions, it isindependent of the
acceleration of gravity--it would throw just as far on the moon!

This ssmple equation can be very useful in the preliminary design of any treb. Decide on
how high you are willing to lift the counterweight, and you have an estimate of how far
you can throw a projectile of a certain mass....
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A real trebuchet will not, of course, attain thistheoretical maximum range because of
various factors such as the friction at the axle, the dide, the air resistance on the projectile,
rotational energy of the beam, and unuitilized kinetic energy remaining in the swinging CW
after the projectileisfired.

Range and Energy Efficiency

The efficiency of areal trebuchet can be reasonably defined in at |east two ways. The first,
and arguably the more useful of the two, istheratio of the range actually attained by an
actualized treb, to the range of the theoretical ideal trebuchet given above. Thisistermed

the "range efficiency”, er. Therange efficiency of amodel with no air resistance will be
given by

_ R _mpVvjsinacosa
R . m gh '
2->h
mpy

where h is the distance the counterweight can drop, and a isthe angle that the projectile
makes with the horizontal at the start of itsflight after leaving the trebuchet.

The distance that the counterweight can fall, given by alittle geometry, is readily seen to be

h=11(1- cos(qy)) = I1(1+sin(y))

when the ding isinitially horizontal and the counterweight hangs vertically. Itis
independent of 12 and, perhaps surprisingly, 14 .

When the CW isinitialy propped, theinitial angle between the CW and the beam is needed
in order to calculate h. In this case, the distance that the CW can fal is given by

h=11(1- cos(q,)) + |4(1+cos(q, + f))

whereq, andf , aretheinitia valuesfor a and f, respectively. Thereissomeinterest in
propped counterweights, and their impact on efficiency, range and the shock experienced
by the trebuchet when the CW is dropped, tending to tear the machine apart. We will
discuss some of thisin alater section.

The range efficiency of ared treb is easy to measure (measure R, m1, m2 and h) and
calculate for particular models. It will, of course, be less than one. For trebuchets that

misfire (a > 90°), it could be less than zero!

Another possible useful definition of an efficiency for atrebuchet would be the fraction of
the potential energy in the counterweight that is actualy deposited as kinetic energy in the

projectile. Call thisthe energy efficiency, eg.
Itisgiven by

_ Exe _ M2 V§/2

& Epot migh’



The energy efficiency is always greater than zero, and is therefore not equivalent to the
range efficiency given above. The relationship between the two measuresisreadily seen to
be

R =2gna cosa.
e

Thus, when a = 45°,
$=25in45° cos45° =1
e

and the two efficiencies are equal. The optimum release point for the projectileto achieve a
maximum range is seldom exactly 45°, so there is usually a small difference between the
two efficiencies--the range efficiency is generdly dightly smaller than the energy
efficiency.

Thereisactualy at least one other possible viewpoint on efficiency which would include
the beam as a part of the driving energy that should be considered. Our method, discussed
above, views only the CW asthe "fuel"--the potential energy stored in the cocked beamiis
left out. The range efficiency definition is not only conceptually simpler, it ismuch easier to
computein practice. Very few builders know the position of the center of mass of the
beam, its mass, or itsradius of gyration. And since the energy of the CW is usually much
larger than that in the beam, the difference in the efficiency is not very large either. Better
to keep it smple.

The mgjor factors contributing to inefficiency of areal trebuchet are that due to the kinetic
energy in the beam and the counterweight at the time for optimum release of the projectile.
If the projectile could be released when the counterweight is at its lowest point and has a
very low velocity, then the efficiency would be relatively high. Thisisthe function of the
ding and the CW hinge, and as we shall see, the efficiency of real trebuchets can be
amazingly (for amedieval engine) high.

Dimensional Analysis
It is easy to see by aconventiona dimensional analysis of the model (as described in the
figure) that the solutions of the equations can be put into the form

R=11f(12/11, 131, 14/11, m2/m1, mb/m1,qsf sy s)

wheref is some unknown function, and the s subscripts refer to the values of the angles at
the start. Note that the range isinvariant to the acceleration due to gravity, g. More
importantly, this result allows usto greatly reduce the number of solutions to the equations
that need to be obtained to see representative behavior. If al of the lengths (11, 12, and 13)
and masses are doubled, for example, while the starting angles are unchanged, the range
will also be doubled--the function f is unchanged by this transformation, but 11 is doubled.

A similar approach for the times during the motion for different modelswill clearly go as

T = Sort[ll/g] F(12/11, 13/11,14/11,m2/m1, mb/m1,gs, fs, ys),
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where F is some unknown function. The time from the beginning to the rel ease thus
depends on g--a similar model with the masses and lengths all doubled, while the starting
angles are unchanged, would have the times increased by the square root of two.

While useful, thisis not the whole story on scaling up models. It isimportant to recognize
that larger trebuchets have larger counterweights--the counterweight box containing the
stone increases in volume as the cube of the dimensions, so the mass of the counterweight
and the lengths do not increase proportionately.

Now consider atreb with dimensions| and another dimensionally similar one with
dimensions L. That is, the height at the axle, height of the cw at the start, beam length and
ding length all scale as L/I. The angles between the parts of each trebuchet are the samein
both. Inreal trebuchets, the weight of the counterweight and projectile would (assuming
they are made out of the same stuff, having the same density) scale as (L/I)3. The potential
energy inthe cw at the start is proportional to the height and the weight of the
counterweight, so it scales as (L/I)4. The force required to cock the trebuchet will scale as
(L/1)2 because the weights scale as the cube, but the lever arms scale as L/I, reducing the
force required.

As shown above for the "black-box" model, and the dimensiona analysis result, the range
will clearly scale as (L/1), because h is proportiona to |. Thus, doubling the size of atreb
allows oneto throw a projectile 8 times as heavy twice asfar. The larger trebuchet would
contain 16 times as much energy asthe smaller one. Thisiswhy trebuchets are big.

The see-saw trebuchet
It isingtructive to anayze adightly more realistic version of the trebuchet--one that
eliminates the ding, but has a counterweight attached at one end, as shown in the figure.

m2 g
Fig. 4. The "see-saw' trebuchet. It has afixed counterweight and no sling.

It has a massless beam aswell. During the movement of the trebuchet, it will experience a
torgue due to the unbal anced weights, which has a magnitude

t=myglysing-mpglysing
=gsing (myl-myl2)



The moment of inertia about the axle isssmply

= ml? + mpl3,
so the equation of motionis
lq=t
q =-9{™"") 4n(q) =csin(q)
m? - m3

where cisaconstant. A negative sign wasintroduced in the latter equation because the
torgue was defined to be positive in the clockwise direction, the direction of decreasing g.

Note that when q is zero, the trebuchet is pointed straight up, and the behavior beyond this
point is of little interest.

As an example, to be followed closely in the successive models, we will take some typical
values one might use for amodel design: m1=100 |b, m2=11b, 11=1ft, [12=4ft,g=32

ft s2. Then c=26.48. Usetheinitia condition that the start of the movement the beam is

stationary and q is 135°. We suppose for now that the projectilereleasesat q = 45°. The
velocity of the projectile isthen

Vo= l2q
evaluated at the time when q = p/4.

This can be readily solved to get g and its derivative as afunction of time by avariety of
numerical methods and programming languages. The Mathematica programming language
from Wolfram Research Inc. is a particularly interesting route to take because it has an
unusua combination of strengthsin mathematical symbol manipulation (it will be used to
derive the equations for the more complex models) and powerful numerical routines for
solving differential equations.

This example is solved numerically in the Mathematica programming language and the
program with the output is shown in Appendix 1. We seethat therangeis 37.5 ft when

thereleaseisat 45.0°, and so theefficiency is 11.0%. The maximum range is obtained
when therelease is alittle later than this: when  is38.0° it is38.4 ft. Theincreasein the
velocity due to the acceleration of the counterweight overcomes the |ess-than-optimal

release angle of 45°. We can do much better with the addition of the dling and ahinged
counterweight.

The See-Saw with a Hinged Counterweight and No Sling

The preceding example can be made alittle more realistic by arranging for the
counterweight to be hinged, rather than fixed to one end. We suppose for our example that
it isattached by a rod of length |4.



m2
Fig. 5. The see-saw with a hinged counterweight.

Thismodel requires a different approach to get the equations of motion--analysis by
torques and forces gets quite awkward. An easy pathis to use the method of Lagrange.
In this approach, one requires the kinetic and potential energies of the system as afunction

of the coordinates. The kinetic energy for the system (with a uniform beam of mass mb)
can be obtained by elementary methods to be

T= "0 ((k + (57a?) + T2 (02 + (727 4™ (142 -l + 12

and the potential energy is

V= my gya(af) + mo gya(a) - 9012 cog(q).

We chooseto useq andf to be the coordinates that specify the configuration of the system,
which arereated to the Cartesian coordinates of the system as follows:

The Cartesian coordinates of the end of the short arm of the beam are
x1(q) = l1sin(g), and y1(q) = -I1 cos(q),

and, the coordinates of long end of beam, where the projectileis, are given by
x2(q) = -I2 sin(q), and y»(q) = |2 cos(q).

The coordinates of the center of mass of the counterweight are

x4(,f) =11 sin(q)-l4 sin(f +q) and y4(q,f) = -1 cos(q)+l4 cos(f +q).

The Lagrangian isdefined to be
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and we get the two simultaneous equations of motion by using the formulae

dft _d_g
Mg da

Though it is not difficult to do by hand, these equations are worked out in Appendix 2
using Mathematica. The results, in "fortranese” are

-1114 m1 (phi" + 2 th") Cog[phi] +
1114 m1phi" (phi" + 2 th") Sin[phi] +
1/6 (6 142 m1 phi" + 6 11"2 m1 th" + 6 14°2 m1 th" +
612"2 m2th" +211"2 mbth"- 21112 mb th" +
212"2mbth" + 6 gllml Sin[th] -
6 912 m2 Sin[th] + 3gl1 mb Sin[th] -
3gl12mb Sin[th] - 6 g14 ml1 Sin[phi + th]) ==0,
and

14 ml (14 phi" + 14 th" - 11 th" Cog[phi] - |1 th*2 Sin[phi] -
g Sin[phi + th]) ==

Here, primesindicate derivatives with respect to time, and the angles (q,f ,y ) are,
obviously, (th, phi, psi).

It is easy to see that when 14 = 0 and mb=0, they reduce to the single equation of motion
given previoudly for the see-saw.

The values for the parameters (the lengths and masses) for the trebuchet can be plugged
into these two equations, and they can be solved numerically for a suitable range of time.

For our example we can use appropriate initial conditions: at t = 0, the values of q and f
are taken to be 3 p/4 and p/4, respectively, so that the counter-weight hangs straight
down; and thefirst time derivativesof q andf at t=0 are zero.

The solution for this model shown in Appendix 1. Itisinteresting to compare the

solution obtained by assuming that the rel ease takes place at the time when g = p/4 with
that for the see-saw model. The addition of the hinge to the counterweight increases the

range, when the projectile isreleased at = 45°, from 37 to 70 ft, and so the efficiency
roughly is doubled--avery significant improvement. A little reflection showsthat thisis
mostly due to the decreased rotationa kinetic energy in the counterweight allowed by the
addition of the hinge.

The solution for the range as a function of the time of release is also shown in the
Appendix 1. One can see that the maximum range obtainable is much greater than that

when thereleaseisat g = p/4. The release can be delayed (in this example) to an angle of
g =22.6°. Thetime difference between these two anglesis, however, only 0.024 s
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compared to the time for the throw of about 0.36 s. The range as afunction of timeis
sharply peaked. To get the maximum range out of atrebuchet that follows this model
would evidently require avery precise release mechanism .

The release mechanism can vary greatly from one trebuchet to another. Its behavior can
be fairly complex, so for the time being we will just suppose for now that one exists that
can be tuned to release it at any desired moment (configuration) in the throw. Our strategy
will be to calculate the range for the projectile for every moment after the release of the
trigger, plotting it, and taking the maximum range found as the quantity of primary
interest.

The Treb with a Hinged CW and an Unconstrained Sling

The next most complex caseto consider isto add adling to the model just described. The
projectileis now at (x3,y3) at a constant distance |3, from the end of the beam at

(x2,x3). We can take 13 to be constant because the dling is under tension throughout the
throw.

(x1y1)

(x3,y3)

Fig. 6. The trebuchet with an unconstrained sling.

As before, the Cartesian coordinates of the parts of the treb with the angles and the
various lengths can be readily derived, and are the same as above, except that the
coordinates of the projectile are now given by

x3(q,y) =-(I3 sin(y -g) +l2 sin(q)) and y3(q,y ) = -(I3 cos(y -q) -I2 cos(q)),
wherey isthe angle between the beam and the sling.
We suppose for thismodel that the dling isinitially horizontal under the beam, and falls
freely into adot, rather than diding underneath the beam asin the usual actualization.
Thiswould be expected to be an approximation to the much more complicated case that
involves the constrained diding without friction.

The kinetic energy, T, and the potential energy, V, for thismodel of the trebuchet isthe
sum of the contributions from the counterweight, projectile and the beam:
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T= TG + () + T2 (602 + (7)) +™ (42 -l + 1) 0

mMpg (11 - |
V=migya@f) + megys@y) - ™2 112 o).

Since there are three degrees of freedom, the three equations for the (unconstrained)
motion are

These equations are now pretty lengthy. One can show (using Mathematica) that in
"fortranese” the differential equation for q is

((11**2 - 11*12 + 12**2)*mb*th")/3. + (g* (11 - 12)* mb*sin(th))/2. +
g*m2* (-(13*sin(psi - th)) - 12*sin(th)) -
(m2* (2* (-(I13*(psi' - th")*cos(psi - th)) - I2*th™* cos(th))*
(-(13* (psi' - th")*sin(psi - th)) + 12*th*sin(th)) +
2* (-(I13* psi** cos(psi - th)) +
th™* (13* cos(psi - th) - [2* cos(th)))*
(I3*psi*sin(psi - th) + th™* (-(13*sin(psi - th)) - 12*sin(th)))
))/2. + (m2* (2* (-(I13*(psi' - th")* cos(psi - th)) -
[2*th™* cos(th))*
(-(13* (psi' - th')*sin(psi - th)) + 12*th*sin(th)) +
2* (13* cos(psi - th) - 12* cos(th))*
(-(13*(psi" - th")*cos(psi - th)) - [2*th™* cos(th) +
I3*(psi' - th")**2*sin(psi - th) + [2*th™** 2*sin(th)) +
2*(-(13*(psi' - th")*cos(psi - th)) - [2*th™ cos(th))*
(I3*psi*sin(psi - th) + th™* (-(13*sin(psi - th)) - 12*sin(th)))
+ 2*(-(13*sin(psi - th)) - 12*sin(th))*
(13*psi* (psi' - th")* cos(psi - th) +
th™* (-(13* (psi' - th")* cos(psi - th)) - 12*th™ cos(th)) +
|3*psi"*sin(psi - th) +
th"*(-(13*sin(psi - th)) - 12*sin(th)))))/2. +
g*ml*(I11*sin(th) - 14*sin(phi + th)) -
(m21* (2* (I11*th™ cos(th) - 14* (phi' + th")* cos(phi + th))*
(11*th™*sin(th) - 14* (phi* + th")*sin(phi + th)) +
2* (11*th™* cos(th) - 14* (phi' + th")* cos(phi + th))*
(-(12*th™*sin(th)) + 14* (phi' + th")*sin(phi + th))))/2. +
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(m21* (2* (I11*th™ cos(th) - 14* (phi' + th")* cos(phi + th))*
(11*th™*sin(th) - 14* (phi* + th")*sin(phi + th)) +
2* (11*th™* cos(th) - 14* (phi' + th")* cos(phi + th))*
(-(I11*th*sin(th)) + 14* (phi' + th")*sin(phi + th)) +
2* (11* cos(th) - 14* cos(phi + th))*
(I11*th"* cos(th) - 14* (phi" + th")* cos(phi + th) -
|1*th™** 2*sin(th) + [4* (phi' + th')**2*sin(phi + th)) +
2* (I11*sin(th) - 14*sin(phi + th))*
(11*th™*2* cos(th) - [4* (phi' + th')**2* cos(phi + th) +
[1*th™*sin(th) - [4*(phi" + th")*sin(phi + th))))/2.= 0

Similarly, the equation for phi is

-(g*14*m1*sin(phi + th)) - (m1*
(2*14* (phi* + th")* (11*th™* cos(th) - 14* (phi' + th")* cos(phi + th))*
sin(phi + th) - 2*14*(phi' + th')* cos(phi + th)*
(I17*th* sin(th) - 14* (phi' + th")*sin(phi + th))))/2. +
(m21*(2*14* (phi' + th)* (11* th™* cos(th) - 14* (phi* + th")* cos(phi + th))*

sin(phi + th) - 2*14*(phi' + th')* cos(phi + th)*

(12*th*sin(th) - 14* (phi' + th")*sin(phi + th)) -

2*14* cos(phi + th)* (11*th"* cos(th) - 14* (phi" + th")* cos(phi + th) -
|1*th™** 2*sin(th) + [4* (phi' + th)** 2*sin(phi + th)) -

2*14*sin(phi + th)* (11*th™*2* cos(th) - 14* (phi' + th")**2* cos(phi + th) +
[1*th™*sin(th) - [4*(phi" + th")*sin(phi + th))))/2.= 0

and the equation for psi is

g*13*m2*sin(psi - th) - (m2*(2*13* (psi* - th')*
(-(I3*(psi' - th")*cos(psi - th)) - 12*th™ cos(th))*sin(psi - th) +
2% (13* ps *cos(psi - th) - 13*th™ cos(psi - th))*
(13*psi™*sin(psi - th) + th™* (-(I3*sin(psi - th)) - 12*sin(th)))))/2. +
(m2* (2*I13* (psi* - th')* (-(I13* (psi* - th')*cos(psi - th)) - [2*th™* cos(th))*
sin(psi - th) 2*|3*cos(psi - th)*
(- (I3*(psu - th")*cos(psi - th)) - [2*th™* cos(th) +
I3*(psi' - th)**2*sin(psi - th) + |2*th™**2*sin(th)) +
2%|3* (pSI - th")* cos(psi - th)*
(I3*psi™*sin(psi - th) + th™* (- (I3*sm(psu th)) - 12*sin(th))) +
2*13*sin(psi - th)*(13*psi™* (psi' - th')* cos(psi - th) +
th™* (-(13*(psi' - th')* cos(psi - th)) - 12*th™* cos(th)) +
I3*psi"*sin(psi - th) + th™* (-(I3*sin(psi - th)) - 12*sin(th)))))/2.=0

For the solution to the trebuchet's motion, as before, we solve these three differential
equations simultaneoudly, subject to the initial conditions on the angles and their first
derivatives. The results are shown in Appendix I11.

Perhaps the most important result illustrated in this exampleis the local minimum that

appearsin theplot of g vs. t. The beam "wobbles' alittle bit because the projectile at the
end of the ding has time to go through a pendulum-like oscillation, and pulls the beam

withit. Not all values of the input parameterswill yield this "wobble" in g, but it is not
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uncommon. In this case, the maximum possible range occurs very closeto the local
minimum in g, but it often appears elsewhere.

The efficiency of the trebuchet increases by the addition of the ding (of this particular
length) from 59% (for the previous example) up to 81%. Thisisa substantial
improvement, and indicates that trebuchets can be surprisingly efficient machines.

The position of the beam for maximum release is also later--it is 20.8° vs. 22.6° for the
dingless example. One of the more interesting features of the range vs. time plot is that
thereis now afairly broad plateau at the top--this model appearsto be alittle more
forgiving in the release condition that gives along range for the projectile.

The Trebuchet with a Sliding Sling

For areally redistic trebuchet model, we need to include the constraint on the sling that
makes it slide without friction along the trough under the beam during the first part of the
motion. The solution must be obtained in two parts. In the second part, the above three
equations can be used for the motion during the unconstrained portion of the motion,
after the projectile has | eft the dlide, and before the projectile has left the ding. Theinitia
conditions for this second phase come from the final conditions of thefirst part of the
throw.

For even more realism, we could add a third phase to the throw: the motion of the
trebuchet after the release of the projectile. Thisisof little interest at present, though it is
easily done. Wewill stick with two phases and leave the three phase simulation as an
exercise for the reader.

During thefirst portion of the movement, before the projectile has | eft the slide, we need
to apply a suitable constraint to the motion. Refer to the diagram to derive the constraint:

a=I2th" vy
12
(x2,y2) N Fup 15= 12 sin(psis)
v/
y - g+p/2 (3y3)

Fig. 7. The geometry of the trebuchet duri ng the dliding phase of the ding.
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We can cdculatey when q and f, together with the starting angle for psi, y s (= psis =

p/4in our example), are given. A little geometry shows that when the ding isin contact
with the dlide,

y =(q- p/2+ Arcsin[(12/13) ( sin(y s)+cos(q))]

Thus, only two simultaneous differential equations need to be solved during this phase
of the movement: solving for g asafunction of time givesy immediately.

This phase of the movement ends when the force upward on the projectile (exerted by the
ding) exceeds the force downward on it due to gravity. The upward force on the
projectile comes from thetension, T, in the sling rope. A bit of geometry then shows that

mg X3 =T cos(p/2+y - q)

and

M3 y3 =T sin(p/2+y - Q)
Eliminating the unknown T between them yields

y3=X3 tan(p/2+y-q) =g

asthe condition for liftoff of the projectile from the dide. Thetime for liftoff, t = tlv, is
when the projectile leavesthe dide; at that point we can take the values of the angles and
their derivatives astheinitial condition for the second part of the motion. The method is

to solve the two differential equationsfor q andf asfunctions of t, then (numericaly)
caculatetlv.

Thisthen enables one to calculate the initial conditions for input to the three unconstrained
differential equations derived above. The solution then proceeds as for the unconstrained
model described above.
In the first phase of the movement, the Lagrangian equations are changed by the
congtraint. The method we use is given in many advanced textbooks in mechanics--the
extension of Lagrange's equations to holonomic constraints. It can be carried out without
too much difficulty asfollows:
First, we put the constraint equation into afunction

f(afy) =y - q+p/2- Arcsin[(12/13) (sin(y s)+cos(q))]

and so we can verify that the constraint equation with parameters g satisfiesthe form

eqeonstr =g, q' + & f'+a,y' =0

wherethe ai are calculated by
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3y = (Tf(a.f.y)Ta) .
and similarly for af and ay .

Weget & =0, a =1, and

gy = -1+ (12/13) sin(g) {1- ((12/13) ( cos(q) + sin(y s)))z}'ll2

One then uses for the Lagrange equations, involving the Lagrange multiplier | ,

dTL _d | 4=
Mg da
dib d | 540
d'[ﬂf' df
where now, sincea, = 1,
| _d b a
dtﬂy dy

Using these results, the differential equation for th isfound to be

((11**2 - [1*12 + 12** 2)* mb*th")/3. +
(g* (11 - 12)*mb*sin(th))/2. + g*m2* (-(I3*sin(psi - th)) - 12*sin(th)) -
(m2* (2* (-(I13*(psi' - th')*cos(psi - th)) - 2*th™* cos(th))*
(13*(psi' - th)*sin(psi - th) - 12*th* sin(th)) +
2*(-(13* (psi* - th')*cos(psi - th)) -
[2*th™* cos(th))* (-(I13* (psi' - th')*sin(psi - th)) + 12*th™ sin(th))))/2.
(m2* (2* (-(I3*(psi' - th')*cos(psi - th)) -
I2*th™* cos(th))* (13* (psi’ - th')*sin(psi - th) -
I2*th*sin(th)) + 2*(-(13*(psi' - th')*cos(psi - th)) - 12*th™* cos(th))*
(-(I3*(psi' - th)*sin(psi - th)) + |2*th*sin(th)) +
2* (I3*cos(psi - th) - [2* cos(th))*
(-(13*(psi" - th")*cos(psi - th)) - 12*th"* cos(th) +
I3*(psi’ - th')**2*sin(psi - th) +
[2*th™**2*gsin(th)) + 2* (-(13*sin(psi - th)) - 12*sin(th))*
(13*(psi' - th))**2* cos(psi - th) - 12*th™** 2* cos(th) +
I3*(psi” - th")*sin(psi - th) -
[2*th"*sin(th))))/2. - (-1 + (I12*sin(th))/(13* Sgrt(1 -
(12**2* (cos(th) + sin(psis))** 2)/13** 2)))*
(g*13*m2*sin(psi - th) - (Mm2* (2*13*(psi' - th)* (-(13* (psi* - th')* cos(psi - th)) -
I2*th™* cos(th))*sin(psi - th) + 2*13*(psi' - th')*
cos(psi - th)*(I3*(psi' - th')*sin(psi - th) -
[2*th*sin(th))))/2. + (m2* (2*13*(psi' - th)*

=+
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(-(13*(psi' - th)*cos(psi - th)) -
I2*th™* cos(th))*sin(psi - th) + 2*13*(psi' - th')*
cos(psi - th)* (I3*(psi' - th)*sin(psi - th) -
[2*th™*sin(th)) - 2*I3*cos(psi - th)* (-(13* (psi" - th")* cos(psi - th)) -
|2*th"* cos(th) + I3* (psi' - th)**2*sin(psi - th) + [2*th™** 2*sin(th)) +
2*13*sin(psi - th)* (I3* (psi' - th')**2*cos(psi - th) - 12*th™**2* cos(th) +
I3*(psi” - th")*sin(psi - th) - 12*th"*sin(th))))/2.) +
g*ml*(I1*sin(th) - 14*sin(phi + th)) - (m1* (2* (11*th* cos(th) -
|4* (phi* + th")* cos(phi + th))* (I1*th™*sin(th) - 14* (phi' + th")*sin(phi + th)) +
2* (11*th™ cos(th) - 14* (phi' + th)* cos(phi + th))* (-(I11*th* sin(th)) +
|4* (phi' + th)*sin(phi + th))))/2. + (m1* (2* (11*th™* cos(th) -
|4* (phi* + th")* cos(phi + th))* (I1*th™sin(th) - 14* (phi' + th")*sin(phi + th)) +
2* (11*th™* cos(th) - 14* (phi' + th")* cos(phi + th))* (-(11*th™* sin(th)) +
[4* (phi' + th")*sin(phi + th)) + 2* (11* cos(th) - 14* cos(phi + th))*
(11*th"*cos(th) - 14*(phi" + th")* cos(phi + th) - [1*th™*2*sin(th) +
[4* (phi" + th")**2*sin(phi + th)) + 2* (11*sin(th) - 14*sin(phi + th))*
(12*th™*2* cos(th) - [4* (phi' + th')**2* cos(phi + th) +
[1*th™* sin(th) - 14* (phi" + th")*sin(phi + th))))/2..eq.0

and for the equation for phi is unchanged from before because af = 0:

-(g*14*m1*sin(phi + th)) - (m1* (2*14* (phi' + th")* (I11*th™ cos(th) -

[4* (phi' + th')* cos(phi + th))*sin(phi + th)- 2*4* (phi' + th)* cos(phi + th)*
(I11*th™*sin(th) - 14* (phi' + th')*sin(phi + th))))/2. + (m1* (2*14* (phi' + th')*
(12*th™ cos(th) - 14* (phi' + th)* cos(phi + th))*sin(phi + th)

- 2%14* (phi' + th')* cos(phi + th)* (11*th™* sin(th) -

|4* (phi' + th)*sin(phi + th)) - 2*14* cos(phi + th)* (11* th"* cos(th) -

[4* (phi" + th")*cos(phi + th) - [1*th™**2*sin(th) + 14* (phi' + th')**2*

sin(phi + th)) - 2¥14*sin(phi + th)* (11*th™**2* cog(th) -

[4* (phi' + th')**2* cos(phi + th) +
[1*th"*sin(th) - [4*(phi" + th")*sin(phi + th))))/2..eq.0

When using Mathematica, these two equations, together with the initial conditions, are
sufficient input into the differential equation solver to get the values of the three angles
and their first derivatives as afunction of time, which then yield all of the desired
characteristics of the throw.

When using other languages, one needs to choose and set up another differential equation
solver. Fortunately, the differential equations are not stiff, so asimple fourth order
Runge-Kutta algorithm suffices. In most of these methods, the equations for th, phi, and
ps given above need to be solved for their second derivatives, each of which are put into
functions called by the Runge-K utta subroutine. These were solved for using
Mathematica and are given in Appendix 1V.

The solution to the diding dling model isfairly complex, and will not be described in all
of its details here. We use the same values as previously: m1=100, m2=1, mb=0, 11=1,

12=4, 13=3.25, 14=1, 15=4/sqrt[2]; q[0]=135°, f[0]=45°, and y[0]=45°. Theresults
are quite similar to those for the unconstrained model. The range was 282.4 ft, giving an

efficiency of 83% compared to the previous 81%. It would leavewhenq = 18.4° at a
time 0.40 s after the release.
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A Nominal Trebuchet

Theresultsfor arelated design in which the mass of the beam is a more reasonable 5
times the mass of the projectile are shown in Appendix V. This particular design was
used for debugging the various implementations in other languages, and since the
Mathematicalanguage is less accessible to many readers of this document, they are
included here.

In particular, the first set of graphs show the partition of energy into the parts of the treb
asafunction of time. The flatness of the total energy, shown in the very first graph, isa
very important verification of the model--it shows that the energy is conserved in the
solution, asit should be. And thereisno jog at the point where the projectile leaves the
dlide, showing the constraint was properly done.

The graph for the kinetic energy in the CW isaso interesting. It showsthat at one point
itisvery low, nearly zero, implying that it is"stalled.” The beam stallsalittle later. This
impliesarelatively efficient design.

The next graph is a parametric representation of the x-y positions of the projectile and the
center of mass of the counterweight. The two dots are drawn at the time that the
projectile would leave in order to attain the maximum range. Notethat it isvery closeto
the time that the CW abruptly changes direction at the bottom of itstravel. Thischange
shows how close the release of the projectile isto the "jerk™ in the counterweight travel.
When it isvery closg, like thisone s, the error in the smulation is probably greater
because of the increased error introduced by the approximations of assuming all the parts
are perfectly rigid.

The two graphs for the calculated range show that there is only a single maximum, and
that no complications due to the possible multi-valuedness of the range vs. psi occurs,
making thisone a"nicer" design.

The graphs of the accel erations experienced by the projectile and counterweights are
shown next. They show avery dight jog at the time the projectile comes off the dide,
implying that the numerical "match-up" condition is not perfect for some obscure reason.
It is sufficiently small, though, to not detract from our confidence in the model. The
accelerations are given in m/s"2, and are seen to be quite high (g is 9.8 m/s*2). These
are surely overestimates of that actually experienced in areal trebuchet because of the
assumed perfect rigidness of al of the parts.

The appendix aso shows for completeness the values obtained by the Mathematica
Program (Trebfornet5.04) for various other characteristics of the throw. These are pretty
much self-explanatory. One of particular interest (if you want to throw a cow or
something) gives the acceleration on the projectile just before rel ease.

The effect of added mass in the beam

All of the models discussed up to now used mb = 0. The effect of massin the beam
would be expected to decrease the efficiency of the trebuchet, so we need to explore how
much it is affected and look for other effects. A run with mb =5 was made (using the

unconstrained sling mode!) and the plot shows the result for g[t] compared with that for
mb=0. The massin the beam has smoothed out the motion so that no minimum
occurred. The efficiency dropped from the 83% obtained for mb=0 down to 67%.
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thit] ,mb=0 & 5 1b
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Fig. 8. A comparison of the g(t) solutions for trebuchets with mass zero amd mb=5
compared. The mb=0 case hasaminimum at time 0.4.

A study of the dependence of the efficiency of the trebuchet using various masses for the
beam can also be easily carried out. For the free ding case, we get the results shown in
thefigure. Increasing the mass of the beam decreases the efficiency quite dramatically.
A good design will have abeam aslight as possible. In all of the models considered so
far we used the smplest assumption of a uniform cross-section of the beam. Other more
complicated shapes could be easily incorporated in the model. One needsto calculate the
moment of inertia about the axle and the distance of the center of mass from the axle.

Efficiency as a Function of
Increasing Mass of the Beam

0.8¢ 2

efficiency
o
o)

0.4 1

0.3

mass of beam, mb

Fig. 9. The effect of the mass of the beam on the efficiency of the trebuchet.
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Summary of the models so far
We can summarize the results obtained up to now in Tablel.

Tablel. A comparison of the results for the models discussed. They all have a CW of
100 Ib, projectile of 1 Ib, short arm of 1 ft, long arm of 4 ft. The + hcw model has a
hinged cw 1 ft long, the + dling, +dliding and + mb models also include asling 3.25 ft

long.

see-saw +hcw +sling +sliding +mb=5
R 38.4 ft 203 276 284 228
efficiency 11% 59 81 83 67
qrelease 38.0° 22.6 20.8 18.4 19.3
t release 0.40s 0.36 0.40 0.40 0.46
Minimum no no yes yes no
in g?

M odes of Behavior

The various modes of behavior of the dling in relation to the beam are of particular
interest in interpreting and understanding the trebuchet. Consider first, amodel smilar to
that shown before with the parameters m1=100, m2=1, mb=5, 11=1,12=4, 13=3.25, and
[4=1. We use the unconstrained sing model, with the usual initial conditions: the beam
isat 45° with respect to the horizontal, and the counterweight hangs straight down. The

behavior of g, y and the range are shown in Fig. 10.

These parameters are chosen so that "good" throwing behavior results. The resulting
angles are both a monotonic function of time. The maximum range of 235 ft occurs
when the release occurs at 0.465 s. This happens when the beam isamost vertical

(q=13°). The angle between the beam and the ding isthen 145.6°. Thereisasecond
smaller maximum for the range after the global maximum, which occurs because the ding

continues to swing around (y keeps growing).
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red is th, blue is psi

6
4t
2t
t
0.1 0.2 0.3 0.4 0.5 0.6~0.7 (sec)
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-100
- 200

Fig. 10. The behavior of the trebuchet for afavorable set of parameters.

A somewhat more complicated movement occurs when the dling is shortened to 2 ft. as

shown in Fig. 11. Now thereisasmall minimum iny that occursin the vicinity of the
maximum in the range.
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red is th, blue is psi
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range [t ]
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Fig. 12. The behavior of the trebuchet for a shortened dling.

Still more complex behavior ensues when the sling is shortened to 0.5 ft, as shown in
Fig. 13. Herethe ding and projectile get into a"twirling" mode--y keepsincreasing
monotonically (up to about 6 p, or three circles) at about the time the beam is vertical.
Beforethis, thereisasingle broad maximuminy .
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red is th, blue is psi

0.1 02 003 0.4 05—0.6 07 ¢ (s8¢

range [t ]
100
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Fig. 13. The behavior when the ding is very short (0.5 ft in the example).

Evidently the behavior of the trebuchet can be quite complex.

The sling release mechanism

The mechanism that is used to release the dling is critical, of course, to the proper and
efficient functioning of the trebuchet. The previous discussion of the models just assumed
that we could get the release to occur at the proper moment. We have pointed out,

however, that simple mechanisms would release at the first occurrence of some preset angle
between the dling and the beam-- mainly because the mechanisms commonly used are not
able to do otherwise. Not impossible to devise, however...

The usual arrangement for the release is to have afixed projection from the beam (a hook,
prong or a peg) over which aloop of the dling or aring tied to one end of the dling dlides
freely. Wewill refer to the peg as athe "finger”. The other end of the ding is permanently
attached to the beam so it does not go flying off with the projectile. When the beam is
horizontal and not moving, it would look something like that shown in Fig. 14.
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finger ring

side view

beam

¢ end view

- sling

pouch ©)

Fig. 14. The ding release mechanism in side and end views.

Although some designs rely on aloop of the sling slipped over the finger, it is probably
more reproducible to rely on aring of metal, such as a metal washer, that is fastened to one
end of the dling. The finger can be mounted on the top surface of the beam by some
means, or for smaller trebuchetsit can be ssimply screwed into the end of the beam. One
can use a clothedline type of hook that is straightened out, for example.

In general the finger is placed at some angle with respect to the beam. It isuseful to define

thisangle, d, with respect to the extension of the beam (so that it isan acute angle). A
closer view of thisisshownin Fig. 15.

Fig. 15. Definition of the finger angle with respect to the beam.

First of al, it should be clear that in the absence of any friction, the ring will start to dide as
soon as the angle between the finger and the sling decreases below 90°. Inthe limiting
case in which thefinger isvery short, and friction is neglected, one could set the finger

angletobed =y - 90°, where y isthe ding/beam angle given as the optimal release
condition from the smulation. When friction cannot be neglected, the release will be

sometime after the ding/finger angle, is greater than 90°, and d should be set to a smaller
angle than this.

Very often, the ssimulations give an optimal release angle of about yr = 160°, so to this
approximation, one would choose d = 70°.
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Theinfluence of the static force of friction between the ring and the finger israther easy to
be taken into account, and is worth looking at, and can give a better approximation of what

valued should be set to.

The configuration of the sling during the motion of the beam, with the angley , used
previoudly, and its relationship with d is shown in Fig. 16.

beam

A ring slides
along the finger

y rotation direction

Fig. 16. The configuration of the sling during the throw, before release, showing the
definition of the angles and forces involved.

Since the ding is made out of string or rope, it can only exert atension force along itself, in
the direction shown--the rotating projectile exerts aforce, Fs, on the ring, tending to pull
the ring along the finger. In principle, thisforce can be obtained from the solution of the
differential equations given above, and dependsony (t). It can be resolved into aforce
normal to the finger, Fn, and one along the finger, Fp.

Theforce tending to hold the ring fixed relative to the finger, resisting the pull Fp, isthe

force of friction, Ff = mFn, where misthe static coefficient of friction between the ring and
the finger. From the geometry shown, it can be seen that

Fi=mF,=mFssin(a- y)
where
a=d+n
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The force exerted along the finger by the projectile, through the dling, is

Fo= Fscos(a-y).

Thering just beginsto slide when Fp = Ff. That is,

Fscos(@a- y)=mFssin(a- y)
or
whencot@- y)=m
or
cot(p+d-y) =m

Which leads to the final result, that the ring will begin to dide when

y=p+ d-arccotm

where, of course, the angles are expressed in radians.

If we are content to assume that the length of the finger is close enough to zero and
therefore only need to take the static force of friction into account (i.e., release occurs at the
instant that the ring starts to dlide), then we should set the finger at an angle

d=y,-p +arccot(m.

Again, wheny =160° and m= 0, thisgives d = 160° - p + arc cot (0) = 70°, which checks
with the result given above.

For clean steel m= 0.58, and for lubricated steel, m= 0.1, so the corresponding angles
(i.e., arc cot m) arethen 60° and 84°, respectively, instead of 90° when m=0. For the

nominal case of y r = 160°, therefore, we would therefore set the finger angle at 40° or 64°,
for clean or lubricated steel, respectively.

The condition for diding is, unfortunately, not the same as the condition for release of the
ding, except in the limiting case where the length of the finger approaches zero. For a
finger having afinite length, the differential equation for diding with a (variable) force
coming from the dling acting on the ring, opposed by the diding friction force, would have
to be solved. Since the force varies with time during the diding, another (simultaneous)
differential equation would be added to the ones already described. While thisis doable, it
is perhaps more complex than necessary.

First, note that the diding phase of the ring delays the release of the dling and the projectile.
This means that we would need to set the finger to a smaller angle than that calculated
above. If we know how long the dide takes, and the average rate that the sling/beam angle
is changing, we can readily cal culate how much to correct the finger angle.

The simulation can easily provide the acceleration of the projectile at the instant that diding
starts. Thisinformation can provide us with the tension in the sling, and therefore the
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pulling force and the acceleration of thering. If we make the approximation that this
acceleration is a constant, ar, then the time interval during which the ring didesis simply

ts» Q,

a
where If isthe length of the finger. To the same approximation, therefore, the changeiny

during the dliding is

Ys» tsYSa
and we would therefore set the finger angle to
d»y,-p+accot(m -y V2Hka .

The effective acceleration along the finger isreadily seen to be

& = & [cos(ptd-y ) - M sin(p+d-y 1)]

where ik isthe kinetic coefficient of friction, ap isthe acceleration of the projectile wheny
=Yr
These last two equations can be solved numerically for the desired d when the coefficients

of friction, the finger length, the release angle and its rate of change are all known. An
easy method is to plot the Ihs of the equation

yr-p +arccot(n) -y V2 kA (g[cos(p+d-y )-msin(p+d-y,)]) -d =0

asafunction of d and find the zero. Alternatively, the FindRoot function in Mathematica
can be used:

fingsol[del_,psir_,If ,ap_,mu_,muk_,psidot_]:=
psir-Pi+ArcCot[mu]-
psidot* Sgrt[ 2* If/(ap* (Cog Pi+del-psir]-muk* Sin[Pi+del-psir]))]-del;
fingerangle=del/.FindRoot[fingsol[del ,Pi* 160/180,.1,280,.4,.1,18] ,{ del,0,1} ].

As an example we use the base case model, which has
[1=1 ft, 12=4, 13=3.5, 14=1, m1=100 Ib, m2=1, mb=5. We assume for our model that m
= 0.4 and mk = 0.1 and the finger length If = 10 cm, and we get the valuesy , = 18 rad s'1,

and g =280 ms2. Thegraph produced isshown in Fig. 17, and gives avalue for d of
0.284 rad = 16.3°. Thus the dliding correction is not negligible.
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Fig. 17. Solution for the finger angle for the nominal case.

The coefficient of static friction is can vary quite abit for different degrees of cleanliness of
the surfaces. The value of 0.58 given above is an upper limit. Some texts give numbers as
low as 0.15, and a coefficient of kinetic friction of 0.09. The static coefficient of friction
can be readily determined for areal finger/ring arrangement. Put the ring on the finger
whilethefinger ishorizontal. Thentiltit till it startsto dide. The angle of the finger with

respect to the horizontal, s, isthen measured. The coefficient of frictionisthen m=arc
tan(s).

To summarize, we can make afairly good calculation of where to set the finger angle, and
can readily caculate it without having to solve any additional differential equations.
However, there are several approximations involved, and there is some room for error in
measuring the required friction coefficients, so the results should perhaps be taken not too
literdlly. However, it would certainly appear from limited experience with the smulation
and real models, that afinger angle of 20° is generally not too bad a place to start.

Mathematical Correctness of the M odel

All of models described, but especially the constrained sling model, are sufficiently
complex that one needs to carefully check them for correctness. A number of checks can
be used. One check that can be done involves the dimensiona correctness--does a model
with lengths and masses doubled give twice the range? The models pass thistest.
Another involves the "reasonableness’ of the movement. Doesit "look" right?
Animations of the solutions of both the constrained and unconstrained cases seem to be
impressively natural. Another check involves using the solution for the variables and
their derivatives to calculate the potential and kinetic energy of al of the partsasa
function of time. They should sum to a constant, independent of time. The models
satisfy this check too.

Other tests would involve the behavior at limiting conditions, such as setting m1, m2 and
mb so that they very nearly balance when the beam is horizontal. 1t should move very
dowly in the direction expected. The models satisfy this check. The same model written
up in two different languages on different platforms should also give resultsin good
agreement with one another. This has been done for both the constrained and
unconstrained model.  Taken together, all of these observations point to the conclusion
that the models are correct with a high degree of confidence.
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Optimal Design Considerations

The mathematical model can be used to aid in the design of real trebuchets. However,
since there are 7 parameters and three initial conditions, the parameter space one can
exploreisquitelarge. One helpisto realize that one might aswell only work with
"normalized" parameters by dividing all of the lengths by |11, and the masses by m2, say.
This reduces the problem to 5 parameters and three initial conditions, but till the
parameter space islarge, and exploration requires afast simulator.

One method isto use the "free ding" model in ado-loop in which onevariable at atimeis
varied. Plots of the efficiency are perhaps the most useful. Figs. 18 and 19 show such
plots generated around the nominal parameters used up to now: 11=1, [2=4, [3=3.5,
[4=1, m1=100, m2=1, mb=5. Evidently, from these plots a sling length of 3.5 and
counterweight mass of 100 are good. Anything less than these values results in a fall-off
of efficiency.

1 efficiency for {1,4,varies,1,100,1,5}

0.4¢ *

0.2} . .

1 2 3 4 5
Fig. 18. Theefficiency of the nominal trebuchet as the length of the dling varies.

efficiency for {1,4,3.5 varies, 1,5}

0.8}
0.6}

0.4}

_ 25 50 75 100 125 150 175 200
Fig.19. The efficiency as afunction of the counterweight mass.

Effect of Propped Counterweights
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The effect of propping the counterweight (making the starting CW/beam angle, phiz,
something other than that for afreely hanging one) has been the subject of some
speculation. Propping the counterweight necessarily makes its center of mass higher,
which, one would think, would most likely make the range greater--the distance the CW
can fall isgreater. Its effect on the range efficiency is not so clear because propping the
weight will induce a greater swinging tendency, leading to alowered efficiency. However,
perhaps the induced swinging could counteract the "natural™ swing, leading to increased
efficiency. Thiscan only be settled by experiments or simulations--our physical intuitionis
just not really good enough.

Figs. 20 aand b show the results of two such simulations. One simulation (solid circles)
used the set

{ I,m} ={4,16,12, 2; 400, 2, 20} and the other (open circles) used { I,m} ={1, 4, 3, 1;
100, 1, 5}, and the beam of both is at 45° with respect to the ground. The ssimulations
were both carried out for a constrained, dliding sling model in which the "forbidden zone"
behavior of the ding releaseisignored. They used MacTreb 2.0.

2400
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1600 1 ®
1400 A °

o= 1200 A Y
1000 1

800 1
600 1
400 A 00©°0
»oo] ©0 00000000007

0 — 711
O 20 40 60 80 100 120 140 160 180 200
phiz

Fig. 20a The range for two trebuchets:
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Fig. 20b. Range efficiency for the two trebuchetsin Fig. 20a

It is clear from these two graphsthat it is difficult to generalize. For one, therangeis
hardly affected over a considerable span of propping angle because an efficiency decrease
nearly cancels the increase in the distance the counterweight falls. In the other, less
optimized treb, the range and range efficiency increase at the same time for propping angles
above 45°. Evidently one considering constructing a propped CW design should carry out
afew smulations before-hand.

It isnot clear from these graphs how much the shock on the machine during the course of
the throw would change by propping either. This can be estimated for the models, but
require some extra calculations. However, any decrease in the range efficiency such asthat
shown for the smaller trebuchet, should make one hesitate to prop it to an angle of 100°, for
example. Less efficient trebs surely are more at risk of shaking apart and/or breaking the
axle.

Monte Carlo Design

Another method of exploring the rather large parameter space isto use a"Monte Carlo"
approach, which involves calculating the results for randomly chosen parameters within
some region of the design space.

For this method to work, we need a faster method for calculating the results, and a Fortran
program, MonteCarloTrebl.f was devised. This program can be downloaded from the
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"Algorithmic Beauty of Trebuchets' site. It uses a Runge-K utta method with variable step
size, and is considerably faster than the previously published fortrtan program freeslcw3.0.
It does about 5 throws per second on a Power Mac 8500/180.

Since we are interested in allowing many of the parameters to vary, one needs a basis for
comparison of the goodness of different designs. Obviously, atreb with alonger beam
and heavier counterweight will throw farther, so some other basis for comparison should
be used. Range efficiency is, of course the desired quantity, but we must further work
with models that have the same input energy. We will therefore keep constant the distance
that the counterweight can fall, and its mass a constant too.

For this example, we will also keep the projectile mass and the mass of the beam a
constant, and only optimize on the lengths. We choose, based partly on the results shown
above, to make m1=100, m2=1, and mb=5 Ibs. We use the "free ding" model, which has
the ding initialy horizontal, as usual, and the CW hanging vertically.

We want to let the angle of the beam with respect to the ground, psiz, vary between 30°
and 60°. These angles correspond to a shallow and steep pitch of the beam. Fixing ps

fixesthe other angles as thz=psiz+p/2, and phiz = p - th = psi+p/2. The distancethe
counterweight falls, h, isgiven by h=11* (1 + sin(psiz)) and is assumed to be a
constant, so 1 is determined from thisto be |1 = h/(1 + sin(psiz)).

An important design parameter is the ratio of the lengths of the long arm to the short arm
of the beam, 12/11. Most published designs and drawings appear to have thisratio
between 3 and 5, so we choose to explore this region aswell. Given the constraint on |1
just given, choosing aratio randomly from within this range gives12. Then the height of
the axleisfixed aswell at 15 = [2* sin(psiz).

For the length of the sling, we will ook in the region where the sling length is about
equal to the length of the long arm of the beam: 13/12 =.5t0 1.5. For the length of the
CW suspension, we choosg, rather arbitrarily to look at 14/11= 0.5to 1.0. This cannot be
made to be too large--el se the counterweight will crash into the ground.

To summarize, the space being explored has 4 dimensions. psiz, 12/11, 13/12, and 14/12.

all of the other lengths and angles being determined from them. And to reiterate, we set
m1=100, m2=1, and mb=5 |bs. Psiz varies from 30° to 60°, and we assume the CW falls
aconstant distance for all of the proposed designs. We set this distance, rather arbitrarily
tobeh=2ft. Thisis Stage 1 of our exploration.

The Monte Carlo program was run for 200 trials chosen randomly within this 4-
dimensional space, and the range efficiency determined for each. There are therefore four
graphs. Fig. 20 shows the results as plots of the range efficiency vs. each of the varied
parameters. Here we can see that the range efficiency for this collection of trebs ranged
from about 0.1 up to about 0.7. Thus, guessing a single design within the bounds set
above, could lead to avery inefficient treb. It is better to design, than guess.
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Thefirst and clearest conclusion reached from these four graphsis that the length of the
ding appears to have an optimum at about 13/12=1. The range efficiency varies greatly
for the other parameters, with adlight trend toward larger values of 14.

A little clearer picture emerges if we impose afurther constraint: a second stage of 200
trials was therefore carried out with 13/12 now constrained to be unity. Thisisaso
shown in Fig. 20. Now afairly clear optimum in psiz appears--it iscloseto 45°. Again,
the trend toward higher efficiency for larger values of 14 is apparent. Making 13=12 has
decreased the range of efficiencies very substantially. It isnow between 0.50 and 0.73.

The upward trend of efficiency with the length of the CW arm, 14, may be readily
explained: thelonger thisarm, the less motion in the x-direction that the CW experiences
during itsfall, and therefore the less wasted energy in the CW at thetime of release. A
very long counterweight arm, however, is not permitted in the usual design of a
trebuchet: the counterweight cannot be allowed to hit the ground or the dide for the
projectile. An efficient design would have 14 be such that the bottom of the CW just
misses hitting the ground. 1f we say that the center of mass of the counterweight isin the
center of the counterweight, this meansthat we must have (as a little geometry shows)

14< (11/2) *(12*sin(psiz) - 11)/11.

Theresults so far indicate that there is comparatively little impact of the choice of the long
arm to short arm of the beam (12/I1) on the efficiency. Only a shallow optimum is seen.
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Fig. 21. Stages 3 and 4 of the Monte Carlo exploration. In both of these simulations
psiz is constrained to 45° and the ding length/long arm ratio is unity.

Another Monte Carlo run with psiz constrained to be 45° and the ding length=long arm
length isshown in Fig. 21 as stage 3. Now the efficiency ranges from 0.58 up to 0.73,
so some further gain in the probability that atreb designed within these constraints will
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have a high efficiency is seen. The generd trend of increasing efficiency with increasing
14 is even more apparent than before, but the optimum |2/I1 is not so clearly evident.

Choosing 14 = 11 gives atreb with a counterweight arm that can clear the ground, and
gives afurther constraint, yielding the Stage 4 results, as also shownin Fig. 21. The
range of efficiency in the 200 simulations has been further narrowed to 0.69 to 0.73 and
now a clear maximum in the range efficiency in found when 12/11 = 3.75.

This design process can, of course, be adopted to various other sets of constraints
desired, and can be rather quickly carried out. An even faster method, but one that does
not reveal much in the way of heuristics, isto set up the problem asfor Stage 1, then run
athousand or so simulations, and rank order the results by range efficiency. Successive
stages need not be run, and the design parameters are taken from the most efficient
design.

Back of the Envelope Design
If you want to start the design of your very own, | would recommend that you play with
the equation for range efficiency in thisform:

_» M
R=2 mfzha?

Put inyour CW (m1) and projectile mass (m2) , assume anominal efficiency of ex=0.5.
Decide how far you are willing to raise the counterweight (h) by some means, and
calculate R. If you like what you see, calculate the length of the short arm of the beam,
assuming it isto be placed at a45° angle with respect to the ground:

1 =h/1.707.

Get the long arm of the beam by multiplying this by four, etc. Choose your
counterweight material, and look up it's density. Now draw a design for the
counterweight box, and be sure that it is not so long that it hits the ground when the beam
isvertical. Determineitsvolume and assume you fill it with your stuff. Can you get a
counterweight mass equal to the m1 assumed above? Iterate this process a couple of
times.

When satisfied with the results, refine the design by doing some simulations using either
MacTreb or WinTreb ssimulators. For this, you need the mass of the beam, mb. Thisis
probably the hardest part, and is the most risky. Y ou know the length of the beam
required, so to get its mass, you need to estimate its required cross-section to get the
volume. To get the cross-section, the best advice, in the absence of any available
scientific analysisis to peruse the pictures of previously constructed trebs on the internet,
and guess.

Now go build one and have some fun!

An Optimized Design

An dternative design method, isto just use the results given above in the monte-carlo
section:

13/12=1; 14/11=1; 12/11=3.75; 15 = 0.707*12.
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This sets the beam at 45° with respect to the horizontal, and sets all of the proportions.
Choosing |1 to be some actual value then sets all of the other lengths. Further, choosing
the material of the beam and its cross-section will determineits mass, mb. Choose a
projectile that is one-fifth of that, and a counterweight that is 100 times the weight of the
projectile. Useafinger angle of 20°.

This process should yield atrebuchet that is about as efficient as one can reasonably
expect--about 73 %. Probably little isto be gained by further experimentation with the
length parameters--there is not alot of room between 0.73 and 1.0, after all. Itis
probably better to spend one's time on construction.

This optimized design, is probably good enough to deserve a name--1 call it the "Pretty
Darned Good Trebuchet”, or the "PDG treb" for short. | know that it worksfor [1 =1 ft.

Nonuniform beams

All of the preceding discussion has been based on the assumption that the beam is uniform
in cross section. Thisisgenerally truein smaller trebs, and is certainly easier to construct.
However the beam of the historical trebuchet is generally not uniform—it is usually
constructed so that the end nearest the counterweight is very thick, and the end near the
dling is much thinner. This has two effects on the motion, both of which are beneficial.
Thefirst isthat the moment of inertiaof the beam is decreased (below that for the uniform
beam we have been considering), which lowers the kinetic energy in the beam dueto its
rotation about the axle. The second advantage is that the center of mass of the beam is
closer to the axle, and so requires less energy to raiseit to the position where the projectile
isreleased. Itisworthwhileto look at these modificationsin alittle more detail.

The changesin the simulation required for the non-uniform beam are pretty

straightforward, and add two more parameters to the model, increasing the complexity of
searching for optimum designs somewhat. The required changes have been incorporated
into the MacTreb* 3.0 and WinTrebStar applications, so this effect can be studied as well.

The center of mass of auniform beam is, obvioudly, at a distance (11+ 12)/2 from the sling
end of the beam and the axleis a distance |12 from the same end, so the position of the
center of mass, measured from the axle along the beam isrc = (11+12)/2—12 = (11-12)/2.

The potential energy of amass mb at a height h abovethe axleismb g h, sofor the
uniform beam the potentia energy at a point in the movement when the beam is at an angle

g with respect to the vertical is

PEub =mbgh=mbg (11-12)/2 sin(g- p/2) = -mb g (11-12)/2 cos(q),

which isthe expression used previously. For an arbitrarily shaped beam with a center of
mass rc from the axle, the potential energy iseasily seen to be

PEb=-mbgrccos(q).

The position of the center of mass of the beam isrelatively simple to measure: balance the
beam on a pivot and measure the distance from the pivot to where the axle is going to go.
If it ison the long end of the beam, then rc is negative.
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The kinetic energy in the beam, since it doesn’t trandate, but only rotates about the axle, is
given by

-2

Where | isthe moment of inertia of the beam about the axle and theta dot is the rotational
velocity about the axle. The moment of inertia of abeam is not as easy to measure asthe
center of mass, but it is pretty simple to calculate.

Assume that the linear mass density of the beam at adistance x from the axle is S(x). Here
x ismeasured along the beam, and is positive toward the short end of the beam. The linear
mass density is the mass per unit length of the beam at x. For auniform beam, it isgiven
by s(x) = mb/(11+12) for x = -12 up to x=I1. The moment of inertia of athin beam (neglect
its thickness) is given by

which, for auniform thin beam, is then

_mb x3 [t _mb (%1112 H2?)
11+12 3 |12 3

A convenient procedureisto compute the moment of inertia using the thin beam
approximation, and then use the radius of gyration, rg, for further calculations. The
radius of gyration is alength equal to the distance a point mass mb would have to be
placed from the axle to have the same moment of inertia. Since the moment of inertia of a
point massm at adistance r from the center of rotationism r 2, the radius of gyration of a
thin beam about the axle is smply

rg =\VI/mb

which, becomes for a uniform thin beam ,

2_
= v (11 |13!2 +22)

For the nominal design, for example, where 11=1 and 12=4, we would have rg = sgrt(13/3)
= 2. 08. Trebuchets with atapered beam would have a smaller radius of gyration than this.
Unlike rc, which is zero when the arms of the beam are balanced on the axle, the radius of
gyration is a\ways non zero for beams.

For estimation purposes, it is easy to derive simple formulas for beams that are non-
uniform to get the radius of gyration. For example, suppose the thickness of the CW end
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of the beam isk timesthat of the dling end (both ends till treated as thin parallel pipeds).

That is, the beam is shaped like awedge, as shownin Fig. A1. Theoriginistaken to be at
the axle, thefat end of the beamis|1long, and the ender end is |2 long.

A
y

t

k
t
|Y\J\0|1
-12
s(x) dx

Fig. 22. Thelinear non-uniform beam with mass per unit length s(x), thicknesst at the
ding end and k t at the CW end.

Then it isnot hard to show that the mass per unit length as afunction of x is

2 (11+k 12 + x (k-1)
(1+K)(11+12) 2

S(x) =

Theradius of gyration of the beamis

r _M(1+3 k) 112 - 2 (1+k) 1112 + (3+k) 122
. 6 (1+k)

and the center of massis at

« _ 211+ V2 14k 112Kk 12+ /2 (1+k3) 12
om 2 (k-1)

These three equations are seen to reduce to the ones for the uniform beam for k=1. For
example, with11=1,12=4and k = 4, we get rg = 1.68 and xcm = -0.808. Thisisto be
compared with rg = 2.08 and xcm = -1.5 for the uniform beam.

Materials and strengths needed

All of the forgoing analysis assumes that the beam, axle, CW box, truss, sling and other
parts are rigid and strong enough to withstand the forcesinvolved. A discussion of the
methods for choosing the materials and dimensions of the the parts constitute a subject fit
for further analysis, and a discussion of thisis available from the author in the manuscript
"Will it Break?'. Itisarather ssmple treatment of the required dimensions of the parts for
different designs, and offers some useful rules of thumb and guidlines. Seethe
"Algorithmic Beauty of the Trebuchet" site for details.



40

Conclusion
A good start on amechanical analysis of the trebuchet has been described and has shown

how it can be applied to design areasonably efficient trebuchet. Two conclusions are
particularly important: the sling length should be equal to the length of the long arm of
the beam, and the beam should be set at a 45° angle with respect to the horizontal. The
length of the CW arm should be aslong as possible, so it just misses hitting the ground
(with some margin for error). Use a CW/projectile weight ratio of about 100. You
won't go too far wrong!
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Appendix 1

(* Solvethe seesaw treb problem  *)
(*seesaw1.0.nb DB Siano Aug. 21, 1997*)
m1=100;m2=1;11=1;12=4;9g=32;(* the parameters*)

c=g*(I1 m1-12 m2)/(m1l11l1+m2I212);

(*Solvethe DE:*)
solss=NDSolve[{ th"[t]==-c Sin[th[t]],th[0]==3 Pi/4,th'[0]==0} {th[t]} {t,0,
1 .

(* get th and the veloci ty from this solution*)
thint[t_]=Chop[th[t]/.Fatten[solss|[[1]]];
v[t_]=I12*thint'[t];(*tangential velocity of the projectile*)

Print["time when th=pi/4 is " tsolss=t/.FindRoot[thint[t]==Pi/4{,.2,.4} ]];

Print["vel at th=pi/4 is=",vOpi4=I2*thint'[tsolsg]];
Print["range when releaseis at Pi/4is " r=v0pi4"2/g," ft"];
Print["thoret max range=",rth=N[2 m1 |1 (1+Sin[3 Fi/4])/m2]," ft"];
Print["efficiency=",r/rth];

time when th=pi/4 is 0.381169

vel at th=pi/4 1s=-34.619

range when release is at Pi/4 is 37.4523 ft
thoret max range = 341.421 ft
efficiency=0.109695

(* Plot the results*)

Plot[{ thint[t]} ,{t,0,.5} ,PlotLabel->"th[t]"];

(* plot the range as afunction of the time at release*)
rang[t_]=2*v[t]*Vv[t]* Cod thint[t]]* Sin[thint[t]]/g;
Plot[rang[t] {t,0,.5} ,PlotLabel->"range[t]"];
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Appendix |1

(* Solvethe hinged cw treb problem  *)
(*hingedcw1.0 DB Siano Aug. 21, 1997*)
th=.;phi=.;psi=;
11=.;12=.;13=.;14=.;m1=.;m2=.;m3=.;mb=.;0=.
cn={11,12,13,14,m1,m2,mb} ;

x1[th_]:=11 Sin[th];

y1[th_]:=-11 Cod[th];

(*coords of long end of beam*)
x2[th_]:=-12 Sin[th];

y2[th_]:=12 Cog[th];

(*coords of short end of counterweight*)
x4[th_,phi_]:=I1 Sin[th]-14 Sin[phi+th];
y4[th_,phi_]:=-11 Cog[th]+|4 Cog] phi+th];

(* PE, including the uniform beam of mass mb*)
vt[th ,phi_] :=m1 g y4[th,phi]+m2 g y2[th]-mb g ((11-12)/2) Cod[th];
(* KE of the trebuchet*)
ket[th_,phi_]:=
(m1/2 )* ((Dt[x4[th,phi],t,Constants->cn] ) 2+(
Dt[y4][th,phi],t,Constants->cn])"2)+
(m2/2) *((Dt[x2[th],t,Constants->cn] )2+
(Dt[y2[th],t,Constants->cn] )2 )+
(mb/6) (1272-11 12 +1172) Dt[th,t,Constants->cn]"2;

(* the Lagrangian*)

lagrt[th_,phi_]:=ket[th,phi]-vt[th,phi];

[trr=lagrt[th,phi]/.{ Dt[th,t,Constants\[Rule]{|1,12,13,]4,m1,m2,mb} ]->thd,
Dt[phi,t,Constants\[Rul€]{11,12,13,14,m1,m2,mb} ]->phid} ;

(* set up the equations to solve, using the method of Lagrange *)
egbig=Simplify[{ Dt[D[ltrr,thd],t]-D[ltrr,th]==0,
Dt[D[ltrr,phid],t]-D[ltrr,phi]==0}/.{ Dt[11,t]->0,Dt[12,t]->0,
Dt[13,t]->0,Dt[14,t]->0,Dt[mb,t]->0,Dt[m1,t]->0,Dt[m2,t]->0,
Dt[g,t]->0,
Dt[th,t]->thd,Dt[phi,t]->phid,Dt[thd,t]->thdd,Dt[ phid,t]->phidd} |
{(-11) 14m1((phidd + 2thdd))Cos[phi] +
1114mlphid((phid + 2thd))Sin[phi] +
1/6((614"2mlphidd + 61172mlthdd + 614”2mlthdd +
61272m2thdd + 21172mbthdd - 21112mbthdd +
212"2mbthdd + 6glimlSin[th] -
6gl2m2Sin[th] + 3gllmbSin[th] -
3gl2mbSin[th] - 6gl4mlSin[phi + th])) == 0,

14m1((14phidd + 14thdd - I1thddCos[phi] - 11thd~2Sin[phi] -
gSin[phi + th])) == 0}

(* the parameters:*)
m1=100;m2=1;mb=0;11=1;12=4;|4=1;0=32;
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15=14/Sgrt[2];(* axle height*)

(*theinitial conditions:*)
ths=3*Pi/4;(* setsthe beam at 45° wrt ground*)
phis=-ths+Pi;(* this makes the cw dangle straight down*)

(* Now put the two equations into aform suitable for NDSolve*)
egs=eqoig/ { L .
th->th[t] ,thd->th'[t],thdd->th"[t],phi->phi[t],phid->phi'[t],phidd->phi"[t]}

{100 Sin[phi[t]] phi*[t] (phi*[t] + 2 th [t]) -
100 Cos[phi[t]] (phi="[t] + 2 th*"[t]) +
(1 (18432 Sin[th[t]] - 19200 Sin[phi[t] + th[t]] +
600 phi®"[t] + 1296 th"[t])) / 6 == O,

100 (-32 Sin[phi[t] + th[t]] - Sin[phi[t]] th [t] ~2 +
phi®*[t] + th "[t] - Cos[phi[t]] th*"[t]) == 0}

(*Solvethe DE:*)
solhcw=NDSolve[
Flatten[{ egs,th[0] ==ths,phi[ 0] ==phis,
th'[0]==0,phi'[0]==0}],{ th[t],phi[t]} {t,0.,1}];

(* get th and the velocity from this solution*)
thint[t_]=Chop[th[t]/.Flatten[solhcw][[1]]];
v[t_]=I12*thint'[t];(*tangential velocity of the projectile*)

Print["time when th=pi/4 is " tsolss=t/.FindRoot[thint[t]==Pi/4 {,.2,.4} ]];

Print["vel at th=pi/4 is=",vOpi4=I2*thint'[tsolsg]];

Print["range when releaseis at Pi/4 is " ,r=v0pi4"2/g," ft"];
Print["thoret max range=",rth=N[2 m1 |1 (1+Sin[3 Fi/4])/m2]," ft"];
Print["efficiency=",r/rth];

time when th=pi/4 is 0.336743

vel at th=pi/4 is=-47.3121

range when release is at Pi/4 is 69.9512 ft
thoret max range=341.421 ft
efficiency=0.204882

(* plot th and its derivative *)
Plot[{thint[t]},{t,0,.5} ,PlotLabel->"th[t]"];

gth=Plot[{ thint'[t]} {t,0,.5} ,PlotLabel->"th'[t]"];
(* plot the range as afunction of the time at release*)
range[t_]=2*Vv[t]*v[t]* Coqthint[t]]* Sin[thint[t]]/g;
Plot[rang€]t] {t,0,.5} ,PlotLabel->"range(t]"];
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Appendix |11

(* Solvethe dling+cwfreel.O treb problem  *)
(*seesaw1.0.nb DB Siano Aug. 21, 1997*)
th=.;phi=;psi=;I1=;12=;I13= ;4=
ml=.;m2=.;m3=;mb=.;g=.
cn={I1,12,13, 14, m1, m2, mb};
x1[th_] := 11 Sin[th];
y1[th ] :=-11 Cog[th]; x2[th_] :=-12 Sin[th];
y2[th ] :=12 Cod[th];
x4[th_, phi_] :=11 Sin[th] - 14 Sin[phi + th];
y4[th_, phi_] :=-11 Cog[th] + |4 Cog[phi + th];
x3[th_, psi_] :=-(I3 Sin[psi - th] + [2 Sin[th]);
y3[th_, psi_] :=-(I3 Cog[psi - th] - |2 Cod[th]);
vi[th_, phi_, psi_] :=

NN

mlL g y4[th, phi] + n2 g y3[th, psi] - nb g -------

ket[th_, phi_, psi_] :=

ml 2
- (Dt[x4[th, phi], t, Constants -> cn] +
2

2
Dit[y4[th, phi], t, Constants -> cn] ) +

ng 2
- (Dt[x3[th, psi], t, Constants -> cn] +
2

2
Di[y3[th, psi], t, Constants -> cn] ) +

nb 2 2
6
lagrt[th_, phi_] := ket[th, phi, psi] - vt[th, phi, psi];
Itrr = lagrt[th, phi] /.
{Dt[th, t, Constants -> {I1, 12, 13, |4, m1, m2, mb}] ->
thd, Dt[phi, t, Constants ->
{11,12,13, 14, m1, m2, mb}] -> phid,

Dt[ps, t, Constants ->
{11,12,13, 14, m1, m2, mb}] -> psid};

egbig = Simplify[{ Dt[D[ltrr, thd], t] - D[ltrr, th] == 0,
Dt[D[ltrr, phid], t] - D[ltrr, phi] == 0,
Dt[D[ltrr, psid], t] - D[ltrr, psi] == 0} /.
{Dt[l1, t] -> 0, Dt[I2, t] -> 0, Dt[I3, t] -> O,
Dt[l4, t] -> O, Dt[mb, t] -> O, Dt[m1, t] -> O,
Dt[m2, t] -> 0, Dt[g, t] -> O, Dt[th, t] -> thd,
Dt[phi, t] -> phid, Dt[psi, t] -> psid,

- (l2 - 1112+11) Dt[th, t, Constants -> cn] ;
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Dt[thd, ] -> thdd, Dt[phid, {] -> phidd,
Dt[psid, t] -> psidd}]:

|4**2*m1*phidd - [3**2*m2* psidd +

[1*¥*2*m1*thdd + [4**2*m1*thdd + 12** 2* m2*thdd +
|3** 2*m2*thdd + (I11**2* mb* thdd)/3. -

(17*12* mb* thdd)/3. + (12**2* mb* thdd)/3. -

[1*14* m1* (phidd + 2* thdd)* Cos(phi) +

|2*13* m2* (psidd - 2*thdd)* Cos(psi) +

[ 1*14* m1* phid** 2* Sin(phi) +

2*11*|4* m1* phid* thd* Sin(phi) -

|2*13* m2* psid* * 2* Sin(psi) +

2% 2% | 3* m2* psid* thd* Sin(psi) -

g*I3*m2* Sin(psi - th) + g*11*m1* Sin(th) -
g*12*m2* Sin(th) + (g*11* mb* Sin(th))/2. -

(g*12* mb* Sin(th))/2. - g*14*m1* Sin(phi + th).eq.0,

[4* m1* (14* phidd + 14*thdd - | 1* thdd* Cos(phi) -
- |1*thd**2* Sin(phi) - g* Sin(phi + th)).eq.0,

13*m2* (13* psidd - |3*thdd + [2* thdd* Cos(psi) -
- 12*thd**2*Sin(psi) + g* Sin(psi - th)).eq.0

(* input the parameters here*)
m1=100;m2=1, mb=0;11=1;12=4;
13=3.25;14=1; g=32; 15 =14/Sgrt[2];
(psis=ths- Pi/2;); ths = (3*Pi)/4; phis = -ths + Fi;
(*set up the equations *)
egs = egbig /.
{th ->th[t], thd -> Derivative[1][th][t],
thdd -> Derivative[ 1][ Derivative] 1][th]][t],
phi -> phi[t], phid -> Derivative[ 1][phi][t],
phidd -> Derivative[ 1][ Derivative] 1] [ phi]][t],
psi -> psi[t], psid -> Derivative[1][psi][t],
psidd -> Derivative][ 1][Derivative[ 1][psi]][t]} ;

(*Solvethe DE:*)
solscw=NDSolve]
Flatten[{ egs,th[0]==ths,phi[0]==phis,psi[0]==psis,
th'[0]==0,phi'[0]==0,psi'[0]==0} ] { th[t],phi[t] psi[t]} {t.0.,1} ];

(* get th, psi and the velocity from this solution*)
thint[t_]=Chop[th[t]/.Flatten][solslcw][[1]]];
psiint[t_]=Chop[psi[t]/.Flatten[solslcw][[3]]];
Plot[thint[t] {t,0,.5} ,PlotLabel->"th[t]"];
Plot[psiint[t],{t,0,.5} ,PlotLabel->"psi[t]"];
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tht]

(* now to get the range, we first need to get the velocity of the projectile*)

vx3[t_]:=Chopl[-13 Cog[psiint[t]-thint[t]]* (psiint'[t]-thint'[t])-
|2* Cog[thint[t]]* thint'[t]];
vy3[t_]:=Chop[
I3* (psiint'[t]-thint'[t])* Sin[psiint[t]-thint[t]]-
[2* thint'[t]* Sin[thint[t]]];
rangeft_]=2 vx3[t]* vy3[t]/g;
Plot[rang€]t],{t,0,.5} ,PlotL abel->"rangel[t] "]
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range [t]

200 [\J
100t /

—1aqa | !

=200 -.H—\J[

(* get the maximum range *)

tstrt=0;tend=.5;del=.001;

rangetime=Table[{ range[t] ,t} ,{ t,tstrt,tend,del* (tend-tstrt)} |;

allowedranges=Transposeg[rangetime];

mallowedrange=Max[First[allowedranged]];

postall owedrange=First[ Flatten[ Position[rangetime,mal lowedrange]]];

tallowedrange=L ast[ rangetime] [ postal lowedrange]]];

Print[" The maximum rangeis",mallowedrange," at time",
tallowedrange, " s'];

Print["theta at time of release is",180/Pi* thint[tallowedrange]," deg"];

Print["psi at time of releaseis”,180/Pi* psiint[tallowedrange]," deg"];
Print["thoret max range=",rth=N[2 m1 |1 (1+Sin[Pi/4])/m2]," ft"];
Print["efficiency=",mallowedrange/rth];

The maximum range is 275.793 at time 0.4045 s

theta at time of releaseis 20.7797 deg
ps at time of releaseis 169.201 deg
thoret max range=341.421 ft
efficiency=0.80778

Appendix IV

Equations for the second derivatives of the angles for the constrained portion of the throw
are shown here. Subsidiary variables that are used to speed the calculation are defined
first. The notationisto use"d" to mean first derivative and "dd" to mean the second
derivative; sq means second power, cu the third, gt the fourth, and gn the fifth power.

sth=sin(th)
cth=cos(th)
sphi=sin(phi)
cphi=cos(phi)
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thdsg=thd* thd
phidsg=phid* phid
sthsg=sth* sth
sthcu=sthsg* sth
cthsg=cth*cth
cthcu=cthsg* cth

cphisg=cphi* cphi

rad= Sgrt(1 - (I2sg* (cth + spsis)* (cth + spsis))/13sq)
r2=rad*rad

r3=r2*rad

r4=r2*r2

/[ for th in the constrained portion of the throw:

cl= -6*I2cu*I3sg* m2*r3*thdsg* cthcu + 6*11*13cu* 14* m1* phidsg* r4* sphi
c2= 12*|1*|3cu* |4* m1* phid* r4*thd* sphi + 6*11*3cu* [4* m1* r4* thdsg* sphi
c3= -6*11sg* |3cu* m1* r4* thdsg* cphi* sphi

c4= -6*|2cu* | 3sgq* m2* r3* thdsg* cthsg* spsis + 6* g* | 1* | 3cu* m1*r4* sth

c5= 3*g*11*13cu* mb*r4* sth - 3* g*12* | 3cu* mb* r4* sth

c6= 6*12sg*|3cu* m2* r2* thdsg* cth* sth

c7= -12*|2sg*13cu* m2* r4* thdsg* cth* sth

c8= 12*|12cu*13sg* m2* r3* thdsg* cth* sthsq

c9= 6*12gn* m2* rad* thdsg* cthcu* sthsg

c10= 6*12cu*|3sg* m2* r3* thdsg* spsis* sthsq

cll= 12*|2gn* m2* rad* thdsg* cthsg* spsis* sthsq

cl2= 6*12gn* m2* rad* thdsg* cth* spsissg* sthsg

cl3= -6*12qgt*I3* m2* thdsg* cth* sthcu - 6* [2qt* I 3* m2* thdsg* spsis* sthcu
cl4= -6*g*11*13cu* m1*r4* cphi* Sin(phi + th)
cnum=cl+c2+c3+c4+c5+c6+c/+c8+c9+cl0+cll+cl2+c13+cl4

d1=-6*11sg*13cu* m1*r4 - 6*|2sg*13cu* m2*r4 - 2*11sg* | 3cu* mb*r4

d2= 2*11*12*[3cu* mb*r4 - 2*12sg* 13cu* mb*r4 + 6* 1 1sg* 13cu* m1* r4* cphisq
d3= 12*|2cu*|3sg* m2* r3* cthsg* sth

d4= 12*|2cu*I3sg* m2* r3* cth* spsis* sth - 6*12sg* | 3cu* m2* r2* sthsqg

d5= 12*12sg* | 3cu* m2* r4* sthsq

ddenom=d1+d2+d3+d4+d5

[Ireturn the second derivative of th.
thddcret=cnum/ddenom

The equations for phi in the constrained portion of the throw:

a(1)=-(11*l4cu* m1sg* phidsg* sphi) + cphi*1sg* 14sg* m1sg* phidsg* sphi +
cphi* g*11sg* 14* mlsg* sth
a2)= -g*l1*l4sg* mlsg* sth + (cphi* g* | 1sg* 14* m1* mb* sth)/2. -
(cphi* g*11*12* [4* m1* mb* sth)/2.
a3)= -(g*I1*l4sg* m1*mb* sth)/2. + (g*12*4sg* m1* mb* sth)/2. -
2*| 1* 14cu* m1sg* phid* sphi* thd
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a(4)= 2*cphi*l1sg*14sg* mlsg* phid* sphi*thd -
(cphi* cthcu* | 1* 12cu* 14* m1* m2* thdsq)/(13* rad)
a(5)= (cthcu*12cu*14sg* m1* m2* thdsq)/(13* rad) - 11cu* 14* m1sg* sphi* thdsg
a(6)= -11*14cu* mlsg* sphi*thdsg + 2* cphi* | 1sg* 14sg* m1so* sphi* thdsq -
| 1*12sg* 1 4* m1* m2* sphi* thdsq
a(7)= -(I1cu*14* m1* mb* sphi*thdsg)/3. + (11sg*12* 14* m1* mb* sphi* thdsg)/3.
a8)= -(11*12sg*14* m1* mb* sphi* thdsq)/3. -
(cphi* cthsg* 1 1* 12cu* 14* m1* m2* spsis* thdsq)/(13* rad)
a(9)= (cthsg*l2cu*l4sg* m1* m2* spsis* thdsqg)/(13* rad) -
2* cphi* cth* 1 1* [ 2sg* 1 4* m1* m2* sth* thdsq
a(10)= 2*cth*I12sg*14sg* m1* m2* sth* thdsq +
(cphi* cth* [ 1*12sg* [4* m1* m2* sth* thdsq)/r2
a11)=  -(cth*12sg*14sg* m1* m2* sth* thdsg)/r2
a(12)= (2*cthsg*|1*12cu* [4* m1* m2* sphi* sth* thdsq)/(13* rad)
a(13)= (2*cth*11*12cu*14* m1* m2* sphi* spsis* sth* thdsg)/(13* rad)
a(14)= -(cphi*cth*|1*12qt*14* m1* m2* sthcu* thdsg)/(I3sg* r4)
a(15)= (cth*12qt*[4sg* m1* m2* sthcu* thdsg)/(13sq* r4)
a(16)= -(cphi*11*12qt*14* m1* m2* spsis* sthcu* thdsg)/(13sq* r4)
a(17)= (I2qt*14sg* m1* m2* spsis* stheu* thdsq)/(13sg* r4)
a(18)=  (cphi*cthcu* I 1*12gn* 14* m1* m2* sthsg* thdsq)/(13cu* r3)
a(19)= -(cthcu*2gn*14sg* m1* m2* sthsg* thdsq)/(I3cu* r3)
a(20)=  (2*cphi*cth*11*12cu* 14* m1* m2* sthsg* thdsq)/(13* rad)
a2l)= -(2*cth*l2cu*l4sg* m1* m2* sthsg* thdsq)/(13* rad) +
2% | 1*12sg* 14* m1* m2* sphi* sthsg* thdsg
a(22)= -(11*I12sg*14* m1* m2* sphi* sthsg* thdsg)/r2
a(23)= (2*cphi*cthsg* I 1* [2gn* 14* m1* m2* spsis* sthsg* thdsq)/(I3cu* r3)
a(24)= -(2*cthsg*[2gn* 14sg* m1* m2* spsis* sthsg* thdsq)/(I3cu* r3)
a(25)= (cphi*|1*12cu*14* m1* m2* spsis* sthsg* thdsq)/(13* rad)
a(26)= -(I2cu*l4sg* m1* m2* spsis* sthsg* thdsq)/(13* rad)
a(27)= (cphi*cth*11*[2gn*14* m1* m2* spsissg* sthsg* thdsg)/(13cu* r3)
a(28)= -(cth*12gn*l4sg* m1* m2* spsissg* sthsg* thdsq)/(I3cu* r3) -
g*11sg*14* m1sg* Sin(phi + th)
a(29)= cphi*g*11*l4sg* m1sg* Sin(phi + th) - g*12sg* 14* m1* m2* Sin(phi + th)
a(30)= -(g*l1sg*14* m1*mb* Sin(phi + th))/3. + (g*11*12* [4* m1* mb* Sin(phi +
th))/3.
a(31)= -(g*12sg*14* m1*mb* Sin(phi + th))/3.
a(32)= (2*cthsg* g*l2cu*14* m1* m2* sth* Sin(phi + th))/(13* rad)
a(33)= (2*cth*g*l2cu*[4* m1* m2* spsis* sth* Sin(phi + th))/(13* rad)
a(34)= 2*g*l2sg*14* m1* m2* sthsg* Sin(phi + th) -
(g*12sg* [4* m1* m2* sthsg* Sin(phi + th))/r2

b(1)= -(I1sg*l4sg*mlsq) + cphisg*I1sg* l4sg* mlsq - 12sg* 14sg* m1*m2 -
(I1sg*14sg* m1* mb)/3.
b(2= (11*12*14sg* m1* mb)/3. - (12sg* |4sgq* m1* mb)/3. +
(2* cthsg* 12cu* 14sg* m1* m2* sth)/(13* rad)
b(3)= (2*cth*12cu*l4sg* m1* m2* spsis* sth)/(13*rad) + 2*12sg* 14sg* m1* m2* sthsg
b(4)= -(12sg*14sg* m1* m2* sthsq)/r2
phiddtopc=0.
nitems=34
fori=1to 34
phiddtopc=phiddtopc+a(i)
next
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phiddbotc=b(1)+b(2)+b(3)+b(4)

/Ireturn the second derivative of phi:
phiddcres=phiddtopc/phiddbotc

The three equations for the second dervatives of the angles during the unconstrained throw
are shown here.

/ithdd

al=6*11*14* m1* phid* phid* sphi + 12*[1*14* m1* phid* thd* sphi
a2=6*11*14* m1* thd* thd* sphi - 6*|1sq* m1* thd* thd* cphi* sphi
a3=-6*12*13*m2* psid* psid* spsi + 12*|2*|3* m2* psid* thd* spsi
ad=-6*12*13* m2* thd* thd* spsi + 6*12sg* m2* thd* thd* cpsi* spsi
ab=-6*g*|2* m2* cpsi* (spsi* cth-sth* cpsi) + 6* g*11* m1* sth - 6* g* [2* m2* sth
ab=3* g*| 1* mb* sth - 3* g*12* mb* sth - 6* g*11* m1* cphi* (sphi* cth+sth* cphi)
thtop=al+a2+a3+ad+ab+ab
b1=-6*11sg*m1l - 6*12sq*m2 - 2*|1sg* mb + 2*11*|2* mb - 2*12sq* mb
b2=6*|1sg* m1* cphi* cphi + 6*12sg* m2* cpsi* cpsi
thbot=b1+b2
thdd=thtop/thbot

/Iphidd
c1=-6*I1*l4sg* m1* phid* phid* sphi - 12*[1* |4sg* m1* phid* thd* sphi -
6* | Lcu* m1* thd* tha* sphi
c2=-6*1*14sg* m1* thd* thd* sphi - 6*11*|2sgq* m2* thd* thd* sphi -
2* | 1cu* mb* thd* tha* sphi
€3=2*11sg* | 2* mb* thd* thd* sphi - 2*|1* |2sg* mb* thd* thd* sphi +
6* | 1sg* 14* m1* phid* phid* cphi* sphi
c4=12*| 1sg* 14* m1* phid* thd* cphi* sphi + 12* | 1sg* |4* m1* thd* thd* cphi* sphi
c5=6*11*12sq* m2* thd* thd* cpsi* cpsi* sphi + 6*12*13*[4* m2* psid* psid* spsi
C6=-12*|2*13*|4* m2* psid* thd* spsi + 6*12*|3*14* m2* thd* thd* spsi
C7=-6*11*12*13* m2* psid* psid* cphi* spsi + 12*|1*[2*|3* m2* psid* thd* cphi* spsi
€8=-6*11*12*13* m2* thd* thd* cphi* spsi - 6*12sq* 14* m2* thd* thd* cpsi* spsi
€9=6*11*12sg* m2* thd* thd* cphi* cpsi* spsi + 6* g*12*[4* m2* cpsi* (spsi* cth-sth* cpsi)
c10=-6*g*11*12* m2* cphi* cpsi* (spsi* cth-sth* cpsi) - 6* g*11*[4* m1* sth +
6* g*12*[4* m2* sth
c11=-3*g*11*|4* mb* sth + 3* g*12*14* mb* sth + 6* g* | 1sg* m1* cphi* sth
c12=-6*g*|11*|2* m2* cphi* sth + 3* g* | 1sg* mb* cphi* sth - 3* g*11*12* mb* cphi* sth
c13=-6*g*11sg* m1* (sphi* cth+sth* cphi) - 6* g*12sg* m2* (sphi* cth+sth* cphi) -
2* g* 1 1sg* mb* (sphi* cth+sth* cphi)
c14=2* g*11*12* mb* (sphi* cth+sth* cphi) - 2* g* | 2sg* mb* (sphi* cth+sth* cphi) +
6* g*11*14* m1* cphi* (sphi* cth+sth* cphi)
c15=6*g*|12sg* m2* cpsi* cpsi* (sphi* cth+sth* cphi)

d1=-6*11sg*14* m1 - 6*12sg*14*m2 - 2*11sg*[4* mb + 2*11*12*[4* mb - 2*|2sg*14* mb
d2=6*1sg*14* m1* cphi* cphi + 6*12sg* |4* m2* cpsi* cps

phitop=c1+c2+c3+c4+c5+c6+c7+c8+c9+c10+cll+cl2+cl3+cl4+cl5
phibot=d1+d2
phidd=phitop/phibot



/lpsidd

el=11*13sg* | 4cu* mlsg* m2* phid* phid* sphi + 2*11*|3sg* |4cu* m1sg* m2* phid* thd* sphi
€2=11*13sg* |4cu* m1sg* m2* thd* tha* sphi -
| 1sg*13sg* [4sg* mlsg* m2* thd* thd* cphi* sphi
€3=-11*12*13*14cu* m1sg* m2* phid* phid* cpsi* sphi -
2% 1*12*13* [ 4cu* m1sg* m2* phid* thd* cpsi* sphi
=-|1*12*13* [ 4cu* m1sg* m2* thd* thd* cpsi* sphi
e5=11sg* 12*13* 14sg* m1sg* m2* thd* thd* cphi* cpsi* sphi -
[2* | 3cu* [4sg* m1* m2sg* psid* psid* spsi
€6=2*12*|3cu* 14sg* m1* m2sg* psid* thd* spsi - 11sg*12* [3* | 4sg* mlsg* m2* thd* thd* spsi
er=-12cu*13* |4sgq* m1* m2sg* thd* thd* spsi - 12*13cu* 14sg* m1* m2sg* thd* thd* spsi
e8=-(11sg*12*I3* 14sq* m1* m2* mb* thd* thd* spsi)/3. +
(17*12sg* 13* 14sg* m1* m2* mb* thd* thd* spsi)/3.
€9=-(l2cu*|3*14sg* m1* m2* mb* thd* thd* spsi)/3. +
[ 1sg*12*13* [4sg* mlsg* m2* thd* thd* cphi* cphi* spsi
e10=12sg* 13sg* 14sg* m1* m2sg* psid* psid* cpsi* spsi
ell=-2*12sg* 13sg* [4sg* m1* m2sg* psid* thd* cpsi* spsi
e12=2*|2sg* | 3sg* 14sg* m1* m2sg* thd* thd* cpsi* spsi +
g*11sg*13*14sg* m1sg* m2* (spsi* cth-sth* cpsi)
el3=g*|2sg*13*14sg* m1* m2sg* (spsi* cth-sth* cpsi) +
(g*11sg*13* 14sg* m1* m2* mb* (spsi* cth-sth* cpsi))/3.
eld=-(g*11*12*13*14sg* m1* m2* mb* (spsi* cth-sth* cpsi))/3. +
(g*12sg*13* |4sg* m1* m2* mb* (spsi* cth-sth* cpsi))/3.
el5=-g*11sg*|3* 14sg* m1sg* m2* cphi* cphi* (spsi* cth-sth* cpsi) -
g*12*|3sg* 14sg* m1* m2sg* cpsi* (spsi* cth-sth* cpsi)
el6=g* | 1*|3sg* 14sg* m1sg* m2* sth - g*12*13sg* | 4sg* m1* m2sg* sth
el7=(g*11*13sg* |4sg* m1* m2* mb* sth)/2. - (g*12*13sg* |4sg* m1* m2* mb* sth)/2.
el8=-g*11*12*13* |4sgq* mlsg* m2* cpsi* sth + g*12sg* [3* | 4sg* m1* m2sg* cpsi* sth
el9=-(g*I1*12*13*14sg* m1* m2* mb* cpsi* sth)/2. +
(g*12sg* 13* |4sg* m1* m2* mb* cpsi* sth)/2.
€20=-g*11*13sg* | 4sg* m1sg* m2* cphi* (sphi* cth+sth* cphi) +
g* 1 1*12*13*14sg* m1sg* m2* cphi* cpsi* (sphi* cth+sth* cphi)

psitop=el+e2+e3+ed+eb+e6+e7+e8+e9+el0+ell+el2+el3+eld+el5+el6+el7+el8+el9
+e20

f1=-(I11sg*13sg*14sg* m1sg* m2) - 12sg* 13sg* [4sg* m1* m2sq -
(I1sg*13sg* [4sg* m1* m2* mb)/3.

f2=(11*12*13sg* 14sg* m1* m2* mb)/3. - (12sg* | 3sg* 14sg* m1* m2* mb)/3.

f3=l1sg*13sg* 14sg* m1sg* m2* cphi* cphi

f4=12sg*13sg* [4sg* m1* m2sg* cpsi* cpsi

psibot=f1+f2+f3+f4

psidd=psitop/psibot
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Appendix V

This shows the results from a Mathematica simulation for a"nominal” trebuchet in which,
[1=1, 12=4, 13=3.5, 14=1, 15=12/sgrt(2), m1=100, m2=1, mb=5:

total energy ! fractiom of ke in beam
=775
=500 0.5
=525 0.6
=550
0.4
=575
—a00 0.2
1 1 1 =T
0.2 0.2 0.6 0.5 0.2 0.4 0.6 0.5
: fraction of ke in proj : fractiom of ke in CH
0. 0.8
0.6 0.6
0.4 0.4
0.2 0.2
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CH and Proj positiom[t]

dllowed ranges ws psi
10, B 9= E

lzof
laof
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120
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CH acceleration ws t
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red is th, greem is phi, blue is psi

g}

/

proj acceleration ws t

1000

S00

GO0

300

200

/\

t (sec
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nom nal treb design

Ishrt= 0.6096 m |long=2.4384 mlsling= 2.1336 mlcw= 0.6096 mlaxle= 1.72421 m

1 1=0.6096m 12/11=4. 13/11= 3.5 14/11= 1. 15/ 1= 2.82843
ncw= 363. 636 kg nmproj = 3. 63636 kg nbeam:=24. 5455 kg
n2= 3. 63636 kg nml/n2=100. mb/nm2=6. 75

The starting angles (th, phi, psi) were 135. 45. 45. degrees

The maxi mumrange allowed is 140.693 m

The bl ack box range is 208.13 m

The distance the CWfell is 1.04065 m

The range efficiency is 0.675984

It leaves at an angle wt the horizontal at 43.8276 degrees at t= 0.693559 s
with a velocity = 37.1476 m/s and an energy = 2508.99 J.

It leaves the slide at time =0.270922

The avail abl e potential energy in the cwwas 3708.51 J.

Wien the projectile | eaves, the angles are {7.844, 208. 4, 140.5} degrees

The fraction of the cw energy deposited in the projectile was = 0.68

Total kinetic energy =2694.38 J.
The accel eration of the projectile at an instant just before release is 474.432 msh-2
The rate of change of psi at the sane noment is 14.5774 rad/s

The rate of change of th at the same nonent is -1.48823 rad/s

Set the finger angle (steel on steel) to 20.4505 degrees



