TRIANGLE RELATIONSHIPS
 Chapter 5 - Unit 7

Geometry- Rushing

Name \qquad

Hour

5.I Bisectors of Triangles

I can...	1. Identify and use perpendicular bisectors in triangles. 2. Identify and use angle bisectors in triangles.
	Theorems Perpendicular Bisectors 5.1 Perpendicular Bisector Theorem If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. Example: If $\overline{C D}$ is a \perp bisector of $\overline{A B}$, then $A C=B C$. 5.2 Converse of the Perpendicular Bisector Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment. Example: If $A E=B E$, then E lies on $\overline{C D}$, the \perp bisector of $\overline{A B}$.
Definitions	Perpendicular Bisector - a line, segment, or ray that passes through the midpoint of a side and is perpendicular to that side. Equidistant from two points - The distance between two lines measured along a perpendicular line is always the same. Distance from a point to a line (p.215) - the length of the segment perpendicular to the line from the point. Equidistant from two lines - the distance between two lines measured along a perpendicular line is always the same.
	In the diagram shown, $\overleftrightarrow{P Q}$ is the perpendicular bisector $\overline{C D}$. a. What segment lengths in the diagram are equal? b. Explain why T is on $\overleftrightarrow{P Q}$.

Perpendicular Bisector Theorems	
	point of intersection forms the \qquad of the triangle.
	Theorem 5.3 Circumcenter Theorem
	Words The perpendicular bisectors of a triangle intersect at a point called the circumcenter that is equidistant from the vertices of the triangle. Example If P is the circumcenter of $\triangle A B C$, then $P B=P A=P C$.
Use the Circumcenter Theorem	The circumcenter can be on the interior, exterior, or side of a triangle. acute triangle obtuse triangle right triangle
	A triangular-shaped garden is shown. Can a fountain be placed at the circumcenter and still be inside the garden?
Using Circumcenter	Three people need to decide on a location to hold a monthly meeting. They will all be coming from different places in the city and they want to make the meeting location the same distance for each person. a. Explain why using circumcenter as the location for the meeting would be fairest for all. b. Locate the circumcenter of the triangle and tell what segments are congruent.

	Theorems Angle Bisectors
	5.4 Angle Bisector Theorem If a point is on the bisector of an angle, then it is equidistant from the sides of the angle. Example: If $\overrightarrow{B F}$ bisects $\angle D B E, \overrightarrow{F D} \perp \overrightarrow{B D}$, and $\overrightarrow{F E} \perp \overrightarrow{B E}$, then $D F=F E$.
	5.5 Converse of the Angle Bisector Theorem If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle. Example: If $\overline{F D} \perp \overrightarrow{B D}, \overrightarrow{F E} \perp \overrightarrow{B E}$, and $D F=F E$, then $\overrightarrow{B F}$ bisects $\angle D B E$.
	Suppose that in constructing a wooden roof truss, BC and BD are installed so that $\angle \mathrm{ACB}$ and $\angle \mathrm{ADB}$ are right angles and that $\mathrm{AC}=\mathrm{AD}$. What can you say about $\angle \mathrm{CBA}$ and $\angle \mathrm{ABD}$?
	Given: R is on the bisector of $\angle \mathrm{QPS}$. $\mathrm{RQ} \perp \mathrm{PQ}, \mathrm{RS} \perp \mathrm{PS}$ Prove: $\overline{R Q} \cong \overline{R S}$
Use the Angle Bisector Theorems	
Definitions	Perpendicular Bisector of a Triangle - a line perpendicular to the side and passing through its midpoint. Concurrent Lines (or rays or segments) - 3 or more lines that intersect Point of Concurrency - the point of intersection of concurrent lines Circumcenter - the point of concurrency of the perpendicular bisectors of a triangle. Angle Bisector of a Triangle - if a ray or segment bisects an angle of a triangle then it divides the two segments on either side proportionally. Incenter of a Triangle - a point of concurrency of the angle bisectors of a triangle.

	Theorem 5.6 Incenter Theorem
	Words The angle bisectors of a triangle intersect at a point called the incenter that is equidistant from the sides of the triangle. Example If P is the incenter of $\triangle A B C$, then $P D=P E=P F$.
	\qquad point of intersection forms the \qquad of the triangle. This point is \qquad from the sides of the triangle.
Using Angle Bisectors	The angle bisector of $\triangle X Y Z$ meet at point P. a. What segments are congruent? b. Find PT. PV.
Use the Incenter Theorem	A. Find $S U$ if S is the incenter of $\triangle M N P$. B. Find $m \angle S P U$ if S is the incenter of $\triangle M N P$.

5.2 Means and Altitudes of Triangles

I can...	1. Identify and use medians in triangles. 2. Identify and use altitudes in triangles.
Definitions	Median of a Triangle - A line segment with endpoints that are a vertex of a triangle and the midpoint of the side opposite the vertex. Centroid of a Triangle - The point of concurrency of the medians. Altitude of a Triangle - a segment from a vertex of the triangle to the line containing the opposite side and perpendicular to that side. Orthocenter of the Triangle - the point of concurrency of the altitudes of a triangle.
	\qquad point of intersection forms the \qquad of the triangle. This point is \qquad from the vertex to the midpoint of the opposite side of the triangle.
	Theorem 5.7 Centroid Theorem
	The medians of a triangle intersect at a point called the centroid that is two thirds of the distance from each vertex to the midpoint of the opposite side. Example If P is the centroid of $\triangle A B C$, then $A P=\frac{2}{3} A K, B P=\frac{2}{3} B L, \text { and } C P=\frac{2}{3} C J .$
Use the Centroid Theorem	a. C is the centroid of $\triangle G H J$ and $\mathrm{CM}=8$. Find HM and CH . b. In $\triangle X Y Z, P$ is the centroid and $Y V=12$. Find $Y P$ and $P V$.
	c. In $\triangle A B C, C G=4$. Find $G E$.

Orthocenter	Where is the orthocenter located in $\triangle A B C$? Is it inside, outside or on the triangle?						
	a. if $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{C}$?	b. $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=45^{\circ}$?	c. If $\mathrm{m} \angle \mathrm{A}=110^{\circ}$?				

| ConceptSumary Special Segments and Points in Triangles
 Name | Point of
 Eoncurrency | Special Property |
| :--- | :--- | :--- | :--- | :--- |
| | | |
| perpendicular | | |
| bisector | | |

5.3 Inequalities in Triangles

	Theorems Angle-Side Relationships in Triangles
	5.9 If one side of a triangle is longer than another side, then the angle opposite the longer side has a greater measure than the angle opposite the shorter side. Example: $X Y>Y Z$, so $m \angle Z>m \angle X$.
	5.10 If one angle of a triangle has a greater measure than another angle, then the side opposite the greater angle is longer than the side opposite the lesser angle. Example: $m \angle J>m \angle K$, so $K L>J L$.
Order Triangle Angle/Side Measures	Write the angles in order from smallest to largest. \qquad \qquad < \qquad Write the sides in order from shortest to longest. \qquad $<$ \qquad $<$ \qquad 3. Write the sides in order from longest to shortest. \qquad $<$ \qquad $<$ \qquad
	4. List the sides of the triangle shortest to longest.
	Compare. Write $<$, $>$, or $=$. 5. $P Q Q S$ 6. $Q S R S$ 7. $Q R \quad R S$ 8. $\mathrm{m} \angle C B E \quad \mathrm{~m} \angle C E B$ 9. $\mathrm{m} \angle D C E \quad \mathrm{~m} \angle C D E$ 10. $\mathrm{m} \angle E B C \quad \mathrm{~m} \angle E C B$

5.5 The Triangle Inequality

I can...	1. Use the Triangle Inequality Theorem to identify possible triangles. 2. Prove triangle relationships using the Triangle Inequality Theorem.
	Theorem Example
	Triangle Inequality Theorem The sum of any two side lengths of a triangle is greater than the third side length. $b+c>a$ $c+a>b$
Constructing a Triangle	Tell whether a trianlge can have sides witht the given lenths. Explain. 1. 3 in, 3 in, 8 in 2. 6 in, $6 \mathrm{in}, 12$ in 3. 9 in, $5 \mathrm{in}, 11 \mathrm{in}$
Possible triangles given side lenghts	The lengths of two sides of a triangle are given. Find the rangel of possible lenghts for the third side. 4. 4 and 19 5. 3.07 and 1.89 6. $3 \frac{5}{6}$ and $6 \frac{1}{2}$
Find Possible Side Lengths	In $\triangle P Q R, P Q=7.2$ and $Q R=5.2$. which measure cannot be $P R$?

$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Proof Using } \\ \text { Triangle } \\ \text { Inequality } \\ \text { Theorem }\end{array} & \begin{array}{l}\text { The towns of Jefferson, Kingston, and Newbury are } \\ \text { shown in the map below. Prove that driving first } \\ \text { from Jefferson to Kingston and then Kingston to } \\ \text { Newbury is a greater distance than driving from } \\ \text { Jefferson to Newbury. }\end{array} \\ \hline \begin{array}{ll}\text { Finding Possible } \\ \text { Side Lengths } \\ \text { and Angle } \\ \text { Measures }\end{array} & \text { Which of the following is a possible measure for } m \angle C: 45^{\circ}, 58^{\circ}, 80^{\circ}, \text { or } 90^{\circ} ?\end{array}\right\}$

5.6 Inequalities in Two Triangles

Example 5-6-4: Prove Triangle Relationships Using Hinge Theorem	Write a two-column proof. Given: $J K=H L ; J H \\| K L$ $m \angle J K H+m \angle H K L<m \angle J H K+m \angle K H L$ Prove: $J H<K L$
Example 5-6-5: Prove Relationships Using Converse of Hinge Theorem	Given: $S T=P Q ; S R=Q R ; S T=\frac{2}{3} S P$ Prove: $m \angle S R P>m \angle P R Q$

