Warm Up

Lesson Presentation

Lesson Quiz

7-3 Triangle Similarity: AA, SSS, SAS

Warm Up

Solve each proportion.

$$
\begin{array}{llr}
\text { 1. } \frac{6}{11}=\frac{8}{b} & \text { 2. } \frac{5}{z}=\frac{z}{20} & \text { 3. } \frac{3}{10}
\end{array}=\frac{6}{x+12}
$$

4. If $\triangle Q R S \sim \triangle X Y Z$, identify the pairs of congruent angles and write 3 proportions using pairs of corresponding sides.

$$
\begin{aligned}
& \angle Q \cong \angle X ; \angle R \cong \angle Y ; \angle S \cong \angle Z ; \\
& \frac{Q R}{X Y}=\frac{R S}{Y Z} ; \frac{R S}{Y Z}=\frac{Q S}{X Z} ; \frac{Q S}{X Z}=\frac{Q R}{X Y}
\end{aligned}
$$

7-3 Triangle Similarity: AA, SSS, SAS

Objectives

Prove certain triangles are similar by using AA, SSS, and SAS.

 Use triangle similarity to solve problems.
7-3 Triangle Similarity: AA, SSS, SAS

There are several ways to prove certain triangles are similar. The following postulate, as well as the SSS and SAS Similarity Theorems, will be used in proofs just as SSS, SAS, ASA, HL, and AAS were used to prove triangles congruent.
Postulate 7-3-1 Angle-Angle (AA) Similarity

POSTULATE	HYPOTHESIS	CONCLUSION	
If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.			

7-3 Triangle Similarity: AA, SSS, SAS

Example 1: Using the AA Similarity Postulate

Explain why the triangles are similar and write a similarity statement.

Since $\overline{A C} \| \overline{D C}, \angle B \cong \angle E$ by the Alternate Interior Angles Theorem. Also, $\angle A \cong \angle D$ by the Right Angle Congruence Theorem. Therefore $\triangle A B C \sim \triangle D E C$ by AA~.

7-3 Triangle Similarity: AA, SSS, SAS

Check It Out! Example 1

Explain why the triangles are similar and write a similarity statement.

By the Triangle Sum Theorem, $\mathrm{m} \angle C=47^{\circ}$, so $\angle C \cong \angle F$. $\angle B \cong \angle E$ by the Right Angle Congruence Theorem. Therefore, $\triangle A B C \sim \triangle D E F$ by $A A \sim$.

7-3 Triangle Similarity: AA, SSS, SAS

Theorem 7-3-2 THEOREM	HYPOTHESIS	CONCLUSION	
If the three sides of one triangle are proportional to the three corresponding sides of another triangle, then the triangles are similar.			

7-3 Triangle Similarity: AA, SSS, SAS

Theorem 7-3-3 Side-Angle-Side (SAS) Similarity

THEOREM	HYPOTHESIS	CONCLUSION
If two sides of one triangle are proportional to two sides of another triangle and their included angles are congruent, then the triangles are similar.		$C B$

7-3 Triangle Similarity: AA, SSS, SAS

Example 2A: Verifying Triangle Similarity

Verify that the triangles are similar.

$\triangle P Q R$ and $\triangle S T U$

$$
\begin{aligned}
& \frac{P Q}{S T}=\frac{3}{4.5}=\frac{2}{3} \\
& \frac{Q R}{T U}=\frac{3}{4.5}=\frac{2}{3} \\
& \frac{P R}{S U}=\frac{2}{3}
\end{aligned}
$$

Therefore $\triangle P Q R \sim \triangle S T U$ by SSS ~.

7-3 Triangle Similarity: AA, SSS, SAS

Example 2B: Verifying Triangle Similarity

Verify that the triangles are similar.
$\triangle D E F$ and $\triangle H J K$

$\angle D \cong \angle H$ by the Definition of Congruent Angles.

$$
\frac{D E}{H J}=\frac{2}{1}=2 \quad \frac{D F}{H K}=\frac{5.8}{2.9}=2
$$

Therefore $\triangle D E F \sim \triangle H J K$ by SAS ~.

7-3 Triangle Similarity: AA, SSS, SAS

Check It Out! Example 2

Verify that $\triangle T X U \sim \triangle V X W$.
$\angle T X U \cong \angle V X W$ by the Vertical Angles Theorem.

$$
\frac{T X}{V X}=\frac{12}{16}=\frac{3}{4} \quad \frac{X U}{X W}=\frac{15}{20}=\frac{3}{4}
$$

Therefore $\triangle T X U \sim \triangle V X W$ by SAS ~.

7-3 Triangle Similarity: AA, SSS, SAS

Example 3: Finding Lengths in Similar Triangles

Explain why $\triangle A B E \sim \triangle A C D$, and then find $C D$.

Step 1 Prove triangles are similar.

$\angle A \cong \angle A$ by Reflexive Property of \cong, and $\angle B \cong \angle C$ since they are both right angles.

Therefore $\triangle A B E \sim \triangle A C D$ by $A A \sim$.

7-3 Triangle Similarity: AA, SSS, SAS

Example 3 Continued

Step 2 Find CD.
$\frac{C D}{B E}=\frac{C A}{B A}=\frac{C B+B A}{B A}$
$\frac{x}{5}=\frac{3+9}{9}$
$x(9)=5(3+9)$
$9 x=60$
$x=\frac{60}{9}=6 \frac{2}{3}$

Corr. sides are proportional.
Seg. Add. Postulate.
Substitute x for CD, 5 for BE, 3 for $C B$, and 9 for $B A$.
Cross Products Prop.
Simplify.
Divide both sides by 9.

7-3 Triangle Similarity: AA, SSS, SAS

Check It Out! Example 3

Explain why $\triangle R S V \sim \Delta R T U$ and then find $R T$.

Step 1 Prove triangles are similar.
It is given that $\angle S \cong \angle T$.
 $\angle R \cong \angle R$ by Reflexive Property of \cong.

Therefore $\triangle R S V \sim \Delta R T U$ by $A A \sim$.

7-3 Triangle Similarity: AA, SSS, SAS

Check It Out! Example 3 Continued

Step 2 Find $R T$.

$$
\frac{R T}{R S}=\frac{T U}{S V} \quad \text { Corr. sides are proportional. }
$$

$\begin{array}{cl}\frac{R T}{10}=\frac{12}{8} & \begin{array}{ll}\text { Substitute } R S \text { for 10, } \\ T U, 8 \text { for } S V .\end{array} \\ T(8)=10(12) & \text { Cross Products Prop. }\end{array}$
$8 R T=120 \quad$ Simplify.
$R T=15 \quad$ Divide both sides by 8.

7-3 Triangle Similarity: AA, SSS, SAS

You learned in Chapter 2 that the Reflexive, Symmetric, and Transitive Properties of Equality have corresponding properties of congruence. These properties also hold true for similarity of triangles.

Properties of Similarity

```
Reflexive Property of Similarity
\triangleABC ~ \triangleABC (Reflex. Prop. of ~)
Symmetric Property of Similarity
If }\triangleABC~\triangleDEF,\mathrm{ then }\triangleDEF~\triangleABC. (Sym. Prop. of ~
Transitive Property of Similarity
If }\triangleABC~\triangleDEF\mathrm{ and }\triangleDEF~\triangleXYZ, then \triangleABC~\triangleXYZ.
(Trans. Prop. of ~)
```

