

Trichuris trichiura

Phylum Nematoda

Class Enoplea

Order Trichocephalida

Family Trichuridae

Anatomy

Endoparasites

 Can be found in the digestive tract of the host

- Only the adults eat,
 - They feed on tissue secretions of intestinal epithelium

Anatomy

- Dioecious
 - Females typically larger than male.
 - Male has curled posterior end.
- Common name: Whipworm
 - Narrow anterior esophagus and a thick posterior anus.
- Attach to host via slender anterior end.
- Size varies from 3 to 5 cm.
- Typically pink

Reproduction

- Each female produces 2,000-6,000 eggs per day.
 - Life expectancy of a worm within a host is \sim 1-3 years.
- Females may produce a pheromone to attract males.
- Males have a spiracle surrounded by a sheath with an ejaculatory duct
- The curved portion of the male coils around the females genital pore.
- The male uses spicules to hold the female in place during copulation.

Egg Anatomy

Barrel shaped

Thick walled

Plug at each pole

Transmission

- The main mode of transmission is through contaminated water, soil, and food.
 - Touching contaminated soil, typically in areas with poor sanitation practices.

Children are the most effected by whipworms

Epidemiology

- Soil-transmitted helminthes are considered a neglected tropical disease, despite their prevalence.
 - Most prevalent in the under developed countries.
 - Chronic illness, not an acute illness.
 - Effect of this infection on economic and education burden is not quantified.
- STH prevalence is generally higher in rural areas due to,
 - Poor sanitary measures
 - Inadequate water supply
 - Overcrowding

Geographic Distribution

- The global prevalence of *Trichuris trichiura* was 795 million (2003)
 - 3rd most common round worm of humans.
 - Most frequent in areas with tropical weather and poor sanitation practices.
 - Most prevalent in equatorial Africa and Southeast Asia.

Lifecycle

Eggs pass out of body via feces

Become infective after embryonation

Eggs hatch in small intestine & migrate to large intestine

Reproduce with nearby worms

Molt to become adults in large intestine

Trichuriasis

- Infects;
 - Wild/domestic canines
 - Wild/domestic pigs
 - Humans
 - Non human primates

Host species	Sampled numbers	
	Host	Parasite ^{a, b}
Golden snub-nosed monkey (Rhinopithecus roxellana)	1	1 (1)
Anubis baboon (<i>Papio anubis</i>)	3	4 (1/1/2)
Vervet monkey (Chlorocebus aethiops)	1	2 (2)
Northern pig-tailed macaque (Macaca leonina)	1	3 (3)
Rhesus monkey (Macaca mulatta)	2	4 (2/2)
Northern white-cheeked gibbon (Nomascus leucogenys)	1	2 (2)
Hamadryas baboon (Papio hamadryas)	2	2 (1/1)
Black snub-nosed monkey (Rhinopithecus bieti)	2	2 (1/1)

Xie, Y. et al. Genetic characterization and phylogenetic status of whipworms (*Trichuris* spp.) from captive non-human primates in China, determined by nuclear and mitochondrial sequencing.

Disease

Trichuriasis

Abdominal colitis

• *Trichuris* dysentery syndrome

Symptoms

Light Infections

Asymptomatic

Heavy Infections

- Diarrhea
- Abdominal pain
- Malnutrition (anemia)
- Rectal prolapse

Pathology

Diarrhea/Malnutrition

 Burrowing of worm heads into intestinal epithelium can result in increased fluid secretion and decreased absorption of fluid in colon.

Abdominal Pain

- Adults burrow through mucosa in large intestine.
- Leads to cell destruction and immune response

Rectal Prolapse

 High numbers of worms embedded in the rectum can lead to excess fluid in the body, leading to rectal prolapse.

Diagnosis

- Microscopically identifying the presence of eggs in a stool sample.
 - Difficult to identify in light infections.
 - Kato-Katz technique, a thick smear of stool sample is prepared prior to searching for parasite eggs.
- Proctoscopy
 - Examination of rectal mucosa can occasionally demonstrate adult worms.
- Colonoscopy
 - Identify adults worms embedded in colon

Adult *T. trichiura* found during colonoscopy.

Treatment

- Albendazole (egg/larval/adult stages)
 - Anthelminticagent
 - Blocks egg production and development.
 - Impairs uptake of glucose by the larval and adult stages and depletes glycogen stores.
- Ivermectin
 - Used in combination with Albendazole
 - Interferes with nervous system and muscle function
- Mebendazole (larval/adult stages)
 - Anthelmintic agent
 - Poorly absorbed into blood stream.
 - Used alone in mild to moderate cases, kills parasites slowly with limited adverse side effects.
 - Selectively and irreversibly blocks glucose uptake and other nutrients in the intestine.

References

Stroehlein, A.J. 2017. Whipworm kinomes reflect a unique biology and adaptation to the host animal. International Journal for Parasitology. 47:13. 857-866.

Mohd-Sharharuddin, N. 2019. Molecular characterization of Trichuris species isolated from humans, dogs, and cats in a rural community in Peninsular Malaysia. Acta Tropica. 190:269-272.

Silber, S.A. 2017. Efficacy and Safety of a Single-Dose Mebendazole 500 mg Chewable, Rapidly-Disintegrating Tablet for *Ascaris lumbricoides* and *Trichuris trichiura* Infection Treatment in Pediatric Patients: A Double-Blind, Randomized, Placebo-Controlled, Phase 3 Study. The American Society of Tropical Medicine and Hygiene. 97:6. 1851-1856.

Silver, Z., Kaliappan, S., Samuel, P., Venugopal, S., Kang, G., Sarkar, R., Ajjampur, S. 2018. Geographical distribution of soil transmitted helminthes and the effects of community type in South Asia and South East Asia – A systematic review. PLOS Neglected Tropical Diseases. 12:1.

Manz, K., Clowes, P., Kroidl, I., Kowuor, D., Gledmacher, C., Ntinginya, N., Maboko, L., Hoelscher, M., Saathoff, E. 2017. *Trichuris trichiura* infection and its relation to environmental factors in Mbeya region, Tanzania: A cross-sectional, population-based study. 12:4

Meekums, H., Hawash, M., Sparks, A., Oviedo, Y., Sandoval, C., Chico, M., Stothard, J., Cooper, P., Nejsum, P., Betson, M. 2015. A genetic analysis of *Trichuris trichiura* and *Trichuris suis* from Ecuador. BMC Parasites and Vectors. 8:168.

Severin, B., Moldpveanu, A., Adumitresi, C., Ilasca, O. 2017. Particularies Regarding the Evolution of Trichinosis in Constanta County. ARS Medical Tomitana. 22:3. 164-168

Panayotova, M., Muchtarov, M., Popov, D., Boeva-Bangyozova, V. 2017. Trichinosis in childhood – current aspects. Medical University Sofia – Central Medical Library. 53:1. 5-12.

Ravasi, D., O'Riain, M., Illing, N. 2012. Phylogenetic Evidence That Two Distinct Trichuris Genotypes Infect Both Humans and Non-Human Primates. PLoS ONE. 7:8.

Speich, B., Ame, S., Keiser, J. 2012. Efficacy and Safety of Nitazoxanide, Albendazole, and Nitazoxanide-Albendazole against *Trichuris trichiura* Infection: A Randomized Controlled Trial. PloS Neglected Tropical Disease. 6:6.