Supporting Information

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

dual-model rechargeable Zn-CO₂/Zn-O₂ batteries

Rui Yang^{a, b}, Jiafang Xie^a, Qin Liu^a, Yiyin Huang^a, Jiangquan Lv^c, Muhammad Arsalan Ghausi^{a, b}, Xueyuan Wang^{a, b}, Zhen Peng^{a, b}, Maoxiang Wu^a, and Yaobing Wang^{*a}

a: Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

b: University of Chinese Academy of Sciences, Beijing 100049, China

c: College of Electronics and Information Science & Organic Optoelectronics Engineering Research Center of Fujian's Universities, Fujian Jiangxia University, Fuzhou, Fujian 350108, P.R. China

*Corresponding author - Tel: 0591-22853916; E-mail: wangyb@fjirsm.ac.cn

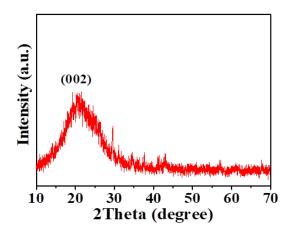


Figure S1. XRD patterns of NiPG.

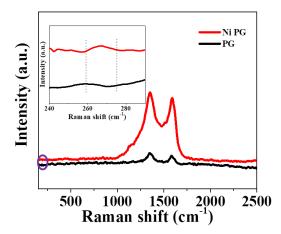
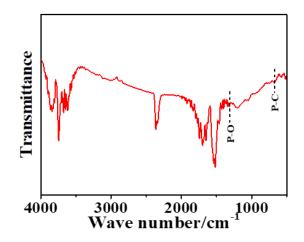
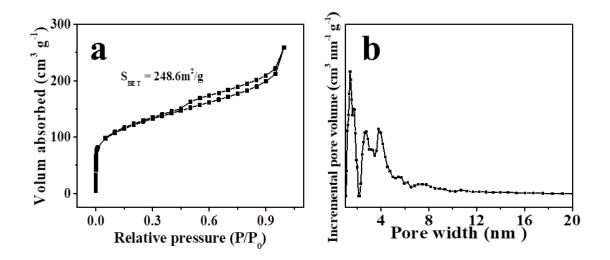
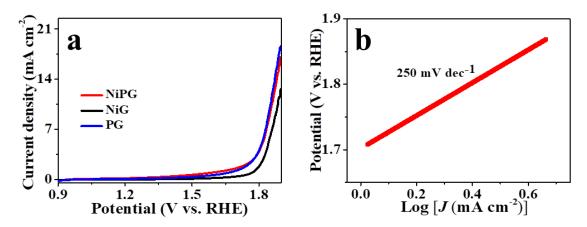
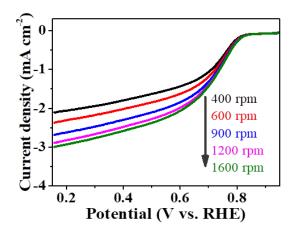
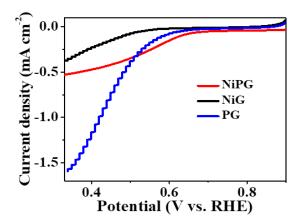


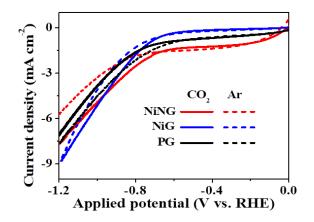
Figure S2. Raman spectra of NiPG and PG. The inset profile is the purple circle area.

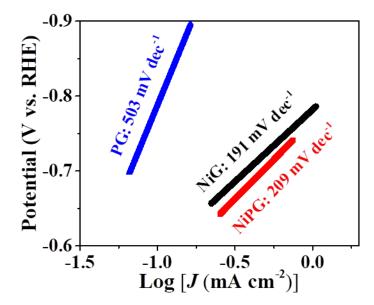
There was obvious peak could be observed around 265 cm⁻¹ by Raman which was marked in inset profile, suggesting the absence of Ni-N bond^[1].


Figure S3. IR spectrum of NiPG.


Figure S4. BET characterization of NiPG. (a) Nitrogen adsorption-desorption isotherm and (b) corresponding pore size distribution curve of NiPG.


Figure S5. Neutral OER performance on NiPG, NiG and PG. (a) Neutral OER LSV curve and (b) Tafel slope of NiPG. Electrolyte: 3 M KHCO₃ solution including 1.5 M KCl.


Figure S6. ORR LSV curves on NiPG at a series of rotating speeds. Electrolyte: 0.1 M KOH solution.

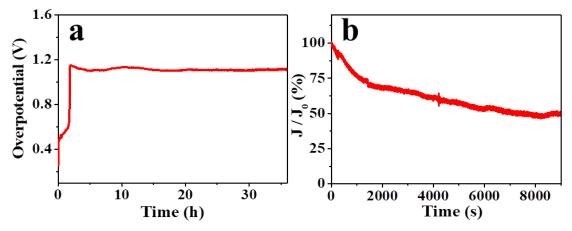

Figure S7. Neutral ORR performance on NiPG, NiG and PG. Electrolyte: 3 M KHCO₃ solution including 1.5 M KCl.

Figure S8. LSV scan of CDRR on NiPG, NiG and PG. Electrolyte: CO₂ saturated 0.1 M KHCO₃ solution.

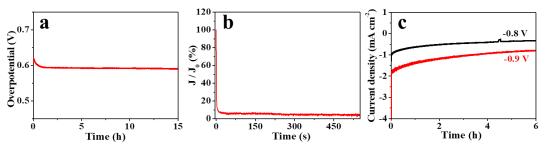
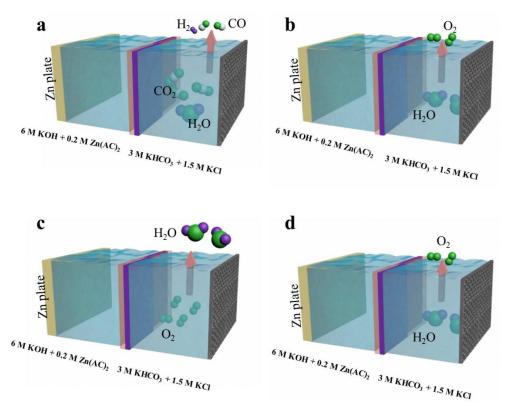


Figure S9. Tafel slope of CDRR on NiPG, NiG and PG. Electrolyte: 0.1 M KHCO₃ solution saturated with CO₂.


Figure S10. Electrocatalytic durability on NiPG in alkaline solution. (a) OER in 1 M KOH and (b) ORR in 0.1 M KOH solution.

The OER test was conducted at a constant current density of 5 mA cm⁻² and the ORR test was conducted at a potential of 0.714 V vs. RHE.

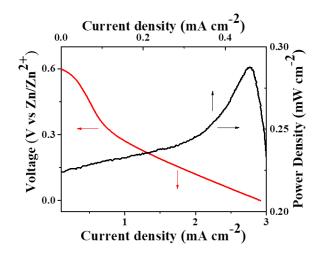


Figure S11. Electrocatalytic durability on NiPG in neutral solution. (a) OER and (b) ORR in 3 M KHCO₃ including 1.5 M KCl solution, and (c) CDRR in 0.1 M KHCO₃ solution, respectively.

The OER test was conducted at a constant current density of 5 mA cm⁻². The ORR test was conducted at a potential of 0.45 V vs. RHE. The CDRR was tested at a potential of -0.8 V and -0.9 V vs. RHE.

Figure S12. The scheme of aqueous rechargeable dual-model battery device. Zn CO_2 battery mode of (a) discharge and (b) charge process. Zn O_2 battery model of (c) discharge and (d) charge process.

Figure S13. The Polarization and power density curves of rechargeable Zn-CO₂ batteries with NiPG as cathode.

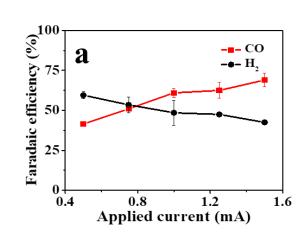


Figure S14. CO and H_2 FEs of Zn-CO₂ batteries with error bar at a series of discharge currents.

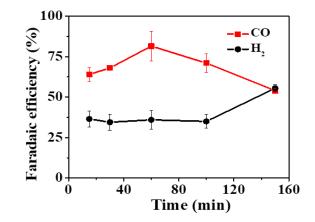


Figure S15. CO and H_2 FEs of Zn-CO₂ batteries at discharge current of 0.5 mA.

Catalysis	E (V) @j ₁₀ (1 M KOH)	E _{1/2} (V) (0.1 M KOH)	Ref.	
	OER	ORR		
NiPG	1.65	0.736	This work	
N,P and F tri-doped Graphene	1.80	0.72	Angew. Chem. Int. Ed., 2016, 55, 13296-13300	
Co/N-C-800	1.60	0.74	Nanoscale, 2014, 6, 15080-15089	
Fe@N-C-700	1.71	0.83	Nano Energy, 2015, 13, 387-396	
Fe-N ₄ SAs/NPC	1.66	0.885	Angew. Chem. Int. Ed., 2018, 57, 8614-8618	
N/Co-doped PCP//NRGO	1.66	0.86	Adv. Funct. Mater., 2015, 25, 872-882	
N-graphene/CNT	1.65	0.69	Angew. Chem. Int. Ed., 2014, 53, 6496-6500	
Defect Graphene	^a N.A.	0.76	Adv. Mater. 2016, 28, 9532–9538	
Fe-N/C-800	N.A.	0.899	J. Am. Chem. Soc. 2016, 138, 3570-3578	
Fe-N/C-800	N.A.	0.81	J. Am. Chem. Soc. 2015, 137, 5555-5562	

Table S1. Comparison in OER and ORR performance of some multifunctionalcatalysts reported recently in literatures.

Note: ^aN.A. stands for not given. All the potentials are calibrated and converted to reversible hydrogen electrode.

Catalysis	Electrolyte	Initial CO FE (overpotential)	Max CO FE (overpotential)	Ref.
NiPG	0.1 M KHCO ₃	56% (530 mV)	>90% (690mV)	This work
Ni-N-Gr	0.1 M KHCO3	20% (390 mV)	~90% (590 mV)	Small 2016, 12, 6083-6089
Ni-N4	0.5 M KHCO3	67% (290 mV)	99% (700mV)	J. Am. Chem. Soc. 2017, 139, 14889-14892
NCNTs	0.5 M NaHCO ₃	<10% (290 mV)	90% (790 mV)	ChemSusChe m 2016, 9, 1085-1089
FC	0.1 M KHCO3	~58% (370 mV)	89% (510 mV)	Angew. Chem. Int. Ed. 2018, 57, 9640 – 9644
3D NG	0.1 M KHCO3	25% (190 mV)	85% (470 mV)	Nano Lett. 2016, 16, 466 – 470

Table S2. Summary of overpotentials for CO₂ reduction to CO on reported catalysts

Note: All the potentials are calibrated and converted to reversible hydrogen electrode.

Reference:

[1] R. Wysokinski, B. Morzyk-Ociepa, T. Glowiak, D. Michalska, J. Mol. Struct. 2002, 606, 241-251.