Math 30-1: Trigonometry Two PRACTICE EXAM

1. The general solution of $\tan \theta=0$ is:
A. $\theta=\frac{\pi}{4}+n \pi, n \in I$
B. $\theta=\frac{\pi}{4}+n\left(\frac{\pi}{2}\right), n \in I$
C. $\theta=\frac{\pi}{2}+n \pi, n \in I$
D. $\theta=n \pi, n \in I$
2. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos \theta=2$ has:
A. Solutions at $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$.
B. Solutions at $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$.
C. Solutions at $(0,2),(\pi, 2)$, and $(2 \pi, 2)$.
D. No solution. The graph of $y=\cos \theta$ and the graph of $y=2$ have no point of intersection.
3. The general solution of $\cos \theta=-\frac{\sqrt{3}}{2}$ is:
A. $\theta=30^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ and $\theta=150^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathrm{I}$
B. $\theta=150^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ and $\theta=210^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathrm{I}$
C. $\theta=150^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ and $\theta=330^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathrm{I}$
D. $\theta=150^{\circ}+n\left(180^{\circ}\right), n \in I$
4. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos \theta=\frac{1}{2}$ has:
A. No solution.
B. Solutions at the θ-intercepts of $y=2 \cos \theta-1$.
C. The solutions $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$.
D. The solutions $\theta=\frac{2 \pi}{3}, \frac{5 \pi}{3}$.
5. Which of the following techniques cannot be used to solve $\sin \theta=-0.30$?
A. Solving with the $\sin ^{-1}$ feature of a calculator.
B. Finding angles on the unit circle.
C. Finding point(s) of intersection.
D. Finding θ-intercepts.
6. The general solution of $\sec \theta=-2$ is:
A. $\theta=\frac{5 \pi}{6}+n(2 \pi)$ and $\theta=\frac{7 \pi}{6}+n(2 \pi), n \in I$
B. $\theta=\frac{\pi}{3}+n(2 \pi)$ and $\theta=\frac{2 \pi}{3}+n(2 \pi), n \in I$
C. $\theta=\frac{2 \pi}{3}+n(2 \pi)$ and $\theta=\frac{4 \pi}{3}+n(2 \pi), n \in I$
D. No solution.
7. $\csc \theta$ is undefined at:
A. $\theta=\frac{\pi}{4}+n\left(\frac{\pi}{2}\right), n \in I$
B. $\theta=\frac{\pi}{2}+n \pi, n \in I$
C. $\theta=n \pi, n \in I$
D. $\theta=\mathrm{n}(2 \pi), \mathrm{n} \in \mathrm{I}$
8. Over the domain $0^{\circ} \leq \theta \leq 360^{\circ}$, the equation $\sec \theta=-2.3662$ has solutions of:
A. $\theta=115^{\circ}, 245^{\circ}$
B. $\theta=120^{\circ}, 240^{\circ}$
C. $\theta=125^{\circ}, 235^{\circ}$
D. $\theta=130^{\circ}, 230^{\circ}$
9. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin \theta \cos \theta=\cos \theta$ has solutions of:
A. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$
C. $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
D. $\theta=\frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{2}$
10. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \cos ^{2} \theta=\cos \theta$ has solutions of:
A. $\theta=\frac{\pi}{3}, \frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
B. $\theta=\frac{\pi}{3}, \frac{5 \pi}{3}$
C. $\theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
D. $\theta=0, \pi, 2 \pi$
11. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\tan ^{4} \theta-\tan ^{2} \theta=0$ has solutions of:
A. $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$
B. $\theta=0, \pi, 2 \pi$
C. $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
D. $\theta=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{7 \pi}{4}, 2 \pi$
12. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin ^{2} \theta-\sin \theta-1=0$ has solutions of:
A. $\theta=0, \pi, 2 \pi$
B. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
C. $\theta=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
D. $\theta=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
13. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\csc ^{2} \theta-3 \csc \theta+2=0$ has solutions of:
A. $\theta=\pi$
B. $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
C. $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}$
D. $\theta=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi$
14. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin ^{3} \theta-5 \sin ^{2} \theta+2 \sin \theta=0$ has solutions of:
A. $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $\theta=0, \pi, 2 \pi$
C. $\theta=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi, 2 \pi$
D. $\theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
15. Which trigonometric equation can be classified as a trigonometric identity?
A. $\sin x=-\frac{1}{2}$
B. $\tan x=1$
C. $\csc x=\frac{1}{\sin x}$
D. $\sec x=$ undefined
16. The expression $\cot x \sin x \sec x$ is equivalent to:
A. 1, with no domain restrictions.
B. 1, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\sin x$, with no domain restrictions.
D. $\cos x$, with the domain restriction $x \neq n \pi$.
17. The expression $\frac{\sin x \sec x}{\cot x}$ is equivalent to:
A. 1, with no domain restrictions.
B. $\tan x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\tan ^{2} x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
D. $\tan ^{2} x$, with the domain restriction $x \neq n \pi$.
18. The expression $\cos x-\cos ^{3} x$ is equivalent to:
A. $\sin ^{3} x$, with no domain restrictions.
B. $\cos ^{2} x$, with no domain restrictions.
C. $\cos x \sin ^{2} x$, with no domain restrictions.
D. $\cos ^{2} x \sin ^{2} x$, with no domain restrictions.
19. The expression $\frac{\sec ^{2} x-1}{1+\tan ^{2} x}$ is equivalent to:
A. $\sin x$, with no domain restrictions.
B. $\sin ^{2} x$, with the domain restriction $x \neq n \pi$.
C. $\sin ^{2} x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
D. $\sin ^{2} x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
20. The expression $\frac{\sin ^{2} x}{1-\cos x}$ is equivalent to:
A. $1+\cos x$, with the domain restriction $x \neq n(2 \pi)$.
B. $1+\cos x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
C. $1-\cos x$, with the domain restriction $x \neq n(2 \pi)$.
D. $1-\cos x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
21. The expression $1+\sec x$ is equivalent to:
A. $\frac{\cos x+1}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $\frac{\cos x+1}{\cos x}$, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\frac{\sin x+1}{\sin x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $\frac{\sin x+1}{\sin x}$, with the domain restriction $x \neq \frac{n \pi}{2}$.
22. The expression $\cot x+\tan x$ is equivalent to:
A. $\sec x \csc x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $\sec x \csc x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
C. $\cos x \sin x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $\cos x \sin x$, with the domain restriction $x \neq \frac{n \pi}{2}$.
23. The expression $\frac{\cos x}{1+\sin x}+\frac{\cos x}{1-\sin x}$ is equivalent to:
A. $2 \cos x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $2 \sin x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
C. $2 \sec x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $2 \csc x$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
24. The expression $\frac{\cos x}{1-\sin x}$ is equivalent to:
A. $\frac{1+\sin x}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
B. $\frac{1+\sin x}{\cos x}$, with the domain restriction $x \neq n \pi$.
C. $\frac{1-\sin x}{\cos x}$, with the domain restriction $x \neq \frac{\pi}{2}+n \pi$.
D. $\frac{1-\sin x}{\cos x}$, with the domain restriction $x \neq n \pi$.
25. The expression $\sin ^{4} x-\cos ^{4} x$ is equivalent to:
A. $2 \sin ^{2} x-1$, with no domain restrictions.
B. 1-2 $\sin ^{2} x$, with no domain restrictions.
C. $2 \cos ^{2} x-1$, with no domain restrictions.
D. 1-2 $\cos ^{2} x$, with no domain restrictions.
26. The expression $\frac{1}{5} \sin ^{2} x+\frac{1}{5} \cos ^{2} x$ is equivalent to:
A. $\frac{1}{25}$, with no domain restrictions.
B. $\frac{1}{5}$, with no domain restrictions.
C. $\frac{2}{5}$, with no domain restrictions.
D. 5 , with no domain restrictions.
27. The false statement regarding $\sin x=\tan x \cos x$ is:
A. The left side and right side are equal algebraically.
B. The left side and right side are equal when $x=\frac{\pi}{3}$.
C. The left side and right side have the same non-permissible values.
D. The graph of $y=\sin x$ is continuous but the graph of $y=\tan x \cos x$ has holes.
28. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sin ^{2} x-\cos x-1=0$ has solutions of:
A. $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
C. $x=\frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}$
D. $x=\frac{4 \pi}{3}, \pi, \frac{5 \pi}{3}$
29. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $3-3 \csc x+\cot ^{2} x=0$ has solutions of:
A. $x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
B. $x=\frac{7 \pi}{6}, \frac{3 \pi}{2}, \frac{11 \pi}{6}$
C. $x=\frac{\pi}{3}, \frac{\pi}{2}, \frac{5 \pi}{3}$
D. $x=\frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
30. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $2 \sec ^{2} x-\tan ^{4} x=-1$ has solutions of:
A. $x=\frac{4 \pi}{3}, \frac{5 \pi}{3}$
B. $x=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
C. $x=\frac{\pi}{6}, \frac{\pi}{3}, \frac{2 \pi}{3}, \frac{5 \pi}{6}$
D. $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
31. If the value of $\sin x=\frac{4}{7}, 0 \leq x \leq \frac{\pi}{2}$, the value of $\cos x$ within the same domain is:
A. $\cos x=-\frac{1}{2}$
B. $\cos x=-\frac{4}{7}$
C. $\cos x=\frac{7}{4}$
D. $\cos x=\frac{\sqrt{33}}{7}$
32. Using the triangle to the right, the expression $\frac{\sqrt{9-b^{2}}}{b^{2}}$ can be rewritten as:
A. $\frac{\cos \theta}{3 \sin ^{2} \theta}$
B. $\frac{\sin \theta}{3 \cos ^{2} \theta}$
C. $\frac{3 \cos ^{2} \theta}{\sin \theta}$
D. $\frac{3 \sin ^{2} \theta}{\cos \theta}$

a $b=3 \sin \theta$
33. The exact value of $\sin \left(\frac{\pi}{2}-\frac{\pi}{6}\right)$ is:
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1+\sqrt{3}}{2}$
D. $\frac{1-\sqrt{3}}{2}$
34. A trigonometric expression equivalent to $\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \tan \frac{\pi}{6}}$ is:
A. $\tan \left(\frac{\pi}{12}\right)$
B. $\tan \left(\frac{\pi}{6}\right)$
C. $\tan \left(\frac{\pi}{3}\right)$
D. $\tan \left(-\frac{\pi}{3}\right)$
35. The exact value of $\sin \left(\frac{5 \pi}{12}\right)$ is:
A. $\frac{\sqrt{6}+\sqrt{2}}{4}$
B. $\frac{\sqrt{6}-\sqrt{2}}{4}$
C. $\frac{\sqrt{6}}{2}$
D. $\sqrt{3}$
36. $\sin x$ is equivalent to the expression:
A. $1-2 \sin ^{2}\left(\frac{1}{4} x\right)$
B. $\cos ^{2} x-\sin ^{2} x$
C. $2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)$
D. $-\cos x$
37. The expression $\cos 2 x+2 \sin ^{2} x$ is equivalent to:
A. 1
B. $\sin x$
C. $\cos ^{2} x$
D. $\frac{1}{2} \tan 2 x$
38. The expression $\cos ^{4} x-\sin ^{4} x$ is equivalent to:
A. $\sin ^{2} x$
B. $\cos ^{2} x$
C. $\cos 2 x$
D. $\sin 2 x$
39. The expression $\sin 3 x$ is equivalent to:
A. $\sin ^{2}(2 x)$
B. $\sin (2 x) \cos x$
C. $\sin (2 x) \sin x$
D. $3 \sin x-4 \sin ^{3} x$
40. The expression $\cos 34^{\circ} \cos 41^{\circ}-\sin 34^{\circ} \sin 41^{\circ}$ is equivalent to:
A. $\frac{\sqrt{6}-\sqrt{2}}{4}$
B. $\frac{\sqrt{6}+\sqrt{2}}{4}$
C. $\sqrt{2}$
D. $\sqrt{3}$
41. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos 2 x=\cos ^{2} x$ has solutions of:
A. $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
B. $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
C. $x=\frac{\pi}{2}, \frac{3 \pi}{2}$
D. $x=0, \pi, 2 \pi$
42. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\sin x \cos x=\frac{1}{4}$ has solutions of:
A. $x=\frac{\pi}{12}, \frac{5 \pi}{12}$
B. $x=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}$
C. $x=\frac{\pi}{2}, \frac{3 \pi}{2}$
D. $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
43. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos 2 x-\cos x=0$ has solutions of:
A. $x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}, 2 \pi$
B. $x=0, \frac{4 \pi}{3}, \frac{5 \pi}{3}, 2 \pi$
C. $x=\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$
D. $x=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$
44. Over the domain $0 \leq \theta \leq 2 \pi$, the equation $\cos (x+\pi)-\cos ^{2} x=0$ has solutions of:
A. $x=0, \pi, 2 \pi$
B. $x=\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}$
C. $x=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$
D. $x=\frac{5 \pi}{4}$

Trigonometry Two Practice Exam - ANSWER KEY

1. D Trigonometric Equations, Example 1c
2. D Trigonometric Equations, Example 2d
3. B Trigonometric Equations, Example 3b
4. B Trigonometric Equations, Example 4b
5. B Trigonometric Equations, Example 6
6. CTrigonometric Equations, Example 7a
7. C Trigonometric Equations, Example 8b
8. A Trigonometric Equations, Example 12
9. C Trigonometric Equations, Example $14 a$
10. A Trigonometric Equations, Example 15c
11. D Trigonometric Equations, Example 15d
12. C Trigonometric Equations, Example 16a
13. B Trigonometric Equations, Example 16b
14. C Trigonometric Equations, Example 16c
15. C Trigonometric Equations, Example 17a
16. B Trigonometric Equations, Example 20
17. C Trigonometric Identities I, Example 1b
18. B Trigonometric Identities I, Example 3b
19. C Trigonometric Identities I, Example 4a
20. C Trigonometric Identities I, Example 5b
21. D Trigonometric Identities I, Example 6b
22. A Trigonometric Identities I, Example 6c
23. A Trigonometric Identities I, Example 7a
24. B Trigonometric Identities I, Example 7c
25. C Trigonometric Identities I, Example 8c
26. A Trigonometric Identities I, Example 8d
27. A Trigonometric Identities I, Example 9b
28. B Trigonometric Identities I, Example 10c
29. C Trigonometric Identities I, Example 12
30. B Trigonometric Identities I, Example 15a
31. A Trigonometric Identities I, Example 16a
32. D Trigonometric Identities I, Example 17a
33. D Trigonometric Identities I, Example 18a
34. A Trigonometric Identities I, Example 19a
35. B Trigonometric Identities II, Example 1b
36. A Trigonometric Identities II, Example 2b
37. A Trigonometric Identities II, Example 3b
38. C Trigonometric Identities II, Example 6b (iii)
39. A Trigonometric Identities II, Example 9a
40. C Trigonometric Identities II, Example 10a
41. D Trigonometric Identities II, Example 12d
42. A Trigonometric Identities II, Example 13c
43. D Trigonometric Identities II, Example 14a
44. B Trigonometric Identities II, Example 15d
45. A Trigonometric Identities II, Example 16a
46. C Trigonometric Identities II, Example 17d
47. C Trigonometric Identities II, Example 20a
48. D Trigonometric Identities II, Example 21 (b, c)
