
z/Architecture IBMr?

The Enhanced-Sort Facility for z/Architecture

SA22-1082-00

ii The Enhanced-Sort Facility for z/Architecture

September, 2020

The information contained herein should not be construed as implying any intention by IBM to provide these
facilities on models other than those described herein.

This document is provided for use in conjunction with other relevant IBM documents, and IBM makes no war-
ranty, express or implied, relative to its completeness or accuracy. The information in this document is subject
to change without notice.

© Copyright International Business Machines Corporation 2020. All rights reserved.

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page v. A revision bar indicates an addition in this version.

Note:
iiiSeptember, 2020

iv The Enhanced-Sort Facility for z/Architecture September, 2020

 -
Notices

References in this document to IBM products, pro-
grams, or services do not imply that IBM intends to
make these available in all countries in which IBM
operates. Any reference to an IBM product is not
intended to state or imply that only IBM's product
may be used. Any functionally equivalent product
may be used; however, this does not constitute a
waiver in any way of IBM's intellectual property
rights.

The z/Architecture definitions assign meanings to
various fields and bit positions in control formats
such as instructions, program-status words, channel-
controls words, table entries (region-table entry,
page-table entry, linkage-table entry, etc.), control
registers, and control blocks (e.g., the service-call-
control block). Other fields and bit positions in those
control formats are specified to be reserved, ignored,
or checked for zeros.

In order for the machine to operate as specified in the
z/Architecture Principles of Operation and other doc-
uments that define the attachment interface, the pro-
gram should place zeros in the unassigned fields and
bit positions and should not depend on the contents
of these fields and bit positions to contain a specific
value. IBM may offer functional extensions or perfor-
mance assists that assign meanings to these fields
and bit positions.

IBM may have patents or pending patent applications
covering subject matter described herein. Furnishing
this document does not constitute or imply a grant of
any license under any patents, patent applications,

trademarks, copyrights, or other rights of IBM or of
any third party, or any right to refer to IBM in any
advertising or other promotional or marketing activi-
ties. IBM assumes no responsibility for any infringe-
ment of patents or other rights that may result from
the use of this document or from the manufacture,
use, lease, or sale of apparatus described herein.

Trademarks

The following terms are trademarks or registered
trademarks of the International Business Machines
Corporation in the United States or other countries:

IBM
IBM Z
IBM Z family
IBM z Systems
IBM z15
z/Architecture
z Systems
z15

Related Documents

This document extends the z/Architecture Principles
of Operation (SA22-7832-12), September, 2019.
v© Copyright IBM Corp. 2020

vi The Enhanced-Sort Facility for z/Architecture September, 2020

Preface

This document describes the enhanced-sort facility.
The facility provides a means to sort multiple lists of
unsorted-input data into one or more lists of sorted-
output data. The facility also provides a means to
merge multiple lists of sorted-input data into a single
list of sorted-output data. The facility includes the
SORT LISTS instruction.

The description of the enhanced-sort facility is in the
form of updates to Reference [1] (listed below) with
which the reader is assumed to be familiar. Chapter
and section headings are provided to aid in locating
the affected material; material that is not updated is

omitted, as indicated by a vertical ellipsis (). A
change bar in the left margin identifies all changed
material in [1]. Cross references to unchanged mate-
rial in [1] are left unresolved.

Other Publications

1. IBM z/Architecture Principles of Operation
(SA22-7832-12), dated September, 2019.



vii© Copyright IBM Corp. 2020

viii The Enhanced-Sort Facility for z/Architecture September, 2020

Chapter 4. Control



Facility Indications



Figure 4-1 shows the meanings of the assigned facil-
ity bits.





Bit Meaning When Bit Is One

 

150 The enhanced-sort facility is installed in the
z/Architecture architectural mode.

 

Figure 4-1. Assigned Facility Bits
Control 4-1September, 2020

4-2 The Enhanced-Sort Facility for z/Architecture September, 2020

Chapter 5. Program Execution



Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is permit-
ted between operations; that is, an interruption can
occur after the performance of one operation and
before the start of a subsequent operation.



Condition-Code Alternative to
Interruptibility

The following instructions are not interruptible
instructions but instead may be completed after per-
forming a CPU-determined subportion of the pro-
cessing specified by the parameters of the
instructions:

• CHECKSUM
• CIPHER MESSAGE
• CIPHER MESSAGE WITH CIPHER FEED-

BACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• COMPARE LOGICAL LONG EXTENDED
• COMPARE LOGICAL LONG UNICODE
• COMPARE LOGICAL STRING
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE
• CONVERT UTF-16 TO UTF-32
• CONVERT UTF-16 TO UTF-8
• CONVERT UTF-32 TO UTF-16
• CONVERT UTF-32 TO UTF-8
• CONVERT UTF-8 TO UTF-16
• CONVERT UTF-8 TO UTF-32
• MOVE LONG EXTENDED
• MOVE LONG UNICODE
• MOVE STRING

• PERFORM CRYPTOGRAPHIC COMPUTA-
TION

• PERFORM PSEUDORANDOM NUMBER
OPERATION (generate operation only)

• SEARCH STRING
• SEARCH STRING UNICODE
• SORT LISTS
• TRANSLATE AND TEST EXTENDED
• TRANSLATE AND TEST REVERSE

EXTENDED
• TRANSLATE EXTENDED
• TRANSLATE ONE TO ONE
• TRANSLATE ONE TO TWO
• TRANSLATE TWO TO ONE
• TRANSLATE TWO TO TWO

When any of the above instructions is completed
after performing only a CPU-determined amount of
processing instead of all specified processing, the
instruction sets condition code 3. On such comple-
tion, the instruction address in the PSW designates
the next sequential instruction, and the operand
parameters of the instruction have been adjusted so
that the processing of the instruction can be resumed
simply by branching back to the instruction to exe-
cute it again. When the instruction has performed all
specified processing, it sets a condition code other
than 3.

The points at which any of the above instructions
may set condition code 3 are comparable to the
points of interruption of an interruptible instruction,
and the amount of processing between adjacent
points is comparable to a unit of operation of an inter-
ruptible instruction. However, since the instruction is
not interruptible, each execution is considered the
execution of one unit of operation.

Completion with the setting of condition code 3 per-
mits interruptions to occur. Depending on the model
and the instruction, condition code 3 may or may not
be set when there is not a need for an interruption.

When a storage-alteration PER event is recognized,
fewer than 4K additional bytes are stored before the
instruction is completed (with condition code 3, if no
other condition takes precedence), and the event is
indicated by an interruption. When a zero-address-
detection PER event is recognized, the instruction is
completed (with condition code 3, if no other condi-
Program Execution 5-1September, 2020

tion takes precedence), and the event is indicated by
an interruption.



Transactional-Execution Facility
Instructions



Restricted Instructions
When the CPU is in the transactional-execution
mode, attempted execution of certain instructions is
restricted and causes the transaction to be aborted.

When issued in the constrained transactional-execu-
tion mode, attempted execution of restricted instruc-
tions may also result in a transaction-constraint
program interruption, or may result in execution pro-
ceeding as if the transaction was not constrained.
See “Constrained Transaction” on page 5-131 for fur-
ther details.

Restricted instructions include all instructions that
are not defined in Chapters 7-9 and 18-24 of this
document and the following nonprivileged instruc-
tions.

• COMPARE AND SWAP AND STORE
• PERFORM LOCKED OPERATION
• PERFORM PROCESSOR ASSIST
• PREFETCH DATA (RELATIVE LONG), when the

code in the M1 field is 6 or 7
• STORE CHARACTERS UNDER MASK HIGH,

when the M3 field is zero and the code in the R1

field is 6 or 7
• STORE FACILITY LIST EXTENDED
• SUPERVISOR CALL

Under the conditions listed below, the following
instructions are restricted:

• BRANCH AND LINK (BALR), BRANCH AND
SAVE (BASR), and BRANCH AND SAVE AND
SET MODE, when the R2 field of the instruction
is nonzero and branch tracing is enabled

• BRANCH AND SAVE AND SET MODE and
BRANCH AND SET MODE, when the R2 field is
nonzero and mode tracing is enabled; SET
ADDRESSING MODE, when mode tracing is
enabled

• MONITOR CALL, when a monitor-event condi-
tion is recognized

When the CPU is in the transactional-execution
mode, it is model dependent whether the following
instructions are restricted:

• CIPHER MESSAGE
• CIPHER MESSAGE WITH CIPHER FEEDBACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT FEED-

BACK
• COMPRESSION CALL
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICATION

CODE
• CONVERT UNICODE-16 TO UNICODE-32
• CONVERT UNICODE-16 TO UNICODE-8
• CONVERT UNICODE-32 TO UNICODE-16
• CONVERT UNICODE-32 TO UNICODE-8
• CONVERT UNICODE-8 TO UNICODE-16
• CONVERT UNICODE-8 TO UNICODE-32
• PERFORM CRYPTOGRAPHIC COMPUTATION
• PERFORM PSEUDORANDOM NUMBER

OPERATION
• SORT LISTS



Constrained Transaction
In the absence of repeated interruptions or conflicts
with other CPUs or the channel subsystem, a con-
strained transaction will eventually complete, thus an
abort-handler routine is not required. A constrained
transaction is initiated by the TRANSACTION BEGIN
(TBEGINC) instruction when the transaction nesting
depth is initially zero. A constrained transaction is
subject to the following constraints:

1. The transaction executes no more than 32
instructions, not including the TRANSACTION
BEGIN (TBEGINC) and TRANSACTION END
instructions.

2. All instructions in the transaction must be within
256 contiguous bytes of storage, including the
TRANSACTION BEGIN (TBEGINC) and any
TRANSACTION END instructions.
5-2 The Enhanced-Sort Facility for z/Architecture September, 2020

3. In addition to all instructions listed in the section
“Restricted Instructions” on page 5-2, the follow-
ing restrictions apply to a constrained transac-
tion.

a. Instructions are limited to those defined in
Chapter 7, “General Instructions.”

b. Branching instructions are limited to the fol-
lowing:

• BRANCH RELATIVE ON CONDITION in
which the M1 field is nonzero and the RI2
field contains a positive value

• BRANCH RELATIVE ON CONDITION
LONG in which the M1 field is nonzero,
and the RI2 field contains a positive
value that does not cause address wrap-
around.

• COMPARE AND BRANCH RELATIVE,
COMPARE IMMEDIATE AND BRANCH
RELATIVE, COMPARE LOGICAL AND
BRANCH RELATIVE, and COMPARE
LOGICAL IMMEDIATE AND BRANCH
RELATIVE in which the M3 field is non-
zero and the RI4 field contains a positive
value

(that is, only forward branches with nonzero
branch masks)

c. Except for TRANSACTION END and instruc-
tions which cause a specific-operand serial-
ization, instructions which cause a
serialization function are restricted.

d. All SS- and SSE-format instructions are
restricted.

e. All of the following general instructions are
restricted.

• BRANCH PREDICTION PRELOAD
• BRANCH PREDICTION RELATIVE

PRELOAD
• CHECKSUM
• CIPHER MESSAGE
• CIPHER MESSAGE WITH CIPHER

FEEDBACK
• CIPHER MESSAGE WITH CHAINING
• CIPHER MESSAGE WITH COUNTER
• CIPHER MESSAGE WITH OUTPUT

FEEDBACK
• COMPARE AND FORM CODEWORD
• COMPARE LOGICAL LONG, COM-

PARE LOGICAL LONG EXTENDED,
and COMPARE LOGICAL LONG UNI-
CODE

• COMPARE LOGICAL STRING
• COMPARE UNTIL SUBSTRING EQUAL
• COMPRESSION CALL
• COMPUTE INTERMEDIATE MESSAGE

DIGEST
• COMPUTE LAST MESSAGE DIGEST
• COMPUTE MESSAGE AUTHENTICA-

TION CODE
• 
• TRANSLATE EXTENDED
• TRANSLATE ONE TO ONE, TRANS-

LATE ONE TO TWO, TRANSLATE TWO
TO ONE, and TRANSLATE TWO TO
TWO

• UPDATE TREE



Program Execution 5-3September, 2020

Sequence of Storage References



Storage-Operand Consistency

Single-Access References
A fetch reference is said to be a single-access refer-
ence if the value is fetched in a single access to each
byte of the data field. In the case of overlapping oper-
ands, the location may be accessed once for each
operand. A store-type reference is said to be a sin-
gle-access reference if a single store access occurs
to each byte location within the data field. An update
reference is said to be single access if both the fetch
and store accesses are each single access.

Except for the accesses associated with multiple-
access references and the stores associated with
storage change and restoration for DAT-associated
access exceptions, all storage-operand references
are single-access references.

Multiple-Access References
In some cases, multiple accesses may be made to all
or some of the bytes of a storage operand. The fol-
lowing cases may involve multiple-access refer-
ences:

1. The storage operands of the following instruc-
tions:

• CHECKSUM
• 
• UPDATE TREE

2. The storage operands of MOVE LONG and
MOVE LONG EXTENDED, when the padding
character is not B1 hex.

3. The stores into that portion of the first operand of
MOVE LONG, MOVE LONG EXTENDED, or
MOVE LONG UNICODE which is filled with pad-
ding bytes.

4. The storage operands of the decimal instruc-
tions.

5. The main-storage operands of PAGE IN and
PAGE OUT.

6. The storage operands of the I/O instructions.

7. The stores into a trace entry.

8. The stores associated with the stop-and-store-
status and store-status-at-address SIGNAL
PROCESSOR orders.

9. The trap control block and trap save area used
by TRAP.

10. The operands, dictionaries, and symbol-transla-
tion table of COMPRESSION CALL.

11. The operands, parameter block, continuation-
record-recall buffer, and all input lists in the active
state of SORT LISTS.

When a storage-operand store reference to a loca-
tion is not a single-access reference, the value
placed at a byte location is not necessarily the same
for each store access; thus, intermediate results in a
single-byte location may be observed by other CPUs
and by channel programs.



5-4 The Enhanced-Sort Facility for z/Architecture September, 2020

Chapter 6. Interruptions



Data-Exception Code (DXC)

When a data exception causes a program interrup-
tion, a data-exception code (DXC) is stored at loca-
tion 147, and zeros are stored at locations 144-146.
The DXC distinguishes between the various types of
data-exception conditions. When the AFP-register
(additional floating-point register) control bit, bit 45 of
control register 0, is one, the DXC is also placed in
the DXC field of the floating-point-control (FPC) reg-
ister. The DXC field in the FPC register remains
unchanged when any other program exception is
reported. The DXC is an 8-bit code indicating the
specific cause of a data exception. The data excep-
tions and data-exception codes are shown in
Figure 6-1 and Figure 6-2 on page 6-2.

Priority of Program Interruptions for Data
Exceptions

DXC 2 and 3 are mutually exclusive and are of higher
priority than any other DXC. Thus, for example, DXC
2 (BFP instruction) takes precedence over any IEEE
exception; and DXC 3 (DFP instruction) takes prece-
dence over any IEEE exception or simulated IEEE
exception. As another example, if the conditions for
both DXC 3 (DFP instruction) and DXC 1 (AFP regis-
ter) exist, DXC 3 is reported.

When both a specification exception and an AFP-
register data exception or a vector-instruction data

exception apply, it is unpredictable which one is
reported.

DXC
(Hex) Data Exception

00 General operand

01 AFP register

02 BFP instruction

03 DFP instruction

04 Quantum Exception

07 Simulated Quantum Exception

08 IEEE inexact and truncated

0B Simulated IEEE inexact

0C IEEE inexact and incremented

10 IEEE underflow, exact

13 Simulated IEEE underflow, exact

18 IEEE underflow, inexact and truncated

1B Simulated IEEE underflow, inexact

1C IEEE underflow, inexact and incremented

20 IEEE overflow, exact

23 Simulated IEEE overflow, exact

28 IEEE overflow, inexact and truncated

2B Simulated IEEE overflow, inexact

2C IEEE overflow, inexact and incremented

40 IEEE division by zero

43 Simulated IEEE division by zero

80 IEEE invalid operation

83 Simulated IEEE invalid operation

FE Vector instruction

FF Compare-and-trap instruction

Figure 6-1. Data-exception codes (DXC)
Interruptions 6-1September, 2020



Data Exception
The data exceptions are shown in Figure 6-2 on
page 6-2. A mask bit may or may not control whether
an interruption occurs, as noted for each exception.

When a non-maskable data exception is recognized,
a program interruption for a data exception always
occurs.

Exception

Applicable
Instruction

Types CR0.45
FPC
Mask

FPC
Flag

DXC
(Binary)

Instruction
Action

DXC
Placed in

Real
Loc. 147

DXC
Placed in

FPC
Byte 2

General operand Various1 0 none none 0000 0000 Suppress or
Terminate

Yes No

1 Yes Yes

AFP register FPS & HFP 0* none none 0000 0001 Suppress Yes No

BFP instruction BFP 0* none none 0000 0010 Suppress Yes No

DFP instruction DFP 0* none none 0000 0011 Suppress Yes No

IEEE invalid operation ICMP 1* 0.0 1.0 1000 0000 Suppress2 Yes Yes

IEEE division by zero ICMP 1* 0.1 1.1 0100 0000 Suppress2 Yes Yes

IEEE overflow ICMP 1* 0.2 1.2 0010 xy00 Complete Yes Yes

IEEE underflow ICMP 1* 0.3 1.3 0001 xy00 Complete Yes Yes

IEEE inexact ICMP 1* 0.4 1.4 0000 1y00 Complete Yes Yes

Quantum Exception ICMP 1* 0.5 1.5 0000 0100 Complete Yes Yes

Simulated IEEE invalid operation IXS 1* 0.0 1.0 1000 0011 Complete Yes Yes

Simulated IEEE division by zero IXS 1* 0.1 1.1 0100 0011 Complete Yes Yes

Simulated IEEE overflow IXS 1* 0.2 1.2 0010 w011 Complete Yes Yes

Simulated IEEE underflow IXS 1* 0.3 1.3 0001 w011 Complete Yes Yes

Simulated IEEE inexact IXS 1* 0.4 1.4 0000 1011 Complete Yes Yes

Simulated Quantum Exception IXS 1* 0.5 1.5 0000 0111 Complete Yes Yes

Vector instruction VEC 0† none none 1111 1110 Suppress Yes Unp

1‡ Yes Yes

Compare-and-trap instruction CT & LT 0 none none 1111 1111 Complete Yes No

1 Yes Yes

Explanation:
1 General-operand data exception applies to the decimal instructions (Chapter 8), the general instructions

COMPRESSION CALL, CONVERT TO BINARY and PERFORM PSEUDORANDOM NUMBER OPERATION
(Chapter 7), the DFP instructions CONVERT FROM PACKED, CONVERT FROM SIGNED PACKED,
CONVERT FROM UNSIGNED PACKED, and CONVERT FROM ZONED (Chapter 20) , and the specialized-
function-assist instruction SORT LISTS (Chapter 26).

2 When the FPC mask bit corresponding to the exception condition is one, the DXC is stored in the FPC register,
even though the resulting data-exception program interruption is considered to be suppressing.

 
VEC Vector instructions (Chapters 21, 22, 23, and 24).

Figure 6-2. Data Exceptions
6-2 The Enhanced-Sort Facility for z/Architecture September, 2020

Each of the IEEE exceptions is controlled by a mask
bit in the floating-point-control (FPC) register. The
handling of these exceptions is described in the sec-
tion “IEEE Exceptions” on page 9-19.

A data exception is recognized for the following
cases:

• General-operand data exception is recognized
for the following cases:

– An instruction which operates on decimal
operands encounters invalid decimal digit or
sign codes or has its operands specified
improperly. The operation is suppressed,
except that, for EDIT and EDIT AND MARK,
it is model dependent whether the operation
is suppressed or terminated. See the section
“General-Operand Data Exception” on
page 8-5 for details.

– COMPRESSION CALL encounters errors in
its dictionaries, in which case it is model
dependent whether the operation is sup-
pressed or terminated.

– PERFORM RANDOM NUMBER OPERA-
TION when the reseed counter is zero for the
generate operation, in which case the opera-
tion is suppressed.

– Execution of SORT LISTS is attempted and
any of the following applies:

1) The SORTL-SFLR or SORT-SVLR func-
tion is specified and no bits, or multiple
bits, of bits 0-7 of the parameter-block-
version number, contain a value of one.

2) The SORTL-SFLR or SORTL-SVLR
function is specified and the size or for-
mat of the parameter block, as specified
by bits 0-7 and 12-15 of the parameter-
block-version number, respectively, is not
supported by the model.

3) The SORTL-SFLR or SORTL-SVLR
function is specified and the record-key
length specifies a key size of zero, a key
size which is not a multiple of 8, or a key
size greater than 4096.

4) The SORTL-SFLR function is specified
and the record-payload length specifies
a payload size which is not a multiple of

8, or a payload size, when added to the
key size, is greater than 4096.

5) The SORTL-SVLR function is specified
and the record-payload length specifies
a payload size which is not a multiple of
8, or a payload size, when added to the
key size, is greater than 4088, in which
case it is model dependent whether the
operation is suppressed or terminated.

6) The SORTL-SFLR or SORTL-SVLR
function is specified and the value of the
active-input-lists count code (AILCC)
plus one is greater than the number of
input lists described by the parameter
block.

7) The SORTL-SFLR or SORTL-SVLR
function is specified and an input-list
address, corresponding to an active
input list, is not designated on a double-
word boundary.

When execution of SORT LISTS is
attempted and a general-operand data
exception is recognized, the operation is
suppressed, except as described above.

The general-operand data exception is reported
with DXC 0.

Note: In earlier versions of the architecture, the
general-operand data exception was known as
the decimal-operand data exception.

• AFP-register data exception is recognized when
bit 45 of control register 0 is zero, and a floating-
point-support (FPS) instruction or a hexadeci-
mal-floating-point (HFP) instruction specifies a
floating-point register other than 0, 2, 4, or 6.
AFP-register data exception is also recognized
when bit 45 of control register 0 is zero and a
PFPO instruction is executed. The operation is
suppressed and is reported with DXC 1.

• BFP-instruction data exception is recognized
when bit 45 of control register 0 is zero and a
BFP instruction is executed. The operation is
suppressed and is reported with DXC 2.

• Compare-and-trap-instruction data exception
is recognized when the operands compared by
COMPARE AND TRAP, COMPARE IMMEDIATE
AND TRAP, COMPARE LOGICAL AND TRAP, or
Interruptions 6-3September, 2020

COMPARE LOGICAL IMMEDIATE AND TRAP
match the conditions specified by the M3 field of
the instruction. The operation is completed and is
reported with DXC FF hex.

When the load-and-trap facility is installed, com-
pare-and-trap-instruction data exception is rec-
ognized when all zeros are loaded into the first
operand of LOAD AND TRAP, LOAD HIGH AND
TRAP, LOAD LOGICAL AND TRAP, and LOAD
LOGICAL THIRTY ONE BITS AND TRAP. The
operation is completed and is reported with DXC
FF hex.

• DFP-instruction data exception is recognized
when bit 45 of control register 0 is zero and a
DFP instruction is executed. The operation is
suppressed and is reported with DXC 3.

• IEEE-exception data exceptions are recognized
when an IEEE computational instruction encoun-
ters an enabled exceptional condition. The oper-
ation is suppressed or completed, depending on
the type of exception. See the section “IEEE
Exceptions” on page 19-8 for details.

• Simulated IEEE-exception data exceptions are
recognized when an IEEE-exception-simulation
instruction (LOAD FPC AND SIGNAL or SET
FPC AND SIGNAL) encounters an enabled sig-
naling flag. The operation is completed. See the
section “IEEE Exceptions” on page 19-8 for
details.

• Vector-instruction data exceptions are recog-
nized when bit 46 of control register 0 is zero and
a vector instruction is executed. It is unpredict-
able if a data exception is recognized if bit 45 of
control register 0 is zero, bit 46 of control register
0 is one, and a vector instruction is executed.
The operation is suppressed and is reported with
DXC FE hex.

The instruction-length code is 1, 2, or 3.

The data exception is indicated by a program-inter-
ruption code of 0007 hex (or 0087, 0207, or 0287
hex, if a concurrent PER event, a concurrent transac-
tional-execution-aborted event, or both are indicated,
respectively).



Specification Exception
A specification exception is recognized when any of
the following is true:



73. Execution of SET FPC or SET FPC AND SIG-
NAL is attempted, and one or more bits of the
first operand corresponding to unsupported bits
in the FPC register are one.

74. Execution of SORT LISTS is attempted, and any
of the following applies:

• Bits 57-63 of general register 0 designate an
unassigned or uninstalled function code.

• The R1 field designates an odd-numbered
register or general register 0.

• The R2 field designates an odd-numbered
register or general register 0.

• The parameter block is not designated on a
doubleword boundary.

• The SORTL-SFLR function or the SORTL-
SVLR function is specified and the first oper-
and is not designated on a doubleword
boundary.

• The SORTL-SFLR function or the SORTL-
SVLR function is specified, merge mode is
zero, and the second operand is not desig-
nated on a doubleword boundary.

75. Execution of STORE SYSTEM INFORMATION
is attempted, the function code in general regis-
ter 0 is valid, and bits 36-55 of general register 0
and bits 32-47 of general register 1 are not all
zeros.



6-4 The Enhanced-Sort Facility for z/Architecture September, 2020

Chapter 26. Specialized-Function-Assist Instructions



Instructions



Programming Notes:

1. The DEFLATE CONVERSION CALL instruction
is available when the DEFLATE-conversion facil-
ity is installed.

2. The SORT LISTS instruction is available when
the enhanced-sort facility is installed.



Name
Mne-
monic Characteristics

Op-
code Page


SORT LISTS SORTL RRE C ES ¤5,9 A SP IC Dg GM I1 ST R1 R2 B938 26-2

Explanation:

¤5 Model dependent whether the instruction is restricted from transactional execution.

¤9 Restricted in the constrained transactional-execution mode.

A Access exceptions for logical addresses.

C Condition code is set.

 
Dg General-operand data exception.

 

ES Enhanced-sort facility.

GM Instruction execution includes the implied use of multiple general registers:
• General registers 0 and 1 for DEFLATE CONVERSION CALL and SORTL LISTS.

I1 Access register 1 is implicitly designated in the access-register mode.

IC Condition code alternative to interruptible instruction

R1 R1 field designates an access register in the access-register mode.

R2 R2 field designates an access register in the access-register mode.

R3 R3 field designates an access register in the access-register mode.

RRE RRE instruction format.

RRF RRF instruction format.

SP Specification exception.

ST PER storage-alteration event.

Figure 26-1. Summary of General Instructions
Specialized-Function-Assist Instructions 26-1September, 2020

SORT LISTS

SORTL R1,R2 [RRE]

SORT LISTS performs functions related to sorting
records of data.

SORT LISTS is an unprivileged instruction. It may be
executed when the CPU is in the problem or supervi-
sor state.

A function specified by the function code in general
register 0 is performed.

Bits 16-23 of the instruction are reserved and should
contain zeros; otherwise, the program may not oper-
ate compatibly in the future.

Bit positions 57-63 of general register 0 contain the
function code. Figure 26-2 shows the assigned func-
tion codes for SORT LISTS. All other function codes
are unassigned.

When bits 57-63 of general register 0 designate an
unassigned or uninstalled function code, a specifica-
tion exception is recognized.

Bit 56 of general register 0 specifies a mode of oper-
ation (merge mode) which applies to the SORTL-
SFLR and SORTL-SVLR functions. For a description
of merge mode (MM), refer to section “Function Code
1: SORTL-SFLR (Sort Fixed-Length-Records)”
beginning on page 26-5. Bit 56 of general register 0

is ignored when the specified function is SORTL-
QAF.

Bit positions 0-31 of general register 0 are ignored.
Bit positions 32-55 of general register 0 are reserved
and should contain zeros; otherwise, the program
may not operate compatibly in the future.

The contents of general register 1 specify the logical
address of the leftmost byte of the parameter block in
storage. The parameter block must be designated on
a doubleword boundary; otherwise a specification
exception is recognized.

For all functions, the contents of general registers 0
and 1 are not modified.

For all functions, the R1 field designates an even-odd
pair of general registers. For all functions, the R1 field
must not designate general register 0 and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized. When the
specified function is SORTL-SFLR or SORTL-SVLR,
the contents of general register R1 specify the logical
address of the leftmost byte of the first operand and
the contents of general register R1 + 1 specify the
length of the first operand in bytes. When the speci-
fied function is SORTL-SFLR or SORTL-SVLR, the
first operand must be designated on a doubleword
boundary; otherwise a specification exception is rec-
ognized. Data, in the form of records, is selected
from a set of input lists and is stored at the first-oper-
and location. When the SORTL-QAF function is
specified, the contents of general registers R1 and
R1 + 1 are ignored.

For all functions, the R2 field designates an even-odd
pair of general registers. For all functions, the R2 field
must not designate general register 0 and must des-
ignate an even-numbered register; otherwise, a
specification exception is recognized. When the
specified function is SORTL-SFLR or SORTL-SVLR,
and merge mode (MM) is zero, the contents of gen-
eral register R2 specify the logical address of the left-
most byte of the second operand and the contents of
general register R2 + 1 specify the length of the sec-
ond operand in bytes. When the specified function is
SORTL-SFLR or SORTL-SVLR, and merge mode
(MM) is zero, the second operand must be desig-
nated on a doubleword boundary; otherwise a speci-
fication exception is recognized. The starting address
and length of each output list, referred to as output-
list delineations (OLD), are stored at the second-
operand location when MM is zero. When the

'B938' / / / / / / / / R1 R2

0 16 24 28 31

Code Function
Parameter Block

Size (bytes)

0 SORTL-QAF 32

1 SORTL-SFLR (576+16xNIS)F0

2 SORTL-SVLR (576+16xNIS)F0

Explanation

F0 Format-0 parameter block (the format is specified in the
PBVN field)

NIS Number of input lists, as specified by the Interface Size

Figure 26-2. Function Codes for SORT LISTS
26-2 The Enhanced-Sort Facility for z/Architecture September, 2020

SORTL-QAF function is specified, or MM is one, the
contents of general registers R2 and R2 + 1 are
ignored.

As part of the operation when the specified function
is SORTL-SFLR or SORTL-SVLR, the following
occurs:
• The address in general register R1 is incre-

mented by the number of bytes stored at the first-
operand location, and the length in general regis-
ter R1 + 1 is decremented by the same number.

• When MM is zero, the address in general register
R2 is incremented by the number of bytes stored
at the second-operand location, and the length in
general register R2 + 1 is decremented by the
same number.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

In the 24-bit addressing mode, the following apply:

• The contents of bit positions 40-63 of general
registers 1, R1, and R2 constitute the addresses
of the parameter block, first operand, and second
operand, respectively, and the contents of bit
positions 0-39 are ignored.

• Bits 40-63 of the updated first-operand and sec-
ond-operand addresses replace the correspond-
ing bits in general registers R1 and R2,
respectively. Carries out of bit position 40 of the
updated addresses are ignored, and the con-
tents of bit positions 32-39 of general registers
R1 and R2 are set to zeros. The contents of bit
positions 0-31 of general registers R1 and R2

remain unchanged.
• The contents of bit positions 32-63 of general

registers R1 + 1 and R2 + 1 form 32-bit unsigned
binary integers which specify the number of
bytes in the first and second operands, respec-
tively. The contents of bit positions 0-31 of gen-
eral registers R1 + 1 and R2 + 1 are ignored.

• Bits 32-63 of the updated first-operand and sec-
ond-operand lengths replace the corresponding
bits in general registers R1 + 1 and R2 + 1,
respectively. The contents of bit positions 0-31 of
general registers R1 + 1 and R2 + 1 remain
unchanged.

In the 31-bit addressing mode, the following apply:

• The contents of bit positions 33-63 of general
registers 1, R1, and R2 constitute the addresses
of the parameter block, first operand, and second

operand, respectively, and the contents of bit
positions 0-32 are ignored.

• Bits 33-63 of the updated first-operand and sec-
ond-operand addresses replace the correspond-
ing bits in general registers R1 and R2,
respectively. Carries out of bit position 33 of the
updated addresses are ignored, and the content
of bit position 32 of general registers R1 and R2 is
set to zero. The contents of bit positions 0-31 of
general registers R1 and R2 remain unchanged.

• The contents of bit positions 32-63 of general
registers R1 + 1 and R2 + 1 form 32-bit unsigned
binary integers which specify the number of
bytes in the first and second operands, respec-
tively. The contents of bit positions 0-31 of gen-
eral registers R1 + 1 and R2 + 1 are ignored.

• Bits 32-63 of the updated first-operand and sec-
ond-operand lengths replace the corresponding
bits in general registers R1 + 1 and R2 + 1,
respectively. The contents of bit positions 0-31 of
general registers R1 + 1 and R2 + 1 remain
unchanged.

In the 64-bit addressing mode, the following apply:

• The contents of bit positions 0-63 of general reg-
isters 1, R1, and R2 constitute the addresses of
the parameter block, first operand, and second
operand, respectively.

• Bits 0-63 of the updated first-operand and sec-
ond-operand addresses replace the correspond-
ing bits in general registers R1 and R2,
respectively. Carries out of bit position 0 of the
updated addresses are ignored.

• The contents of bit positions 0-63 of general reg-
isters R1 + 1 and R2 + 1 form 64-bit unsigned
binary integers which specify the number of
bytes in the first and second operands, respec-
tively.

• Bits 0-63 of the updated first-operand and sec-
ond-operand lengths replace the corresponding
bits in general registers R1 + 1 and R2 + 1,
respectively.

In the access-register mode, access registers 1, R1,
and R2 specify the address spaces containing the
parameter block, first operand, and second operand,
respectively.

Figure 26-3 on page 26-4 shows the contents of the
general registers just described.
Specialized-Function-Assist Instructions 26-3September, 2020

Function Code 0: SORTL-QAF (Query
Available Functions)

The SORTL-QAF (query) function provides the
means of indicating the availability of all installed

All Addressing Modes

GR0
/ Reserved

M
M

FC

0 32 56 57 63

24-Bit Addressing Mode

GR1 / Parameter-Block Address
0 40 63

R1 / First-Operand Address
0 40 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-operand Address
0 40 63

R2 + 1 / Second-Operand Length
0 32 63

31-Bit Addressing Mode

GR1 / Parameter-Block Address
0 33 63

R1 / First-Operand Address
0 33 63

R1 + 1 / First-Operand Length
0 32 63

R2 / Second-Operand Address
0 33 63

R2 + 1 / Second-Operand Length
0 32 63

64-Bit Addressing Mode

GR1 Parameter-Block Address
0 63

R1 First-Operand Address
0 63

R1 + 1 First-Operand Length
0 63

R2 Second-Operand Address
0 63

R2 + 1 Second-Operand Length
0 63

Explanation:

FC Function code.
MM Merge Mode.

Figure 26-3. General Register Assignments for SORTL
26-4 The Enhanced-Sort Facility for z/Architecture September, 2020

functions, installed parameter block formats, and
interface sizes available. An interface size is the num-
ber of input lists available to the program. The size of
the parameter block for the SORT-SFLR and SORT-
SVLR functions is proportional to the interface size
specified by the program.

The parameter block for the SORTL-QAF function
has the following format:

An installed-functions vector, an installed-interface-
sizes vector, and an installed-parameter-block-for-
mats vector are stored to bytes 0-15, byte 16, and
bytes 24-25, respectively, of the parameter block, as
illustrated in Figure 26-4.

Bits 0-127 of the installed-functions vector corre-
spond to function codes 0-127, respectively, of the
SORT LISTS instruction. When a bit is one, the cor-
responding function is installed; otherwise, the func-
tion is not installed.

Bits 0-7 of the installed-interface-sizes vector indicate
the interface sizes available to the program. An inter-
face size is the number of input lists to be specified
by the program for the SORT-SFLR and SORTL-
SVLR functions. Bits 0-7 of the installed-interface-
sizes vector correspond to the following interface
sizes:

When a bit is one, the corresponding interface size is
available to the program. One or more bits may be
stored as ones. For example, a value of 00101000
binary indicates interfaces sizes of 32 and 128 input
lists are available. Bits 0-1 and 5-7 are reserved and
stored as zeros. The interface size of 32 input lists is
always available when the enhanced-sort facility is
installed. Therefore, bit 2 is always stored as one.

Bits 0-15 of the installed-parameter-block-formats
vector correspond to parameter-block formats 0-15,
respectively for the SORTL-SFLR and SORTL-SVLR
functions. When a bit is one, the corresponding
parameter-block format is installed; otherwise, the
parameter-block format is not installed.

Zeros are stored to reserved bytes 17-23 and 26-31
of the parameter block.

The contents of general registers R1, R2, R1 + 1, and
R2 + 1 are ignored by the SORT-QAF function.

A PER storage-alteration event is recognized, when
applicable, for the parameter block. A PER zero-
address-detection event is recognized, when applica-
ble, for the parameter block.

Condition code 0 is set when execution of the
SORTL-QAF function completes; condition codes 1,
2, and 3 are not applicable to the query function.

Function Code 1: SORTL-SFLR (Sort
Fixed-Length-Records)

A set of input lists is sorted and stored as a set of
output lists at the first-operand location. Each list is a
set of records. Each record consists of a fixed-length
key and a fixed-length payload, as shown in
Figure 26-5 on page 26-5.

Records from the input lists are sorted based on the
values of the keys. The records may be sorted in

byte

0
Installed-Functions Vector

8

16
IIS

vector
Reserved

24 IPBF vector Reserved
0 8 16 63

Explanation

IIS Installed-interface-sizes

IPBF Installed-parameter-block-formats

Figure 26-4. Parameter Block for SORTL-QAF

bit interface size

0 reserved

1 reserved

2 32 input lists

3 64 input lists

4 128 input lists

5 reserved

6 reserved

7 reserved

key payload

Figure 26-5. Fixed-Length-Record format

bit interface size
Specialized-Function-Assist Instructions 26-5September, 2020

ascending, or descending order, as specified in the
sort order (SO) field of the parameter block.

An input list is referred to as being presorted in
ascending order when the key of each record of the
input list is greater than, or equal to, the key of the
adjacent record on the left in the same input list. An
input list is referred to as being presorted in descend-
ing order when the key of each record of the input list
is less than, or equal to, the key of the adjacent
record on the left in the same input list.

The records of an output list may be sourced from
multiple input lists, and are stored in sorted order.
The number of output lists stored at the first-operand
location depends on the input data. When every
active input list is presorted in the same order as
specified in the SO field, only one output list is pro-
duced.

Bit 56 of general register 0 specifies a mode of oper-
ation, referred to as merge mode (MM), which distin-
guishes whether or not more information related to
the results stored at the first-operand location is pro-
vided. MM applies to the SORTL-SFLR function.

When merge mode is zero, no active input list is con-
sidered presorted. When MM is zero, for each output
list stored at the first-operand location, a correspond-
ing output-list delineation (OLD) is stored at the sec-
ond-operand location. Each OLD consists of an
8-byte OLD-address, which designates the location
of the first record in the corresponding output list, fol-
lowed by an 8-byte OLD-length, which specifies the
length, in bytes, of the corresponding output list.

When merge mode is one, every active input list is
considered presorted in the same order as specified
by the SO field of the parameter block.

When merge mode is one and every active input list
is presorted in the same order as specified by the SO
field of the parameter block, the result stored at the
first-operand location is a single output list of records
in sorted order. When MM is one and any active input
list is not presorted in the same order as specified by
the SO field of the parameter block, results are
unpredictable.

When merge mode is one, the contents of general
registers R2 and R2 + 1 are ignored and no informa-
tion is stored at the second-operand location. When
MM is one, procedures required to distinguish sepa-
rations between output lists may not be performed,
thereby potentially improving the performance of the
operation. When MM is one, data is not stored to the
continuation-record-recall buffer.

The locations of the operands and addresses used
by the SORTL-SFLR function are as shown in
Figure 26-3 on page 26-4.

SORTL-SFLR: Parameter Block

The parameter block with format 0 hex for the
SORTL-SFLR function is shown in Figure 26-6 on
page 26-6. The format is specified in the PBVN field
of the parameter block.

Byte

0 PBVN MVN Reserved S
O

Reserved
C
F

8 Reserved Record-Key Length Reserved Record-Payload Length

16 Reserved

24 Reserved

32 RIBM R AILCC Reserved

40
EIL
CL

E
IL
F

Reserved EILN Reserved
II
L
F

Reserved IILN

48 Reserved

56 Continuation-Record-Recall-Buffer Origin Reserved

64

 Continuation-State Buffer

568

Figure 26-6. Parameter Block (format 0 hex) for SORTL-SFLR and SORTL-SVLR (Part 1 of 2)
26-6 The Enhanced-Sort Facility for z/Architecture September, 2020

The fields of the format-0 parameter block for the
SORTL-SFLR function are defined as follows:

Reserved: As an input to the operation, reserved
fields should contain zeros; otherwise, the program
may not operate compatibly in the future. When the
operation ends, reserved fields may be stored as
zeros or may remain unchanged.

Parameter-Block-Version Number (PBVN):
Bytes 0-1 of the parameter block specify the version
and size of the parameter block. Bits 0-7 of the PBVN
have the same format and definition as bits 0-7 of the
installed-interface-sizes vector (byte 16) of the
parameter block for the SORTL-QAF (query) func-
tion. Bits 0-7 specify the number of input lists
described in the parameter block, NIS. The size of the
format-0 parameter block, in bytes, is determined by
evaluating the formula (576 + 16xNIS). One and only
one bit of bits 0-7 must have a value of one; other-
wise a general-operand data exception is recog-
nized. Bits 8-11 of the PBVN are reserved and
should contain zeros; otherwise, the program may
not operate compatibly in the future. Bits 12-15 of the
PBVN contain an unsigned binary integer specifying

the format of the parameter block. The SORTL-QAF
function provides the means of indicating the param-
eter block formats available. When the size or format
of the parameter block specified is not supported by
the model, a general-operand data exception is rec-
ognized. The PBVN is specified by the program and
is not modified during the execution of the instruction.

Model-Version Number (MVN): Byte 2 of the
parameter block is an unsigned binary integer identi-
fying the model which executed the instruction. The
MVN is updated during the execution of the instruc-
tion. The value stored in the MVN is model-depen-
dent.

When the continuation flag (CF) is one, the MVN is
an input to the operation. When CF is one and the
MVN identifies the same model as the model cur-
rently executing the instruction, data from the contin-
uation-state buffer (CSB) may be used to resume the
operation. When CF is one and the MVN identifies a
different model than the model currently executing
the instruction, part, or all of the CSB field may be
ignored.

576 Input-List0 Address

584 Input-List0 Length

592 Input-List1 Address

600 Input-List1 Length

 
OLILA Input-List(NIS-1) Address

OLILL Input-List(NIS-1) Length

0 4 8 16 24 32 36 48 56 63

Explanation:

AILCC Active-Input-Lists Count Code

CF Continuation Flag

EILCL Empty-Input-Lists Control

EILF Empty-Input-List Flag

EILN Empty-Input-List Number

IILF Incomplete-Input-List Flag

IILN Incomplete-Input-List Number

MVN Model-Version Number

NIS Number of input lists, as specified by the Interface Size

OLILA Offset of the Last Input List Address: OLILA = 576 + 16x(NIS - 1)

OLILL Offset of the Last Input List Length: OLILL = 576 + 16x(NIS - 1) + 8

PBVN Parameter-Block-Version Number

R Reserved

RIBM Reserved for IBM use
SO Sort Order

Figure 26-6. Parameter Block (format 0 hex) for SORTL-SFLR and SORTL-SVLR (Part 2 of 2)
Specialized-Function-Assist Instructions 26-7September, 2020

The program must not modify the MVN in the event
the instruction is to be reexecuted for the purpose of
resuming the operation; otherwise results are unpre-
dictable.

Sort Order (SO): Bit 56 of the parameter block,
when zero, specifies an ascending sort order, and
when one, specifies a descending sort order. When
ascending sort order is specified, each record of an
output list contains a key that is greater than, or equal
to, the key of the adjacent record on the left, in the
same output list. When descending sort order is
specified, each record of an output list contains a key
that is less than, or equal to, the key of the adjacent
record on the left, in the same output list. The SO is
not updated during the execution of the instruction.

Continuation Flag (CF): Bit 63 of the parameter
block, when one, indicates the operation is partially
complete and the contents of the continuation-state
buffer (CSB), and when merge mode (MM) is zero,
the contents of the continuation-record-recall buffer,
may be used to resume the operation. It is required
for the program to initialize the continuation flag (CF)
to zero and not modify CF in the event the instruction
is to be reexecuted for the purpose of resuming the
operation; otherwise results are unpredictable.

Record-Key Length: Bytes 10-11 of the parameter
block contain an unsigned binary integer specifying
the size, in bytes, of all keys, in all records processed
during the operation. A general-operand data excep-
tion is recognized for any of the following conditions:

• A key size of zero bytes is specified.
• A key size which is not a multiple of 8 is speci-

fied.
• A key size larger than 4096 bytes is specified.

The record-key length is not updated during the exe-
cution of the instruction.

Record-Payload Length: When the SORTL-SFLR
function is specified, bytes 14-15 of the parameter
block contain an unsigned binary integer specifying
the size, in bytes, of all payloads, in all records pro-
cessed during the operation. A general-operand data
exception is recognized for any of the following condi-
tions:

• A payload size which is not a multiple of 8 is
specified.

• The sum of the key and payload sizes specified
is larger than 4096 bytes.

A payload size of zero is valid.

When the SORTL-SVLR function is specified, the
record-payload length field of the parameter block is
ignored. The record-payload length is not updated
during the execution of the instruction.

Reserved for IBM use (RIBM): Byte 32 of the
parameter block is reserved for IBM use and must
contain zeros; otherwise results are unpredictable.
The RIBM field is not modified during the execution
of the instruction.

Active-Input-Lists Count Code (AILCC): Bits 1-7
of byte 33 of the parameter block are a 7-bit unsigned
integer that specifies the number of the input list
which denotes the boundary between active and
inactive input lists. Input lists with list numbers less
than or equal to the value of the AILCC field are in
the active state. Input lists with list numbers greater
than the value of the AILCC field are in the inactive
state. The number of input lists in the active state is
one more than the value in the AILCC field.

Input lists in the active state participate in the opera-
tion. Input lists in the inactive state do not participate
in the operation.

When the value of the AILCC field plus one is greater
than the number of input lists described in the param-
eter block, as specified by bits 0-7 of the PBVN field,
a general-operand data exception is recognized.

The value specified in the AILCC field does not affect
the size of the parameter block. Access exceptions
apply to the entire parameter block, regardless of any
input list being in the inactive state.

The AILCC is not updated during the execution of the
instruction.

Empty-Input-Lists Control (EILCL): When bit 0 of
byte 40 of the parameter block is one, the operation
ends when the length of input list0 becomes zero
during the operation. When bit 0 of byte 40 of the
parameter block is zero, the operation continues to
proceed when the length of input list0 becomes zero
during the operation. When bit 1 of byte 40 of the
parameter block is one, the operation ends when the
length of an active input list, other than input list0,
becomes zero during the operation. When bit 1 of
byte 40 of the parameter block is zero, the operation
continues to proceed when the length of an active
input list, other than input list0, becomes zero during
26-8 The Enhanced-Sort Facility for z/Architecture September, 2020

the operation. See programming note 1 for a descrip-
tion of the intended values and uses of the EILCL
field.

When the length of an active input list is initially zero
before execution of the instruction, the corresponding
bit of the EILCL does not apply.

The EILCL is not updated during the execution of the
instruction.

The program must not modify the EILCL in the event
the instruction is to be reexecuted for the purpose of
resuming the operation; otherwise results are unpre-
dictable.

Empty-Input-List Flag (EILF): When the EILCL is
11 binary, and the operation ends due to the updated
length of an active input list is equal to zero, and con-
dition code 2 is set, the value of one is stored to bit 2,
of byte 40, of the parameter block; otherwise the
value of zero is stored to bit 2, of byte 40, of the
parameter block. When the EILF contains a value of
one, the input list number of the input list which
became empty during the operation is placed in the
EILN field of the parameter block.

The EILF may be referenced at the beginning of the
execution of the instruction when the operation is
being resumed. The program must not modify the
EILF in the event the instruction is to be reexecuted
for the purpose of resuming the operation; otherwise
results are unpredictable.

Empty-Input-List Number (EILN): When condi-
tions cause a value of one to be stored in the EILF
field, the input list number of the input list which
became empty during the operation is stored in byte
41 of the parameter block; otherwise the value of
zero is stored in byte 41 of the parameter block.

The EILN is ignored at the beginning of the opera-
tion.

Incomplete-Input-List Flag (IILF): When the oper-
ation ends as a result of attempting to process an
incomplete input list, the value of one is stored to bit
0, of byte 46, of the parameter block; otherwise the
value of zero is stored to bit 0, of byte 46, of the
parameter block. An active input list is considered to
be incomplete when the corresponding input-list
length is greater than zero and less than the number
of bytes of the record designated by the input-list
address. This condition may exist at the beginning of

the operation, or may be encountered during the
operation. When the IILF contains a value of one, the
input list number, of the incomplete input list encoun-
tered, is placed in the IILN field of the parameter
block.

When the operation ends with setting condition code
2 and the resulting value in the IILF field is zero, the
operation ended due to an empty input list. When the
operation ends with setting condition code 2 and the
resulting value in the IILF field is one, the operation
ended due to an incomplete input list.

The IILF may be referenced at the beginning of the
execution of the instruction when the operation is
being resumed. The program must not modify the
IILF in the event the instruction is to be reexecuted
for the purpose of resuming the operation; otherwise
results are unpredictable.

Incomplete-Input-List Number (IILN): When con-
ditions cause a value of one to be stored in the IILF
field, the input list number, of the incomplete input list
encountered, is stored in byte 47 of the parameter
block; otherwise the value of zero is stored in byte 47
of the parameter block. When multiple input lists are
incomplete, it is model dependent which incomplete
input list number is stored to the IILN field.

The IILN is ignored at the beginning of the operation.

Continuation-Record-Recall-Buffer Origin: A
4 K-byte buffer in storage, called the continuation-
record-recall buffer, is provided by the program for
the CPU to store and reference data between two
executions of the same SORT LISTS instruction, in
case an operation ends and may be resumed later.
Bit 0 of byte 56 through bit 3 of byte 62 of the param-
eter block specify bits 0-51 of the continuation-
record-recall-buffer origin, which is used in the forma-
tion of the continuation-record-recall address. The
continuation-record-recall address is aligned on a
4 K-byte boundary and is the logical address of the
leftmost byte of the continuation-record-recall buffer.

In the 24-bit addressing mode, bits 40-51 of the con-
tinuation-record-recall-buffer origin with 12 zeros
appended to the right form the continuation-record-
recall address. In the 31-bit addressing mode, bits
33-51 of the continuation-record-recall-buffer origin
with 12 zeros appended to the right form the continu-
ation-record-recall address. In the 64-bit addressing
mode, bits 0-51 of the continuation-record-recall-buf-
Specialized-Function-Assist Instructions 26-9September, 2020

fer origin with 12 zeros appended to the right form
the continuation-record-recall address.

In the access-register mode, access register 1 speci-
fies the address space containing the continuation-
record-recall buffer in storage.

When merge mode (MM) is zero and the operation
ends after storing one or more records, the key of the
last record stored to the first operand may also be
stored to the continuation-record-recall buffer.

When MM is one, the continuation-record-recall-buf-
fer origin is ignored.

The continuation-record-recall-buffer origin is not
modified during the execution of the instruction.

The program must not modify the continuation-
record-recall-buffer origin in the event the instruction
is to be reexecuted for the purpose of resuming the
operation; otherwise results are unpredictable.

Continuation-State Buffer (CSB): When condi-
tions cause a value of one to be stored in the CF
field, internal-state data is stored to bytes 64-575 of
the parameter block; otherwise bytes 64-575 of the
parameter block are undefined and may be modified.
The internal-state data stored is model-dependent
and may be used subsequently to resume the opera-
tion when the instruction is reexecuted. The program
must not modify the continuation-state buffer in the
event the instruction is to be reexecuted for the pur-
pose of resuming the operation; otherwise results are
unpredictable.

Input-ListN Address: The parameter block
defines multiple input lists. The number of input lists
defined in the parameter block, NIS, is specified by
bits 0-7 of the PBVN. The input lists are numbered
from zero to (NIS-1). For each input list, the parame-
ter block specifies an 8 byte input-list address. For
input list number N, the contents of bytes 576 + 16xN
through 583 + 16xN, of the format-0 parameter block,
specify the logical address of the leftmost byte of
input list number N in storage.

Each input-list address corresponding to an input list
in the active state, as specified by the AILCC field, is
an input to the operation and is updated by the oper-
ation. Each input-list address corresponding to an
input list in the inactive state, as specified by the
AILCC field, is ignored by the operation.

When an input-list address is an input to the opera-
tion, the following applies:
• In 24-bit addressing mode, bits 40-63, of the

input-list address, designate the location of the
leftmost byte of the input list in storage, and the
contents of bits 0-39, of the input-list address are
treated as zeros.

• In 31-bit addressing mode, bits 33-63, of the
input-list address, designate the location of the
leftmost byte of the input list in storage, and the
contents of bits 0-32, of the input-list address are
treated as zeros.

• In 64-bit addressing mode, bits 0-63, of the input-
list address, designate the location of the left-
most byte of the input list in storage.

In the access-register mode, access register 1 speci-
fies the address space containing all active input lists
in storage.

For all input lists in the active state, the correspond-
ing input-list address must be designated on a dou-
bleword boundary; otherwise, a general-operand
data exception is recognized.

When an input-list address is updated by the opera-
tion, the following applies:
• When one or more records of the input list have

been processed as part of the operation, the cor-
responding input-list address is incremented by
the number of bytes which the processed
records occupy in storage. The formation and
updating of the input-list address are dependent
on the addressing mode.

• In 24-bit addressing mode, bits 40-63 of the
updated input-list address replace the corre-
sponding bits in the input-list address field of the
parameter block, a carry out of bit position 40 of
the updated input-list address is ignored, and the
contents of bit positions 0-39 of the input-list
address field of the parameter block are set to
zeros.

• In 31-bit addressing mode, bits 33-63 of the
updated input-list address replace the corre-
sponding bits in the input-list address field of the
parameter block, a carry out of bit position 33 of
the updated input-list address is ignored, and the
contents of bit positions 0-32 of the input-list
address field of the parameter block are set to
zeros.

• In 64-bit addressing mode, bits 0-63 of the
updated input-list address replace the corre-
sponding bits in the input-list address field of the
26-10 The Enhanced-Sort Facility for z/Architecture September, 2020

parameter block, and a carry out of bit position 0
of the updated input-list address is ignored.

In 24- and 31-bit addressing modes, when the execu-
tion of the instruction ends and the instruction is not
suppressed, nullified, or terminated, each 64-bit
input-list address corresponding to an active input list
is updated, even when the address is not incre-
mented.

Input-ListN Length: For each input list, the param-
eter block specifies an 8 byte input-list length. For
input list number N, bytes 584 + 16xN through
591 + 16xN, of the parameter block, contain an
unsigned integer which specifies the number of bytes
in input list number N.

Each input-list length corresponding to an input list in
the active state, as specified by the AILCC field, is an
input to the operation and is updated by the opera-
tion. Each input-list length corresponding to an input
list in the inactive state, as specified by the AILCC
field, is ignored by the operation.

In all addressing modes, the contents of bit positions
0-63 of an input-list length field specify the length of
the corresponding input list.

When one or more records of an input list have been
processed as part of the operation, the correspond-
ing input-list length is decremented by the number of
bytes which the processed records occupy in stor-
age. In all addressing modes, bits 0-63 of an updated
input-list length replace bits 0-63 in the correspond-
ing input-list length field of the parameter block.

SORTL-SFLR: Ending Conditions

Normal completion occurs when all records from all
active input lists have been sorted and stored to the
first operand.

When the operation ends due to normal completion,
the following occurs:

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated when MM
is zero.

• The input-listN address and input-listN length
fields are updated for all input lists in the active
state.

• The model-version number is set.

• The continuation flag is set to zero.
• The empty-input-list flag (EILF) is set to zero.
• The empty-input-list number is set to zero.
• The incomplete-input-list flag (IILF) is set to zero.
• The incomplete-input-list number is set to zero.
• Condition code 0 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When normal completion occurs, the CSB field of the
parameter block is undefined after the operation
ends.

When a CPU-determined number of bytes have been
processed, the operation ends and the following
occurs:

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated when MM
is zero.

• The input-listN address and input-listN length
fields are updated for all input lists in the active
state.

• The model-version number is set.
• The continuation flag is set to one.
• A key value is stored to the continuation-record-

recall buffer when MM is zero and one or more
records have been placed at the first-operand
location during the execution of the instruction.

• The continuation-state buffer is updated.
• The empty-input-list flag (EILF) is set to zero.
• The empty-input-list number is set to zero.
• The incomplete-input-list flag (IILF) is set to zero.
• The incomplete-input-list number is set to zero.
• Condition code 3 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

The CPU-determined number of bytes depends on
the model, and may be a different number each time
the instruction is executed. The CPU-determined
number of bytes is typically nonzero. Although this
number may be zero and appear as a no-progress
case, the CPU protects against endless recurrence
of this no-progress case.

Subsequent to the instruction ending with condition
code 3 set, it is expected the program does not mod-
ify any input or output specification for the instruction
Specialized-Function-Assist Instructions 26-11September, 2020

and branches back to reexecute the instruction to
resume the operation.

When bit 0 of the empty-input-lists control (EILCL) is
one and the length of input list0 becomes zero during
the operation and normal completion does not apply,
the operation ends and the following occurs:

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated when MM
is zero.

• The input-listN address and input-listN length
fields are updated for all input lists in the active
state.

• The model-version number is set.
• The continuation flag is set to one.
• A key value may be stored to the continuation-

record-recall buffer when EILCL is 10 binary and
MM is zero. A key value is stored to the continua-
tion-record-recall buffer when EILCL is 11 binary
and MM is zero. In either case, one or more
records have been placed at the first-operand
location during the execution of the instruction.

• The continuation-state buffer is updated.
• The empty-input-list flag is set (refer to

Figure 26-7).
• The empty-input-list number is set (refer to

Figure 26-7).
• The incomplete-input-list flag is set to zero.
• The incomplete-input-list number is set to zero.
• Condition code 2 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When bit 1 of the empty-input-lists control (EILCL) is
one and the length of an active input list, other than
input list0, becomes zero during the operation and
normal completion does not apply, the operation
ends and the following occurs:

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated when MM
is zero.

• The input-listN address and input-listN length
fields are updated for all input lists in the active
state.

• The model-version number is set.
• The continuation flag is set to one.

• A key value may be stored to the continuation-
record-recall buffer when EILCL is 01 binary and
MM is zero. A key value is stored to the continua-
tion-record-recall buffer when EILCL is 11 binary
and MM is zero. In either case, one or more
records have been placed at the first-operand
location during the execution of the instruction.

• The continuation-state buffer is updated.
• The empty-input-list flag is set (refer to

Figure 26-7).
• The empty-input-list number is set (refer to

Figure 26-7).
• The incomplete-input-list flag is set to zero.
• The incomplete-input-list number is set to zero.
• Condition code 2 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When an incomplete input list in the active state is
encountered, the operation ends and the following
occurs:

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated when MM
is zero.

• The input-listN address and input-listN length
fields are updated for all input lists in the active
state.

• The model-version number is set.
• The continuation flag is set to one.
• A key value is stored to the continuation-record-

recall buffer when MM is zero and one or more
records have been placed at the first-operand
location during the execution of the instruction.

• The continuation-state buffer is updated.
• The empty-input-list flag (EILF) is set to zero.
• The empty-input-list number is set to zero.
• The incomplete-input-list flag (IILF) is set to one.
• The input-list number of the incomplete input list

encountered is placed in the incomplete-input-list
number (IILN) field of the parameter block.

• Condition code 2 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When the length of the first operand is insufficient to
store another record, the operation ends and the fol-
lowing occurs:
26-12 The Enhanced-Sort Facility for z/Architecture September, 2020

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated when MM
is zero.

• The input-listN address and input-listN length
fields are updated for all input lists in the active
state.

• The model-version number is set.
• The continuation flag is set to one.
• A key value may be stored to the continuation-

record-recall buffer when MM is zero and one or
more records have been placed at the first-oper-
and location during the execution of the instruc-
tion.

• The continuation-state buffer is updated.
• The empty-input-list flag is set to zero.
• The empty-input-list number is set to zero.
• The incomplete-input-list flag is set to zero.
• The incomplete-input-list number is set to zero.
• Condition code 1 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

When merge mode (MM) is zero and the length of
the second operand is less than 16, the operation
ends and the following occurs:

• The address and length in general registers R1

and R1 + 1, respectively, are updated.
• The address and length in general registers R2

and R2 + 1, respectively, are updated.
• The input-listN address and input-listN length

fields are updated for all input lists in the active
state.

• The model-version number is set.
• The continuation flag is set to one.
• A key value may be stored to the continuation-

record-recall buffer when one or more records
have been placed at the first-operand location
during the execution of the instruction.

• The continuation-state buffer is updated.
• The empty-input-list flag is set to zero.
• The empty-input-list number is set to zero.
• The incomplete-input-list flag is set to zero.
• The incomplete-input-list number is set to zero.
• Condition code 1 is set.

The formation and updating of the addresses and
lengths are dependent on the addressing mode.

The operation ending condition is called partial com-
pletion when the execution of the instruction ends in
completion (does not end in suppression, nullifica-
tion, or termination) and normal completion does not
occur.

A PER storage-alteration event is recognized, when
applicable, for the following:

• Stores to the parameter block, as described
below.

• Stores to the first-operand location.
• Stores to the second-operand location.
• Stores to the continuation-record-recall buffer.

When the entire parameter block lies within the PER
storage-area designation, a PER storage-alteration

EILCL results
(binary) condition causing operation to end CC IILF IILN EILF EILN

— normal completion 0 0 0 0 0

— first or second operand length is insufficient 1 0 0 0 0

— IL0 determined to be incomplete 2 1 0 (IL0) 0 0
— ILN determined to be incomplete 2 1 N (ILN) 0 0

10 IL0 became empty (ILN may also be empty) 2 0 0 0 0

01 ILN became empty (IL0 may also be empty) 2 0 0 0 0
11 IL0 became empty (only one input list became empty) 2 0 0 1 0 (IL0)

11 ILN became empty (only one input list became empty) 2 0 0 1 N (ILN)

— CPU-determined number of bytes processed 3 0 0 0 0
Explanation:
— any value

IL0 input list with list number 0
ILN input list with list number N, where N > 0

Figure 26-7. SORTL Parameter Block Fields IILF, IILN, EILF, and EILN when operation ends
Specialized-Function-Assist Instructions 26-13September, 2020

event is recognized, when applicable, for the parame-
ter block. When only a portion of the parameter block
lies within the PER storage-area designation, it is
model-dependent which of the following occurs:

• A PER storage-alteration event is recognized,
when applicable, for the entire parameter block.

• A PER storage-alteration event is recognized,
when applicable, for the portion of the parameter
block that is stored.

When a PER storage-alteration event is recognized,
fewer than 4K additional bytes are stored to the oper-
and location which lies within the designated PER
storage-area, before the event is reported.

A PER zero-address-detection event is recognized,
when applicable, for the parameter block, first-oper-
and location, and second-operand location. Zero-
address detection does not apply to the input list
addresses and the continuation-record-recall-buffer
origin, which are specified in the parameter block.

As part of the operation when merge mode is zero or
one, the input-list addresses and lengths for all input
lists in the active state are updated. For each input-
list in the active state, the input-list address is incre-
mented by the number of bytes of all records from the
input list which were selected and placed at the first-
operand location during the operation, and the input-
list length is decremented by the same number. The
formation and updating of the input-list addresses
are dependent on the addressing mode.

As the operation proceeds, an incomplete input list
may be encountered. An incomplete input list is rec-
ognized during a unit of operation which attempts to
reference a record from an input list which is incom-
plete. Multiple units of operation may be completed
prior to recognizing an incomplete input list. This
applies when merge mode is zero or one.

As the operation proceeds, an access exception for
an access to an active input list, the first operand, or
the second operand, when applicable, may be
encountered. An access exception is recognized
during a unit of operation which attempts to access a
storage location and an access exception exists for
that location. Multiple units of operation may be com-
pleted prior to recognizing an access exception. This
applies when merge mode is zero or one. Refer to
Figure 26-15 on page 26-24 to determine which
access-exception condition is recognized when multi-
ple conditions exist concurrently.

When the operation ends with partial completion,
internal-state data, which may include a history of
prior comparisons between records, is stored to the
continuation-state buffer (CSB) field of the parameter
block. Subsequently, when the instruction is reexe-
cuted, for the purpose of resuming the operation, the
contents of the CSB may be loaded into the CPU and
the history may be referenced when the operation
resumes. This applies when merge mode is zero or
one.

Refer to section “Other Conditions”, beginning on
page 26-22, for descriptions of other conditions that
apply to the SORTL-SFLR function.

SORTL-SFLR: Processing

The SORTL-SFLR function consists of selecting
records from a set of input lists, in the sort order
specified, and placing the selected records at the
first-operand location. As the operation proceeds,
current values for the first-operand address and
addresses for all active input lists are maintained.
The function proceeds in units of operation. During
each unit of operation, for each active input list, the
key designated by the corresponding current input-
list address is examined and one record is placed at
the first-operand location.

The SORTL-SFLR function includes multiple com-
parisons between keys of records from different input
lists. When comparing keys, the following applies:

• Keys are treated as unsigned-binary integers,
also referred to as unstructured data.

• When comparing keys of equal value, the key
from the input list with the highest input-list num-
ber is selected to be in sort order before other
keys with the same value. In this case, the corre-
sponding record from the input list with the high-
est input-list number is stored to the first operand
before other records with the same key value.
This applies for ascending and descending sort
orders.

When merge mode (MM) is zero, the active input lists
designate lists, each of which is treated as containing
records, from left to right, in random order. When MM
is zero, the records stored to the first-operand loca-
tion constitute one or more output lists, and the start-
ing address and length of each output list is stored to
the second-operand location. When MM is zero,
each unit of operation consists of the following steps,
in the order specified:
26-14 The Enhanced-Sort Facility for z/Architecture September, 2020

1. Determine if the next record to store to the first-
operand location may be included in the most
recent output list (the output list which includes
the record most recently stored to the first-oper-
and location), as follows:

• When the continuation flag (CF) is zero and
the first unit of operation is being processed,
no records have been stored to the first-
operand location, and the next record to
store will be the first record of an output list.

• When CF is one, the prior execution of the
instruction ended with condition code 1, and
the first unit of operation is being processed
for the current execution of the instruction,
the next record to store will be the first record
of an output list.

• When CF is one, IILF is zero, EILF is zero,
the prior execution of the instruction ended
with condition code 2, and the first unit of
operation is being processed for the current
execution of the instruction, the next record
to store will be the first record of an output
list.

• When CF is one, IILF or EILF is one, the
prior execution of the instruction ended with
condition code 2, and the first unit of opera-
tion is being processed for the current execu-
tion of the instruction, the next record to
store may be included in the most recent out-
put list.

• When CF is one, the prior execution of the
instruction ended with condition code 3, and
the first unit of operation is being processed
for the current execution of the instruction,
the next record to store may be included in
the most recent output list.

• When the unit of operation being processed
is not the first unit of operation for the current
execution of the instruction, the next record
to store may be included in the most recent
output list.

Note: The CPU stores the presence or absence
of certain conditions to the continuation-state
buffer when the execution of the instruction ends
with partially completing an operation. The CPU
references this information when the operation is
subsequently resumed.

2. When the next record to store may be included in
the most recent output list, determine the set of
records which qualify to be included in the most
recent output list. For each input list which is

active, not empty and not incomplete, compare
the key of the record designated by the current
input-list address (current input key) to the key of
the record most recently stored to the first-oper-
and location (previously stored key). For this pur-
pose, the reference to the previously stored key
is not a reference to the first-operand location.
Instead, it is a reference to the input list from
which the key was previously selected, or it is a
reference to the continuation-record-recall buffer.
It is a reference to the continuation-record-recall
buffer when the operation is being resumed and
the current execution of the instruction has not
yet placed any records at the first-operand loca-
tion.

When the sort order is ascending and the value
of the current input key is greater than or equal to
the value of the previously stored key, consider
the current input key as belonging to a set of
keys qualifying for inclusion in the most recent
output list. When the sort order is descending
and the value of the current input key is less than
or equal to the value of the previously stored key,
consider the current input key as belonging to a
set of keys qualifying for inclusion in the most
recent output list. When the number of keys in
the set of keys qualifying for inclusion in the most
recent output list is zero, the next record to store
will be the first record of an output list. When the
number of keys in the set of keys qualifying for
inclusion in the most recent output list is nonzero,
the next record to store will be included in the
most recent output list.

3. When the next record to store will be included in
the most recent output list, compare all keys in
the set of keys qualifying for inclusion in the most
recent output list. When the sort order is ascend-
ing, select the smallest key value and corre-
sponding record. When the sort order is
descending, select the largest key value and cor-
responding record. Refer to page 26-14 for the
result of comparing keys of equal value.

4. When the next record to store will be the first
record of an output list, compare the keys of the
records designated by all current input-list
addresses corresponding to input lists which are
active, not empty, and not incomplete. When the
sort order is ascending, select the smallest key
value and corresponding record. When the sort
order is descending, select the largest key value
and corresponding record.
Specialized-Function-Assist Instructions 26-15September, 2020

5. The selected record is placed at the current first-
operand location.

6. The current first-operand address is incremented
by the number of bytes equal to the length of the
selected record.

7. The current input-list address, corresponding to
the input list containing the selected record, is
incremented by the number of bytes equal to the
length of the selected record.

As part of the operation when merge mode is zero,
for each output list stored at the first-operand loca-
tion, a corresponding output-list delineation (OLD) is
stored at the second-operand location. Each OLD
consists of an 8-byte OLD-address, which desig-
nates the location of the first record in the corre-
sponding output list, followed by an 8-byte OLD-
length, which specifies the length, in bytes, of the
corresponding output list. When the operation ends
with condition code 3, or condition code 2 and EILF
equal to one, or condition code 2 and IILF equal to
one, the most recent output list being processed at
the end of the operation may be partially processed
and not completely processed. That is, the number of
records in the partially processed output list is an
intermediate value and may be increased when the
operation resumes. In this case, an output-list delin-

eation (OLD), corresponding to the partially pro-
cessed output list, is not placed at the second-
operand location, until after the operation is resumed
and the output list is completely processed.

When merge mode is zero and the operation ends
after storing one or more records and normal com-
pletion does not occur, the key of the last record
stored to the first-operand location is also stored to
the continuation-record-recall buffer in the cases
described in the definition of the continuation-record-
recall-buffer origin on page 26-9.

When merge mode is zero and the operation ends
due to normal completion, one or more output lists
have been placed at the first-operand location and
output-list delineations have been placed at the sec-
ond-operand location. The program may use output-
list delineations as input-list address and length val-
ues in a parameter block for a subsequent SORTL
operation.

Figure 26-8 on page 26-16 illustrates the first and
second operands, before and after executing
SORTL-SFLR with merge mode equal zero.

first-operand location before executing SORTL with MM equal zero:
FOSA FOEA

first-operand location after executing SORTL with MM equal zero:
FOSA FOEA

OL1  OLN

second-operand location before executing SORTL with MM equal zero:
SOSA SOEA

second-operand location after executing SORTL with MM equal zero:
SOSA SOEA

OLD1  OLDN

Figure 26-8. First and second operands before and after executing SORTL with MM equal zero (Part 1 of 2)
26-16 The Enhanced-Sort Facility for z/Architecture September, 2020

When merge mode (MM) is one, the active input lists
designate lists, each of which is treated as containing
records, from left to right, in the sorted order, as
specified by the SO field of the parameter block.
When MM is one, the records stored to the first-oper-
and location constitute a single output list. When MM
is one, each unit of operation consists of the following
steps, in the order specified:

1. Compare the keys of the records designated by
all current input-list addresses corresponding to
input lists which are active, not empty, and not
incomplete. When the sort order is ascending,
select the smallest key value and corresponding
record. When the sort order is descending,
select the largest key value and corresponding
record. Refer to page 26-14 for the result of com-
paring keys of equal value.

2. The selected record is placed at the current first-
operand location.

3. The current first-operand address is incremented
by the number of bytes equal to the length of the
selected record.

4. The current input-list address, corresponding to
the input list containing the selected record, is
incremented by the number of bytes equal to the
length of the selected record.

Figure 26-9 on page 26-17 illustrates the first oper-
and, before and after executing SORTL-SFLR with
merge mode equal one.

SORTL-SFLR: Resuming an Operation

When the instruction ends with condition code 1, the
program may modify the first-operand address, first-
operand length, second-operand address, second-
operand length, any active input-list address, and any
active-input list length, as appropriate, and subse-
quently, resume the operation.

When the instruction ends with condition code 2, IILF
equal zero, and EILF equal zero, the program may
modify the first-operand address, first-operand
length, second-operand address, second-operand
length, any active input-list address, and any active-
input list length, as appropriate, and subsequently,
resume the operation.

Explanation:
FOSA first-operand starting address: location specified by R1

FOEA first-operand ending address: location specified by R1 + (R1 + 1) - 1

OL output list
OLD output-list designation

SOSA second-operand starting address: location specified by R2

SOEA second-operand ending address: location specified by R2 + (R2 + 1) - 1

Figure 26-8. First and second operands before and after executing SORTL with MM equal zero (Part 2 of 2)

first-operand location before executing SORTL with MM equal one:
FOSA FOEA

first-operand location after executing SORTL with MM equal one:
FOSA FOEA

OL

Explanation:
FOSA first-operand starting address: location specified by R1

FOEA first-operand ending address: location specified by R1 + (R1 + 1) - 1
OL output-list

Figure 26-9. First operand before and after executing SORTL with MM equal one
Specialized-Function-Assist Instructions 26-17September, 2020

When the instruction ends with condition code 2 and
EILF equal one, the program may modify the input-
list address and length for the input list specified by
the EILN, as appropriate, and subsequently, resume
the operation. In this case, the program may also
modify the first-operand address and first-operand
length when merge mode (MM) is one.

When the instruction ends with condition code 2 and
IILF equal one, the program may modify the input-list
address and length for the input list specified by the
IILN, as appropriate, and subsequently, resume the
operation. In this case, the program may also modify
the first-operand address and first-operand length
when merge mode (MM) is one.

When the instruction ends with condition code 3, and
before reexecuting the instruction to resume the

operation, if the program modifies any active input-list
address or length, the first-operand address or
length, or the second-operand address or length,
results are unpredictable.

Figure 26-10 on page 26-18 summarizes the original
and final values for inputs to a SORTL-SFLR function
that ends in partial completion and which inputs may
be modified by the program prior to resuming the
operation. It is not required, and is not expected, for
the program to modify the parameter block between
ending the operation with condition code 3 set and
branching back to the instruction, to reexecute the
instruction, for the purpose of resuming the opera-
tion.

Input to SORTL-SFLR
Before the
operation

After partially
completing the

operation
(CC=1, 2, or 3)

Before resuming the
operation

After
completing the

operation
(CC=0)

parameter-block-version number program’s choice unchanged same as before BO unchanged
model-version number not applicable set same as after PC set

sort order program’s choice unchanged same as before BO unchanged

continuation flag zero required set to one same as after PC set to zero
record-key length program’s choice unchanged same as before BO unchanged

record-payload length program’s choice unchanged same as before BO unchanged

active-input-lists count program’s choice unchanged same as before BO unchanged
empty-input-lists control program’s choice unchanged same as before BO unchanged

empty-input-list flag not applicable set same as after PC set

empty-input-list number not applicable set same as after PC set
incomplete-input-list flag not applicable set same as after PC set

incomplete-input-list number not applicable set same as after PC set

continuation-record-recall-buffer
origin

program’s choice unchanged same as before BO unchanged

continuation-state buffer not applicable set same as after PC undefined
input-listN address program’s choice modified restrictions apply - refer to

Figure 26-11 on page 26-19
modified

input-listN length program’s choice modified restrictions apply - refer to
Figure 26-11 on page 26-19

modified

merge mode program’s choice unchanged same as before BO unchanged

first-operand address program’s choice modified restrictions apply - refer to
Figure 26-11 on page 26-19

modified

first-operand length program’s choice modified restrictions apply - refer to
Figure 26-11 on page 26-19

modified

Figure 26-10. Summary of Inputs to a SORTL-SFLR Function which may be Resumed (Part 1 of 2)
26-18 The Enhanced-Sort Facility for z/Architecture September, 2020

SORTL-SFLR: Supplemental Information

Figure 26-12 on page 26-20 illustrates an example of
the SORTL-SFLR function with merge mode equal

zero. The inputs and resulting outputs are included in
the example.

second-operand address
(when MM=0)

program’s choice modified restrictions apply - refer to
Figure 26-11 on page 26-19

modified

second-operand length
(when MM=0)

program’s choice modified restrictions apply - refer to
Figure 26-11 on page 26-19

modified

continuation-record-recall buffer
(when MM=0)

not applicable set1 same as after PC undefined

Explanation:
BO begin operation
MM Merge Mode
PC partial completion
1 Set in the cases described in the definition of the CRRB origin on page 26-9.

Input to SORTL-SFLR
Before the
operation

After partially
completing the

operation
(CC=1, 2, or 3)

Before resuming the
operation

After
completing the

operation
(CC=0)

Figure 26-10. Summary of Inputs to a SORTL-SFLR Function which may be Resumed (Part 2 of 2)

Operation ending conditions

output list
processing
when MM=0

modifications permitted prior to resuming the operation

 input lists first operand second operand

after CC=1 concludes IL-any: address and length
MM=0: address and length
MM=1: address and length

MM=0: address and length
MM=1: NA

after CC=2 and EILF=1
(EILN specifies input list which
became empty)

continues
IL-EILN: address and length
IL-others: none

MM=0: none
MM=1: address and length

MM=0: none
MM=1: NA

after CC=2 and IILF=0 and EILF=0 concludes IL-any: address and length
MM=0: address and length
MM=1: address and length

MM=0: address and length
MM=1: NA

after CC=2 and IILF=1
(IILN specifies the incomplete input
list)

continues
IL-IILN: address and length
IL-others: none

MM=0: none
MM=1: address and length

MM=0: none
MM=1: NA

after CC=3 continues IL-any: none
MM=0: none
MM=1: none

MM=0: none
MM=1: NA

Explanation:
IL-any input list with any list number
IL-EILN input list with list number equal to EILN
IL-IILN input list with list number equal to IILN
MM Merge Mode
NA Not Applicable
concludes The output list being processed at the end of the operation is not augmented when the operation resumes.
continues The output list being processed at the end of the operation may be augmented when the operation resumes.
none Updates not expected: results are unpredictable if specified values are updated under specified conditions.

Figure 26-11. Restrictions for Modifications to Input-List Address and Length fields prior to resuming a SORTL-SFLR
Function
Specialized-Function-Assist Instructions 26-19September, 2020

When two operations perform the same SORTL-
SFLR function with merge mode equal zero on the
same set of unsorted input records and the only dif-
ference between the two operations is the number of
input lists used to specify the input data, the opera-
tion with the larger number of input lists typically

results in a smaller number of output lists.
Figure 26-13 on page 26-21 illustrates an example of
using 6 input lists to operate on the same input data
as the example in Figure 26-12 on page 26-20, which
only uses 3 input lists.

Byte
(hex) input list0 input list1 input list2

0 0005 0010 0099

8 0001 0008 0006

10 0017 0002 0088

18 0003 0014 0020

address
(hex) first operand

address
(hex) second operand

1000 0005 2000 1000

1008 0010 2008 18

1010 0099 2010 1018

1018 0001 2018 28

1020 0006 2020 1040

1028 0008 2028 20

1030 0017

1038 0088

1040 0002

1048 0003

1050 0014

1058 0020

Explanation:

sort order ascending

record-key length 8 bytes

record-payload length 0 bytes

0037 8 bytes with most significant 7 bytes being zero and least significant byte containing value 37

Figure 26-12. SORTL-SFLR Example with 3 input lists
26-20 The Enhanced-Sort Facility for z/Architecture September, 2020

For a suggested procedure to generate a single list of
records in sorted order from a set of records in ran-
dom order, refer to programming note 1 on
page 26-24.

Function Code 2: SORTL-SVLR (Sort
Variable-Length-Records)

The SORTL-SVLR function operates the same as the
SORTL-SFLR function, except for the following:

• All records consist of a fixed-length key, an
8-byte payload length, and a variable-length pay-
load, as shown in Figure 26-14 on page 26-22.
Therefore, all records have a variable length.

• Bytes 14-15 of the parameter block for the
SORTL-SVLR function are ignored.

• The least significant 2 bytes of the payload-
length field of each record contains an unsigned
binary integer specifying the length, in bytes, of

the payload in the same record. A payload length
of zero is valid. The payload length must be a
multiple of 8; otherwise a general-operand data
exception is recognized. The most significant 6
bytes of the payload-length field are reserved
and should contain zeros; otherwise, the pro-
gram may not operate compatibly in the future.
The sum of the key length, eight, and the payload
length must not be larger than 4096; otherwise a
general-operand data exception is recognized.
When a general-operand data exception is rec-
ognized as a result of an inappropriate payload
length, the input-list address corresponding to
the active input list encountering the exception
specifies the logical address of the leftmost byte
of the errant record. When a variable-length
record is stored to the first-operand location, the
reserved bytes of the payload-length field are not
modified.

• An incomplete input list may not be recognized
during a unit of operation which only attempts to
reference the key of a record from an input list
with an input-list length greater than the key size

Byte
(hex) input list0 input list1 input list2 input list3 input list4 input list5

0 0005 0010 0099 0017 0002 0088

8 0001 0008 0006 0003 0014 0020

address
(hex) first operand

address
(hex) second operand

1000 0002 2000 1000

1008 0005 2008 38

1010 0010 2010 1038

1018 0014 2018 28

1020 0017

1028 0088

1030 0099

1038 0001

1040 0003

1048 0006

1050 0008

1058 0020

Explanation:

sort order ascending

record-key length 8 bytes

record-payload length 0 bytes

0037 8 bytes with most significant 7 bytes being zero and least significant byte containing value 37

Figure 26-13. SORTL-SFLR Example with 6 input lists
Specialized-Function-Assist Instructions 26-21September, 2020

and less than the record size. In this case, the
incomplete input list will be recognized when
attempting to store the record from the incom-
plete input list, to the first-operand location.

The parameter block for the SORTL-SVLR function is
the same as the parameter block for the SORTL-
SFLR function, except for bytes 14-15, as indicated
above.

Refer to section “Other Conditions”, beginning on
page 26-22, for descriptions of other conditions that
apply to the SORTL-SVLR function.

Special Conditions

A specification exception is recognized when execu-
tion of SORT LISTS is attempted and any of the fol-
lowing applies:

• Bits 57-63 of general register 0 designate an
unassigned or uninstalled function code.

• The R1 field designates an odd-numbered regis-
ter or general register 0.

• The R2 field designates an odd-numbered regis-
ter or general register 0. This applies when
merge mode (MM) is zero or one.

• The parameter block is not designated on a dou-
bleword boundary.

• The SORTL-SFLR function or the SORTL-SVLR
function is specified and the first operand is not
designated on a doubleword boundary.

• The SORTL-SFLR or SORTL-SVLR function is
specified and the second operand is not desig-
nated on a doubleword boundary when MM is
zero.

A general-operand data exception is recognized
when execution of SORT LISTS is attempted and any
of the following applies:

• The SORTL-SFLR or SORT-SVLR function is
specified and no bits, or multiple bits, of bits 0-7
of the parameter-block-version number, contain a
value of one.

• The SORTL-SFLR or SORTL-SVLR function is
specified and the size or format of the parameter
block, as specified by the parameter-block-ver-
sion number, is not supported by the model.

• The SORTL-SFLR or SORTL-SVLR function is
specified and the record-key length specifies a
key size of zero, a key size which is not a multiple
of 8, or a key size greater than 4096.

• The SORTL-SFLR function is specified and the
record-payload length in the parameter block
specifies a payload size which is not a multiple of
8, or a payload size, when added to the key size,
is greater than 4096.

• The SORTL-SVLR function is specified and the
record-payload length in the variable-length
record specifies a payload size which is not a
multiple of 8, or a payload size, when added to
the key size, is greater than 4088, in which case
it is model dependent whether the operation is
suppressed or terminated.

• The SORTL-SFLR or SORTL-SVLR function is
specified and the value of the active-input-lists
count code (AILCC) plus one is greater than the
number of input lists described by the parameter
block.

• The SORTL-SFLR or SORTL-SVLR function is
specified and an input-list address, correspond-
ing to an active input list, is not designated on a
doubleword boundary.

When a general-operand data exception is recog-
nized, the operation is suppressed, except as
described above.

Other Conditions

Execution of the instruction ends after processing a
CPU-determined number of bytes. This permits inter-
ruptions to occur. When the instruction ends with par-
tial completion, the addresses in general registers R1

and R2, the lengths in general registers R1 + 1 and
R2 + 1, and specific fields of the parameter block are

key PL payload

Explanation

PL Payload Length

Figure 26-14. Variable-Length-Record format
26-22 The Enhanced-Sort Facility for z/Architecture September, 2020

updated so that the instruction, when reexecuted,
resumes the operation at the point it was suspended.

Access exceptions are not recognized for locations
greater than 4 K-bytes to the right of the location des-
ignated by the first-operand address. Access excep-
tions are not recognized for locations greater than
4 K-bytes to the right of the location designated by an
input-list address.

If an access exception is due to be recognized for the
first operand, second operand, or any active input
list, the result is that either the exception is recog-
nized or condition code 3 is set. If condition code 3 is
set, the exception will be recognized when the
instruction is executed again to continue processing
the same operands, assuming the exception condi-
tion still exists.

Access-exception conditions are not recognized for
an inactive input list. Access-exception conditions are
not recognized for an input list with an input-list
length equal to zero at the beginning of the execution
of the instruction.

When the key of a record crosses a page boundary
and access-exception conditions exist for both
pages, either access exception may be recognized.

When access-exception conditions exist for multiple
keys being processed during a single unit of opera-
tion, any of these conditions may be recognized.

When the parameter block crosses a page boundary
and access-exception conditions exist for both
pages, the access exception for the leftmost page is
recognized. Access exceptions apply to the entire
parameter block, regardless of any input list being in
the inactive state.

When the operation ends with partial completion, up
to 4 K-bytes of data may have been stored at loca-
tions within the first operand which are at, or to the
right of, the location designated by the updated first-
operand address. Such stores result in setting
change bits, when applicable, and recognizing PER
storage-alteration events, when applicable. Storing to
these locations will be repeated when the instruction
is executed again to continue processing the same
operands.

As observed by this CPU, other CPUs, and channel
programs, references to the parameter block, the first

operand, the output-lists-delineations buffer, and all
input lists in the active state may be multiple-access
references, accesses to these storage locations are
not necessarily block-concurrent, and the sequence
of these accesses or references is undefined.

Results are unpredictable when the specified func-
tion is SORTL-SFLR or SORTL-SVLR and any of the
following apply:
• The parameter block overlaps any active input

list or the first operand.
• Any active input list overlaps the first operand.
• Merge mode is zero and the parameter block

overlaps the second operand or the continuation-
record-recall buffer.

• Merge mode is zero and any active input list
overlaps the second operand or the continuation-
record-recall buffer.

• Merge mode is zero and the first operand over-
laps the second operand or the continuation-
record-recall buffer.

• Merge mode is zero and the second operand
overlaps the continuation-record-recall buffer.

• Another CPU or channel program stores to a key
of a record in an input list or the continuation-
record-recall buffer.

Resulting Condition Code:

0 Normal completion
1 The length of the first operand is less than the

size of a record, or merge mode is zero and the
length of the second operand is less than 16

2 An incomplete input list was encountered
(IILF=1), or the EILCL is nonzero and the length
of an input list became equal to zero during the
operation

3 CPU-determined amount of data processed

Program Exceptions:

• Access (fetch, input lists; fetch and store, param-
eter block and continuation-record-recall buffer;
store, operands 1 and 2)

• Data with DXC 0, general operand
• Operation (if the enhanced-sort facility is not

installed)
• Specification
• Transaction constraint
Specialized-Function-Assist Instructions 26-23September, 2020

The priority of execution for the SORT LISTS instruc-
tion is shown in Figure 26-15 on page 26-24. When
multiple conditions which have priority values begin-
ning with 13 exist, the condition recognized is the one
that is encountered first, as the operation proceeds.
When the operation is being resumed (the continua-
tion flag is one at the beginning of the execution of
the instruction), a history of prior comparisons
between keys may be used in place of initially
accessing all input lists which are active and not
empty. As a result, an access exception for an
access to a specific input list may not be encountered
at the same point of processing, as compared to
when no history of prior comparisons is used. When
variable-length records are processed, conditions
which are a function of a record length may be par-
tially evaluated before the payload length is deter-
mined, and completely evaluated after the payload
length is determined. As a result, the observed prior-
ity among such conditions may differ when a condi-
tion is determined to exist after only partially
evaluating requirements, instead of after completely
evaluating all requirements.

Programming Notes:

1. To generate a single list of records in sorted
order from a set of records in random order, a
program may perform the following procedure:

a. Evenly partition the set of records among an
initial set of lists, where each list contains
records in random order. Execute the SORT
LISTS instruction with the initial set of lists as
input lists and merge mode equal to zero, to
generate an intermediate set of lists (each of
which contains records in sorted order), and
the storage locations and lengths for each
list of the intermediate set of lists.

b. Execute the SORT LISTS instruction with the
intermediate set of lists as input lists and
merge mode equal to one, to generate the
final and single list, which contains all
records in sorted order.

1.-6. Exceptions with the same priority as the priority
of program-interruption conditions for the general
case.

7.A Access exceptions for second instruction
halfword.

7.B Operation exception.

7.C Transaction constraint.

8.A Specification exception due to invalid function
code or invalid register number.

8.B Specification exception due to parameter block
not designated on doubleword boundary.

8.C Specification exception due to first operand not
designated on doubleword boundary.

8.D Specification exception due to second operand
not designated on doubleword boundary and
merge mode is zero.

9. Access exceptions for an access to bytes 0-7 of
the parameter block.

10. General-operand data exception due to an
unsupported value of the PBVN field in the
parameter block.

11. Access exceptions for an access to bytes of the
parameter block other than bytes 0-7.

Figure 26-15. Priority of Execution: SORTL (Part 1 of 2)

12. General-operand data exception due to an
invalid value of a field in the parameter block
other than the PBVN.

13.A Access exceptions for an access to an active
input list.

13.B Access exceptions for an access to the
continuation-record-recall buffer when merge
mode is zero.

13.C Access exceptions for an access to the first
operand.

13.D Access exceptions for an access to the second
operand when merge mode is zero.

13.E Condition code 2 due to an incomplete input list.

13.F Condition code 1 due to insufficient length of first
operand.

13.G Condition code 1 due to insufficient length of
second operand when merge mode is zero.

13.H General-operand data exception due to an
invalid payload length of a variable-length record.

13.I Condition code 2 due to an empty input list.

14. Condition code 3.

Figure 26-15. Priority of Execution: SORTL (Part 2 of 2)
26-24 The Enhanced-Sort Facility for z/Architecture September, 2020

2. The intended values and uses of the empty-
input-lists control (EILCL) field are as follows:

3. When the active-input-lists count code (AILCC) is
zero, there is only one active input list and the
results stored at the first-operand location are the
same as the data fetched from input list0.

4. The total execution time of the instruction is gen-
erally proportional to the size of the keys. Larger
keys generally result in longer execution times.
Total execution time of the instruction is also pro-
portional to the size of the payloads.

5. Future models may only support a maximum
number of input lists which is less than the maxi-
mum number supported by models currently
available. The interface size of 32 input lists is
always available on all models.

6. Models implementing separate instruction and
data caches may use the instruction cache to
perform storage-operand fetch references to
data in active-input lists. When a program per-
forms storage-operand store references to stor-
age locations, and in a relatively-short period of
time, executes SORT LISTS with those same
storage locations being designated as active
input lists, performance of the program may be
affected due to transferring the data associated
with those storage locations from the data cache
to the instruction cache.

7. Special precautions should be taken if SORT
LISTS is made the target of an execute-type
instruction. See the programming note concern-
ing interruptible instructions under EXECUTE.

8. When a program expects to invoke SORT LISTS
multiple times with merge mode equal to zero, as
part of processing a large amount of data, it is
recommended the program utilize all input lists
available and evenly partition records among the

input lists. This reduces the number of times the
data is accessed when sorting all of the data.

9. Subsequent to SORT LISTS with merge mode
equal to zero ending with condition code 0 set
and multiple output-list delineations (OLDs) in
the second operand, a program intending to gen-
erate a single list of records in sorted order must
invoke another SORT LISTS operation with input
lists specified to be the resulting OLDs from the
prior SORT LISTS invocation. In this case, it is
recommended the second invocation of SORT
LISTS specifies merge mode equal to one.

Similarly, subsequent to invoking SORT LISTS
with merge mode equal zero, for as many times
as necessary, to generate a complete set of
sorted lists from a large number of randomly
ordered records, it is recommended to invoke
SORT LISTS with merge mode equal one, for as
many times as necessary, to generate a single
sorted list.

10. To reduce the number of times each record is
accessed when merging multiple sorted lists into
a single list with ascending sort order (for exam-
ple), it is recommended the program performs
the following process:

• Determine the maximum number, N, of input
lists available for SORT LISTS.

• Compare the keys of the first record of all
sorted lists which have not yet been merged
into the single list. Select the N lists which
have the lowest first key values.

• Execute SORT LISTS with merge mode
(MM) equal one, empty-input-lists control
(EILCL) equal 10 binary, input-list0 specify-
ing only the first record of the list with the
highest first key value of the selected N lists,
and the remaining input lists specifying the
other N-1 selected lists.

• Subsequent to SORT LISTS ending with
condition code 2, IILF equal zero, and EILF
equal zero, repeat the process.

11. Subsequent to SORT LISTS ending with condi-
tion code 1 set, it is recommended the program
perform the following actions prior to invoking
SORT LISTS again, to resume the operation:

• If the first-operand length is less than the
largest record length of all records being pro-
cessed, then the first-operand length or first-
operand address and length should be
updated, as appropriate.

EILCL
(binary) description

00 Stop after all records from all active input
lists are sorted.

10 Stop after input list0 (always active)
becomes empty.

11 Stop after any active input list becomes
empty. When the operation ends for this
reason, EILF is set to one and EILN
identifies the input list which became
empty.
Specialized-Function-Assist Instructions 26-25September, 2020

• If merge mode (MM) is zero and the second-
operand length is less than 16, then the sec-
ond-operand length or second-operand
address and length should be updated, as
appropriate.

• If the length of any active input list equals
zero, then the corresponding input-list
address and length may be updated to des-
ignate another list of records to be included
in the sorting operation.

12. Subsequent to SORT LISTS ending with condi-
tion code 2 set, it is recommended the program
perform the following actions prior to invoking
SORT LISTS again, to resume the operation:

• If the incomplete-input-list flag (IILF) is one,
then the input-list length or input-list address
and length of the input list identified by the
incomplete-input-list number (IILN) should
be updated, as appropriate.

• If the empty-input-list flag (EILF) is one, then
the input-list length or input-list address and
length of the input list identified by the
empty-input-list number (EILN) should be
updated, as appropriate.

• If the IILF is zero, the EILF is zero, and the
input-list0 length is zero, then the input-list0
length or input-list0 address and length
should be updated, as appropriate. Further-
more, the input-list address and length for all
active input lists may be updated, which may
be the appropriate action if there was only
one record designated by input-list0 origi-

nally, and the empty-input-lists control
(EILCL) is 10 binary.

• If merge mode (MM) is one and the first-
operand length is less than the largest record
length of all records being processed, then
the first-operand length or first-operand
address and length should be updated, as
appropriate.

• If MM is zero and either IILF is one, or EILF
is one, then the first-operand address and
length, and the second-operand address and
length should not be updated.

• If MM is zero, IILF is zero, EILF is zero, and
the first-operand length is less than the larg-
est record length of all records being pro-
cessed, then the first-operand length or first-
operand address and length should be
updated, as appropriate.

• If MM is zero, IILF is zero, EILF is zero, and
the second-operand length is less than 16,
then the second-operand length or second-
operand address and length should be
updated, as appropriate.

13. When the next-sequential instruction after NEXT
INSTRUCTION ACCESS INTENT (NIAI) is
SORT LISTS (SORTL), the execution of SORTL
is not effected by NIAI.



End of Document
26-26 The Enhanced-Sort Facility for z/Architecture September, 2020

SA22-1082-00

07SA22108200

IBMr

	The Enhanced-Sort Facility for z/Architecture
	Notices
	Preface
	Other Publications

	Chapter 4. Control
	Facility Indications

	Chapter 5. Program Execution
	Interruptible Instructions
	Point of Interruption
	Condition-Code Alternative to Interruptibility

	Transactional-Execution Facility Instructions
	Restricted Instructions
	Constrained Transaction

	Sequence of Storage References
	Storage-Operand Consistency
	Single-Access References
	Multiple-Access References

	Chapter 6. Interruptions
	Data-Exception Code (DXC)
	Priority of Program Interruptions for Data Exceptions
	Data Exception
	Specification Exception

	Chapter 26. Specialized-Function-Assist Instructions
	Instructions
	SORT LISTS
	Function Code 0: SORTL-QAF (Query Available Functions)
	Function Code 1: SORTL-SFLR (Sort Fixed-Length-Records)
	Function Code 2: SORTL-SVLR (Sort Variable-Length-Records)

	End of Document

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

