

Tropical observations in NWP: availability, impact and future evolution

Met Office, UK

© Crown copyright 2007

ECWMF Tropical Workshop, Nov 2016

Tropical observations in NWP: availability, impact and future evolution

- Which observations are available?
- Which observations are most useful?
- How will the observing system evolve?

- Cristina Lupu
- Tony McNally
- Sean Healy
- James Cotton
- Mary Forsythe
- Bill Bell
- Indira Rani
- Amy Doherty
- Stuart Newman

VerFoRTIO

Verifying Forecasts of Rainfall in the Tropical Indian Ocean

precip "observed"

Which observations are available?

Observation coverage (1)

ECMWF Data Coverage (All obs DA) - Temp ECMWF Data Coverage (All obs DA) - Pilot-Profiler ECMWF Data Coverage (All obs DA) - Synop-Ship-Metar ECMWF Data Coverage (All obs DA) - Buoy ECMWF Data Coverage (All obs DA) - Aircraft 01/Nov/2016; 00 UTC Total number of obs = 155239

ECMWF Data Coverage (All obs DA) - AMV IR ECMWF Data Coverage (All obs DA) - AMV POLAR IR ECMWF Data Coverage (All obs DA) - SCAT ECMWF Data Coverage (All obs DA) - GPSRO ECMWF Data Coverage (All obs DA) - Ground Based GPS 01/Nov/2016; 00 UTC Total number of obs = 59816

Radiance data coverage Met Office global NWP system, Mar 2016

Satellite data used in Met Office NWP

May 2016

* G=global, UK=UK area

Observation type	Satellites	NWP models *
AMSU / ATMS / MHS radiances	3 NOAA + S-NPP + Metop-A+B	G, UK
HIRS clear radiances	Metop-A	G
IASI, CrIS and AIRS radiances	Metop-A+B + S-NPP + Aqua	G, UK
SSMIS radiances	1 DMSP (F-17)	G
AMSR-2 radiances	GCOM-W	G
MWHS-2 radiances	FY-3C	G
Saphir radiances	Megha-Tropiques	G
Geo imager clear IR radiances	MSG, MTSAT, GOES	G, UK
GPS RO bending angles	4 COSMIC, GRAS, TerraSAR-X	G
GPS ZTDs	~430 European + ~100 non-Europ. G, UK	

Crown copyright 2007

Satellite data used in Met Office NWP

May 2016

* G=global, UK=UK area

Observation type	Satellites	NWP models *
AMVs – geo	5 geo satellites	G, UK
AMVs – MODIS and AVHRR	Aqua, Terra, 3 NOAA, Metop-A+B	G
AMVs – GEO-LEO	Various	G
Scatt. sea-surface winds: ASCAT + RapidScat	Metop-A+B + ISS RapidScat	G, UK
MW imager sea-surface winds: Windsat	Coriolis	G
SEVIRI cloud height and amount	MSG	UK
SSTs: AVHRR, AATSR, AMSR-E	3 NOAA, Metop-A+B, Aqua	G, UK
Soil moisture: ASCAT	Metop-B	G, UK
Sea ice: SSM/I, SSMIS	DMSP	G
Snow cover	various	G

Crown copyright 2007

Which observations are most useful?

© Crown copyright 2007

Impact of recently available satellite data

- ISS-RapidScat (James Cotton)
- AMSR-2/SAPHIR (Bill Bell, Indira Rani, Amy Doherty, Stuart Newman)

ISS-RapidScat

Met Office

Assimilated in Met Office operations from Sept 2015

RapidScat impact on TC track forecasts Met Office

RapidScat impact on tropical cyclone positional errors

- Analysis errors 2.1% lower over 126 analyses
- Forecast errors 1.5% lower over 607 forecasts
- Forecast skill neutral

© Crown copyright Met Office

Assimilation of imager data (AMSR-2 and SSMIS) and SAPHIR

Background fits to observations (O-B) used as key diagnostic of performance

Imagers - in isolation - show:

- improved background fit to low level moisture, BUT...

- degraded fits to upper level moisture

SAPHIR - in isolation - shows: - improvements to both lower and upper level humidity

SAPHIR + imagers show: - enhanced improvements for lower and upper level humidity

Met Office James Cotton

August 2016

© Crown copyright 2007

Total Impact, All Latitudes

Impact of **global** observations on reducing 24-hr forecast errors

Measured using a **global**, moist energy norm, surface to 150 hPa

- IASI 18%
- AMSU-A 12%
- Geo AMVs 9%
- Sondes 8%
- Aircraft 8%
- CrIS 8%

Total Impact (Global Norm) for Obs Located 20°S - 20°N

Impact of **tropical** observations on reducing 24-hr forecast errors

Measured using a **global**, moist energy norm, surface to 150 hPa

- IASI 21%
- Geo AMVs 13%
 - CrIS 9%
- Sondes
 - AIRS 8%

8%

• Aircraft 7%

Number of Observations Located 20°S - 20°N

22% of observations are located in tropics

They contribute **33%** towards the total, global impact as measured by FSOI

20°N-20°S is **34%** of the global area

4.00E+07

Fraction of Observations Located 20°S - 20°N

82% of M-T Saphir observations are located in the tropics

Fraction of ObsType FSOI from Obs Located 20°S - 20°N

ECMWF Cristina Lupu

Nobs and total FSOI by instrument: NH, SH, TR

Nobs and total FSOI by observation type: NH, SH, TR

Nobs and total FSOI: mass and wind observations

Nobs and total FSOI by instrument: tropics

Total FSOI and FSOI-per-observation: tropics

Data Denial Experiments ECMWF Tony McNally

March-June 2014

Data denial experiments – observation sets

All conventional (in situ) data	CONV	TEMP/AIRCRAFT/SYNOP/SHIP
All Satellite Data	SAT	
Microwave sounding radiances	MWS	7 x AMSUA, 1 x ATMS, 4 x MHS
Infrared sounding radiances	IRS	2 x IASI, 1 x AIRS, 1 x HIRS
All GEO data (AMVs and radiances)	GEO	2 x GOES, 2 x METEOSAT, 1 x MTSAT, polar AMVs
GPS-RO bending angle data	GPS	COSMIC, 2 x METOP-GRAS
Microwave imager radiances	MWI	1 x TMI, 1 x SSM/IS
Scatterometer surface wind data	SCAT	2 x ASCAT

Low level humidity in the tropics

24h 850hPa RH tropics

72h 850hPa RH tropics

144h 850hPa RH tropics

Upper level winds in the tropics

24h 200hPa VW tropics

72h 200hPa VW tropics

144h 200hPa VW tropics

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

GPS-RO data denial experiments

Sean Healy

- Dec 2014 Feb 2015
- CONTROL: full observing system
- EXPERIMENT: all GPS-RO removed.
- Fractional change in fit of analysis and short-range forecast to other observations in the tropics

Vector wind improvement in Tropics - v. aircraft and PILOT winds

-ve indicates GPS-RO improves fit.

Vector wind improvement in Tropics - v. sonde winds

How will the observing system evolve? (with focus on the tropics)

Space-based

See Proc. ECWMF Seminar 2014:

"The WMO Vision for global observing systems in 2025: to what extent will it be met by space agencies' plans"

J. Eyre

Surface-based

Observing system evolution to 2025 (1)

SPACE-BASED OBSERVING SYSTEM

- Operational GEOs
 - Vis/IR imagery continuity assured
 - AMVs work still needed on quality
 - New opportunities hyperspectral IR (humidity and wind), lightning imagery (precip, latent heating)
- Operational LEOs hyperspectral IR and MW sounding, and Vis/IR imagery
 - Continuity assured in at least 2 orbits
 - ... and probably in 3 orbits, with some back-up
 - Impact from all-sky radiances more to come

SPACE-BASED OBSERVING SYSTEM

- MW imagery clouds, precip, TCWV, surface wind
 - Prospects for continuity are good
 - Low-inclination orbit is useful but not assured
- Scatterometry surface wind vector, soil moisture
 - Continuity assured in at least 2 orbits
- Radio occultation
 - Many initiatives prospects of greatly increased coverage
 - Better use of information on humidity profile and PBL top
 - COSMIC-2 part 1 will be in low-inclination orbits

Observing system evolution to 2025 (3)

SPACE-BASED OBSERVING SYSTEM

- Doppler wind lidar
 - Prospects for continuity are not good
- Low-frequency MW soil moisture, SSS, sea surface wind
 - Prospects for continuity are not good
- Cloud and precip radar
 - Two missions planned for 2025 (FY-3RM-1, -2)
 - Good for model validation and climate. Impact on NWP?

Observing system evolution to 2025 (4)

SURFACE-BASED OBSERVING SYSTEM

MOST IMPORTANT

- Aircraft AMDAR ascent/descent profiles into more airports, and more flight-level data
- Remote stations and small islands continuing pressure
- Land-based surface and sonde stations WIGOS?
- Ocean sub-surface temp., salinity, current ARGO, ...
- Moored buoys TPOS2020 surface fluxes for validation

TPOS2020 Report (2016): "... a paucity of studies on the impact the Tropical Moored-buoy Array on NWP and associated reanalysis products and in coupled models."

Observing system evolution to 2025 (5)

SURFACE-BASED OBSERVING SYSTEM

LESS IMPORTANT (in the tropics)??

- Remotely-sensed upper air observations
- GNSS receivers on ships and buoys (and land)
- Weather radars precipitation and wind
- ASAPs more routes?
- Drifting buoys surface pressure (impact mainly extratropics?); surface currents

Summary and Conclusions

Summary and conclusions

- Despite relative difficulties of modelling and assimilation in tropics, current observations have strong impacts on forecast scores:
 - Short-range: MWI(humidity?), AMVs, clear-sky radiances, surfacebased observations
 - Medium-range: MWS, IRS (from extra-tropics?)
 - ... and don't forget TCs
- In future:
 - New instruments on geos
 - More impact from current satellite obs types, e.g. all-sky radiances
 - DWL and its continuity?
 - More aircraft observations, particularly important for wind
 - Maintain NWP community efforts to support surface-based observations

Thank you! Questions?

Operational geostationary satellites

Objectives

- weather in motion nowcasting
- cloud cover and cloud height
- winds (from moving clouds)
- other cloud properties
- aerosols
- vegetation, snow, fire
- sea/land surface temperature

Operational geostationary satellites

Met Office

	2015	→ 2025
E.Pacific		
	GOES-13,-14,-15	GOES-R,-S,-T,-U
W.Atlantic		
E Atlantic	MCC. M Q 0 10 11	
Indian	M-7 INSAT-3C, Kalpana-1	MSG? INSAT-3DS
Ocean	Electro-L N1 INSAT-3D	Electro-M N1-1,-2
	FY-2D,-2E INSAT-3A	FY-4B,-4C,4D
W.Pacific	FY-2F,-2G COMS-1	GEO-KOMSAT-2A,-2B
	Himawari-6,-7 (MTSAT-1R,-2)	Himawari-8,-9
	Himawari-8	Electro-L N4

Operational geostationary satellites in 2025 (1)

satellite series	Vis/IR imager	Hyperspectral	Lighting
		IR sounder	imager
MSG	SEVIRI (12 ch)	no	no
MTG	FCI (16 ch)	IRS	LI
GOES-R	ABI (16 ch)	no	GLM
Himawari	AHI (16 ch)	no	no
FY-4	AGRI (14 ch)	GIIRS	LMI
INSAT-3DS	IMAGER (6 ch)	no (low-res SOUNDER)	no
GEO-KOMSAT-2	AMI (16 ch)	no	no
Electro-M	MSU-GSM (20 ch)	IRFS-GS	LM

Operational geostationary satellites in 2025 (2)

	Vis/IR imager	Hyperspectral IR sounder	Lighting imager
E.Pacific	YES	?	YES
W.Atlantic	YES	?	YES
E.Atlantic	YES	YES	YES
Indian Ocean	YES	YES	YES
W.Pacific	YES	?	?

Observation info? Tropics?

Operational polar-orbiting sunsynchronous satellites

	2015	→ 2025
Early morning (LECT ~1730)	DMSP F-16,-17,-18,-19	DMSP F20 FY-3E(?),-3G(?)
Morning (LECT ~0930)	Metop-A,-B DMSP-18 FY-3C Meteor-M N2	Metop-C Metop-SG Meteor-M N2-4, -MP N2
Afternoon (LECT ~1330)	NOAA-15,-18,-19 Suomi-NPP FY-3B	JPSS-1,-2 FY-3F
(LECT ~1530)		Meteor-M N2-5, -MP N1

Operational polar-orbiting sunsynchronous satellites in 2025 (1)

satellite series	Hyperspectral IR sounder	MW sounder	Vis/IR imager
Metop-SG	IASI-NG	MWS	METimage
Metop	IASI	AMSU-A, MHS	AVHRR
JPSS	CrIS	ATMS	VIIRS
FY-3,-3RM	HIRAS	MWTS-2, MWHS-2	MERSI-2
Meteor-3M	IKFS-2	MTVZA-GY	MSU-MR
Meteor-3MP	IKFS-3	MTVZA-GY-MP	MSU-MR-MP
DMSP	no	SSMIS	OLS

Operational polar-orbiting sunsynchronous satellites in 2025 (2)

	Vis/IR imager	Hyperspectral IR sounder	MW sounder
Early morning	YES?	YES?	YES?
Morning	YES	YES	YES
Afternoon	YES	YES	YES

Microwave Imagery

Objectives

- cloud and precipitation
- total column water vapour
- sea-ice, snow, sea surface wind
- SST, soil moisture

Microwave imagers - 2015

Met Office

satellites	instrument	channels (GHz)
DMSP F15	SSM/I	19-85
DMSP F16,F17,F18,F19	SSMIS	19-183, incl.50-60
TRMM	ТМІ	10-85
Coriolis	Windsat	6.8-37
GCOM-W1	AMSR-2	6.9-89
FY-3B,-3C	MWRI	10-89
Megha-Tropiques	MADRAS	18-157
GPM Core	GMI	10-183
Meteor-M N2	MTVZA-GY	10-183, incl.50-60
HY-2A	MWI	6.6-37

Microwave imagers - 2025

Met Office

satellite series	instrument	channels (GHz)	
DMSP	SSMIS	19-183, incl.50-60	→ 2025
GCOM-W	AMSR-2	6.9-89	→ 2025
GPM-Core, -Braz	GMI	10-183	→2021+
HY-2	MWI	6.6-37	→ 2025
FY-3, FY-3RM	MWRI	10-89	→ 2028
Metop-SG	MWI	18-183, incl.50-54,118	2022→
Metop-SG	ICI	183-664	2022→
DWSS	MIS	6.3-183, incl.50-60	??
Meteor-M	MTVZA-GY	10-183, incl.50-60	→2025
Meteor-MP	MTVZA-GY-MP	6.9-183, incl.50-60	2021-2030

Scatterometry

Objectives

- ocean surface wind speed and direction
- soil moisture
- snow equivalent water
- sea-ice type

ASCAT: 20090120 20:30Z HIRLAM: 2009012015+6 lat lon: 61.72 5.23 IR: 20:30

Scatterometers - 2015

satellites	instrument	
Metop-A,-B	ASCAT	C-band
Oceansat-2	OSCAT	Ku-band
ISS RapidScat	RapidScat	Ku-band
HY-2A	SCAT	Ku-band

Scatterometers - 2025

Met Office

satellite series	instrument		
Metop	ASCAT	C-band	→2024+?
Metop-SG	SCA	C-band	2022→
FY-3	WindRad	C+Ku-band	2021+
HY-2	SCAT	Ku-band	→ 2025
Meteor-M	SCAT	Ku-band	2020-25
ScatSat-1	OSCAT	Ku-band	2016-21
CFOSAT	SCAT	Ku-band	2018-21
OceanSat-3	OSCAT	Ku-band	2018-23

Radio occultation

Objectives

- refractivity profiles at high vertical resolution
 - temperature / humidity profiles
- ionospheric electron content

Radio occultation – 2015

Total:

9 receivers

~2300 occultations per day

(Nov 2015)

satellites	instrument	
COSMIC	IGOR	~4 satellites
Metop-A and -B	GRAS	
GRACE-A or -B	Blackjack	
TerraSAR-X	IGOR	
Tandem-X	IGOR	
FY-3C	GNOS	
Oceansat-2	ROSA	
Megha-tropiques	ROSA	
KOMPSAT-5	AOPOD	

Radio occultation - 2025

	satellite series	instrument		
	COSMIC-2A,-2B	Tri-G	12 sats	2016-25
WMO EGOS-	Metop-C	GRAS		→ 2024+?
IP says:	Metop-SG	RO	2 sats	2021→
" at least 10000 occultations per day"	FY-3	GNOS		→ 2026
	Meteor-M N3	Radiomet		2020-25
	Meteor-MP	ARMA-MP		2021-30
	JASON-CS	Tri-G		2020-33
	SEOSAR/Paz	ROHPP		2015-20
	GRACE-FO	Tri-G	2 sats	2017-22

Doppler wind lidar

Objectives

- wind profiles (line-of-sight)
- profiles of cloud and aerosol
- aerosol properties
- boundary layer height

satellites	instrument	
ADM-Aeolus	ALADIN	2017-20
3D-Winds	3D-Winds lidar	2023-26

Low frequency microwave – ~1.4 GHz

Objectives

- soil moisture
- sea surface salinity
- sea surface wind (high wind speed)
- sea ice thickness (thin ice)

satellites	instrument	
SMOS	MIRAS	2009-17+
SAC-D	Aquarius	2011-15
SMAP	SMAP	2015-18+

Cloud and precipitation radar

satellites	instrument	frequency (GHz)	
TRMM	PR	13.8	1997-2015
Cloudsat	CPR	94	2006-15+
GPM-Core	DR	13.6 + 35.6	2014-17
EarthCARE	CPR	94	2018-21
FY-3RM-1, -2	Ku/Ka-PR	? 12-18 + 26-40 ?	2020-28

- T+24 forecast rms % error reductions
- Experiment v Control, verified against ECMWF analysis
- Many levels and variables:
 - PMSL, H500, W250, W850, W700, W500, W100, W50, H850, H700, H250, H100, H50, T850, T700, T500, T250, T100, T50, RH850, RH700, RH500
- % of the global %-rms error reduction in band 20°N-20°S:
 - IR sounders 56%
 AMVs 39%
 MW sounders + imagers 34%
 Sondes 30%
 GNSS-RO 23%

Tropics = 34% of global area

- A set of OSEs designed to show impacts of observations operational at the Met Office from March 2016
- Period: 15 Nov 2015 to 15 Jan 2016
- Data denial experiments included:
 - No IR data: IASI, CrISS, AIRS, HIRS, SEVIRI
 - No MW data: AMSU/MHS, ATMS, SSMIS, Aphis, FY-3C
 - No AMVs
 - No sondes
 - No aircraft
- For each region (NH, TR, SH), calculated mean % RMS difference between control and experiment, verifying against ECMWF operational analyses of 7 variables (PMSL, H500, W250, W850, T850, T500, RH850)

Data denial trials – change in %rmse vs EC analyses

