

Trusted Computing: How to Make Your Systems and Data Truly Secure

Thursday, May 26, 2005

8:30 am - 11:30 am

Booth #1743

Slide #1

Agenda

8:30 am Introduction

Brian Berger, Wave Systems

8:35 am Keynote Speaker

Roger Kay, IDC

9:05 am TCG Architecture

Monty Wiseman, Intel

9:25 am Open Source Solutions

Dr. David Safford, IBM

9:45 am Writing and Using Trusted Applications

Alexander Koehler, Utimaco Safeware AG; Steven Sprague, Wave

Systems

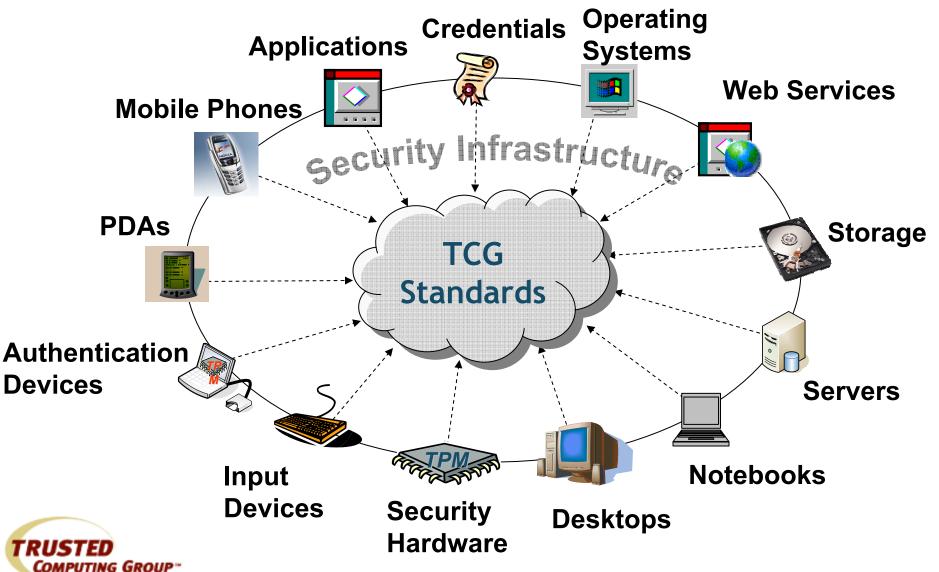
10:30 am Trusted Storage and Applications

Michael Willett, Seagate Technology, Inc.

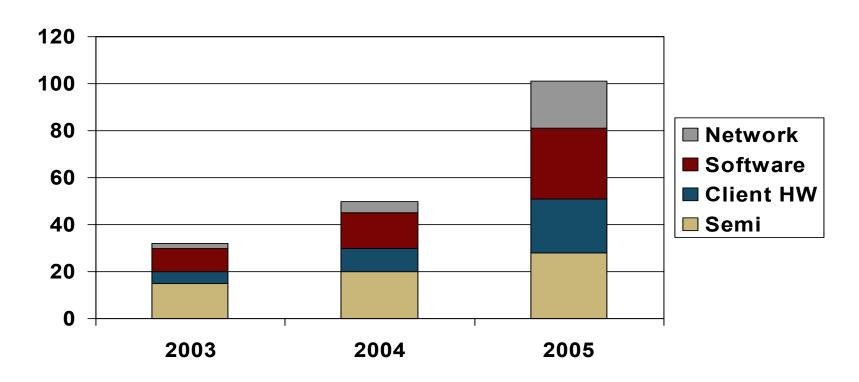
10:50 am Trusted Network Connect Overview

Jon Brody, Sygate Technologies

11:15 am Q&A



TCG Mission


Develop & promote open, vendor-neutral, industry standard specifications for trusted computing building blocks and software interfaces across multiple platforms.

Trusted Computing: The "BIG" Picture

TCG Membership Momentum

- 103 Member company's as of May, 2005
- BOD AMD, HP, IBM, Intel, Microsoft, Seagate, Sony, Sun, Verisign

Agenda

8:35 am

Keynote Speaker Roger Kay, *IDC*

Roger L. Kay is IDC's Vice President of Client Computing. He has responsibility for covering technological, market, and competitive developments related to desktop and portable personal computers. In his capacity as leader of the PC client team, Mr. Kay authors research on competition, technology, and markets in the PC business; produces forecasts; speaks at IDC and other industry forums; contributes to consulting projects; and advises PC industry participants on desktop and notebook matters.

GovSec 2005

The Future of Trusted Computing

Roger L. Kay Vice President Client Computing

Agenda

- Philosophy, history, and issues
- TPM forecast
- A bit about trusted network access
- Final notes

- Before 9/11, people wanted all the privacy they could get
 - Only criminals had fingerprints on record
- Post 9/11, people want to be known as who they are
 - Identity theft and other heretofore unknown dangers
 - Increased value of stored data
- This change creates a base for mass acceptance of security features in the computing environment

Recap of Efforts Thus Far

- IBM pioneered technology in 1999
- Gave to Trusted Computing Platform Alliance October 1999
- TPM 1.1b spec released 1Q02
- Grand plans for broad usage: PKI

- Formation of Trusted Computing Group April 2003
- TPM 1.2 final spec released February 2005
- Focus on client authentication seen as more realistic near-term goal
- Broad adoption by industry in 2005
- Discrete
 - e.g., Atmel TPM

- Integrated
 - e.g., Super I/O of Winbond, Network chip of Broadcom, Processor of Transmeta
 - More to come

Hardware Security: The Right Answer

- In 2000, nCipher of Cambridge, England proved that software-based security had fatal flaws
 - Came up with algorithm that searched main memory, looking for a high degree of entropy
 - Good random numbers have a high degree of entropy
 - In software security, the key, algorithm, and data to be encrypted must be in main memory at the same time
 - With a Trojan horse like Back Orifice and the nCipher algorithm, an Internet intruder could take command of a PC with only software security and gather its private keys
- In hardware security, cryptographic operations are routed through the TPM chip, giving a greater degree of protection

Enterprise

- Policies can be set by fiat
- Perimeter defined
- Corporate is trusted 3rd party

Consumer

- Nobody sets policies for everybody
- -Credentials could be passed around
- -There is no trusted 3rd party

Segment Adoption

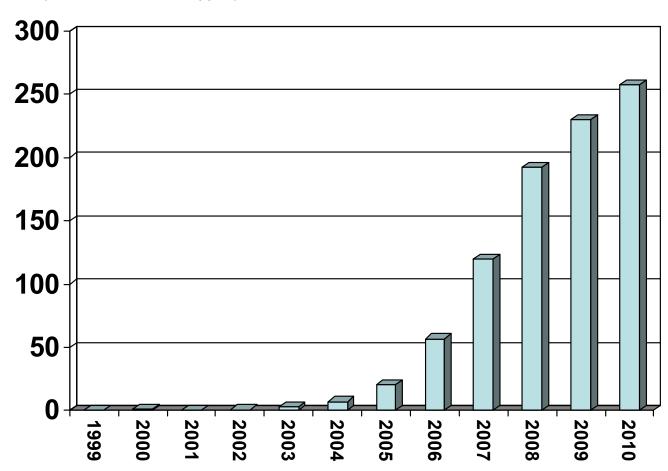
- Enterprise picks and chooses
 - Justification is easier, but conservatism leads to slow adoption
 - However, many will "buy up" in hardware to prepare for arrival of Longhorn

- Consumers take what's on the shelf
 - Uptake could be rapid once integration and trust issues are solved

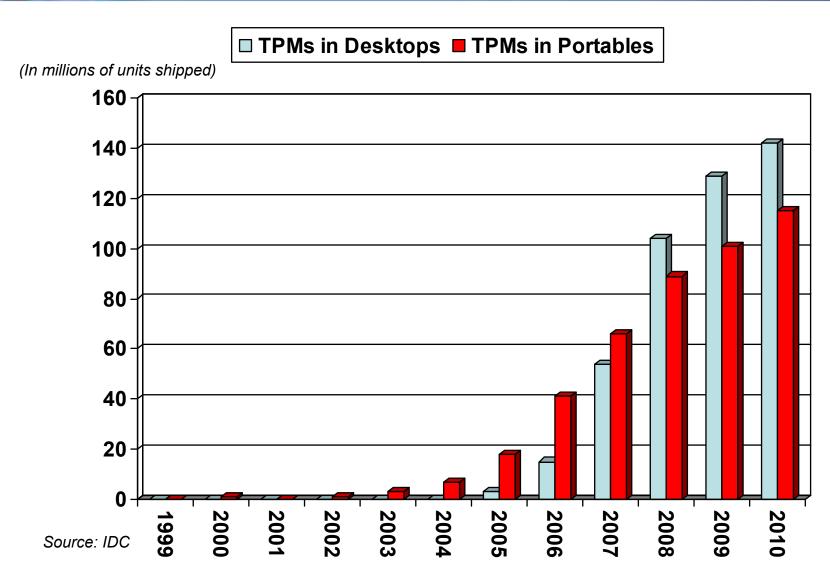
- Biometrics, particularly fingerprint, will dominate
- What you are as opposed to what you know or what you have
- Multifactor
- Fingerprint reader paring with TPM lags

Integrated vs. Discrete

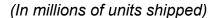
- Integration beats discrete on cost
- Discrete could have 10-20% of the market over time, sold as being more resistant to hacking
 - Having a FIPS-4 part will be required in some cases, desirable in others
- Must solve flash in South Bridge issue for complete integration in core logic
 - Intel was burned badly by the CPU serial number fiasco in 1999, but it's a new world
- Some countries worry about where they're made:
 - Today: Taiwan, China, Germany, United States, others

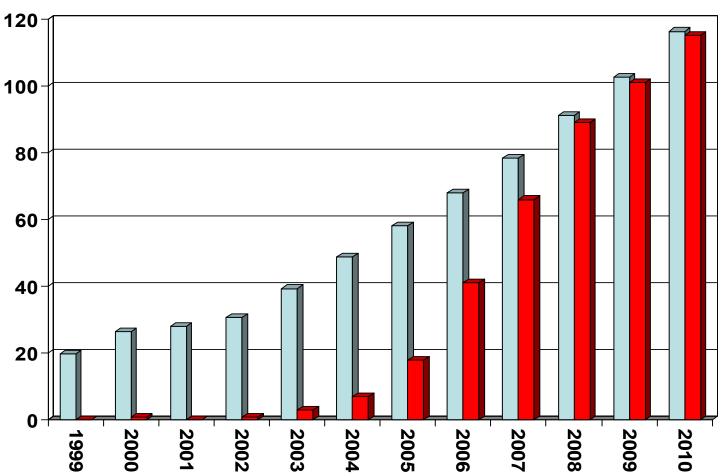


- Big boosts to hardware security solution:
 - -Dell entry in 2005
 - –Most OEMs commit strongly in 2005 with 1.2 spec
 - -Longhorn (N.G.S.C.B.) incorporation in 2006
 - Intel integration in South Bridge by 2008
 - Saturation of client space by 2010


(In millions of units shipped)

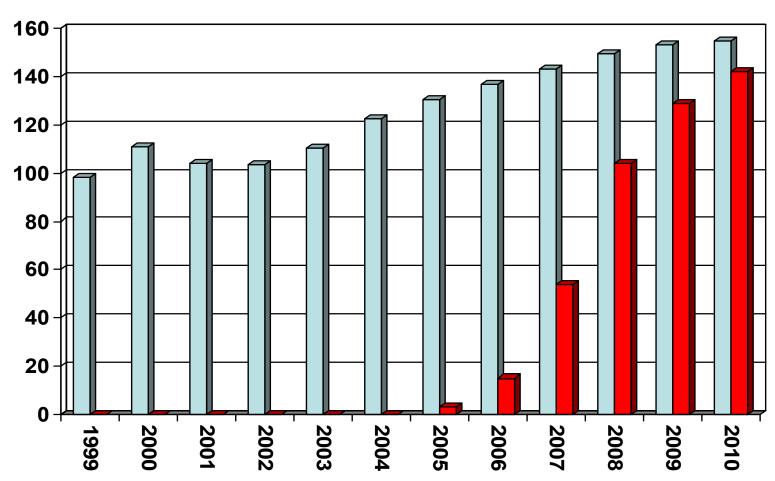
Source: IDC





TPM Attach: Portables

■ Total Portables
■ TPMs in Portables


Source: IDC

TPM Attach: Desktops

(In millions of units shipped)

□ Total Desktops
■ TPMs in Desktops

Source: IDC

- Maginot Line
- Security is only as strong as the weakest link
- The client has been neglected in the past
- Mobility is a special case

Trusted Network Connect

- What is TNC?
 - Represents a significant, high profile development directly applicable to today's network operations
 - Introduced in April 2005, an open standard that allows network operators to establish policies for client access
 - Presents a roadmap for technology development and deployment
 - As a standard, allows components from many vendors
- Establishes endpoint profile and integrity before allowing entry to a trusted network
 - TNC Client collector of integrity information, including TPM data, bundles as part of network access request
 - TNC Server determines quality of client compliance, hands off to quarantine and remediation or to the network or bounces, depending on policy

Final Notes

- Other specs are in the works:
 - Server
 - Mobile phone
 - Peripherals
 - Storage
 - Keyboard and mouse
 - Infrastructure
 - -PC
 - Software
- The exciting news: TCG is applying the trust specification developed for PCs to a broader potentially universal — set of devices

Contact Info

Please email me at Rkay@idc.com

Agenda

9:05 am

TCG Architecture Monty Wiseman, *Intel*

Monty Wiseman is currently a Security Architect for Intel's Desktop Architecture Lab. His areas of specialty include high performance mass storage systems, filesystems, directory services, and authentication mechanisms. His current projects include architecture for TCG and Intel's LaGrande Technologies. He has 20 years experience in Desktop, Network and Mainframe environments holding security related and other engineering positions at Novell, Fujitsu, and Control Data.

TCG Architecture: The Trusted Platform Module

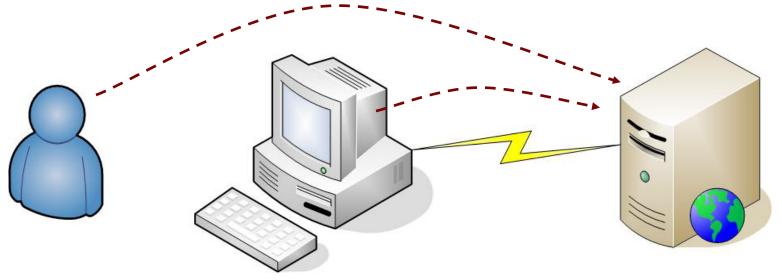
Monty Wiseman monty.wiseman@intel.com
Security Architect
Intel, Corp.

TPM Abstract Architecture

- Core component is a Trusted Platform Module (TPM)
 - Protected storage
 - Protected operations
 - Platform authentication under user control
 - User control to handle the uniqueness appropriately
- Platform Specific Specifications
 - Defines how a TPM is implemented on specific platforms
 - Does not define mechanisms
- Infrastructure
 - How TPMs and TCG-enabled platforms exist and interact within the enterprise

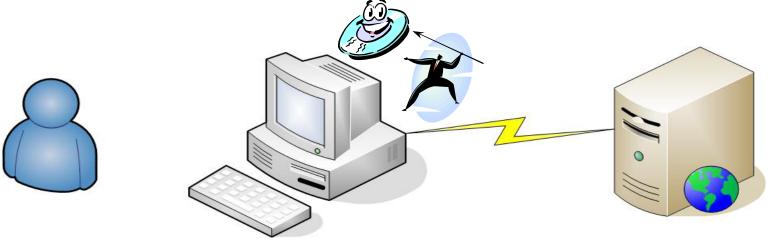
TPM Key Features for Platforms

- Indicates platform as "valid"
 - Platform is the one issued by IT
- Indicates platform is in a "valid" or authorized state
 - Platform configuration
 - Are Pre-OS, OS & Apps what IT has authorized
- Protected storage
 - Uses isolated environment to protect keys

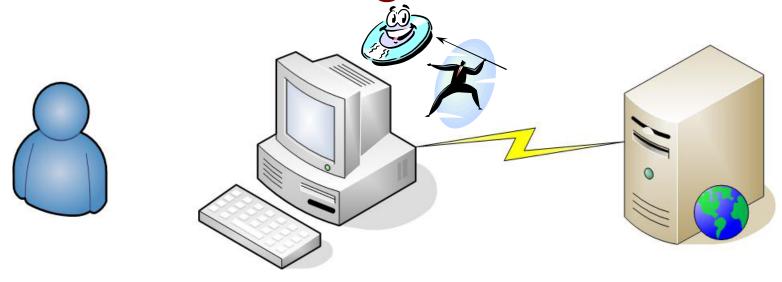


TPM Overview

- Module on the motherboard
 - Can't be moved or swapped
 - Secrets in TPM can't be read by HW or SW attackers
- Uses asymmetric cryptography
 - Private key operations occur inside TPM
 - Default keys are 2048-bit RSA
- Holds Platform Measurements
 - PC measures software, TPM is repository of measurements
 - Multiple repositories, or Platform Configuration Registers (PCR)
 - Can only extend PCR, hash with new value, not write directly
- Using signature key can report on PCR contents
- High Quality Random Number Generator
- SHA-1 Hash Computation Engine
- Nonvolatile memory

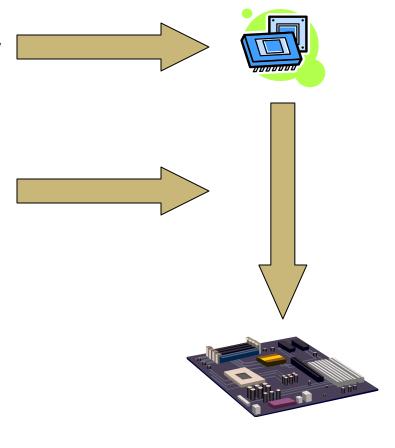

Platform Authentication

- Applications tend to focus on "user authentication"
- But how does the IT infrastructure know which platform is being used?
 - Is it authorized to be attached to the network?


Platform Attestation

- Applications tend to assume they have not been attacked
 - Especially true of "monitoring" or "defensive" apps
- But how does the IT infrastructure know if the platform is executing the application as authorized?

Protecting Secrets



- OS and Applications use software to protect keys and secrets
 - They lack a standardized and isolated place to create, store and use them
- All software can be attacked
 - Offline attacks are not difficult

Purview of Specifications

- TPM Specification defines only the protected capabilities of the TPM
 - Functionality not specific to any type of platform
 - Bus protocol and type not defined
- Platform Specific Specifications define attachment of TPM to platform
 - Bus
 - H/W protocol
 - Specific integrity metrics

Ongoing Work In The TCG

Platforms

- PC Client
- Server
- Mobile
- Peripherals and Storage

Infrastructure

- TNC
- Credential formats

Work is progressing

If you or your company are interested please join TCG and participate

Implementation Status

- PCs with TPMs available; millions deployed
 - Dell
 - IBM* ThinkPad notebooks and NetVista desktops
 - HP* D530 Desktops and nc4010, nc6000, nc8000, and nw8000 Notebooks
 - Intel* D945GNTLKR, D945GTPLKR, D945GCZLKR motherboards
 - Fujitsu* LifebookS notebook PC series
 - Toshiba, Acer, Gateway and others
- Application support by multiple ISV's
 - Familiar applications use TPM through standard cryptographic APIs like MS-CAPI and PKCS #11
 - Single sign-on, password management, hard drive encryption and others now available

Dispelling Common Misconceptions

- The TPM does not measure, monitor or control anything
 - Software measurements are made by the PC and sent to the TPM
 - The TPM has no way of knowing what was measured
 - The TPM is unable to reset the PC or prevent access to memory
- The platform owner controls the TPM
 - The owner must opt-in using initialization and management functions
 - The owner can turn the TPM on and off
 - The owner and users control use of all keys
- TPMs can work with any operating systems or application software
 - The spec is open and the API is defined; specs available publicly
 - All types of software can (and will, we hope) make use of the TPM

Thank You

Agenda

9:25 am

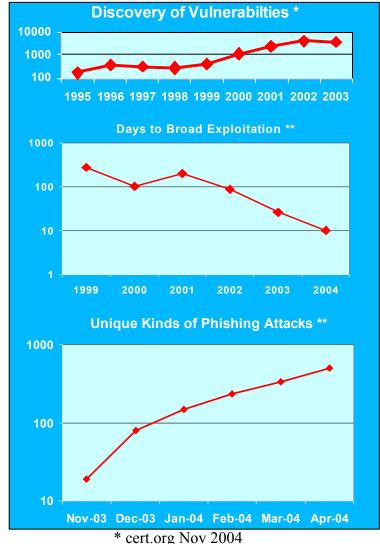
Open Source Solutions Dr. David Safford, *IBM*

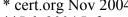
Dr. Dave Safford manages the Global Security Analysis Lab in IBM's T.J Watson Research Center in Hawthorne, New York, where he directs research in security analysis tools, data forensics, security hardware, secure Linux, security engineering, and ethical hacking.

His current research includes work on the Distributed Wireless Security Auditor for 802.11 networks and Linux support for the Trusted Computing Trusted Platform Module component.

Open Source Solutions

Dave Safford, IBM Research


Outline


- Threat Trends
- Trusted Computing
- Open Source Projects
- What's Missing
- The Future

Client Risk is Rising

- The number of attacks in the wild, and their lifetimes and impact are growing fast
 - 450% increase in Windows viruses over last year
 - 1500% growth in BotNets Jan to Jun 2004
 - Viruses are already deploying attacks against AV software
 - 80% of clients have spyware infestations
 - 30% of clients already have back doors (FSTC)
- The time between the publication of a security vulnerability and the broad exploitation of it is markedly decreasing
- Financial losses rapidly increasing:
 - Phishing attacks: \$500M direct losses in first half of 2004
 - Identity theft is the fastest growing crime in US

^{**}July2004 Information Security

A Trusted Platform Module (TPM) Can Help

RSA crypto key generation, signature, encrypt, decrypt

Secure storage private keys master keys (eg loopback)

Integrity measurement

Platform Configuration Registers (PCR) compromise detection

Tie key use to uncompromised environment

Attestation

host based integrity/membership reporting (RSA 2004 Demo)

Understanding The TPM:

Main Specification:

Trusted Computing Group (TCG) home page: http://www.trustedcomputinggroup.org

- Tutorial/Introduction paper: (4 pages)
 Linux Journal, August 2003
- White papers, open source code http://www.research.ibm.com/gsal/tcpa device driver/access library/example applications

Programming view of the TPM

Functional Units	Non-volatile memory	Volatile memory
RNG	Endorsement Key (2048b)	RSA Key Slot-0
Hash	Storage Root Key (2048b)	RSA Key Slot-9
HMAC	Owner Auth Secret (160b)	PCR-0
RSA Key Generation		PCR-15
RSA Encrypt/Decrypt		Key Handles
		Auth Session Handles

Open Source TPM projects

IBM Research

Linux Device Driver/library/applications http://www.research.ibm.com/gsal/tcpa

Trusted Linux Client

- IBM Linux Technology Center http://sourceforge.net/projects/tpmdd http://sourceforge.net/projects/trousers
- Rick Wash (umich) BSD port of IBM driver/library/applications http://www.citi.umich.edu/u/rwash/projects/trusted/netbsd.html
- Dartmouth enforcer
 http://sourceforge.net/projects/enforcer
- Swiss Federal Institute of Technology TPM emulator http://www.infsec.ethz.ch/people/psevinc/

IBM Linux Technology Center

- Official Device Driver included in 2.6.12 kernel http://sourceforge.net/projects/tpmdd
- Open source TCG Software Stack (TSS)

http://sourceforge.net/projects/trousers

Full software stack, including

synchronization

resource control (loaded keys)

example applications

testing programs

IBM Research: Trusted Linux Client

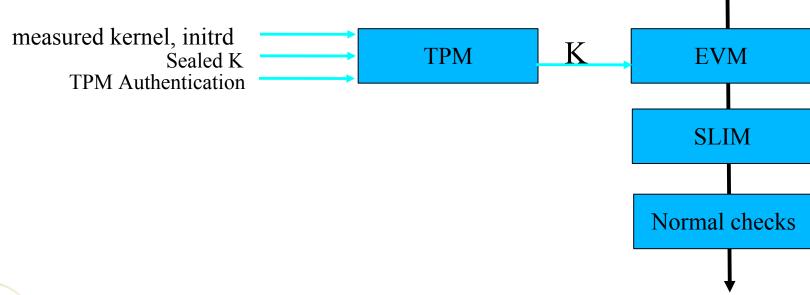
Goals:

protect integrity of system from current attacks be transparent to user let user get job done block only malicious activity

Foundations:

TPM LSM (Linux Security Modules)

Functionality


TPM based "Trusted Boot"
Authenticated file metadata for storing hashes,

labels

Enhanced Lomac style Mandatory Access Control

Trusted Linux Client Modules:

- TPM: driver measures integrity of kernel and initrd, and releases kernel key
- EVM: Extended Verification Module authenticates extended attributes, data
- SLIM: Simple Linux Integrity Module Mandatory Access Control Sandbox
- Implemented as stacked LSM module:

TLC Extended Attributes

EVM Extended Attributes:

```
security.evm.hash - hash of file data (from signed rpm)
security.evm.hmac - hmac-shal of security.* attributes
security.evm.packager - signer of package
security.evm.version - version of package
```

SLIM Extended Attributes

```
security.slim.level - six class values (values are space delimited)
```

```
    IAC - File's Integrity Access Class
    SAC - File's Secrecy Access Class
    IRAC - guard process Integrity Read Access Class
    IWXAC - guard process Integrity Write/Execute Class
    SWAC - guard process Write Access Class
    SRXAC - guard process Read/Execute Class
```


Open Source TPM projects – What's Missing?

OpenSSL support

Example applications already use OpenSSL key formats

Need way to use TPM for client side SSL authentication

hooks for openSSL to call TPM library

Open Source Trusted Computing

Future Work

- Integration with virtualization (Xen)
- Integration with Selinux
- Integration with encrypted filesystems

Summary

- drivers, libraries, trusted boot available now
- many more applications in work

Agenda

9:45 am

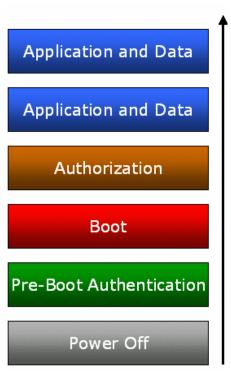
Writing and Using Trusted Applications
Alexander Koehler, *Utimaco Safeware AG*; Steven Sprague, *Wave Systems*

Alexander Koehler completed his studies in mathematics and computer science at Karlsruhe University, Germany. After working as software development engineer on ground transportation simulation he joined Hewlett-Packard in 1981. Since 1997 his interests have been in IT security, which led him to Utimaco Safeware AG as head of business intelligence. He is the alliance manager for the Trusted Computing Group.

Slide #52

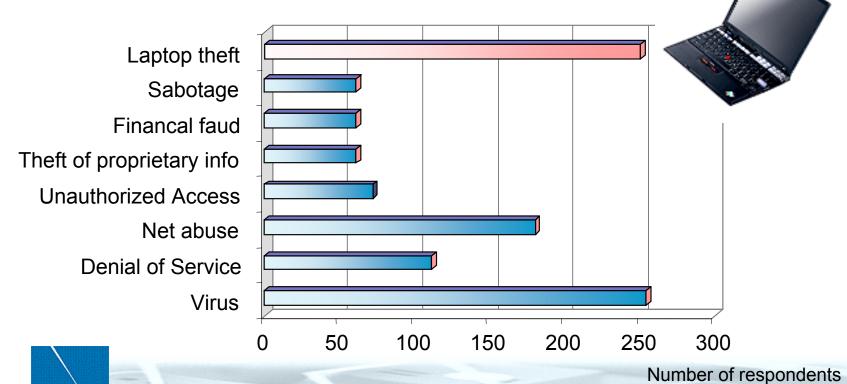
Writing and Using Trusted Applications: Security Solutions in Operation

Alexander W. Koehler


Business Intelligence

Utimaco Safeware Inc.

Agenda


- Improvements of security at all three states of a mobile PC:
 - Power-Off
 - Boot
 - Operational

- From TCG to TCO (Total Cost of Ownership)
- Testimonials: It is not just theory, it works

Risks in IT - Types of Attacks and Misuse

Number of responden

Source: CSI/FBI: Computer Crime and Security Survey 2003 http://www.gocsi.com/db_area/pdfs/fbi/FBI2003.pdf

The Base Protection Issue on Notebooks

- In Windows[®] XP the SAM database stores passwords
- Microsoft[®] recommends to encrypt the SAM database with "syskey" (*).
 - It requests either an additional password entry every time the notebook is booted or a floppy has to be carried around
 - It is not convenient for users
- All remaining data on the disk is still stored in plain.

*: Source: Microsoft Windows Security Inside Out, Ed Scott, Carl Siechert, Microsoft Press

Power-Off Protection

Bulk Encryption with SafeGuard Easy[®]

- If an attacker steals the hard drive or the notebook, <u>all data</u> is protected.
 - The SAM, system files, temporary files, page files, Microsoft Office[®] files, the hibernation file, a.s.o., <u>everything</u> is encrypted.
- Encryption is compatible with most modern recovery mechanisms: IBM[®] 's Rescue & Recovery.

The TPM increases protection

- Keys are stored in protected hardware or are protected through hardware
- Dictionary attacks become almost impossible
- True RNG: Keys of highest crypto quality

Pre-Boot Authentication

Authentication

Pre-Boot Authentication in combination with a TPM offers authentication in a compact and protected environment.

Security

- Vulnerabilities of a large system like an OS cannot be exploited
- Credentials are protected through hardware
- Mutual authentication "server-client" through TPM generated keys
- Central & remote administration secured by TPM generated keys
- Secure identification of client device

Convenience

Biometrics

Image: UPEK® biometric fingerprint reader built-in IBM® ThinkPad®

- Authentication

Boot

Authorization

Authorization

Boot

Pre-Boot Authentication

Security

Boot: Machine Binding

- SSO: The TPM is the "Root of Trust" for the SSO process
 - Credentials are protected through hardware

Convenience

- SSO
 - Highly complex passwords
 - Certificates (X.509)
 - Deployment
 - Revocation
 - PKI

Operational

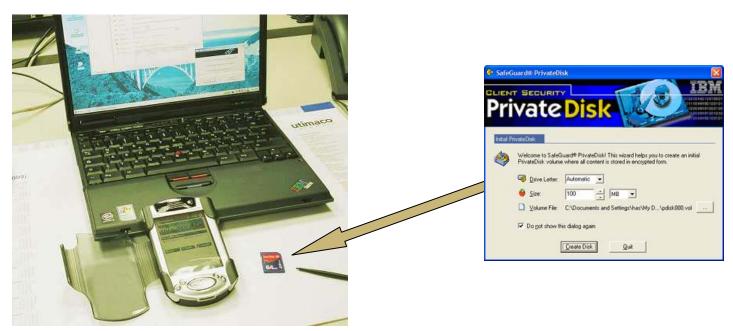
Authorization

Protecting data through Virtual Disk

- A Virtual Disk is a "vault" for data
- Virtual Disks can be mounted / dismounted as operating environments change (online, offline)
- Neither content nor structure is visible
- Protected through passwords or certificates
- Virtual Disks on harddrives, floppies, USB sticks, flash memory cards, CD-ROM, DVD, Zip etc.
- Drives on network locations: encryption / decryption locally

The TPM provides

- New true random key for each Virtual Disk
- Passwords or certificates are protected through hardware
- The link to management systems: IBM's ESS (Embedded Security Subsystem)



Operational

Application and Data

Authorization

- Secure Media Exchange
 - Protection reaches beyond the PC platform
 - Virtual Disks can be exchanged between PC platforms and Converged Mobile Devices (phones, PDAs)
 - Content secured by secrets, which are protected through TPMs

The Trusted Platform Module Today

- The TPM provides a variety of solid improvements in security of system and application software
- Products are available already today for the benefit of the customer

SafeGuard® Application and Data LAN Crypt SafeGuard® Application and Data Private Disk Windows XP®, Authorization Directories TCG® Boot Metric Check SafeGuard® Pre-Boot Authentication Easy SafeGuard® Power Off Easy

From TCG to TCO

- The TPM is a low-cost, built-in hardware unit
- No additional costs for purchase of e.g. tokens
- No additional costs for lifecycle management
- Gains in productivity
 - No extra deployment
 - No install
 - No downtime due to lefts
- Gains in administration
 - It is standard

What the analysts say

" ... PC management has become more complicated over time, as IT managers are faced with an increasingly mobile workforce ... ESS* can replace traditional hardware tokens and smart cards, providing users with a cost-effective solution that is not prone to loss or damage, " said Technology Business Research.

- LBS Nord, Hannover, Germany
- Building society, 1 million customers

- The application:
 - Agents provide their consulting services inside the customers' premises
 - customers' workplace
 - · customers' home
 - LBS proprietary consulting software and company data are stored on notebooks: corporate assets
 - Confidential customer data will be entered, processed and stored on notebooks: liability
 - Agents cannot take care about sophisticated security policies
- Costs have to be considered over the whole notebook lifecycle

The solution:

- LBS
 Bausparkasse der Sparkassen
- IBM® T40 Thinkpads®, equipped with TPMs (Trusted Platform Module)
- IBM® ThinkVantage® Technology: Embedded Security Subsystem: Streamlined client management in conjunction with improved security
- Utimaco SafeGuard[®] Easy: Bulk Encryption of all HDD content: High level of protection combined with a user friendly security policy
- The synergy: Proactive increase of client security by key storage in hardware plus machine binding
- Low cost disposal of notebooks at end of lifecycle

 SWIFT is the financial industry-owned mutual organization, supplying secure, standardized messaging services and interface software to 7,600 financial institutions in 200 countries.
 HQ: La Hulpe, Belgium

- Business Need: To cope with the consequences of theft of notebooks and prevent corruption of notebook data
- Statistics: It is expected that from 5000 laptops 500 units will get lost during lifecycle

The Solution:

- IBM Thinkvantage ESS
- Platform binding
 - data to the platform
 - platform to the network
- High quality key generation by TPM
- All data protection by all harddisk encryption
- Notebook or HDD disposal at very low cost
- TPM built-in at no extra cost
- Hardware: 600 TPM equipped IBM Thinkpads (first roll-out)

Summary

- TCG technology leverages existing security technology for the benefit of the customer
 - Increased level of security
 - Decreased costs
 - Improved manageability
 - Standardization

 Utimaco is committed to continue integration of TCG technology to provide also in the future leading edge security technology for industry customers and government agencies

Alexander W. Koehler Utimaco Safeware Inc.

10 Lincoln Road, Suite 102 Foxboro, MA 02035

1 0X0010, WA 02033

Phone: (508) 543-1008

Fax:(508) 543-1009

Email: sales.us@utimaco.com

www.utimaco.us

Agenda

9:45 am

Writing and Using Trusted Applications
Alexander Koehler, *Utimaco Safeware AG*; Steven Sprague, *Wave Systems*

Steven Sprague is president and CEO of Wave Systems Corp. Wave is a leader in delivering trusted computing applications and services with advanced products, infrastructure and solutions across multiple trusted platforms from a variety of vendors. In 1995 he founded Wave Interactive Network, a specialized consumer distribution channel. In 1996 Wave acquired Wave Interactive Network and Sprague was elected president and COO of Wave Systems. In 2000 he took over responsibilities as CEO.

Writing and Using Trusted Applications: Security Solutions Using TCG Technology

Steven Sprague
Wave Systems Corp.
May 26, 2005

Solution Opportunities

Current Problems

Need Trusted Solutions

- 1. Stronger Network Authentication
- 2. Data Protection
- 3. Strong Authentication to VPNs
- 4. Password Protection
- 5. Secure Information Distribution
- 6. Secure E-mail

<u>RESULT</u>

Security and trusted computing represent major new services and integration opportunities

Getting started

1. Make sure all procured PCs contain TPM's

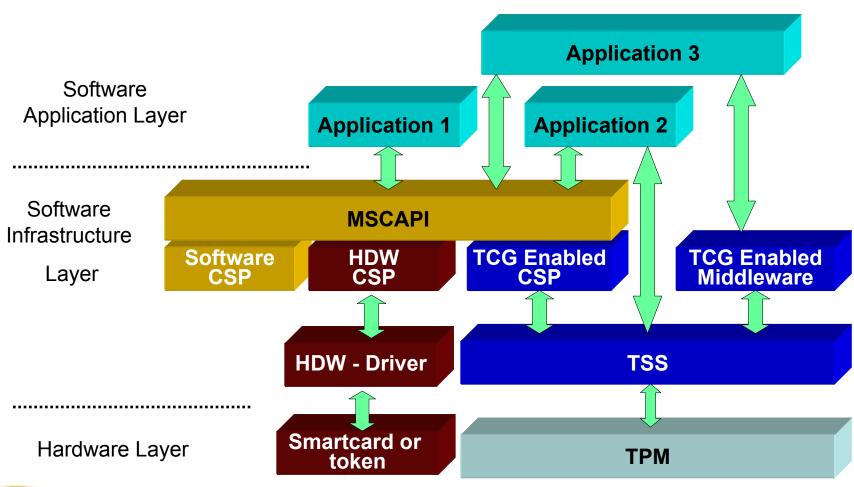
 Dell, Fujitsu, HP, IBM/Lenovo, Intel, Toshiba.....

2. Solutions

- Client applications
 - Data protection
 - Password Protection
- Network applications
 - Asset management
 - Network access control
 - Digital Signing

What do I need

- Trusted computer with TPM and client Software
 - TPM 1.1b or TPM 1.2
 - Client software with CSP
 - Management utilities
 - Key Transfer Management tools Client



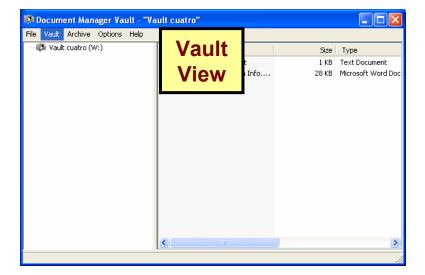
How's it Work

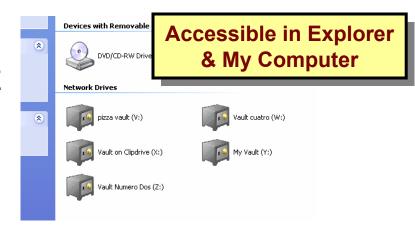
The 2 minute guide

TPM Security Programming Model

Client Applications

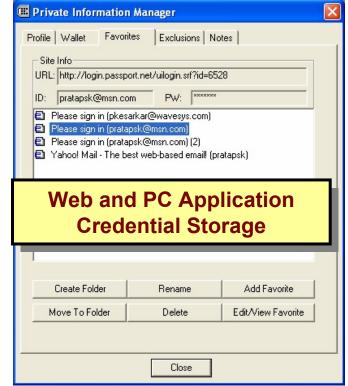
Data protection
Password Protection
Windows Logon
Data Signing


Data protection


- Several Methodologies not a 1 size fits all solution...
 - File and Folder Encryption
 - Work Group file and Folder encryption
 - Key Sharing
 - Drive Locking
 - Whole Disk encryption
 - Data signing

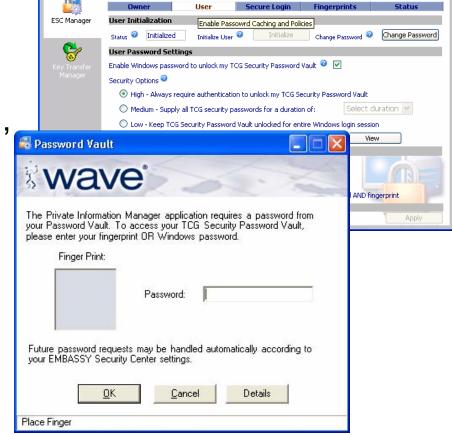
Wave's Document Manager

- Document and data encryption
- TPM Hardware protected keys
- Workgroup capability
- Integrated support for backup
- Data protected against unauthorized access, theft of PC.



Password Management & Security

- Wave's Private Information Manager
 - TPM Secured storage of Web and Application usernames/passwords
 - Intelligent retrieval automated
 - Auto capture of new login data
 - Multiple Profiles, Wallet, Favorite, Exclusions and **Notes**



Login

TPM Management & Authentication

🜉 EMBASSY Security Center

- Wave's EMBASSY Security Center
 - TPM Management
 - Multifactor Authentication with Biometric, Smart Card, TPM/PKI
 - Secure Windows Logon
 - TPM Key Authentication
 - TPM Key Password Management

EMBASSY® Security Center

wave

Data Signing

- Random document authentication
- PDF signing tools
- Paperless contracts

Server Tools

- Backup and recovery
- Access Control
- Web Authentication

TPM Key Archive/Restore

- Wave's Key Transfer Manager
 - Automatic or scheduled archive of client keys & certificates
 - Restore to same or different
 TPM PC
 - One button restore for platform failure
 - Active Directory Integration
 - Client and Server modes

Network Authentication

- Hardware Based Network Authentication
 - Integration with Microsoft VPN
 - Integration with VPN concentrators
 - Support any MS CSP compatible Networking equipment.
 - Both Simple PKI and full PKI support.
- Trusted Network Connect (TNC)

Web Authentication

- Business to Business capabilities
 - Supports active directory
 - Can be overlaid on existing user ID and Password systems
 - Many examples being explored by business's today for token authentication
 - Can eliminate passwords or increase security of access
 - All Web projects should support TPM compliant authentication as part of the task order
 - Can supplement Token or Smart Card Authentication to provide better security.

Government Need

Agencies like DHS can benefit today from this technology. Solutions such as strong authentication can ensure that the PCs on the DHS network actually belong to DHS. We can use hardware security to report client platform status and configuration to the network during initial authentication with the network. Additional capabilities such as key back up and restoration help ensure the manageability of agency networks

Joseph Broghamer, director, Authentication Technologies Department

The Office of the Chief Information Officer, Department of Homeland Security

Conclusion

- Trusted computing is available today.
 - Make sure all task orders ask for it.
- Trusted Computing Client only applications can make each computer more secure and automate compliance
- The server infrastructure can use Trusted Computing Platforms today and all future systems should request compliance.
- The technology is robust and secure and ready to join the battle and reduce the cyber threat.
- It just does as advertised...

Thank you

Questions

Contact Wave:

Steven Sprague, CEO 413-243-7011 Marty Wargon, VP Gov't Sales 561-752-4464

Providing the Software and experience to deploy trusted computing today

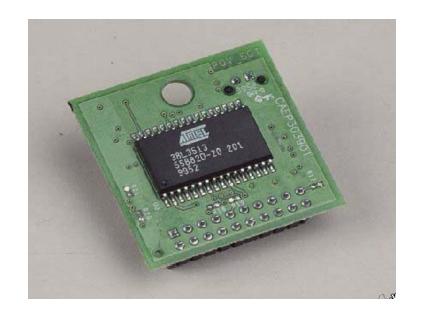
Agenda

10:30 am

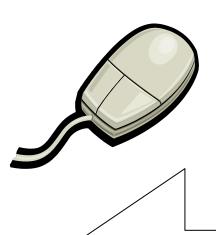
Trusted Storage and Applications Michael Willett, Seagate Technology, Inc.

Dr. Michael Willett received his bachelor's degree from the US Air Force Academy and his Masters and Ph.D. degrees in mathematics from NC State University. After a career as a university professor of mathematics and computer science, Michael joined IBM as a design architect, later moving into IBM's Cryptography Competency Center. Currently, Michael is on the research staff of Seagate Technology, exploring future projects in security and privacy as well as serving on several external standards bodies, including the Trusted Computing Group (TCG).

Trusted Storage and Applications: ™ Trusted Drive


Michael Willett, Seagate and TCG

TCG Trusted Platform Module


TPM v1.2 functions include:

- Store platform status information
- Generates and stores a private key (+ derivative keys)
- Hashes files using SHA-1
- Creates digital signatures
- Anchors chain of trust for keys, digital certificates and other credentials

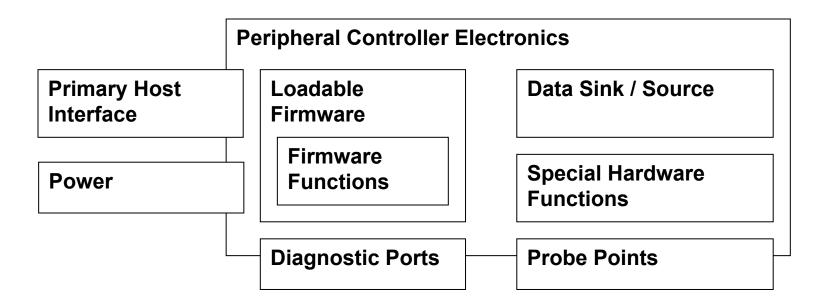
Extending Trust to Platform Peripherals

Ability to interact with the Platform

LOW

Authentication/Attestation

Capability Level



General Risk Model of a Peripheral

Trust = systems operate as intended

Objective: Exercise control over operations that might violate trust

Needed: Trusted peripheral commands

Joint Work with ISO T10 (SCSI) and T13 (ATA)

TRUSTED SEND

(Protocol ID = xxxx)

TRUSTED RECEIVE

T10/T13 defining the "container commands"

TCG/Storage/Peripherals defining the "TCG payload"

Protocol IDs assigned to TCG, T10/T13, or reserved

Protocol ID = 0 and Credential

TRUSTED SEND

(Protocol ID = 0)

TRUSTED RECEIVE

(Device Credential,)

Status: Container Commands (IN/OUT) and Device

Credential Submitted to T10/SCSI (under review)

DEVICE CREDENTIAL

Field name	Description	
Credential Serial Number	The unique serial number of the credential	
Credential Validity Period	The time for which the credential is valid as determined by the issuer of the credential	
Credential Issuer	The issuer of the credential	
Credentialed Entity	Identifies the device to which the credential applies	
Device public key	Holds the public key information for devices capable of asymmetric key operations	
Revocation Information	Location of revocation information relevant to the credential.	
Supported Protocols	Indicates which security protocols are supported by the device	
Signature Algorithm	Algorithm identifier for the signing algorithm used to sign the credential	
Signature Value	Contains a digital signature computed over all other fields of the credential.	

Scope: Payload Commands w/ Protocol ID = "TCG"

- Establishing/managing communications:

Secure Messaging, RPC

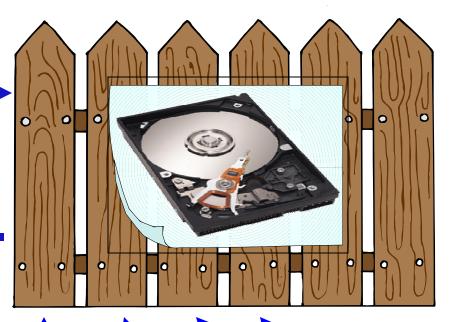
- Parameter management: table entries with Access Control
- Security management: Secure Partitions, Authority, ACLs
 - Cryptography:

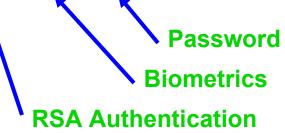
random numbers, key generation, encrypt/decrypt, hash

- Admin: clock, backup
- Log: add, flush, clear

IPUTING GROUP"

Trusted Send/Receive w/Access Control


TRUSTED SEND


(Protocol ID = TCG)

TRUSTED RECEIVE

- -Authentication and Access Control
- -Protecting Hidden Storage and Trusted Drive security features
- -Join TCG and see!!

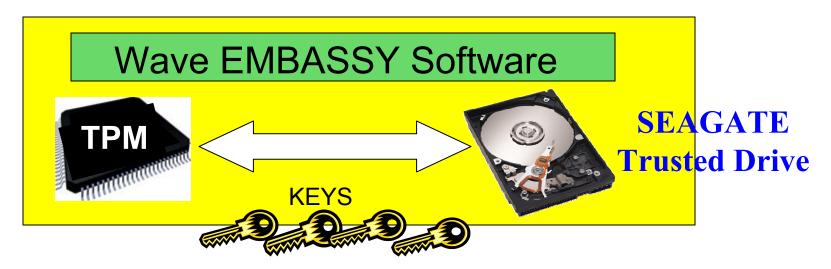

MAC Challenge/Response

Trusted Drive and TPM: TCG Use Case

Wave Systems Booth

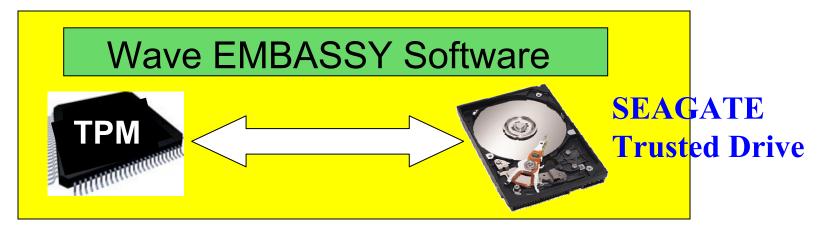
Trusted Platform Configuration

- Enroll Drive with Platform Host
- Drive will not Read/Write unless attached to the Platform Host
- Prevents re-purposing (theft) of drives or attachment of drives on hosts not intended
 - -Corporate/Government where "USB attached storage gets legs"
 - -Consumer electronics
 - –Desktop or laptop storage (theft)



Demonstration: Technical Details

Created During Enrollment


Both TPM and Trusted Drive Provide Strong Key Protection

- Uses MAC Authentication and Secure Messaging
- 3DES symmetric keys
 - -secure messaging between drive and host (3DES encrypt the command payloads)
 - –drive to challenge the host (3DES encrypt a nonce)
 - -host to challenge the drive (3DES encrypt a nonce)
 - -key to provide admin control over other keys
- Wave's Key Transfer Manager
 - Key escrow and key distribution service; more than one platform can be mated

Contrast: Password-Only Drive Locking

Corporate user knows the password (user has to type it in!) so **user** can re-purpose the drive

compared to

User plugs the drive into the USB port:

- -First time only, give the TPM password (not the drive password)
- -After that, normal activity while the drive is mated to the platform
- TPM hides keys, even from user, but does not prevent migrating keys to other TPMs with proper password authorization

www.trustedcomputinggroup.org

THANK YOU!

QUESTIONS?

Agenda

10:50 am

Trusted Network Connect Overview Jon Brody, *Sygate Technologies*

Jon Brody, Vice President of Marketing Communications, brings to Sygate nearly twenty years of expertise in building and marketing software solutions to global enterprises for secure collaboration and business integration. Brody's prior positions included Vice President of Marketing at PeerLogic as well as President of Veri-Q, Inc. Before heading Veri-Q, Brody lead development of the North American marketing, services and support operations of Verimation AB, vendor of the leading office automation and collaboration solution to multinational enterprises. Brody holds a BA in Biology from Case Western Reserve University.

Trusted Network Connect Overview: Why, What, When

Jon Brody
VP Marketing, Sygate
Technologies
TCG/TNC Member

Open networks: boon and bane

- Security approaches have always failed
 - but open networks have amplified the consequences of failure.
- Open networks are better
 - Open networks enabling new business models.
 - NYT 2/24/05 even biotech jobs are moving overseas.
 - The Washington Times, 3/21/05 "Teleworking significantly improves the survivability of the public..."
 - More at stake.
- Open networks are faster
 - Enable real time revenue
 - Instant business pain from interruption
 - Growing gap between incidents and response.
- Open networks are cheaper
 - LAN port costs declined dramatically, Remote access costs trivial
 - Users can reconfigure networks (bridge your network to a hostile one for less than \$100).
 - Rapid adoption of new open network technology.

One business problem at a time.				
	Problem 1	Problem 2	Problem 3	
		Put your employees	Permit any device	
	Put your business on the web	on the web	on the web on your network	
Advantage	Get global market access	Enable telework on corporate laptops	Enable outsourcing, consultants	
Security Technology	Set up a perimeter Isolate your business systems with firewalls Intruders beget IDS	VPN Goodbye perimeter, hello endpoints Add host protection – IDS, IPS, Antivirus	Clientless web access Services available over wireless protocols	
Security process	periodic compliance Assessment and vulnerability scans.	Create 10,000 CISOs Chase untrustworthy devices Centralized Policy Management Location Awareness	Secure any system that may need to access your services at any time from anywhere on the globe	

Besides swapping out closed networks nearly overnight for TCP/IP equipment, we've been playing catch up to business issues one at a time.

Root Cause - Open Networks Promiscuous and Permissive

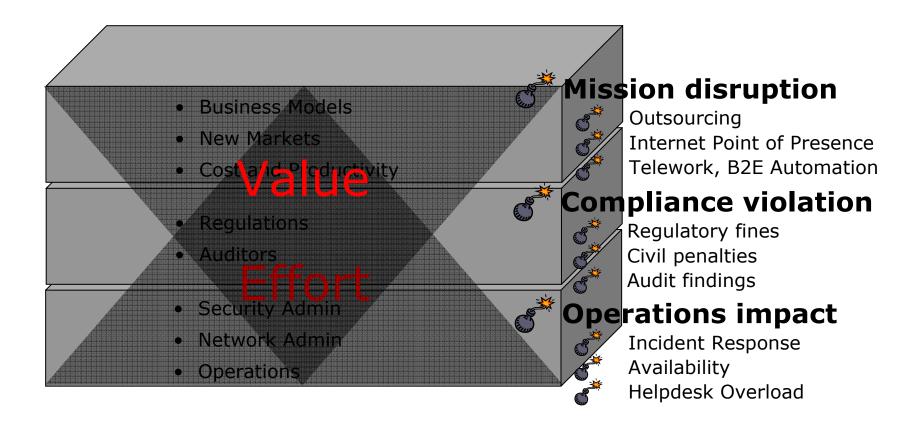
1. Any device

 Corporate, Employee, Guest, Consultant, Outsourcer

2. Anywhere

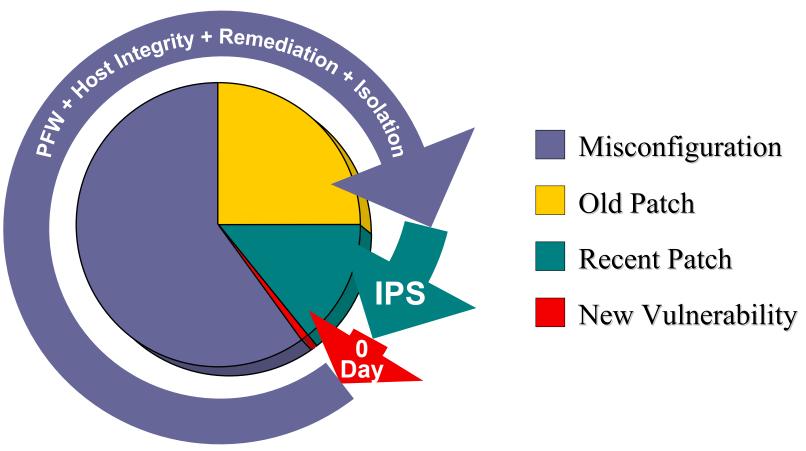
- Home, Hotel, Kiosks
- DSL, Wireless, Dial-up

3. Anything goes


- Any application p2p
- Any configuration missing patches
- Any protection turned off, old, out of date

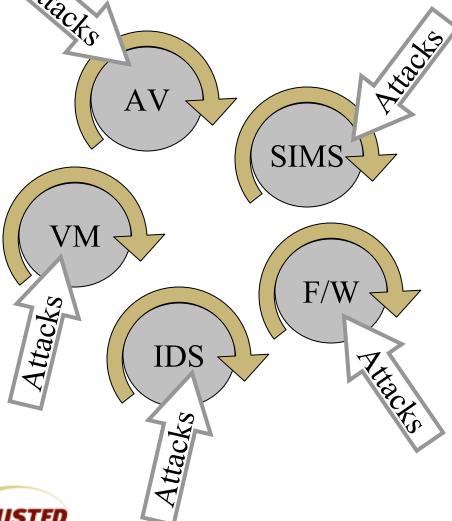
Big responsibility – limited visibility, control & resources

Effort and Value misaligned

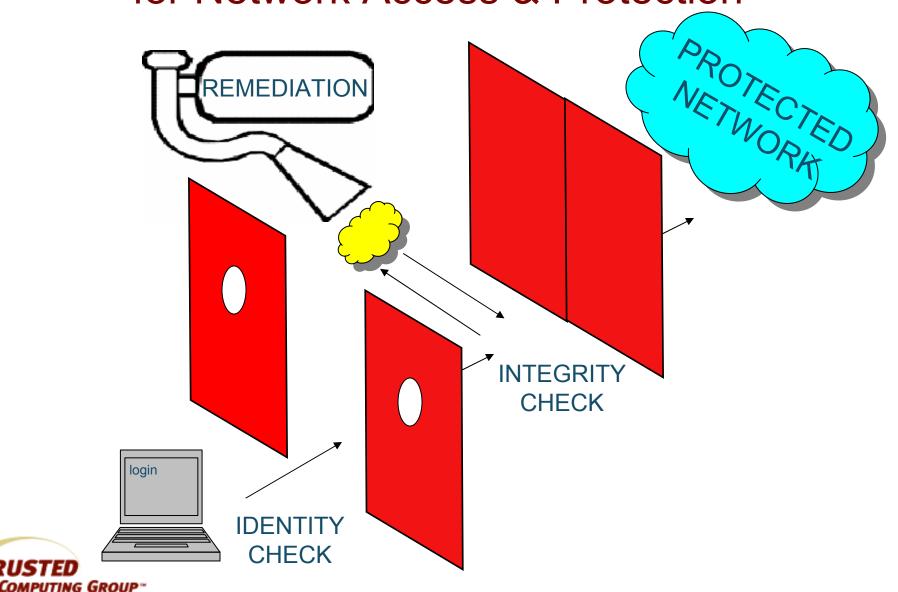


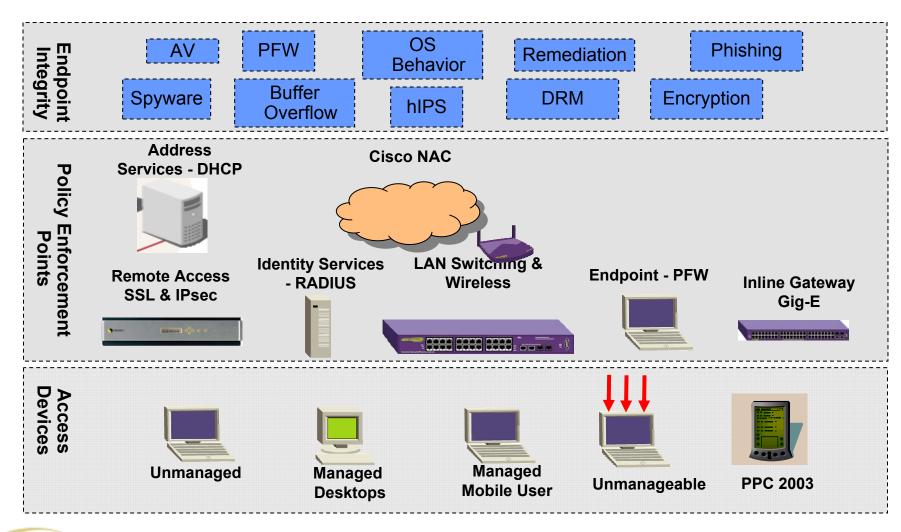
An OMB report on U.S. federal government security indicated there was little correlation between spending levels and actual security.

Pragmatic view


Misconfiguration, Misuse, and Malicious Access

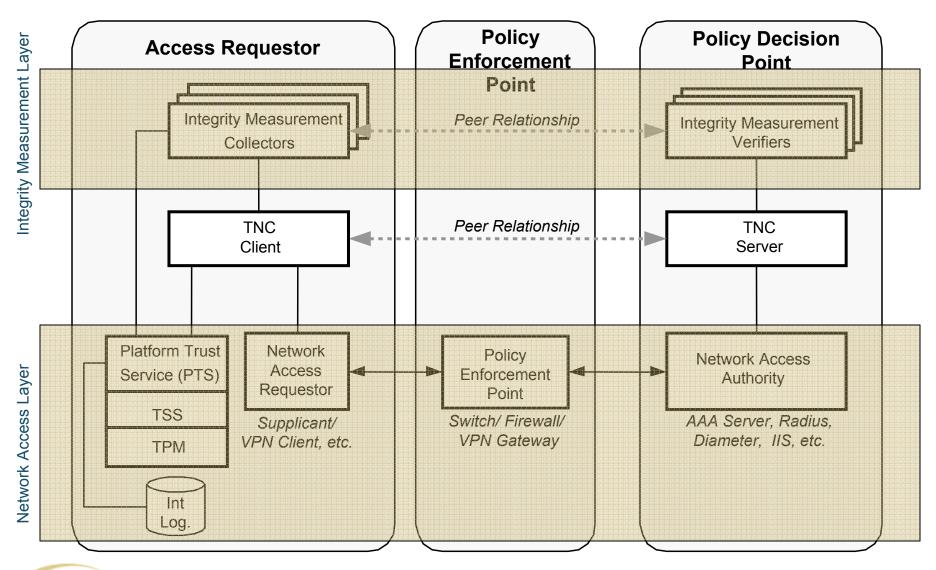
Source: Gartner


Without An Infrastructure & Framework: Can We Keep Up?


'ING GROUP'

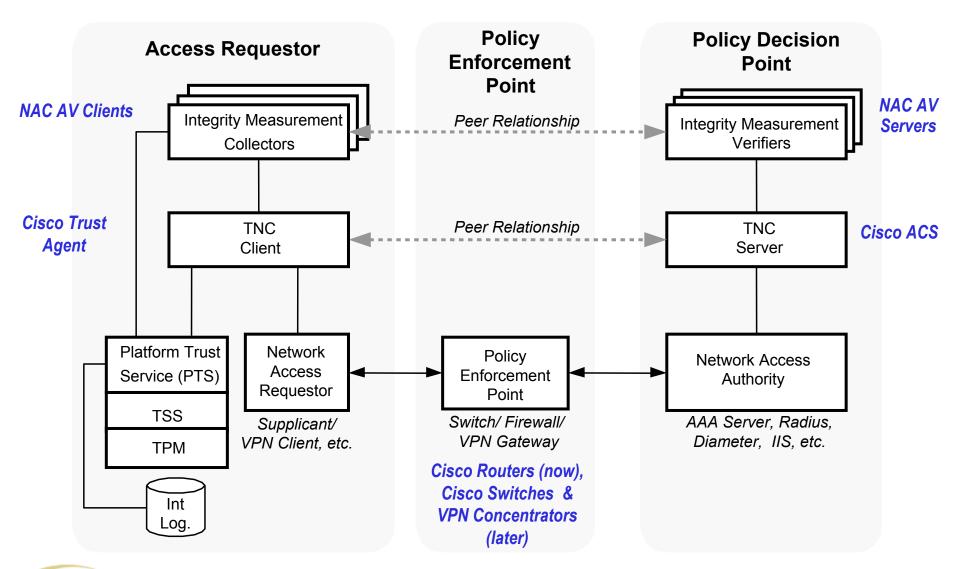
- ✓ Each an Individual Process
- ✓ Keep Turning on Same Cranks
- ✓ Continues to Produce Same Results
- ✓ Each One Has Unique Metric
- ✓ Neither Efficient or Effective
- No Integrated Solution Context
- Must Evolve or Die

TNC Solution Creates a "Virtual Airlock" for Network Access & Protection

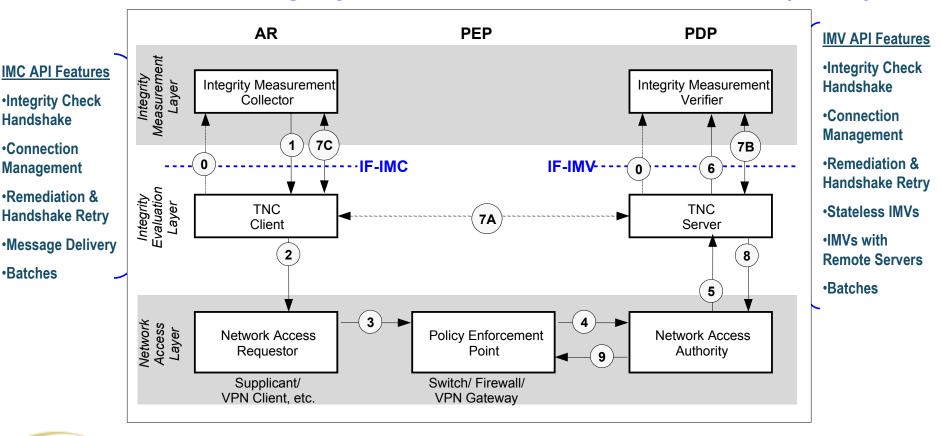


New Framework to Marshal Assets

TNC Architecture



NAP alignment


NAC Alignment

What's New Today

- Client-Integrity Measurement Collector Spec (APIs)
- Server- Integrity Measurement Verifier Spec (APIs)

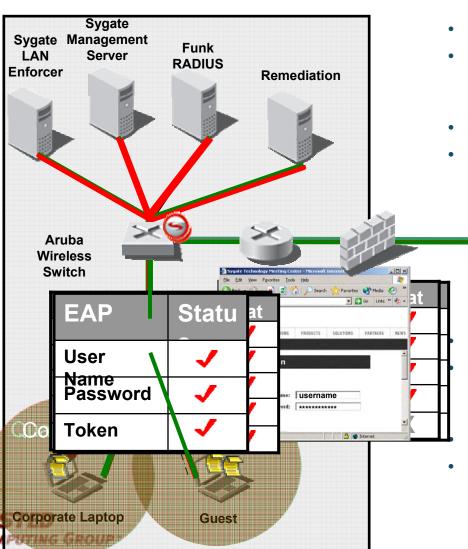
Handshake

Connection

Management

Batches

Remediation &


What Can Vendors Do With Today's APIs?

- Develop interoperable products based on an open specification developed by the industry
- Spec designed so that vendors can upgrade existing products rather than re-engineer them, decreasing time to market for solutions
- Based on existing standards and protocols

UTING GROUP"

Example: Integrated Corporate & Guest Compliance & Enforcement

Copyright© 2005 Trusted Computing Group - Other names and brands are properties of their respective owners.

Corporate Devices

- Authenticate using 802.1X/EAP (optional)
- Norton Anti-Virus, Sygate Security Agent,
 Patches Enforced using LAN Enforcer + 802.1x/FAP
- Dynamically assigned to corporate network
- Devices remediated if necessary

Internet

Guest/Rogue Devices

Authenticate using Web Login

Norton Anti-Virus, Sygate Security Agent, Patches Enforced Sygate On-Demand Agent (Java)

Dynamically assigned to isolated network

Devices remediated if necessary

Large Federal Agency enforce policy on guests

Requirements:

- Eliminate or control access by non corporate devices
- Ensure government devices on LAN and VPN are compliant with policy.
- Juniper SSL, Cisco Switches, any AV
- No forklift upgrades
- Integrate with existing incident response systems.

Solution:

- Leverage existing standards (802.1x)
- Leverage existing infrastructure

Benefits:

- Stop malicious code from entering the network via laptops and desktops
- Broad policy coverage within existing operational process

Global Oil Services Company, enforce employee data privacy policy

Requirements:

- Protect sensitive HR, business data on SAP system from being compromised at endpoint
- Stop malicious code from entering the network via mobile users & contractors
- Juniper SSL, Cisco Switches, any AV

Solution:

Benefits:

- Secure web-based remote access
- Integrate with SAP R/3 via IIS Web Server
- No additional user IDs required for distribution to endpoints leverage existing SAP portal
- No additional inline devices required to provide secure access to SAP data

International Financial Services policy to protect "anydevice" access

Requirements:

- Secure "anytime, anydevice, anyplace" computing
- React to internal events in near real-time
- Flag unauthorized applications (e.g. Kazaa) when installed
- Juniper, Nortel, Cisco Infrastructure
- any AV, Alteris Config management

Solution:

- Implemented location-dependent policies for home, traveling, and office connections
- Integrated with Tripwire host-based and network-based intrusion detection systems

Benefits:

- 87% decrease in incident response time
- Reduced desktop change management costs due to policy enforcement
- Improved patching policy compliance

ATM Manufacturer enforces remote access policy

Requirements:	 Protect 5,000 mobile & remote users
	 Enforce security policy & patching
	 Control consultant & employee external access to internal resources
Solution:	Ensure compliance before permitting network access
	 Nortel VPN integration
Benefits:	 Saving \$25,000+ per month in remote connection costs
	 Immune to Blaster and other worms with strict patch enforcement
	 Eliminated copyright violations with active policy enforcement

Trusted Computing Group Booth

 The TCG will be showcasing a number of available member platforms running trusted applications at booth #1743

 Complete the Trusted Computing Group Seminar Survey

Questions & Answers

Thank You

Slide #126