
The proposed solution is a tube-based MPC 
ensuring robustness and constraint fulfillment. 
Formulation of the tube-based MPC relies on a 
sufficient robust invariant set condition, along 
with a linear matrix inequality (LMI) synthesis 
procedure, and an efficient analytical Pontryagin 
set difference computation. Simulation results 
show the effectiveness and satisfactory behavior 
of the proposed controller.

Introduction
Autonomous marine vessels have been a subject 
of substantial recent interest in both the marine 
industry and the academic control community. On 
the business side, there is a significant potential 
to reduce marine accidents and costs connected 
to human mistakes (Apostol-Mates and Bar-
bu (2016)) whereas on the academic side, the 
dynamic characteristics of marine vessels result 
in control problems that challenge the state-of-
the-art, see, for example, (Fossen and Strand 
(2001); Johansen et al. (2004); Do and Pan (2009); 
Caharija et al. (2014)) and references therein.

Among the broad range of control challenges for 
autonomous marine vessels, dynamic positioning 
(DP) is a task of particular interest. Traditionally, 
a marine vessel is said to have DP capability if 
it is able to automatically maintain a predeter-
mined position and heading angle using active 
thrusters. The development of DP systems for 

marine vessels have been widely studied in the 
literature, using several different control strat-
egies (Pettersen and Fossen (2000); Loria et 
al. (2000); Sørensen (2011)). Nonlinear control 
strategies are among the most popular ones, 
since ship dynamics can be characterized by non-
linear differential equations (Fossen (2011)). The 
mainstream nonlinear techniques for DP include 
the Lyapunov-based backstepping (Fossen and 
Grovlen (1998)) and sliding mode control (Tannuri 
et al. (2010)).

An important aspect usually neglected on DP 
control design is to explicitly account for physical 
constraints on forces and torques generated by 
thrusters. In general, either such constraints are 
completely neglected, or the controller is special-
ly tuned so that they are not violated under de-
sired conditions. One of the few techniques in the 
literature which is capable of handling constraints 
is model predictive control. MPC is by now an 
established multivariate control technique for 
constrained linear systems (Rawlings and Mayne 
(2009)). In addition, the basic technique can be 
extended to deal with nonlinear, hybrid, and 
switched systems (Allgöwer and Zheng (2012)). 
The viability of using MPC for DP was established 
in Veksler et al. (2016), who presented compelling 
advantages over state-of-the-art techniques. To 
the best of our knowledge, there are no papers 
which study the DP problem under environmental 
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,

and the Pontryagin set difference is

.

We describe henceforth in this section vessel’s 
kinematics and dynamics equations and formu-
late the DP problem.

Ship model
Kinematic equations of a 3-DOF marine vessel 
model, relating its body-fixed frame and its inertial 
frame velocities, can be written as (Fossen (2011)):

. (1)

Here,  denotes the position and ori-
entation of the vessel, where  and  are the ship’s 
geometric center of gravity and  is the heading 
angle, all of them written with respect to the iner-

tial frame. The vector  denotes the 
velocity of the vessel, where  and  are the surge 
and sway velocities, and  is the yaw velocity, all 
of them written with respect to the body-fixed 
frame. Matrix  is the rotation matrix given by

. 

Dynamic equations of a 3-DOF vessel model, 
describing its motions due to forces and torques 
generated by ship’s actuators, can be written as 
(Fossen (2011)):

. (2)

Here,  is the body inertia matrix, which is the 
sum of rigid-body mass and hydrodynamic added 
mass. The  matrix contains nonlinear terms 
due to the Coriolis and centripetal effects. The 
matrix  contains hydrodynamic damping or 
drag forces. The vector , captures 
forces and moment produced by the actuators, 
where , , and  are respectively the forces 
and moment that act on the surge, sway and yaw 
dynamics. We assume that the control input  is 
constrained to lie inside the compact set , ,

.

Note that  represents the physical limits of the 
actuators. At last,  is a term encompassing all 
external disturbances such as ocean currents, 
wind and wave; it also includes any model mis-
matches that the system may have. We assume 
that  is bounded, ,

for some .

Problem statement
Let , ,  and 

 be the nominal (undisturbed), ac-
tual and target state vectors respectively, having 
its three first components written in the inertial 
frame and its three last components written in 
the body-fixed frame. The main objective of this 
paper is to design a control policy such that 
will be maintained inside an ellipsoid centered 

disturbances, such as wave, wind and ocean cur-
rents, while explicitly enforcing constraints.

In order to address this problem, we develop a 
tube-based MPC for dynamic positioning of ma-
rine vessels. In particular, the controller consists 
of two terms: a nominal control input, which is 
the outcome of a finite horizon optimal control 
problem and is computed offline; and an additive 
state feedback control law, which is designed 
offline and implemented online (along with the 
nominal control input) for vessel control, guaran-
teeing that the real trajectory of the closed-loop 
system will belong to a tube centered along the 
nominal trajectory. We also present an efficient 
approach for the Pontryagin set difference calcu-
lation required for control design. In order to test 
the performance of the controller, we perform a 
numerical simulation on a nonlinear vessel model 
subject to external disturbances.

Problem formulation
Notation: We let  and  denote the set of real 
numbers and natural numbers, respectively. A 
polyhedron is the (convex) intersection of a finite 
number of open and/or closed half-spaces and 
a polytope is a closed and bounded polyhedron. 
Given two sets , the Minkowski sum is 
defined by



around  in the presence of the bounded 
disturbance , and under the input constraint 

, which is to be satisfied for all . In 
particular, as  goes to infinity,  will tend to 
pItg asymptotically, forcing  to be contained 
in an ellipsoid centered around . More specifi-
cally, the control objective is to make

for some .  

Main results
This section proposes a tube-based MPC control 
law to solve the DP problem.

Coordinate transformation and linearization
Consider the coordinate transformation

, (3) 

which expresses the tracking error  in the 
body-fixed frame (Fossen (2011)). Using (1), the 
dynamic equation of the body-fixed tracking error 

 is given by

, (4)

where  is the skew-symmetric matrix defined as

.

For control design, a standard linearization of (2) and 
(4) around  and  yields: 

, (5) 

where:

,  and 

The matrix  denotes the 3 3 identity matrix, 0 
is the zero matrix of compatible size and  is 
the linear part of the damping matrix . The 
linearization adopted in this work can be justi-
fied by the assumption that the DP task will be 
performed in low speed. A linear model is then a 
reasonable approximation in such cases, as quad-
ratic and higher order components in  and 

 become negligible (chapt. 7 - Fossen (2011)).

Tube-based MPC design
We briefly introduce the main ideas behind 
tube-based MPC. The nominal system of (5) is 
described by

, (6)

where the bar on top of a variable denotes a sys-
tem not considering external disturbances. The 
error between the actual and nominal states is 

 and satisfies

. (7)

The basic idea of the tube MPC approach is to de-
compose the computation of a receding-horizon 
control law into  a deterministic MPC problem 
which uses the nominal dynamics model in (6) to 
compute a desired state and control trajectory 
pair  over a finite time horizon , 
and  a feedback control problem that provides 
a control policy to keep the actual state  close 
to  (Limon et al. (2010)). More precisely, the 
tube-based MPC technique will use (6) and (7) in 
order to construct the following input signal

. (8)

The first term in (8), is the nominal input  and 
the second one is the ancillary feedback input 

. To make sure that  respects the original 
input constraints imposed by thrusters, the total 
input available to the system will be divided into 
the two terms above during the control design 
phase. First, the ancillary feedback input gain  
will be designed offline by the solution of an LMI. 
The input capacity not used by  will be made 
available to the nominal input component which 
will be calculated by an MPC. This process will rely 
on the set difference computation, in order to 
”subtract the worst” possible input set defined 
by the  input usage, from the original input 
constraints, leaving the remainder input capacity 
as the constraint defining the available input that 
can be used by the nominal input.

Ancillary feedback synthesis
We now formulate the design of the ancillary con-
troller gain  as a semidefinite program. Assume 
that there exists a positive definite matrix , a 
non-square matrix  , and scalars  such that



.

Then, according to Lemma 2 in Yu et al. (2013), the set

(9)

is a robust invariant set for the error system (7), 
where  and the ancillary feedback gain is 
calculated as

.

Nominal MPC formulation
Using (6), the nominal MPC problem solved at the 
discrete time instant  is (Yu et al. (2013)):
minimize  

subject to

 (10) 

Here,  is the prediction horizon,  is the state 
penalty matrix,  is the input penalty matrix,  is 
the terminal penalty matrix, and  is the terminal 
set constraint. The set  is the ”reduced” input 
set constraint, defined as

,

where  is the invariant set calculated in (9). Note 
that the matrix  and terminal set  can be de-
signed together to ensure nominal MPC stability 
(Cannon and Kouvaritakis (2016)). In this work, 

matrices  and  have been chosen to be diago-
nal and positive definite. The penalty matrix, due 
to the DP task, has been chosen to penalize more 
heading variations about the target and less the 
remaining states, while  has been chosen to have 
small entries when compared to .

Set difference
Next, we describe how can we efficiently compute 
the set . Consider the H-representation (half-
space representation) of two polytopes  and , 
defined as

.
Then, one efficient approach to compute the Pon-
tryagin set difference of  and  is

, (11)

where the  operation is defined as

with  being the th row of the matrix  (Bor-
relli et al. (2017)).

To use this approach for computing , first, we 
find the H-representation of sets  and . It 
is straightforward to show that the original box 
input constraint imposed by thrusters can be 
written as

Since  is an ellipsoidal invariant set, we consider 
the bounding box of , the set  as follows

Here,  is the matrix of normalized eigenvectors 
coming from the decomposition ,  is 
a diagonal matrix assumed to contain the eigen-
values of , and  is a diagonal matrix containing 
the square root of the ratio between  and 
the eigenvalues appearing in the diagonal entries 
of . For instance, using the decomposition in the 
ellipsoidal set , with

  and 

would produce a bounding box as in Figure 1.

—
Figure 1: Bounding 
box enclosing the set



It follows from (11) that the reduced input con-
straint  can be calculated as:

,

where  is the vertex enumeration operation 
of  (Borrelli et al. (2017)). Implementation of this 
procedure will typically result in the sets as shown 
in Figure 2.

The analytical approach above has yielded im-
portant benefits for the tube MPC design when 
comparing to some packages capable of perform-
ing set differences. In special, when the eigenval-
ues of the  matrix differ a lot in order of magni-
tude, these packages could generate empty sets, 
when the set difference operation should return 
a nonempty set. The adoption of this technique 
could, among other benefits, reduce the number 
of empty set differences calculated incorrectly.

Simulation results
The method presented will be evaluated by nu-
merical simulation of the technique applied to a 
non-linear vessel model described by (1) and (2). 
Simulations done in Matlab/Simulink were per-
formed in a real sized vessel having a length of 294 
meter, a beam of 37.9 meter, and a draft of 8 meter. 
We assume that measurements of all states includ-
ing position and velocity vectors are available.

For simulation purposes, it was required for the 
vessel to change its heading angle from 0o to 135o 
while its center of gravity position should be kept 
on the same place during the rotation. The limits 
imposed on the input  generated by the thrust-
ers can be approximated by the box constraint

.

External disturbances consisting of wind in differ-
ent directions entering the system can be seen in 
Figure 3. The wind disturbance vector was chosen 
so that its norm is smaller than 2.107, but has 
three different magnitude components entering 
the nonlinear vessel. Wind disturbance compo-
nents  and  have an order of magnitude of 105 
while  has an order of magnitude of 107.

The vessel’s center of gravity position and head-
ing under these disturbances are shown on Figure 
4 and Figure 5, respectively. These variables have 
final values close to the desired target values. The 
vessel’s center of gravity position, for instance, 
moves according to the external disturbance 
although is maintained relatively close to the goal 
during the whole simulation as desired. Heading 
values, which seem to be constant after reaching 
steady state, is varying according to the external 
disturbance as well, albeit in a very contained 
manner, as seen on two different instants on 

—
Figure 2: Left-hand set 

, middle set 
and righthand set 

—
Figure 3: Wind 
disturbance generated 
during simulation

—
Figure 4: Vessel’s center 
of gravity position

—
Figure 5: Heading angle 
of the vessel



The settling time (around 1900s on Figure 5) is 
in part defined by the choice of the weights in 
the matrices , , so as on the parameter . In 
general the higher the weights in  and  and the 
”cheaper the control”, the faster (up to a limit) 
the system settles. It is important to note, on the 
other hand, that the faster the system is required 
to settle, the farther away from the assumption 
of low speed operation (allowing the linearization 
procedure) the system will be, producing there-
fore a trade-off.

On Figure 6 surge and sway velocities are depict-
ed while on Figure 7 the yaw velocity is shown. 
The assumption of low speed DP has been a rea-
sonable one as can be seen by the graphs.

The total input  and its nominal contributions 
 calculated by the nominal MPC can be seen in 

Figure 8 for the x and y directions, and in Figure 9 
for the z direction. It can be seen that  respects 
the imposed limits on the three directions during 
the whole simulation time. At this point, some 
remarks are relevant. First, note that the ancillary 
feedback in Figure 8 and in Figure 9 is the differ-
ence between total and nominal inputs. In Figure 
8, the nominal forces  and  are almost zero, 
leaving the total forces  and  to be construct-
ed solely by its ancillary feedback counterparts. 
On the other hand,  in Figure 9, is in its major-
ity constructed by . This happens due to the 
structure obtained from the linearized dynamics 
which describes that a turn in the z direction has 
no effect on the x and y directions. Thus, the act 
of turning the vessel will be reflected only on 
whereas the rejection of external disturbances 
and mismatches between the nonlinear model and 
the linearized version will reflect upon the ancil-
lary feedback portions in the x, y and z directions.

Conclusion and future direction
In this paper, a robust MPC technique for dynamic 
positioning of marine vessels has been proposed. 
A nonlinear vessel model is linearized and used in 
the tube-based MPC formulation. The designed 
controller is capable of performing the desired 
task under bounded external disturbances while 
respecting input constraints. Simulation results 
have shown that the controller can successfully 
drive and maintain the vessel close to the target 
point under disturbance.

—
Figure 7: Yaw velocity in 
radian per second

—
Figure 8. Total values 

 and  and its 
respectives nominal 
contributions  and 

—
Figure 9: Total value 

 and its respective 
nominal contribution 

—
Figure 6: Surge and 
sway velocities in meter 
per second

Figure 4. This behaviour reflects the ancillary 
feedback gain solution found by the LMI which pe-
nalizes more deviations in heading and yaw when 
compared to other states.
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There are some points which can be further 
strengthened in this type of approach, opening 
space to interesting future directions. First, 
under the developed formulation, it would be 
interesting to better understand the mentioned 
tradeoff and how to optimally tune the values 
of ,  and , in order to extract the best vessel 
behavior. It would also be very useful to compare 
such method, under some metric, to other types 
of robust controllers in order to see how they 
would perform against each other. Finally, in order 
to relax the assumption of low speed application 
and the usage of system linearization, it would be 
interesting to develop a new formulation using 
a nonlinear tube MPC technique, as presented in 
Singh et al. (2017) for instance, in order to see how 
well such task would be performed.




