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Question 1Z - Relativity

(i) Explain what is meant by a Lorentz boost. [4]

Show that the composition of two co-linear Lorentz boosts, with speeds β1c
and β2c, is also a Lorentz boost, and find the speed βc of the resulting boost
in terms of β1 and β2. [Hint: You may wish to work in terms of the rapidity
ψ, defined by β = tanhψ.] [6]

(ii) In Minkowski spacetime in inertial coordinates, a particle transports a
4-vector V along its worldline according to

dV µ

dτ
=

1

c2
(V νuνa

µ − V νaνu
µ) ,

where τ is the particle’s proper time, and uµ and aµ are the components of the
particle’s velocity and acceleration 4-vectors, respectively. Show that V µuµ
and V µVµ are constant along the particle’s path. [5]

Consider the case where V µuµ = 0 and a particle that, in the laboratory
frame, moves in a circle in the x-y plane of radius r with constant angular
speed ω, so that its path is

xµ(τ) = [cγτ, r cos(γωτ), r sin(γωτ), 0] ,

where γ is the Lorentz factor for speed ωr. Show that, in the laboratory frame,

dV 1

dξ
= ν2 sin ξ

(
V 1 cos ξ + V 2 sin ξ

)
,

dV 2

dξ
= −ν2 cos ξ

(
V 1 cos ξ + V 2 sin ξ

)
, (∗)

where ξ = γωτ and ν is a dimensionless constant that you should specify. [6]

Show further that

γV 0 = −ν
(
V 1 sin ξ − V 2 cos ξ

)
. [2]

Suppose that the instantaneous rest frame of the particle at τ = 0, denoted
S ′(0), is obtained from the laboratory frame by a Lorentz boost along the y-
axis, and at τ = 0 the vector V lies in the x′-y′ plane of S ′(0). Given that the
general solution to (∗) is

V 1 = A [cos ξ cos(γξ − α) + γ sin ξ sin(γξ − α)] ,

V 2 = A [sin ξ cos(γξ − α)− γ cos ξ sin(γξ − α)] ,

where A and α are constants, show that when the particle returns to its starting
point, V has rotated in S ′(0) by an angle 2π(γ − 1). [7]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider an axisymmetric accretion disk with surface density Σ(R, t)
orbiting around a central body with angular velocity Ω(R). By considering
the disk as a set of interacting rings, or otherwise, show that

R
∂Σ

∂t
+

∂

∂R
(RuRΣ) = 0 ,

R
∂

∂t

(
ΣR2Ω

)
+

∂

∂R

(
RΣuRR

2Ω
)

=
1

2π

∂Gtot

∂R
,

where uR(R, t) is the radial velocity of the matter and Gtot(R, t) is the total
torque exerted by the disk outside of radius R on the disk inside of that radius. [10]

(ii) Suppose that the accretion disk of Part (i) is in orbit around a central
object of mass M , radial pressure gradients are negligible, and that the mass
of the accretion flow itself is negligible in comparison to M . Further, suppose
that this accretion disk is subject to the sum of an internal viscous torque,
Gν(R, t) = 2πR3νΣΩ′ (where ν is the effective kinematic viscosity and primes
denotes differentiation with respect to R) and an external torque, Gm(t), due
to large-scale magnetic fields that connect it with the central object. By first
finding uRΣ in terms of ∂Gtot/∂R, or otherwise, show that the evolution of
the disk is governed by

∂Σ

∂t
=

3

R

∂

∂R

(
R1/2 ∂

∂R

(
νΣR1/2

))
− 1

πR(GM)1/2
∂

∂R

(
R1/2∂Gm

∂R

)
.

[8]

Consider the case where G′m = βδ(R − Rm), corresponding to all of the
external torque being applied at a single radius R = Rm > R∗. Further,
assume that the viscous torque vanishes at some innermost radius R∗. Show
that, in steady state, the local rate of viscous dissipation per unit surface area
of the disk is given by

Dss(R) =
3GMṀ

8πR3

(
1−

√
R∗
R

)
+

3(GM)1/2β

8πR7/2
Θ(R−Rm) ,

where Θ(x) is the Heaviside step function and Ṁ is the mass accretion rate
onto the central object. [8]

SketchDss(R). Comment on its behaviour around R = Rm and at R� Rm. [4]

[You may assume without proof that the viscous dissipation rate per unit surface
area of the disk is D(R) = 1

2
νΣR2 (∂Ω/∂R)2.]

TURN OVER...
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Question 3X - Introduction to Cosmology

(i) A distant source emits light at time t1, which is received on Earth at
the present time t0. Show that in a Friedmann–Robertson–Walker cosmology
the light received on Earth is redshifted according to

1 + z =
R(t0)

R(t1)
,

where R(t) is the scale factor. [5]

Discuss briefly how observations of Type Ia supernovae have been used to
provide evidence that the Universe is accelerating. [4]

The diagram below shows the bolometric light curves of three Type Ia
supernovae with redshifts z = 0, 0.5 and 1.0. Give an explanation for the
differences in the shapes of these curves. [1]

z	  =	  1.0	  

z	  =	  0.5	  

z	  =	  0	  

(ii) Consider a spatially-flat Friedmann–Roberston–Walker universe with
zero cosmological constant. At early times, assume the universe is radiation
dominated with uniform density ργ. Suppose also that there is a sub-dominant
homogeneous scalar field, φ, which obeys the equation of motion

φ̈+ 3Hφ̇ = −dV (φ)

dφ
,
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where overdots denote differentiation with respect to time t, H is the Hubble
parameter and V (φ) is the scalar field potential. If V (φ) = A/φα, where A and
α are positive constants, show that the equation of motion admits the solution

φ(t) =

(
α(α + 2)2At2

(α + 6)

)1/(2+α)

. (∗)
[8]

The density of the scalar field is (in units with c = ~ = 1)

ρφ =
1

2
φ̇2 + V (φ) .

Show that if the solution (∗) applies,

ρφ/ργ ∝ t4/(2+α)

and so the scalar field will eventually dominate the density of the universe. [4]

Assume that at late times the scalar field dominates the density of the
universe and that it evolves slowly [|φ̈| � 3|Hφ̇| and φ̇2/2 � V (φ)]. Show
that the scale factor evolves as

lnR ∝
(
t4/(4+α) + const.

)
. [6]

Compare this evolution of the scale factor to that in a universe dominated
by a cosmological constant Λ. [2]

TURN OVER...
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Question 4Y - Structure and Evolution of Stars

(i) Describe in a few sentences the main properties of globular clusters and
explain how they help us understand stellar evolution. [4]

Sketch the observed colour–magnitude diagram of a typical globular cluster,
label its main features and discuss its relevance to stellar evolution. [4]

Why are planetary nebulae rarely seen in globular clusters? [2]

(ii) A white dwarf star may be modelled as an isothermal degenerate core
with temperature Tc, mass Mc, and molecular weight µc, which cools and loses
energy at a rate

L = −3

2

RMc

µc

dTc
dt

,

overlaid by a thin non-degenerate envelope where the dependence of the opacity
κ on temperature T and density ρ follows Kramers’ law:

κ =
Aρ

T 3.5
,

where A is a constant. The transition density from core to envelope is given
by ρt = CT

3/2
c , where C is a constant. Using equations of stellar structure for

the envelope, show the following:

(a) in the envelope, pressure and density are related by

P ∝ ρ(n+1)/n

with n = 3.25; [6]

(b) the luminosity depends on the core temperature as L ∝ T 3.5
c ; and [2]

(c) the luminosity decreases with time as L ∝ t−7/5. [2]

Explain how you would verify empirically that L ∝ t−7/5 holds for real
white dwarfs. [6]

Suppose that in the Milky Way white dwarfs are formed at a constant rate
and that we are able to see all white dwarfs to a given distance from the Earth.
How would you expect the number of white dwarfs per luminosity bin to vary
with luminosity? [2]

Is this what is observed? If not, give a plausible interpretation of the
discrepancy. [2]
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Question 5Z - Statistical Physics

(i) A bosonic gas consisting of indistinguishable, non-interacting particles
is in thermal equilibrium at temperature T and chemical potential µ. Starting
with the single-state partition function for a system with a variable number of
particles, show that the mean number of particles of energy Ei is

ni =
gi

e(Ei−µ)/(kBT ) − 1
,

where gi is the number of single-particle states of energy Ei. [10]

(ii) Assume that the bosonic gas of Part (i) consists of N non-relativistic,
spin-0 particles of mass m confined within a box of volume V . Derive an
expression for the number of single-particle states, G(E), with energy less
than E in the limit that E is much larger than the energy difference between
the states. [5]

The pressure of the bosonic gas is

P =
2

3V

∫ ∞
0

dG

dE

E

e(E−µ)/(kBT ) − 1
dE .

Show that, if eµ/(kBT ) � 1, the equation of state of the bosonic gas is

PV = NkBT

[
1−

(
TB
T

)3/2
]
,

where, as part of your answer, you should provide an explicit expression for
TB in terms of quantities already given. [10]

What physical phenomenon is hinted at by the existence of the character-
istic temperature TB? [2]

Comment on the behaviour of the chemical potential µ in the limits of high
and low temperatures. [3]

[You may assume that
∫∞
0
xne−x dx = Γ(n + 1), where Γ(5/2) = 3

2
Γ(3/2) and

Γ(3/2) =
√
π/2.]

TURN OVER...
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Question 6X - Principles of Quantum Mechanics

(i) The creation and annihilation operators for a particle of mass µ are
defined by

a† =
(µω

2~

) 1
2

(
x− i p

µω

)
and a =

(µω
2~

) 1
2

(
x+ i

p

µω

)
,

where x is a position operator, p is the momentum operator in the direction
of x and ω is an angular frequency. Show that the commutator [a, a†] = 1. [3]

Write the Hamiltonian

H =
p2

2µ
+

1

2
µω2x2

for a harmonic oscillator in terms of a and a†. [3]

Suppose there exists a stationary state |n〉 with energy En > ~ω. Show
that there must also exist states |n − 1〉 ∝ a|n〉 and |n + 1〉 ∝ a†|n〉 with
energies En − ~ω and En + ~ω, respectively. [4]

(ii) Using the results of Part (i), deduce the quantised energy levels of the
quantum harmonic oscillator. [4]

Define the number operator N , with eigenvalue n for a normalized eigen-
vector |n〉, and express it in terms of the creation and annihilation operators
a† and a. [2]

By considering the expectation value of N , confirm that n ≥ 0. [2]

Show that (
a†
)m

am|n〉 =

{
n!

(n−m)!
|n〉 if m ≤ n,

0 if m > n. [8]

By considering the action on an arbitrary basis vector deduce that

∞∑
m=0

1

m!
(−1)m

(
a†
)m

am = |0〉〈0| .
[4]
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) Two stars orbiting each other have masses m1 and m2 and position
vectors r1(t) and r2(t), respectively. Write down the equations obeyed by r̈1
and r̈2. [2]

Show that the equation obeyed by the relative position vector r = r1 − r2
is the same as that obeyed by a particle under the influence of an immovable
mass M = m1 +m2. [2]

Show that the orbital angular momentum J (about the centre of mass) of
the binary system may be written

J = µ r× ṙ ,

where µ is the reduced mass. [6]

(ii) A particle of mass m (with m�M�) is orbiting under the influence of
the Sun’s gravity alone. The particle is at position (r, φ) in polar coordinates,
has orbital energy mE, orbital angular momentum mh and the orbit is of the
form

1

r
=
GM�
h2

(1 + e cosφ) ,

where e is the eccentricity. Show that for gravitationally-bound orbits

E = −GM�
2a

,

where a > 0 is a constant, and give a geometric interpretation of a. [10]

An alien spaceship enters the Solar System on a parabolic orbit. When it
reaches perihelion it briefly switches on retrorockets that change its velocity
from V to λV , where 0 ≤ λ < 1. Show that the new orbit has eccentricity
given by

e = |2λ2 − 1| . [8]

For what values of λ does the point at which the rocket is fired remain the
perihelion of the new orbit? [2]

TURN OVER...
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Question 8Z - Topics in Observational Astrophysics

(i) An area of the sky is imaged on to a noise-free detector. The light from
a star falls in a small patch that counts a total of Q + B photons on average
in an exposure time T , where Q photons come from the star and B photons
come from the background sky. A similar patch receives light from the sky
only and is used to subtract the sky background so that Q can be estimated.
Assuming that the errors in the two measurements are Poisson-distributed and
independent, show that the signal-to-noise ratio Z of the estimate of Q is given
by

Z =
Q√

Q+ 2B
.

[5]

Show further that to attain a signal-to-noise ratio Z the required exposure
time T is given by

T =
Z2(RQ + 2RB)

R2
Q

,

where RQ and RB are the average photon arrival rates for the star and the
sky, respectively. [5]

(ii) A spectrometer on an 8-metre diameter telescope records the spectrum
of a star with magnitude V = 22. The spectral resolution is 0.1 nm and
a signal-to-noise ratio of Z is obtained in an exposure time of 18 000 s at a
wavelength of 550 nm. Only 10 % of the photons available in the telescope’s
aperture are recorded. Calculate the photon detection rate from the star for
a single spectral-resolution element. [You may assume that a star with V = 0
delivers 1.02× 107 m−2 s−1 photons in a 0.1 nm wavelength interval.] [3]

Using the results in Part (i), determine the signal-to-noise ratio Z, ignoring
detector noise and assuming the sky is completely dark. [2]

In practice, the star’s light is collected by an optical fibre of 2 arcsec di-
ameter and the sky spectrum is obtained with a similar fibre. The sky has a
brightness of V = 21.5 arcsec−2. Calculate the photon detection rate in the
sky spectrum for a single spectral element. [5]

The measurements of the star and the sky photon counts in this spectral
element both have a root-mean-square error of 50 photons due to detector
noise. Determine the signal-to-noise ratio Z for the star, now accounting for
both the detector noise and the subtraction of the sky background. [5]

What is the dominant source of error in the measured stellar spectrum? [5]
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Question 1Z - Relativity

(i) What properties does the metric satisfy in local inertial coordinates
centred on some spacetime event P? [3]

Discuss the physical significance of local inertial coordinates in relation to
the equivalence principle. [7]

(ii) Starting from the definition of the Riemann curvature tensor,

∇µ∇νvρ −∇ν∇µvρ = Rµνρ
τvτ

for arbitrary dual vectors vµ, show that in local inertial coordinates at some
point P , the components of the Riemann tensor are

Rµνρτ =
1

2
(∂µ∂τgνρ + ∂ν∂ρgµτ − ∂µ∂ρgντ − ∂ν∂τgµρ) ,

where gµν is the metric tensor. [9]

Consider a spacetime in which the line element in the vicinity of the point
P , with coordinates xµ = 0, is

ds2 =
(
1 + L−2ηρτx

ρxτ
)−2

ηµνdx
µdxν ,

where L is a constant with dimensions of length and ηµν = diag(+1,−1,−1,−1)
is the Minkowski metric. Show that at the event P ,

Rµνρτ =
4

L2
(gµρgντ − gµτgνρ)

in any coordinate system. [8]

Calculate the Ricci scalar, defined by R = Rµν
νµ, at P . [3]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Briefly explain what is meant by a barotropic equation of state. [1]

Consider an unmagnetised ideal gas with a polytropic equation of state
P = Kργ that, in equilibrium, is static and homogeneous with density ρ0
and pressure P0. Starting from the basic fluid equations, show that pressure
perturbations δP satisfy

∂2δP

∂t2
− c2s∇2δP = 0 ,

where you should relate cs to P0, γ and ρ0. [9]

(ii) Consider a spherical bubble of density ρb and radius rb embedded in
the ideal gas of Part (i). The bubble interior can be treated as an ideal gas
with a polytropic equation of state and in pressure balance with the surround-
ing medium. Further, consider small spherically-symmetric oscillations of the
bubble with angular frequency ω. Show that the pressure perturbations driven
by the bubble into the surrounding gas can take the form

δP =
p1
kr
ei(kr−ωt) ,

where p1 is a constant, and derive the corresponding dispersion relation. [7]

Show that the corresponding velocity perturbations are

δvr =
k δP

ωρ0

(
1 +

i

kr

)
.

[4]

Suppose that the (equilibrium) density of the bubble is much lower than
that of the surroundings (ρb � ρ0). Explain why, provided the oscillation
frequency is much below some critical threshold (ω � ωth), we can consider
the interior of the bubble to possess a uniform density and pressure. [3]

Write down an approximate expression for ωth. [1]

By considering velocity and pressure perturbations at the bubble surface,
determine the oscillation frequency and damping rate that result if an initial,
spherically-symmetric, perturbation of the bubble radius is allowed to evolve
naturally. [5]

TURN OVER...
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Question 3X - Introduction to Cosmology

(i) Consider a universe composed of matter with a uniform density ρ and
isotropic pressure P . Energy conservation in general relativity requires

d(ρR3)

dR
= − 3

c2
PR2 ,

where R is the scale factor. If the matter is in thermal equilibrium at temper-
ature T , show that

d

dR

[
(ρ+ P/c2)R3

T

]
= 0

if
d(P/c2)

dT
=

(ρ+ P/c2)

T
. (∗) [2]

For particles of type i in thermal equilibrium, the energy density and pres-
sure are

ρc2 = gi
4π

h3

∫
fEp2 dp , P = c2gi

4π

3h3

∫
f
p4

E
dp ,

where E2 = p2c2 + m2
i c

4, mi is the rest mass, gi is the number of spin states
and f is the distribution function

f =

[
exp

(
E − µi
kBT

)
± 1

]−1
,

where µi is the chemical potential and the plus and minus signs are for fermions
and bosons, respectively. If the chemical potential is zero, show that

∂f

∂T
= −E

T

∂f

∂E
. [2]

Hence show that (∗) is satisfied and give a physical interpretation of this
result. [6]

(ii) Show that in thermal equilibrium at temperatures kBT � mpc
2, the

neutron-to-proton ratio is

n

p
≈
(
mn

mp

)3/2

exp

(
−ξνe −

Q

kBT

)
,

where Q = (mn −mp)c
2 and (µn − µp) = −ξνekBT are the differences of the

neutron and proton rest mass energies and chemical potentials, respectively.
[You may use expressions given in Part (i) without proof.] [5]
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Discuss the physical significance of the term ξνe . [3]

How would a small positive value of ξνe alter the helium abundance pro-
duced in big bang nucleosythesis? [2]

If the neutrino chemical potentials are non-zero, with values µα = ξαkBTν
(where α denotes the neutrino flavour, νe, νµ or ντ , and Tν is the neutrino
temperature), show that the neutrino contribution to the energy density at
the time of nucleosynthesis is

ρνc
2 =

7π5

5

k4BT
4
ν

h3c3

[
1 +

∑
α

(
10

7π2
ξ2α +

5

7π4
ξ4α

)]
.

[7]

The observed helium abundance leads to the approximate constraint |ξνe| .
0.1. If neutrino oscillations lead to equilibration of the chemical potentials,
ξνe = ξνµ = ξντ = ξ, show that neutrino degeneracy alters the effective number
of neutrino species by

∆Nν ≈
90

7π2
ξ2 . 1.2× 10−2 . [3]

[You may assume that∫ ∞
0

y3
[
(ey−x + 1)−1 + (ey+x + 1)−1

]
dy =

7π4

60

(
1 +

30

7π2
x2 +

15

7π4
x4
)
.

]

TURN OVER...
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Question 4Y - Structure and Evolution of Stars

(i) The Sun’s luminosity is produced by the conversion of hydrogen to
helium. In the process 0.7 % of the hydrogen’s rest mass energy is released.
Estimate the number of hydrogen nuclei which are consumed each second. [3]

The nuclear reactions involved in the conversion release three electron neu-
trinos per hydrogen nucleus consumed. Furthermore, because the neutrino
collision cross-section is very small, you can assume that all the neutrinos pro-
duced will escape from the interior of the Sun. Estimate the total number of
neutrinos which pass, per day, through a 30-meter diameter neutrino detector
on Earth. [3]

Only about five electron neutrinos are detected per day by the detector,
which is roughly one third of the number expected based on the calculated
neutrino flux and the detection efficiency (which is accurately known). What
might be an explanation for this discrepancy? [4]

(ii) A star is fully radiative. Suppose that the energy generation rate,
E , is independent of radial coordinate r. Show that the luminosity L = Em
throughout the star, where m is the enclosed mass. [3]

Hence show that temperature T and pressure P satisfy

dT

dP
=

3κE
16πacGT 3

,

where κ is the opacity and ac/4 = σ, where σ is the Stefan–Boltzmann
constant. [5]

If the opacity κ is also constant, as is the case for electron scattering, show
that

T 4 = T 4
0 +

3κE
4πacG

(P − P0) ,

where T0 and P0 are the temperature and pressure at the surface. [3]

Hence show that P → CT 4 (where C is a constant) in the interior of the
star where T � T0. [1]

A system is termed a ‘polytrope of index n’ if the dependence of pressure
on density is of the form P = Kρ(n+1)/n, where K is a constant. Use the
results above to show that a star, where the total pressure is the sum of gas
pressure (assuming an ideal gas) and radiation pressure, can be described as
a polytrope of index n = 3, provided that the energy generation rate satisfies
the inequality

E < 4πcG

κ
. [8]
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Question 5Z - Statistical Physics

(i) A ferromagnet has a magnetization order parameter m and temperature
T . The free energy is given by

F (T,m) = F0(T ) +
a

2
(T − Tc)m2 +

b

4
m4 ,

where a, b and Tc are positive constants. Sketch F as a function of m at both
high and low temperatures and find the equilibrium value of the magnetization
in each case. [10]

(ii) Evaluate the free energy of the stable equilibrium state(s) of the fer-
romagnet described in Part (i) as a function of temperature for both T > Tc
and T < Tc. [4]

Hence compute the entropy and heat capacity for both T > Tc and T < Tc. [6]

Determine the jumps in the entropy and heat capacity as the system tran-
sitions through the T = Tc point and identify the order of the phase transition. [3]

After imposing a background magnetic field B, the free energy becomes

F (T,m) = F0(T ) +Bm+
a

2
(T − Tc)m2 +

b

4
m4 .

Explain graphically why the system undergoes a first-order phase transition
at low temperatures as B changes sign. [3]

The spinodial point occurs when the meta-stable equilibrium ceases to exist.
Determine the temperature T of the spinodial point as a function of Tc, a, b
and B. [4]

TURN OVER...

7



Question 6X - Principles of Quantum Mechanics

(i) A spin-1/2 particle at rest in a magnetic field B is described by the
Hamiltonian H = −~γB·σ/2, where γ is a constant and the three components
of σ are the Pauli matrices. Consider the case where B = (Bx, 0, Bz) is
independent of time, and the particle is in the state | ↑〉 at time t = 0, where
σ3|↑〉 = |↑〉. Show that the probability of finding the particle in the state |↓〉,
where σ3|↓〉 = −|↓〉, at time t is

P (t) =
B2
x

B2
sin2

(
γBt

2

)
, (∗)

where B =
√
B2
x +B2

z . [Hint: write B as Bn̂, where n̂ is a unit vector, and
construct the time-evolution operator.] [10]

[The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

which you may assume satisfy σiσj + σjσi = 2δijI.]

(ii) A system subject to a small time-dependent perturbation is described
by the Hamiltonian H(t) = H0+δH(t), where H0 is time-independent. Let the
orthonormal eigenstates of H0 be {|φr〉}, with eigenvalues Er. If the system
is in the state |φn〉 at time t = 0, show that to leading order in δH(t) the
probability of finding the particle in the different state |φn′〉 at time t is

P (n→ n′) =

∣∣∣∣−i~
∫ t

0

dt′ e−i(En−En′ )t
′/~〈φn′|δH(t′)|φn〉

∣∣∣∣2 . [7]

The particle in Part (i) is now placed in a magnetic field

B = (A cosωt, A sinωt,Bz) ,

where the amplitude A of the time-dependent components is small compared
to the constant Bz. Show that the probability of finding the particle in the
state |↓〉 at time t when it is in the state |↑〉 at t = 0 is approximately

P (t) ≈
(

γA

ω + γBz

)2

sin2

(
(ω + γBz)t

2

)
for |A| � |Bz + ω/γ|. [10]

Compare this result for ω = 0 to the exact result (∗) in Part (i). [3]
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) The gravitational potential of an infinitesimally-thin disc lying in the
z = 0 plane with axisymmetric surface density Σ(R) can be written in the
form

Φ(R, z) =

∫ ∞
0

f(k) e−k|z| J0(kR) dk ,

where

f(k) = −2πG

∫ ∞
0

Σ(R)J0(kR)RdR

and J0 is the 0th order Bessel function of the first kind. For the case Σ(R) =
Σ0R0/R, where Σ0 and R0 are constants, show that the circular velocity of a
test particle orbiting in such a disc can be written as

vc(R) =

√
Gm(≤ R)

R
,

where m(≤ R) is the mass enclosed within radius R. [10]

[For the Bessel functions of the first kind J0(x) and J1(x), you may assume
dJ0(x)/dx = −J1(x) and∫ ∞

0

J0(bx) dx =

∫ ∞
0

J1(bx) dx =
1

b

for any constant b > 0.]

(ii) Show that the axisymmetric gravitational potential

Φ(R, z) = − GM√
R2 + (a+ |z|)2

,

where a and M are positive constants, obeys ∇2Φ = 0 everywhere, except in
the z = 0 plane. [5]

Deduce that the potential is generated by an infinitesimally-thin disc in
the z = 0 plane with surface density

Σ(R) =
Ma

2π

1

(R2 + a2)3/2
.

[5]

Calculate the circular velocity vc(R) of a test particle orbiting in the disc
at radius R. [4]

TURN OVER...
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Calculate the mass m(≤ R) enclosed within R and deduce the total mass
of the disc. [4]

Comment on the fact that v2c (R) 6= Gm(≤ R)/R. [2]

[In cylindrical polar coordinates (R, φ, z),

∇2f =
1

R

∂

∂R

(
R
∂f

∂R

)
+

1

R2

∂2f

∂φ 2
+
∂2f

∂z 2
.

]
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Question 8Z - Topics in Observational Astrophysics

(i) The observed rate of gamma ray bursts (GRBs) at low redshifts is
0.44 Gpc−3 yr−1. The space density of typical galaxies is 3× 10−3 Mpc−3. As-
suming that a GRB within 2 kpc of the Earth is dangerous (i.e., causes mass
extinctions) and that our galaxy is a uniform disc of 30 kpc diameter, estimate
the rate of dangerous GRBs. [6]

How many has Earth experienced in its lifetime? [2]

How would the GRBs actually cause mass extinctions? [2]

(ii) A pulsar is observed over a period of time and its spin period P is
seen to be increasing. Assuming that the entire gamma-ray luminosity L of
the pulsar is driven by the loss of rotational energy, derive an expression for
the time derivative Ṗ in terms of P , L and the pulsar’s moment of inertia I. [8]

If I = KMR2 (where K is a constant, M is the mass of the pulsar and R
is its radius), derive an expression for the distance of the pulsar in terms of P ,
Ṗ , K, M , R and Fobs, where Fobs is the observed gamma-ray flux. [4]

Calculate the pulsar’s distance for M = 2.1M�, K = 0.2, R = 10 km,
P = 0.5 s, Ṗ = 10−15 and Fobs = 2.2× 10−15 W m−2. [4]

Comment on the plausible values M and R might have and calculate the
range of distance to the pulsar that this implies. [2]

What mechanism might be responsible for spinning down the pulsar? [2]

END OF PAPER
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Question 1Z - Relativity

(i) The Schwarzschild line element outside a spherical mass M is

ds2 = c2
(

1− 2µ

r

)
dt2 −

(
1− 2µ

r

)−1
dr2 − r2dθ2 − r2 sin2 θdφ2 ,

where µ = GM/c2. Show that the wordline of a free, massive particle moving
in the equatorial plane (θ = π/2) satisfies (

1− 2µ

r

)
ṫ = k ,

r2φ̇ = h ,

c2
(

1− 2µ

r

)
ṫ2 −

(
1− 2µ

r

)−1
ṙ2 − r2φ̇2 = c2 ,

where k and h are constants and overdots denote differentiation with respect
to the particle’s proper time τ . [8]

Give physical interpretations of the constants k and h. [2]

(ii) Show that circular orbits at coordinate radius r (with r > 3µ) of the
Schwarzschild spacetime of Part (i) satisfy

µc2 =
h2

r

(
1− 3µ

r

)
and k =

(
1− 2µ

r

)(
1− 3µ

r

)−1/2
.

[8]

Hence, or otherwise, show that

dφ

dt
= ±

(
µc2

r3

)1/2

,

and comment on this result in relation to that in Newtonian theory. [5]

Two particles, each of mass m, travel in oppositely-directed circular orbits
in the equatorial plane of the Schwarzschild geometry at radius r. If at some
instant the particles collide, show that the total energy available in the zero-
momentum frame of the collision is

Etot = 2mc2
(

1− 2µ/r

1− 3µ/r

)1/2

.
[7]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a barotropic steady-state flow in the z-direction through a pipe
with a cross-sectional area A(z) that varies along its length. Suppose that the
fluid velocity uz(z) is uniform over the cross-section of the flow. Starting from
the momentum equation, and taking care to highlight where each assumption
is employed, show that

(u2 − c2s)
∂ lnu

∂z
= c2s

∂ lnA

∂z
, (∗)

where you should define cs appropriately. [7]

Discuss briefly the implications of (∗) for the design of a rocket-engine
nozzle. [3]

(ii) Show that the pressure profile of a plane-parallel atmosphere of an
ideal isothermal gas in a uniform gravitational field g = −g0ẑ is P = P0e

−z/z0 ,
where z0 = c2s/g0 and cs is the isothermal sound speed. [3]

Consider a jet of low-density gas launched subsonically upwards from the
base of this atmosphere with an injection velocity of u0. After reaching a
steady state, the jet propagates through the atmosphere with a cross-sectional
area A(z) and velocity u(z). Making reference to (∗) from Part (i), briefly
discuss the two possible types of flow that can be established. [3]

Assuming that the jet material remains isothermal with isothermal sound
speed csj, write down Bernoulli’s constant for this flow. You can neglect the
effect of gravity on the jet dynamics. [2]

Consider the situation whereby this isothermal jet makes a transition from
subsonic to supersonic flow. Show that the location of the sonic transition is

zs =
z0
2

(
1− u20

c2sj

)
.

As part of your derivation, carefully state the boundary condition at the in-
terface between the jet and the surrounding atmosphere. [8]

Sketch graphs of u(z) and A(z) and highlight the behaviour around z = zs
as well as the behaviour for z � z0. [4]

TURN OVER...
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Question 3X - Introduction to Cosmology

(i) The Fourier transform of the comoving peculiar velocity field uk(t) is
related to the Fourier transform of the density field δk(t) in linear perturbation
theory by the equation of continuity

dδk
dt

+ ik · uk = 0 .

Assume that the velocity field can be expressed as the gradient with respect
to comoving coordinates x of a velocity potential ψ, u = ∇ψ. By Fourier
transforming ψ,

ψ =
∑
k

ψke
ik.x ,

show that

uk =
ik

|k|2
f(t)Hδk ,

where H is the Hubble parameter and f(t) is related to the linear growth rate
of perturbations D(t) by

f(t) =
R

D

dD

dR
,

where R(t) is the scale factor. [7]

Discuss briefly how peculiar velocities can be used to test cosmological
models. [3]

(ii) Using the results of Part (i), show that the two-point correlation func-
tion of the peculiar velocity field at time t,

ξu(x) = 〈u(x′) · u(x′ + x)〉 ,

where x = |x|, is given by

ξu(x) =
1

2π2

∫
Pu(k)

sin kx

kx
k2 dk ,

where Pu(k) is the velocity power spectrum,

Pu(k) =
V H2f 2(t)〈|δk|2〉

|k|2
,

k = |k|, and the perturbations are assumed to be periodic in a large box of
volume V . [11]

Discuss briefly the relevance of this result to the observation of the dipole
anisotropy of the cosmic microwave background radiation. [3]
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Assuming a power spectrum of fluctuations

〈|δk|2〉 ∝ kn ,

show that the root-mean-square bulk velocity within a sphere of radius rs
scales as

Vrms ∝ r−(1+n)/2s . [6]

[You may assume that for periodic fluctuations in a large box of volume V ,

1

V

∫
ei(k−k

′)·x d3x = δkk′ ,
∑
k

g(k) =
V

(2π)3

∫
g(k) d3k ,

for an arbitrary function g(k).]

TURN OVER...
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Question 4Y - Structure and Evolution of Stars

(i) Assume that the light curve of a supernova (SN) is dominated by the
energy released in the radioactive decay of an isotope with decay constant
λ = ln 2/τ1/2, where τ1/2 is the isotope half-life. Show that the slope of the
light curve is

d log10 L

dt
= −0.434λ . [3]

Derive an analogous expression for the change in bolometric magnitude with
time. [2]

Assume that 0.075M� of 56
27Co is produced in a core-collapse SN explosion.

The half-life of 56
27Co is τ1/2 = 77.7 days, and the energy released by the decay

of one 56
27Co atom is 3.72 MeV. If 56

27Co is the dominant isotope responsible for
the SN light curve, estimate the SN luminosity:

(a) immediately after the formation of cobalt; and [3]

(b) one year after the explosion. [2]

(ii) Explain what is meant by the Kelvin–Helmholtz timescale τKH. [1]

Use the virial theorem to deduce the dependence of τKH on the stellar mass
M , radius R, and luminosity L. [4]

The mass-loss rate in massive stars can be approximated by the expression

Ṁ = φ
vesc
c

LR

GM
,

where vesc is the escape velocity and φ is an efficiency factor (0.1 . φ . 1).
How does the mass-loss timescale, τml, compare with τKH? [You may assume
the escape velocity from the stellar surface is vesc ' (2GM/R)1/2.] [5]

Show that the rate of energy supply required to sustain a mass-loss rate Ṁ
is a very small fraction of L. [5]

Find the relation between τml and the nuclear timescale of the star, τnuc, and
show that for massive stars τml < τnuc. [You may assume that typical values for
vesc/c are in the range 10−3–10−2, and you should assume a reasonable value
for the nuclear efficiency.] [5]
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Question 5Z - Statistical Physics

(i) A box of volume V contains particles with uniform number density n
in kinetic equilibrium such that the mean particle speed is v̄. Show that the
number of particles striking the sides of the box per unit area per unit time is

F =
1

4
nv̄ . [5]

A small hole of area Ahole is made in the box at time t = 0, when the
number density is n0. Assuming that a vacuum is maintained outside the box,
and the temperature of the gas in the box is maintained constant, find N(t),
the total number of particles in the box as a function of time, for t > 0. [5]

(ii) Consider an ideal, classical, monatomic gas of N atoms occupying
the volume z > 0 above an area A. The gas is in thermal equilibrium at
temperature T and is in a uniform gravitational field in the z-direction, g =
−gẑ. Write down the partition function and hence determine the mean energy
per atom in the gas, taking the zero of the gravitational potential energy to
be at z = 0. [8]

What is the probability, p(z)dz, that an atom is located at a height between
z and z + dz? [6]

A planet has a radius R = 6000 km and an atmosphere of molecular ni-
trogen with temperature T = 300 K. By considering the probability density
p(z) and making any assumptions and (crude) approximations necessary, es-
timate the minimum planetary mass required for this nitrogen atmosphere to
be retained for at least 100 Myr. [You may assume that the mass of a nitrogen
molecule is 28mu.] [6]

TURN OVER...
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Question 6X - Principles of Quantum Mechanics

(i) Let J be angular momentum operators and the state |j m〉 be the nor-
malised eigenstate of J2 and Jz with quantum numbers j and m, respectively.
Define the ladder operators

J± = Jx ± iJy .

Show that
J±|j m〉 = ~

√
(j ∓m)(j ±m+ 1)|j m± 1〉 . [10]

(ii) Two particles with angular momenta J1 and J2 are combined to give
a system with total angular momentum J = J1 + J2. Suppose the particles
have angular momentum quantum numbers j1 and j2, respectively, with asso-
ciated normalised eigenstates |j1 m1〉 and |j2 m2〉. If the quantum numbers
of the total angular momentum J are j and m, corresponding to normalised
eigenstates |j m〉, what are the possible values of j and m? [2]

How can a state with j = m = j1 + j2 be constructed? [2]

For the combined particle system, when both the angular momenta j1 =
j2 = 1 show that the combined state |2 0〉 is

|2 0〉 =

√
1

6
(|1 1〉|1 − 1〉+ |1 − 1〉|1 1〉) +

√
2

3
|1 0〉|1 0〉 . [5]

Find similar expressions for the combined states |1 0〉 and |0 0〉 and deter-
mine their symmetry properties under interchange of the two particles. [8]

When the combined system is in the state |0 0〉 what is the probability that
measurements of the z-component of angular momentum of either constituent
particle returns ~? [3]
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) State what is meant by the distribution function f(x,v, t) for a system
of stars (where the phase-space variables x and v are position and velocity, re-
spectively) and give an interpretation of the collisionless Boltzmann equation. [4]

By taking moments of the collisionless Boltzmann equation, derive the
Jeans equations

∂ν

∂t
+
∂(ν vi)

∂xi
= 0

and
∂

∂t
(ν vi) +

∂(ν vivj)

∂xi
+ ν

∂Φ

∂xj
= 0 ,

where Φ is the gravitational potential and

ν =

∫
f d3v , vi =

1

ν

∫
fvi d

3v , vivj =
1

ν

∫
fvivj d

3v . [6]

(ii) A distribution function that gives rise to an anisotropic velocity distri-
bution of a spherically-symmetric stellar system is

F (E , L) = L−2β f(E) ,

where E is the relative energy, L is the modulus of the angular momentum
vector, f is an arbitrary function and β < 1. By introducing spherical polar
coordinates in velocity space show that in this case the velocity distribution
satisfies

v2θ/v
2
r = 1− β . [16]

Describe the stellar orbits for the case β = 0 and in the limits β → 1 and
β → −∞. [4]

[You may use that

2

∫ π/2

0

cos2p−1 α sin2q−1 α dα =
√
π Γ(p) Γ(q)/Γ(p+ q) ,

where Γ(x) is the usual Gamma function satisfying xΓ(x) = Γ(x+ 1).]

TURN OVER...
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Question 8Z - Topics in Observational Astrophysics

(i) A point mass M is at a distance d from the Earth whilst a background
star is at a distance 2d. The small angle between these two objects at the
Earth is β. A light ray from the star passes to within a distance h from the
point mass and is gravitationally deflected by an angle

α =
4GM

c2h
.

Show that an observer on Earth generally sees two images of the star, which
are at apparent angular distances θ1 and θ2 from the point mass, where θ1 and
θ2 are the roots of the equation

θ2 − βθ − 2GM

c2d
= 0 . [10]

(ii) According to the unified model of active galactic nuclei (AGN), the
central black hole and its associated region of broad-line emitting gas reside
within a dusty torus. An observer will, depending on the orientation of the
torus with respect to the line of sight, be able to see either the broad line region
(and then classify the AGN as a Type I Seyfert) or else will be prevented from
doing so by the torus (then classifying the AGN as a Type II Seyfert). The
ratio of Type I to Type II Seyferts is 1:4. In Seyfert Is, a burst of continuum
emission from close to the black hole is followed by a brightening in the broad
emission lines after about a week. The width of the broad lines is commonly
ascribed to orbital motion of clouds in the black hole’s potential. The width of
the CIV line at 154.9 nm is 1 nm in the rest frame. It is found, however, that
broad emission lines can be detected in Seyfert IIs when observed in polarised
light. The polarised light is interpreted as being emission from the broad line
region that has been scattered into the observer’s line of sight. Assume that
the line widths in these systems are similar to those in Seyfert Is. Use the
above information to estimate the following:

(a) the typical opening angle for the dust torus; [4]

(b) the distance of the broad-line emitting region from the black hole; and [4]

(c) the mass of the black hole. [4]

Furthermore, explain:

(d) what, if anything, you can deduce about the orientation of the orbits of
the broad-line emitting clouds; and [2]
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(e) why, according to this model, Seyfert II AGN have physically longer
radio jets on average (as seen in the plane of the sky). [2]

The dusty torus is located just outside the broad-line emitting region and
can be modelled as containing spherical silicate grains of radius 1µm and
density 3 × 103 kg m−3, whose cross section for the absorption of radiation is
equal to their geometrical cross section. Assuming a gas-to-dust ratio that is
typical of the interstellar medium (100:1), determine a lower limit on the torus
mass. Would this limit increase or decrease if the grains were smaller? [4]

END OF PAPER
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Question 1Z - Relativity

(i) Consider the static, cylindrically-symmetric spacetime with line element

ds2 = c2dt2 − dr2 − f 2(r)dφ2 − dz2 , (∗)

where xµ = (ct, r, φ, z) are cylindrical coordinates with 0 ≤ φ < 2π and f(r) is
some arbitrary function. Show that the spacetime is symmetric under Lorentz
boosts along the z-axis. [4]

Given that the only non-zero connection coefficients are

Γrφφ = −ff ′ and Γφrφ = Γφφr = f ′/f ,

where primes denote differentiation with respect to r, explain why the Riemann
curvature tensor has only one independent component (e.g., Rrφr

φ) and show
that

Rrφr
φ = −f ′′/f . [6]

(ii) Use the Einstein field equation to show that the energy–momentum
tensor of the matter that generates the spacetime (∗) in Part (i) has compo-
nents of the form

Tµν = diag
(
ρc2, 0, 0,−ρc2

)
,

where the (proper) density ρ(r) is determined by

f ′′

f
= −8πG

c2
ρ .

[8]

Give a physical interpretation of this form of the energy–momentum tensor. [3]

Suppose now that ρ is constant, with value ρ0, for r ≤ r0, and is zero for
r > r0. Assuming that f(r) → r as r → 0, determine the function f(r) in
terms of ρ0 and r0 for both r ≤ r0 and r > r0. [You may assume that f and
f ′ are continuous at r = r0.] [6]

It can be shown show that in the limit
√

8πGρ0r0/c � 1, and for r � r0,
the line element (∗) is approximately

ds2 ≈ c2dt2 − dr2 −
(

1− 8Gµ

c2

)
r2dφ2 − dz2 ,

where µ = πr2
0ρ0. By considering the coordinate transformation

φ̄ =
(
1− 4Gµ/c2

)
φ ,

or otherwise, give a physical interpretation of this exterior line element. [3]
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Question 2Y - Astrophysical Fluid Dynamics

(i) Consider a shock front propagating adiabatically in an ideal gas with an
equation of state P = (γ−1)ε, where P is pressure and ε is the internal energy
density. Let P1 and ρ1 be the pre-shock pressure and density, respectively, and
P2 and ρ2 the similar post-shock quantities. In the rest frame of the shock,
let u1 be the velocity of the pre-shock gas and u2 be the velocity of the post-
shock gas (both oriented perpendicularly to the shock front). Starting from
the basic fluid equations, derive the three Rankine–Hugoniot jump conditions
connecting these quantities. [10]

(ii) Now consider a shock front propagating in an isothermal gas such that
the (isothermal) sound speed is cs on each side of the shock. Using the relevant
Rankine–Hugoniot jump conditions, show that

ρ2

ρ1

=
P2

P1

=
u1

u2

=M2 ,

where M = u1/cs. [7]

Briefly and qualitatively compare and contrast the density jump in the cases
of a strong shock propagating into: (a) a gas with an isothermal equation of
state; and (b) a gas with an adiabatic equation of state, as in Part (i). [2]

A spherical cloud with radius Rc = 1016 m, density ρc = 1 × 10−21 kg m−3

and temperature Tc = 100 K is embedded in a uniform patch of the interstellar
medium (ISM) with temperature TISM = 104 K. The cloud and the ISM are
initially in pressure equilibrium, and the gas in both can be taken to be pure
neutral atomic hydrogen with γ = 5/3. A shock from a nearby supernova
passes through the ISM with a velocity V = 200 km s−1. Calculate the velocity
of the shock driven into the cloud, and explain why the overall effect is to crush
the cloud from all sides. [9]

What will be the final density of the cloud and approximately how long
will it take to reach this density? [2]

[You may assume without proof that the Rankine–Hugoniot jump conditions
for a strong adiabatic shock propagating into a gas with a γ-law equation of
state give

ρ2

ρ1

≈ γ + 1

γ − 1
, and

P2

P1

≈ 2γ

γ + 1
M2

1 ,

where M1 = u1/cs1 � 1 and cs1 is the sound speed in the pre-shock gas.]

TURN OVER...
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Question 3X - Introduction to Cosmology

(i) The distribution of hydrogen ions in the hot atmosphere of a rich cluster
of galaxies can be approximated as

np(r) =
n0

(1 + r/r0)2
,

with n0 = 5×104 m−3 and r0 = 20 kpc. The hot atmosphere has a temperature
of T = 4×107 K and the energy-loss rate per unit volume via radiative cooling
can be approximated as

λ ≈
(
3× 10−40 J K−1/2 m3 s−1

)
T 1/2[np(r)]

2 .

Estimate the radius rcool at which the cooling time is less than the Hubble time
t0 = 13.8 Gyr. [You may assume that the cluster atmosphere is composed of
fully-ionized hydrogen.] [5]

Estimate the baryonic mass in units of M� contained within rcool. [3]

Briefly describe the observational evidence that suggests such large gas
cooling rates do not actually occur in the cores of galaxy clusters. What
physical processes might prevent the gas from cooling? [2]

[You may assume that∫ y

0

x2

(1 + x)2
dx = y − 2 ln(1 + y) +

y

1 + y
.

]

(ii) The mean comoving density in black holes can be related to the quasar
luminosity function by

ρBH =
1

εc2

∫
LφQ(L, t) dLdt , (∗)

where φQ(L, t)dL is the comoving space density of quasars at time t with
luminosities in the range (L,L + dL) and ε is the efficiency of conversion of
the mass accreted by black holes into radiation. The luminosity of a quasar
at redshift z is related to the observed bolometric flux, S, by L = 4πDL(z)2S,
where DL(z) is the luminosity distance. Show that in a Friedmann–Robertson–
Walker universe (∗) can be written as

ρBH =
4π

εc3

∫
SNQ(S, z)(1 + z) dSdz , (∗∗)

where NQ(S, z)dSdz is the number of quasars per unit solid angle within the
flux range (S, S + dS) and redshift range (z, z + dz). [Take the scale factor to
be unity at the present.] [10]
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Counts of optically-selected quasars suggest the following model:

NQ(S, z)dSdz = f(S)δ(z − zc)
dS

S∗
dz ,

with

f(S) =

{
A(S∗/S)β1+1 S ≤ S∗ ,
A(S∗/S)β2+1 S > S∗ ,

where zc = 2, β1 = 0.75, β2 = 2.12 and AS∗ = 3× 10−11 W m−2 sr−1. Show by
evaluating (∗∗) that the mass density in black holes is

ρBH ≈ 3× 1013

(
0.1

ε

)
M�Gpc−3 .

[6]

Comment on this result and discuss briefly its possible relevance for galaxy
formation. [4]

TURN OVER...
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Question 4Y - Structure and Evolution of Stars

(i) Explain what is meant by the Strömgren sphere around hot stars and
derive an expression for its radius rstrom in terms of the number of ionizing
photons emitted by the star per unit time, Q∗, the number density n of the
ambient interstellar medium (ISM) and the (temperature-dependent) recom-
bination coefficient α(T ). [4]

Stars A and B have the same effective temperature, but the radius of star
A is twice that of star B. Given that the ambient density of the ISM around
star A is twice that of the ISM around star B, would you expect the Strömgren
sphere of star A to be larger or smaller than that of star B? [3]

Use simple physical arguments to explain why in photographs that repre-
sent colours in the same way as the human eye does, regions of on-going star
formation generally appear to have a red colour. [3]

(ii) If energy transport within a star is by radiative diffusion, the luminosity
L(r) at some radius r within the star can be written as

L(r) = −4πr2 16σ

3

T 3(r)

ρ(r)κ(r)

dT (r)

dr
,

where ρ is the density, T is the temperature, σ is the Stefan–Boltzmann con-
stant, and the opacity κ is here assumed to be given by

κ(r) ∝ ρ(r)T−3.5(r) .

From these two equations show, using homology arguments, that as a pre-main-
sequence star contracts, its luminosity changes with temperature according to
the relation

L ∝ T
4/5
eff . [14]

The path taken by a contracting star as it approaches the main sequence in
the H-R diagram is called the Henyey track. Detailed computer calculations
show that L ∝ T

4/5
eff is a satisfactory approximation of Henyey tracks of massive

stars but becomes a progressively poorer fit to the tracks of stars with masses
M . 1.5M�. What conclusions can you draw from this statement? [6]
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Question 5Z - Statistical Physics

(i) The pressure, P , entropy, S, internal energy, E, and Helmholtz free
energy, F = E − TS, of a fixed mass of gas can be considered as functions
of the volume, V , and temperature, T . Prove the following thermodynamic [10]
identities:

(a) P = − ∂F

∂V

∣∣∣∣
T

;

(b)
∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

;

(c)
∂E

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P .

(ii) Define the heat capacity at constant volume, CV . [2]

Using results from Part (i), show that for an adiabatic change

CV dT + T
∂P

∂T

∣∣∣∣
V

dV = 0 .
[4]

An imperfect gas of N atoms in a volume V obeys the van der Waals
equation of state (

P +
aN2

V 2

)
(V −Nb) = NkBT ,

where a and b are positive constants. Give brief explanations of the physical
origins of the terms involving a and b. [4]

For this gas, show that
∂CV
∂V

∣∣∣∣
T

= 0 ,

and deduce that CV is a function of T alone. [5]

It can further be shown that CV is independent of T . Given this, show
that during an adiabatic expansion of the imperfect gas

T (V −Nb)NkB/CV = const. [5]

TURN OVER...
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Question 6X - Principles of Quantum Mechanics

(i) Briefly explain what is meant by the density operator ρ. [2]

A one-dimensional harmonic oscillator of mass µ with Hamiltonian H =
p2/(2µ) + µω2x2/2, where x and p are the position and momentum operators,
respectively, is described by the density operator

ρβ =
e−βH

Tr(e−βH)
,

for some constant β > 0. Find the expectation value of H, expressing your
result in terms of the oscillation frequency ω and β. [6]

Give a physical interpretation of ρβ. [2]

(ii) Let J be angular momentum operators and |j m〉 the normalised eigen-
states of J2 and J3 with eigenvalues j(j + 1)~2 and m~, respectively. Con-
sider the unitary operator U(θ) = e−iθJ2/~. By considering derivatives of
U(θ)JiU

−1(θ), or otherwise, show that [8]

U(θ)J1U
−1(θ) = J1 cos θ − J3 sin θ ,

U(θ)J3U
−1(θ) = J1 sin θ + J3 cos θ .

Give a physical interpretation of the operator U(θ). [2]

Show that the state U(π/2)|j m〉 is an eigenstate of J2 and J1 and give the
eigenvalues. [3]

When acting on j = 1/2 states, show that

U(π/2) =
1√
2

(
I − i2J2

~

)
,

where I is the identity operator. [5]

Hence construct the j = 1/2 eigenstates of J1 in terms of those of J3. [2]

[You may assume the following action of the ladder operators, J± = J1 ± iJ2:

J±|j m〉 = ~
√

(j ∓m)(j ±m+ 1)|j m± 1〉 .
]
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Question 7Y - Stellar Dynamics and the Structure of Galaxies

(i) A particle orbits in a spherically-symmetric gravitational potential Φ(r)
with specific angular momentum h. Using polar coordinates (r, φ) in the orbital
plane, the equation of motion is

d2u

dφ2 + u = − 1

h2

dΦ

du
,

where u = 1/r. Consider the potential

Φ(r) = −GM
(

1

r
+
a

r2

)
,

where M and a are constants. Show that

u = C cos

(
φ− φ0

K

)
+
GMK2

h2
,

where C,K and φ0 are constants, is a solution of the equation of motion and
determine the constant K. [6]

Comment on the shape of the orbits. [1]

Explain the term integral of motion and list five integrals of motion of
orbits in this potential. [3]

(ii) The distribution function f(x,v) for a steady-state stellar system with
spherical symmetry, and total mass M , is given by

f(E) =

{
A E7/2 E > 0 ,

0 E ≤ 0 ,

where the relative energy E = Ψ(r)−v2/2 (with v = |v| the particle speed and
r = |x| the radial distance), Ψ(r) is the relative gravitational potential with
Ψ(∞) = 0 and A is a constant. Show that the number density of stars is

ν(r) =
8
√

2

9
π I10AΨ5(r) ,

where In =
∫ π/2

0
sinn θ dθ. [You may wish to use In+1 = nIn−1/(n+ 1).] [9]

Hence write down Poisson’s equation for this system and show that a so-
lution is

Ψ(r) =
βΨ0√
β2 + r2

,

where Ψ0 and β are constants. [6]

Calculate the mass M in terms of Ψ0 and β. [5]

TURN OVER...
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Question 8Z - Topics in Observational Astrophysics

(i) Describe and contrast the two observational techniques that have been
used to detect most of the currently-known extrasolar planets and discuss their
selection biases. [4]

A star’s observed radial velocity, Vstar, shows a periodic variation of±1 m s−1,
suggesting the presence of an orbiting planet. Estimate the mass of the planet
for a Solar-mass star, and an orbital period of 1 year. [3]

Under what assumption would this be the true mass and not a lower limit?
What other practical measurement would allow the true mass of the planet to
be estimated? [3]

(ii) An extrasolar planet orbits the star 51 Peg. The star has a surface
temperature of T = 5700 K and a radius R = 1.4 R�. The planet is in a
circular orbit with radius r = 0.05 AU and has a mass obeying the constraint

M sin i = 0.46MJup ,

where i is the inclination angle of the planet’s orbital axis to the line of sight
and MJup is the mass of Jupiter. Estimate the temperature of the planet
assuming that it absorbs all the radiation incident on its atmosphere. Clearly
state any assumption that you have made concerning the rotation of the planet. [10]

Assuming the planet has the same radius as Jupiter, compute a lower limit
to the escape velocity, vesc, from its surface. [4]

Compute the thermal velocity, vth, of atoms in the planet’s atmosphere. [4]

Can gas typically overcome the gravitational field of the planet and escape? [2]

[The mass of Jupiter is MJup = 2 × 1027 kg and its average density is ρ =
1300 kg m−3.]

END OF PAPER
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