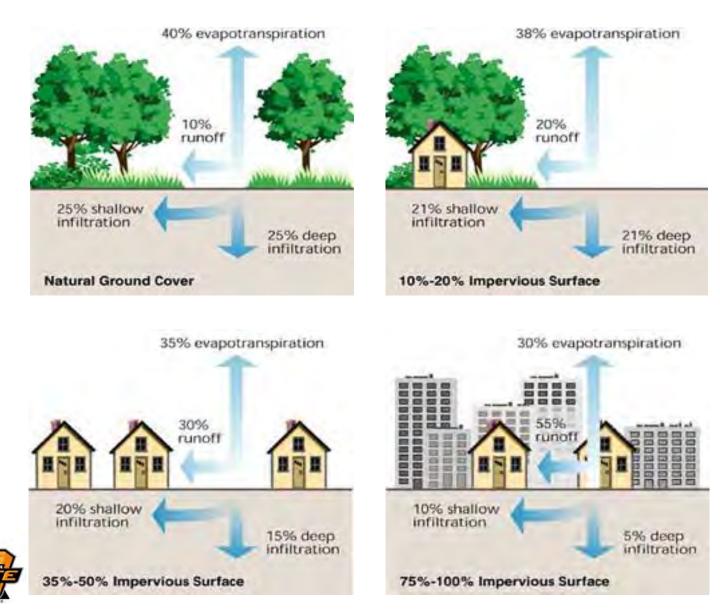
Biosystems and Agricultural Engineering Oklahoma State University Stillwater, OK April 9, 2015

Tulsa Pervious Concrete Study: Long Term Infiltration Testing and Evaluation of Cleaning Techniques



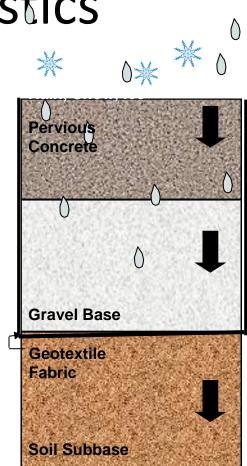
Jason Vogel, Ph.D., PE Lise Montefiore Alex McLemore, E.I.

Land Use Impacts on Water Cycle

What is Pervious Concrete Made Of?

- Portland Cement Type I/II
- Water
- Aggregate

 Little to no fines
- Admixtures



Introduction Long-term Infiltration Cleaning Conclusions

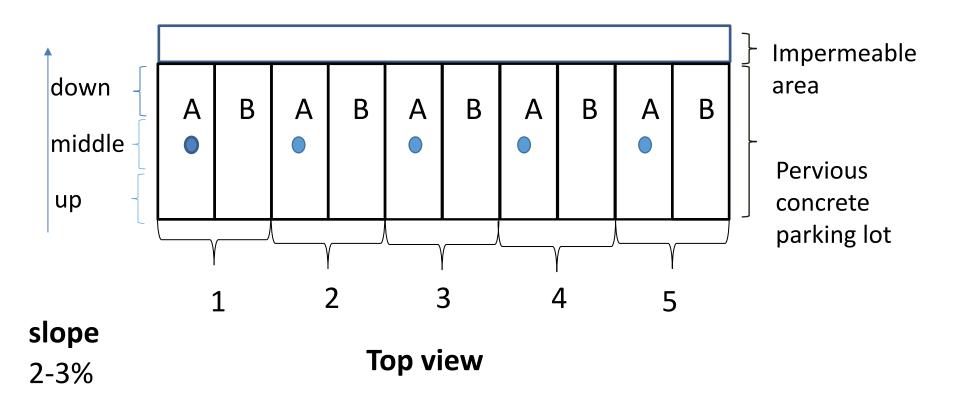
Pavement Characteristics

- Permeability
 - Not typically limiting factor
 - 15-25% voids
- Storage capacity
 - Pavement
 - Sub-base

Clogging: Run-on or wind-blown sediment and plant litter Maintanance recommended quarterly to annually

Hand Vacuum (small scale)

Pressure washer (not generally recommended)


Vacuum sweeper

Pressure wash and vacuum combination

Arrangement of pervious concrete parking lot

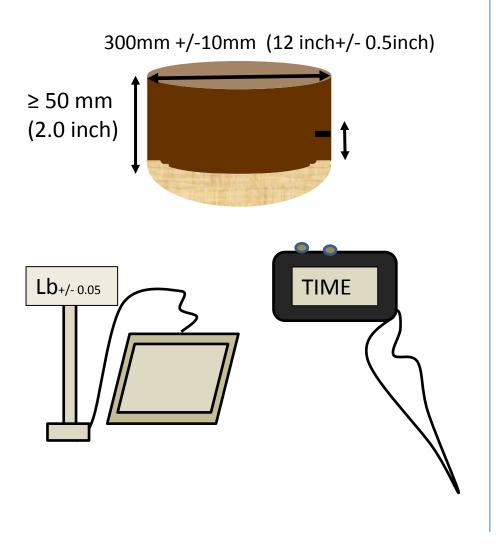
Pervious concrete donated by GCC, Eagle Ready-Mix, Arrow, Dolese, and Twin Cities. Installation completed by Canterra Concrete.

Pervious concrete mix design*

	Ratio: (Agg+Sand)/ (Cement+Fly Ash)	% Sand in Aggregate	Ratio: Fly Ash/ Cement	Ratio: Water/ (Cement + Fly Ash)	Nominal Aggregate Size	Admixtures
1	4.4	5.7%	0.33	0.30	3/8" coarse	No
3	3.5	20.0%	0.18	0.25	3/8", also added 5/8"	Yes
4	4.0	5.9%	0.31	0.27	3/8"	Yes
5	4.3	0.0%	0	0.32	Size 8; 3/8" to 1/2"	Yes

* Test area #2 composition not released by manufacturer

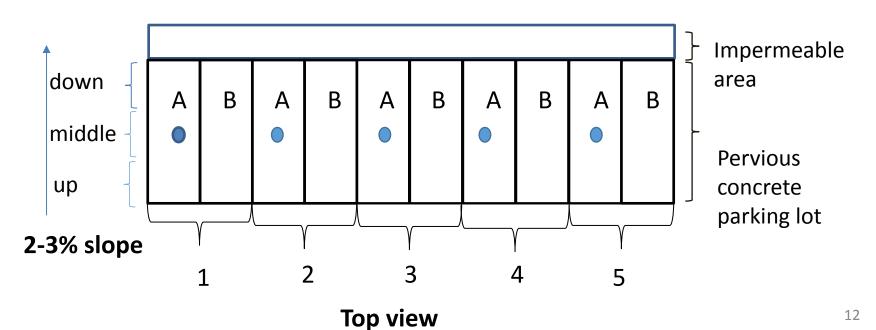
Introduction



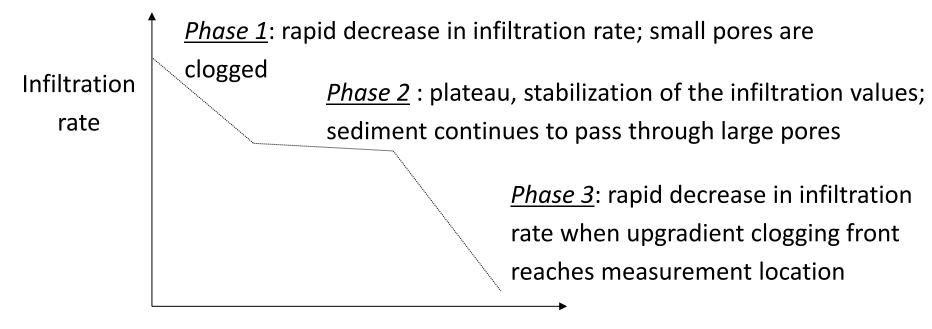
Introduction Long-term Infiltration Cleaning Conclusions

LONG-TERM INFILTRATION TESTS

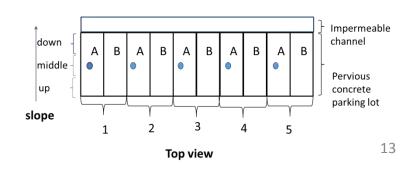
Infiltration tests completed using ASTM C1701


= <u>Volume of water</u> (Area * time)

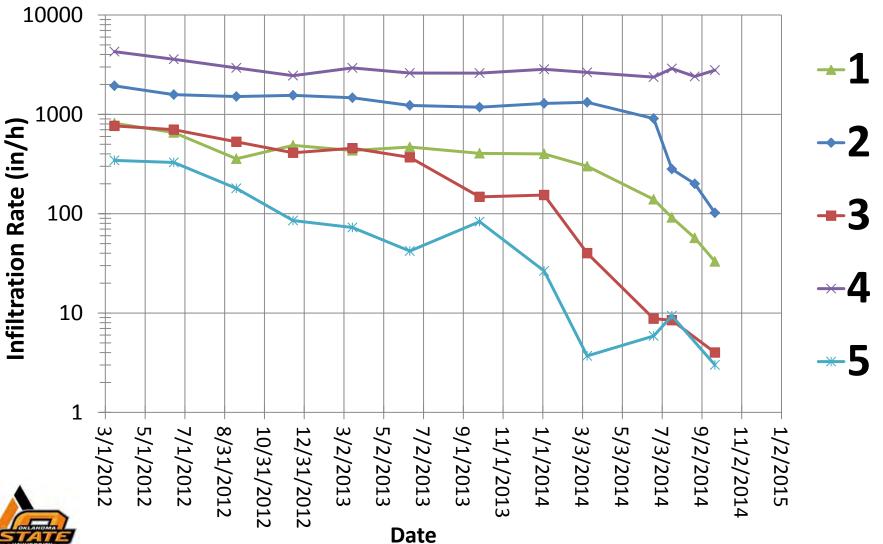
I= Infiltration rate (in. /h)


Test completed with 0.5 in of constant head (+/- 0.1 in)

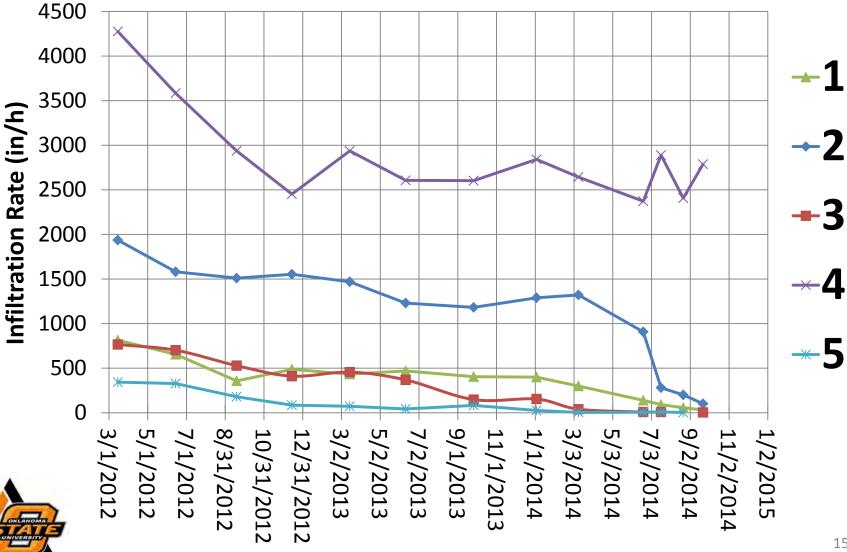
Long-term Infiltration Measurements

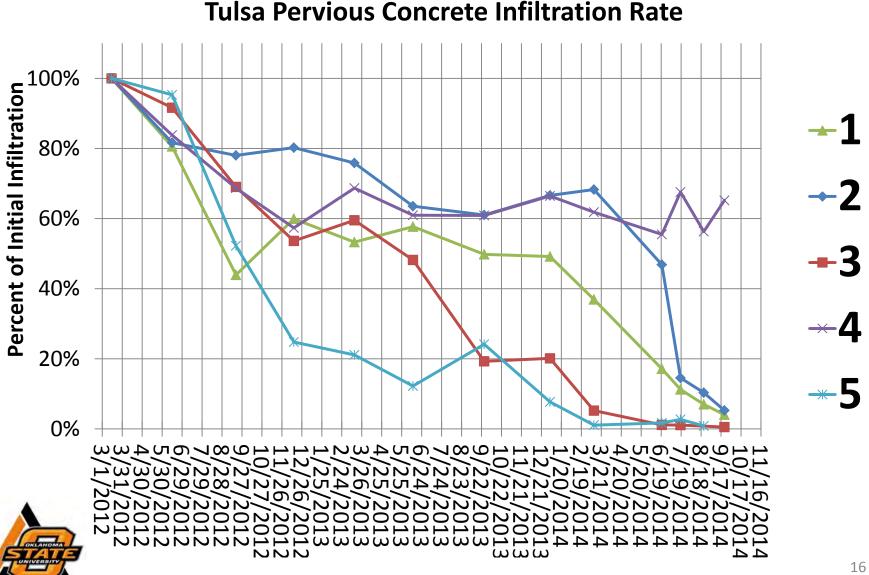

- Infiltration test at one location in center of side A
- Parking lot opened to cars for since March 2012.
- Infiltration tests conducted quarterly during this period.

General Evolution of Infiltration on Sloped Pervious Concrete

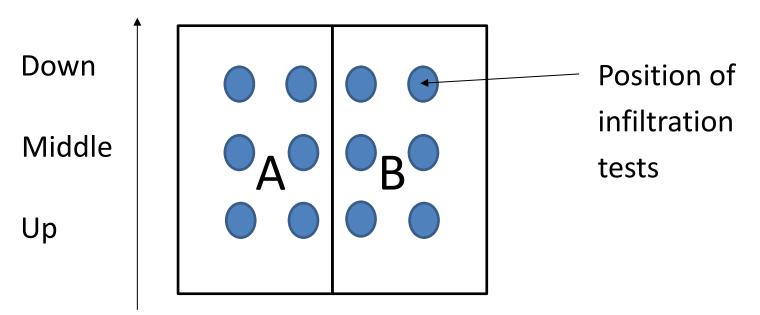


Time



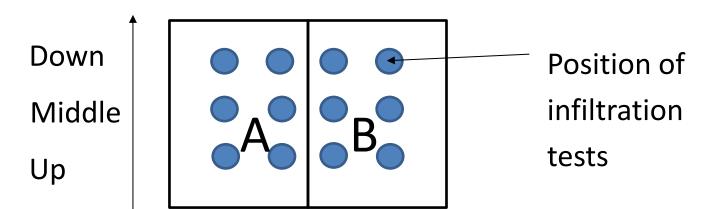

Tulsa Pervious Concrete Infiltration Rate

Tulsa Pervious Concrete Infiltration Rate


Clogging rate

	Initial clogging phase		Plateau		2nd Clogging phase	
concrete mix design	duration of the phase (days)	regression slope (in/hr- day)	duration of the phase (days)	regression slope (in/hr- day)	duration of the phase (days)	regression slope (in/hr- day)
1	187	-2.45	472	-0.007	231	-1.52
2	91	-3.90	634	-0.55	196	-6.70
3	274	-1.35	327	-0.23	226	-0.91
4	274	-6.67	647	-0.03	NA	NA
5	274	-1.01	286	-0.03	165	-0.49

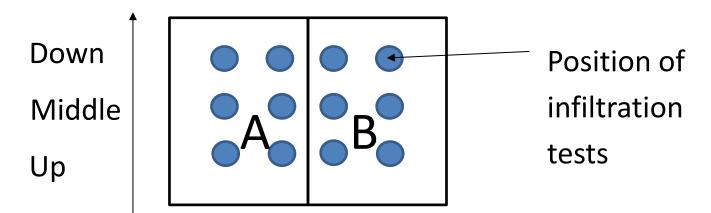
Spatial Investigation of Clogging


- Infiltration test at several points: spatial data
- June-September 2014
- 1A, 1B, 2A, 2B, 4A, 4B
- 4 times before the beginning of the cleaning phase

Direction of the slope

Spatial Data

	Plot 1	Plot 2	Plot 4			
	Mean Infiltration (in/hr)					
down	57	796	2495			
middle	39	660	2853			
up	24	418	2674			



Direction of the slope

Spatial Data

	Plot 1	Plot 2	Plot 4			
	P(T<=t)					
down vs. up	<0.001	0.002	0.046			
down vs. middle	0.110	0.120	<0.001			
middle vs. up	0.160	0.023	0.094			

Introduction Long-term Infiltration Cleaning Conclusions

CLEANING TESTS

Cleaning Tasks

- Sequential cleaning by
 - Dry vacuum
 - Wet vacuum
 - Dry street sweeper
 - Wet street sweeper
 - Vactor Truck with water jet (only one plot complete)
- Particle distribution of collected sediment
- Infiltrometer measurements before and after cleaning

Cleaning Tests

- Dry hand vacuum (09/24/2014)
- Wet hand vacuum (09/29/2014)
- Dry vacuum sweeper (10/15/2014)
- Wet vacuum sweeper (10/31/2014)

6 infiltration tests for each plot after cleaning: a total of 30 infiltration tests on each day

5. Cleaning phase

- Handle vacuum cleaning (dry and wet cleaning)
 - Only the A sides were cleaned (dry and wet cleaning)
 - A broom attachment was fixed to the hose of the vacuum (Shop vacuum 549705)

Dry cleaning (09/24/2014):

Each A side was cleaned for **40 min** in such a way as to every part of the parking lots was **homogeneous cleaned**.

5. Cleaning phase

Wet cleaning (09/29/2014)

Side A only

5. Cleaning phase

- Vacuum street sweeper cleaning: dry (10/15/2014) and wet condition (10/31/2014).
- City of Tulsa vacuum street sweeper
- Steel wire broom, diameter of 1m

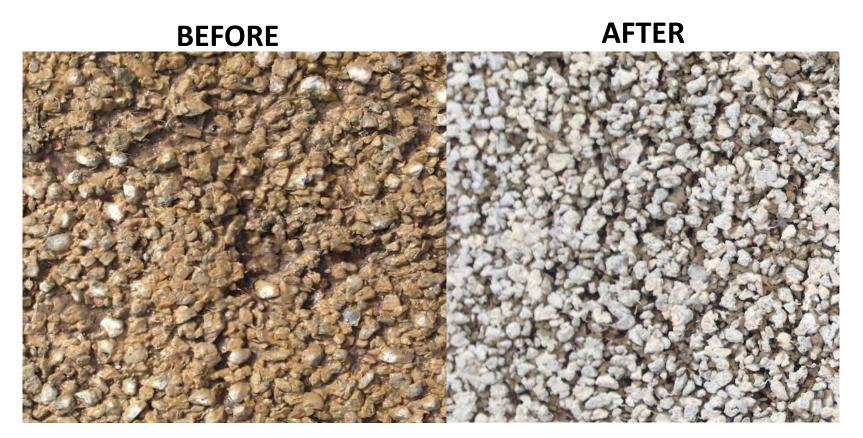
The entire plot was cleaned at this time

Clogging Particle Characterization

- Hand vac only (wet and dry)
- Particles collected in vacuum tank

• For wet condition, particles collected as a slurry

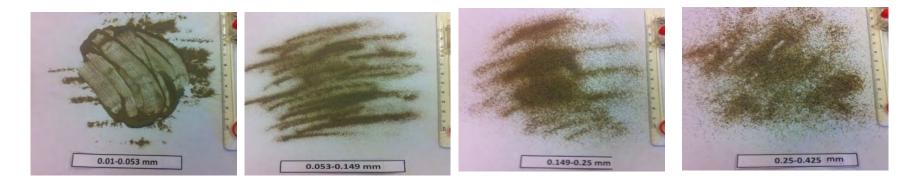
Introdu	uction Long	-term Infiltration	Cleaning Conclusions
Category	Min Size (mm)	Max Size (mm)	Sioving
Remainder	0.01	0.053	Sieving
No. 270	0.053	0.149	• For dry condition,
No. 100	0.149	0.25	particles were dry sieved
No. 60	0.25	0.425	
No. 40	0.425	1	 For wet cleaning, particles
No. 18	1	2	were wet sieved
No. 10	2	4	
No. 5	4	6.3	
0.250-0.3125	6.3	8	
0.3125-0.375	8	9.5	
0.375-0.500	9.5	12.5	
0.500-0.750	0.500-0.750 12.5		
>0.750"	19	25	ОКЛАНОМА

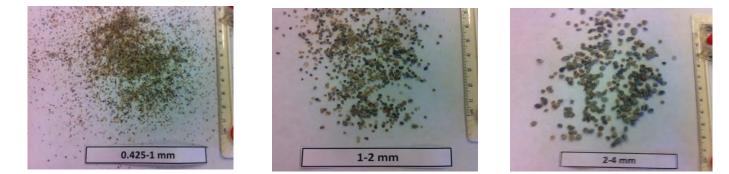

Infiltration recovery during the cleaning phase

Dry hand vacuum

Infiltration recovery during the cleaning phase

Wet hand vacuum

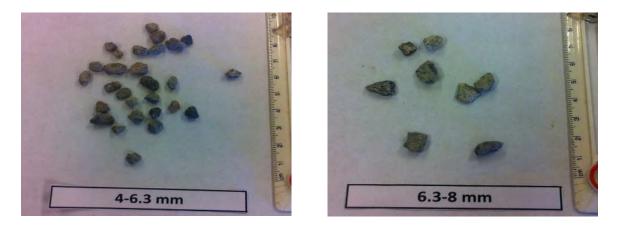


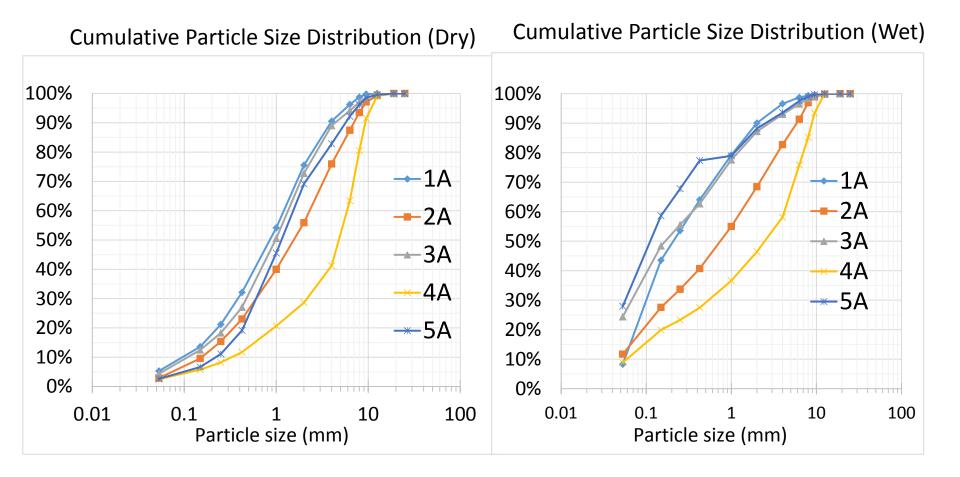

Infiltration recovery during the cleaning phase

	Dry Vacuum 09/24/2014 Change Since		Wet Vacuum 09/29/2014		Dry Vacuum Street Sweeper 10/15/2014 Change Since		Wet Vacuum Street Sweeper 10/31/2014	
							Change Since	
	09/22	/2014	9/24/2014		09/29/2014		10/15/2014	
	in./h	%	in./h	%	in./h	%	in./h	%
1	-2	-0.3	23	2.8	-15	-1.9	8.8	1.1
2	-8	-0.4	380	19.5	66	3.4	-1.76	-0.1
3	-2	-0.3	7	0.9	-3	-0.4	4.5	0.6
4	150	3.5	-280	-6.6	-300	-7.1	303	7.1
5	-1	-0.3	5	1.5	-5	-1.4	2	0.6

Particle Size Distribution and Particle Mass Distribution

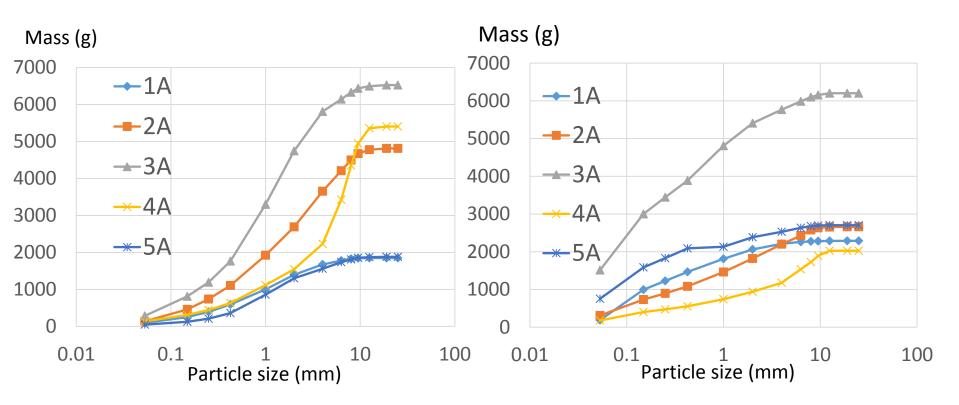
• Clogging particles (plot 1A dry vacuum)

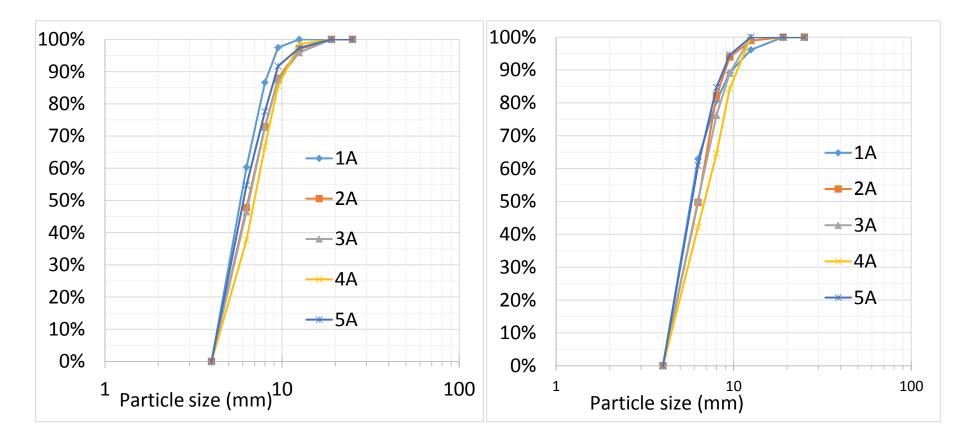




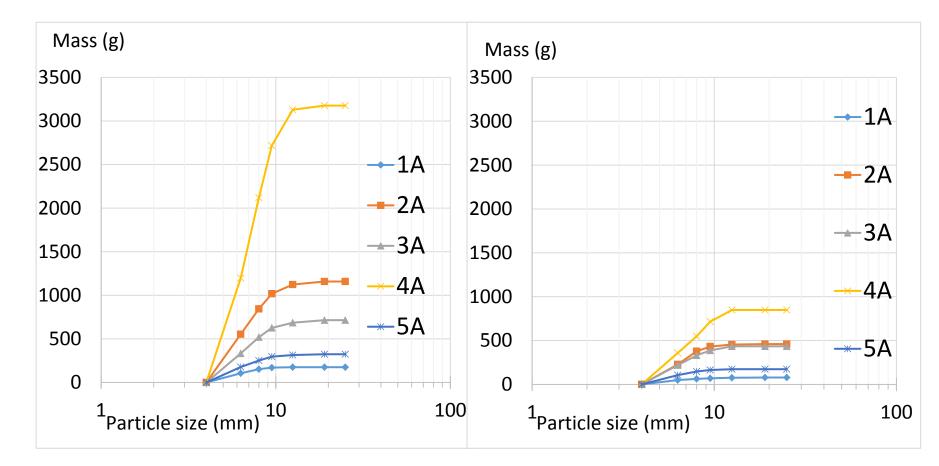
Particle Size Distribution and Particle Mass Distribution

• Raveled particles (plot 1A)




Cumulative Particle Distribution (Dry)

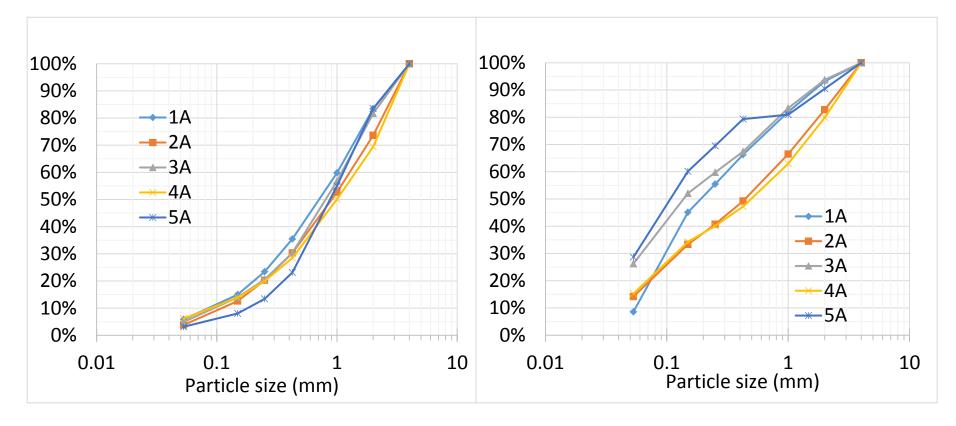
Cumulative Particle Distribution (Wet)


Cumulative Raveled Particles Size Distribution (Dry)

Cumulative Raveled Particles Size Distribution (Wet)

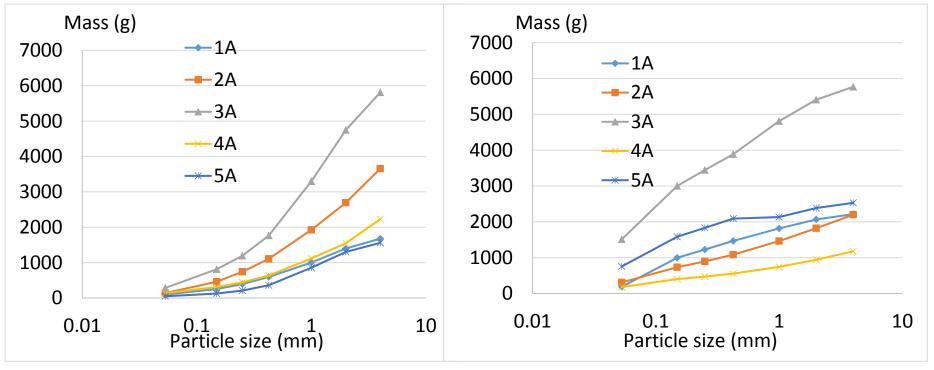
Cumulative Raveled Particle Mass Distribution (dry)

Cumulative Raveled Mass Distribution (wet)

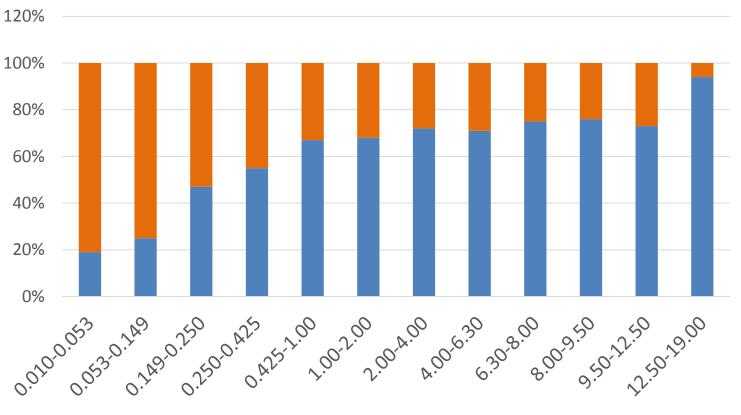


Raveled Particles

	Dry		Wet		Total Dry + Wet		
Concrete Mix design	Number of particles	Particle mass (g)	Number of particles	Particle mass (g)	Number of particles	Particle mass (g)	
1	732	175	336	78	1070	253	
2	3770	1158	1400	460	5170	1617	
3	2170	715	1480	434	3650	1149	
4	8170	3177	2470	849	10600	4025	
5	1180	323	709	174	1880	497	


Cumulative Clogging Particle Size Distribution (Dry)

Cumulative Clogging Particle Size Distribution (Wet)


Cumulative Clogging Particle Mass Distribution (Dry)

Cumulative Clogging Particle Mass Distribution (wet)

Efficiency of wet cleaning with handle-vacuum

20 kg particle collected in dry cleaning,14 kg particles collected in wet cleaning

% particles collected in dry condition
% particles collected in wet condition

Statistical analysis

	(Aggregate + Sand)/ (Cement + Fly Ash)	% sand in aggregate	Ratio Fly Ash/ Cement	Water/ (Cement+ Fly Ash)	Unit weight (pcf)	Number of raveled particles (dry+wet)	Initial Infiltrati on rate
Number of raveled particles (dry+wet)	-0.24	0.03	0.40	-0.49	-0.90	1.00	
Initial Infiltration rate	-0.03	-0.10	0.56	-0.39	-0.98	0.97	1.00
Initial Clogging Slope	0.11	-0.19	0.66	-0.31	-0.99	0.77	0.98
Duration Initial Clogging Phase	-0.37	0.28	-0.39	-0.18	0.16	0.22	0.03
Duration of Plateau	0.23	-0.25	0.76	-0.21	-0.92	0.74	0.82

PLOT 1A

Vactor Truck 12/17/2014

Change Since 10/31/2014

in./h	%
188	23.1

Conclusions

• Long-term infiltration:

Infiltration rate and clogging rate seem to depend on the pore size and the density of pervious concrete.

- Cleaning processes:
- overall not much improvement in infiltration with the cleaning techniques that we investigated, but
- wet hand vacuum permits the collection of more small particles,
- the vactor truck shows promise as a cleaning method for extremely clogged pervious concrete

Conclusions

• Big Picture:

From a water quality standpoint, the addition of a relatively small amount of sand in the mix appears to be beneficial because it traps smaller sediments on the surface where it can be removed using a wet vacuum.

This has the potential to move pervious concrete mix design into a new direction.

QUESTIONS???

Gity of Tulsa Storm Water 4. 8

OSU Low Impact Development Research and Extension Program

• Low Impact Development

A comprehensive land planning and engineering design approach with a goal of maintaining and enhancing the pre-development hydrologic regime of urban and developed watersheds.

Post-development Runoff = Predevelopment Runoff

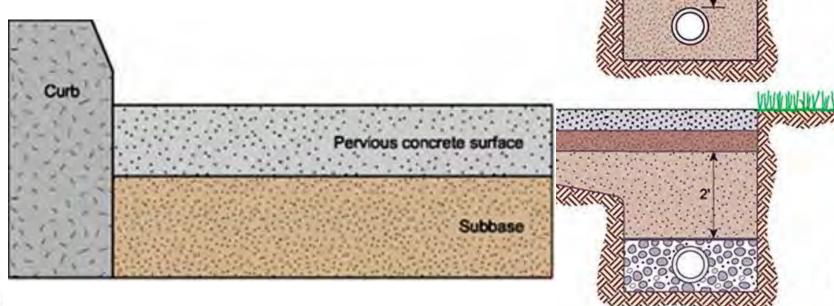
• Extension

An educational opportunity provided by colleges and universities to people who are not enrolled as regular students.

• Goal of the program

Provide information and design aids related to low impact development that will make an impact on stormwater management in Oklahoma.

Sub-base and Subgrade Soils


- >8 inches permeable sub-base (>12 inches for vehicular traffic)
- Percolation rate ≥1/2 in./hr
- Sub-base should have:
 - 38% void content by weight
 - Clean washed with >2% on the 100 sieve
 - Maximum top size of 1.5 inches
- Clayey soils require modifications
 - Excavation and replacement
 - Filter reservoirs
 - Sand sub-base over pavement drainage fabric
 - Wells or drainage channels

Introduction Long-term Infiltration Cleaning Conclusions

Design

- Pervious concrete 4-8"
- Subbase >8" (>12 for vehicles)

Perviouspavement.org

Benefits

- Runoff Quantity Reduction and Flood Control
- Water Quality Treatment
- Recharges Groundwater
- Reduction in Stormwater Infrastructure (Piping, Catch-Basins, Ponds, Curbing, etc.)
- Suitable for Cold-Climate Applications, Maintains Recharge Capacity When Frozen
- Reduction of stormwater fees (where applicable)
- LEED points

Benefits

- No Standing Water or Black Ice Development During Winter Weather Conditions
- Maintains Traction While Wet
- Reduced Surface Temperatures; Minimizes the Urban Heat Island Effect
- Extended Pavement Life Due to Well Drained Base and Reduced Freeze-Thaw
- Less Lighting Needed Due to Highly Reflective Pavement Surface

Limitations

- Requires Routine (Quarterly to Yearly) Maintenance
- Often requires a Certified Pervious Concrete Craftsman for Installation
- Proper Soil Stabilization and Erosion Control are Required to Prevent Clogging
- Not for use where there is a strong likelihood of a hazardous waste spill

Limitations

- Quality Control for Material Production and Installation are Essential for Success
- Concrete Must Cure Under Plastic for at Least 7 Days After Installation
- Not as strong as traditional concrete (can be up to 5,000 psi depending on admixtures.

Cost

- Total project cost comparable for pervious concrete with reduced stormwater infrastructure vs. standard pavement applications where stormwater infrastructure is required
- Dependent on Materials, Site, Project size, Regional experience
- Materials cost is ~10-100% more than traditional concrete
- Need for skilled craftsman increases installation costs