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Abstract: Recently researchers have demonstrated ultra high quality factor 
(Q) resonances in one-dimensional (1D) dielectric gratings. Here we 
theoretically investigate a new class of subwavelength 1D gratings, namely 
“diatomic” gratings with two nonequivalent subcells in one period, and 
utilize their intrinsic dark modes to achieve robust ultra high Q resonances. 
Such “diatomic” gratings provide extra design flexibility, and enable high Q 
resonators using thinner geometry with smaller filling factors compared to 
conventional designs like the high contrast gratings (HCGs). More 
importantly, we show that these high Q resonances can be efficiently tuned 
in situ, making the design appealing in various applications including 
optical sensing, filtering and displays. 

©2015 Optical Society of America 

OCIS codes: (050.6624) Subwavelength structures; (050.5298) Photonic crystals; (230.5750) 
Resonators; (050.2770) Gratings. 

References and links 

1. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. 
Express 18(22), 22702–22714 (2010). 

2. L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors 
based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008). 

3. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on 
guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999 (2003). 

4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992). 
5. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13(5), 993 

(1996). 
6. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 

14(7), 1617 (1997). 
7. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 

2606–2613 (1993). 
8. Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced 

with guided-mode resonance filter array,” Opt. Lett. 36(23), 4698–4700 (2011). 
9. E.-H. Cho, H.-S. Kim, J.-S. Sohn, C.-Y. Moon, N.-C. Park, and Y.-P. Park, “Nanoimprinted photonic crystal 

color filters for solar-powered reflective displays,” Opt. Express 18(26), 27712–27722 (2010). 
10. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from 

optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036 (1999). 
11. A. Mekis, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, “Two-dimensional photonic crystal couplers 

for unidirectional light output,” Opt. Lett. 25(13), 942–944 (2000). 
12. T.-C. Lu, S.-W. Chen, L.-F. Lin, T.-T. Kao, C.-C. Kao, P. Yu, H.-C. Kuo, S.-C. Wang, and S. Fan, “GaN-based 

two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. 
Phys. Lett. 92(1), 011129 (2008). 

13. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing 
abilities,” Nat. Photonics 4(7), 466–470 (2010). 

14. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014). 
15. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 

386(6621), 143–149 (1997). 
16. P. C. Slabs, T. Asano, B. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional 

photonic crystal slab,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006). 

#231252 - $15.00 USD Received 26 Dec 2014; revised 9 Apr 2015; accepted 13 Apr 2015; published 4 May 2015 
© 2015 OSA 18 May 2015 | Vol. 23, No. 10 | DOI:10.1364/OE.23.012478 | OPTICS EXPRESS 12478 



17. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” 
Nature 421(6926), 925–928 (2003). 

18. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor 
silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). 

19. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with 
two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). 

20. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 
235112 (2002). 

21. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-
loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013). 

22. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low 
sidebands,” Opt. Lett. 19(12), 919–921 (1994). 

23. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 
20(10), 10888–10895 (2012). 

24. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34(14), 2414–2420 (1995). 
25. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” 

Appl. Phys. Lett. 69(27), 4154 (1996). 
26. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” 

Phys. Rev. Lett. 101(4), 047401 (2008). 
27. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in 

nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001). 
28. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The 

Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). 
29. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. 

Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). 
30. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of 

electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). 
31. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast 

grating reflectors,” Opt. Express 18(16), 16973–16988 (2010). 
32. A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-

polariton resonators,” Phys. Rev. B 85(8), 085416 (2012). 
33. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” 

Phys. Rev. B 63(12), 125107 (2001). 
34. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters 

with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998). 
35. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a 

narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett. 
32(15), 2269–2271 (2007). 

36. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide 
gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 
(1999). 

37. A. Mizutani, H. Kikuta, and K. Iwata, “Wave Localization of Doubly Periodic Guided-mode Resonant Grating 
Filters,” Opt. Rev. 10(1), 13–18 (2003). 

38. R. Zengerle, “Light Propagation in Singly and Doubly Periodic Planar Waveguides,” J. Mod. Opt. 34(12), 1589–
1617 (1987). 

39. S. T. Peng, “Rigorous formulation of scattering and guidance by dielectric grating waveguides: general case of 
oblique incidence,” J. Opt. Soc. Am. A 6(12), 1869–1883 (1989). 

40. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” 
Appl. Opt. 42(16), 3225–3233 (2003). 

41. M. G. Moharam, E. B. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient 
implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068 
(1995). 

42. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical 
resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). 

43. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as 
plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). 

44. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 
97(20), 206806 (2006). 

45. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB 
pixels,” Opt. Express 15(17), 10903–10910 (2007). 

1. Introduction 

Planar optical resonators with high quality factor (Q) modes play crucial roles in modern 
photonic technologies, with applications ranging from sensing [1–3], filtering [4–7], display 
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[8–10] to laser and optical interconnects [11,12]. The planar design has attracted much 
attention in research because of its benefits of easy fabrication and potential compatibility for 
on-chip integration with other optoelectronic components [13–15]. Compared to the small 
mode-volume and defect-based counterparts [16–19], delocalized modes, most notably the 
guided waves in photonic crystal slabs, allow free space excitation and better coupling 
efficiency with quantum well or 2D materials like graphene or transition metal 
dichalcogenides [14,20,21]. Ultra high Q resonances in photonic crystal slabs have been 
proposed and demonstrated in various designs, a recent example being the high contrast 
gratings (HCG) [7,22,23]. However, their optimization towards thickness and tunability is 
generally lacking. 

Here, we study a new class of subwavelength 1D dielectric gratings with two 
nonequivalent subcells in each period, referred to as “diatomic” gratings. These “diatomic” 
gratings have great design flexibility as they support structurally defined “dark modes”. Q 
factors of these “dark modes” are robust against strong external perturbation and their 
resonance can be tuned continuously, for instance, by mechanically stretching the grating in 
situ. When suspended in air, our optimized “diatomic” design boasts a much thinner 
geometry, higher Q and better in situ tunability compared to conventional HCGs [24,25]. At 
resonance, electrical fields of the “diatomic” grating are largely concentrated in its air gap. 
The “diatomic” grating acts effectively as a thin layer of low refractive index medium with 
tunable resonances and exposed fields, making it potentially a useful platform to various 
applications including optical sensing, filtering and displays. 

2. Theory 

A “dark” mode is an electromagnetic eigenmode of an optical system that has very small 
radiative coupling (κ ) to far fields [26,27]. The concept of “dark” mode is central to many 
novel optical phenomena including Fano resonance (FR) and electromagnetically induced 

transparency (EIT) [28–30]. For an optical cavity, κ is usually related to 
2

1 r− , where r  is 

the mode reflectivity at the cavity interfaces (e.g. 0z =  or z t=  in Fig. 1(a)). Compared with 
“bright” modes, photons in a “dark” mode experience longer lifetime in the cavity and thus 
higher Q because of the effectively larger r . This leads to ultra high Q resonances in 
dielectric structures where other types of photonic energy loss is negligible. 

For a guided mode in subwavelength gratings, κ  is qualitatively determined by the field 
overlap between this mode and the zero-th order reflection or transmission plane wave at the 
interfaces 0,z t=  respectively [31,32]. In particular, with normal incidence and TM 
polarization which is our main focus in this paper, κ can be written as: 

 

2

02 0,1

P

x
z t

E dx
r

P
κ =− ≡ ∝


 (1) 

where P  is the period of the grating and xE  is the x  component of the electrical field of the 

mode at the interface 0z =  or z t= . r  and κ are the same for both reflection ( 0z = ) and 
transmission ( z t= ) interfaces when the grating is suspended in air. 

The reduced Brillouin zone and coupling behavior of a regular subwavelength 1D grating 
(schematic view in Fig. 1(a)) is illustrated in Fig. 1(b). With normal incidence, only modes at 
the zone center ( Γ  point) can be excited in the grating, if scattering from grating edges are to 
be ignored. Due to the overall reflection symmetry of the 1D grating, both even and odd 
modes are present at the zone center. The even modes are “bright” modes that couple strongly 
to the far-field radiation (red dots in Fig. 1(b)), and the odd modes are completely “dark” with 
zero coupling (dark dots) [33].The modes at finite xk , in particular those close to the zone 

edge, cannot couple to the normal incident because of large momentum mismatch. Those 
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modes (gray dots) are otherwise considered “dark” because 0κ ≈  owing to the field’s sign 
change in one unit cell ( /xk Pπ→ ). 

The “dark” modes at zone edge can be folded back to Γ  point by breaking the symmetry 
of adjacent unit cells in the grating, after which they gain a small but finite κ  to the normal 
incidence. In this process, which is also known as “zone folding”, two adjacent unit cells 
(referred here as subcell 1 and subcell 2) merge into a bigger one, illustrated in Fig. 1(c). We 
call such 1D gratings with two subcells in one period “diatomic” gratings. It is worth noting 
that a similar symmetry breaking concept, called the “doubly periodic grating”, has been 
previously proposed to improve the angular tolerance of guided mode resonances [34–38]. 
However, the Q of these resonators remain relatively low (~8,000) and their dark mode 
aspects are largely unexplored. 

One can engineer the asymmetry between the subcells to control the behavior of the 
grating with great flexibility. Here we focus on the cases that the two subcells are identical 

except for their air gaps. This asymmetry is captured by 1 2a a
P

δ
−

= , where 1a  and 2a  are 

the widths of the corresponding air gaps and P  is the grating period. We also denote 
2s
P

γ =  

as the dielectric filling factor where s  is the width for each dielectric bar in the subcells (Fig. 
1(c)). In our case, the dielectric bar is made of silicon ( 3.48dielectricn = ). When 0δ = , the 

design is identical to a regular grating. However, when 0δ ≠ , the zone edge “dark” modes 
are folded back to Γ  point in the Brillouin Zone with finite κ , shown as the gray dots in Fig. 
1(d). It is important to note that the 1st order “dark” mode (the gray dot in the dashed blue 
curve of Fig. 1(d)) is guaranteed to exist in the subwavelength regime as long as 0γ ≠  and 

1dielectricn > , even at large incidence angles when 0xk >> . This is easily checked as the result 

of gap opening due to the non-uniform ( )xε  in the grating. The dispersion of the fundamental 

mode (blue curve) in Fig. 1(b) always bends downwards from the light cone, ensuring 

1st dark mode

2 c
P
πω <  . The emergence of these “dark” modes in the zone center can also be 

viewed as mode splitting in Fig. 1(e), where a pair of even and odd modes are created from 
the originally “bright” mode after symmetry breaking. The odd mode has weak coupling to 
far field radiation due to the destructive interferences from its two subcells, corresponding to 
a “dark” mode. Typical electrical field profiles for the 1st order “bright” and “dark” modes of 
the “diatomic” grating ( 0.05, 0.2δ γ= = ) are shown in Fig. 1(f). The mode profiles and band 

structures in the Brillouin zone are calculated using numerical methods described in [39]. 
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Fig. 1. Design of the “Diatomic” grating and the emergence of intrinsic “dark” modes. (a) 
Schematic diagram of a regular grating. Grating is excited with normal incidence and TM 
polarization. Thickness t , period / 2P  and filling factor γ  are given as grating parameters. 

Incidence and Transmission interfaces of the grating are at 0z =  and z t= , respectively. Blue 
blocks represent dielectric bars with width s . The one dimensional grating is assumed to be 
infinitely long in the y  direction. (b) Brillouin zone of a typical regular grating with 0.2γ = . 

Red dots represent “bright” modes at the zone center and dark dots represent completely 
“dark” modes due to reflection symmetries in the grating. Gray dots represent “dark” modes 
with a small but finite κ  at the zone edge. Shaded area indicates frequencies outside the 
subwavelength regime ( 4 /c Pω π>  and 2 /c Pω π>  for the regular and “diatomic” 
gratings respectively). (c) Schematic diagram of a “diatomic” grating with the same filling 
factor 0.2γ =  except for a doubled period P  and finite air gap difference δ . Two subcells 

merge into a larger unit cell. (d) Brillouin zone of a typical “diatomic” grating with 0.05δ = . 
Note the Brillouin zone is folded with half the original size. (e) Illustration of emergence of a 
pair of “bright” and “dark” modes after symmetry breaking. The “dark” mode has field phases 
difference of nearly π  in its 2 subcells. (f) The field profile for xE  for the 1st order “bright” 

and “dark” eigenmodes in the “diatomic” design. 

The “diatomic” structure is completely defined with three parameters: grating period ( P ), 
dielectric filling factor ( γ ) and the subcell difference (δ ). When 0δ ≠  but 1δ  (that is, 

1 2 0a a− → ), it is straightforward to estimate the coupling coefficient κ  for the “dark” 

modes represented in Fig. 1(e): 

 

1

1

2 2

0 0 2 0

P s a P

x x xs a
E dx E dx E dx

P P
κ δ

+

+
−

∝ = ∝ →
  

 (2) 

Equation (2) follows because for small δ , the mode profile in subcell 1 and subcell 2 are 
approximately the same except for a sign change. The “diatomic” design not only makes 
those “dark” modes accessible to zone center excitation, but more importantly, it can engineer 
their “darkness” (κ ) by proper choice of δ . In addition, Eq. (2) depends solely on the design 
( , ,P γ δ ) itself. As a result, the Q and the existence of these “dark” modes are expected to be 

robust even under strong external perturbation. 

3. Design 

Qualitatively speaking, grating resonances occur when the guided eigenmodes bounce back 
and forth constructively from the interfaces ( 0,z t= ), forming an F-P like cavity [40]. Above 
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the cut-off frequency, each eigenmode in the grating can display its own resonance whenever 
the round trip phase condition 2round nφ π=  is satisfied and the Q is determined by 

κ respectively. With the guaranteed existence discussed above, we expect to see ultra high Q 
resonance of the 1st order “dark” mode in the “diatomic” gratings. 

Figure 2(b) shows the simulated reflection spectrum for various filling factors γ  in a thin 

“diatomic” grating using rigorous coupled-wave analysis (RCWA) [41]. The grating design 

parameters are 0.05δ = and / 0.1t P = . Focusing on the sharp resonance of the “dark” mode, 
we see marked decline in Q (Fig. 2(a)) from 810  to 510  with γ  varying from 0.1 to 0.5. The 

resonance wavelength resλ  is slightly red-shifted due to a larger effn . The fall in Q can be 

qualitatively understood by an increased mixing between “dark” and “bright” modes in the 
grating [31], leading to reduced effective r  for the “dark” mode. Intuitively, an increase in 

γ  (thus effn ) helps to excite more “bright” modes in the grating and as a result, photonic loss 

rises in general because of their contribution of stronger coupling to the far fields. 

 

Fig. 2. Dependence of Q on filling factors for the “diatomic” design: the thin grating case. (a) 
Dramatic decline in Q for the dark mode resonance as a result of increased filling factor and 
subsequent increased mixing with “bright” modes. (b) Reflection spectrum showing 
resonances of varying Q for 3 different filling factors. Inset shows a unit cell of the “diatomic” 
grating with given design parameters assuming 1P =  and colored blocks represent silicon 
bars. The x  axis is wavelength λ  normalized by period P . For the leftmost spectrum with 

0.2γ = , scale of x  axis is magnified by 5 for clarity. 

We study the Q dependence on γ  more carefully with an example of a thicker “diatomic” 

grating. For design parameters 0.05δ =  and / 0.5t P = , we see in Fig. 3(a) that indeed more 
“bright” mode resonances are present with larger γ , producing complex beating patterns as 

an unfavorable spectroscopic background. The presence of “bright” modes is more 
pronounced in a thick grating compared to thinner ones. In Fig. 3(a), each of the sharper 
resonances corresponds to a “dark” mode, while resλ  is determined with round trip condition 

2round nφ π=  (color line in Fig. 3(c)). A closer look at Fig. 3(b) reveals that the reflectivity r  

at the corresponding first order resλ ( 2roundφ π= , color markers in Fig. 3(c)) falls as γ  is 

increased. One can also verify that with larger γ , more “bright” modes (gray lines in Fig. 

3(c) and Fig. 3(b)) with much smaller r  start to resonate. The exact behavior of mixing 

between “dark” and “bright” modes is complicated but it explains well the declining trend of 
quality factors seen in Fig. 3(a). We conclude that Q degrades with γ . Our observation also 

reflects the difficulty to achieve high Q resonances in a beat free background in other grating 
designs like the HCG, as they generally rely on a complicated mixing of “bright” modes that 
requires large grating thicknesses [23]. 
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Fig. 3. Demonstration of the effect of filling factors on the “diatomic” design. (a) Emergence 
of beating patterns from additional “bright” mode resonances for large filing factor γ  in a 

thicker grating design. x  axis is wavelength ( λ ) normalized by grating period ( P ). (b) 
Effective r  for the “dark” mode (color line) and “bright” modes (gray lines) with different 

γ . The trend in r  for corresponds well with decline in Q for the “dark” mode. (c) Round trip 

phase for “bright” (gray) and “dark” modes (color). It predicts well where the first “dark” 
mode resonance is (color markers, when 2 , 1round n nφ π= = ) and shows the emergence of new 

resonances from “bright” modes as γ  increases. 

We can then optimize the “dark” mode performance by choosing a small γ  and small 

grating thickness to minimize mode “mixing” in “diatomic” gratings. In Fig. 4(a), we show a 
characteristic single high Q ( 610 ) resonance under TM and normal incidence (red curve) 
for the “diatomic” grating. The design parameters are 0.2, 0.05γ δ= = and / 0.1t P = , where 

the dielectric filling is silicon ( 3.48n = ) and the grating is suspended in air. It is much 
thinner and has a much smaller dielectric filling factor compared to other high Q gratings like 
the HCG [23,31]. In Fig. 4(b), the ω β−  dispersion plot [39] is calculated and it shows the 

1st order “dark” and “bright” modes (blue dashed and solid lines, respectively) excited in the 
grating in the subwavelength regime, while β  is the propagation constant in z  for a given 

frequency ω . The 2nd order “dark” mode (orange dashed line) is not excited because it is 
“completely dark” due to the reflection symmetry in the grating [33]. For thin “diatomic” 
gratings, the “dark” mode gives rise to a single sharp resonance in the spectrum, free of off-
resonance contributions. We note that its resonance wavelength is very close to P  
( / 1.018res Pλ ≈ ) and this makes the grating an optically thin 

( / ( ( 1) 1) / 0.15eff res resn t n tλ γ λ≈ − + ≈ ) design. A zoom-in of the resonance is shown at the 

inset of Fig. 4(a). The slight Fano shape indicates a weak interaction between the “dark” and 
the “bright” modes [42]. Compared to the Q factor (~40) of the guided mode resonance of a 
regular but otherwise identical ( 0δ = ) grating, Q in the “diatomic” grating is increased by 
more than 20,000 times (blue curve in Fig. 4(a)). This impressive Q is achieved with a subcell 
difference 0.05δ = , 5% of the period length P . A more aggressive design of 0.02δ =  will 
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push the Q up to 710  as shown in Fig. 4(d) and this is possible (for example, when 
0.5 1m P mμ μ< < ) using the state of the art fabrication techniques. Similar performance is 

observed when the “diatomic” grating sits on a substrate. In the presence of substrates, P  
will shrink by a factor of ~ 1/ substraten  for the device to remain subwavelength, and t  will be 

slightly larger to compensate for the additional phase of reflection from the substrate. All 
other parameters of the optimized design stay mostly unchanged. 

 

Fig. 4. The design of a typical single high Q resonance in a thin and small γ  “diatomic” 

grating. (a) The single high Q resonance in the “diatomic” grating (red curve, zoom-in in the 
inset) and the moderate Q resonance in the corresponding regular grating (blue curve). (b) The 
mode dispersion ( ω β− ) plot in the subwavelength regime showing both the 1st “bright” 

mode (blue solid line) and the 1st “dark” mode (blue dashed line) for the design. They are 
marked with red and gray dots respectively. The 2nd “dark” mode is completely dark due to 
the reflection symmetry of the grating and is marked by a dark dot. (c) The Electric field ( xE ) 

enhancement inside the “diatomic” grating at resonance. The field enhancement is as high as 
56 10× . (d) Blue curve (log-log plot) depicts power law dependence of Q as a function of δ  

for the “dark” mode resonance. Orange curve shows the resonance wavelength barely changes 
with a large range of δ  from 0.001 up to 0.1. 

In the log-log plot of Fig. 4(d), Q diverges as 0δ → . When 0δ = exactly, the “dark” 
mode resonance disappears due to its complete darkness. The scaling law of Q on δ  is 
consistent with Eq. (2). It is notable that the resonance wavelength resλ  remains flat for a 

broad range of δ  up to 0.1δ = , indicating that while r  of the “dark” mode varies 

dramatically, its round trip phase is not much affected by δ  with changes by as large as 100 
times. Therefore the parameter δ  provides an effective control of Q in the design of 
“diatomic” gratings. From Eq. (2), one can obtain the approximate function for fabrication 
tolerance of Q in terms of δ  as / ~ /d dQ Qδ δ , a linear relation. We can also infer from 

Fig. 4(d) that the fabrication tolerance for resλ  in terms of δ  is extremely high up to 0.1δ = . 
In Fig. 4(c), we see that the enhanced (up to 510  times) xE  field is largely concentrated in air 

gaps at resonance, consistent with the field profile for the 1st “dark” mode plotted in Fig. 
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1(d). This is very similar to plasmonic resonators designed for sensing [43], except that the 
parasitic photonic loss in metal is absent [44]. This very thin ( / 0.1t P ≤ ) and very small 
filling factor ( 0.2γ ≤ ) design makes the “diatomic” grating appealing for sensing 

applications that require both high Q resonance and a planar geometry for potential 
integration with 2D materials [21]. 

4. Application 

One major advantage of the symmetry-broken “dark” modes in “diatomic” gratings is their 
robustness to strong external perturbation. This is expected in our previous discussion 
because of their structurally defined κ . As an important example, resonance wavelength 
( resλ ) of those dark modes can be tuned continuously in situ without degrading the Q, while 

the perturbation is provided by stretching the grating using a flexible substrate. A possible 
way to realize this idea is to embed silicon nano-pillars in the flexible PDMS substrate 
followed by the subsequent removal of PDMS to create a window of suspended silicon bars. 
The structure is supported by remaining PDMS at its periphery as illustrated in Fig. 5(b). By 
stretching PDMS using electro-mechanically applied stress (MEMS, for example), we can 
vary the period P  in situ, while the widths of silicon bars remain unchanged. As a result, 
arg( )r (phase of the reflectivity) of the “dark” mode in the grating is continuously tuned [32] 

and resλ  is shifted. We study the tuning capability of the stretched “diatomic” grating by 

simulating its reflection spectrum using RCWA. The design parameters are 
0.2, 0.05γ δ= = and / 0.1t P = . A tuning range ( 0/λ λΔ ) of 40% achieved by stretching the 

substrate up to 1.4 times ( 01 /P P+ Δ ) is shown in Fig. 5(a) (blue solid line). The orange solid 

curve shows a sustained high Q cross the tuning range without deterioration. To compare with 
a representative regular grating (HCG) that also supports high Q resonances [23] 
( 0.7, / 0.841t Pγ = = ), the improvement of Q in the “diatomic” grating is up to 1000 times 

and its tuning range is ~10 times better. We see similar results for “diatomic” designs with 
larger δ , indicating that the improvement is quite universal. The reason for the rapid drop in 
Q in the HCG is because that the existence of their high Q modes depends sensitively on 
particular combinations of P  and t  [23]. This is overcome in the “diatomic” grating since: 1, 
the existence of 1st order dark mode in the subwavelength regime is guaranteed and 2, κ  of 
the “dark” mode is structurally defined and it is minimally affected during stretch. The tuning 
capability of the “diatomic” grating approaches that of the ideal case (invariant /res Pλ ) 

because ~res Pλ  always holds in the design. This is desirable for applications that requires 

optimal tunability, like a tunable pixel in a display [45]. The “diatomic” grating is therefore 
an appealing candidate for planar resonators with tunable high Q resonances, whose practical 
design is still lacking to our best knowledge. 
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Fig. 5. In situ tuning of the high Q resonance in “diatomic” gratings. (a) Solid and dashed 
curves represent the simulation results of a typical “di atomic” and HCG grating respectively. 
Blue lines are the relative resonance shift (

0/λ λΔ ) while orange lines are Q factors at the 

corresponding resonances. Inset shows the unit cell of HCG (orange) and “diatomic” (blue) 
gratings reflecting their design parameters for comparison used in the simulation. 1P =  is 
assumed. The blocks represent silicon bars. (b) A schematic view of the structure that allows 
for in situ mechanical tuning of the grating period. Light is of TM polarization and normal 
incidence. It also gives an example of how the geometry of the grating changes after stretching 

from P  to P P+ Δ , where s  and 1a are defined previously in the text. 

5. Summary 

We have theoretically studied a new class of 1D subwavelength gratings that supports tunable 
high Q resonances by breaking the symmetry between its unit cells. Optimization of the new 
structure, called the “diatomic”, results in an ultra high Q resonance in a thinner grating with 
smaller filling factors compared to conventional gratings like HCGs. It offers unique 
advantages in terms of design flexibility and high Q sensing. Most importantly, we show that 
the resonance wavelength of the “diatomic” grating can be tuned in situ, exhibiting a close to 
ideal tuning range without compromising its Q. This work provides insight and design 
guidelines for this new class of planar resonators that are appealing to a wide range of 
applications including optical sensing, filtering and displays. 
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