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C H A P T E R  7  

Tuning and Synthesis of 1DF IMC 
for Uncertain Processes 

Objectives of the Chapter 

• Introduce the concept of process uncertainty and explore its effect on IMC system 
stability and performance. 

• Present a tuning method for adjusting the IMC filter time constant that accomplishes a 
desired relative stability for all processes in a predefined uncertainty set. 

• Explore the effect of uncertainty on controller design and model selection. 
 
Prerequisite Reading  

Chapter 3, “One-Degree of Freedom Internal Model Control” 
Appendix A, “Review of Basic Concepts” 
Appendix B, “Frequency Response Analysis” 
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7.1     INTRODUCTION 

Chapter 3 discusses the design and tuning of a linear IMC controller when the linear model 
used in the IMC system is assumed to be a perfect representation of the process.  This 
chapter treats the realistic situation that the process model is not the same as the process.  
Generally, the greatest contribution to the mismatch between the model and the process in a 
linear IMC system is the fact that the model and controller are linear while the process is 
nonlinear and time varying. While it is possible to design nonlinear IMC systems (Kravaris 
and Kantor, 1990), such control systems are not yet widely used in industry because the 
improved process performance over a well-designed and well-tuned linear control system 
does not usually justify the time and expense necessary to design and maintain a nonlinear 
control system. Of course, the key question is, how does one achieve a well-designed and 
well-tuned linear IMC system when the actual process is nonlinear? In order to accomplish 
this objective, we will approximate the nonlinear process as a set of linear processes with 
constant coefficients. Because the process is nonlinear, the parameters of the local, linear 
descriptions of the process change over time due to changes in operating point. The process 
operating point changes due to both external disturbances, such as changes in feed 
composition and ambient conditions, and internal changes, such as heat exchanger fouling 
and catalyst aging. Approximating the process as a set of linear processes with constant 
coefficients ignores the behavior of the process during parameter changes and focuses 
instead on the behavior of the process about all its steady-state operating points. This 
approximation is useful in that it allows us to use the powerful tools of linear mathematics to 
carry out control system analysis and design. Such an approximation is reasonable provided 
that the disturbances are such that the process spends most of the time operating about 
steady states rather than moving from one steady state to another. 

Control system responses to setpoint changes and disturbances change as the local 
description of the process changes. Therefore, in tuning a control system, one must consider 
the entire range of possible responses rather than focusing on a single response.  Figure 7.1 
shows a typical range of responses of a well-tuned control system to step setpoint changes 
for a linear process at different operating points (i.e., with different values for the local 
process parameters).  Based on such a range of responses, we can qualitatively define IMC 
controller tuning and synthesis objectives. Our IMC tuning objective is to select the smallest 
IMC filter time constant for which no setpoint response overshoots the setpoint by more 
than a specified amount and no response becomes too oscillatory.  Our IMC controller 
synthesis objective is to choose both the IMC controller and the process model so as to 
speed up the slowest closed loop responses as much as possible without violating our 
overshoot and relative stability (i.e., not too oscillatory) objectives.  

It is quite difficult to make the above qualitative time domain tuning and synthesis 
objectives sufficiently precise so as to be useful in obtaining numerical values for the IMC 
controller filter time constant, and model parameters.  To illustrate one of the difficulties, 
notice that it is hard to select the slowest response in Figure 7.1.  Curve 3 is the slowest 
response up to 20 time units; curve 4 yields the slowest response between 20 time units and 
50 time units.  After 50 time units, both curves approach steady state at the same rate. 
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Figure 7.1 Responses to a step setpoint change at different operating points. 

It turns out to be much easier to develop quantitative controller tuning and synthesis 
objectives and procedures for achieving such objectives in the frequency domain  (i.e., in 
the domain of open-loop and closed-loop frequency responses).  There is substantial 
literature on H∞ frequency domain methods for the analysis and synthesis of control systems 
for processes described by sets of linear, constant coefficient systems.  Kwakernaak (1993) 
gives a good, relatively brief overview of these methods for single-input single-output 
(SISO) systems. The texts by Morari and Zafiriou (1989), Doyle et al. (1992), and Dorato et 
al. (1992) provide more complete expositions. Unfortunately, all of the aforementioned texts 
require substantial expertise from the reader in order to understand and apply the H∞ 
methods presented. In addition, the methods of these authors usually require various 
approximations before they can be applied to typical chemical process descriptions. For 
example, dead times must be replaced with finite dimensional approximations (e.g., Padé 
approximations). We have elected to present a related but simpler approach to tuning and 
synthesis, which we call Mp tuning and synthesis.  Mp tuning aims to find the smallest IMC 
filter time constant that assures that (1) the magnitude of all closed-loop frequency 
responses between output and setpoint have magnitudes less than a specified value (usually 
taken as 1.05) at any frequency, and (2) any oscillations in the curve of the maximum 
magnitude of all closed-loop frequency responses do not have peaks higher than specified 
(usually about 0.1) from the highest adjoining valley. As we will discuss later, a control 
system tuned in this manner will usually satisfy the qualitative time domain tuning 
objectives discussed previously. Also, a by-product of the Mp tuning procedure is an 
estimate of the speed of response of the fastest and slowest responses of the control system 
for all processes in the set of possible processes (i.e., in the uncertainty set). 
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The next section discusses various process uncertainty descriptions. Section 7.3, 
which follows, presents the Mp tuning algorithm, describes a method for mitigating the fact 
that our uncertainty descriptions are themselves not known very precisely, and describes an 
inverse tuning algorithm that finds an uncertainty region over which a given controller will 
perform as specified. The two sections following Mp tuning provide justification for the 
tuning algorithm. Section 7.4 gives the conditions under which any Mp specification greater 
than one is achievable. Section 7.5 discusses the theoretically important property of robust 
stability.  Robust stability means that the control system is stable for all processes in the 
uncertainty set. Any practical control system must be robustly stable. Since the conditions 
imposed on the process, model, and controller in order to safely apply the Mp tuning 
algorithm will automatically be met in most practical situations, those readers interested 
mainly in applications can skim Sections 7.4 and 7.5, paying attention only to Table 7.3, 
which limits selection of the model gain in order to be able to achieve Mp specifications 
arbitrarily close to one. 

Mp synthesis, in Section 7.6, addresses the question of what controller and model to 
choose for the IMC system when the process can be any in the uncertainty set.  The criterion 
that we select for choosing the IMC controller and model is that they speed up the slowest 
closed-loop responses as much as possible. It turns out that process uncertainty has a 
profound influence on both controller design and model selection. An important observation 
in this regard is that the traditional engineering approach of fitting a first-order plus dead 
time model to high-order overdamped processes, and designing the controller based on that 
model, often yields a control system that performs better than a system based on a process 
model of the correct order when other process parameters such as gain and dead time are 
sufficiently uncertain.  

An important application of Mp tuning and synthesis applied to IMC systems is to 
convert the resulting IMC controller into an equivalent PID controller, using the methods 
described in Chapter 6. PID controllers are by far the most widely used industrial control 
systems and are likely to remain so for the foreseeable future. The IMCTUNE software 
provided with this text permits the user to automatically obtain PID parameters from the 
tuned IMC controller. 

Another potentially important application of Mp tuning and synthesis is to determine 
the limits of linear, fixed parameter, control system performance. Such limits determine 
what incentive, if any, exists for the implementation of more complex nonlinear and 
adaptive control systems (Åström, 1995; Kravaris and Kantor, 1990; Seborg et al., 1989; 
Ljung 1987). The aim of such control systems is to improve the speed and quality of the 
control system response by substantially reducing process/model mismatch and by basing 
controller design and parameters on a nonlinear or an updated linear model. Such 
approaches have yet to be widely applied in the process industries, probably because the 
perceived benefits do not yet justify the added complexity. Further, even nonlinear and 
adaptive models are approximations to the actual process, and uncertainty in the process 
parameters will still need to be accounted for in the control system design and tuning. 
However, a discussion of the tuning of nonlinear and adaptive controllers to accommodate 
model uncertainty is beyond the scope of this text. 
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7.2     PROCESS UNCERTAINTY DESCRIPTIONS 

The tuning and synthesis techniques in the following sections require frequency domain 
descriptions of the process uncertainty set.  There are two convenient descriptions of the 
uncertainty set:  (1) bounds on transfer function parameters and (2) bounds on the gain and 
phase of transfer functions over all frequencies of interest.  Unfortunately, neither of these 
uncertainty descriptions is readily available from process data or from first principles.  
However, process engineers can often estimate ranges for the parameters of simple process 
models based on a combination of process observations and an understanding of how the 
process operates. Further, the uncertainty inherent in such estimates can be at least partially 
accounted for using multiple uncertainty regions, as discussed in Section 7.2.2. Gain and 
phase bounds as functions of frequency are usually more difficult for plant operating 
personnel to estimate. However, with some effort, such bounds can be obtained from input-
output tests on the plant at different operating points.  One advantage of gain and phase 
bounds is that they do not require a priori postulation of a model.  While uncertainty bounds 
cannot be obtained with precision, they are nonetheless useful for obtaining safe controller 
tunings and in improving controller performance. 

7.2.1 Parametric Uncertainty 

The set of transfer functions with uncertain parameters, Π, is defined as 
 
Π = the set of all transfer functions, p(s, β(α)), with the vector of parameters α lying in 

the set Sα. 
Sα = set of all vectors α with iii ααα ≤   
where iα  =  upper-bound on the parameter αi  
  αi  =  lower-bound on the parameter αi 
  β(α) =  a vector of parameters which are continuous functions of the vector α. 
 
In addition, we will also require that 

 .allfor 0or0))(,0( αααβ Sp ∈<>         (7.1) 

The restriction given by Eq. (7.1) means that all process gains in the uncertainty set Π have 
the same sign. Such processes are called integral controllable because the restriction given 
by Eq. (7.1) is a necessary condition for a no offset IMC controller1 to be stable for any 
process in Π.  Integral controllability is discussed more completely in Section 7.4.1. Typical 
examples of parametric uncertainty descriptions follow. 

                                                           
1 Recall that IMC controller has no offset if q (0) = )0(~ 1−p . 
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Example 7.1 A FOPDT Process with Uncorrelated Uncertainty 
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where  σ ≡ the lower-bound on any parameter, σ, 
           σ ≡ the upper-bound on any parameter, σ. 

♦ 

In Example 7.1 all three parameters vary independently. However, it quite often 
happens that one parameter depends on another, in Example 7.2. 

Example 7.2 A FOPDT Process with Correlated Uncertainty 

 p s
K e
s

Ts

( ) =
+

−

τ 1
,    )(2)(, KKTKTKKK −+=≤≤         (7.3) 

♦ 

In Example 7.2 there is only one uncertain parameter, K. The function β(α) in the definition 
of the uncertainty set Π was included to accommodate correlated uncertainty such as that in 
the example. A common source of correlation between the parameters of a transfer function 
is the use of first principles modeling to obtain the transfer function.  Consider Example 7.3. 

Example 7.3 The Two-Tank Process  

For Figure 7.2, we wish to obtain the transfer function between changes in inflow (∆qi) and 
changes in the level of fluid in tank 1 (∆h1). The differential equations that relate the flows 
and levels are 
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Figure 7.2 A two-tank process. 

Linearizing the equations about the steady-state defined by qi , and solving for the desired 
transfer function gives 
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Notice that of the four parameters in Eq. (7.5), three are uncertain and all three depend on 
only one uncertain parameter, qi . Once we have an estimate of the range of variation of qi , 
the uncertain process is completely specified. 

♦ 

7.2.2   Frequency Domain Uncertainty Bounds 

Most methods for treating process uncertainty accommodate frequency domain uncertainty 
bounds much more readily than parametric uncertainty bounds (Morari and Zafiriou, 1989; 
Doyle et al., 1992; Dorato et al., 1992).  The general form of frequency domain uncertainty 
bounds for an uncertain process, p(s), is given by 

 ),(|)(|)( ωωω MipM ≤≤                      (7.6a) 

 ),()( Angle )( ωφωωφ ≤≤ ip  (7.6b) 
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where       M ( )ω and M (ω)  =  upper and lower magnitude bounds on ),( ωip  

               ( )φ ω  and φ (ω)  =  upper and lower phase bounds the angle of ).( ωip  

Values for the upper and lower magnitude and phase bounds as functions of frequency 
can be obtained by multiple identifications of the process frequency response at different 
operating points.  More commonly, the bounds are either estimated based on experience or 
obtained from parametric uncertainty bounds. However, frequency response bounds 
obtained from parametric bounds are always more conservative uncertainty descriptions 
than the original parametric bounds, and therefore lead to more sluggish control system 
designs.  To see why this is so, consider the following first-order process with an uncertain 
time constant: 
 .51;)1/(1)( ≤≤+= ττ ssp  (7.7) 

The frequency response of  Eq. (7.7) is 

 ,)1(|)(| 2/122 −+= ωτωip  (7.8a) 

 .tan)( 1 ωτω −−=ipAngle          (7.8b) 

The set of all possible gain and phases of p(iω) as the time constant τ ranges between one 
and five are given by the shaded areas of Figure 7.3, which are obtained from the maximum 
and minimum of  Equations (7.8a) and (7.8b) and are given by Eq. (7.9).  

 ,)1()( 2/12 −+= ωωM      (7.9a) 

 ,)125()( 2/12 −+= ωωM       (7.9b) 

 ,tan)( 1ωωφ −−=       (7.9c) 

 .5tan)( 1 ωωφ −−=       (7.9d) 

The uncertainty bounds given by Eq. (7.9) are not the same as those given by Eq. (7.8) 
because the bounds given by Eq. (7.9) allow the magnitude and phase of p(iω) to vary 
independently, whereas for the process given by Eq. (7.7), the magnitude and phase of p(iω) 
are related through Eq. (7.8).  For example, at a frequency of one radian/unit time, Eq. (7.9) 
shows that the magnitude can vary between .196 and .707, while the phase can take on 
any value between –45.0° and –78.7° (see Fig. 7.3).  According to Eq. (7.8), when the 
magnitude is 1 /(τ2 + 1)1/2, the phase is –tan τ (e.g., if τ  = 1 the magnitude is .707 and the 
phase is –45.0°).  Therefore, the magnitude and phase bounds given by Eq. (7.9) describe 
more processes than those given by Eq. (7.8). That is, the uncertainty set given by Eq. (7.9) 
is larger than that given by Eq. (7.8). As we shall see in Section 7.3.2, the larger the 
uncertainty set, the more sluggish the controller must be in order to meet closed-loop 
specifications. Therefore, a controller designed using the gain and phase bounds given by 
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Eq. (7.9) generally will be more sluggish than a controller designed using the original 
parametric bounds. 
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Figure 7.3 Frequency response of 1/(τs + 1) for 1 ≤ τ ≤ 5. 

Many of the uncertainty descriptions in the literature make use of magnitude only 
uncertainty bounds as given by Eq. (7.6a).  In such cases the implicit assumption is that the 
phase of the uncertain process can be anywhere within + 360°.  The advantage of such 
descriptions is that they sometimes lead to convex optimization problems for tuning or 
designing the controller. The disadvantage is that the resulting uncertainty set is even larger 
than that using gain and phase bounds, and therefore the final control system is likely to be 
significantly more sluggish than needed for uncertainty due only to parametric variations. 

Because parametric uncertainty bounds generally lead to the least conservative 
controller tunings, and are usually the easiest to obtain, the next section deals only with 
parametric uncertainty.  However, the methodology (but not the IMCTUNE software) also 
treats frequency domain bounds, should these be useful in particular situations. 



144 Tuning and Synthesis of 1DF IMC for Uncertain Processes Chapter 7 

 

 

7.3     MP TUNING 

7.3.1 The Problem Statement 

The aim in tuning any control system is to achieve desirable time domain closed-loop 
performance, such performance being measured by the speed of response, how oscillatory it 
is, and how much the response overshoots the setpoint.  One can estimate such time domain 
performance measures most easily from the closed-loop frequency responses between 
output and setpoint. This frequency response is often called the complementary sensitivity 
function.  The maximum magnitude of the complementary sensitivity function, which we 
will refer to as the Mp, generally gives a good indication of the overshoot to setpoint 
changes and/or the magnitude of oscillations in the time response.  The frequency at which 
the maximum occurs is generally a good indication of frequency of the time domain 
oscillations.  Finally, the inverse of the “break frequency” is a good estimate of the time 
constant of the fastest time domain response.  The “break frequency” is usually taken as the 
intersection of the asymptote to the high-frequency portion of the frequency response with a 
horizontal line of magnitude one.  This definition assumes a closed-loop gain of one (i.e., an 
integral control system).  The justification for the foregoing statements is that the magnitude 
of the closed-loop frequency responses between output and setpoint for most control 
systems can be reasonably approximated by the magnitude of the frequency response of a 
second-order system of the form 1/(τ2s2 + 2ζτs + 1).  For such a second-order system, the 
fractional overshoot to step inputs can be directly related to the maximum peak of the 
magnitude of its frequency response through the relationship: 

 ,eOS /π 1Mp,)5.)2Mp11(1(Mp >= −−−      (7.10) 

where    
   OS ≡ fractional overshoot 
  ≡ (maximum change in output – change in setpoint)/change in setpoint. 
 

        Mp ≡ maximum magnitude of the frequency response. 

The damping ratio ζ of the second-order response is related to the Mp by 

 .)2/))/11(1(( 5.5.2
pM−−=ζ      (7.11) 

Figures 7.4a and 7.4b show the time and frequency responses for 1/(τ2s2 + 2ζτs + 1) with 
τ  = 1 and ζ = .5. Note that the unity gain arises because we are generally dealing with 
closed-loop systems with no offset. 
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Figure 7.4a  Response of 1/(s2 + s + 1) to a unit step setpoint change. 
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Figure 7.4b Frequency response of 1/(s2 + s + 1). 

The overshoot (OS) and damping ratio ζ are plotted versus Mp in Figure 7.5. As can be 
seen from Figure 7.5, an Mp of 1.05 corresponds to a 10% overshoot and a damping ratio of 
about 0.6.  Higher values of Mp yield greater overshoots and lower damping ratios. 
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Figure 7.5 Overshoot and damping ratio versus Mp for 1/(s2 + 2ζs +1). 

The Mp tuning problem is to find the smallest IMC filter time constant that assures 
that no closed-loop frequency response, from setpoint to output, will have more than the 
specified Mp (i.e., the specified maximum peak). The numerical value specified will 
approximately limit the maximum overshoot, as given by Figure 7.5.  A typical specification 
is an Mp of 1.05, which leads to worst case overshoots of about 10%. 

A formal statement of the Mp tuning problem follows: 
Select the filter time constant ε∗ for the IMC controller q(s,ε) so that the magnitude of the 
complementary sensitivity function )( ωiCS  is equal to or less than a specified Mp for all 
processes, p(s), in a predefined set Π. For at least one process in Π, the magnitude of 

)( ωiCS  must equal the specified Mp at one or more frequencies. That is,  

 ωεω ∀∏∈∀≤ and ,)(Mp),( * spiCS    (7.12a) 

where ≡∀ for all; ≡∈ contained in, and 

 Mp)( ** =εω ,iCS  (7.12b) 

for at least one Π∈p  and some frequencies, .....,, *
2

*
1 ωω . 
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The motivation for the condition in Eq. (7.12b) is to avoid introducing any 
conservatism into the tuning beyond that of the specification. 

For the IMC configuration of Figure 7.6 (reproduced from Chapter 3, Figure 3.1), the 
closed-loop transfer function between output and setpoint (i.e., the complementary 
sensitivity function) is given by  

 ,
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Figure 7.6 1DF IMC system. 

The problem statement of Eq. (7.12) and above can be reformulated as the following 
optimization problem: 

Find ε* such that 
 ,Mp|)*,,(|

,
max =αεω

ωα
iCS  (7.14) 

where α = vector of uncertain process parameters ∈ Π, 
  ω = frequency. 

The solution of Eq. (7.14) yields values for the filter time constant ε*, which satisfies 
Eq. (7.12) as well as values of the parameters α* and ω*, which solve the maximization 
problem given by Eq. (7.14). 

The Mp tuning problem can be solved for very general processes, with uncertain 
parameters, using the IMCTUNE software associated with this text, and described in 
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Appendix G. The next section contains a brief description of the tuning algorithm used by 
the IMCTUNE software. Section 7.3.2 contains an example of Mp tuning, solved using 
IMCTUNE. Section 7.4 provides the theoretical justification for the Mp tuning algorithm 
presented in this section. 

Occasionally, the Mp tuning procedure results in an upper-bound frequency response 
with one or more peaks where the valley to peak height is high enough to cause undesirable 
time domain oscillations. To avoid such time domain oscillations, we recommend restricting 
the magnitude of the upper-bound frequency domain peaks to not more than 0.1 above the 
highest adjoining valley. The IMCTUNE software checks the magnitude of any frequency 
domain peaks and adjusts the filter time constant to keep such peaks below a user specified 
value (the default value is 0.1). 

7.3.2 The IMCTUNE Algorithm for Solving the Mp Tuning 
Problem 

The following algorithm is implemented in MATLAB 5.3.1 for parametric uncertainty in 
the IMCTUNE software associated with this text. 

Input data 

1. A process model. 
2. An uncertainty description in terms of upper- and lower-bounds on process 

parameters. 
3. An initial value for the filter time constant.  The default is the value of filter time 

constant that satisfies the maximum noise amplification specification (see item 5). 
4. An Mp specification and tolerance.  The defaults are  

Mp = 1.05 and Tolerance = ± 0.005. 
5. The maximum allowable high frequency controller noise amplification (i.e., 
      |q(∞,ε)/q(0,ε)| ).  The default is 20 (see Chapter 3). 
6. Upper- and lower-bounds of the frequency range for the optimization.  The 

defaults are 
 Low frequency:  reciprocal of 10 times the largest time constant or dead time 
 High frequency:  1,000 times the low frequency 
 Number of points and scale for plotting: 30, logarithmic 

7. Upper- and lower-bounds of the frequency range for plotting.  The defaults are 
Low Frequency:  one-tenth the break frequency (see Figure 7.6) 

 High Frequency:  100 times the break frequency 
 Number of points and scale for plotting:  30, logarithmic 
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Output Data 
 

1. The filter time constant that achieves the specified Mp ± Tolerance or the specified 
Maximum Peak Height ± Tolerance. 

2. Curves of the upper- and lower-bounds of the magnitude of the complementary 
sensitivity function for the computed value of the filter time constant. 

3. Tables listing which processes give the upper- and lower-bound at each frequency. 
4. Output and control effort time responses for the constrained IMC system with the 

specified process parameters in the uncertainty sets. 
5.   PID parameters induced by the IMC controller and process model. 
6. Output and control effort time responses for the constrained PID control system 

with the specified process parameters in the uncertainty sets. 
7.  Output and control effort time responses for the constrained model state feedback 

IMC system with the specified process parameters in the uncertainty sets. 

Stryczek et al. (2000) give a detailed description of the Mp tuning algorithm.  

Example 7.4 Tuning an Uncertain FOPDT Process 

Find the filter time constant ε for the process given by Eq. (7.15), and model and controller 
given by Equations (7.16a) and (7.16b). 

 p s
K e
s

Ts

( ) =
+

−

τ 1
,  (7.15) 

where 

 0.2 <  K < 1;  8 < τ < 14;  .4 < T < 1.  
Choosing a mid-range model and following the IMC controller design methods of Chapter 3 
gives a model and IMC controller of 
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To achieve an Mp specification of 1.05, the IMCTUNE software computes a value of 
2.81 for the filter time constant ε*. Using this filter time constant and IMCTUNE to 
compute the lower-bound of the complementary sensitivity function over all uncertain 
parameters, and requesting a plot of both upper- and lower-bounds, produces the curves in 
Figure 7.7.  



150 Tuning and Synthesis of 1DF IMC for Uncertain Processes Chapter 7 

 

0.001 0.01 0.1 1 10
Frequency (radians/unit time)

0.01

0.1

1

10

Mp = 1.05

maximum of

minimum of

Break frequency of
slowest responses

Break frequency of
fastest responses

α

α
)*,,( αεωiCS

)*,,( αεωiCS

M
ag

ni
tu

de
 o

f C
om

pl
em

en
ta

ry
 

Se
ns

iti
vi

ty
 F

un
ct

io
n 

(C
S)

0.001 0.01 0.1 1 10
Frequency (radians/unit time)

0.01

0.1

1

10

Mp = 1.05

maximum of

minimum of

Break frequency of
slowest responses

Break frequency of
fastest responses

α

α
)*,,( αεωiCS

)*,,( αεωiCS

M
ag

ni
tu

de
 o

f C
om

pl
em

en
ta

ry
 

Se
ns

iti
vi

ty
 F

un
ct

io
n 

(C
S)

 

Figure 7.7 Upper- and lower-bounds of the complementary sensitivity function. 

                                                                                                                                               ♦ 

7.3.3   Interpretation of the Results of Mp Tuning 

Figure 7.7 can be used to estimate the range of closed-loop time responses. The reciprocal 
of the break frequency of the upper-bound curve is an estimate of the time constant for the 
fastest responses, while the reciprocal of the lower-bound curve is an estimate of the time 
constant of the slowest responses. The break frequencies2 of the upper-bound and lower-
bound frequency responses are approximately 1.2 and .07. The reciprocal of these break 
frequencies (1/1.2 and 1/.07, respectively) provides estimates of the fastest and slowest time 
constants of the closed-loop, which are .83 and 14.  Settling times3 should therefore be 
about 2.5 time units for the fastest responses and about 43 time units for the slowest 
responses.  Comparison of these estimates with Figure 7.1, which gives the closed-loop time 
responses for several processes within the set given by Eq. (7.15), shows that the foregoing 

                                                           
2 The break frequency is the intersection of the asymptote to the high frequency portion of the frequency response 
with the magnitude = 1 line. 
3 The settling time is usually taken as three time constants. 
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estimates are quite accurate.  The various process responses shown in Figure 7.1 were 
obtained from IMCTUNE and correspond to the parameters given in Table 7.1. 

Table 7 .1 Process Parameters for Figure 7.1 and the Process Given by Eq. (7.15). 

curve no. process gain, K time constant, τ dead time, T 

1 1 8 1 

2 1 14 1 

3 .2 14 .4 

4 .2 8 .4 

5 .6 11 .7 
 

It must be emphasized that the upper- and lower-bound frequency response curves in 
Figure 7.7 are not the frequency responses of any single process. At any frequency, the 
curves in Figure 7.7 represent the maximum and minimum of the complementary sensitivity 
function over the process parameters K, τ, and T.  Therefore, each point on the curve could 
represent a different process. Usually, however, the upper-bound and lower-bound 
frequency responses come from only a small, finite subset of the possible process 
parameters. For example, the process parameters for the lower-bound curve in Figure 7.7 
are given in Table 7.2. 

Table 7.2 Process Parameters Associated with the Lower-Bound Curve in Figure 7.7. 

 

frequency  

 

process gain, K 

 

time constant, τ 

 

dead time, T 

0.001 to 0.0033 0.2 14 1.00 

0.0044 to 0.0862 0.2 8 .400 

0.116 to 4.10 0.2 14 .400 

5.52 0.2 14 .870 

7.43 0.2 14 .636 

10 0.2 14 .472 

The parameters associated with the maximum peak of 1.05 are [K, τ, T] = [1 8 1], 
which yields the response given by curve 1 in Figure 7.1.  There is a local maximum with an 
Mp of about 1.02 in the upper-bound curve at a frequency of about 0.1.  The process 
parameters associated with this local maximum are [K τ T] = [1 14 1], which yields the 
response given by curve 2 in Figure 7.1. 



152 Tuning and Synthesis of 1DF IMC for Uncertain Processes Chapter 7 

 

As we shall see in Section 7.5, the shape of the upper-bound and lower-bound curves 
for the complementary sensitivity function and their associated break frequencies depend on 
the choice of the model. The Mp synthesis problem is to find the model and controller that 
give a lower-bound break frequency as high as possible for the specified Mp. Such a model 
and controller will provide the fastest possible slowest responses for the postulated 
uncertainty. 

The above discussion assumes that the upper-bound curve of the complementary 
sensitivity function is similar to the response of a second-order system of the form 
1/(τ2s2 + 2ζτs + 1). However, not all complementary sensitivity functions behave in this 
ideal manner. Indeed, even the upper-bound curve in Figure 7.7 is not quite that of a 
second-order system. Close inspection of the upper-bound in Figure 7.7 shows that it has a 
relative maximum of 1.0224, a relative minimum of 0.9771, and a global maximum of 
1.0498. Second-order systems do not exhibit such relative maxima and minima. For systems 
with such oscillatory frequency responses, we must add the condition that the magnitude of 
the frequency response not have any peaks higher than specified (usually about 0.1) from 
the highest adjoining valley. For example, in Figure 7.7, the upper-bound curve has a peak 
at a frequency of .871, which is .0727 units higher than its highest adjoining valley, which is 
.9771 (.0727 = 1.0498 – .9771). In this case the peak is less than 0.1, so it does not influence 
the computed filter time constant of 2.81. If the peak had been higher than 0.1, then we 
would have increased the filter time constant beyond 2.81 to bring it down to 0.1. 
Section 7.5 contains some examples in which it is necessary to increase the filter time 
constant because of peaking, even though the Mp is less than 1.05. 

7.3.4 Use of Multiple Uncertainty Regions to Account       
for Uncertain Uncertainty 

Generally, the range of variation of the uncertain parameters α in an uncertain process, 
))(,( αβsp (see Section 7.2.1), is itself uncertain.  This is particularly true when the 

variations of the parameters α arise due to the fact that the true process is nonlinear, as in 
Eq. (7.4), and the set Π contains the local linearizations of the process about all possible 
operating points, as in Eq. (7.5).  In such situations, it is sometimes advantageous to view 
the set of uncertain parameters Sα as being composed of several overlapping sets, 

...1, =jS jα  where the set jSα is defined as 
  Sα j ≡ the set of all vectors αj with α j,i  < αj,i  <  α j,i. 

The αj,i and ij ,α  are ordered so that ij ,α < ij ,1+α and αj,i > αj+1,i.  A pictorial representation 
of the boundaries of the sets jSα is given in Figure 7.8.  Notice that 1αS is contained in 2αS , 
and 2αS is contained in 3αS . The shaded areas in Figure 7.7 represent the difference 
between 3αS and 2αS  (i.e., Sα 3 – 2αS ) and between 2αS  and 1αS  (i.e., 2αS – 1αS ).  As we 
shall see in Example 7.5, by assigning different tuning objectives to the various shaded 
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areas of Figure 7.8 it is possible to account somewhat for uncertainty regarding process 
parameter ranges. 

Sα 3

Sα 2 Sα1

 

Figure 7.8 Multiple uncertainty sets. 

Example 7.5 Use of Multiple Uncertainty Regions 

Let us return to Example 7.4, where the uncertain process was given by Eq. (7.15): 

  ,
1

)(
+

=
−

s
eKsp

Ts

τ
  

where 

1αS  is  0.2 <  K < 1;  8 < τ < 14;  .4 < T < 1; and 1α ≡ [ .2 8 .4 ], ]1141[1 ≡α .  

Let us assume that the specified upper-bound of the parameters, α1 , are either not known 
very precisely, or may be violated for relatively brief periods of time. It is known, however, 
that the parameters never exceed 1.5, 20, and 1.5 for the gain, time constant, and dead time. 
That is,  

 2αS is:  2α = [ .2  8  .4 ]),  2α  = [ 1.5  20  1.5 ].  (7.17a) 

 The mid-range model for the above is 

 ]95.,14,85[.]~,~,~[ =TK τ . (7.17b) 



154 Tuning and Synthesis of 1DF IMC for Uncertain Processes Chapter 7 

 

If we insist that no process in the enlarged uncertainty set 2αS  given by Eq. (7.17a) 
have an Mp greater than 1.05, and the maximum peak to valley height of 0.1, then 
IMCTUNE yields a filter time constant of 6.08 using a mid-range model of Eq. (7.17b) and 
its associated controller ( )108.6(85./)114()( ++= sssq ). The slowest closed-loop time 
constant is now about 37, compared to slowest closed-loop time constant of about 14 for the 
original uncertainty set model and controller (see Example 7.4). For the larger uncertainty 
set, the maximum peak height of 0.1 is the binding constraint and the Mp is only 1.02.  

Now let us assume that for the region given by (Sα2 – Sα1) 
(i.e., 1 < K < 1.5; 14 < τ < 20; 1 < T < 1.5), we are willing to accept overshoots of 50% and 
a fairly oscillatory response (e.g., ζ =.2). The Mp specification then becomes 2.4 in that 
region, and the maximum peak height specification must be 1.5 or higher, because the 
maximum peak height must be more than the Mp specification minus one. The filter time 
constant obtained using the same model and controller is 3.2 (i.e., ]95.,14,85[.]~,~,~[ =TK τ ; 

)12.3(85./)114()( ++= sssq ). The slowest closed-loop time constant for the foregoing 
tuning is about 25 units. Since a slowest time constant of 25 is slower than the slowest loop 
time constant of 14 for the previous design (see Example 7.4), we should expect that using 
the foregoing model and controller will yield an Mp smaller than 1.05 for the original 
uncertainty bounds, and this is indeed the case. Keeping the model and controller the same 
yields an Mp of 1.0 for the original uncertainty set. Thus, by separating the uncertainty 
region into two regions and allowing greater overshoots in the outer region, we have sped 
up the slowest responses from a closed-loop time constant of 37 to one of 25, or in terms of 
settling times, from about 110 units to 75 units. 

The fact that the Mp for the current controller is only 1 means that if we were willing 
to tolerate even more overshoot in the outer uncertainty region (i.e., in  (Sα2 – Sα1)), then the 
filter time constant could be further reduced, thereby speeding up the slowest responses. 

♦ 

7.3.4 The Inverse Tuning Problem 

An alternate method of dealing with uncertainty about process parameter ranges is to 
specify what nominal closed-loop response time is acceptable, and then calculate the range 
of parameter variation that can be accommodated by a controller tuned to give that nominal 
response. This is equivalent to specifying the IMC controller filter time constant and 
calculating an uncertainty range that will yield that filter time constant for the specified Mp. 
Of course, it is necessary to recognize that actual response times will vary, possibly 
substantially, from the nominal (i.e., perfect model) response time. Further, the uncertainty 
range for a given filter time constant is not unique, because when more than one parameter 
varies, there is a multiple infinity of parameter ranges that yield the same filter time constant 
to achieve a specified Mp. 
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To associate an uncertainty range with an IMC controller filter time constant, it is 
necessary to specify a scalar function that tells how the model parameters vary within the 
uncertainty region. One convenient way of relating the parameters is to insist that all 
uncertain parameters vary by the same percentage from specified mid-range parameter 
values. Usually, the specified mid-range for parameter values will be the same as the model 
parameters. However, the IMCTUNE software permits the mid-range parameters supplied 
by the user to differ from the model parameters.  

Example 7.6 Inverse Tuning  

Again, we return to the process given by Eq. (7.15). The model parameters are as before 
( i.e., [ ~ ~ ~ ] [ . . ]K Tτ = 6 11 7 ). Now, however, rather than calculating the IMC filter time 
constant to achieve an Mp of 1.05 for the uncertain parameter ranges given in Eq. (7.15), we 
shall assume that no uncertainty ranges are given, and our problem is to compute the 
uncertainty range for K, τ, and T that will yield a perfect model response time of about 8.4 
time units to a unit step setpoint change. The foregoing problem specification is equivalent 
to specifying an IMC filter time constant, ε, of 2.8 (i.e., 2.8 = 8.4/3). 

The IMCTUNE software calculates parameter ranges of  .35 < K < .85; 6.5 < τ < 15.5; 
.41 < T < .99 for an Mp of 1.05 and an ε of 2.8. Notice that, except for the dead time, the 
calculated ranges are not the same as those for the process given by Eq. (7.15). This is 
because the calculated ranges have the same percent variation from the mid-range 
parameters (± 41%), while in the original problem the gain varies by 66% and the time 
constant and dead time vary by ±27% from their mid-range values of .6 and 11. 

♦ 

The next two sections provide the theoretical justification for the Mp tuning 
algorithm. Those readers willing to accept the algorithm on faith may skip or skim all but 
the restrictions given by Table 7.3. However, those readers who would like some insight 
into why the algorithm works should at least skim Sections 7.4 and 7.5. 

7.4    CONDITIONS FOR THE EXISTENCE OF SOLUTIONS 
TO THE MP TUNING PROBLEM 

The Mp tuning methodology described in the previous section implicitly assumes that (1) if 
all closed-loop complementary sensitivity functions have finite magnitudes, then the control 
system is stable for all processes in the uncertainty set, and (2) there always exists a filter 
time constant, which will cause the Mp for the complementary sensitivity function to lie 
below any preset limit greater than 1 for all processes in the uncertainty set.  The following 
subsections give the conditions under which the foregoing statements are indeed true. As a 
prerequisite, however, we first present an abbreviated version of the Nyquist stability 
criterion discussed in Appendix B, Section B.4. 
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7.4.1 Statement of the Nyquist Stability Criterion 

The number of zeros, Z, of the term 1 + kg(s) inside a closed contour, D, in the complex 
plane is equal to the number of poles of 1 + kg(s) inside of the closed contour D plus the 
number of clockwise (counterclockwise) encirclements of the point (–1/k, 0) by the phasor 
g(s) as s moves in a clockwise (counterclockwise) direction around the closed contour D. 
That is, 
  Z = N + P 

where Z = # of zeros of 1 + kg(s) inside D, 

 N = # of encirclements of (–1/k, 0) point by g(s) as s moves once around D, 

 P = # of poles of 1 + kg(s) inside D. 

The control system of Figure 7.9 is stable if, and only if, the contour D encloses the entire 
right half of the s-plane and the number of zeros, Z, of the characteristic equation 1 + kg(s),  
as calculated above, is zero.4 

k g(s)_

.

Characteristic equation ≡ 1 + kg(s)

k g(s)_

.

k g(s)_

.

Characteristic equation ≡ 1 + kg(s)

 

Figure 7.9 Feedback diagram for the Nyquist stability criterion. 

If g(s) has a pole at s = 0, then the contour D is usually taken as shown in Figure 7.10, and 
the radius δ is made to approach zero so that the contour encloses the entire right half of the 
s-plane.  

                                                           
4 An excellent, intuitive proof of the Nyquist stability theorem can be found in Van de Vegte (1986). 
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Figure 7.10 Nyquist D contour when there is a pole at the origin. 

7.4.2 Integral Controllability 

Any control system that forces the process output to exactly track the setpoint in the steady 
state (i.e., one that has no off-set) must have an integrator in the control loop. In IMC the 
required integration comes from the positive unity feedback loop formed by the controller 
and the model when the controller gain is the inverse of the model gain (see Chapter 6). For 
an uncertain process, the question arises as to what limits, if any, exist on the range of 
uncertain process parameters so that an integrating control system is stable over all possible 
process parameters. To address this question, Morari (1985) introduced the concept of 
integral controllability for uncertain processes. While the concept applies to general 
multivariable uncertain processes, here we shall use it only for SISO systems.  Morari’s 
definition of integral controllability follows 

Integral Controllability:  The open-loop stable uncertain system h(s) in Figure 7.11 is 
called integral controllable if there exists a k* > 0 such that the control system is stable for 
all k in the range 0 < k < k*. 

k/s h(s)_

.

h(s) is asymptotically stable

k/s h(s)_

.

h(s) is asymptotically stable
 

Figure 7.11 Feedback control diagram for integral controllability. 
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The uncertain system h(s) in Figure 7.11 includes the process and actuator dynamics 
as well as a portion of the controller dynamics.  Also, all the processes in h(s) are assumed 
to be asymptotically stable.5 (Such a system can have no poles in the right half of the s-plane 
or along the imaginary axis.)  

An uncertain process that is integral controllable is one for which it is always possible 
to design a stable offset-free control system for all processes in the uncertainty set.  

Integral Controllability Theorem: An uncertain system h(s) is integral controllable 
if, and only if, the gains of h(s), (i.e., h(0)) are positive for all plants in the uncertainty set. 

The condition that all gains of h(s) be positive effectively requires that all process 
gains p(0) in the uncertainty set have the same sign and, of course, are never zero.  If all 
process gains are negative, then the controller gain must also be negative. In Figure 7.11, 
the negative controller gain is included in h(s) so that h(0) is positive for all processes in the 
uncertainty set. 

Morari uses the Nyquist Stability Criterion to prove the above theorem. To illustrate 
the nature of the proof, we consider the system h(s) = h(0)/(s + 1)3 with h(0) uncertain.  The 
Nyquist diagram for g(s) = h(s)/s for h(0) equal one, and the D contour taken as shown in 
Figure 7.10 is given in Figure 7.12. 
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Figure 7.12 Nyquist diagram for 1/s(s + 1)3 as s travels about the contour, shown in 
Figure 7.10, with δ = .00492. 

The Nyquist diagram in Figure 7.12 is drawn with the central portion of the diagram 
(about the origin) much enlarged relative to the outer portion of the diagram. Also, the 
                                                           
5 An unforced dynamic system is said to be asymptotically stable if it tends to the origin from any initial conditions. 
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diagram is distorted at the break points where the scale changes so that the diagram appears 
to be continuous, as it actually is, rather than discontinuous, as it would appear if two scales 
were rigorously adhered to.  The point (Re, Im) = (200, 0) on the Nyquist diagram 
corresponds to the point s = (δ, 0) on the D contour of Figure 7.11, with δ = .00492.  As s 
moves along the curve s = δejφ, with φ increasing from 0° to + 90°, the Nyquist diagram 
moves along the solid line.  After φ reaches 90°, s moves along the curve s = iω and the 
corresponding portion of the Nyquist diagram moves through the break in scale to the 
origin, as shown by the solid line in Figure 7.12.  Along the infinite semicircle 1/s(s + 1)3 is 
zero.  The dotted line in Figure 7.12 corresponds to the value of 1/s(s + 1)3 as s moves up 
the imaginary axis from – ∞, and then along the quarter circle back to s = (δ, 0). 

Figure 7.12, shows that there will be no encirclements of the point (–1/k, 0) provided 
that –1/k is less than –1.125 which means that k must be greater than zero, but less than 
1/1.125 (i.e., .889).  It does not matter how small δ is taken to be, since smaller values of δ 
simply increase the radius of the right half plane semicircle in Figure 7.12.  Changes in the 
gain h(0) do not affect the general shape of the Nyquist diagram, provided all gains are 
positive.  As long as h(0) is greater than zero, changes in gain and time constants only 
change the point at which the Nyquist curve intersects the negative real axis. The 
intersection point is always finite, and so there always exists a k* such that the control 
system is stable for 0 < k < k*.  Should any of the gains of h(0) be negative, however, then 
the Nyquist diagram is rotated about the imaginary axis, as shown in Figure 7.13. 
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Figure 7.13 Nyquist diagram for –1/s(s + 1)3 as s travels about the D contours shown in 
Figure 7.10 with δ = 0.00492 and h(0) negative. 
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From Figure 7.13, it is clear that if k is positive, the –1/k point will always be encircled in a 
clockwise direction at least once if δ is allowed to approach zero, as it must if the D contour 
is to enclose the entire right half plane.  

The above analysis can be repeated for any stable process and control system where 
the open-loop transmission has a pole at the origin.  Morari uses an argument very similar to 
the foregoing in proving that the necessary and sufficient conditions for integral 
controllability are that the gain of h(s) does not change sign. 

For an IMC system, the equivalent definition of integral controllability is that an open-
loop stable system is integral controllable if, and only if, there exists a filter time constant 
ε* > 0 such that the closed-loop IMC system is stable for all finite ε greater than or equal to 
ε*.  Again, integral controllability requires that the process gain not change sign.  To prove 
this statement, it is adequate to recognize the correspondence of an IMC system to an 
integral control system when the controller gain is the inverse of the model gain 
(see Chapter 6).  However, we shall determine the necessary and sufficient conditions for 
integral controllability directly by application of the Nyquist criterion to the IMC system. 

The characteristic equation of an IMC system such as that given by Figure 3.1 in 
Chapter 3 is given by (also see Eq. 3.6) 

 Characteristic Equation = ))())(~)((1( sqspsp −+ . (7.18) 

This characteristic equation will have no right half-plane zeros only if the Nyquist diagram 
of (p(s) – ~( )p s )q(s) does not encircle the –1 point as s traverses a D contour which travels 
from –i∞ to + i∞ and then clockwise around the infinite semicircle back to –i∞. We will 
investigate the behavior of Eq. (7.18) for filter time constants larger than ε*. To start, we 
note that for low enough frequencies, the frequency response of all processes in the 
uncertainty set ∏ can be approximated by their steady-state gains.  That is 

  )0()( pip ≅ω  and )0(~)(~ pip ≅ω for δω < . (7.19) 

Therefore, for the controller filter time constant large enough so that 

 1>>δε , (7.20) 

the terms pq and qp~ can be approximated as 

 rs + 
pps,pq

)1(
)0(~/)0()(

ε
ε ≅   and  δωω

ε
ε < ,

)1(
1)(~ is
+s

s,qp r =≅ . (7.21) 

Substituting Eq. (7.21) into Eq. (7.18) gives 

    Characteristic Equation = ripp )1/(]1)0(~/)0([1 +−+ εω ;   .0 δω <≤  (7.22) 

The stability of the control system is therefore completely determined by whether or 
not the function ripp )1/(]1)0(~/)0([ +− εω  encircles the –1 point on the Nyquist diagram as 
ε ω ranges from zero to large values.  This function cannot encircle the –1 point so long as 
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the ratio )0(~/)0( pp  is greater than zero.  However, if any process gains are such that 
)0(~/)0( pp is less than zero, then the Nyquist diagram will lie to the left of the –1 point at a 

frequency of zero and will spiral in a clockwise manner towards the origin as frequency 
increases.  Thus, the Nyquist diagram will encircle the (–1, 0) point, and the control system 
will be unstable.   The necessary and sufficient conditions for integral controllability of an 
IMC system are therefore that all process gains must have the same sign and the model gain 
must have the same sign as the process gains. 

7.4.3 Necessary and Sufficient Conditions for the 
Existence of a Solution to the Mp Tuning Problem 
for Any Mp Specification Greater than One 

In this section we give the conditions under which any Mp specification can be achieved by 
choosing the IMC filter time constant large enough.  As in Section 7.4.2, we consider all 
filter time constants, ε, greater than some ε*, where ε* is chosen so that ε∗δ is much greater 
than one and δ is small enough so that Eq. (7.19) is satisfied.  Then the frequency response 
of the complementary sensitivity function CS(iω,ε) (see Eq. 7.13) can be well approximated 
as follows: 

 δω
ωε

ωεεω     0,
)1(]1)0(~/)0([(1

)1()0(~/)0((),(
/

/ <≤
+−+

+≅ r

r

ipp
ippiCS      (7.23) 

                10,]1)1)1[(( 1 >>≤Ω≤+Φ−+Ω≡ − εδri ,      (7.24) 

where 
 )0(~/)0(, pp≡Φ≡Ω εω  

The term εδ in Eq. (7.24) is much greater than one because ε is chosen to be greater than ε* 
and ε*δ is much greater than one by choice of ε*. 

The behavior of CS(iΩ) given by Eq. (7.24) depends only on the ratio of process gain 
to model gain (i.e., p(0)/~p (0)).  The upper-bound on the magnitude of CS(iΩ) (i.e., its Mp) 
will be less than one over all Ω greater than zero, only if the ratio of p(0) to )0(~p  (i.e., Φ) is 
less than that shown in Table 7.3.  Notice that for processes higher than second-order, it 
may not be possible to achieve an Mp arbitrarily close to one using the mid-range gain for 
the model if the range of possible process gains is large.  For example, if the relative order r 
is 3 and the range of process gains is from 1 to 5, then the mid-range gain is three, and the 
ratio of p(0) to )0(~p can be as high as 5/3. For this case, the minimum achievable Mp is 
1.015. Choosing a model gain of 10/3 allows one to achieve any Mp greater than 1 by 
choosing the filter time constant ε large enough.  Of course, if the actual Mp specification is 
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1.05, then selecting a model gain of 3 will not cause a problem in meeting the Mp 
specification. 

Table 7.3 Upper Limits on the Ratio of Process to Model Gain for Which It Is 
Possible to Achieve  Mp Specifications as Close to One as Desired. 

filter order, n upper limit of the gain ratio )0(~/)0( pp   
1 ∞ 

  

2 2 
  

3 1.5 
  

4 1.34 
  

5 1.25 
 

7.4.4 Justification for the Choice of Complementary  
Sensitivity Function in Mp Tuning 

For the single-degree of freedom control system studied in this chapter, Mp tuning is based 
on the complementary sensitivity function rather than on the sensitivity function, which is 
commonly used in the literature to address issues of controller design with uncertain 
processes (Doyle et al., 1992).  The sensitivity function S(s) is the transfer function between 
the process output and the disturbance (see Figure 3.1). If the disturbance does not pass 
through a lag (i.e., if Pd = 1), then the sensitivity function is given by 

 .
)())(~  )((1

))()(~1()(
sqspsp

sqspsS
−+

−≡   (7.25) 

From the definition of the complementary sensitivity function given by Eq. (7.13), the sum 
of the complementary sensitivity function and the sensitivity function given by Eq. (7.25) is one. 
That is, 
 CS(s)  +  S(s)  =  1. (7.26) 

Therefore, from Equations (7.23) and (7.26), the expression for the sensitivity function for 
very large filter time constants is: 

 [ ] δ. ω   ,
ωip/p

ωiiωS r

r

/
/ <≤

+−+
+−≅ 0

)1(1)0(~)0(1
)1(11),(
ε

εε     (7.27) 

The upper-bound of the magnitude of the sensitivity function given by Eq. (7.27) over all 
frequencies increases as the maximum of the ratio of )0(~/)0( pp  increases. Therefore the 
maximum value of ),( εωiS  is a minimum when the model gain )0(~p  is chosen as the 
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maximum process gain in the uncertainty set. In this case, 1)0(~/)0(max =pp , and the 
maximum of the sensitivity function is 1.15, 1.28, and 1.38 for r = 2, 3, and 4, respectively. 
Thus, unlike the situation for the complementary sensitivity function, there is no choice of 
model gain for which the maximum magnitude of the sensitivity function approaches one 
for large filter time constants. The corollary of this fact is that there is no single value for 
the maximum of the sensitivity function that corresponds to a specified overshoot for the 
time domain response to a step setpoint change. For this reason, it is more convenient to use 
the complementary sensitivity function to tune IMC controllers for good setpoint responses. 

7.5     ROBUST STABILITY 

This section introduces a theorem that states the conditions under which the Mp tuning 
algorithm in Section 7.3 yields stable control systems for all processes in the uncertainty set.  
A precise statement of the theorem and its proof can be found in Brosilow and Leitman 
(2001).  The reason that such a theorem is required is that, by itself, a finite Mp does not 
guarantee stability.  For example, the system 1/(–s + 1) has an Mp of one (i.e., upper-bound 
of |1/(–iω + 1)| is 1), but is unstable.  Similarly, a closed-loop control system for a stable 
process can have a finite Mp and yet the control system can be unstable.  Consider the 
process and model given in Example 7.7. 

Example 7.7 A Finite Mp, but an Unstable Closed-loop 

 p(s)  =  Ke–s         3 ≤ K ≤ 4   (7.28a) 

 )(~ sp =  e–s    (7.28b) 

 q(s)  =  1/(0.5s + 1)    (7.28c) 

The Mp of the closed-loop system is 6.35, but a Nyquist analysis of the control system 
for any process in the uncertainty set shows that the control system is unstable. There are 
two right half plane poles for all processes with gains between 3 and 4. What’s going on? 
We notice that the model gain is not in the uncertainty set, which is somewhat strange, but 
why should this matter? To answer such questions, we need the robust stability results from 
Brosilow and Leitman (2001), which we paraphrase below. 

♦ 
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7.5.1 A Frequency Domain Robust Stability Theorem for 
Infinite Dimensional Systems 

A closed-loop transfer function, H(s,α), given by 

 
),(1

),(),(
α

αα
sh

sgsH
+

≡ , (7.29) 

is stable  for all parameter vectors, α, contained in the parameter set Π if H(s,α) is stable for 
at least one parameter in the set Π and if 

 ),(max αω
α

iH
∏∈

 is finite ∀ω ≥ 0    (7.30) 

and the parameter set Π and the transfer functions g(s,α) and h(s,α) must satisfy the 
following conditions: 

 

1. The parameter set Π is an open, connected subset of Rn. 6 
Since Π is connected, for any two points α~  and β~ in Π, there is a path σ in Π 

from α~  to β~ ; that is, there is a continuous function σ : [0,1] → Π such that 

)0(σ  = α~ and )1(σ  = β~ .  Since Π is open, a path σ  from α~  to β~  can be 
taken arbitrarily smooth. 

2. There is a connected, open set nC in Π̂  such that Π=Π nRIˆ and the 

functions g(s,α), and h(s,α) have meromorphic extensions to Π×+ ˆC 7 also 
denoted by g and h, where R, and Cn are real and complex n space and C+ is the 
open complex half plane in C. 

3. For each parameter Π∈α , the function h (s,α) is not constant on C+.8 
4. For each parameter Π∈α , the function h(s,α) is real-valued or ∞  on the 

positive real axis ( ) ( ){ }0,0: => sImsRes . 
5. The functions g(s,α), and h(s,α) are (jointly) continuous (in both s and α) 

functions from Π×+P into P, where P is the complex projective sphere 

(Riemann sphere) and +P represents the closure in P of the open hemisphere 
P+. 

                                                           
6 Cn denotes complex Euclidean n-space and Rn denotes its real Euclidean n-subspace. 
7 If h (s,α) is meromorphic for real parameters α in the sense of convergent power series expansions, this extension 
is always possible. 
8 If h (s,α) is the Laplace Transform of some real-valued integrable function and it is constant at α, it must be 
identically zero at α. 
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Conditions (2), (3), and (4) are regularity or consistency conditions on g and h. 
However, conditions (1) and (5) on the parameter set and the continuity of g and h, 
especially on the imaginary axis, are structurally necessary for robust stability to hold. 

A connected set is one in which there exists a path P between any two elements in the 
set, say, $ $α βand . That is, there is a continuous function P such that P(0) = $α  and P(1) = β̂ . 
The parameter set given by Eq. (7.15) is a particularly simple example of a connected set.  It 
is not only connected, but also simply connected in that any closed curve in the set can be 
continuously contracted into a point.  Figure 7.14 shows a connected set (shaded) that is not 
a simply connected set because of the hole in its center. 

 

Figure 7.14 A connected set (but not simply connected). 

We illustrate the concept of joint continuity by means of a transfer function that is not 
jointly continuous at the point a = 0, s = 0. Consider  

 h(s, a) = a(a – s)/( a(1 – a) +s(1 + a))         –1 ≤a ≤ 1.  (7.31) 

At the point a = 0, s ≠0, the value of the function is zero, even for very small s, since 
h(s, 0) = 0/s. For the point s = 0, a ≠ 0, the value of the function is a/(1 – a), which 
approaches one as a approaches zero. Therefore, h(s, a) is not continuous at s = a = 0. 
Further, the point a = 0 cannot be removed from the uncertainty set because, if it were, the 
uncertainty set would not be connected. (The uncertainty set is just the section of the real 
line from –1 to 1.) As a consequence of the foregoing, the robust stability theorem cannot be 
applied to Eq. (7.31). We will have more to say about Eq. (7.31) in Chapter 8 in the section 
on the design and tuning of controllers for unstable, uncertain systems. 

Conclusion of Example 7.7  

Example 7.7 satisfies all of the conditions of the robust stability theorem. Application 
of the Nyquist criterion for a process that has a gain of 3 shows that the control system is 
unstable for this process. Since the Mp is finite (Mp = 6.36) we can conclude that the 
control system is unstable for all processes in the uncertain set, because if there were a 
process for which the control system is stable, the robust stability theorem tells us that the 
Mp would be infinite. Indeed, if the uncertainty set is expanded so that it includes the model 
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gain (e.g., 1 ≤ K ≤ 4), then all processes with gains sufficiently near 1 are stable (because 
there is effectively no modeling error), and the Mp for such an uncertain system is indeed 
infinite. 
          ♦ 

For inherently stable processes in which the model parameters lie inside the connected 
uncertainty set, there will always be a set of processes for which the control system is stable. 
Therefore, if the Mp is finite, we can conclude that the control system is stable for all 
parameters in the uncertainty set. Of course, strictly speaking, we should check on all the 
conditions required by the robust stability theorem. However, it will be the very rare 
engineering model of a stable system that does not satisfy these conditions. We emphasize 
that the foregoing applies only to inherently stable processes. For inherently unstable 
processes, the control system can be unstable for all processes in the neighborhood of the 
model, while the control system is stable when the process equals the model. In such cases, 
the closed-loop transfer function is usually not jointly continuous at the point where the 
process parameters equal the model parameters. For inherently unstable processes, it is 
usually best not to consider the perfect model point to be in the uncertain parameter set, 
provided its (conceptual) removal does not create a disconnected set, as happened with 
Eq. (7.31).  

7.5.2 A Heuristic Proof of the Robust Stability Theorem 
for Inherently Stable Processes 

Let us assume that the robust stability theorem for inherently stable processes is false. Then, 
the Mp is finite for a system where there is a parameter vector β for which the system is 
stable and another parameter vector α for which the system is unstable. Now, for the 
parameter α, the Nyquist diagram of )())(~)(( sqspsp − must encircle the –1 point, since the 
control system is unstable. Similarly, for the parameter β the Nyquist diagram must not 
encircle the –1 point, since the control system is stable. Since the parameter set is open and 
connected, and the closed-loop transfer function is jointly continuous, there is a smooth path 
from α to β lying entirely inside the parameter set such that there is at least one parameter, 
say, γ, such that the Nyquist diagram of )())(~)(( sqspsp − passes right through the (–1,0) 
point. So, there must also be a frequency ω̂  such that 0)ˆ()),ˆ(~),ˆ((1 =−+ ωγωγω iqipip . 
Therefore, the maximum magnitude of the closed-loop frequency response over all 
parameters is not bounded.  This contradicts our hypothesis that the robust stability theorem 
for inherently stable processes is false. 
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7.6     MP SYNTHESIS  

Mp synthesis addresses the effect of uncertainty on controller design and model selection. 
The best model and controller combination is that which shifts the lower-bound break 
frequency furthest to the right without increasing the Mp, thereby speeding up the slowest 
closed-loop responses without increasing the overshoot to a step setpoint change. 
Example 7.8 explores the effect of changing just the controller and then changing both the 
controller and the model. We shall see that the effects are quite substantial when there is 
even a modest uncertainty in the model parameters. 

Example 7.8 An Overdamped Second-Order Process Plus 
Dead Time  

Process: 15,5,
)16)(18(

)( ≤≤
++

= − TKe
ss

Ksp Ts   (7.32a) 

Model:  se
ss

sp 10

)16)(18(
10)(~ −

++
=    (7.32b) 

Controller 1: 2)16.28(10
)16)(18()(

+
++=

s
sssq   (7.32c) 

Controller 2: 
)16.31(10

)114()(
+

+=
s

ssq   (7.32d) 

Controller 1, given by Eq. (7.32c), is the normal inverse of the invertible part of the 
model multiplied by a second-order filter to make the controller realizable. Controller 2, 
given by Eq. (7.32d) is the inverse of an approximate model with the original second-order 
lag replaced by a first-order lag whose time constant is the sum of the time constants of the 
second-order lag. Both controllers have been tuned to give an Mp of 1.05. 

Figure 7.15a gives the upper-bound and lower-bound curves of the complementary 
sensitivity function for control systems that use the controllers 1and 2. The model is that of 
Eq. (7.32b) for both control systems. Notice that both the upper-bound and lower-bound 
responses for Controller 2, Eq. (7.32d), are shifted to the right of those for Controller 1, 
Eq. (7.32c), implying that the fastest and slowest time domain responses for Controller 2 
will be faster than those for Controller 1. Figure 7.15b bears this out. 

Changing the model given by Eq. (7.32b) to )114/(10~ 10 += − sep s , and using the 
controller given by Eq. (7.32d), does not change the control system responses significantly 
from those given in Figures 7.15a and 7.15b. 
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Figure 7.15a Comparison of the upper- and lower-bounds of the closed-loop frequency 
responses for the system of equation series (7.32). 
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Figure 7.15b Fastest and slowest responses ( i.e., K =15 and 5, respectively) to a step 
setpoint change for the control systems of equation series (7.32). 
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Standard engineering practice for the control of overdamped systems such as that 
given by Eq. (7.31a) is to fit a first-order model of the form of Eq. (7.33a) to the output 
response to a step change in the control effort, and then to tune the controller based on that 
model (Seborg et al., 1989). 

 ,)(
)1(

)(~ sTe
s
Ksp ∆

τ
+−

+
=    (7.33a) 

where  T = the estimated process dead time, 
 ∆= an additional dead time arising from the fitting procedure, 
 τ = an estimate of a first-order time constant which allows the approximate model 
       step response to match that of the higher order process.  

Using the reaction curve method (Seborg et al., 1989) yields (T + ∆) = 12, τ = 20, and 
of course K =10. Tuning the control system using this model and its model inverse 
controller yields a filter time constant of 38.6. The resulting controller is 

 
)16.38(10

)120(
+

+=
s

sq .  (7.33b) 

The model and a controller given by Equations (7.33a) and (7.33b) does not perform 
quite as well as the controller and model given by Equations (7.32b) and (7.32d).  It turns 
out that the above model parameters do not give a very good fit to a step change in the 
control effort. A much better fit is obtained with ∆ = 4 and τ = 11. The responses with this 
model and its associated controller are insignificantly different from those of Equations 
(7.32b) and (7.32d) (i.e., the solid line responses in Figure 7.15b). 

The above models and controllers are all mid-range in the sense that the model gain is 
the mid-range gain, and the dead time is either the mid-range dead time or the dead time 
obtained by fitting the mid-range model. However, one can obtain performance that is 
slightly better than that obtained with Equations (7.32b) and (7.32d) with either of the 
following models and controllers. 

 ( )
se

ss
sp 15

16)18(
15)(~ −

++
=    

2)107.6(15
)16)(18()(

+
++=

s
sssq ,      (7.34) 

( )
se

ss
sp 15

16)18(
15)(~ −

++
=     

)111(15
)114()(

+
+=
s

ssq .      (7.35) 

The control systems of Equations (7.34) and (7.35) yield effectively the same frequency and 
time responses. Therefore Figures 7.16a and 7.16b show only the responses of the control 
system of Eq.(7.35). 
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Figure 7.16a Upper-bound and lower-bound frequency responses for the process of  
Eq. (7.32a) and the control system of Eq. (7.35). 
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Figure 7.16b Time responses for the process of  Eq. (7.32a) and the 
control system of Eq. (7.35). 
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Notice that in Figure 7.16a the Mp is 1, and the criterion that establishes the controller 
filter time constant is that no peak to valley height be greater than 0.1. The process at the 
local peak in Figure 7.16b has K = 15 and T = 6.3. This process yields the somewhat 
oscillatory response shown in Figure 7.16b. Also, comparison of the responses of mid-range 
process (i.e., K = 10, T = 10) using the control system of Eq. (7.35) with the control system 
of Equations (7.32b) and (7.32d), where the model is perfect, shows no significant 
difference. Thus, for this example, there is no advantage to using the mid-range model, even 
if the process operates around the mid-range (i.e., K = 10, T = 10) far more often than at 
K = 15, T = 15. 

Changing the model in Eq. (7.35) to )114/(1515)(~ +−= ssesp  and retuning gives 
).16.10(15/)114()( ++= sssq  This controller model pair has an Mp of 1.05, and the lower-

bound curve of the complementary sensitivity function actually lies slightly to the right of 
that in Figure 7.16a. Once again, the simpler model/controller is preferred. 

As a check on the sensitivity of the control systems given by the equation series (7.32) 
to the assumed uncertainty bounds, we increased the upper- and lower-bounds by ± 20% to 

,K  T = 18 and K, T = 4. This change causes worst-case overshoots of 30% for Eq. (7.32c) 
and a 35 % overshoot for Eq. (7.32d). The settling time of the slowest responses increases to 
500 and 450 units respectively. Thus, the tuned control systems are not overly sensitive to 
modest errors in estimating the parameter uncertainty ranges. 

The PID controllers that have the same performance as Equations (7.34) and (7.35) 
are respectively: Kc = 0.0412, τI = 16.8, τD = 4.41, and Kc = 0.0422, τI = 16.5, τD = 4.42. 

  PID controllers with the same performance as Equations (7.32c) and (7.32d) are 
respectively: Kc = 0.00383, τI = 2.57, τD = 6.27, and Kc = 0.0338, τI = 14.0, τD = 1.73. 

If the above results extend to other similar processes, and we believe that they do, then 
they provide a strong justification for standard engineering practice of fitting a first-order 
lag plus dead time model to high order overdamped processes when there are significant 
process parameter variations. A reasonable question, however, is how much parameter 
variation is significant? For the above process, it turns out that the first-order model and 
controller performs as well as or better than a second-order model and controller for gain 
and dead time variations greater than ± 25%. We conjecture that the break points for going 
from a higher order to a lower order controller occur at uncertainty levels where the tuned 
higher order controller becomes a lag (i.e., 1)( ≤ωiq for 0≥ω ). 
                                                                                                                                      ♦ 

Example 7.9 A Second-Order Process that Varies from 
Underdamped to Overdamped 

This example consists of a second-order system with uncertainty in the time constant and 
damping ratio. The uncertain process has the following representation: 
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ζττ ss
spspS .    (7.36) 

The large uncertainty on the damping ratio makes the system underdamped for some plants   
(ζ < 1) and overdamped for others (ζ > 1). 

Rather than varying the IMC controller separately from the model, as in the previous 
example, here we vary both simultaneously, with the controller taken as the inverse of the 
model so as to reduce the search space. Therefore, the controller model pair that is obtained 
is not necessarily the best possible. We start by designing the IMC controller using the mid-
range plant so that we can use it as a reference to compare with other designs. The IMC 
model and controller are 
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 (7.37) 

The filter time constant of the IMC controller q(s) is chosen so that the robust performance 
condition is met: 
  05.1)( ≤ωiCS         ,, ω∀∈∀ Sp       (7.38) 

   05.1)( =ciCS ω       for some Sp ∈  and some frequency, ωc .      (7.39) 

Figure 7.17 illustrates that the conditions given by Equations (7.38) and (7.39) are 
satisfied when epsilon is 10.96.  
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Figure 7.17 Maximum and minimum of SpiCS ∈∀)( ω when ε = 10.96 8.0~ and 6~ == ζτ . 
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From Figure 7.17 we observe that the lower-bound curve break frequency is about 
0.052 rad/sec and the maximum peak of SpiCS ∈∀)( ω  is given by the plant with τ = 9 
and ζ = 1.1. A lower-bound break frequency of 0.057 implies a settling time of 57 seconds 
for the slowest plant. This is in agreement with the closed-loop step responses shown in 
Figure 7.18. This figure also shows that the maximum overshoot to a unit step in setpoint 
change is 10.48%, produced by the upper extreme plant (i.e., τ = 9 and ζ = 1.1). 

To improve the speed of response of the control system, we choose another model in 
the set S to attempt to shift the lower-bound break frequency to the right, thereby speeding 
up the slowest closed-loop responses while maintaining 05.1)( ≤ωiCS . The fastest design 
is obtained with a model that has a time constant of 9 and a natural damping ratio of 0.8. 
Figure 7.19 shows the upper- and lower-bounds on the closed-loop frequency responses 
Figure 7.20 shows the closed-loop time responses to a unit-step setpoint change for several 
different plants. The maximum overshoot is 5.21%, which is produced by the upper extreme 
plant, and the slowest settling time is about 32 seconds. 

Using the optimal model rather than the mid-range model reduces the slowest settling 
time from 52 seconds to 32 seconds. Moreover, since the maximum overshoot is 5.21%, the 
filter time constant can be further reduced, thereby further speeding the process response. 
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Figure 7.18 Closed-loop response to a unit-step change in setpoint for some plants in S 
when ε = 10.96, 8.0~ and 6~ == ζτ . 
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Figure 7.19 Maximum and minimum of SpiCS ∈∀)( ω when 8.0~,9~,93.4 === ςτε . 
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Figure 7.20 Closed-loop response to a unit-step change in setpoint for some plants in S 
when ε = 4.927, 8.0~ and 9~ == ζτ . 
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7.7     SOFTWARE FOR MP TUNING AND SYNTHESIS 

The IMCTUNE software supplied with this text was used to generate all the figures 
displayed in this section. Appendix G provides a description of this software.  

7.8     SUMMARY 

Process uncertainty is described by allowing the process to have any parameter values in a 
predefined set.  Tuning an IMC system for an uncertain process (Mp tuning) is carried out 
by finding the IMC controller filter time constant that yields a specified upper-bound on the 
maximum magnitude of the closed-loop transfer function between the output and the 
setpoint (i.e., on the complementary sensitivity function). A common specification, or Mp, 
for the magnitude of the complementary sensitivity function is 1.05 because this 
specification usually limits the maximum overshoot to step setpoint changes to about 10%. 
When, as is usually the case, parametric uncertainty bounds cannot be obtained precisely, 
then we recommend the use of multiple uncertainty regions, with different Mp 
specifications in each region, as described and illustrated in Section 7.3.4 and Example 7.5. 

The robust stability theorem of Section 7.5 provides the theoretical foundation for Mp 
tuning. This theorem states that if the Mp is finite, then the control system for an inherently 
stable process is stable for any process parameter vector in the uncertain set. For the 
theorem to be applicable, the uncertain parameter set must be connected.  (That is, there has 
to be a path between any two parameters that lies completely within the uncertainty set.)  In 
addition, an uncertain process gain must not change sign within the uncertain set if a no 
offset control system is to be stable. The process model gain must obey the restrictions in 
Table 7.3 in order to be able to achieve an arbitrarily small overshoot to a step setpoint 
change for a large enough filter time constant. 

Mp synthesis seeks to find an optimum controller and model for the IMC system.  The 
model and controller are optimal in the sense that they maximize the speed of the slowest 
closed-loop responses subject to maintaining the specified Mp (i.e., the specified relative 
stability).  An example of a second-order overdamped process with dead time shows that: 

1. For gain and dead time uncertainty greater than ± 25%, a first-order controller 
performs as well as or better than a model inverse controller. The degree of 
improvement increases as the uncertainty increases. 

2. The traditional engineering approach of fitting a first-order plus dead time model to 
high-order overdamped processes, and designing the controller based on that 
model, yields as good or better control system than that based on a process model 
of the correct order when the process parameters are sufficiently uncertain. 

3. Limited numerical experiments, along with the analysis leading to Table 7.3, 
indicates that the optimum model gain is the upper-bound gain for inherently stable 
overdamped processes. This seems to be true even if the process operating point is 
most likely to be about its mid-range gain. 
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Problems 

7.1 In each of the Problems in Chapter 3, assume that the gain and dead time (if any) are nominal 
values and that actual values of gain and dead time vary independently about the nominal value by ± 
20%.   What filter time constant is required to achieve an Mp of 1.05?  

7.2 If in problem 7.1, the gain and dead time vary together, rather than independently what filter time 
constant is required to achieve an Mp of 1.05? That is, the gain K varies as )1()1( xKKxK +≤≤− , 

and the dead time T varies as )1()1( xTTxT +≤≤− , where x takes values between ± .2. 

7.3  Find an optimal model for the following processes and compare the performance of each against a 
control system using a mid-range model. 
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7.4  How many zeros does the following process have in the right half plane as K ranges from 1 to 10? 
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Hint: Convert p into a form that allows application of the Nyquist theorem  

7.5  Sketch the slowest expected time response to a step setpoint change for a control system designed 
so that the fastest response to a step setpoint change does not overshoot by more than 20% for the 
following process: 
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7.6 Derive Equations (7.13) and (7.25). 

7.7 Show that for a second-order process, any Mp specification greater than 1 can be achieved, 
provided that  p(0)/~p (0) < 2. 

The following  questions assume familiarity with the material in Chapter 6. 



7.8     Summary 177 

 

7.8 For each of the problems in Chapter 3, assume that the gain and dead time (if any) are nominal 
values and that actual values of gain and dead time vary independently about their nominal values. 
How much variation is necessary before there is no advantage in using an IMC system over a PID 
control system?  

7.9  Is it feasible to tune a PID controller so that the slowest closed-loop response for the process 
described below has a time constant of 100 minutes or less? 
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If so, what is one such tuning?  If not, what is the best response that one can achieve, and what are the 
PID parameters for such a response?  Show how you arrived at your result. 

7.10  Over what range of process gains, K, is the closed-loop control system stable for the following 
process and controller? 
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7.11 Your boss would like you to explore the possibility of speeding up a critical control loop by a 
factor of 2.  The current PID controller tunings give a closed-loop response that can be well 
approximated by a first-order lag plus dead-time where the lag time constant is 20 minutes and the 
dead time is 15 minutes.  That is  

 
∆

∆
y s

r
e

s

s( )
≅

+

−15

20 1
 ,    where ∆y = change in output,    ∆r = change in setpoint 

The process model associated with the above closed-loop response is believed to be of the form 
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           where ∆m = change in control effort 

The process operators are opposed to retuning the controller because they believe that the process gain 
can vary from 6 to 14.  What recommendation would you give your boss and why?  What PID 
controller tunings (i.e., gain, and integral and derivative time constants) would you recommend? 

7.12 Design a PID controller for the following process using a nominal gain K̂ of 10 for the model, 
and a specification that no process response to a setpoint change should overshoot the setpoint by 
more than 10%. 
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Over what range of process gains, K, is the system stable? 

7.13  Select a PID controller for the process given by 
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               for 1 < K < 5. 
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