

Turing Machines
Part Three

Last Time: How powerful are Turing
machines?

The Church-Turing Thesis claims that

every effective method of computation is either
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
solvable by

Turing
Machines

New Stuff!

Strings, Languages,
Encodings, and Problems

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What is a
“problem?”

Languages and Problems

● We've been using formal languages as a way
of modeling computational problems.

● However, the problems we encounter in The
Real World don't look at all like language
problems.

● Is this all theoretical nonsense? Or is there a
reason for this?

“In theory, there's no difference between
theory and practice. In practice, there is.”

Decision Problems

● A decision problem is a type of problem where the
goal is to provide a yes or no answer.

● Example: checking arithmetic.

Given x, y, and z, is x+y=z?

● Example: detecting relationships.

Given a family tree T and people x and y,
is x a grandparent of y?

● Example: avoiding traffic.

Given a transportation grid G annotated with traffic
information, a start location s, a destination d, and a time

limit t, is there a way to get from s to d within time t?

Solving Decision Problems

Yes

No

Computational
Device

input

How do we
represent our

inputs?

How do we
represent our

inputs?

Strings and Objects

● Think about how my
computer encodes the
image on the right.

● Internally, it's just a
series of zeros and
ones sitting on my
hard drive.

● All data on my
computer can be
thought of as (suitably-
encoded) strings of 0s
and 1s.

Strings and Objects

● A different sequence of
0s and 1s gives rise to
the image on the right.

● Every image can be
encoded as a sequence
of 0s and 1s, though
not all sequences of 0s
and 1s correspond to
images.

Strings and Objects

● Let Obj be some discrete, finite object (a string, a
video, an image, a text file, etc.)

● Let Σ be some alphabet.
● We'll represent an encoding of Obj using the

characters in Σ by writing ⟨Obj⟩. Think of ⟨Obj⟩ like a
file on disk – it encodes complex data as a series of
characters.

● A few remarks about encodings:
● We don't care how we encode the object, just that we can.
● The particular choice of alphabet isn't important. Given any

alphabet, we can always find a way of encoding things.
● We'll assume we can perform “reasonable” operations on

encoded objects.

Strings and Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we
can create a single string encoding all these
objects.
● Think of it like a .zip file, but without the

compression.

● We'll denote the encoding of all of these objects
as a single string by ⟨Obj₁, …, Objₙ⟩.

● This lets us feed multiple inputs into our
computational device at the same time.

Solving Decision Problems

Yes

No

Turing Machine

input
(some string)

How do we specify
the behavior we

want?

How do we specify
the behavior we

want?

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z.

● With our computational model, we'll feed some
string into a TM, and it then might come back
with an answer (yes or no).

● Some strings are accepted, some are rejected,
and some cause the machine to loop infinitely.

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z.

● If we give the input as ⟨x, y, z⟩, the set of
strings the TM should say YES to is

{ ⟨x, y, z⟩ | x, y, z ∈ ℕ and x + y = z }
● Notice that this is a language – it's a set of

strings!

Specifying a Decision Problem

● Consider this decision problem:

Given a graph G, determine whether
G is a bipartite graph.

● With our computational model, we'll feed some
string into a TM, and it then might come back
with an answer (yes or no).

● Some strings are accepted, some are rejected,
and some cause the machine to loop infinitely.

Specifying a Decision Problem

● Consider this decision problem:

Given a graph G, determine whether
G is a bipartite graph.

● If we give the input as ⟨G⟩, the set of strings
the TM should say YES to is

 { ⟨G⟩ | G is a bipartite graph }
● Notice that this is a language – it's a set of

strings!

Problems and Languages

● Key intuition: Every language
corresponds to some decision problem.

● Example:
● { ⟨x, y⟩ | x, y ∈ ℕ and x ≡₃ y } is a language.
● It corresponds to the following decision

problem:

Given x, y ∈ ℕ, do x and y leave the
same remainder when divided by 3?

Problems and Languages

● Key intuition: Every language
corresponds to some decision problem.

● Example:
● { ⟨D⟩ | D is a DFA that accepts ε } is a

language.
● It corresponds to the following decision

problem:

Given a DFA D, does D accept ε?

Problems and Languages

● Key intuition: Every language
corresponds to some decision problem.

● Example:
● { ⟨G⟩ | G is a planar graph } is a language.
● It corresponds to the following decision

problem:

Given a graph G, is G planar?

What All This Means

● Our goal is to speak of computers solving
problems.

● We will model this by looking at TMs
recognizing languages.

● For decision problems that we're
interested in solving, this precisely
captures what we're interested in
capturing.

What problems can we solve with a computer?

What does it
mean to “solve”
a problem?

The Hailstone Sequence

● Consider the following procedure,
starting with some n ∈ ℕ, where n > 0:
● If n = 1, you are done.
● If n is even, set n = n / 2.
● Otherwise, set n = 3n + 1.
● Repeat.

● Question: Given a number n, does this
process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence

● Let Σ = {1} and consider the language

 L = { 1n | n > 0 and the hailstone
 sequence terminates for n }.

● Could we build a TM for L?

The Hailstone Turing Machine

● We can build a TM that works as follows:
● If the input is ε, reject.
● While the string is not 1:

– If the input has even length, halve the length of
the string.

– If the input has odd length, triple the length of
the string and append a 1.

● Accept.

Does this Turing machine always accept?

The Collatz Conjecture

● It is unknown whether this process will
terminate for all natural numbers.

● In other words, no one knows whether
the TM described in the previous
slides will always stop running!

● The conjecture (unproven claim) that this
always terminates is called the Collatz
Conjecture.

The Collatz Conjecture

“Mathematics may not be ready
for such problems.” - Paul Erdős

● Two years ago, some Apple employees
filed a patent for a cryptographic hashing
scheme based on the Collatz conjecture;
see this link for details.

http://www.google.com/patents/US20130108038

An Important Observation

● Unlike finite automata, which automatically halt
after all the input is read, TMs keep running until
they explicitly enter an accept or reject state.

● It is therefore possible for a TM to run forever
without accepting or rejecting.

● This leads to several important questions:
● How do we formally define what it means to build a

TM for a language?
● What implications does this have about problem-

solving?

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters an accept state when run on w.

● M rejects a string w if it enters a reject state when run on w.

● M loops infinitely (or just loops) on a string w if when run on w
it enters neither an accept nor a reject state.

● M does not accept w if it either rejects w or loops infinitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

● The language of a Turing machine M, denoted (ℒ M), is
the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.

● It might loop forever, or it might explicitly reject.
● A language is called recognizable if it is the language

of some TM. A TM for a language is sometimes called a
recognizer for that language.

● Notation: the class RE is the set of all recognizable
languages.

L ∈ RE ↔ L is recognizable

What do you think? Does that
correspond to what you think it

means to solve a problem?

Deciders

● Some Turing machines always halt; they never
go into an infinite loop.

● If M is a TM and M halts on every possible
input, then we say that M is a decider.

● For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject
 halts (always)

does not accept

does not reject

Decidable Languages

● A language L is called decidable if there is a
decider M such that (ℒ M) = L.

● Equivalently, a language L is decidable if there is a
TM M such that

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● The class R is the set of all decidable languages.

L ∈ R ↔ L is decidable

Examples of R Languages

● All regular languages are in R.

● If L is regular, we can run the DFA for L on a string w
and then either accept or reject w based on what state it
ends in.

● { 0n1n | n ∈ ℕ } is in R.

● The TM we built is a decider.

● All CFLs are in R.

● Proof is tricky; check Sipser for details.

● (This is why it's possible to build the CFG tool online!)

Why R Matters

● If a language is in R, there is an algorithm that can
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in
a language, that language is in R.

● By the Church-Turing thesis, any effective model of
computation is equivalent in power to a Turing machine.

● Therefore, if there is any algorithm for deciding
membership in the language, there is a decider for it.

● Therefore, the language is in R.

● A language is in R if and only if there is an
algorithm for deciding membership in that
language.

R and RE Languages

● Every decider is a Turing machine, but not
every Turing machine is a decider.

● Thus R ⊆ RE.

● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to

a problem, can you necessarily solve that
problem?

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

Unanswered Questions

● Why exactly is RE an interesting class of
problems?

● What does the R ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in

due time.

Time-Out for Announcements!

Problem Sets

● Problem Set Seven was due at the start of class
today.
● Want to use late days? Submit by Monday at 3:00PM.
● Note that late days can't be used on PS9.

● Problem Set Eight goes out today. It's due next
Friday at 3:00PM.
● Play around with TMs and their properties!
● Explore the limits of the R and RE languages!
● Will require some material from Monday; those sections

are clearly marked.

Second Midterm Exam

● The second midterm exam is next Monday,
February 29 from 7PM – 10PM.

● Topic coverage:
● Focus is on PS4 – PS6 and lectures 09 – 16.
● Topics from PS7 and from lecture 17 onward not tested.
● Major topics: strict orders, graphs, the pigeonhole

principle, induction, finite automata, regular expressions,
regular languages, closure properties.

● Policies and procedures same as the first midterm:
● Three hours, four questions.
● Closed-computer, closed-book, and limited-note. You can

have a double-sided 8.5” × 11” sheet of paper with you
when you take the exam.

Midterm Locations

● The midterm is in Hewlett.
● Specifically, locations are divvied up by

last (family) name:
● Abd – Pre: Go to Hewlett 200.
● Pri – Vil: Go to Hewlett 201.
● Vo – Xie: Go to Hewlett 101.
● Yan – Zhu: Go to Hewlett 103.

Preparing for the Exam

● As a reminder, we've posted
● four sets of extra practice problems,
● two practice midterms,
● one set of challenge problems, and
● one set of CS103A problems.

● Solutions are available in Gates. As with the previous
midterm, we'll move the solution sets down to the basement
over the weekend.

● Recommendation: If you haven't already done so, take at
least one of the practice exams under realistic conditions and
get a TA to look over it.

● Ask questions! If you aren't 100% sure you understand
something, ask for help and advice. We want you to master
this material. Let us know what we can do to help.

Your Questions

“I'm worried because I did really badly on
Pset 6, mainly because I missed several
edge cases in designing DFAs / NFAs /

regexes. Do you have any advice for how to
go about finding all the edge cases,

particularly in a time-pressured scenario
like the midterm?”

For DFAs, ask this question: what does every state “mean?” What “information”
does it represent? If you can't answer this question, you may have an error
in the machine.

For NFAs, work backwards from the accepting states. Remember that NFAs will
try as hard as possible to accept, so make sure that you didn't accidentally
put in a path that accepts incorrectly.

For regular expressions, try extreme cases. What if you expand out stars and
question marks zero times? What do you get? Also, make sure you have a
concise explanation for what you wrote. If you just listed a bunch of cases
without any rhyme or reason, nine times out of ten you've got it wrong.

For DFAs, ask this question: what does every state “mean?” What “information”
does it represent? If you can't answer this question, you may have an error
in the machine.

For NFAs, work backwards from the accepting states. Remember that NFAs will
try as hard as possible to accept, so make sure that you didn't accidentally
put in a path that accepts incorrectly.

For regular expressions, try extreme cases. What if you expand out stars and
question marks zero times? What do you get? Also, make sure you have a
concise explanation for what you wrote. If you just listed a bunch of cases
without any rhyme or reason, nine times out of ten you've got it wrong.

“I've always wondered--how do you explain
things so clearly while simultaneously

talking at 1.5x a normal person's speed? Do
you rehearse your talk track a ton before
lecture, or does your brain just work at

super-speed?”

I come from a family of fast talkers. Our family dinners are
really entertaining. ☺

For the very first class I ever taught (back in 2007) I was so
terrified of messing up in front of a group of people that I
memorized literally everything I was going to say. After doing
that for enough repetitions, I got a lot more comfortable
just making stuff up on the fly.

I come from a family of fast talkers. Our family dinners are
really entertaining. ☺

For the very first class I ever taught (back in 2007) I was so
terrified of messing up in front of a group of people that I
memorized literally everything I was going to say. After doing
that for enough repetitions, I got a lot more comfortable
just making stuff up on the fly.

Back to CS103!

Emergent Properties

Emergent Properties

● An emergent property of a system is a property
that arises out of smaller pieces that doesn't
seem to exist in any of the individual pieces.

● Examples:
● Individual neurons work by firing in response to

particular combinations of inputs. Somehow, this
leads to thought and consciousness.

● Individual atoms obey the laws of quantum mechanics
and just interact with other atoms. Somehow, it's
possible to combine them together to make iPhones.

Emergent Properties of Computation

● All computing systems equal to Turing machines
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these
emergent properties are, in a sense, “inherent” to
computation. You can't have computation without
these properties.

● These emergent properties are what ultimately
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's
Achilles heel – they're how we find concrete
examples of impossible problems.

Two Emergent Properties

● There are two key emergent properties of
computation that we will discuss:
● Universality: There is a single computing device

capable of performing any computation.
● Self-Reference: Computing devices can ask

questions about their own behavior.

● As you'll see, the combination of these
properties leads to simple examples of
impossible problems and elegant proofs of
impossibility.

Universal Machines

An Observation

● When we've been discussing Turing
machines, we've talked about designing
specific TMs to solve specific problems.

● Does this match your real-world
experiences? Do you have one computing
device for each task you need to
perform?

Computers and Programs

● When talking about actual computers, most
people just have a single computer.

● To get the computer to perform a particular task,
we load a program into it and have the computer
execute that program.

● In certain cases it's faster or more efficient to
make dedicated hardware to solve a problem, but
the benefits of having one single computer
outweigh the costs.

● Question: Can we do something like this for
Turing machines?

Encodings and TMs

● Recall: If Obj is some finite, discrete object,
then let ⟨Obj⟩ denote a string
representation of that object.

● As a specific case: if M is a TM, then ⟨M⟩ is
a string representing a string encoding of
M.
● A helpful analogy: think of M as an executable

file and ⟨M⟩ as its source code.

● Because TMs can be encoded as strings, it
is possible to feed a TM as an input to
another TM!

A Single Turing Machine?

● Just as we can build a single computer
that can run any program, could we build
a single TM that could run any Turing
machine?

● Idea: Build a machine that takes as input
a description of a TM and a string to run
that TM on, then simulates the behavior
of that TM on that string.

A Universal Machine

General-Purpose
Turing Machine

… …p r o g r a m i n p u t

The “program” is an encoding
of some Turing machine M

that we want to run.

The “program” is an encoding
of some Turing machine M

that we want to run.

A Universal Machine

General-Purpose
Turing Machine

… …p r o g r a m i n p u t

The input to that program is
some string

The input to that program is
some string

A Universal Machine

General-Purpose
Turing Machine

… …

The input has the form ⟨M, w⟩, where M is
some TM and w is some string.

p r o g r a m i n p u t

A Universal Machine

General-Purpose
Turing Machine

… …

⟨M, w⟩

p r o g r a m i n p u t

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT
called the universal Turing machine that, when run on
an input of the form ⟨M, w⟩, where M is a Turing machine
and w is a string, simulates M running on w and does
whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM accepts ⟨M, w⟩ if and only if M accepts w.

TM

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT
called the universal Turing machine that, when run on
an input of the form ⟨M, w⟩, where M is a Turing machine
and w is a string, simulates M running on w and does
whatever M does on w (accepts, rejects, or loops).

● Conceptually:

bool simulateTM(TM M, string w) {
 set up a simulation of M running on w;
 while (true) {
 if (the simulated version of M is in an accepting state)
 return true; // Accept
 if (the simulated version of M is in a rejecting state)
 return false; // Reject
 simulate one more step of M running on w;
 }
}

TM

An Intuition for UTM

● You can think of U as a general-purpose,
programmable computer.

● Rather than purchasing one TM for each
language, just purchase U and program in the
“software” corresponding to the TM you
actually want.

● U is a powerful machine: it can perform any
computation that could be performed by
any feasible computing device!

TM

TM

TM

Since UTM is a TM, it has a language.

What is the language of the universal
Turing machine?

The Language of UTM

● Recall: For any TM M, the language of M, denoted
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

● For simplicity, define ATM = ℒ(UTM). This is an
important language and we'll see it many times.

Regular
Languages CFLs

All Languages

RE

A
TM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

