
  

Turing Machines
Part Three



  

Last Time: How powerful are Turing 
machines?



  

The Church-Turing Thesis claims that

every effective method of computation is either 
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams
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New Stuff!



  

Strings, Languages,
Encodings, and Problems



  

What problems can we solve with a computer?

What kind of 
computer?



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Languages and Problems

● We've been using formal languages as a way 
of modeling computational problems.

● However, the problems we encounter in The 
Real World don't look at all like language 
problems.

● Is this all theoretical nonsense? Or is there a 
reason for this?

“In theory, there's no difference between   
theory and practice. In practice, there is.”



  

Decision Problems

● A decision problem is a type of problem where the 
goal is to provide a yes or no answer.

● Example: checking arithmetic.

Given x, y, and z, is x+y=z?  

● Example: detecting relationships.

Given a family tree T and people x and y,
is x a grandparent of y?

● Example: avoiding traffic.

Given a transportation grid G annotated with traffic 
information, a start location s, a destination d, and a time 

limit t, is there a way to get from s to d within time t?



  

Solving Decision Problems

Yes

No

Computational
Device

input

How do we 
represent our 

inputs?

How do we 
represent our 

inputs?



  

Strings and Objects

● Think about how my 
computer encodes the 
image on the right.

● Internally, it's just a 
series of zeros and 
ones sitting on my 
hard drive.

● All data on my 
computer can be 
thought of as (suitably-
encoded) strings of 0s 
and 1s.



  

Strings and Objects

● A different sequence of 
0s and 1s gives rise to 
the image on the right.

● Every image can be 
encoded as a sequence 
of 0s and 1s, though 
not all sequences of 0s 
and 1s correspond to 
images.



  

Strings and Objects

● Let Obj be some discrete, finite object (a string, a 
video, an image, a text file, etc.)

● Let Σ be some alphabet.
● We'll represent an encoding of Obj using the 

characters in Σ by writing ⟨Obj⟩. Think of ⟨Obj⟩ like a 
file on disk – it encodes complex data as a series of 
characters.

● A few remarks about encodings:
● We don't care how we encode the object, just that we can.
● The particular choice of alphabet isn't important. Given any 

alphabet, we can always find a way of encoding things.
● We'll assume we can perform “reasonable” operations on 

encoded objects.



  

Strings and Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we 
can create a single string encoding all these 
objects.
● Think of it like a .zip file, but without the 

compression.

● We'll denote the encoding of all of these objects 
as a single string by ⟨Obj₁, …, Objₙ⟩.

● This lets us feed multiple inputs into our 
computational device at the same time.



  

Solving Decision Problems

Yes

No

Turing Machine

input
(some string)

How do we specify 
the behavior we 

want?

How do we specify 
the behavior we 

want?



  

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z. 

● With our computational model, we'll feed some 
string into a TM, and it then might come back 
with an answer (yes or no).

● Some strings are accepted, some are rejected, 
and some cause the machine to loop infinitely.



  

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z. 

● If we give the input as ⟨x, y, z⟩, the set of 
strings the TM should say YES to is

{ ⟨x, y, z⟩ | x, y, z ∈ ℕ and x + y = z }
● Notice that this is a language – it's a set of 

strings!



  

Specifying a Decision Problem

● Consider this decision problem:

Given a graph G, determine whether
G is a bipartite graph.

● With our computational model, we'll feed some 
string into a TM, and it then might come back 
with an answer (yes or no).

● Some strings are accepted, some are rejected, 
and some cause the machine to loop infinitely.



  

Specifying a Decision Problem

● Consider this decision problem:

Given a graph G, determine whether
G is a bipartite graph.

● If we give the input as ⟨G⟩, the set of strings 
the TM should say YES to is

  { ⟨G⟩ | G is a bipartite graph }
● Notice that this is a language – it's a set of 

strings!



  

Problems and Languages

● Key intuition: Every language 
corresponds to some decision problem.

● Example:
● { ⟨x, y⟩ | x, y ∈ ℕ and x ≡₃ y } is a language.
● It corresponds to the following decision 

problem:

Given x, y ∈ ℕ, do x and y leave the 
same remainder when divided by 3?



  

Problems and Languages

● Key intuition: Every language 
corresponds to some decision problem.

● Example:
● { ⟨D⟩ | D is a DFA that accepts ε } is a 

language.
● It corresponds to the following decision 

problem:

Given a DFA D, does D accept ε?  



  

Problems and Languages

● Key intuition: Every language 
corresponds to some decision problem.

● Example:
● { ⟨G⟩ | G is a planar graph } is a language.
● It corresponds to the following decision 

problem:

Given a graph G, is G planar?  



  

What All This Means

● Our goal is to speak of computers solving 
problems.

● We will model this by looking at TMs 
recognizing languages.

● For decision problems that we're 
interested in solving, this precisely 
captures what we're interested in 
capturing.



  

What problems can we solve with a computer?

What does it 
mean to “solve” 
a problem?



  

The Hailstone Sequence

● Consider the following procedure, 
starting with some n ∈ ℕ, where n > 0:
● If n = 1, you are done.
● If n is even, set n = n / 2.
● Otherwise, set n = 3n + 1.
● Repeat.

● Question: Given a number n, does this 
process terminate?
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· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.

· If n = 1, stop.
 

· If n is even, set n = n / 2.
 

· Otherwise, set n = 3n + 1.
 

· Repeat.



  

The Hailstone Sequence

● Let Σ = {1} and consider the language

   L = { 1n | n > 0 and the hailstone
                   sequence terminates for n }.

● Could we build a TM for L?



  

The Hailstone Turing Machine

● We can build a TM that works as follows:
● If the input is ε, reject.
● While the string is not 1:

– If the input has even length, halve the length of 
the string.

– If the input has odd length, triple the length of 
the string and append a 1.

● Accept.



  

Does this Turing machine always accept?



  

The Collatz Conjecture

● It is unknown whether this process will 
terminate for all natural numbers.

● In other words, no one knows whether 
the TM described in the previous 
slides will always stop running!

● The conjecture (unproven claim) that this 
always terminates is called the Collatz 
Conjecture.



  

The Collatz Conjecture

 

“Mathematics may not be ready
for such problems.” - Paul Erdős

● Two years ago, some Apple employees 
filed a patent for a cryptographic hashing 
scheme based on the Collatz conjecture; 
see this link for details.

http://www.google.com/patents/US20130108038


  

An Important Observation

● Unlike finite automata, which automatically halt 
after all the input is read, TMs keep running until 
they explicitly enter an accept or reject state.

● It is therefore possible for a TM to run forever 
without accepting or rejecting.

● This leads to several important questions:
● How do we formally define what it means to build a 

TM for a language?
● What implications does this have about problem-

solving?



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters an accept state when run on w.

● M rejects a string w if it enters a reject state when run on w.

● M loops infinitely (or just loops) on a string w if when run on w 
it enters neither an accept nor a reject state.

● M does not accept w if it either rejects w or loops infinitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

The Language of a TM

● The language of a Turing machine M, denoted (ℒ M), is 
the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.

● It might loop forever, or it might explicitly reject.
● A language is called recognizable if it is the language 

of some TM. A TM for a language is sometimes called a 
recognizer for that language.

● Notation: the class RE is the set of all recognizable 
languages.

L ∈ RE   ↔   L is recognizable    



  

What do you think? Does that
correspond to what you think it

means to solve a problem?



  

Deciders

● Some Turing machines always halt; they never 
go into an infinite loop.

● If M is a TM and M halts on every possible 
input, then we say that M is a decider.

● For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Decidable Languages

● A language L is called decidable if there is a 
decider M such that (ℒ M) = L.

● Equivalently, a language L is decidable if there is a 
TM M such that

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● The class R is the set of all decidable languages.

L ∈ R   ↔   L is decidable



  

Examples of R Languages

● All regular languages are in R.

● If L is regular, we can run the DFA for L on a string w 
and then either accept or reject w based on what state it 
ends in.

● { 0n1n | n ∈ ℕ } is in R.

● The TM we built is a decider.

● All CFLs are in R.

● Proof is tricky; check Sipser for details.

● (This is why it's possible to build the CFG tool online!)



  

Why R Matters

● If a language is in R, there is an algorithm that can 
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in 
a language, that language is in R.

● By the Church-Turing thesis, any effective model of 
computation is equivalent in power to a Turing machine.

● Therefore, if there is any algorithm for deciding 
membership in the language, there is a decider for it.

● Therefore, the language is in R.

● A language is in R if and only if there is an 
algorithm for deciding membership in that 
language.



  

R and RE Languages

● Every decider is a Turing machine, but not 
every Turing machine is a decider.

● Thus R ⊆ RE.

● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to 

a problem, can you necessarily solve that 
problem?



  

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?



  

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



  

Unanswered Questions

● Why exactly is RE an interesting class of 
problems?

● What does the R  ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in 

due time.



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Seven was due at the start of class 
today.
● Want to use late days? Submit by Monday at 3:00PM.
● Note that late days can't be used on PS9.

● Problem Set Eight goes out today. It's due next 
Friday at 3:00PM.
● Play around with TMs and their properties!
● Explore the limits of the R and RE languages!
● Will require some material from Monday; those sections 

are clearly marked.



  

Second Midterm Exam

● The second midterm exam is next Monday, 
February 29 from 7PM – 10PM.

● Topic coverage:
● Focus is on PS4 – PS6 and lectures 09 – 16.
● Topics from PS7 and from lecture 17 onward not tested.
● Major topics: strict orders, graphs, the pigeonhole 

principle, induction, finite automata, regular expressions, 
regular languages, closure properties.

● Policies and procedures same as the first midterm:
● Three hours, four questions.
● Closed-computer, closed-book, and limited-note. You can 

have a double-sided 8.5” × 11” sheet of paper with you 
when you take the exam.



  

Midterm Locations

● The midterm is in Hewlett.
● Specifically, locations are divvied up by 

last (family) name:
● Abd – Pre: Go to Hewlett 200.
● Pri – Vil: Go to Hewlett 201.
● Vo  – Xie: Go to Hewlett 101.
● Yan – Zhu: Go to Hewlett 103.



  

Preparing for the Exam

● As a reminder, we've posted
● four sets of extra practice problems,
● two practice midterms,
● one set of challenge problems, and
● one set of CS103A problems.

● Solutions are available in Gates. As with the previous 
midterm, we'll move the solution sets down to the basement 
over the weekend.

● Recommendation: If you haven't already done so, take at 
least one of the practice exams under realistic conditions and 
get a TA to look over it.

● Ask questions! If you aren't 100% sure you understand 
something, ask for help and advice. We want you to master 
this material. Let us know what we can do to help.



  

Your Questions



  

“I'm worried because I did really badly on 
Pset 6, mainly because I missed several 
edge cases in designing DFAs / NFAs / 

regexes. Do you have any advice for how to 
go about finding all the edge cases, 

particularly in a time-pressured scenario 
like the midterm?”

For DFAs, ask this question: what does every state “mean?” What “information” 
does it represent? If you can't answer this question, you may have an error 
in the machine.
 

For NFAs, work backwards from the accepting states. Remember that NFAs will 
try as hard as possible to accept, so make sure that you didn't accidentally 
put in a path that accepts incorrectly.
 

For regular expressions, try extreme cases. What if you expand out stars and 
question marks zero times? What do you get? Also, make sure you have a 
concise explanation for what you wrote. If you just listed a bunch of cases 
without any rhyme or reason, nine times out of ten you've got it wrong.

For DFAs, ask this question: what does every state “mean?” What “information” 
does it represent? If you can't answer this question, you may have an error 
in the machine.
 

For NFAs, work backwards from the accepting states. Remember that NFAs will 
try as hard as possible to accept, so make sure that you didn't accidentally 
put in a path that accepts incorrectly.
 

For regular expressions, try extreme cases. What if you expand out stars and 
question marks zero times? What do you get? Also, make sure you have a 
concise explanation for what you wrote. If you just listed a bunch of cases 
without any rhyme or reason, nine times out of ten you've got it wrong.



  

“I've always wondered--how do you explain 
things so clearly while simultaneously 

talking at 1.5x a normal person's speed? Do 
you rehearse your talk track a ton before 
lecture, or does your brain just work at 

super-speed?”

I come from a family of fast talkers. Our family dinners are 
really entertaining. ☺
 

For the very first class I ever taught (back in 2007) I was so 
terrified of messing up in front of a group of people that I 
memorized literally everything I was going to say. After doing 
that for enough repetitions, I got a lot more comfortable 
just making stuff up on the fly.

I come from a family of fast talkers. Our family dinners are 
really entertaining. ☺
 

For the very first class I ever taught (back in 2007) I was so 
terrified of messing up in front of a group of people that I 
memorized literally everything I was going to say. After doing 
that for enough repetitions, I got a lot more comfortable 
just making stuff up on the fly.



  

Back to CS103!



  

Emergent Properties



  

Emergent Properties

● An emergent property of a system is a property 
that arises out of smaller pieces that doesn't 
seem to exist in any of the individual pieces.

● Examples:
● Individual neurons work by firing in response to 

particular combinations of inputs. Somehow, this 
leads to thought and consciousness.

● Individual atoms obey the laws of quantum mechanics 
and just interact with other atoms. Somehow, it's 
possible to combine them together to make iPhones.



  

Emergent Properties of Computation

● All computing systems equal to Turing machines 
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these 
emergent properties are, in a sense, “inherent” to 
computation. You can't have computation without 
these properties.

● These emergent properties are what ultimately 
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's 
Achilles heel – they're how we find concrete 
examples of impossible problems.



  

Two Emergent Properties

● There are two key emergent properties of 
computation that we will discuss:
● Universality: There is a single computing device 

capable of performing any computation.
● Self-Reference: Computing devices can ask 

questions about their own behavior.

● As you'll see, the combination of these 
properties leads to simple examples of 
impossible problems and elegant proofs of 
impossibility.



  

Universal Machines



  

An Observation

● When we've been discussing Turing 
machines, we've talked about designing 
specific TMs to solve specific problems.

● Does this match your real-world 
experiences? Do you have one computing 
device for each task you need to 
perform?



  

Computers and Programs

● When talking about actual computers, most 
people just have a single computer.

● To get the computer to perform a particular task, 
we load a program into it and have the computer 
execute that program.

● In certain cases it's faster or more efficient to 
make dedicated hardware to solve a problem, but 
the benefits of having one single computer 
outweigh the costs.

● Question: Can we do something like this for 
Turing machines?



  

Encodings and TMs

● Recall: If Obj is some finite, discrete object, 
then let ⟨Obj⟩ denote a string 
representation of that object.

● As a specific case: if M is a TM, then ⟨M⟩ is 
a string representing a string encoding of 
M.
● A helpful analogy: think of M as an executable 

file and ⟨M⟩ as its source code.

● Because TMs can be encoded as strings, it 
is possible to feed a TM as an input to 
another TM!



  

A Single Turing Machine?

● Just as we can build a single computer 
that can run any program, could we build 
a single TM that could run any Turing 
machine?

● Idea: Build a machine that takes as input 
a description of a TM and a string to run 
that TM on, then simulates the behavior 
of that TM on that string.



  

A Universal Machine

General-Purpose
Turing Machine

… …p r o g r a m i n p u t

The “program” is an encoding 
of some Turing machine M 

that we want to run.

The “program” is an encoding 
of some Turing machine M 

that we want to run.



  

A Universal Machine

General-Purpose
Turing Machine

… …p r o g r a m i n p u t

The input to that program is 
some string

The input to that program is 
some string



  

A Universal Machine

General-Purpose
Turing Machine

… …

The input has the form ⟨M, w⟩, where M is
some TM and w is some string.

p r o g r a m i n p u t



  

A Universal Machine

General-Purpose
Turing Machine

… …

⟨M, w⟩

p r o g r a m i n p u t



  

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT 
called the universal Turing machine that, when run on 
an input of the form ⟨M, w⟩, where M is a Turing machine 
and w is a string, simulates M running on w and does 
whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM accepts ⟨M, w⟩ if and only if M accepts w.

TM



  

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT 
called the universal Turing machine that, when run on 
an input of the form ⟨M, w⟩, where M is a Turing machine 
and w is a string, simulates M running on w and does 
whatever M does on w (accepts, rejects, or loops).

● Conceptually:

bool simulateTM(TM M, string w) {
  set up a simulation of M running on w;
  while (true) {
    if (the simulated version of M is in an accepting state)
        return true;  // Accept
    if (the simulated version of M is in a rejecting state)
        return false; // Reject
    simulate one more step of M running on w;
  }
}

TM



  

An Intuition for UTM

● You can think of U   as a general-purpose, 
programmable computer.

● Rather than purchasing one TM for each 
language, just purchase U   and program in the 
“software” corresponding to the TM you 
actually want.

● U   is a powerful machine: it can perform any 
computation that could be performed by 
any feasible computing device!

TM

TM

TM



  

Since UTM is a TM, it has a language.

What is the language of the universal 
Turing machine?



  

The Language of UTM

● Recall: For any TM M, the language of M, denoted 
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }  

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }  

● For simplicity, define ATM = ℒ(UTM). This is an 
important language and we'll see it many times.



  

Regular
Languages CFLs

All Languages

RE

A
TM
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