
559Data Mining: Practical Machine Learning Tools and Techniques
Copyright © 2011 Elsevier Inc. All rights of reproduction in any form reserved.

CHAPTER�

17�

Tutorial Exercises for
the Weka Explorer

The best way to learn about the Explorer interface is simply to use it. This
chapter presents a series of tutorial exercises that will help you learn about
Explorer and also about practical data mining in general. The first section is
introductory, but we think you will find the exercises in the later sections quite
thought-provoking.

We begin with a quick, guided tour of the Explorer interface, examining each of
the panels and what they can do, which largely parallels the introduction given in
Chapter 11. Our screenshots are from Weka 3.6, although almost everything is the
same with other versions.

17.1 INTRODUCTION TO THE EXPLORER INTERFACE
Invoke Weka from the Windows Start menu (on Linux or the Mac, double-click
weka.jar or weka.app, respectively). This starts up the Weka GUI Chooser (shown
in Figure 11.3(a)). Click the Explorer button to enter the Weka Explorer. The Pre-
process panel (shown in Figure 11.3(b)) opens up when the Explorer interface is
started.

Loading a Dataset
Load a dataset by clicking the Open file button in the top left corner of the panel.
Inside the data folder, which is supplied when Weka is installed, you will find a file
named weather.nominal.arff. This contains the nominal version of the standard
“weather” dataset in Table 1.2. Open this file (the screen will look like Figure
11.3(b)).

As the result shows, the weather data has 14 instances, and 5 attributes called
outlook, temperature, humidity, windy, and play. Click on the name of an attribute
in the left subpanel to see information about the selected attribute on the right, such
as its values and how many times an instance in the dataset has a particular value.
This information is also shown in the form of a histogram. All attributes in this
dataset are “nominal”—that is, they have a predefined finite set of values. The last
attribute, play, is the “class” attribute; its value can be yes or no.

560 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Familiarize yourself with the Preprocess panel by doing the following exercises.
The solutions to these and other exercises in this section are given at the end of the
section.

Exercise 17.1.1. What are the values that the attribute temperature can have?
Exercise 17.1.2. Load a new dataset. Click the Open file button and select the
file iris.arff, which corresponds to the iris dataset in Table 1.4. How many
instances does this dataset have? How many attributes? What is the range of
possible values of the attribute petallength?

The Dataset Editor
It is possible to view and edit an entire dataset from within Weka. To do this, load
the weather.nominal.arff file again. Click the Edit button from the row of buttons at
the top of the Preprocess panel. This opens a new window called Viewer, which lists
all instances of the weather data (see Figure 17.1).

Exercise 17.1.3. What is the function of the first column in the Viewer
window?
Exercise 17.1.4. What is the class value of instance number 8 in the weather
data?
Exercise 17.1.5. Load the iris data and open it in the editor. How many
numeric and how many nominal attributes does this dataset have?

FIGURE 17.1

The data viewer.

 17.1 Introduction to the Explorer Interface 561

Applying a Filter
As you know, Weka “filters” can be used to modify datasets in a systematic fashion—
that is, they are data preprocessing tools. Reload the weather.nominal dataset, and
let’s remove an attribute from it. The appropriate filter is called Remove; its full
name is

weka.filters.unsupervised.attribute.Remove

Examine this name carefully. Filters are organized into a hierarchical structure of
which the root is weka. Those in the unsupervised category don’t require a class
attribute to be set; those in the supervised category do. Filters are further divided
into ones that operate primarily on attributes (the attribute category) and ones that
operate primarily on instances (the instance category).

Click the Choose button in the Preprocess panel to open a hierarchical menu
(shown in Figure 11.9(a)) from which you select a filter by following the path
corresponding to its full name. Use the path given in the full name above to
select the Remove filter. The text “Remove” will appear in the field next to the
Choose button.

Click on the field containing this text. The Generic Object Editor window, which
is used throughout Weka to set parameter values for all of the tools, opens. In this
case it contains a short explanation of the Remove filter (shown in Figure 11.9(b))—
click More to get a fuller description (Figure 11.9(c)). Enter 3 into the attribute-
Indices field and click the OK button. The window with the filter options closes.
Now click the Apply button on the right, which runs the data through the filter. The
filter removes the attribute with index 3 from the dataset, and you can see that this
has happened. This change does not affect the dataset in the file; it only applies to
the data held in memory. The changed dataset can be saved to a new ARFF file by
pressing the Save button and entering a file name. The action of the filter can be
undone by pressing the Undo button. Again, this applies to the version of the data
held in memory.

What we have described illustrates how filters are applied to data. However, in
the particular case of Remove, there is a simpler way of achieving the same effect.
Instead of invoking a filter, attributes can be selected using the small boxes in the
Attributes subpanel and removed using the Remove button that appears at the bottom,
below the list of attributes.

Exercise 17.1.6. Load the weather.nominal dataset. Use the filter weka.
unsupervised.instance.RemoveWithValues to remove all instances in which the
humidity attribute has the value high. To do this, first make the field next to
the Choose button show the text RemoveWithValues. Then click on it to get the
Generic Object Editor window, and figure out how to change the filter settings
appropriately.
Exercise 17.1.7. Undo the change to the dataset that you just performed, and
verify that the data has reverted to its original state.

562 CHAPTER 17 Tutorial Exercises for the Weka Explorer

The Visualize Panel
Now take a look at Weka’s data visualization facilities. These work best with
numeric data, so we use the iris data. Load iris.arff, which contains the iris dataset
of Table 1.4 containing 50 examples of three types of Iris: Iris setosa, Iris versicolor,
and Iris virginica.

Click the Visualize tab to bring up the Visualize panel (shown in Figure 11.17).
Click the first plot in the second row to open up a window showing an enlarged plot
using the selected axes. Instances are shown as little crosses, the color of which
depends on the instance’s class. The x-axis shows the sepallength attribute, and the
y-axis shows petalwidth.

Clicking on one of the crosses opens up an Instance Info window, which lists
the values of all attributes for the selected instance. Close the Instance Info window
again.

The selection fields at the top of the window containing the scatter plot determine
which attributes are used for the x- and y-axes. Change the x-axis to petalwidth and
the y-axis to petallength. The field showing Color: class (Num) can be used to
change the color coding.

Each of the barlike plots to the right of the scatter plot window represents a
single attribute. In each bar, instances are placed at the appropriate horizontal
position and scattered randomly in the vertical direction. Clicking a bar uses that
attribute for the x-axis of the scatter plot. Right-clicking a bar does the same for
the y-axis. Use these bars to change the x- and y-axes back to sepallength and
petalwidth.

The Jitter slider displaces the cross for each instance randomly from its true
position, and can reveal situations where instances lie on top of one another.
Experiment a little by moving the slider.

The Select Instance button and the Reset, Clear, and Save buttons let you modify
the dataset. Certain instances can be selected and the others removed. Try the Rect-
angle option: Select an area by left-clicking and dragging the mouse. The Reset
button changes into a Submit button. Click it, and all instances outside the rectangle
are deleted. You could use Save to save the modified dataset to a file. Reset restores
the original dataset.

The Classify Panel
Now we apply a classifier to the weather data. Load the weather data again. Go to
the Preprocess panel, click the Open file button, and select weather.nominal.arff from
the data directory. Then switch to the Classify panel (shown in Figure 11.4(b)) by
clicking the Classify tab at the top of the window.

Using the C4.5 Classifier
As you learned in Chapter 11 (page 410), the C4.5 algorithm for building decision
trees is implemented in Weka as a classifier called J48. Select it by clicking the Choose

button near the top of the Classify tab. A dialog window appears showing various
types of classifier. Click the trees entry to reveal its subentries, and click J48 to choose
that classifier. Classifiers, like filters, are organized in a hierarchy: J48 has the full
name weka.classifiers.trees.J48.

The classifier is shown in the text box next to the Choose button: It now reads
J48 –C 0.25 –M 2. This text gives the default parameter settings for this classifier,
which in this case rarely require changing to obtain good performance.

For illustrative purposes we evaluate the performance using the training data,
which has been loaded in the Preprocess panel—this is not generally a good idea
because it leads to unrealistically optimistic performance estimates. Choose Use
training set from the Test options part of the Classify panel. Once the test strategy
has been set, the classifier is built and evaluated by pressing the Start button.
This processes the training set using the currently selected learning algorithm,
C4.5 in this case. Then it classifies all the instances in the training data and
outputs performance statistics. These are shown in Figure 17.2(a).

Interpreting the Output
The outcome of training and testing appears in the Classifier Output box on the right.
Scroll through the text and examine it. First, look at the part that describes the deci-
sion tree, reproduced in Figure 17.2(b). This represents the decision tree that was
built, including the number of instances that fall under each leaf. The textual represen-
tation is clumsy to interpret, but Weka can generate an equivalent graphical version.

Here’s how to get the graphical tree. Each time the Start button is pressed and
a new classifier is built and evaluated, a new entry appears in the Result List panel
in the lower left corner of Figure 17.2(a). To see the tree, right-click on the entry
trees.J48 that has just been added to the result list and choose Visualize tree. A
window pops up that shows the decision tree in the form illustrated in Figure 17.3.
Right-click a blank spot in this window to bring up a new menu enabling you to
auto-scale the view. You can pan around by dragging the mouse.

Now look at the rest of the information in the Classifier Output area. The next
two parts of the output report on the quality of the classification model based on the
chosen test option.

This text states how many and what proportion of test instances have been
correctly classified:

Correctly Classified Instances 14 100%

This is the accuracy of the model on the data used for testing. In this case it is
completely accurate (100%), which is often the case when the training set is used
for testing.

At the bottom of the output is the confusion matrix:

=== Confusion Matrix ===

 a b <– classified as
 9 0 | a = yes
 0 5 | b = no

 17.1 Introduction to the Explorer Interface 563

564 CHAPTER 17 Tutorial Exercises for the Weka Explorer

FIGURE 17.2

Output after building and testing the classifier: (a) screenshot and (b) decision tree.

J48 pruned tree

outlook = sunny
| humidity = high: no (3.0)
| humidity = normal: yes (2.0)
outlook = overcast: yes (4.0)
outlook = rainy
| windy = TRUE: no (2.0)
| windy = FALSE: yes (3.0)

Number of Leaves : 5

Size of the tree : 8

(a)

(b)

Each element in the matrix is a count of instances. Rows represent the true classes,
and columns represent the predicted classes. As you can see, all 9 yes instances have
been predicted as yes, and all 5 no instances as no.

Exercise 17.1.8. How would this instance be classified using the decision tree?

outlook = sunny, temperature = cool, humidity = high, windy = TRUE

Setting the Test Method
When the Start button is pressed, the selected learning algorithm is run and the
dataset that was loaded in the Preprocess panel is used with the selected test protocol.
For example, in the case of tenfold cross-validation this involves running the learn-
ing algorithm 10 times to build and evaluate 10 classifiers. A model built from the
full training set is then printed into the Classifier Output area: This may involve
running the learning algorithm one final time. The remainder of the output depends
on the test protocol that was chosen using test options; these options were discussed
in Section 11.1.

Exercise 17.1.9. Load the iris data using the Preprocess panel. Evaluate C4.5
on this data using (a) the training set and (b) cross-validation. What is the
estimated percentage of correct classifications for (a) and (b)? Which estimate
is more realistic?

Visualizing Classification Errors
Right-click the trees.J48 entry in the result list and choose Visualize classifier
errors. A scatter plot window pops up. Instances that have been classified cor-
rectly are marked by little crosses; ones that are incorrect are marked by little
squares.

Exercise 17.1.10. Use the Visualize classifier errors function to find the
wrongly classified test instances for the cross-validation performed in Exer-
cise 17.1.9. What can you say about the location of the errors?

FIGURE 17.3

The decision tree that has been built.

 17.1 Introduction to the Explorer Interface 565

566 CHAPTER 17 Tutorial Exercises for the Weka Explorer

17.2 NEAREST-NEIGHBOR LEARNING
AND DECISION TREES
In this section you will experiment with nearest-neighbor classification and deci-
sion tree learning. For most of it, a real-world forensic glass classification dataset
is used.

We begin by taking a preliminary look at the dataset. Then we examine the effect
of selecting different attributes for nearest-neighbor classification. Next we study
class noise and its impact on predictive performance for the nearest-neighbor method.
Following that we vary the training set size, both for nearest-neighbor classification
and for decision tree learning. Finally, you are asked to interactively construct a
decision tree for an image segmentation dataset.

Before continuing you should review in your mind some aspects of the classifica-
tion task:

• How is the accuracy of a classifier measured?
• To make a good classifier, are all the attributes necessary?
• What is class noise, and how would you measure its effect on learning?
• What is a learning curve?
• If you, personally, had to invent a decision tree classifier for a particular

dataset, how would you go about it?

The Glass Dataset
The glass dataset glass.arff from the U.S. Forensic Science Service contains data
on six types of glass. Glass is described by its refractive index and the chemical
elements that it contains; the the aim is to classify different types of glass based
on these features. This dataset is taken from the UCI datasets, which have been
collected by the University of California at Irvine and are freely available on
the Web. They are often used as a benchmark for comparing data mining
algorithms.

Find the dataset glass.arff and load it into the Explorer interface. For your own
information, answer the following exercises, which review material covered in the
previous section.

Exercise 17.2.1. How many attributes are there in the dataset? What are
their names? What is the class attribute? Run the classification algorithm
IBk (weka.classifiers.lazy.IBk). Use cross-validation to test its performance,
leaving the number of folds at the default value of 10. Recall that you can
examine the classifier options in the Generic Object Editor window that
pops up when you click the text beside the Choose button. The default
value of the KNN field is 1: This sets the number of neighboring instances
to use when classifying.

 17.2 Nearest-Neighbor Learning and Decision Trees 567

Exercise 17.2.2. What is the accuracy of IBk (given in the Classifier
Output box)? Run IBk again, but increase the number of neighboring
instances to k = 5 by entering this value in the KNN field. Here and
throughout this section, continue to use cross-validation as the evaluation
method.
Exercise 17.2.3. What is the accuracy of IBk with five neighboring instances
(k = 5)?

Attribute Selection
Now we investigate which subset of attributes produces the best cross-validated
classification accuracy for the IBk algorithm on the glass dataset. Weka contains
automated attribute selection facilities, which are examined in a later section, but it
is instructive to do this manually.

Performing an exhaustive search over all possible subsets of the attributes is
infeasible (why?), so we apply the backward elimination procedure described in
Section 7.1 (page 311). To do this, first consider dropping each attribute individually
from the full dataset, and run a cross-validation for each reduced version. Once you
have determined the best eight-attribute dataset, repeat the procedure with this
reduced dataset to find the best seven-attribute dataset, and so on.

Exercise 17.2.4. Record in Table 17.1 the best attribute set and the greatest
accuracy obtained in each iteration. The best accuracy obtained in this process
is quite a bit higher than the accuracy obtained on the full dataset.
Exercise 17.2.5. Is this best accuracy an unbiased estimate of accuracy on
future data? Be sure to explain your answer. (Hint: To obtain an unbiased
estimate of accuracy on future data, we must not look at the test data at all

Table 17.1 Accuracy Obtained Using IBk, for Different Attribute Subsets

Subset Size
(No. of Attributes)

Attributes in “Best”
Subset

Classification
Accuracy

9
8
7
6
5
4
3
2
1
0

568 CHAPTER 17 Tutorial Exercises for the Weka Explorer

when producing the classification model for which the estimate is being
obtained.)

Class Noise and Nearest-Neighbor Learning
Nearest-neighbor learning, like other techniques, is sensitive to noise in the training
data. In this section we inject varying amounts of class noise into the data and
observe the effect on classification performance.

You can flip a certain percentage of class labels in the data to a randomly
chosen other value using an unsupervised attribute filter called AddNoise, in weka.
filters.unsupervised.attribute. However, for this experiment it is important that the
test data remains unaffected by class noise. Filtering the training data without
filtering the test data is a common requirement, and is achieved using a metale-
arner called FilteredClassifier, in weka.classifiers.meta, as described near the end
of Section 11.3 (page 444). This metalearner should be configured to use IBk as
the classifier and AddNoise as the filter. FilteredClassifier applies the filter to the
data before running the learning algorithm. This is done in two batches: first the
training data and then the test data. The AddNoise filter only adds noise to the
first batch of data it encounters, which means that the test data passes through
unchanged.

Exercise 17.2.6. Record in Table 17.2 the cross-validated accuracy estimate
of IBk for 10 different percentages of class noise and neighborhood sizes
k = 1, k = 3, k = 5 (determined by the value of k in the k-nearest-neighbor
classifier).
Exercise 17.2.7. What is the effect of increasing the amount of class noise?
Exercise 17.2.8. What is the effect of altering the value of k?

Table 17.2 Effect of Class Noise on IBk, for Different Neighborhood Sizes

Percentage Noise k = 1 k = 3 k = 5

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Varying the Amount of Training Data
This section examines learning curves, which show the effect of gradually increas-
ing the amount of training data. Again, we use the glass data, but this time
with both IBk and the C4.5 decision tree learners, implemented in Weka as J48.

To obtain learning curves, use FilteredClassifier again, this time in conjunc-
tion with weka.filters.unsupervised.instance.Resample, which extracts a certain
specified percentage of a given dataset and returns the reduced dataset.1 Again,
this is done only for the first batch to which the filter is applied, so the test
data passes unmodified through the FilteredClassifier before it reaches the
classifier.

Exercise 17.2.9. Record in Table 17.3 the data for learning curves for both the
one-nearest-neighbor classifier (i.e., IBk with k = 1) and J48.
Exercise 17.2.10. What is the effect of increasing the amount of training data?
Exercise 17.2.11. Is this effect more pronounced for IBk or J48?

Interactive Decision Tree Construction
One of Weka’s classifiers is interactive: It lets the user—you!—construct your own
classifier. Here’s a competition: Who can build a classifier with the highest predictive
accuracy?

Follow the procedure described in Section 11.2 (page 424). Load the file segment-
challenge.arff (in the data folder that comes with the Weka distribution). This dataset

1This filter performs sampling with replacement, rather than sampling without replacement, but the
effect is minor and we will ignore it here.

 17.2 Nearest-Neighbor Learning and Decision Trees 569

Table 17.3 Effect of Training Set Size on IBk and J48

Percentage of
Training Set IBk J48

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

570 CHAPTER 17 Tutorial Exercises for the Weka Explorer

has 20 attributes and 7 classes. It is an image segmentation problem, and the task is
to classify images into seven different groups based on properties of the pixels.

Set the classifier to UserClassifier, in the weka.classifiers.trees package. We use
a separate test set (performing cross-validation with UserClassifier is incredibly
tedious!), so in the Test options box choose the Supplied test set option and click
the Set button. A small window appears in which you choose the test set. Click Open
file and browse to the file segment-test.arff (also in the Weka distribution’s data
folder). On clicking Open, the small window updates to show the number of attri-
butes (20) in the data. The number of instances is not displayed because test instances
are read incrementally (so that the Explorer interface can process larger test files
than can be accommodated in main memory).

Click Start. UserClassifier differs from all other classifiers: It opens a special
window and waits for you to build your own classifier in it. The tabs at the top of
the window switch between two views of the classifier. The Tree visualizer shows
the current state of your tree, and the nodes give the number of class values there.
The aim is to come up with a tree of which the leaf nodes are as pure as possible.
To begin with, the tree has just one node—the root node—containing all the data.
More nodes will appear when you proceed to split the data in the Data visualizer.

Click the Data visualizer tab to see a two-dimensional plot in which the data
points are color-coded by class, with the same facilities as the Visualize panel
discussed in Section 17.1. Try different combinations of x- and y-axes to get the
clearest separation you can find between the colors. Having found a good separa-
tion, you then need to select a region in the plot: This will create a branch in
the tree. Here’s a hint to get you started: Plot region-centroid-row on the x-axis
and intensity-mean on the y-axis (the display is shown in Figure 11.14(a)); you
can see that the red class (sky) is nicely separated from the rest of the classes
at the top of the plot.

There are four tools for selecting regions in the graph, chosen using the dropdown
menu below the y-axis selector. Select Instance identifies a particular instance. Rec-
tangle (shown in Figure 11.14(a)) allows you to drag out a rectangle on the graph.
With Polygon and Polyline you build a free-form polygon or draw a free-form
polyline (left-click to add a vertex and right-click to complete the operation).

When you have selected an area using any of these tools, it turns gray. (In Figure
11.14(a) the user has defined a rectangle.) Clicking the Clear button cancels the
selection without affecting the classifier. When you are happy with the selection,
click Submit. This creates two new nodes in the tree, one holding all the instances
covered by the selection and the other holding all remaining instances. These nodes
correspond to a binary split that performs the chosen geometric test.

Switch back to the Tree visualizer view to examine the change in the tree.
Clicking on different nodes alters the subset of data that is shown in the Data
visualizer section. Continue adding nodes until you obtain a good separation of
the classes—that is, the leaf nodes in the tree are mostly pure. Remember, however,
that you should not overfit the data because your tree will be evaluated on a
separate test set.

 17.3 Classification Boundaries 571

When you are satisfied with the tree, right-click any blank space in the Tree
visualizer view and choose Accept The Tree. Weka evaluates the tree against the test
set and outputs statistics that show how well you did.

Exercise 17.2.12. You are competing for the best accuracy score of a
hand-built UserClassifier produced on the segment-challenge dataset and
tested on the segment-test set. Try as many times as you like. When you
have a good score (anything close to 90% correct or better), right-click the
corresponding entry in the Result list, save the output using Save result
buffer, and copy it into your answer for this exercise. Then run J48 on
the data to see how well an automatic decision tree learner performs on
the task.

17.3 CLASSIFICATION BOUNDARIES
In this section we examine the classification boundaries that are produced by dif-
ferent types of models. To do this, we use Weka’s Boundary Visualizer, which is
not part of the Explorer interface. To find it, start up the Weka GUI Chooser as
usual from the Windows Start menu (on Linux or the Mac, double-click weka.jar
or weka.app, respectively) and select BoundaryVisualizer from the Visualization
menu at the top.

The boundary visualizer shows a two-dimensional plot of the data and is most
appropriate for datasets with two numeric attributes. We will use a version of the
iris data without the first two attributes. To create this, start up the Explorer interface,
load iris.arff using the Open file button, and remove the first two attributes (sepal-
length and sepalwidth) by selecting them and clicking the Remove button that
appears at the bottom. Then save the modified dataset to a file (using Save) called,
say, iris.2D.arff.

Now leave the Explorer interface and open this file for visualization using the
boundary visualizer’s Open file button. Initially, the plot just shows the data in the
dataset.

Visualizing 1R
The purpose of the boundary visualizer is to show the predictions of a given model
for every possible combination of attribute values—that is, for every point in the
two-dimensional space. The points are color-coded according to the prediction the
model generates. We will use this to investigate the decision boundaries that different
classifiers generate for the reduced iris dataset.

Start with the 1R rule learner. Use the Choose button of the boundary visualizer
to select weka.classifiers.rules.OneR. Make sure you tick Plot training data; other-
wise, only the predictions will be plotted. Then click the Start button. The program
starts plotting predictions in successive scan lines. Click the Stop button once the

572 CHAPTER 17 Tutorial Exercises for the Weka Explorer

plot has stabilized—as soon as you like, in this case—and the training data will be
superimposed on the boundary visualization.

Exercise 17.3.1. Explain the plot based on what you know about 1R. (Hint:
Use the Explorer interface to look at the rule set that 1R generates for this
data.)
Exercise 17.3.2. Study the effect of the minBucketSize parameter on the
classifier by regenerating the plot with values of 1, and then 20, and then some
critical values in between. Describe what you see, and explain it. (Hint: You
could speed things up by using the Explorer interface to look at the rule sets.)

Now answer the following questions by thinking about the internal workings of
1R. (Hint: It will probably be fastest to use the Explorer interface to look at the
rule sets.)

Exercise 17.3.3. You saw earlier that when visualizing 1R the plot always has
three regions. But why aren’t there more for small bucket sizes (e.g., 1)? Use
what you know about 1R to explain this apparent anomaly.
Exercise 17.3.4. Can you set minBucketSize to a value that results in less than
three regions? What is the smallest possible number of regions? What is the
smallest value for minBucketSize that gives this number of regions? Explain
the result based on what you know about the iris data.

Visualizing Nearest-Neighbor Learning
Now let’s examine the classification boundaries created by the nearest-neighbor
method. Use the boundary visualizer’s Choose button to select the IBk classifier
(weka.classifiers.lazy.IBk) and plot its decision boundaries for the reduced iris
data.

OneR’s predictions are categorical: For each instance, they predict one of the
three classes. In contrast, IBk outputs probability estimates for each class, and the
boundary visualizer uses them to mix the colors red, green, and blue that correspond
to the three classes. IBk estimates class probabilities by looking at the set of k-nearest
neighbors of a test instance and counting the number in each class.

Exercise 17.3.5. With k = 1, which is the default value, it seems that the set of
k-nearest neighbors could have only one member and therefore the color will
always be pure red, green, or blue. Looking at the plot, this is indeed almost
always the case: There is no mixing of colors because one class gets a prob-
ability of 1 and the others a probability of 0. Nevertheless, there is a small
area in the plot where two colors are in fact mixed. Explain this. (Hint:
Examine the data carefully using the Explorer interface’s Visualize panel.)
Exercise 17.3.6. Experiment with different values of k, say 5 and 10. Describe
what happens as k increases.

 17.3 Classification Boundaries 573

Visualizing NaïveBayes
Turn now to the NaïveBayes classifier. Its assumption that attributes are conditionally
independent given a particular class value means that the overall class probability
is obtained by simply multiplying the per-attribute conditional probabilities together
(and taking into account the class prior probabilities as well). In other words, with
two attributes, if you know the class probabilities along the x- and y-axes (and the
class prior), you can calculate the value for any point in space by multiplying them
together (and then normalizing). This is easy to understand if you visualize it as a
boundary plot.

Plot the predictions of NaïveBayes. But first discretize the attribute values. By
default, Weka’s NaiveBayes classifier assumes that the attributes are normally dis-
tributed given the class. You should override this by setting useSupervisedDiscretiza-
tion to true using the Generic Object Editor window. This will cause NaïveBayes to
discretize the numeric attributes in the data with a supervised discretization tech-
nique. In most practical applications of NaïveBayes, supervised discretization works
better than the default method. It also produces a more comprehensible visualization,
which is why we use it here.

Exercise 17.3.7. The plot that is generated by visualizing the predicted class
probabilities of NaïveBayes for each pixel location is quite different from
anything we have seen so far. Explain the patterns in it.

Visualizing Decision Trees and Rule Sets
Decision trees and rule sets are similar to nearest-neighbor learning in the sense that
they are quasi-universal: In principle, they can approximate any decision boundary
arbitrarily closely. In this section, we look at the boundaries generated by JRip
and J48.

Generate a plot for JRip, with default options.

Exercise 17.3.8. What do you see? Relate the plot to the output of the rules
that you get by processing the data in the Explorer.
Exercise 17.3.9. The JRip output assumes that the rules will be executed in
the correct sequence. Write down an equivalent set of rules that achieves the
same effect regardless of the order in which they are executed. Generate a plot
for J48, with default options.
Exercise 17.3.10. What do you see? Again, relate the plot to the output that
you get by processing the data in the Explorer interface. One way to control
how much pruning J48 performs is to adjust the minimum number of instances
required in a leaf, minNumObj.
Exercise 17.3.11. Suppose you want to generate trees with 3, 2, and 1 leaf
node, respectively. What are the exact ranges of values for minNumObj that
achieve this, given default values for the other parameters?

574 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Messing with the Data
With the Boundary Visualizer you can modify the data by adding or removing points.

Exercise 17.3.12. Introduce some noise into the data and study the effect on
the learning algorithms we looked at above. What kind of behavior do you
observe for each algorithm as you introduce more noise?

17.4 PREPROCESSING AND PARAMETER TUNING
Now we look at some useful preprocessing techniques, which are implemented as
filters, as well as a method for automatic parameter tuning.

Discretization
As we know, there are two types of discretization techniques: unsupervised ones,
which are “class blind,” and supervised ones, which take the class value of the
instances into account when creating intervals. Weka’s main unsupervised method
for discretizing numeric attributes is weka.filters.unsupervised.attribute.Discretize.
It implements these two methods: equal-width (the default) and equal-frequency
discretization.

Find the glass dataset glass.arff and load it into the Explorer interface. Apply the
unsupervised discretization filter in the two different modes explained previously.

Exercise 17.4.1. What do you observe when you compare the histograms
obtained? The one for equal-frequency discretization is quite skewed for some
attributes. Why?

The main supervised technique for discretizing numeric attributes is weka.filters.
supervised.attribute.Discretize. Locate the iris data, load it, apply the supervised
discretization scheme, and look at the histograms obtained. Supervised discretization
strives to create intervals within which the class distribution is consistent, although
the distributions vary from one interval to the next.

Exercise 17.4.2. Based on the histograms obtained, which of the discretized
attributes would you consider to be most predictive? Reload the glass data and
apply supervised discretization to it.
Exercise 17.4.3. For some attributes there is only a single bar in the histo-
gram. What does that mean?

Discretized attributes are normally coded as nominal attributes, with one value
per range. However, because the ranges are ordered, a discretized attribute is actually
on an ordinal scale. Both filters have the ability to create binary attributes rather than
multivalued ones, by setting the option makeBinary to true.

 17.4 Preprocessing and Parameter Tuning 575

Exercise 17.4.4. Choose one of the filters and use it to create binary attributes.
Compare the result with the output generated when makeBinary is false. What
do the binary attributes represent?

More on Discretization
Here we examine the effect of discretization when building a J48 decision tree for
the data in ionosphere.arff. This dataset contains information about radar signals
returned from the ionosphere. “Good” samples are those showing evidence of some
type of structure in the ionosphere, while for “bad” ones the signals pass directly
through the ionosphere. For more details, take a look at the comments in the ARFF
file. Begin with unsupervised discretization.

Exercise 17.4.5. For J48, compare cross-validated accuracy and the size of the
trees generated for (1) the raw data, (2) data discretized by the unsupervised
discretization method in default mode, and (3) data discretized by the same
method with binary attributes.

Now turn to supervised discretization. Here a subtle issue arises, discussed near
the end of Section 11.3 (page 432). If Exercise 17.4.5 were simply repeated using
a supervised discretization method, the result would be overoptimistic. In effect,
because cross-validation is used for evaluation, the data in the test set has been taken
into account when determining the discretization intervals. This does not give a fair
estimate of performance on fresh data.

To evaluate supervised discretization fairly, use FilteredClassifier from Weka’s
metalearners. This builds the filter using the training data only, and then evalu-
ates it on the test data using the discretization intervals computed for the training
data. After all, that is how you would have to process fresh data in practice.

Exercise 17.4.6. Using FilteredClassifier and J48, compare cross-validated
accuracy and the size of the trees generated for (4) supervised discretization
in default mode, and (5) supervised discretization with binary attributes.
Exercise 17.4.7. Compare these with the results for the raw data from Exercise
17.4.5. How can decision trees generated from discretized data possibly be
better predictors than ones built from raw numeric data?

Automatic Attribute Selection
In most practical applications of supervised learning not all attributes are equally
useful for predicting the target. For some learning schemes, redundant and/or irrel-
evant attributes can result in less accurate models. As you found in Section 17.2, it
is tedious to identify useful attributes in a dataset manually; automatic attribute
selection methods are usually more appropriate.

576 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Attribute selection methods can be divided into filter and wrapper methods (see
Section 7.1, page 308). The former apply a computationally efficient heuristic to
measure the quality of a subset of attributes; the latter measure the quality of an
attribute subset by building and evaluating an actual classification model, which is
more expensive but often delivers superior performance.

The Explorer interface’s Select attributes panel applies attribute selection
methods to datasets. The default is to use CfsSubsetEval, described in Section
11.8 (page 488), which evaluates subsets of attributes. An alternative is to evaluate
attributes individually using an evaluator like InfoGainAttributeEval (see Section
11.8, page 491) and then rank them by applying a special “search” method, namely
the Ranker, as described Section 11.8 (page 490).

Exercise 17.4.8. Apply the ranking technique to the labor negotiations data in
labor.arff to determine the four most important attributes based on information
gain.2

CfsSubsetEval aims to identify a subset of attributes that are highly correlated
with the target while not being strongly correlated with one another. It searches
through the space of possible attribute subsets for the “best” one using the BestFirst
search method by default, although other methods can be chosen. In fact, choosing
GreedyStepwise and setting searchBackwards to true gives backward elimination,
the search method you used manually in Section 17.2.

To use the wrapper method rather than a filter method, such as CfsSubsetEval,
first select WrapperSubsetEval and then configure it by choosing a learning algo-
rithm to apply and setting the number of cross-validation folds to use when evalu-
ating it on each attribute subset.

Exercise 17.4.9. On the same data, run CfsSubsetEval for correlation-based
selection, using the BestFirst search. Then run the wrapper method with
J48 as the base learner, again using the BestFirst search. Examine the
attribute subsets that are output. Which attributes are selected by both
methods? How do they relate to the output generated by ranking using
information gain?

More on Automatic Attribute Selection
The Select attributes panel allows us to gain insight into a dataset by applying attri-
bute selection methods to it. However, as with supervised discretization, using this
information to reduce a dataset becomes problematic if some of the reduced data is
used for testing the model (as in cross-validation). Again, the reason is that we have

2Note that most evaluators, including InfoGainAttributeEval and CfsSubsetEval, discretize numeric
attributes using Weka’s supervised discretization method before evaluating them.

looked at the class labels in the test data while selecting attributes, and using the
test data to influence the construction of a model biases the accuracy estimates
obtained.

This can be avoided by dividing the data into training and test sets and applying
attribute selection to the training set only. However, it is usually more convenient
to use AttributeSelectedClassifer, one of Weka’s metalearners, which allows an
attribute selection method and a learning algorithm to be specified as part of a
classification scheme. AttributeSelectedClassifier ensures that the chosen set of
attributes is selected based on the training data only.

Now we test the three attribute selection methods from above in conjunction
with NaïveBayes. NaïveBayes assumes independence of attributes, so attribute
selection can be very helpful. You can see the effect of redundant attributes by
adding multiple copies of an attribute using the filter weka.filters.unsupervised.
attribute.Copy in the Preprocess panel. Each copy is obviously perfectly correlated
with the original.

Exercise 17.4.10. Load the diabetes classification data in diabetes.arff and add
copies of the first attribute. Measure the performance of NaïveBayes (with
useSupervisedDiscretization turned on) using cross-validation after you have
added each one. What do you observe?

Do the above three attribute selection methods, used in conjunction with Attri-
buteSelectedClassifier and NaïveBayes, successfully eliminate the redundant attri-
butes? Run each method from within AttributeSelectedClassifier to see the effect on
cross-validated accuracy and check the attribute subset selected by each method.
Note that you need to specify the number of ranked attributes to use for the Ranker
method. Set this to 8 because the original diabetes data contains 8 attributes (exclud-
ing the class). Specify NaïveBayes as the classifier to be used inside the wrapper
method because this is the classifier for which we want to select a subset.

Exercise 17.4.11. What can you say regarding the performance of the three
attribute selection methods? Do they succeed in eliminating redundant copies?
If not, why?

Automatic Parameter Tuning
Many learning algorithms have parameters that can affect the outcome of learning.
For example, the decision tree learner C4.5 has two parameters that influence the
amount of pruning (we saw one, the minimum number of instances required in a
leaf, in Section 17.3). The k-nearest-neighbor classifier IBk has a parameter (k) that
sets the neighborhood size. But manually tweaking parameter settings is tedious,
just like manually selecting attributes, and presents the same problem: The test data
must not be used when selecting parameters; otherwise, the performance estimate
will be biased.

 17.4 Preprocessing and Parameter Tuning 577

578 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Weka’s metalearner CVParameterSelection searches for the best parameter set-
tings by optimizing cross-validated accuracy on the training data. By default, each
setting is evaluated using tenfold cross-validation. The parameters to optimize are
specified using the CVParameters field in the Generic Object Editor window. For
each parameter, three pieces of information must be supplied: (1) a string that
names it using its letter code (which can be found in the Javadoc for the cor-
responding classifier—see Section 14.2, page 525); (2) a numeric range of values
to evaluate; and (3) the number of steps to try in this range (note that the param-
eter is assumed to be numeric). Click on the More button in the Generic Object
Editor window for more information and an example.

For the diabetes data used in the previous section, use CVParameterSelection
in conjunction with IBk to select the best value for the neighborhood size, ranging
from 1 to 10 in 10 steps. The letter code for the neighborhood size is K. The
cross-validated accuracy of the parameter-tuned version of IBk is directly com-
parable with its accuracy using default settings because tuning is performed by
applying inner cross-validation runs to find the best parameter value for each
training set occurring in the outer cross-validation—and the latter yields the final
performance estimate.

Exercise 17.4.12. What accuracy is obtained in each case? What value is
selected for the parameter-tuned version based on cross-validation on the full
data set? (Note: This value is output in the Classifier Output text area because,
as mentioned earlier, the model that is output is the one built from the full
dataset.)

Now consider parameter tuning for J48. If there is more than one parameter string
in the CVParameters field, CVParameterSelection performs a grid search on the
parameters simultaneously. The letter code for the pruning confidence parameter is
C, and you should evaluate values from 0.1 to 0.5 in five steps. The letter code for
the minimum leaf size parameter is M, and you should evaluate values from 1 to 10
in 10 steps.

Exercise 17.4.13. Run CVParameterSelection to find the best parameter value
setting. Compare the output you get to that obtained from J48 with default
parameters. Has accuracy changed? What about tree size? What parameter
values were selected by CVParameterSelection for the model built from the
full training set?

17.5 DOCUMENT CLASSIFICATION
Next we perform some experiments in document classification. The raw data is text,
and this is first converted into a form suitable for learning by creating a dictionary
of terms from all the documents in the training corpus and making a numeric

 17.5 Document Classification 579

attribute for each term using Weka’s unsupervised attribute filter StringToWord-
Vector. There is also the class attribute, which gives the document’s label.

Data with String Attributes
The StringToWordVector filter assumes that the document text is stored in an attribute
of type String—a nominal attribute without a prespecified set of values. In the fil-
tered data, this is replaced by a fixed set of numeric attributes, and the class attribute
is put at the beginning, as the first attribute.

To perform document classification, first create an ARFF file with a string attri-
bute that holds the document’s text—declared in the header of the ARFF file using
@attribute document string, where document is the name of the attribute. A nominal
attribute is also needed to hold the document’s classification.

Exercise 17.5.1. Make an ARFF file from the labeled mini-documents in Table
17.4 and run StringToWordVector with default options on this data. How many
attributes are generated? Now change the value of the option minTermFreq to
2. What attributes are generated now?
Exercise 17.5.2. Build a J48 decision tree from the last version of the data you
generated.
Exercise 17.5.3. Classify the new documents in Table 17.5 based on the
decision tree generated from the documents in Table 17.4. To apply the same

Table 17.4 Training Documents

Document Text Classification

The price of crude oil has increased significantly yes
Demand for crude oil outstrips supply yes
Some people do not like the flavor of olive oil no
The food was very oily no
Crude oil is in short supply yes
Use a bit of cooking oil in the frying pan no

Table 17.5 Test Documents

Document Text Classification

Oil platforms extract crude oil unknown
Canola oil is supposed to be healthy unknown
Iraq has significant oil reserves unknown
There are different types of cooking oil unknown

580 CHAPTER 17 Tutorial Exercises for the Weka Explorer

filter to both training and test documents, use FilteredClassifier, specifying the
StringToWordVector filter and J48 as the base classifier. Create an ARFF file
from Table 17.5, using question marks for the missing class labels. Configure
FilteredClassifier using default options for StringToWordVector and J48, and
specify your new ARFF file as the test set. Make sure that you select Output
predictions under More options in the Classify panel. Look at the model and
the predictions it generates, and verify that they are consistent. What are the
predictions?

Classifying Actual Documents
A standard collection of newswire articles is widely used for evaluating document
classifiers. ReutersCorn-train.arff and ReutersGrain-train.arff are training sets
derived from this collection; ReutersCorn-test.arff and ReutersGrain-test.arff are
corresponding test sets. The actual documents in the corn and grain data are the
same; only the labels differ. In the first dataset, articles concerning corn-related
issues have a class value of 1 and the others have 0; the aim is to build a classifier
that identifies “corny” articles. In the second, the labeling is performed with respect
to grain-related issues; the aim is to identify “grainy” articles.

Exercise 17.5.4. Build classifiers for the two training sets by applying
FilteredClassifier with StringToWordVector using (1) J48 and (2)
NaiveBayesMultinomial, evaluating them on the corresponding test set in
each case. What percentage of correct classifications is obtained in the four
scenarios? Based on the results, which classifier would you choose?

Other evaluation metrics are used for document classification besides the per-
centage of correct classifications: They are tabulated under Detailed Accuracy By
Class in the Classifier Output area—the number of true positives (TP), false posi-
tives (FP), true negatives (TN), and false negatives (FN). The statistics output by
Weka are computed as specified in Table 5.7; the F-measure is mentioned in Section
5.7 (page 175).

Exercise 17.5.5. Based on the formulas in Table 5.7, what are the best possible
values for each of the output statistics? Describe when these values are
attained.

The Classifier Output also gives the ROC area (also known as AUC), which, as
explained in Section 5.7 (page 177), is the probability that a randomly chosen positive
instance in the test data is ranked above a randomly chosen negative instance, based
on the ranking produced by the classifier. The best outcome is that all positive
examples are ranked above all negative examples, in which case the AUC is 1. In the
worst case it is 0. In the case where the ranking is essentially random, the AUC is 0.5,
and if it is significantly less than this the classifier has performed anti-learning!

 17.5 Document Classification 581

Exercise 17.5.6. Which of the two classifiers used above produces the best
AUC for the two Reuters datasets? Compare this to the outcome for percent
correct. What do the different outcomes mean?

The ROC curves discussed in Section 5.7 (page 172) can be generated by
right-clicking on an entry in the result list and selecting Visualize threshold
curve. This gives a plot with FP Rate on the x-axis and TP Rate on the y-axis.
Depending on the classifier used, this plot can be quite smooth or it can be
fairly irregular.

Exercise 17.5.7. For the Reuters dataset that produced the most extreme
difference in Exercise 17.5.6, look at the ROC curves for class 1. Make a
very rough estimate of the area under each curve, and explain it in words.
Exercise 17.5.8. What does the ideal ROC curve corresponding to perfect
performance look like?

Other types of threshold curves can be plotted, such as a precision–recall curve
with Recall on the x-axis and Precision on the y-axis.

Exercise 17.5.9. Change the axes to obtain a precision–recall curve. What is
the shape of the ideal precision–recall curve, corresponding to perfect
performance?

Exploring the StringToWordVector Filter
By default, the StringToWordVector filter simply makes the attribute value in the
transformed dataset 1 or 0 for all single-word terms, depending on whether the word
appears in the document or not. However, as mentioned in Section 11.3 (page 439),
there are many options:

• outputWordCounts causes actual word counts to be output.
• IDFTransform and TFTransform: When both are set to true, term frequencies

are transformed into TF × IDF values.
• stemmer gives a choice of different word-stemming algorithms.
• useStopList lets you determine whether or not stopwords are deleted.
• tokenizer allows different tokenizers for generating terms, such as one that

produces word n-grams instead of single words.

There are several other useful options. For more information, click on More in the
Generic Object Editor window.

Exercise 17.5.10. Experiment with the options that are available. What options
give a good AUC value for the two datasets above, using NaiveBayesMulti-
nomial as the classifier?

582 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Not all of the attributes (i.e., terms) are important when classifying documents.
The reason is that many words are irrelevant for determining an article’s topic. Weka’s
AttributeSelectedClassifier, using ranking with InfoGainAttributeEval and the Ranker
search, can eliminate less useful attributes. As before, FilteredClassifier should be
used to transform the data before passing it to AttributeSelectedClassifier.

Exercise 17.5.11. Experiment with this, using default options for
StringToWordVector and NaiveBayesMultinomial as the classifier. Vary
the number of the most informative attributes that are selected from the
information gain–based ranking by changing the value of the numToSelect
field in the Ranker. Record the AUC values you obtain. How many attributes
give the best AUC for the two datasets discussed before? What are the best
AUC values you managed to obtain?

17.6 MINING ASSOCIATION RULES
In order to get some experience with association rules, we work with Apriori, the
algorithm described in Section 4.5 (page 144). As you will discover, it can be
challenging to extract useful information using this algorithm.

Association-Rule Mining
To get a feel for how to apply Apriori, start by mining rules from the weather.
nominal.arff data that was used in Section 17.1. Note that this algorithm expects
data that is purely nominal: If present, numeric attributes must be discretized first.
After loading the data in the Preprocess panel, click the Start button in the Associate
panel to run Apriori with default options. It outputs 10 rules, ranked according to
the confidence measure given in parentheses after each one (they are listed in Figure
11.16). As we explained in Chapter 11 (page 430), the number following a rule’s
antecedent shows how many instances satisfy the antecedent; the number following
the conclusion shows how many instances satisfy the entire rule (this is the rule’s
“support”). Because both numbers are equal for all 10 rules, the confidence of every
rule is exactly 1.

In practice, it can be tedious to find minimum support and confidence values that
give satisfactory results. Consequently, as explained in Chapter 11, Weka’s Apriori
runs the basic algorithm several times. It uses the same user-specified minimum
confidence value throughout, given by the minMetric parameter. The support level
is expressed as a proportion of the total number of instances (14 in the case of the
weather data), as a ratio between 0 and 1. The minimum support level starts at a
certain value (upperBoundMinSupport, default 1.0). In each iteration the support is
decreased by a fixed amount (delta, default 0.05, 5% of the instances) until either a
certain number of rules has been generated (numRules, default 10 rules) or the
support reaches a certain “minimum minimum” level (lowerBoundMinSupport,

 17.6 Mining Association Rules 583

default 0.1)—because rules are generally uninteresting if they apply to less than 10%
of the dataset. These four values can all be specified by the user.

This sounds pretty complicated, so we will examine what happens on the weather
data. The Associator output text area shows that the algorithm managed to generate
10 rules. This is based on a minimum confidence level of 0.9, which is the default
and is also shown in the output. The Number of cycles performed, which is shown
as 17, indicates that Apriori was actually run 17 times to generate these rules, with
17 different values for the minimum support. The final value, which corresponds to
the output that was generated, is 0.15 (corresponding to 0.15 × 14 ≈ 2 instances).

By looking at the options in the Generic Object Editor window, you can see that
the initial value for the minimum support (upperBoundMinSupport) is 1 by default,
and that delta is 0.05. Now, 1 – 17 × 0.05 = 0.15, so this explains why a minimum
support value of 0.15 is reached after 17 iterations. Note that upperBoundMinSup-
port is decreased by delta before the basic Apriori algorithm is run for the first time.

The Associator output text area also shows how many frequent item sets were
found, based on the last value of the minimum support that was tried (0.15 in this
example). In this case, given a minimum support of two instances, there are 12 item
sets of size 1, 47 item sets of size 2, 39 item sets of size 3, and six item sets of size
4. By setting outputItemSets to true before running the algorithm, all those different
item sets and the number of instances that support them are shown. Try it out!

Exercise 17.6.1. Based on the output, what is the support for this item set?

outlook = rainy humidity = normal windy = FALSE play = yes

Exercise 17.6.2. Suppose you want to generate all rules with a certain
confidence and minimum support. This can be done by choosing appropriate
values for minMetric, lowerBoundMinSupport, and numRules. What is the total
number of possible rules for the weather data for each combination of values
in Table 17.6?

Table 17.6 Number of Rules for Different Values of Minimum Confidence
and Support

Minimum Confidence Minimum Support Number of Rules

0.9 0.3
0.9 0.2
0.9 0.1
0.8 0.3
0.8 0.2
0.8 0.1
0.7 0.3
0.7 0.2
0.7 0.1

584 CHAPTER 17 Tutorial Exercises for the Weka Explorer

Apriori has some further parameters. If significanceLevel is set to a value between
0 and 1, the association rules are filtered based on a χ2 test with the chosen signifi-
cance level. However, applying a significance test in this context is problematic
because of the multiple comparison problem: If a test is performed hundreds of times
for hundreds of association rules, it is likely that significant effects will be found
just by chance—that is, an association seems to be statistically significant when
really it is not. Also, the χ2 test is inaccurate for small sample sizes (in this context,
small support values).

There are alternative measures for ranking rules. As well as confidence, Apriori
supports lift, leverage, and conviction, which can be selected using metricType. More
information is available by clicking More in the Generic Object Editor window.

Exercise 17.6.3. Run Apriori on the weather data with each of the four
rule-ranking metrics, and default settings otherwise. What is the top-ranked
rule that is output for each metric?

Mining a Real-World Dataset
Now consider a real-world dataset, vote.arff, which gives the votes of 435 U.S.
congressmen on 16 key issues gathered in the mid-1980s, and also includes their
party affiliation as a binary attribute. This is a purely nominal dataset with some
missing values (corresponding to abstentions). It is normally treated as a classi-
fication problem, the task being to predict party affiliation based on voting patterns.
However, association-rule mining can also be applied to this data to seek interest-
ing associations. More information on the data appears in the comments in the
ARFF file.

Exercise 17.6.4. Run Apriori on this data with default settings. Comment on
the rules that are generated. Several of them are quite similar. How are their
support and confidence values related?
Exercise 17.6.5. It is interesting to see that none of the rules in the default
output involve Class = republican. Why do you think that is?

Market Basket Analysis
In Section 1.3 (page 26) we introduced market basket analysis—analyzing customer
purchasing habits by seeking associations in the items they buy when visiting a store.
To do market basket analysis in Weka, each transaction is coded as an instance of
which the attributes represent the items in the store. Each attribute has only one
value: If a particular transaction does not contain it (i.e., the customer did not buy
that item), this is coded as a missing value.

Your job is to mine supermarket checkout data for associations. The data in
supermarket.arff was collected from an actual New Zealand supermarket. Take a
look at this file using a text editor to verify that you understand the structure. The

 17.6 Mining Association Rules 585

main point of this exercise is to show you how difficult it is to find any interesting
patterns in this type of data!

Exercise 17.6.6. Experiment with Apriori and investigate the effect of the
various parameters described before. Write a brief report on the main findings
of your investigation.

