
Tutorial for the R Statistical Package

University of Colorado Denver

Stephanie Santorico

Mark Shin

Contents

1 Basics 2

2 Importing Data 10

3 Basic Analysis 14

4 Plotting 22

5 Installing Packages 29

This document is associated with datasets and scripts as well as a tutorial video
available at http://math.ucdenver.edu/RTutorial

Last Updated January 2010

1

1 Basics

This tutorial will look at the open source statistical software package R. Stu-
dents that are not familiar with command line operations may feel intimidated
by the way a user interacts with R, but this tutorial series should alleviate these
feelings and help lessen the learning curve of this software.

Why should I use R for my work? R has many benefits over other statistical
software packages. Its main benefit is that it is open source software. This
means that anyone can help develop new packages and features. This allows
cutting edge methods to come to R much faster than other software packages.
This software can also be downloaded for free by anyone from various sites
around the world.

Let’s first start by downloading and installing R on your machine. After con-
necting to the internet go to: www.r-project.org. From here select CRAN from
the menu on the left side of the page. On the next page select a mirror from
which to download the package from. The mirrors in the United States are
near the bottom of the page. From this point you need to select the operating
system type you are using (e.g. Mac or Windows). From here either select the
“base” option for Windows machines or the current dmg file for Mac computers
(currently R-2.10.1.dgm). These selections will download the proper software
for your computer.

Now double click on the file you downloaded and follow the instructions to com-
plete your installation.

Now let’s start using R. Every time you start up R you should see the following
program startup:

2

The last line of the output includes the > prompt. This is where you enter in
commands that tell R what you want it to do. From here you use commands
to do everything from reading in your data to creating graphs to carrying out
statistical tests.

Let’s start by exploring how R is designed. Everything in R from your dataset
to summaries of statistical tests are classified as objects. We’ll look first at an
example to show you what we mean by this.

We can create a vector in R consisting of the numbers from one to ten and name
it v by entering the following command after the > prompt:

> v <- c(1,2,3,4,5,6,7,8,9,10)

>

The assignment operator in R is <-. The c used in the command stands for
concatenate. Here we are concatenating, or binding together the numbers from
one to ten and storing them as v. Now let’s call our vector back and see what
is in it. By typing v back into the command line we can recall v.

> v

[1] 1 2 3 4 5 6 7 8 9 10

>

Now let’s say we only want to call the 7th object in our vector. For any one
dimensional object in R, we can access a specific entry by using hard brackets
after the object. In our current situation if we want to select the 7th object we
simply type:

> v[7]

[1] 7

>

When we load our data sets into R, they are classified as a different type of
object called a data frame. Data frames can have names associated with the
variables but don’t have to. Let’s look at a preloaded dataset in R to see how it
looks. The dataset we will look at here is called iris. Type iris on the command
line and hit enter.

> iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

3

10 4.9 3.1 1.5 0.1 setosa

11 5.4 3.7 1.5 0.2 setosa

12 4.8 3.4 1.6 0.2 setosa

13 4.8 3.0 1.4 0.1 setosa

14 4.3 3.0 1.1 0.1 setosa

15 5.8 4.0 1.2 0.2 setosa

16 5.7 4.4 1.5 0.4 setosa

17 5.4 3.9 1.3 0.4 setosa

18 5.1 3.5 1.4 0.3 setosa

19 5.7 3.8 1.7 0.3 setosa

20 5.1 3.8 1.5 0.3 setosa

21 5.4 3.4 1.7 0.2 setosa

22 5.1 3.7 1.5 0.4 setosa

23 4.6 3.6 1.0 0.2 setosa

24 5.1 3.3 1.7 0.5 setosa

25 4.8 3.4 1.9 0.2 setosa

26 5.0 3.0 1.6 0.2 setosa

27 5.0 3.4 1.6 0.4 setosa

28 5.2 3.5 1.5 0.2 setosa

29 5.2 3.4 1.4 0.2 setosa

30 4.7 3.2 1.6 0.2 setosa

31 4.8 3.1 1.6 0.2 setosa

32 5.4 3.4 1.5 0.4 setosa

33 5.2 4.1 1.5 0.1 setosa

34 5.5 4.2 1.4 0.2 setosa

35 4.9 3.1 1.5 0.2 setosa

36 5.0 3.2 1.2 0.2 setosa

37 5.5 3.5 1.3 0.2 setosa

38 4.9 3.6 1.4 0.1 setosa

39 4.4 3.0 1.3 0.2 setosa

40 5.1 3.4 1.5 0.2 setosa

41 5.0 3.5 1.3 0.3 setosa

42 4.5 2.3 1.3 0.3 setosa

43 4.4 3.2 1.3 0.2 setosa

44 5.0 3.5 1.6 0.6 setosa

45 5.1 3.8 1.9 0.4 setosa

46 4.8 3.0 1.4 0.3 setosa

47 5.1 3.8 1.6 0.2 setosa

48 4.6 3.2 1.4 0.2 setosa

49 5.3 3.7 1.5 0.2 setosa

50 5.0 3.3 1.4 0.2 setosa

51 7.0 3.2 4.7 1.4 versicolor

52 6.4 3.2 4.5 1.5 versicolor

53 6.9 3.1 4.9 1.5 versicolor

54 5.5 2.3 4.0 1.3 versicolor

55 6.5 2.8 4.6 1.5 versicolor

56 5.7 2.8 4.5 1.3 versicolor

57 6.3 3.3 4.7 1.6 versicolor

58 4.9 2.4 3.3 1.0 versicolor

59 6.6 2.9 4.6 1.3 versicolor

60 5.2 2.7 3.9 1.4 versicolor

61 5.0 2.0 3.5 1.0 versicolor

62 5.9 3.0 4.2 1.5 versicolor

63 6.0 2.2 4.0 1.0 versicolor

4

64 6.1 2.9 4.7 1.4 versicolor

65 5.6 2.9 3.6 1.3 versicolor

66 6.7 3.1 4.4 1.4 versicolor

67 5.6 3.0 4.5 1.5 versicolor

68 5.8 2.7 4.1 1.0 versicolor

69 6.2 2.2 4.5 1.5 versicolor

70 5.6 2.5 3.9 1.1 versicolor

71 5.9 3.2 4.8 1.8 versicolor

72 6.1 2.8 4.0 1.3 versicolor

73 6.3 2.5 4.9 1.5 versicolor

74 6.1 2.8 4.7 1.2 versicolor

75 6.4 2.9 4.3 1.3 versicolor

76 6.6 3.0 4.4 1.4 versicolor

77 6.8 2.8 4.8 1.4 versicolor

78 6.7 3.0 5.0 1.7 versicolor

79 6.0 2.9 4.5 1.5 versicolor

80 5.7 2.6 3.5 1.0 versicolor

81 5.5 2.4 3.8 1.1 versicolor

82 5.5 2.4 3.7 1.0 versicolor

83 5.8 2.7 3.9 1.2 versicolor

84 6.0 2.7 5.1 1.6 versicolor

85 5.4 3.0 4.5 1.5 versicolor

86 6.0 3.4 4.5 1.6 versicolor

87 6.7 3.1 4.7 1.5 versicolor

88 6.3 2.3 4.4 1.3 versicolor

89 5.6 3.0 4.1 1.3 versicolor

90 5.5 2.5 4.0 1.3 versicolor

91 5.5 2.6 4.4 1.2 versicolor

92 6.1 3.0 4.6 1.4 versicolor

93 5.8 2.6 4.0 1.2 versicolor

94 5.0 2.3 3.3 1.0 versicolor

95 5.6 2.7 4.2 1.3 versicolor

96 5.7 3.0 4.2 1.2 versicolor

97 5.7 2.9 4.2 1.3 versicolor

98 6.2 2.9 4.3 1.3 versicolor

99 5.1 2.5 3.0 1.1 versicolor

100 5.7 2.8 4.1 1.3 versicolor

101 6.3 3.3 6.0 2.5 virginica

102 5.8 2.7 5.1 1.9 virginica

103 7.1 3.0 5.9 2.1 virginica

104 6.3 2.9 5.6 1.8 virginica

105 6.5 3.0 5.8 2.2 virginica

106 7.6 3.0 6.6 2.1 virginica

107 4.9 2.5 4.5 1.7 virginica

108 7.3 2.9 6.3 1.8 virginica

109 6.7 2.5 5.8 1.8 virginica

110 7.2 3.6 6.1 2.5 virginica

111 6.5 3.2 5.1 2.0 virginica

112 6.4 2.7 5.3 1.9 virginica

113 6.8 3.0 5.5 2.1 virginica

114 5.7 2.5 5.0 2.0 virginica

115 5.8 2.8 5.1 2.4 virginica

116 6.4 3.2 5.3 2.3 virginica

117 6.5 3.0 5.5 1.8 virginica

5

118 7.7 3.8 6.7 2.2 virginica

119 7.7 2.6 6.9 2.3 virginica

120 6.0 2.2 5.0 1.5 virginica

121 6.9 3.2 5.7 2.3 virginica

122 5.6 2.8 4.9 2.0 virginica

123 7.7 2.8 6.7 2.0 virginica

124 6.3 2.7 4.9 1.8 virginica

125 6.7 3.3 5.7 2.1 virginica

126 7.2 3.2 6.0 1.8 virginica

127 6.2 2.8 4.8 1.8 virginica

128 6.1 3.0 4.9 1.8 virginica

129 6.4 2.8 5.6 2.1 virginica

130 7.2 3.0 5.8 1.6 virginica

131 7.4 2.8 6.1 1.9 virginica

132 7.9 3.8 6.4 2.0 virginica

133 6.4 2.8 5.6 2.2 virginica

134 6.3 2.8 5.1 1.5 virginica

135 6.1 2.6 5.6 1.4 virginica

136 7.7 3.0 6.1 2.3 virginica

137 6.3 3.4 5.6 2.4 virginica

138 6.4 3.1 5.5 1.8 virginica

139 6.0 3.0 4.8 1.8 virginica

140 6.9 3.1 5.4 2.1 virginica

141 6.7 3.1 5.6 2.4 virginica

142 6.9 3.1 5.1 2.3 virginica

143 5.8 2.7 5.1 1.9 virginica

144 6.8 3.2 5.9 2.3 virginica

145 6.7 3.3 5.7 2.5 virginica

146 6.7 3.0 5.2 2.3 virginica

147 6.3 2.5 5.0 1.9 virginica

148 6.5 3.0 5.2 2.0 virginica

149 6.2 3.4 5.4 2.3 virginica

150 5.9 3.0 5.1 1.8 virginica

>

The left column displays the observation number in the dataset. The remaining
data in the five columns on the right are the actual data in the dataset. You can
also see from this example that you don’t have to just store numbers in your
datasets. The 5th column in the dataset uses text to differentiate the type of
species of iris being observed in this study.

Now with two dimensional objects, like this dataset, if you want to call a specific
entry you must specify the row and column in the object [r,c] with r being the
row and c the column in the object you wish to select. Let’s use the technique
with this data frame. Suppose we want to see what value is in the 3rd column
in the first row.

> iris[1,3]

[1] 1.4

>

How about the 5th column in the 100th row?

6

> iris[100,5]

[1] versicolor

Levels: setosa versicolor virginica

>

This output is letting us know that the 100th row and 5th column is versicolor.
Since it is not a numerical value, R also displays the other two values for this
variable, setosa and virginica.

In R it is very important to make sure you spell the names of your datasets and
commands correctly and with the same capitalization as you originally set them
up. Try typing Iris into your command line.

> Iris

Error: object "Iris" not found

>

As you can see R doesn’t know what we are trying to call when we type in the
capitalized version.

Now let’s go back to our vector example. We easily created a string of ten one
dimensional vectors by separating them by commas. But what if we wanted to
create a vector of one hundred numbers, or one thousand? Typing each one out
would be very time consuming and very inefficient. Luckily R has easier ways
to accomplish this.

> v2 <- c(1:10)

> v2

[1] 1 2 3 4 5 6 7 8 9 10

>

The : operator tells R that I want a string of numbers from one to 10 counting
by ones. Another way to do this is the seq() command.

> v3 <- seq(1,10)

> v3

[1] 1 2 3 4 5 6 7 8 9 10

>

These commands are very useful when using R. For instance suppose we want
to only look at the first 10 entries in our iris data set. Remembering that R
asks for rows first and then columns:

> iris[1:10,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

7

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

>

By leaving the columns position blank, I am telling R that I want all columns
associated with iris but only the first 10 rows. We can even make these first 10
rows of the iris dataset into its own object, let’s call it iris10.

> iris10 <- iris[1:10,]

>

It’s very common to create many of these subsets and strings when you are an-
alyzing your data. R will not delete any of them as you complete your analysis,
but if you name multiple objects the same name, it will overwrite them. For
instance, call your iris10 object again.

> iris10

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

>

Now let’s name a string of vectors iris10:

> iris10 <- c(1:10)

> iris10

[1] 1 2 3 4 5 6 7 8 9 10

>

You can see that the object named iris10 is now associated with the string of
numbers and not the first 10 rows of the iris dataset. Also note that R did not
warn you that you were overwriting the original iris10 variable, so you must
be careful when naming your objects.

What if we want to see all the objects that are available to us? The command
ls() will list all the objects that you have created or read into R.

> ls()

[1] "iris10" "v" "v2" "v3"

>

Note that because iris is a special pre-loaded dataset it was not in the list. Let’s
suppose that we want to remove the iris10 vector from the objects we have to
work with. The command to delete objects is rm().

8

> rm(iris10)

>

Now let’s list the objects in our workspace again.

> ls()

[1] "v" "v2" "v3"

>

You can see that iris10 is no longer available on our workspace.

I think this is a good stopping point for now. To quit R, simply type q() into
the command prompt.

Now upon exiting R it will ask you if you would like to save your workspace.
If you select Yes it will keep all objects that were listed when you executed the
ls() command. If you select No, the next time you run R you will be starting
over with all your objects, datasets and variables. There may be times when
either choice is preferable and you can always check to see what objects are on
your workspace with the ls() command when you start R up again.

This first lesson demonstrates some basic operations in R. We’ll next look at
how to load external datasets and how to do some basic analyses.

9

2 Importing Data

Now that we’ve covered some basics of how R works and are more comfortable
with the command line, let’s move on to looking at how to load data into R.

Again you will be using the command line prompt in R to tell the software
what you want it to do, this includes reading in your datasets. Let’s start
by downloading our dataset titled cancer_and_smoking.txt from our tuto-
rial website. I’m going to save my dataset on the “desktop” on my computer.
Now, when you open a Microsoft Word document on your computer you have
to show Microsoft Office where your Word file is located on your computer
by selecting the correct folder and location. The same is true in R. Instead
of clicking on the folder icons like in MS Office, R asks you to tell it through
the command line. For my computer configuration, the location of my dataset is
C:\Documents_and_Settings\Admin\Desktop\cancer_and_smoking.csv. De-
pending on your computer this location may vary. The easiest way to determine
your dataset’s location is to look at the navigation bar at the top of the window
of the folder that contains your dataset. This tool bar should look something
like this:

The type of data file we will start with is a csv file. These files can be read
into Microsoft Excel easily and are very commonly used. The command in R
to read these files is read.csv(). Inside the parentheses we need to tell R a few
things about our data, most importantly where it is located. R requires you to
have two sets of back slashes between folders in the command when calling the
read.csv command. In this situation the command to read in my data will look
like this:

>smoking <- read.csv("C:\\Documents and Settings\\Admin\\Desktop

\\cancer_and_smoking.csv", header = F)

>

Now let’s look at what we just read in. Remember we can print out our smoking
dataset by typing smoking into the command prompt, let’s look at the first 10
entries of this dataset.

> smoking[1:10,]

1 AL 18.20 2.90 17.05 1.59 6.15

2 AZ 25.82 3.52 19.80 2.75 6.61

3 AR 18.24 2.99 15.98 2.02 6.94

4 CA 28.60 4.46 22.07 2.66 7.06

5 CT 31.10 5.11 22.83 3.35 7.20

6 DE 33.60 4.78 24.55 3.36 6.45

7 DC 40.46 5.60 27.27 3.13 7.08

10

8 FL 28.27 4.46 23.57 2.41 6.07

9 ID 20.10 3.08 13.58 2.46 6.62

10 IL 27.91 4.75 22.80 2.95 7.27

>

As you can see, this dataset shows some data by state. The headers for each
data column should be State, Cigarette, Bladder, Lung, Kidney, and Leukemia.
Unfortunately this dataset did not have the data headers built in but we can
always add them. Recall our concatenate function, c(), that we learned in the
first lesson. This function works with things other than numbers. To add head-
ers to our data, we call the following command:

> names(smoking) <- c("State", "Cigarette", "Bladder", "Lung",

"Kidney", "Leukemia")

>

Now let’s call our dataset again,

> smoking[1:10,]

State Cigarette Bladder Lung Kidney Leukemia

1 AL 18.20 2.90 17.05 1.59 6.15

2 AZ 25.82 3.52 19.80 2.75 6.61

3 AR 18.24 2.99 15.98 2.02 6.94

4 CA 28.60 4.46 22.07 2.66 7.06

5 CT 31.10 5.11 22.83 3.35 7.20

6 DE 33.60 4.78 24.55 3.36 6.45

7 DC 40.46 5.60 27.27 3.13 7.08

8 FL 28.27 4.46 23.57 2.41 6.07

9 ID 20.10 3.08 13.58 2.46 6.62

10 IL 27.91 4.75 22.80 2.95 7.27

>

We now have names associated with each column. This makes it much easier
to interoperate and call other functions in R to analyze the dataset.

R can read many different types of dataset formats. For all dataset formats,
including .txt files, you can call the read.table() command, you just have to tell
R a few more details about the dataset format.

Let’s try using some of these other functions on a new dataset. We’ll next
look at the dataset titanic.txt. This dataset does include the data headers in
the file. We need to tell R that the first row does contain the headers and
not data. To do this we will add an additional option to the read.table com-
mand. Additionally, we must tell R how the data is formatted in the text file.
Are the data columns separated by a comma, a space or tab? In this case it is
separated by a tab so we must include that in the read.table() command as well:

> titanic <- read.table("C:\\Documents and Settings\\Admin\\Desktop\\

titanic.txt", header=T, sep="\t")

>

11

Now let’s check what we added into the command. The first command in the
read.table() function is the location of the dataset. The second statement tells
R that there is a header in the file for the variables (header = F if there is no
header). The next statement tells R that the dataset file has columns separated
by a tab. Now let’s look at the first few lines of this dataset:

> titanic[1:10,]

Name PClass Age Sex Survived

1 Allen, Miss Elisabeth Walton 1st 29.00 female 1

2 Allison, Miss Helen Loraine 1st 2.00 female 0

3 Allison, Mr Hudson Joshua Creighton 1st 30.00 male 0

4 Allison, Mrs Hudson JC (Bessie Waldo Daniels) 1st 25.00 female 0

5 Allison, Master Hudson Trevor 1st 0.92 male 1

6 Anderson, Mr Harry 1st 47.00 male 1

7 Andrews, Miss Kornelia Theodosia 1st 63.00 female 1

8 Andrews, Mr Thomas, jr 1st 39.00 male 0

9 Appleton, Mrs Edward Dale (Charlotte Lamson) 1st 58.00 female 1

10 Artagaveytia, Mr Ramon 1st 71.00 male 0

>

This may sound pretty complex. With all these different data types and different
scenarios, what do I need to include? All R commands will have corresponding
help files. The easiest way to ask R for help is to type the ? followed by the
command name. The other way to call help in R is the help() command. Let’s
try this for our read.table() command.

12

As you can see, a new window will pop up that shows help for the command.
It will break down all the options for the command, their default values and
descriptions of the options. This is always a great first step if you run into
problems with any R function.

In this lesson we have demonstrated how to import two very common formats
of data into R, how to associate the variable names and to find additional help
for functions in R. In the next lesson we will begin some basic analysis on our
datasets and learn how to manipulate data in R.

13

3 Basic Analysis

Now that we have read in our dataset, let’s look at some of the characteristics
of it. It’s always a good idea to take a look at what you have just read into R to
make sure it was done correctly. I always like to look at the first few observations
(like we did with the titanic data above). Also, with a few simple commands,
R will provide a few very helpful characteristics like the header names, the size
of your dataset and a table that can describe your dataset.

Let’s take a look at the titanic dataset.

> titanic <- read.table("C:\\Documents and Settings\\Admin\\Desktop\\

titanic.txt", header=T, sep="\t")

> names(titanic)

[1] "Name" "PClass" "Age" "Sex" "Survived"

> dim(titanic)

[1] 1313 5

> table(titanic$Survived)

0 1

863 450

>

As you can see, these commands create an initial overview of your dataset and
make it easy to see if you read it into R correctly. The table() command tabu-
lates the data for one of your discrete variables. In this case I asked it to tell me
the number of people in the dataset that survived and did not survive. Notice
that the dollar symbol, $, tells R that I am looking for a table of the titanic
object with regard to the variable Survived.

Now let’s suppose that I want to create a new data frame that contains all the
people in the titanic dataset that survived. Since the dataset has a variable
coded as 1 for Survived, it is easy to subset our original dataset with the fol-
lowing command:

titanic.survived <- titanic[titanic$Survived == 1,]

> titanic.survived[1:10,]

Name PClass Age Sex

1 Allen, Miss Elisabeth Walton 1st 29.00 female

5 Allison, Master Hudson Trevor 1st 0.92 male

6 Anderson, Mr Harry 1st 47.00 male

7 Andrews, Miss Kornelia Theodosia 1st 63.00 female

9 Appleton, Mrs Edward Dale (Charlotte Lamson) 1st 58.00 female

12 Astor, Mrs John Jacob (Madeleine Talmadge Force) 1st 19.00 female

13 Aubert, Mrs Leontine Pauline 1st NA female

14 Barkworth, Mr Algernon H 1st NA male

16 Baxter, Mrs James (Helene DeLaudeniere Chaput) 1st 50.00 female

19 Beckwith, Mr Richard Leonard 1st 37.00 male

Survived

1 1

5 1

6 1

14

7 1

9 1

12 1

13 1

14 1

16 1

19 1

>

As we can see from the output, only people that survived are included in the
titanic.survived data frame. Note that this command does not move these en-
tries in our original dataset to this new data frame, but it does copy them.

Let’s now look at another very useful feature of R. Looking back at the smoking
and cancer dataset, suppose that we have come up with a new metric to measure
cancer by adding up bladder cancer, lung cancer, kidney cancer and leukemia
rates. This is very simple to do by hand or even in an Excel spreadsheet. But
we can do this on the fly and create a new variable very quickly in R and even
attach it to our dataset.

> smoking <- read.table("C:\\Documents and Settings\\Admin\\Desktop\\

cancer_and_smoking.txt", header=T, sep="\t")

> names(smoking)

[1] "STATE" "CIG" "BLAD" "LUNG" "KID" "LEUK"

> RATE <- smoking$BLAD + smoking$LUNG + smoking$KID + smoking$LEUK

> RATE

[1] 27.69 32.68 27.93 36.25 38.49 39.14 43.08 36.51 25.74 37.77 34.20 31.41

[13] 30.05 29.11 39.11 35.19 41.35 36.65 37.87 29.74 26.51 34.39 33.78 31.14

[25] 39.09 42.17 25.96 40.65 25.62 36.69 32.29 26.58 37.86 28.57 29.01 29.31

[37] 33.66 24.23 35.58 34.64 34.76 30.97 27.56 38.56

>

This new variable is called RATE, and our command creates a string that sums
up the bladder cancer, lung cancer, kidney cancer and leukemia rates. Now if
we wish to attach it to our dataset we simply have to add this column to the
data frame. The command to do this is called cbind().

> smoking <- cbind(smoking, RATE)

> smoking

STATE CIG BLAD LUNG KID LEUK RATE

1 AL 18.20 2.90 17.05 1.59 6.15 27.69

2 AZ 25.82 3.52 19.80 2.75 6.61 32.68

3 AR 18.24 2.99 15.98 2.02 6.94 27.93

4 CA 28.60 4.46 22.07 2.66 7.06 36.25

5 CT 31.10 5.11 22.83 3.35 7.20 38.49

6 DE 33.60 4.78 24.55 3.36 6.45 39.14

7 DC 40.46 5.60 27.27 3.13 7.08 43.08

8 FL 28.27 4.46 23.57 2.41 6.07 36.51

9 ID 20.10 3.08 13.58 2.46 6.62 25.74

10 IL 27.91 4.75 22.80 2.95 7.27 37.77

11 IN 26.18 4.09 20.30 2.81 7.00 34.20

12 IO 22.12 4.23 16.59 2.90 7.69 31.41

13 KS 21.84 2.91 16.84 2.88 7.42 30.05

15

14 KY 23.44 2.86 17.71 2.13 6.41 29.11

15 LA 21.58 4.65 25.45 2.30 6.71 39.11

16 ME 28.92 4.79 20.94 3.22 6.24 35.19

17 MD 25.91 5.21 26.48 2.85 6.81 41.35

18 MA 26.92 4.69 22.04 3.03 6.89 36.65

19 MI 24.96 5.27 22.72 2.97 6.91 37.87

20 MN 22.06 3.72 14.20 3.54 8.28 29.74

21 MS 16.08 3.06 15.60 1.77 6.08 26.51

22 MO 27.56 4.04 20.98 2.55 6.82 34.39

23 MT 23.75 3.95 19.50 3.43 6.90 33.78

24 NB 23.32 3.72 16.70 2.92 7.80 31.14

25 NE 42.40 6.54 23.03 2.85 6.67 39.09

26 NJ 28.64 5.98 25.95 3.12 7.12 42.17

27 NM 21.16 2.90 14.59 2.52 5.95 25.96

28 NY 29.14 5.30 25.02 3.10 7.23 40.65

29 ND 19.96 2.89 12.12 3.62 6.99 25.62

30 OH 26.38 4.47 21.89 2.95 7.38 36.69

31 OK 23.44 2.93 19.45 2.45 7.46 32.29

32 PE 23.78 4.89 12.11 2.75 6.83 26.58

33 RI 29.18 4.99 23.68 2.84 6.35 37.86

34 SC 18.06 3.25 17.45 2.05 5.82 28.57

35 SD 20.94 3.64 14.11 3.11 8.15 29.01

36 TE 20.08 2.94 17.60 2.18 6.59 29.31

37 TX 22.57 3.21 20.74 2.69 7.02 33.66

38 UT 14.00 3.31 12.01 2.20 6.71 24.23

39 VT 25.89 4.63 21.22 3.17 6.56 35.58

40 WA 21.17 4.04 20.34 2.78 7.48 34.64

41 WI 21.25 5.14 20.55 2.34 6.73 34.76

42 WV 22.86 4.78 15.53 3.28 7.38 30.97

43 WY 28.04 3.20 15.92 2.66 5.78 27.56

44 AK 30.34 3.46 25.88 4.32 4.90 38.56

>

Let’s now look at how to calculate some basic statistics in R. Things like mean,
median, variance, minimum and maximum values are all used quite often. R
makes these statistics very easy to calculate. You may suspect, mean(), me-
dian(), var(), min() and max() are the commands for the corresponding statis-
tics. Let’s take a look at these statistics in the cancer and smoking dataset.

> mean(smoking$LUNG)

[1] 19.65318

> median(smoking$LUNG)

[1] 20.32

> var(smoking$LUNG)

[1] 17.87701

> min(smoking$LUNG)

[1] 12.01

> max(smoking$LUNG)

[1] 27.27

>

There are a few commands in R that are called general commands. This is
because depending on how you call the command you will have different things
returned by R. One of these commands is summary(). Let’s see how it works

16

when applied to our cancer and smoking dataset.

> summary(smoking)

STATE CIG BLAD LUNG

Length:44 Min. :14.00 Min. :2.860 Min. :12.01

Class :character 1st Qu.:21.23 1st Qu.:3.208 1st Qu.:16.44

Mode :character Median :23.77 Median :4.065 Median :20.32

Mean :24.91 Mean :4.121 Mean :19.65

3rd Qu.:28.10 3rd Qu.:4.782 3rd Qu.:22.81

Max. :42.40 Max. :6.540 Max. :27.27

KID LEUK

Min. :1.590 Min. :4.900

1st Qu.:2.458 1st Qu.:6.532

Median :2.845 Median :6.860

Mean :2.795 Mean :6.830

3rd Qu.:3.112 3rd Qu.:7.207

Max. :4.320 Max. :8.280

>

As you can see, the summary command in this instance returns the minimum,
maximum, mean and all three quartiles for each variable in the dataset. The
STATE field is summarized as well, but since the variable is not numeric the
same statistics are not returned.

The last topic we will discuss in this lesson is using scripts. Thus far we have
been going command by command. Most times it is beneficial to create a script
to run your analysis in R. The main benefit is that you have a record of your
analysis and it makes it much easier to replicate your work. Additionally, if you
commonly use a single procedure to analyze your work, by using a script you
can make small changes to the script depending on your dataset and save a lot
of time.

To start a new script, go to the File drop down menu and select “New script”.
This opens up a new window that you can type your commands into.

17

After you have entered in the commands you want to run, you can either run
select lines in the script or the whole script file. To run a line of script, highlight
the line with your mouse and select the middle icon on the tool bar at the top
of the screen. Make sure that you do not have anything typed into the current
command line when you are running scripts.

Let’s look at an example of running scripts.

clear workspace

rm(list=ls())

read in brain data

brain <- read.table("C:\\Documents and Settings\\Admin\\Desktop

\\brain_size_data.txt", header=T, sep="\t")

look at dataset

18

names(brain)

dim(brain)

brain[1:10,]

table(brain$Gender)

subset by gender

brainFemale <- brain[brain$Gender=="Female",]

brainMale <- brain[brain$Gender=="Male",]

#look at summary statistics by gender

summary(brainFemale)

summary(brainMale)

As you can see, this script contains commands to load a new dataset. It looks at
some of the characteristics of the dataset, subsets the dataset and looks at some
summary statistics. Also, you may notice the lines starting with the pounds
sign. The # tells R to ignore all text to the right of the sign. This allows you to
make comments in your script so you can remember what you were trying to do.
This also makes it much easier to troubleshoot problems later on. Remember
that if you are using different computers with your scripts you may have to
change the directory that your dataset is stored within your script. Now let’s
run this script and see what happens.

> # clear data

>

> rm(list=ls())

>

> # read in brain data

>

> brain <- read.table("C:\\Documents and Settings\\Admin\\Desktop

\\brain_size_data.txt", header=T, sep="\t")

>

> # look at dataset

>

> names(brain)

[1] "Gender" "FSIQ" "VIQ" "PIQ" "Weight" "Height"

[7] "MRI_Count"

> dim(brain)

[1] 40 7

> brain[1:10,]

Gender FSIQ VIQ PIQ Weight Height MRI_Count

1 Female 133 132 124 118 64.5 816932

2 Male 140 150 124 NA 72.5 1001121

3 Male 139 123 150 143 73.3 1038437

4 Male 133 129 128 172 68.8 965353

5 Female 137 132 134 147 65.0 951545

6 Female 99 90 110 146 69.0 928799

7 Female 138 136 131 138 64.5 991305

19

8 Female 92 90 98 175 66.0 854258

9 Male 89 93 84 134 66.3 904858

10 Male 133 114 147 172 68.8 955466

> table(brain$Gender)

Female Male

20 20

>

> # subset by gender

>

> brainFemale <- brain[brain$Gender=="Female",]

> brainMale <- brain[brain$Gender=="Male",]

>

> #look at summary statistics by gender

>

> summary(brainFemale)

Gender FSIQ VIQ PIQ

Length:20 Min. : 77.00 Min. : 71.0 Min. : 72.0

Class :character 1st Qu.: 90.25 1st Qu.: 90.0 1st Qu.: 93.0

Mode :character Median :115.50 Median :116.0 Median :115.0

Mean :111.90 Mean :109.5 Mean :110.5

3rd Qu.:133.00 3rd Qu.:129.0 3rd Qu.:128.8

Max. :140.00 Max. :136.0 Max. :147.0

Weight Height MRI_Count

Min. :106.0 Min. :62.00 Min. :790619

1st Qu.:125.8 1st Qu.:64.50 1st Qu.:828062

Median :138.5 Median :66.00 Median :855365

Mean :137.2 Mean :65.77 Mean :862655

3rd Qu.:146.2 3rd Qu.:66.88 3rd Qu.:882669

Max. :175.0 Max. :70.50 Max. :991305

> summary(brainMale)

Gender FSIQ VIQ PIQ

Length:20 Min. : 80.00 Min. : 77.00 Min. : 74.0

Class :character 1st Qu.: 89.75 1st Qu.: 95.25 1st Qu.: 86.0

Mode :character Median :118.00 Median :110.50 Median :117.0

Mean :115.00 Mean :115.25 Mean :111.6

3rd Qu.:139.25 3rd Qu.:145.00 3rd Qu.:128.0

Max. :144.00 Max. :150.00 Max. :150.0

Weight Height MRI_Count

Min. :132.0 Min. :66.30 Min. : 879987

1st Qu.:148.8 1st Qu.:68.90 1st Qu.: 919529

Median :172.0 Median :70.50 Median : 947242

Mean :166.4 Mean :71.43 Mean : 954855

3rd Qu.:180.8 3rd Qu.:73.75 3rd Qu.: 973496

Max. :192.0 Max. :77.00 Max. :1079549

NA’s : 2.0 NA’s : 1.00

>

As you can see each command was run, just as before when we ran these com-
mands piece wise. This technique may seem like overkill now just looking at
these simple analyses, but as your statistical analysis becomes more sophisti-
cated, using scripts is a must.

20

In this lesson we have demonstrated how easy it is to manipulate data in R for
analysis and how to use scripts to save work for further use. The next lesson
will demonstrate one of R’s most popular features, plotting and graphics.

21

4 Plotting

Now let’s take a look at how to create plots. This is another of R’s most bene-
ficial features. Just like the other features that we have looked at thus far, we
will create plots in R using command line. Let’s first take a look at our Titanic
dataset that we used previously.

> titanic <- read.table("C:\\Documents and Settings\\Admin\\Desktop\\

titanic.txt", header=T, sep="\t")

> names(titanic)

[1] "Name" "PClass" "Age" "Sex" "Survived"

> boxplot(Age ~ PClass, data=titanic)

>

1st 2nd 3rd

0
10

20
30

40
50

60
70

Let’s see what has been plotted for us. We can see that there were three classes
on board the titanic, and the boxplot function has plotted boxplots of the age of
the passengers on the Titanic and separated the passengers out by class. Also
if you look at the command, you will notice that we also had to tell R where to
find the Age and PClass data.

Let’s take a look at another plot with this dataset. How about looking at age
again but separating the group by whether the passenger survived or not.

> boxplot(Age ~ Survived, data=titanic)

>

22

0 1

0
10

20
30

40
50

60
70

One thing you may have noticed in these examples is that the variable that we
plotted, age, is continuous where as the variable that we separated by is discrete.
If this constraint is not met, you will receive an error message from R.

Let’s now take a look at another great diagnostic plot. The histogram is very
useful to get an idea of what a variable looks like. Let’s see what the distribu-
tion of the age of the Titanic passengers looked like.

> hist(titanic$Age)

>

23

Histogram of titanic$Age

titanic$Age

F
re

qu
en

cy

0 20 40 60

0
20

40
60

80
10

0
12

0
14

0

You can see from this plot that the majority of the passengers on the Titanic
were in between 20 and 30 years old.

Now what if we wanted to include this plot in a report or homework assign-
ment? While there are default titles and labels on the axes, I don’t think we
would want to turn in something that says the title of this plot is Histogram of
titanic$Age . In R you have control over the titles, the axes labels and just
about anything else you want to change or customize. Let’s add some better
labels to this plot.

> hist(titanic$Age, main = "Histogram of the Age of the Titanic Passengers",

xlab = "Passenger Age")

>

24

Histogram of the Age of the Titanic Passengers

Passenger Age

F
re

qu
en

cy

0 20 40 60

0
20

40
60

80
10

0
12

0
14

0

Now, doesn’t that look better?

Let’s now take a look at some advanced plotting techniques. We’ll start by
reloading our Brain Size dataset.

> brain <- read.table("C:\\Documents and Settings\\Admin\\Desktop\\

brain_size_data.txt", header = T, sep="\t")

> brain[1:10,]

Gender FSIQ VIQ PIQ Weight Height MRI_Count

1 Female 133 132 124 118 64.5 816932

2 Male 140 150 124 NA 72.5 1001121

3 Male 139 123 150 143 73.3 1038437

4 Male 133 129 128 172 68.8 965353

5 Female 137 132 134 147 65.0 951545

6 Female 99 90 110 146 69.0 928799

7 Female 138 136 131 138 64.5 991305

8 Female 92 90 98 175 66.0 854258

9 Male 89 93 84 134 66.3 904858

10 Male 133 114 147 172 68.8 955466

>

Recall that this dataset has six continuous variables along with the gender of
each observation. Let’s start by graphing all six of our continuous variables.

> plot(brain[,2:7], col = 6)

>

25

FSIQ

80 120 120 160 800000 1000000

80
11

0
14

0

80
12

0

VIQ

PIQ

80
12

0

12
0

16
0

Weight

Height

65
70

75

80 110 140

80
00

00
10

00
00

0

80 120 65 70 75

MRI_Count

The plot() function is another general function in R just like summary was in
the previous section. Depending on the type of object we provide and the type
of data in the dataset, plot() will return different plots. You can see from the
command entered, we asked R to plot all rows in the brain dataset but only
columns two through 7. The second part of the plot command, col = 6, told R
that I would like to change the color to 6 which corresponds to a fuscia. This
is very useful in looking at the relationships between your data’s variables, but
let’s take this a step further. What if we want to determine whether or not each
of these data points in the graph are male or female. We could mark the female
observations red if we want. The easiest way to do this is to create another
column in the brain size dataset to denote the color based on the gender of the
observation.

> brain$GenderInt <- 5*(brain$Gender=="Female") + 1

>

We have now created a variable that will be 6 if the observation’s gender is
female and 1 if the observation’s gender is male. Now let’s create our graph
again with this color distinction and add a title.

> plot(brain[,2:7], col = brain$GenderInt, main = "Brain Size Plot")

>

26

FSIQ

80 120 120 160 800000 1000000

80
11

0
14

0

80
12

0

VIQ

PIQ

80
12

0

12
0

16
0

Weight

Height

65
70

75

80 110 140

80
00

00
10

00
00

0

80 120 65 70 75

MRI_Count

Brain Size Plot

Let’s take a look at another useful feature in R. Say we want to produce multiple
plots on one screen. R makes this very easy to do. Let’s go back to our Smoking
and Cancer dataset to look at an example.

> smoking <- read.table("C:\\Documents and Settings\\Admin\\Desktop\\

cancer_and_smoking.txt", header = T, sep="\t")

> smoking[1:10,]

>

Let’s say that we want to create four plots displaying smoking versus bladder,
lung, kidney and leukemia cancers.

> par(mfrow = c(2,2))

> plot(CIG~BLAD, data = smoking)

> plot(CIG~LUNG, data = smoking)

> plot(CIG~KIN, data = smoking)

> plot(CIG~LEUK, data = smoking)

>

27

3 4 5 6

15
20

25
30

35
40

BLAD

C
IG

15 20 25

15
20

25
30

35
40

LUNG

C
IG

1.5 2.0 2.5 3.0 3.5 4.0

15
20

25
30

35
40

KID

C
IG

5.0 5.5 6.0 6.5 7.0 7.5 8.0

15
20

25
30

35
40

LEUK

C
IG

You can see that we have now created a series of plots arranged in a 2 by 2
array. Depending on how you would like the plots arranged, you could have
asked R to set them up in a 4 by 1 array or 1 by 4 just by changing the initial
dimensions in the mfrow command.

This just scratches the surface of the graphical capabilities of R; however, it
should allow you to create most of the plots you will need to use during a be-
ginning statistics course. Remember, if you ever forget what plotting options
you have, it’s easy to look up in the help() command.

28

5 Installing Packages

The base R package that you have installed contains the functionality for the
majority of the analysis you execute in a beginning statistics course. There are
numerous external packages that you can add to augment the functions in the
base package. Let’s go through the process of adding an R package.

First, select the “Package” menu and select “Install package(s)”. Then select
your desired CRAN mirror in the list that appears; the ones in the United States
are towards the bottom of the list.

In this example we are going to install the “exactRankTests” package. After
selecting the desired package, R will download the required files and install them
on your computer.

29

Now, in order to use the features in the package you have just installed, you
must tell R to load the package. Loading the package must be done each R ses-
sion. This is done by using the require() or library() command with the exact
name of the package. Now you are ready to use the functions in your package.
Full documentation for all packages can be found on the R CRAN websites.

This concludes this introduction to R. In these lessons we have learned the
basic R skills that you will need for a beginning statistics course. If you have
specific questions on other features that were not covered in this tutorial, R is
very well documented with help files. Also online manuals that can be found at
http://www.r-project.org under the document and manuals menu.

30

