
Daphne Yao
Professor

Virginia Tech

Salman Ahmed
PhD Candidate

Virginia Tech

Long Cheng
Assistant Professor
Clemson University

Hans Liljestrand
Postdoctoral Fellow
University of Waterloo

N. Asokan
Professor

University of Waterloo

Page 1

Tutorial: Investigating Advanced
Exploits for System Security Assurance

#IEEESecDev https://secdev.ieee.org/2021

Page 2

Purposes of this Tutorial

To help understand
advanced
attack/defense
techniques with
hands on activities

To inspire promising
defense and
measurement
opportunities in
system security

Page 3

The need for breaking down advanced exploits

Assessing impact of defenses
on attack components.

measurable metrics

systemicmeasurement	
methodologies

Attack investigation can provide us insights on:

Necessary for system
security assurance

Improving awareness
on system security.

choosing effective
security parameters.

Page 4

Will discuss many system security topics:
1. Data-oriented attacks and their defenses
2. Leaked addresses or pointers
3. Time in exploits
4. Defense schemes (e.g., block vs instruction-level randomization)
5. Hardware-assisted protections

Page 5

In our CCS 2020 work1, we find out:

1. Attackers only need several seconds to find Turing Complete gadgets

2. Locations of leaked addresses/pointers have no impact on gadget
availability, but affect how fast attackers find gadgets

3. Instruction-level single-round randomization still works under JIT-ROP!

1Salman Ahmed, Ya Xiao, Kevin Z. Snow, Gang Tan, Fabian Monrose, and Danfeng (Daphne) Yao. 2020. Methodologies for
Quantifying (Re-)randomization Security and Timing under JIT-ROP. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS ‘20), 1803–1820. DOI:https://doi.org/10.1145/3372297.3417248

Details of these impact will be covered in later slides

Page 6

Gateway Execution Command & Control

Phishing Vulnerability

Entrance

Reconnaissance

Exploit payload

Copying
data

Monitoring
traffic

Identification

Target, gateways, etc. root shell, malware installation, etc.Payload, connectivity

Construction

Input control

Buffer overflow, use-after-free, etc.

Reuse code from binaries

Multiple Phases of an Exploit

Page 7

Ø Memory disclosure is necessary
for code reuse attacks.
§ code pointer leak
§ object pointer leak

Ø Availability of reusable code and

its quality (i.e., gadget quality)

Ø Availability of system interfaces

(i.e., system calls)

Ø Triggerable vulnerability

Ø Gadget reachability Presence of defenses lead to different attack conditions

Reconnaissance must consider the underlying defenses in the system

Factors of a Successful Exploit

Page 8

1997-2005 2007-2010 2011 2013 2014 2015 2016 2017 2018

Return-to-libc
[1, 2, 3, 4]

ROP [5, 6, 7]

JOP [8, 9]

JITROP [10]

BROP [11]
COP [12]

COOP [13] AOCR [15]

CROP [14] PIROP [16]
PCOP [17]

History of Code Reuse Attacks

ROP: Return-Oriented Programming
JOP: Jump-Oriented Programming
JITROP: Just-In-Time Return-Oriented Programming
BROP: Blind Return-Oriented Programming
PIROP: Position Independent ROP

AOCR: Address Oblivious Code Reuse
COP: Call-Oriented Programming
COOP: Counterfeit Object-Oriented Programming
CROP: Crash-Resistance Oriented Programming

Page 9

Coarse-grained
randomization

Function-level
randomization

Block-level
randomization

Instruction-level
randomization

Register-level
randomization

PaX ASLR’03 [18]

ASLP’06 [19] , ASR’12
[20], Selfrando’16 [21]

Binary Stirring’12 [22],
Remix’16 [23], CCR’18 [24]

ILR’12 [25],
Zipr’17 [26]

MCR’13 [27],
Readactor’15 [28]

ASLR: Address Space Layout Randomization
ASLP: Address Space Layout Permutation
ASR: Address Space Randomization
CCR: Compiler-assisted Code Randomization
MCR: Multicompiler

History of Memory Randomization (1)

Page 10

Continuous
Randomization

Stabilizer’13 [29]
Remix’16 [23]

Runtime-ASLR’16 [31]
Shuffler’16 [32]

Timely Address Space
Randomization’15 [30] CodeArmor’17 [33]

History of Memory Randomization (2)

Page 11

Latest versions of Windows, Linux, MacOS, Android, and iOS operating systems
support only the coarse-grained ASLR with Position Independent Executable (PIE).

Page 12

ASLR (aka Coarse-grained ASLR)

Makes the finding of gadgets in known addresses (i.e., code reuse)
difficult – attackers still able to deduce gadgets from leaks.

Position Independent Executable (PIE) extends ASLR
to randomize address of main binary on each run.

.TEXT

Heap

Stack

.GOT

.DATA

Library

Application address space

Run 1

.TEXT

Heap

Stack

.GOT

.DATA

Library

Application address space

Run 2

Heap

.DATA

.TEXT

Library

.GOT

Stack

Application address space

Run 3

Address Space Layout Randomization or ASLR aims to make the code reuse task difficult
by randomizing the location of functions or gadgets.

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

ASLR + PIE

Page 13

.TEXT
Heap
Stack
.GOT
.DATA
Library

Application
address space

Run 1

.TEXT
Heap
Stack
.GOT
.DATA
Library

Application
address space

Run 2

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6

.TEXT

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

0x08040600

0x08040700

0x08040800

0x08040900

0x08040a00

0x08040b00

Basic block 1
Basic block 2
Basic block 3
Basic block 4
Basic block 5
Basic block 6
FUNCTION

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6

BASIC BLOCK

Selfrando [21] CCR [24]
Multicompiler [27]

Zipr [26]

Fine-grained ASLR

Page 14

Coarse-grained ASLR may not be effective in case of leaks (e.g., code
pointer leaks, object pointer leaks, etc.).

Page 15

Speakers’ Component in Our Tutorial Today

Salman Ahmed

Long Cheng

Hans Liljestrand

N. Asokan

Daphne Yao

1. Overview of advanced
attacks and various defenses.

3. Overview of data-oriented
attacks using data manipulation.

4. Demonstration of DOP
exploits and defenses.

2. Code reuse attacks, ROP, ASLR,
JITROP, and Demonstrations. 5. Research directions in

hardware-assisted
protection

6. Concluding remarks
and research directions.

Long Cheng

- Code Reuse Attacks,
- Return-Oriented Programming (ROP),
- Just-In Time ROP (JITROP), and
- Demonstration

Page 16

.data
.bss
.text
heap
stack

library 1
library 2

shell	code

nop

nop

return	address

ebp
…

buffer
local	variables

…

0x080405c8

0x080405f0
0x080405f4

0x08040600

high address

low address

string growth

stack growth

eip=ebp+4

Stack Layout

Injecting shell code in stack is prohibited by the NX or
DEP because stack is not executable.

Code reuse bypasses DEP or
NX by constructing shell code
using existing code, i.e.,
without injecting anything.

0x08080A24: pop eax; ret
0x08080C46: pop ebx; ret
0x0808A058: mov [ebx], eax; ret

Binary Layout

Gadgets

Code-reuse technique constructs shell
code using whole functions or gadgets

system()
exit()
Whole functions

Code Reuse Attack

Page 17

ROP gadgets

Return-Oriented Programming (ROP) [5]

Page 18

ROP uses short instructions followed by ret. These short instruction sequences
are called gadgets. Each gadget has a specific purpose.

Stack

Chaining gadgets to
achieve a malicious goal.

Other gadget categories include MOV TC, priority, and payload gadget sets [41].

ROP Gadgets can Achieve Turing-complete (TC)
operations [42]

Page 19

We compiled various gadgets from
multiple sources [41].

Page 20

Real-World Code Reuse Attacks

Details of one font exploitation in the next slide.

Page 21

Exploit of One Font Vulnerability

Also, allows elevation of privileges in the Windows kernel through processes.

Vulnerability Reason Affected programs Mitigation bypasses
CVE-2015-0093 unlimited out-of-bounds

stack manipulation
Adobe Reader 11.0.10 on
Windows 8.1 Update 1, both
32-bit and 64-bit.

Stack cookies, DEP,
ASLR, and SMEP

Technique ROP gadgets System functions
- Stack pointer (SP) manipulation
- Manipulation through charstring program
- ROP gadgets
- System functions

XCHG EAX, EDX
MOV EBX, EDX
POP ESI
POP ECX
REP MOVSD
JMP EBX

VirtualProtect
GetProcAddress(),
LoadLibrary()
NtGdiAddRemoteFontToDC

- Coarse-grained ASLR
Key Limitation: Can be bypassed using information leaks

- Fine-gained ASLR
Goal: aims to protect information leaks

Page 22

Does then fine-grained ASLR make code
reuse attacks impossible?

Page 23

No!!!

Just-In-Time Return-Oriented Programming2
(JITROP) [10]

Page 24

2Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-
in-time code reuse: On the effectiveness of fine-grained address space layout randomization. In 2013 IEEE Symposium on
Security and Privacy, pages 574–588. IEEE, 2013.

Just-In-Time ROP or JITROP [10]

Page 25

The key difference between ROP and JITROP is how the gadget is discovered.
JITROP dynamically discovers the gadgets.

P1, P2, … Pn are 4 KB code pages

JITROP’s uses dynamic code harvesting
technique to discover ROP gadgets.

The code harvesting starts from a single
code address/pointer leak

The technique leaks repeatedly leaks
multiple code pointers from the single
leak.

JITROP’s Dynamic Code Harvest

Page 26

JITROP [10] is a powerful attack technique known for bypassing fine-
grained ASLR. But it requires a code address/pointer leak to start with.

Also, some in-depth questions require answer:

1) How much time can an attack have to perform JIT-ROP attacks considering different
expressiveness of ROP attacks?

2) What impact do fine-grained ASLR schemes have on the Turing-complete expressiveness of
JIT-ROP payloads?

3) How do attack vectors (e.g., starting code pointer leaks) impact the JIT-ROP attacks?

JITROP’s Requirements and Some In-depth
Questions

Page 27

Page 28

*Salman Ahmed, Ya Xiao, Kevin Z. Snow, Gang Tan, Fabian Monrose, and Danfeng (Daphne) Yao. 2020. Methodologies for
Quantifying (Re-)randomization Security and Timing under JIT-ROP. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security (CCS ‘20), 1803–1820. DOI:https://doi.org/10.1145/3372297.3417248

We have addressed these in-depth questions
in our work titled

“Methodologies for Quantifying
(Re-)randomization Security and Timing under JIT-ROP*” [41]

Attackers Require a few Seconds!

Page 29

The upper bound* ranges from 1.5 to 3.5 seconds in our tested 17 applications
such as nginx, proftpd, firefox, etc with FOUR gadget sets [41].

* May vary with machine configurations

Impact of Fine-grained ASLR Schemes

Page 30

Main executables

Dynamic libraries

Reduction of Turing-complete gadget set with different
randomization schemes

Single-round instruction-level
randomization limits up to 90% gadgets
[41] and restricts Turing-complete
operations.

So, instruction-level randomization
is still useful.

Impact of the Location of Pointer Leakage

Page 31

No impact on connectivity Has an impact on the attack time: dense code pages
contain diverse set of gadgets

Impact of starting pointer locations on gadget harvesting time.

Connectivity of libc

Page 32

Is protecting code-reuse attacks (or in
broader term control-oriented attacks)

impossible?

No!!!
Control-Flow Integrity

Page 33

Demo Time

Page 34

Demo Setup
1. Download our tutorial repository from GitHub

$ git clone https://github.com/salmanyam/tutorial-secdev-2021.git
or download the repository as zipped and unzip it.

2. Install Docker if it is not already installed using the instructions in the following link
https://docs.docker.com/engine/install/ubuntu/ or run docker-install.sh script given in our repo.
$./docker-install.sh

3. Build a docker image using the provided Docker file in the tutorial repo. This may take 2-3
minutes to complete.

$ cd tutorial-secdev-2021
$ sudo docker build -t secdevt21 .

4. Run the docker image with privileged mode. The priviledged mode is necessary for ptrace that
is used in gdb for attaching a process and in our gadget finding code.

$ sudo docker run -it --privileged secdevt21

https://github.com/salmanyam/tutorial-secdev-2021.git
https://docs.docker.com/engine/install/ubuntu/

Page 35

Gadget Lookup
1. Run the nginx program given in the tutorial rep. The following command will start nginx server
and print a leaked address in the terminal.

$./nginx -c nginx.conf -g 'daemon on;' -p nginx

2. Get the pid of the nginx master process
$ ps aux | grep nginx

3. Give the following command to get the Turing-complete gadget set
$./jitrop -p <pid> -a <address>

4. To get other gadget sets, add an operation flag the end of the previous command as follows for
example.

$./jitrop -p <pid> -a <address> -o 7 [7 for MOV TC gadget set]

Page 36

Gadget Lookup Time
To get gadget lookup times, we can change the operation value as follows:

-o 1: Operation 1 outputs the time to collect all the gadgets from the Turing-complete gadget set.
-o 2: Operation 2 outputs the time to collect all the gadgets from the priority gadget set.
-o 3: Operation 3 outputs the time to collect all the gadgets from the MOV TC gadget set.
-o 5: Operation 5 outptus the time to collect all the gadgets from a payload gadget set.

For example, the following command gives times to get all gadgets from Turing-complete gadget
set.

$./jitrop -p <pid> -a <address> -o 1

Page 37

Impact of Different Starting Pointers on
Gadget Lookup

0x08040800

Changing the 4th bit from LSB gives a new code page address

0x08041800 0x0804B800 0x08045800

0x08040000

0x08041000 0x0804B000 0x08045000

Run gadget look from
different starting pointer
location and observe the
impact on

i) gadget availability and
ii) ii) gadget lookup time

bool lt(int x, int y) {
return x < y;

}

bool gt(int x, int y) {
return x > y;

}

void sort2(int a[], int
b[], int len) {

sort(a, len, lt);
sort(b, len, gt);

}

sort2():
call ID1,

sort
label ID1

call ID1,
sort

label ID1

ret ID0

sort():
call ID2, fp

label ID2

ret ID1

lt():

ret ID2

gt():

ret ID2

CFI aims to provide strong protection against all control-oriented attacks.

X

Program can jump and return to only legitimate targets defined in control-flow graph.

Control Flow Integrity (CFI)

Page 38

Page 39

Speakers’ Component in Our Tutorial Today

Salman Ahmed

Long Cheng

Hans Liljestrand

N. Asokan

Daphne Yao

1. Overview of advanced
attacks and various defenses.

3. Overview of data-oriented
attacks using data manipulation.

4. Demonstration of DOP
exploits and defenses.

2. Code reuse attacks, ROP, ASLR,
JITROP, and Demonstrations. 5. Research directions in

hardware-assisted
protection

6. Concluding remarks
and research directions.

Long Cheng

Memory Corruption Attacks

Page 40

ØControl-flow attacks
ØIncreasingly difficult due to many deployed defenses

ØNon-control data attacks (Data-oriented attacks)
Ø An appealing attack technique
Ø Without violating control-flow integrity

History of Data-Oriented Attacks

Page 41

2005 2015

Non-control-
data attacks
[Chen et al.,

Security]

FlowStitch
[Hu et al., S&P]

Data-Oriented Programing
[Hu et al., S&P]

Undermine CFI protection
[Davi. et al., NDSS]

Internet Explorer and Chrome
[Rogowski. et al., Euro S&P]

Nginx and Apache web servers
[Morton. et al., Euro S&P]

Block-Oriented Programming
[Ispoglou et al., CCS]

2016

Bypass SOP enforcement
In Chrome [Jia. et al., CCS]

2017 2018

Classification of Data-Oriented Attacks

Page 42

ØDirect data manipulation (DDM)
ØDirectly manipulate the target data

ØData-oriented programming (DOP)
ØAbuse existing short code sequences, and re-engineer them for
malicious purposes
ØIndirectly manipulate the target data
ØBOP (Block-Oriented Programming)

DDM Example

Page 43

ØFormat string vulnerability, buffer overflow, and double free
vulnerabilities, etc.

Direct data manipulation in a vulnerable web server wu-ftpd.

DDM Example

Page 44

Data pointer manipulation to infer
knowledge about address space layout.

DOP Attack

Page 45

ØAllows an attacker to perform arbitrary computations in
program memory by chaining the execution of short instruction
sequences (referred to as DOP gadgets)
ØThe execution of DOP gadgets should follow valid paths in a
CFG

ØFeatures
ØGadgets and code reuse
ØStitching mechanism and ordering constraint

DOP Example

Page 46

1 struct server{int *cur_max, total, type;} *srv;
2 int connet_limit = MAXCONN; int *size, *type;
3 char buf[MAXLEN];
4 Size = &buf[8]; type = &buf[12];
5 …
6 while (connet_limit--) {
7 readData(sockfd, buf); //stack bof
8 if(*type == NONE) break;
9 if(*type == STREAM)
10 *size = *(srv->cur_max);
11 else {
12 srv->type = *type; //assignment gadget
13 srv->total += *size; //addition gadget
14 } //...(code skipped)...
15 }

Vulnerable FTP server with
data-oriented gadgets [1]

[1] “Data-oriented programming: On the expressiveness of non-control data attacks,” IEEE S&P, 2016

Round 1:
*type is corrupted to be ‘A’, neither NONE or STREAM
size is corrupted to point to srv->type (srv+0x8)

srv->type = *type; è *size = ‘A’;

Round 2:
*type is corrupted to be ‘B’, neither NONE or STREAM
srv is corrupted to point to (srv-0x4)
srv-0x4+0x8=srv+0x4 will be srv->total
(srv->type refers to the address of srv->total)

srv->type = *type; è srv->total = ‘B’;

Round 3:
*type is corrupted to be neither NONE or STREAM
srv is corrupted to point to (srv-0x4)+0x4
(srv->total refers to the address of srv->total)

srv->total += *size; è srv->total = ‘A’ + ‘B’;

DOP attack re-interprets gadgets for malicious purposes

BOP Attack

Page 47

ØUnlike DOP, Block-Oriented Programming (BOP) constructs
data-oriented exploits by chaining the basic blocks together.

functional block

dispatcher block

SPloit Language (SPL)

Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018. Block oriented programming: Automating data-
only attacks. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1868–1882

Challenges

Page 48

ØStitching CFI-compatible gadgets is challenging
ØRequire memory-write primitives to stitch gadgets
ØInvolve multiple steps

ØLess evasive
ØHard to fully automate the process of generating end-to-
end DOP or BOP exploits

ØIn DOP, analyze and construct exploit manually

ØDefenses
ØDFI-based defenses incur high overhead of data-flow
tracking

Page 49

Speakers’ Component in Our Tutorial Today

Salman Ahmed

Long Cheng

Hans Liljestrand

N. Asokan

Daphne Yao

1. Overview of advanced
attacks and various defenses.

3. Overview of data-oriented
attacks using data manipulation.

4. Demonstration of DOP
exploits and defenses.

2. Code reuse attacks, ROP, ASLR,
JITROP, and Demonstrations. 5. Research directions in

hardware-assisted
protection

6. Concluding remarks
and research directions.

Long Cheng

Page 50

DOP attack on ProFTPd
• Deep dive into attack by Hu et al. [1]

• You can follow along using demo docker environment:
https://github.com/salmanyam/tutorial-secdev-2021

• Scripts and code are in ./dop

• Goal to understand steps required in DOP attack
• Facilitates sensible security trade-offs when defending
• Helps anticipate and avoid new exploitable faults in code

[1]: Hu, et al. “Data-oriented programming: on the expressiveness of non-control data attacks” IEEE SP 2016

hands-on

https://github.com/salmanyam/tutorial-secdev-2021
https://doi.org/10.1109/SP.2016.62

Page 51

Attack steps
• The steps of the DOP attack on ProFTPd:

• Some knowledge of memory layout (addresses and offsets)
• The address of main_server and its offset to main_server->ServerName

• A dispatch loop and gadget-selector
• The cmd_loop function and the overflow in ssreplace
• A set of gadgets to realize attack functionality

• E.g., assignment realized by exploiting sstrncopy

hands-on

Page 52

• How can we prevent the attack with what we now know?

1. Prevent memory errors in the first place

2. Hide information necessary for attack

3. Protect critical data from manipulation

hands-on
Preventing DOP

Page 53

1) Prevent: Memory safety and protection
• Can be shown using formal verification

• But requires considerable effort (e.g., seL4 microkernel [1])

• Can be “improved” using run-time protection
• But software-based approaches often slow [2]

• Typically, cannot provide full memory safety [3]

• HW-assisted protection helps, but also increases complexity or is incomplete
[4,5]

[1]: Klein, et al. “seL4: Formal verification of an OS kernel” ACM SIGOPS 2009
[2]: Szekeres, et al. “SoK: eternal war in memory,” IEEE SP 2013
[3]: Gil, et al. “There's a hole in the bottom of the C: on the effectiveness of allocation protection” IEEE SecDev 2018
[4]: Woodruff, et al. “The CHERI capability model: revisiting RISC in an age of risk” ACM/IEEE ISCA 2014
[5]: Joly, et al. “Security analysis of CHERI ISA” Microsoft Research 2020

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SecDev.2018.00021
https://doi.org/10.1109/ISCA.2014.6853201
https://raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf

Page 54

2) Hide: Randomization / obfuscation
• Address Space Layout Randomization (ASLR) can mitigate attacks

• But currently deployed implementations can be broken [1,2]

• Re-randomization makes exploitation more challenging [3]

• Can have high performance impact
• ASLR is not effective against DOP, necessarily

• ProFTPd demonstrates indirectly accessing data!

• Novel hardware-assisted approaches promising
• e.g., Obfuscating all addresses and randomizing the address space [4]

[1]: Shacham, et al. “On the effectiveness of address-space randomization” ACM CCS 2004
[2]: Snow, et al. “Just-in-time code reuse: on the effectiveness of fine-grained address space layout randomization” IEEE SP 2013
[3]: Williams-King, et al. “Shuffler: Fast and deployable continuous code re-randomization” USENIX OSDI 2016
[4]: Gallagher, et al. “Morpheus: a vulnerability-tolerant secure architecture …” ACM ASPLOS 2019

https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/SP.2013.45
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/williams-king
https://doi.org/10.1145/3297858.3304037

Page 55

3) Protect: Pointer protection
• Known attacks typically depend on data-pointer manipulation

• Pin-point focus on code-pointers has been successful in CFI [1]

• Data pointers can be protected using fault-isolation [2] cryptography [3]

• Prevents all published DOP attacks

• Hardware-assistance can make pointer protection faster and more secure
• For instance, Intel CET [4] (for code pointers) or ARM Pointer Authentication [5]

[1]: Abadi, et al. “Control-flow integrity” ACM CCS 2005
[2]: Kuznetsov, et al. “Code-pointer integrity” USENIX OSDI 2014
[3]: Mashtizadeh, et al. “CCFI: Cryptographically enforced control flow integrity” ACM CCS 2015
[4]: Intel “Control-flow enforcement technology specification” 2019
[5]: Qualcomm “Pointer authentication on ARMv8.3: design and analysis of the new software security instructions” 2017

https://doi.org/10.1145/1102120.1102165
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://doi.org/10.1145/2810103.2813676
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

Page 56

Speakers’ Component in Our Tutorial Today

Salman Ahmed

Long Cheng

Hans Liljestrand

N. Asokan

Daphne Yao

1. Overview of advanced
attacks and various defenses.

3. Overview of data-oriented
attacks using data manipulation.

4. Demonstration of DOP
exploits and defenses.

2. Code reuse attacks, ROP, ASLR,
JITROP, and Demonstrations. 5. Research directions in

hardware-assisted
protection

6. Concluding remarks
and research directions.

Long Cheng

Page 57

Hardware-assisted Defenses

Page 58

Protect against run-time attacks
without incurring a significant

performance penalty

Page 59

How to thwart run-time attacks?
Run-time attacks are now routine

Software defenses incur security vs. cost tradeoffs

Hardware-assisted defenses are attractive
but deployment can be a challenge

Page 60

Intel x84_64 mechanisms

Memory Protection
eXtension (MPX)

Memory Protection Keys
(PKU)

Control-flow Enforcement
Technology (CET)

Hardware assisted defenses in CotS
processors

ARMv8-A mechanisms

Pointer Authentication
(PA)

Memory Tagging
Extension (MTE)

Branch Target
Identification (BTI)

Page 61

ARMv8.3-A Pointer Authentication

General purpose hardware primitive approximating pointer integrity
• Ensure pointers in memory remain unchanged

Introduced in ARMv8.3-A specification (2016), improved in ARMv8.6-A (2020)
• First compatible processors 2018 (Apple A12 / iOS12)
• Userspace support in Linux 4.21, enhancements in 5.0, in-kernel support in 5.7
• Instrumentation support in GCC 7.0 (-msign-return address, deprecated in GCC 9.0, -mbranch-protection=pac-ret[+leaf] GCC 9.0

and newer)

PAuth PA Key
management

PA
Instructions

[1]: ARM. Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile. Version E.a. July 2019
[]2: ARM. Developments in the Arm A-Profile Architecture: Armv8.6-A. September 2019

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://www.phoronix.com/scan.php?page=news_item&px=ARM64-Pointer-Authentication
https://kernelnewbies.org/Linux_5.0
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.7-ARM64-Updates
https://www.gnu.org/software/gcc/gcc-7/changes.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/AArch64-Options.html
https://www.gnu.org/software/gcc/gcc-9/changes.html
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/AArch64-Options.html
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

Page 62

ARMv8.3-A PA – PAC Generation
Adds Pointer Authentication Code (PAC) into unused bits of pointer
• Keyed, tweakable MAC from pointer address and 64-bit modifier
• PA keys protected by hardware, modifier decided where pointer created and used

tag/PAC sign ext./PAC virtual address (AP)
reserved bit8 bits VA_SIZE bits

64-bit modifier (M)

PA key (K)HK(AP, M)

3 – 23 bits

general purpose registers

configuration	register

[1]: ARM. Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile. Version E.a. July 2019

https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile

Page 63

Pointer Integrity: memory safety for
pointers
Ensure pointers in memory remain

unchanged

• Code pointer integrity implies
CFI

• Control-flow attacks manipulate code
pointers

• Data pointer integrity
• Reduces data-only attack surface

function {
store return_address
…
…
… corrupt_address!
…
…
load return_address
verify integrity
return

}
PI

Kuznetsov et al. “Code-Pointer Integrity” USENIX OSDI 2014

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

Page 64

PA-based protection schemes
PA instructions are primitives, assembled to form protection

schemes

Two main components:
• When are pointers “PACed” and “unPACed”?
• Which modifier is used at a given point?

What should the modifier be for a given pointer?
• For security: using many different modifiers makes replay attacks harder
• For functionality: large numbers of modifiers are hard to keep track of

Page 65

New hardware-assisted defenses are emerging and are (going to be) widely available

How to utilize available primitives effectively?
• Towards pointer integrity with PA (USENIX SEC ’19)

How to deal with downsides?
e.g. optimally minimize scope for PA reuse attacks?
• For return addresses: PACStack (USENIX SEC ‘21)
• For other types of pointers?

How do different hardware primitives compare?

How can we formalize run-time attacks and defenses?
https://ssg.aalto.fi/research/projects/harp/

Takeaways: hardware-assisted defenses

https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity21/presentation/liljestrand
https://ssg.aalto.fi/research/projects/harp/

Page 66

Speakers’ Component in Our Tutorial Today

Salman Ahmed

Long Cheng

Hans Liljestrand

N. Asokan

Daphne Yao

1. Overview of advanced
attacks and various defenses.

3. Overview of data-oriented
attacks using data manipulation.

4. Demonstration of DOP
exploits and defenses.

2. Code reuse attacks, ROP, ASLR,
JITROP, and Demonstrations. 5. Research directions in

hardware-assisted
protection

6. Concluding remarks
and research directions.

Long Cheng

Page 67

Overall conclusion
- Breakdown of advanced attacks using multiple phases and factors can give us

useful insights for system security assurance
- Measuring phases/factor using metrics can quantify security parameter (e.g., re-

randomization time) or attack components (e.g., gadget availability)
- Demonstration to show various quantification methodologies with metrics

- Promises of data-oriented attacks
- Various data-oriented attack techniques and challenges
- Data-oriented attack demonstration
- Data-oriented attack defenses

- Special focus on hardware-assisted defenses

- Potential research directions

[1]. Alexander Peslyak. “return-to-libc” attack. Bugtraq, Aug, 1997.
[2]. Sebastian Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks exploitation technique. https://users.suse.com/~krahmer/no-nx.pdf,
2005. Last accessed 10 May 2020.
[3]. Tim Newsham. Non-exec stack. Bugtraq mailing list, 2000.
[4]. Rafal Wojtczuk. The advanced return-into-lib (c) exploits: Pax case study. Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e, 2001.
[5]. Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and Communications Security, pages 552–561. ACM, 2007.
[6]. Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good instructions go bad: Generalizing return-oriented programming to risc. In
Proceedings of the 15th ACM conference on Computer and communications security, pages 27–38. ACM, 2008.
[7]. Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham, and Marcel Winandy. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and communications security, pages 559–572. ACM, 2010.
[8]. Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented programming: a new class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, pages 30–40. ACM, 2011.
[9]. Ping Chen, Xiao Xing, Bing Mao, Li Xie, Xiaobin Shen, and Xinchun Yin. Automatic construction of jump-oriented programming shellcode (on the x86). In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, pages 20–29, 2011.
[10]. Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the
effectiveness of fine-grained address space layout randomization. In 2013 IEEE Symposium on Security and Privacy, pages 574–588. IEEE, 2013.
[11]. Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh. Hacking blind. In 2014 IEEE Symposium on Security and Privacy, pages
227–242. IEEE, 2014.
[12]. Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking modern defenses. In USENIX Security Symposium, pages 385–399, 2014.
[13]. Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming:
On the difficulty of preventing code reuse attacks in c++ applications. In 2015 IEEE Symposium on Security and Privacy, pages 745–762. IEEE, 2015.
[14]. Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and Thorsten Holz. Enabling client-side crash-resistance to overcome diversification
and information hiding. In NDSS, 2016.
[15]. Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson, Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael
Franz, et al. Address oblivious code reuse: On the effectiveness of leakage resilient diversity. In NDSS, 2017.

References (1)

Page 68

[16]. Enes Göktaş, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Portokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. Position-
independent code reuse: On the effectiveness of aslr in the absence of information disclosure. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 227–242. IEEE, 2018.
[17]. Ali Akbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-call oriented programming (pcop): chaining the gadgets using call instructions.
Journal of Computer Virology and Hacking Techniques, 14(2):139–156, 2018.
[18]. PaX Team. Pax address space layout randomization (aslr). 2003.
[19]. Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. Address space layout permutation (aslp): Towards fine-grained randomization
of commodity software. In Computer Security Applications Conference, 2006. ACSAC’06. 22nd Annual, pages 339–348. IEEE, 2006.
[20]. Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Enhanced operating system security through efficient and fine-grained address space
randomization. In USENIX Security Symposium, pages 475–490, 2012.
[21]. Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Koppen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza
Sadeghi. Selfrando: Securing the tor browser against de-anonymization exploits. Proceedings on Privacy Enhancing Technologies, 2016(4):454–469, 2016.
[22]. Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code.
In Proceedings of the 2012 ACM conference on Computer and Communications Security, pages 157–168. ACM, 2012.
[23]. Yue Chen, Zhi Wang, David Whalley, and Long Lu. Remix: On-demand live randomization. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy, pages 50–61. ACM, 2016.
[24]. Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis Polychronakis. Compiler-assisted code randomization. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 461–477. IEEE, 2018.
[25]. Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. Davidson. Ilr: Where’d my gadgets go? In 2012 IEEE Symposium on Security and
Privacy, pages 571–585. IEEE, 2012.
[26]. William H. Hawkins, Jason D. Hiser, Michele Co, Anh Nguyen-Tuong, and Jack W. Davidson. Zipr: Efficient static binary rewriting for security. In 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 559–566. IEEE, 2017.
[27]. Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael Franz. Profile-guided automated software diversity. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 1–11. IEEE Computer Society, 2013.
[28]. Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor:
Practical code randomization resilient to memory disclosure. In 2015 IEEE Symposium on Security and Privacy, pages 763–780. IEEE, 2015.

References (2)

Page 69

[29]. Charlie Curtsinger and Emery D. Berger. Stabilizer: Statistically sound performance evaluation. ACM SIGARCH Computer Architecture News, 41(1):219–
228, 2013.
[30]. David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 268–279. ACM, 2015.
[31]. Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. How to make aslr win the clone wars: Runtime re-randomization. In NDSS, 2016.
[32]. David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng
Yang, and William Aiello. Shuffler: Fast and deployable continuous code re-randomization. In OSDI, pages 367–382, 2016.
[33]. Xi Chen, Herbert Bos, and Cristiano Giuffrida. Codearmor: Virtualizing the code space to counter disclosure attacks. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 514–529. IEEE, 2017.
[34]. Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn- berger, and Jannik Pewny. 2014. You can run but you can’t read:
Preventing disclosure exploits in executable code. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
1342–1353.
[35]. JanWerner,GeorgeBaltas,RobDallara,NathanOtterness,KevinZ.Snow,Fabian Monrose, and Michalis Polychronakis. 2016. No-execute-after-read: Preventing
code disclosure in commodity software. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. ACM, 35–46.
[36]. Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte: Thwarting memory disclosure attacks using destructive code reads. In
Proceed- ings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 256–267.
[37]. Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-Grained Memory Randomization Practical by Allowing Code Sharing. In USENIX
Security Symposium. 433–447.
[38]. Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim, and Wenke Lee. 2015. ASLR-Guard: Stopping address space leakage for code
reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 280–291.
[39]. Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang. 2016. Data-oriented programming: On the
expressiveness of non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 969–986.
[40]. Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018. Block Oriented Programming: Automating Data-Only Attacks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, 1868–1882.

References (3)

Page 70

[41]. Salman Ahmed, Ya Xiao, Kevin Z. Snow, Gang Tan, Fabian Monrose, and Danfeng (Daphne) Yao. 2020. Methodologies for Quantifying (Re-)randomization
Security and Timing under JIT-ROP. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS ‘20), 1803–1820.
DOI:https://doi.org/10.1145/3372297.3417248
[42]. Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Returnoriented programming: Systems, languages, and applications. ACM
Transactionson Information and System Security (TISSEC) 15, 1 (2012), 2

References (4)

Page 71

