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Abstract 

In mechanical engineering and tribology, Hertzian contact stress is a description of the stress 
within mating parts. This kind of stress may not be significant most of the time, but may cause 
serious problems if not take it into account in some cases. This tutorial provides a brief 
introduction to the Hertzian contact stress theory, five types of the classical solutions for non-
adhesive elastic contact are illustrated, and the applications of the Hertz contact stress theory on 
optomechanical engineering are also addressed.  

Introduction 

Theoretically, the contact area of two spheres is a point, and it is a line for two parallel cylinders. 
As a result, the pressure between two curved surfaces should be infinite for both of these two 
cases, which will cause immediate yielding of both surfaces. However, a small contact area is 
being created through elastic deformation in reality, thereby limiting the stresses considerable. 
These contact stresses are called Hertz contact stresses, which was first studies by Hertz in 1881.  
The Hertz contact stress usually refers to the stress close to the area of contact between two 
spheres of different radii. 

After Hertz’s work, people do a lot of study on the stresses arising from the contact between two 
elastic bodies. An improvement over the Hertzian theory was provided by Johnson et al. (around 
1970) with the JKR (Johnson, Kendall, Roberts) Theory. In the JKR-Theory the contact is 
considered to be adhesive. And then a more involved theory (the DMT theory) also considers 
Van der Waals interactions outside the elastic contact regime, which give rise to an additional 
load. Nowadays, the study of two contact bodies and the applications of the theory have become 
a new discipline “Contact Mechanics”.  

Hertzian theory of non-adhesive elastic contact 

In Hertz’s classical theory of contact, he focused primarily on non-adhesive contact where no 
tension force is allowed to occur within the contact area. The following assumptions are made in 
determining the solutions of Hertzian contact problems: 

i. The strains are small and within the elastic limit. 

ii. Each body can be considered an elastic half-space, i.e., the area of contact is much smaller 
than the characteristic radius of the body. 

iii. The surfaces are continuous and non-conforming. 

iv. The bodies are in frictionless contact. 

http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Tribology
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Classical solutions for non-adhesive elastic contact 

The theory of contact between elastic bodies can be used to find contact areas and indentation 
depths for simple geometries. There are five types of commonly used solutions, which are listed 
in the following part. 

A. Contact between a sphere and an elastic half-space 
As showed in Figure 1, an elastic sphere of radius R indents an elastic half-space to depth u, and 
thus creates a contact area of radius 𝑎 ≅ (3

2
𝑅𝐹
𝐸∗

)1/3. 
 

 
Fig. 1. Contact stress 

The depth of indentation u is given by: 𝑢 ≅ (2𝐹
2

𝐸∗2𝑅
)1/3 

where 
1
𝐸∗

=
1
2

(
1 − 𝑣12

𝐸1
+

1 − 𝑣22

𝐸2
) 

 
And E1, E2 are the elastic moduli and v1, v2 the Poisson’s ratios associated with each body.  
 
Stiffness: 𝑘 = 𝑑𝐹

𝑑𝑢
≅ (𝐸∗2𝑅𝐹)1/3 

Stress: (𝜎𝑐)𝑚𝑎𝑥 ≅
3
2

𝐹
𝜋𝑎2

= 0.4 �𝐸∗
2𝐹
𝑅2
�
1
3 = 0.4 𝑘

𝑅
 

𝜏𝑚𝑎𝑥 ≅
(𝜎𝑐)𝑚𝑎𝑥

3
 

 
Example 
 
For a ½” steel tooling on a steel flat with 100 lb loading, E1 and E2 are 30 MPa, v1 and v2 are 
0.3, according to the equations, we have: 
 
𝑎 ≅ (3

2
𝑅𝐹
𝐸∗

)1/3=0.13572 in 
1
𝐸∗

= 1
2

(1−𝑣1
2

𝐸1
+ 1−𝑣22

𝐸2
)≈ 32.967 Msi 

Stiffness: 𝑘 = 𝑑𝐹
𝑑𝑢
≅ (𝐸∗2𝑅𝐹)

1
3 ≈ 378771 𝑙𝑏/𝑖𝑛 

Stress: (𝜎𝑐)𝑚𝑎𝑥 ≅
3
2

𝐹
𝜋𝑎2

= 0.4 �𝐸∗
2𝐹
𝑅2
�
1
3 = 0.4 𝑘

𝑅
≈ 260 𝐾𝑠𝑖 



3 
 

𝜏𝑚𝑎𝑥 ≅
(𝜎𝑐)𝑚𝑎𝑥

3
≈ 87 𝐾𝑠𝑖 

 
B. Contact between two spheres 
For contact between two spheres of radii R1 and R2, the area of contact is a circle of radius a, as 
showed in Figure 2.  

 
Fig. 2. Contact between two spheres 

The radius of the contact area is given by: 

𝑎 = �
3𝐹[1 − 𝑣12

𝐸1
+ 1 − 𝑣22

𝐸2
]

4( 1
𝑅1

+ 1
𝑅2

)

3

 

Where E1 and E2 are the moduli of elasticity for spheres 1 and 2 and ν1 and ν2 are the Poisson’s 
ratios, respectively. 

The maximum contact pressure at the center of the circular contact area is: 

𝑃𝑚𝑎𝑥 =
3𝐹

2𝜋𝑎2
 

The depth of indentation d is related to the maximum contact pressure by 

𝑑 =
𝑎2

𝑅
= � 9𝐹2

16𝑅𝐸∗2
3
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Where R is the effective radius defined as 1
𝑅

= 1
𝑅1

+ 1
𝑅2

 

For ν = 0.33, the maximum shear stress occurs in the interior at 𝑧 ≈ 0.49𝑎. 

 
C. Contact between two cylinders with parallel axes 
Figure 3 showed the contact between two cylinders with the radii of R1 and R2 with parallel axes. 
In contact between two cylinders, the force is linearly proportional to the indentation depth. 

 
Fig. 3. Contact between two cylinders 

The half-width b of the rectangular contact area of two parallel cylinders is found as: 

𝑏 = �
4𝐹[1 − 𝑣12

𝐸1
+ 1 − 𝑣22

𝐸2
]

𝜋𝐿( 1
𝑅1

+ 1
𝑅2

)
 

Where E1 and E2 are the moduli of elasticity for cylinders 1 and 2 and ν1 and ν2 are the 
Poisson’s ratios, respectively. L is the length of contact. 
 
The maximum contact pressure along the center line of the rectangular contact area is: 
 

𝑃𝑚𝑎𝑥 =
2𝐹
𝜋𝑏𝐿

 

 
D. Contact between a rigid cylinder and an elastic half-space 
If a rigid cylinder is pressed into an elastic half-space, as showed in Figure 4,  
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Fig. 4. Contact between a rigid cylinder and an elastic half-space 

 
it creates a pressure distribution described by: 

𝑝(𝑟) = 𝑝0 �1 −
𝑟2

𝑎2
�
−12

 

where a is the radius of the cylinder and 

𝑝0 =
1
𝜋
𝐸∗
𝑑
𝑎

 
The relationship between the indentation depth and the normal force is given by 
 

𝑃 = 2𝑎𝐸∗𝛿𝑧 
 

E. Contact between a rigid conical indenter and an elastic half-space 
In the case of indentation of an elastic half-space using a rigid conical indenter, as showed in 
Figure 5,  

 

 
Fig. 5. Contact between a rigid conical indenter and an elastic half-space 

the indentation depth and contact radius are related by 
 

𝑎 =
2
𝜋
𝑑𝑡𝑎𝑛𝜃 

 
with θ defined as the angle between the plane and the side surface of the cone.  
 
The pressure distribution takes on the form 
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𝑝(𝑟) = −
𝐸𝑑

𝜋𝑎(1 − 𝑣2)
𝑙𝑛 �

𝑎
𝑟

+ �(
𝑎
𝑟

)2 − 1� 

 
The stress has a logarithmic singularity on the tip of the cone. The total force is 
 

𝐹𝑁 =
2
𝜋
𝐸∗

𝑑2

𝑡𝑎𝑛𝜃
 

Application 

The stresses and deflections arising from the contact between two elastic solids have practical 
application in hardness testing, wear and impact damage of engineering ceramics, the design of 
dental prostheses, gear teeth (Fig. 6), and ball and roller bearings (Fig. 7). For optomechanics, 
contact stress can cause fretting of the surface, which is showed in Figure 8. This effect could 
lead to the degradation of accuracy over time and need to be considered during the design 
procedure. All the calculation can be done using the five classical solutions given above. 

 

           
Fig. 6 Contact of involute spur gear teeth 
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Fig. 7. Angular contact ball bearing 

 

Fig. 8. Effect of contact stress in kinematic constraint using spheres 

Summary 

Hertz contact stress theory has been applied to many practical applications. The elastic stress 
fields generated by an indenter, whether it is a sphere, cylinder, or diamond pyramid are well 
defined in this tutorial. Certain aspects of an indentation stress field make it an ideal tool for 
investigating the mechanical properties of engineering materials. Although a full mathematical 
derivation is not given in this tutorial, it presents an overall picture of how these stresses are 
calculated from first principles. Considering the effects of the contact stress it may cause, it is 
necessary to consider the stresses and deformation which arise when the surfaces of two solid 
bodies are brought into contact.  
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