tinyML Talks

Enabling Ultra-low Power Machine Learning at the Edge

“Tutorial on micro-kernel based hardware

acceleration”
Manu Rastogi

[Bay Area Group] - August 13, 2020

i

www.tinyML.org

TI NY

... BayArea/Silicon Valley tinyML Meetup

TINY Organizing Committee

&’

Manu Rastogi Amey Naik Mahmut Sinangil Yu Pu

If you are interested in volunteering, email meetups@tinyML.org

mailto:meetups@tinyML.org

tinyML Talks Sponsors

TTTTT

Deeplite Qeexo

= EDGE IMPULSE =< RealityAl

maxim .
integrated.. SynSense

Additional Sponsorships available — contact Bette@tinyML.org for info

mailto:Bette@tinyML.org

= i WE USE Al TO MAKE OTHER Al FASTER, SMALLER AND
eeplite

MORE POWER EFFICIENT

Jesas .: Automatically compress SOTA models like MobileNet to <200KB with
u little to no drop in accuracy for inference on resource-limited MCUs

Q\ Reduce model optimization trial & error from weeks to days using
® Deeplite's design space exploration

(' AppLY NOW)

Deploy more models to your device without sacrificing performance or

/ @ battery life with our easy-to-use software
-,
VISIT BIT.LY/DEEPLITE FOR MORE INFO)24
‘ N q rm mobilityXlab m

TinyML for all developers

Acquire valuable Enrich data and train

Co+ library training data securely ML algorithms

ARDUINO Edge Device Impulse
Real sensors in real time
Arduina llbrary Open source SDK
Embedded and edge Test impulse with
compute deployment real-time device
options data flows
WebAssembly
Test

Copyright © Edgelmpulse Inc. Get your free account at

http://edgeimpulse.com/

maxim
integrated.

Maxim Integrated: Enabling Edge Intelligence

Sensors and Signal Conditioning

r—

SRS 7 T—
i 1 5 7bpm

8.0

Low Power Cortex M4 Micros

Advanced Al Acceleration

® -
L1
o ®

E3 e —

L _J 4 o
v ~ &
N,
>
s
/ -
»

§
|

o

Health sensors measure PPG and ECG signals
critical to understanding vital signs. Signal chain
products enable measuring even the most
sensitive signals.

The biggest (3MB flash and 1MB SRAM) and the
smallest (256KB flash and 96KB SRAM) Cortex
M4 microcontrollers enable algorithms and
neural networks to run at wearable power levels

Al inferences at a cost and power point that
makes sense for the edge. Computation
capability to give vision to the loT, without the
power cables. Coming soon!

maxim
integrated..

Qeexo AutoML for Embedded Al

Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

= Wide range of ML methods: GBM, XGBoost, Random
Forest, Logistic Regression, Decision Tree, SVM, CNN, RNN,
CRNN, ANN, Local Outlier Factor, and Isolation Forest

= Easy-to-use interface for labeling, recording, validating, and QEEXO AUTOML: END-TO-END MACHINE LEARNING PLATFORM

visualizing time-series sensor data

= On-device inference optimized for low latency, low power

consumption, and a small memory footprint
= Supports Arm® Cortex™- MO to M4 class MCUs

= Automates complex and labor-intensive processes of a
typical ML workflow —no coding or ML expertise required!

Qeexo

Target Markets/Applications

= |ndustrial Predictive Maintenance = Automotive
Smart Home = Mobile
= Wearables = |oT

COMPILE TARGE
L4 - SPECIFIC ML
PACKAGE

FEATURE
EXTRACTION
AND SELECTION

MODEL
MODEL LIRERGAR SN MODEL CONVERSION
- - ETER - -
SELECTION OPTIIE R TION VALIDATION
(EG.TOC)

COLLECT/ UPLOAD S TTAUTOMATED | 1

DATA 1 MACHINE LEARNING

DEFINE PROJECT
E.G. CLASSIFICATION

E—b

SELECT SENSORS AND
TARGET HARDWARE

R - o6

DEPLOY/ DOWNLOAD
ML PACKAGE

For a limited time, sign up to use Qeexo AutoML at automl.qeexo.com
for FREE to bring intelligence to your devices!

https://automl.qeexo.com/

~ . -
=< Reality Al

Engineering Solutions for the Edge

Next-Generation Al Tools for % T F ‘ T F
Product Development o~ o
Edge Al /
: : . o—| AutoML |—0—)
Jx Extensive, highly-optimized feature spaces TinyML
S de for MCUs and G -
2 uper-compact code for s and Gateways
S<
*"» Sensor selection and placement analysis "A\
Reality Al
$ Al-driven component specs O—~__ v —-
il Automated data quality checks o—| . Afl] Pata
Optimization Management
“P~.. Data collection, augmentation & labeling services o -0/
/ No open source - clean licensing f l ﬁ 3 l ﬁ

Get started w/ a special tinyML Talks offer for corporate customers: https://reality.ai/get-started

¢ 1A

¢ 1A

https://reality.ai/get-started

SynSense

SynSense (formerly known as aiCTX) builds ultra-low-power
(sub-mW) sensing and inference hardware for embedded,
mobile and edge devices. We design systems for real-time
always-on smart sensing, for audio, vision, bio-signals and
more.

https.//SynSense.ai

—

wad

l‘l\\.

N

)=

/’\ \ /\/ \

Next tinyML Talks

TALKS

webcast

Date __|Presenter __________|Topic/Title

Tuesday Mark Stubbs Practical application of tinyML in battery
August 18 CTO and Co-Founder, powered anomaly sensors for predictive
Shoreline IoT Inc. maintenance of industrial assets
Urmish Thakker Pushing the limits of RNN Compression
Senior Research Engineer, using Kronecker Products

Arm ML Research Group

Webcast start time is 8 am Pacific time
Each presentation is approximately 30 minutes in length

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org

TALKS

webcast

Manu Rastogi

Manu Rastogi received his B.Tech from India and his MS
and Ph.D. from the University of Florida in 2012. Since
graduation, he has worked at Qualcomm Research and HP
Labs. As a member of the Qualcomm research team, he
worked on the Qualcomm Zeroth processor in various
capacities and later on the Qualcomm deep learning
engine. His roles at Qualcomm varied from developing
signal processing algorithms, model development, and
deep learning model optimizations. At HP he led the
efforts around machine learning at the edge and self-
supervised learning methods using mutual information for
speaker identification.

Tutorial:
Micro-kernel
for hardware
acceleration

Manu Rastogi

Rap 15

“

&
V8T

Outline

CNN on a simple

Motivation
processor
Matrix
EY!

Multiply on a otk ML based
simple approaches to
processor compilers

Loop Discussion

transformations

« What is a micro kernel?

Motivation

— Very simply is the assembly code that runs on the

processor.

» Why should anyone care?

— Micro-kernel or micro-code is responsible for
orchestrating computation and data movements.

— Performance critical applications are still tuned,

tweaked or written manually in micro-code.

— A good understanding of micro-code basics can help
choose the right hardware product and/or create more

efficient algorithms.

Syntax Analyzer

}

Semantic Analyzer

}

Symbol: ... Intermediate Code Error

Table Generator Handler

... Machine Independent .
Code Optimiser

Code Generator

}

“ Machine Dependent
Code Oftimiser

00101011070
10010011110
10101011070
gl01101010
10101001010
00101010310
00001011110
10107011010

Target Code

A high-level view of the compilation process.

Source: https://www.tutorialspoint.com/compiler design/compiler design_phases of compiler.htm

https://www.tutorialspoint.com/compiler_design/compiler_design_phases_of_compiler.htm

A Simple Processor

A simple processor: I I I I I I
.

Three on-chip memories

~

A main memor
y N Il
A MAC unit <
18) m
|) ALU: Il
Some costs: Multiply
I and |
Can be Energy, Power, Delay or EDP etc. - \ y Accumulate m
C_mem : Cost of moving 1 number (16 bits) from (" A
main memory to Processor I < I
C_mac : Cost of multiply and add (or any Main memaory 3 y
arithmetic operation).
C_int: Cost of moving data between ALU and I I I I I I
internal memory (or for any data movement in the
processor)

Processor

Multiplying two matrices:

A of size [32x32]
B of size [32x1]

Total MACs: 32x32

Matrix Multiply

/

Matrix A

A
A
A
A

A31

\

32x32

Matrix B

/

\

32x1

Matrix Multiply on our Processor

* Internal Memories are of size:
—Mem A [32x1] Mem B : [32x1] Temp

[32x1]

» Steps are:

— Transfer row of MatA and MatB to memA, memB

— Multiply and accumulate: AO x BO
— Store result in temp memory
— Repeat for A1,...A31

— Store back to main memory

L .

\ A31 /

Internal

Memory
Temp

Costs

> Internal
g—mem) piay || Memor

C_int - .

Main memorygg l'\;“ema'
emory

A

Matrix A Matrix B

A
A
A

32x32 32>

Matrix Multiply on our Processor

Internal Memories are of size:
— Mem A: [32x1] Mem B : [32x1] Temp [32x1]

Cost:

— Transfer : Cost of 1 row

« Single row of MatA is 32*Cmem + One time transfer of MatB
32*Cmem

— Compute cost of a single row:
+ 32*Cmac

— Store in memory 1 result:
* 1*Cmem

Total cost:

* Transfer: 32 rows of A* 32 nums/row + 32 rows of B * 1 num/row
« Compute: 32 rows of A* 32 MAC/row

* Write Back result: 32 nums

- 132*32¥Cmem+32*Gmem +32*32*Cmac+32*Cmem

A transfer B transfer Compute Result transfer

Costs
C_mem
C_mac
C_int

Matrix A

Internal
Memory
Temp

NEHE
Memor
yB

Internal
Memaory
A

\ A31 /

Matrix B

/‘

~

32

Matrix Multiply with Reduced Memory : Streaming # 1

* Internal Memories are of size:
— Mem A : B2x4]} [16x1] Mem B : [B2x4] [16x1] Temp [32x4]

[16x1]
DataIln Comp Data Out * Computation cost
[AOO | o — Matrix B is effectivel
_— ACO'B Store ei:ir;\X stIrSeZmeeCc?\éz){[imes I
e o "
— Row O
/ Matrix A \ /Matn)&B — What about compute?

« Compute cost remains
the same (Why?)

— ALOTE Store
- B0 R_°
— Rowl — What about the partial
1

* We can just leave them in
the MAC.

A31O A311
32x32 32x1

Total Cost look like T
32*32*Cmem 32*32*Cm%n + 32*32*Cmac + 32 *Cmem
Comparing to prev:
32*32*Cmem+ 32*Cmem + 32*32*Cmac + 32*Cmem

» Increased cost of transferring the B matrix

Matrix Multiply with Reduced Memory : Streaming # 2

* Internal Memories are of size:
— Mem A : B2x4]} [16x1] Mem B : [B2x4] [16x1] Temp [32x4]

« Computation cost

[16x1] — Matrix B is streamed once.
Data In Comp Data Out — What about compute?
\ - Compute cost remains the same.
Or does it?
B0
s — Col0 ° Instruction Set Architecture (ISA)
Matrix A /Matrb&B m dependent
Cao ¥ o] e
— There is a hidden cost of moving
partials to main memory and back.
R — Col 1
" mas All U » Store
A310 A311 LALL m [s — Another second order effect.
N A B
32x32 32x1 A3LLY - - We save energy from the

movement of data.

This approach of streaming partial data is also known as memory tiling - However, the processor will be

idle waiting for next A’ tile to
come.

Cost vs. On chip Memory

Key takeaways:
— Cost when memory sizes are:
— [32x1] : 32*32*Cmem + 32*Cmem + 32*32*Cmac + 32*Cmem
— [16x1] : 32*32*Cmem + 32*32*Cmem + 32*32*Cmac + 32 *Cmem Unoptimized tiling
— [16x1] : 32*32*Cmem + 32*Cmem + 32*32*Cmac + 32*Cmem + 32*Cmem + 328@imiaex tiling
(Y J \ Y J \ Y]\ Y]\ ’ J
A transfer B transfer Compute Result transfer Partial product Overhead

— If we reduce the memory size further to say [4x1] the partial terms become more dominant and it may be
beneficial to mix column wise and row wise tiling.

Matrix A

Memory Tiling as a loop transformation

Matrix Multiply
n = 32;
for row_idx in range(0,n):
for col_idx in range(0,n):
clcol_idx] += al[row_idx][col_idx]* b[col_idx]

Tiling will result in more
complicated control logic.

Tiled Matrix Multiply Memory access become tricker
n =32 No longer vanilla row-major or column
tiles = 2 mai

: : jor
col_per_tile = n/tiles
for tile_num in range(0,tiles): Dedicated memory controller

for row_idx in range (0,n):
start_col cols_per_tile *tile_num
end_col start_col + cols_per_tile
for col_idx 1in range(start_col, end_col):
Cl[col_idx] += A[row_idx][col_idx] * B [col_idx]

Higher silicon cost (and energy)

A few more transformations

Simple Multiplication

N = 1000
for 1 in range(O,N):
cli] = A[1] * B[i]

Vector Multiplier

Single Instruction Multiple Data (SIMD)
N = 1000

VEC_Len = 100

for 1 in range(0,N/100):

C[1:VEC_LEN] = A[1:VEC_LEN] * B[1:VEC_LEN]

Loop Unroling

N = 1000

for 1 in range(0,4,500):
cf[i]l] = A[1] * B[1]
C[i+1l] = A[1+1] * B[i+1]
C[i+2] = A[1+2] * B[1+2]
C[i+3] = A[1+3] * B[1+3]

Multi Processor System
N = 1000
#Data dependencies make i1t a challenge
Processor O
for 1 in range(0,500):
Ccli] = A[i] * B[1]

Processor 1
for 1 in range(500,1000):
C[i] = A[i1] * B[i]

Performance Loop Unroll vs. Tiling

Mathematical constructs and heuristics are
used for applying these.

Choosing transformations is not trivial.

Widely researched, studied and used by
the compiler community.

Optimizations are typically stacked.

- 100
GCC for example can make multiple
passes to figure out the sequence.

Unroll Tile Size

_ o , . L Knijnenburg, P., Kisuki, T., & O’'Boyle, M. (2002). lterative
https://en.wikipedia.org/wiki/Loop_optimization Compilation. Embedded Processor Design Challenges, 171—

187. https://doi.org/10.1007/3-540-45874-3 10

https://en.wikipedia.org/wiki/Loop_optimization

Single Layer CNN

Input [5x5] Kernel [3x3] Stride =1

Single Layer CNN

I
1 1
1

Hﬂﬂﬂﬂ Hﬂﬂﬂﬂ
HEEEE EEEER
BREES S SRR
BEIRSE SRR
BEEREE DEREEE

[3x3] (The entire kernel fits)

[3x3]
[1x1]

the following memory constraints

— Amem

« Assume that our processor has
— B mem
— C mem

Single Layer CNN

TR
TIT
TIT
TET
TETTT

* Naive solution is reload the matrix under computation (the red part)

 This would be wasteful since there is an overlap.

+ Makes sense to load only the new stuff.

Single Layer CNN

S
©
O
(@)
=
+—
N
x
L

New Data

Output

ofafs

Single Layer CNN

S
®©
)]
(@)]
S
—
1)
x
L

New Data

Output
ofefr

What output should be calculated next?

Single Layer CNN

S
©
O
(@)
=
+—
N
x
L

Output
ofefr

nd
o

TETEE
IETEE
TET E
EoooE
i

New Data

Single Layer CNN

s
J<

.m
+—
N
x
L

New Data

Output

TTTTT TTTTE
B o
TTTTT TTLLE
TETTEET T
TT IR TS

Lo o fe iR -

Single Layer CNN

- New Data - Existing Data

Memory Access Pattern

CNN

Realistic scenario

Memory access pattern can be very very complicated.

Depending on the compute constraints and data bus
constraints might be beneficial to repeat data, pad data
or other tricks.

Partial products need to be accounted for and stored
correctly.

« Can result in significant cost.

Fueling research in both compression and quantization

Non-Trivial to evaluate "effective” cost specially when
multiple loop optimizations can be performed.

Machine Learning and Compilers

TVM

https://tvm.apache.org/docs/tutorials/

FB Glow

https://ai.facebook.com/tools/glow/

Survey of ML techniques

Ashouri, A. H., Killian, W., Cavazos, J., Palermo, G., & Silvano, C.
(2018). A Survey on Compiler Autotuning using Machine Learning.

Retrieved from http://arxiv.org/abs/1801.04405

Other compiler frameworks with interesting
optimizations

LLVM, Halide, Pencil, Poly, Pluto, JIT, Chill

GEMM Kernels

https://www.cs.utexas.edu/~flame/pubs/GotoTOMS revision.pdf

Inference Time (ms/image)

B TvM(int8) [TensorRT 5 (int8) MXNet 1.4 + cuDNN 7.3 (float32)

batch size = 1 1315
11.94
10.36
9.26
8.52
5.49 567
3.97
2.65 295 2.62
228 213194
B II II - l.
ResNet-50 VGG-19 Inception v3 ResNext-50 DRN-C-26 DCN-ResNet-101
Traditional Auto-tuning AutoTVM
Hetegeneous
Device Cluster
Run on a

same machine NVIIDA GPU AMD GPU FPGA

VS Intel CPU ~ ARM CPU

() ()

BlackBox Tuner Tuner

()

Transferable
Machine Learning
Cost Model

https://tvm.apache.org/docs/tutorials/
https://ai.facebook.com/tools/glow/
http://arxiv.org/abs/1801.04405
https://www.cs.utexas.edu/~flame/pubs/GotoTOMS_revision.pdf

Key takeaways

Memory affects the cost of data movement more than it affects computation in mid-memory range for very low
memory on-chip footprints computation cost can become prohibitive.

Quantization and compression are essential because more data can be moved in between memory and processor on
same the same databus.

* The caveat is that the compute engine should be able to take advantage.
* A CNN accelerator can’t take advantage of binary network

— unless data bus can shuttle data in 1-bit quantum

— The processor should support an XOR based multiplier.

+ Most compute-in-memory accelerators take advantage of binary networks because they can be stored on-chip.
Automated solutions like TVM and Glow are essential because the exploration space in non-trivial.

Creating a tinyML product you should have some understanding of:
* Memory patterns supported
« Compute support and flexibility (16bit, 8bit, 4bit).

* Blackbox toolchain support and flexibility to tune kernels.

TI NY

m] Copyright Notice

webcast

This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

