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Introduction 
The Musical Instrument Digital Interface (MIDI) protocol has been widely accepted and utilized by 
musicians and composers since its conception in the 1982/1983 time frame. MIDI data is a very 
efficient method of representing musical performance information, and this makes MIDI an 
attractive protocol not only for composers or performers, but also for computer applications which 
produce sound, such as multimedia presentations or computer games. However, the lack of 
standardization of synthesizer capabilities hindered applications developers and presented new 
MIDI users with a rather steep learning curve to overcome.  



Fortunately, thanks to the publication of the General MIDI System specification, wide acceptance 
of the most common PC/MIDI interfaces, support for MIDI in Microsoft WINDOWS and other 
operating systems, and the evolution of low-cost music synthesizers, the MIDI protocol is now 
seeing widespread use in a growing number of applications. This document is an overview of the 
standards, practices and terminology associated with the generation of sound using the MIDI 
protocol.  

 

MIDI vs. Digitized Audio 
Originally developed to allow musicians to connect synthesizers together, the MIDI protocol is now 
finding widespread use as a delivery medium to replace or supplement digitized audio in games and 
multimedia applications. There are several advantages to generating sound with a MIDI synthesizer 
rather than using sampled audio from disk or CD-ROM. The first advantage is storage space. Data 
files used to store digitally sampled audio in PCM format (such as .WAV files) tend to be quite 
large. This is especially true for lengthy musical pieces captured in stereo using high sampling rates.  

MIDI data files, on the other hand, are extremely small when compared with sampled audio files. 
For instance, files containing high quality stereo sampled audio require about 10 Mbytes of data per 
minute of sound, while a typical MIDI sequence might consume less than 10 Kbytes of data per 
minute of sound. This is because the MIDI file does not contain the sampled audio data, it contains 
only the instructions needed by a synthesizer to play the sounds. These instructions are in the form 
of MIDI messages, which instruct the synthesizer which sounds to use, which notes to play, and 
how loud to play each note. The actual sounds are then generated by the synthesizer.  

For computers, the smaller file size also means that less of the PCs bandwidth is utilized in spooling 
this data out to the peripheral which is generating sound. Other advantages of utilizing MIDI to 
generate sounds include the ability to easily edit the music, and the ability to change the playback 
speed and the pitch or key of the sounds independently. This last point is particularly important in 
synthesis applications such as karaoke equipment, where the musical key and tempo of a song may 
be selected by the user.  

 

MIDI Basics 
The Musical Instrument Digital Interface (MIDI) protocol provides a standardized and efficient 
means of conveying musical performance information as electronic data. MIDI information is 
transmitted in "MIDI messages", which can be thought of as instructions which tell a music 
synthesizer how to play a piece of music. The synthesizer receiving the MIDI data must generate 
the actual sounds. The MIDI 1.0 Detailed Specification provides a complete description of the 
MIDI protocol.  

The MIDI data stream is a unidirectional asynchronous bit stream at 31.25 Kbits/sec. with 10 bits 
transmitted per byte (a start bit, 8 data bits, and one stop bit). The MIDI interface on a MIDI 
instrument will generally include three different MIDI connectors, labeled IN, OUT, and THRU. 
The MIDI data stream is usually originated by a MIDI controller, such as a musical instrument 
keyboard, or by a MIDI sequencer. A MIDI controller is a device which is played as an instrument, 
and it translates the performance into a MIDI data stream in real time (as it is played). A MIDI 



sequencer is a device which allows MIDI data sequences to be captured, stored, edited, combined, 
and replayed. The MIDI data output from a MIDI controller or sequencer is transmitted via the 
devices' MIDI OUT connector.  

The recipient of this MIDI data stream is commonly a MIDI sound generator or sound module, 
which will receive MIDI messages at its MIDI IN connector, and respond to these messages by 
playing sounds. Figure 1 shows a simple MIDI system, consisting of a MIDI keyboard controller 
and a MIDI sound module. Note that many MIDI keyboard instruments include both the keyboard 
controller and the MIDI sound module functions within the same unit. In these units, there is an 
internal link between the keyboard and the sound module which may be enabled or disabled by 
setting the "local control" function of the instrument to ON or OFF respectively.  

The single physical MIDI Channel is divided into 16 logical channels by the inclusion of a 4 bit 
Channel number within many of the MIDI messages. A musical instrument keyboard can generally 
be set to transmit on any one of the sixteen MIDI channels. A MIDI sound source, or sound module, 
can be set to receive on specific MIDI Channel(s). In the system depicted in Figure 1, the sound 
module would have to be set to receive the Channel which the keyboard controller is transmitting 
on in order to play sounds.  

 

Figure 1: A Simple MIDI System 

Information received on the MIDI IN connector of a MIDI device is transmitted back out (repeated) 
at the devices' MIDI THRU connector. Several MIDI sound modules can be daisy-chained by 
connecting the THRU output of one device to the IN connector of the next device downstream in 
the chain.  

Figure 2 shows a more elaborate MIDI system. In this case, a MIDI keyboard controller is used as 
an input device to a MIDI sequencer, and there are several sound modules connected to the 
sequencer's MIDI OUT port. A composer might utilize a system like this to write a piece of music 
consisting of several different parts, where each part is written for a different instrument. The 
composer would play the individual parts on the keyboard one at a time, and these individual parts 
would be captured by the sequencer. The sequencer would then play the parts back together through 
the sound modules. Each part would be played on a different MIDI Channel, and the sound modules 
would be set to receive different channels. For example, Sound module number 1 might be set to 
play the part received on Channel 1 using a piano sound, while module 2 plays the information 
received on Channel 5 using an acoustic bass sound, and the drum machine plays the percussion 
part received on MIDI Channel 10.  



 

Figure 2: An Expanded MIDI System 

In this example, a different sound module is used to play each part. However, sound modules which 
are "multitimbral" are capable of playing several different parts simultaneously. A single 
multitimbral sound module might be configured to receive the piano part on Channel 1, the bass 
part on Channel 5, and the drum part on Channel 10, and would play all three parts simultaneously.  

Figure 3 depicts a PC-based MIDI system. In this system, the PC is equipped with an internal MIDI 
interface card which sends MIDI data to an external multitimbral MIDI synthesizer module. 
Application software, such as Multimedia presentation packages, educational software, or games, 
sends MIDI data to the MIDI interface card in parallel form over the PC bus. The MIDI interface 
converts this information into serial MIDI data which is sent to the sound module. Since this is a 
multitimbral module, it can play many different musical parts, such as piano, bass and drums, at the 
same time. Sophisticated MIDI sequencer software packages are also available for the PC. With this 
software running on the PC, a user could connect a MIDI keyboard controller to the MIDI IN port 
of the MIDI interface card, and have the same music composition capabilities discussed in the last 
two paragraphs.  

There are a number of different configurations of PC-based MIDI systems possible. For instance, 
the MIDI interface and the MIDI sound module might be combined on the PC add-in card. In fact, 
the Multimedia PC (MPC) Specification requires that all MPC systems include a music synthesizer, 
and the synthesizer is normally included on the audio adapter card (the "sound card") along with the 
MIDI interface function. Until recently, most PC sound cards included FM synthesizers with 
limited capabilities and marginal sound quality. With these systems, an external wavetable 
synthesizer module might be added to get better sound quality. Recently, more advanced sound 
cards have been appearing which include high quality wavetable music synthesizers on-board, or as 
a daughter-card options. With the increasing use of the MIDI protocol in PC applications, this trend 
is sure to continue.  



 

Figure 3: A PC-Based MIDI System 

 

MIDI Messages 
A MIDI message is made up of an eight-bit status byte which is generally followed by one or two 
data bytes. There are a number of different types of MIDI messages. At the highest level, MIDI 
messages are classified as being either Channel Messages or System Messages. Channel messages 
are those which apply to a specific Channel, and the Channel number is included in the status byte 
for these messages. System messages are not Channel specific, and no Channel number is indicated 
in their status bytes.  

Channel Messages may be further classified as being either Channel Voice Messages, or Mode 
Messages. Channel Voice Messages carry musical performance data, and these messages comprise 
most of the traffic in a typical MIDI data stream. Channel Mode messages affect the way a 
receiving instrument will respond to the Channel Voice messages.  

Channel Voice Messages  

Channel Voice Messages are used to send musical performance information. The messages in this 
category are the Note On, Note Off, Polyphonic Key Pressure, Channel Pressure, Pitch Bend 
Change, Program Change, and the Control Change messages.  

Note On / Note Off / Velocity  

In MIDI systems, the activation of a particular note and the release of the same note are considered 
as two separate events. When a key is pressed on a MIDI keyboard instrument or MIDI keyboard 
controller, the keyboard sends a Note On message on the MIDI OUT port. The keyboard may be set 
to transmit on any one of the sixteen logical MIDI channels, and the status byte for the Note On 
message will indicate the selected Channel number. The Note On status byte is followed by two 



data bytes, which specify key number (indicating which key was pressed) and velocity (how hard 
the key was pressed).  

The key number is used in the receiving synthesizer to select which note should be played, and the 
velocity is normally used to control the amplitude of the note. When the key is released, the 
keyboard instrument or controller will send a Note Off message. The Note Off message also 
includes data bytes for the key number and for the velocity with which the key was released. The 
Note Off velocity information is normally ignored.  

Aftertouch  

Some MIDI keyboard instruments have the ability to sense the amount of pressure which is being 
applied to the keys while they are depressed. This pressure information, commonly called 
"aftertouch", may be used to control some aspects of the sound produced by the synthesizer (vibrato, 
for example). If the keyboard has a pressure sensor for each key, then the resulting "polyphonic 
aftertouch" information would be sent in the form of Polyphonic Key Pressure messages. These 
messages include separate data bytes for key number and pressure amount. It is currently more 
common for keyboard instruments to sense only a single pressure level for the entire keyboard. This 
"Channel aftertouch" information is sent using the Channel Pressure message, which needs only one 
data byte to specify the pressure value.  

Pitch Bend  

The Pitch Bend Change message is normally sent from a keyboard instrument in response to 
changes in position of the pitch bend wheel. The pitch bend information is used to modify the pitch 
of sounds being played on a given Channel. The Pitch Bend message includes two data bytes to 
specify the pitch bend value. Two bytes are required to allow fine enough resolution to make pitch 
changes resulting from movement of the pitch bend wheel seem to occur in a continuous manner 
rather than in steps.  

Program Change  

The Program Change message is used to specify the type of instrument which should be used to 
play sounds on a given Channel. This message needs only one data byte which specifies the new 
program number.  

Control Change  

MIDI Control Change messages are used to control a wide variety of functions in a synthesizer. 
Control Change messages, like other MIDI Channel messages, should only affect the Channel 
number indicated in the status byte. The Control Change status byte is followed by one data byte 
indicating the "controller number", and a second byte which specifies the "control value". The 
controller number identifies which function of the synthesizer is to be controlled by the message. A 
complete list of assigned controllers is found in the MIDI 1.0 Detailed Specification.  

- Bank Select  

Controller number zero (with 32 as the LSB) is defined as the bank select. The bank select function 
is used in some synthesizers in conjunction with the MIDI Program Change message to expand the 
number of different instrument sounds which may be specified (the Program Change message alone 



allows selection of one of 128 possible program numbers). The additional sounds are selected by 
preceding the Program Change message with a Control Change message which specifies a new 
value for Controller zero and Controller 32, allowing 16,384 banks of 128 sound each.  

Since the MIDI specification does not describe the manner in which a synthesizer's banks are to be 
mapped to Bank Select messages, there is no standard way for a Bank Select message to select a 
specific synthesizer bank. Some manufacturers, such as Roland (with "GS") and Yamaha (with 
"XG") , have adopted their own practices to assure some standardization within their own product 
lines.  

- RPN / NRPN  

Controller number 6 (Data Entry), in conjunction with Controller numbers 96 (Data Increment), 97 
(Data Decrement), 98 (Registered Parameter Number LSB), 99 (Registered Parameter Number 
MSB), 100 (Non-Registered Parameter Number LSB), and 101 (Non-Registered Parameter Number 
MSB), extend the number of controllers available via MIDI. Parameter data is transferred by first 
selecting the parameter number to be edited using controllers 98 and 99 or 100 and 101, and then 
adjusting the data value for that parameter using controller number 6, 96, or 97.  

RPN and NRPN are typically used to send parameter data to a synthesizer in order to edit sound 
patches or other data. Registered parameters are those which have been assigned some particular 
function by the MIDI Manufacturers Association (MMA) and the Japan MIDI Standards Committee 
(JMSC). For example, there are Registered Parameter numbers assigned to control pitch bend 
sensitivity and master tuning for a synthesizer. Non-Registered parameters have not been assigned 
specific functions, and may be used for different functions by different manufacturers. Here again, 
Roland and Yamaha, among others, have adopted their own practices to assure some 
standardization.  

Channel Mode Messages  

Channel Mode messages (MIDI controller numbers 121 through 127) affect the way a synthesizer 
responds to MIDI data. Controller number 121 is used to reset all controllers. Controller number 
122 is used to enable or disable Local Control (In a MIDI synthesizer which has it's own keyboard, 
the functions of the keyboard controller and the synthesizer can be isolated by turning Local 
Control off). Controller numbers 124 through 127 are used to select between Omni Mode On or Off, 
and to select between the Mono Mode or Poly Mode of operation.  

When Omni mode is On, the synthesizer will respond to incoming MIDI data on all channels. When 
Omni mode is Off, the synthesizer will only respond to MIDI messages on one Channel. When Poly 
mode is selected, incoming Note On messages are played polyphonically. This means that when 
multiple Note On messages are received, each note is assigned its own voice (subject to the number 
of voices available in the synthesizer). The result is that multiple notes are played at the same time. 
When Mono mode is selected, a single voice is assigned per MIDI Channel. This means that only 
one note can be played on a given Channel at a given time. Most modern MIDI synthesizers will 
default to Omni On/Poly mode of operation. In this mode, the synthesizer will play note messages 
received on any MIDI Channel, and notes received on each Channel are played polyphonically. In 
the Omni Off/Poly mode of operation, the synthesizer will receive on a single Channel and play the 
notes received on this Channel polyphonically. This mode could be useful when several 
synthesizers are daisy-chained using MIDI THRU. In this case each synthesizer in the chain can be 
set to play one part (the MIDI data on one Channel), and ignore the information related to the other 
parts.  



Note that a MIDI instrument has one MIDI Channel which is designated as its "Basic Channel". The 
Basic Channel assignment may be hard-wired, or it may be selectable. Mode messages can only be 
received by an instrument on the Basic Channel.  

System Messages  

MIDI System Messages are classified as being System Common Messages, System Real Time 
Messages, or System Exclusive Messages. System Common messages are intended for all receivers 
in the system. System Real Time messages are used for synchronization between clock-based MIDI 
components. System Exclusive messages include a Manufacturer's Identification (ID) code, and are 
used to transfer any number of data bytes in a format specified by the referenced manufacturer.  

System Common Messages  

The System Common Messages which are currently defined include MTC Quarter Frame, Song 
Select, Song Position Pointer, Tune Request, and End Of Exclusive (EOX). The MTC Quarter 
Frame message is part of the MIDI Time Code information used for synchronization of MIDI 
equipment and other equipment, such as audio or video tape machines.  

The Song Select message is used with MIDI equipment, such as sequencers or drum machines, 
which can store and recall a number of different songs. The Song Position Pointer is used to set a 
sequencer to start playback of a song at some point other than at the beginning. The Song Position 
Pointer value is related to the number of MIDI clocks which would have elapsed between the 
beginning of the song and the desired point in the song. This message can only be used with 
equipment which recognizes MIDI System Real Time Messages (MIDI Sync).  

The Tune Request message is generally used to request an analog synthesizer to retune its' internal 
oscillators. This message is generally not needed with digital synthesizers.  

The EOX message is used to flag the end of a System Exclusive message, which can include a 
variable number of data bytes.  

System Real Time Messages  

The MIDI System Real Time messages are used to synchronize all of the MIDI clock-based 
equipment within a system, such as sequencers and drum machines. Most of the System Real Time 
messages are normally ignored by keyboard instruments and synthesizers. To help ensure accurate 
timing, System Real Time messages are given priority over other messages, and these single-byte 
messages may occur anywhere in the data stream (a Real Time message may appear between the 
status byte and data byte of some other MIDI message).  

The System Real Time messages are the Timing Clock, Start, Continue, Stop, Active Sensing, and 
the System Reset message. The Timing Clock message is the master clock which sets the tempo for 
playback of a sequence. The Timing Clock message is sent 24 times per quarter note. The Start, 
Continue, and Stop messages are used to control playback of the sequence.  

The Active Sensing signal is used to help eliminate "stuck notes" which may occur if a MIDI cable 
is disconnected during playback of a MIDI sequence. Without Active Sensing, if a cable is 
disconnected during playback, then some notes may be left playing indefinitely because they have 



been activated by a Note On message, but the corresponding Note Off message will never be 
received.  

The System Reset message, as the name implies, is used to reset and initialize any equipment which 
receives the message. This message is generally not sent automatically by transmitting devices, and 
must be initiated manually by a user.  

System Exclusive Messages  

System Exclusive messages may be used to send data such as patch parameters or sample data 
between MIDI devices. Manufacturers of MIDI equipment may define their own formats for 
System Exclusive data. Manufacturers are granted unique identification (ID) numbers by the MMA 
or the JMSC, and the manufacturer ID number is included as part of the System Exclusive message. 
The manufacturers ID is followed by any number of data bytes, and the data transmission is 
terminated with the EOX message. Manufacturers are required to publish the details of their System 
Exclusive data formats, and other manufacturers may freely utilize these formats, provided that they 
do not alter or utilize the format in a way which conflicts with the original manufacturers 
specifications.  

Certain System Exclusive ID numbers are reserved for special protocols. Among these are the MIDI 
Sample Dump Standard, which is a System Exclusive data format defined in the MIDI specification 
for the transmission of sample data between MIDI devices, as well as MIDI Show Control and 
MIDI Machine Control.  

Running Status  

Since MIDI data is transmitted serially, it is possible that musical events which originally occurred 
at the same time and must be sent one at a time in the MIDI data stream may not actually be played 
at exactly the same time. With a data transmission rate of 31.25 Kbit/s and 10 bits transmitted per 
byte of MIDI data, a 3-byte Note On or Note Off message takes about 1 ms to be sent, which is 
generally short enough that the events are perceived as having occurred simultaneously. In fact, for 
a person playing a MIDI instrument keyboard, the time skew between playback of notes when 10 
keys are pressed simultaneously should not exceed 10 ms, and this would not be perceptible.  

However, MIDI data being sent from a sequencer can include a number of different parts. On a 
given beat, there may be a large number of musical events which should occur simultaneously, and 
the delays introduced by serialization of this information might be noticeable. To help reduce the 
amount of data transmitted in the MIDI data stream, a technique called "running status" may be 
employed.  

Running status considers the fact that it is very common for a string of consecutive messages to be 
of the same message type. For instance, when a chord is played on a keyboard, 10 successive Note 
On messages may be generated, followed by 10 Note Off messages. When running status is used, a 
status byte is sent for a message only when the message is not of the same type as the last message 
sent on the same Channel. The status byte for subsequent messages of the same type may be 
omitted (only the data bytes are sent for these subsequent messages).  

The effectiveness of running status can be enhanced by sending Note On messages with a velocity 
of zero in place of Note Off messages. In this case, long strings of Note On messages will often 
occur. Changes in some of the MIDI controllers or movement of the pitch bend wheel on a musical 



instrument can produce a staggering number of MIDI Channel voice messages, and running status 
can also help a great deal in these instances.  

 

MIDI Sequencers and Standard MIDI Files 
MIDI messages are received and processed by a MIDI synthesizer in real time. When the 
synthesizer receives a MIDI "note on" message it plays the appropriate sound. When the 
corresponding "note off" message is received, the synthesizer turns the note off. If the source of the 
MIDI data is a musical instrument keyboard, then this data is being generated in real time. When a 
key is pressed on the keyboard, a "note on" message is generated in real time. In these real time 
applications, there is no need for timing information to be sent along with the MIDI messages.  

However, if the MIDI data is to be stored as a data file, and/or edited using a sequencer, then some 
form of "time-stamping" for the MIDI messages is required. The Standard MIDI Files specification 
provides a standardized method for handling time-stamped MIDI data. This standardized file format 
for time-stamped MIDI data allows different applications, such as sequencers, scoring packages, 
and multimedia presentation software, to share MIDI data files.  

The specification for Standard MIDI Files defines three formats for MIDI files. MIDI sequencers 
can generally manage multiple MIDI data streams, or "tracks". Standard MIDI files using Format 0 
store all of the MIDI sequence data in a single track. Format 1 files store MIDI data as a collection 
of tracks. Format 2 files can store several independent patterns. Format 2 is generally not used by 
MIDI sequencers for musical applications. Most sophisticated MIDI sequencers can read either 
Format 0 or Format 1 Standard MIDI Files. Format 0 files may be smaller, and thus conserve 
storage space. They may also be transferred using slightly less system bandwidth than Format 1 
files. However, Format 1 files may be viewed and edited more directly, and are therefore generally 
preferred.  

 

Synthesizer Basics 
Polyphony  

The polyphony of a sound generator refers to its ability to play more than one note at a time. 
Polyphony is generally measured or specified as a number of notes or voices. Most of the early 
music synthesizers were monophonic, meaning that they could only play one note at a time. If you 
pressed five keys simultaneously on the keyboard of a monophonic synthesizer, you would only 
hear one note. Pressing five keys on the keyboard of a synthesizer which was polyphonic with four 
voices of polyphony would, in general, produce four notes. If the keyboard had more voices (many 
modern sound modules have 16, 24, or 32 note polyphony), then you would hear all five of the 
notes.  

Sounds  

The different sounds that a synthesizer or sound generator can produce are sometimes called 
"patches", "programs", "algorithms", or "timbres". Programmable synthesizers commonly assign 



"program numbers" (or patch numbers) to each sound. For instance, a sound module might use 
patch number 1 for its acoustic piano sound, and patch number 36 for its fretless bass sound. The 
association of all patch numbers to all sounds is often referred to as a patch map.  

Via MIDI, a Program Change message is used to tell a device receiving on a given Channel to 
change the instrument sound being used. For example, a sequencer could set up devices on Channel 
4 to play fretless bass sounds by sending a Program Change message for Channel four with a data 
byte value of 36 (this is the General MIDI program number for the fretless bass patch).  

Multitimbral Mode  

A synthesizer or sound generator is said to be multitimbral if it is capable of producing two or more 
different instrument sounds simultaneously. If a synthesizer can play five notes simultaneously, and 
it can produce a piano sound and an acoustic bass sound at the same time, then it is multitimbral. 
With enough notes of polyphony and "parts" (multitimbral) a single synthesizer could produce the 
entire sound of a band or orchestra.  

Multitimbral operation will generally require the use of a sequencer to send the various MIDI 
messages required. For example, a sequencer could send MIDI messages for a piano part on 
Channel 1, bass on Channel 2, saxophone on Channel 3, drums on Channel 10, etc. A 16 part 
multitimbral synthesizer could receive a different part on each of MIDI's 16 logical channels.  

The polyphony of a multitimbral synthesizer is usually allocated dynamically among the different 
parts (timbres) being used. At any given instant five voices might be needed for the piano part, two 
voices for the bass, one for the saxophone, plus 6 voices for the drums. Note that some sounds on 
some synthesizers actually utilize more than one "voice", so the number of notes which may be 
produced simultaneously may be less than the stated polyphony of the synthesizer, depending on 
which sounds are being utilized.  

 

The General MIDI (GM) System 
At the beginning of a MIDI sequence, a Program Change message is usually sent on each Channel 
used in the piece in order to set up the appropriate instrument sound for each part. The Program 
Change message tells the synthesizer which patch number should be used for a particular MIDI 
Channel. If the synthesizer receiving the MIDI sequence uses the same patch map (the assignment 
of patch numbers to sounds) that was used in the composition of the sequence, then the sounds will 
be assigned as intended.  

Prior to General MIDI, there was no standard for the relationship of patch numbers to specific 
sounds for synthesizers. Thus, a MIDI sequence might produce different sounds when played on 
different synthesizers, even though the synthesizers had comparable types of sounds. For example, 
if the composer had selected patch number 5 for Channel 1, intending this to be an electric piano 
sound, but the synthesizer playing the MIDI data had a tuba sound mapped at patch number 5, then 
the notes intended for the piano would be played on the tuba when using this synthesizer (even 
though this synthesizer may have a fine electric piano sound available at some other patch number).  

The General MIDI (GM) Specification defines a set of general capabilities for General MIDI 
Instruments. The General MIDI Specification includes the definition of a General MIDI Sound Set 



(a patch map), a General MIDI Percussion map (mapping of percussion sounds to note numbers), 
and a set of General MIDI Performance capabilities (number of voices, types of MIDI messages 
recognized, etc.). A MIDI sequence which has been generated for use on a General MIDI 
Instrument should play correctly on any General MIDI synthesizer or sound module.  

The General MIDI system utilizes MIDI Channels 1-9 and 11-16 for chromatic instrument sounds, 
while Channel number 10 is utilized for "key-based" percussion sounds. These instrument sounds 
are grouped into "sets" of related sounds. For example, program numbers 1-8 are piano sounds, 9-
16 are chromatic percussion sounds, 17-24 are organ sounds, 25-32 are guitar sounds, etc.  

For the instrument sounds on channels 1-9 and 11-16, the note number in a Note On message is 
used to select the pitch of the sound which will be played. For example if the Vibraphone 
instrument (program number 12) has been selected on Channel 3, then playing note number 60 on 
Channel 3 would play the middle C note (this would be the default note to pitch assignment on most 
instruments), and note number 59 on Channel 3 would play B below middle C. Both notes would be 
played using the Vibraphone sound.  

The General MIDI percussion sounds are set on Channel 10. For these "key-based" sounds, the note 
number data in a Note On message is used differently. Note numbers on Channel 10 are used to 
select which drum sound will be played. For example, a Note On message on Channel 10 with note 
number 60 will play a Hi Bongo drum sound. Note number 59 on Channel 10 will play the Ride 
Cymbal 2 sound.  

It should be noted that the General MIDI system specifies sounds using program numbers 1 through 
128. The MIDI Program Change message used to select these sounds uses an 8-bit byte, which 
corresponds to decimal numbering from 0 through 127, to specify the desired program number. 
Thus, to select GM sound number 10, the Glockenspiel, the Program Change message will have a 
data byte with the decimal value 9.  

The General MIDI system specifies which instrument or sound corresponds with each 
program/patch number, but General MIDI does not specify how these sounds are produced. Thus, 
program number 1 should select the Acoustic Grand Piano sound on any General MIDI instrument. 
However, the Acoustic Grand Piano sound on two General MIDI synthesizers which use different 
synthesis techniques may sound quite different.  

 

Synthesis Technology: FM and Wavetable 
There are a number of different technologies or algorithms used to create sounds in music 
synthesizers. Two widely used techniques are Frequency Modulation (FM) synthesis and Wavetable 
synthesis.  

FM synthesis techniques generally use one periodic signal (the modulator) to modulate the 
frequency of another signal (the carrier). If the modulating signal is in the audible range, then the 
result will be a significant change in the timbre of the carrier signal. Each FM voice requires a 
minimum of two signal generators. These generators are commonly referred to as "operators", and 
different FM synthesis implementations have varying degrees of control over the operator 
parameters.  



Sophisticated FM systems may use 4 or 6 operators per voice, and the operators may have 
adjustable envelopes which allow adjustment of the attack and decay rates of the signal. Although 
FM systems were implemented in the analog domain on early synthesizer keyboards, modern FM 
synthesis implementations are done digitally.  

FM synthesis techniques are very useful for creating expressive new synthesized sounds. However, 
if the goal of the synthesis system is to recreate the sound of some existing instrument, this can 
generally be done more accurately with digital sample-based techniques.  

Digital sampling systems store high quality sound samples digitally, and then replay these sounds 
on demand. Digital sample-based synthesis systems may employ a variety of special techniques, 
such as sample looping, pitch shifting, mathematical interpolation, and digital filtering, in order to 
reduce the amount of memory required to store the sound samples (or to get more types of sounds 
from a given amount of memory). These sample-based synthesis systems are often called 
"wavetable" synthesizers (the sample memory in these systems contains a large number of sampled 
sound segments, and can be thought of as a "table" of sound waveforms which may be looked up 
and utilized when needed).  

Wavetable Synthesis Techniques  

The majority of professional synthesizers available today use some form of sampled-sound or 
Wavetable synthesis. The trend for multimedia sound products is also towards wavetable synthesis. 
To help prospective MIDI developers, a number of the techniques employed in this type of 
synthesis are discussed in the following paragraphs.  

Looping and Envelope Generation  

One of the primary techniques used in wavetable synthesizers to conserve sample memory space is 
the looping of sampled sound segments. For many instrument sounds, the sound can be modeled as 
consisting of two major sections: the attack section and the sustain section. The attack section is the 
initial part of the sound, where the amplitude and the spectral characteristics of the sound may be 
changing very rapidly. The sustain section of the sound is that part of the sound following the attack, 
where the characteristics of the sound are changing less dynamically.  

Figure 4 shows a waveform with portions which could be considered the attack and the sustain 
sections indicated. In this example, the spectral characteristics of the waveform remain constant 
throughout the sustain section, while the amplitude is decreasing at a fairly constant rate. This is an 
exaggerated example, in most natural instrument sounds, both the spectral characteristics and the 
amplitude continue to change through the duration of the sound. The sustain section, if one can be 
identified, is that section for which the characteristics of the sound are relatively constant.  



 

Figure 4: Attack and Sustain Portions of a Waveform 

 

Figure 5: Looping of a Sample Segment 

A great deal of memory can be saved in wavetable synthesis systems by storing only a short 
segment of the sustain section of the waveform, and then looping this segment during playback. 
Figure 5 shows a two period segment of the sustain section from the waveform in Figure 4, which 
has been looped to create a steady state signal. If the original sound had a fairly constant spectral 
content and amplitude during the sustained section, then the sound resulting from this looping 
operation should be a good approximation of the sustained section of the original.  

For many acoustic string instruments, the spectral characteristics of the sound remain fairly constant 
during the sustain section, while the amplitude of the signal decays. This can be simulated with a 
looped segment by multiplying the looped samples by a decreasing gain factor during playback to 
get the desired shape or envelope. The amplitude envelope of a sound is commonly modeled as 
consisting of some number of linear segments. An example is the commonly used four part 



piecewise-linear Attack-Decay-Sustain-Release (ADSR) envelope model. Figure 6 depicts a typical 
ADSR envelope shape, and Figure 7 shows the result of applying this envelope to the looped 
waveform from Figure 5.  

 

Figure 6: A Typical ADSR Amplitude Envelope 

 

Figure 7: ADSR Envelope Applied to a Looped Sample Segment 

A typical wavetable synthesis system would store sample data for the attack section and the looped 
section of an instrument sound. These sample segments might be referred to as the initial sound and 
the loop sound. The initial sound is played once through, and then the loop sound is played 
repetitively until the note ends. An envelope generator function is used to create an envelope which 
is appropriate for the particular instrument, and this envelope is applied to the output samples 
during playback.  

Playback of the initial wave (with the attack portion of the envelope applied) begins when a Note 
On message is received. The length of the initial sound segment is fixed by the number of samples 
in the segment, and the length of the attack and decay sections of the envelope are generally also 
fixed for a given instrument sound.  

The sustain section will continue to repeat the loop samples while applying the sustain envelope 
slope (which decays slowly in our examples), until a Note Off message is applied. The Note Off 
message triggers the beginning of the release portion of the envelope.  



Loop Length  

The loop length is measured as a number of samples, and the length of the loop should be equal to 
an integral number of periods of the fundamental pitch of the sound being played (if this is not true, 
then an undesirable "pitch shift" will occur during playback when the looping begins). In practice, 
the length of the loop segment for an acoustic instrument sample may be many periods with respect 
to the fundamental pitch of the sound. If the sound has a natural vibrato or chorus effect, then it is 
generally desirable to have the loop segment length be an integral multiple of the period of the 
vibrato or chorus.  

One-Shot Sounds  

The previous paragraphs discussed dividing a sampled sound into an attack section and a sustain 
section, and then using looping techniques to minimize the storage requirements for the sustain 
portion. However, some sounds, particularly sounds of short duration or sounds whose 
characteristics change dynamically throughout their duration, are not suitable for looped playback 
techniques. Short drum sounds often fit this description. These sounds are stored as a single sample 
segment which is played once through with no looping. This class of sounds are referred to as "one-
shot" sounds.  

Sample Editing and Processing  

There are a number of sample editing and processing steps involved in preparing sampled sounds 
for use in a wavetable synthesis system. The requirements for editing the original sample data to 
identify and extract the initial and loop segments have already been mentioned.  

Editing may also be required to make the endpoints of the loop segment compatible. If the 
amplitude and the slope of the waveform at the beginning of the loop segment do not match those at 
the end of the loop, then a repetitive "glitch" will be heard during playback of the looped section. 
Additional processing may be performed to "compress" the dynamic range of the sound to improve 
the signal/quantizing noise ratio or to conserve sample memory. This topic is addressed next.  

When all of the sample processing has been completed, the resulting sampled sound segments for 
the various instruments are tabulated to form the sample memory for the synthesizer.  

Sample Data Compression  

The signal-to-quantizing noise ratio for a digitally sampled signal is limited by sample word size 
(the number of bits per sample), and by the amplitude of the digitized signal. Most acoustic 
instrument sounds reach their peak amplitude very quickly, and the amplitude then slowly decays 
from this peak. The ear's sensitivity dynamically adjusts to signal level. Even in systems utilizing a 
relatively small sample word size, the quantizing noise level is generally not perceptible when the 
signal is near maximum amplitude. However, as the signal level decays, the ear becomes more 
sensitive, and the noise level will appear to increase. Of course, using a larger word size will reduce 
the quantizing noise, but there is a considerable price penalty paid if the number of samples is large.  

Compression techniques may be used to improve the signal-to-quantizing noise ratio for some 
sampled sounds. These techniques reduce the dynamic range of the sound samples stored in the 
sample memory. The sample data is decompressed during playback to restore the dynamic range of 
the signal. This allows the use of sample memory with a smaller word size (smaller dynamic range) 



than is utilized in the rest of the system. There are a number of different compression techniques 
which may be used to compress the dynamic range of a signal.  

Note that there is some compression effect inherent in the looping techniques described earlier. If 
the loop segment is stored at an amplitude level which makes full use of the dynamic range 
available in the sample memory, and the processor and D/A converters used for playback have a 
wider dynamic range than the sample memory, then the application of a decay envelope during 
playback will have a decompression effect similar to that described in the previous paragraph.  

Pitch Shifting  

In order to minimize sample memory requirements, wavetable synthesis systems utilize pitch 
shifting, or pitch transposition techniques, to generate a number of different notes from a single 
sound sample of a given instrument. For example, if the sample memory contains a sample of a 
middle C note on the acoustic piano, then this same sample data could be used to generate the C# 
note or D note above middle C using pitch shifting.  

Pitch shifting is accomplished by accessing the stored sample data at different rates during playback. 
For example, if a pointer is used to address the sample memory for a sound, and the pointer is 
incremented by one after each access, then the samples for this sound would be accessed 
sequentially, resulting in some particular pitch. If the pointer increment was two rather than one, 
then only every second sample would be played, and the resulting pitch would be shifted up by one 
octave (the frequency would be doubled).  

In the previous example, the sample memory address pointer was incremented by an integer number 
of samples. This allows only a limited set of pitch shifts. In a more general case, the memory 
pointer would consist of an integer part and a fractional part, and the increment value could be a 
fractional number of samples. The memory pointer is often referred to as a "phase accumulator" and 
the increment value is then the "phase increment". The integer part of the phase accumulator is used 
to address the sample memory, the fractional part is used to maintain frequency accuracy.  

For example if the phase increment value was equivalent to 1/2, then the pitch would be shifted 
down by one octave (the frequency would be halved). A phase increment value of 1.05946 (the 
twelfth root of two) would create a pitch shift of one musical half-step (i.e. from C to C#) compared 
with an increment of 1. When non-integer increment values are utilized, the frequency resolution 
for playback is determined by the number of bits used to represent the fractional part of the address 
pointer and the address increment parameter.  

Interpolation  

When the fractional part of the address pointer is non-zero, then the "desired value" falls between 
available data samples. Figure 8 depicts a simplified addressing scheme wherein the Address 
Pointer and the increment parameter each have a 4-bit integer part and a 4-bit fractional part. In this 
case, the increment value is equal to 1 1/2 samples. Very simple systems might simply ignore the 
fractional part of the address when determining the sample value to be sent to the D/A converter. 
The data values sent to the D/A converter when using this approach are indicated in the Figure 8, 
case I.  



 

Figure 8: Sample Memory Addressing and Interpolation 

A slightly better approach would be to use the nearest available sample value. More sophisticated 
systems would perform some type of mathematical interpolation between available data points in 
order to get a value to be used for playback. Values which might be sent to the D/A when 
interpolation is employed are shown as case II. Note that the overall frequency accuracy would be 
the same for both cases indicated, but the output is severely distorted in the case where interpolation 
is not used.  

There are a number of different algorithms used for interpolation between sample values. The 
simplest is linear interpolation. With linear interpolation, interpolated value is simply the weighted 
average of the two nearest samples, with the fractional address used as a weighting constant. For 
example, if the address pointer indicated an address of (n+K), where n is the integer part of the 
address and K is the fractional part, than the interpolated value can be calculated as s(n+K) = (1-
K)s(n) + (K)s(n+1), where s(n) is the sample data value at address n. More sophisticated 



interpolation techniques can be utilized to further reduce distortion, but these techniques are 
computationally expensive.  

Oversampling  

Oversampling of the sound samples may also be used to improve distortion in wavetable synthesis 
systems. For example, if 4X oversampling were utilized for a particular instrument sound sample, 
then an address increment value of 4 would be used for playback with no pitch shift. The data 
points chosen during playback will be closer to the "desired values", on the average, than they 
would be if no oversampling were utilized because of the increased number of data points used to 
represent the waveform. Of course, oversampling has a high cost in terms of sample memory 
requirements.  

In many cases, the best approach may be to utilize linear interpolation combined with varying 
degrees of oversampling where needed. The linear interpolation technique provides reasonable 
accuracy for many sounds, without the high penalty in terms of processing power required for more 
sophisticated interpolation methods. For those sounds which need better accuracy, oversampling is 
employed. With this approach, the additional memory required for oversampling is only utilized 
where it is most needed. The combined effect of linear interpolation and selective oversampling can 
produce excellent results.  

Splits  

When the pitch of a sampled sound is changed during playback, the timbre of the sound is changed 
somewhat also. The effect is less noticeable for small changes in pitch (up to a few semitones), than 
it is for a large pitch shift. To retain a natural sound, a particular sample of an instrument sound will 
only be useful for recreating a limited range of notes. To get coverage of the entire instrument range, 
a number of different samples, each with a limited range of notes, are used. The resulting 
instrument implementation is often referred to as a "multisampled" instrument. This technique can 
be thought of as splitting a musical instrument keyboard into a number of ranges of notes, with a 
different sound sample used for each range. Each of these ranges is referred to as a split, or key split.  

Velocity splits refer to the use of different samples for different note velocities. Using velocity splits, 
one sample might be utilized if a particular note is played softly, where a different sample would be 
utilized for the same note of the same instrument when played with a higher velocity. This 
technique is not commonly used to produce basic sound samples because of the added memory 
expense, but both key splitting and velocity splitting techniques can be utilized as a performance 
enhancement. For instance, a key split might allow a fretless bass sound on the lower octaves of a 
keyboard, while the upper octaves play a vibraphone. Similarly, a velocity split might "layer" 
strings on top of an acoustic piano sound when the keys are hit with higher velocity.  

Aliasing Noise  

Earlier paragraphs discussed the timbre changes which result from pitch shifting. The resampling 
techniques used to shift the pitch of a stored sound sample can also result in the introduction of 
aliasing noise into an instrument sound. The generation of aliasing noise can also limit the amount 
of pitch shifting which may be effectively applied to a sound sample. Sounds which are rich in 
upper harmonic content will generally have more of a problem with aliasing noise. Low-pass 
filtering applied after interpolation can help eliminate the undesirable effect of aliasing noise. The 
use of oversampling also helps eliminate aliasing noise.  



LFOs for Vibrato and Tremolo  

Vibrato and tremolo are effects which are often produced by musicians playing acoustic instruments. 
Vibrato is basically a low-frequency modulation of the pitch of a note, while tremolo is modulation 
of the amplitude of the sound. These effects are simulated in synthesizers by implementing low-
frequency oscillators (LFOs) which are used to modulate the pitch or amplitude of the synthesized 
sound being produced.  

Natural vibrato and tremolo effects tend to increase in strength as a note is sustained. This is 
accomplished in synthesizers by applying an envelope generator to the LFO. For example, a flute 
sound might have a tremolo effect which begins at some point after the note has sounded, and the 
tremolo effect gradually increases to some maximum level, where it remains until the note stops 
sounding.  

Layering  

Layering refers to a technique in which multiple sounds are utilized for each note played. This 
technique can be used to generate very rich sounds, and may also be useful for increasing the 
number of instrument patches which can be created from a limited sample set. Note that layered 
sounds generally utilize more than one voice of polyphony for each note played, and thus the 
number of voices available is effectively reduced when these sounds are being used.  

Digital Filtering  

It was mentioned earlier that low-pass filtering may be used to help eliminate noise which may be 
generated during the pitch shifting process. There are also a number of ways in which digital 
filtering is used in the timbre generation process to improve the resulting instrument sound. In these 
applications, the digital filter implementation is polyphonic, meaning that a separate filter is 
implemented for each voice being generated, and the filter implementation should have dynamically 
adjustable cutoff frequency and/or Q.  

For many acoustic instruments, the character of the tone which is produced changes dramatically as 
a function of the amplitude level at which the instrument is played. For example, the tone of an 
acoustic piano may be very bright when the instrument is played forcefully, but much more mellow 
when it is played softly. Velocity splits, which utilize different sample segments for different note 
velocities, can be implemented to simulate this phenomena.  

Another very powerful technique is to implement a digital low-pass filter for each note with a cutoff 
frequency which varies as a function of the note velocity. This polyphonic digital filter dynamically 
adjusts the output frequency spectrum of the synthesized sound as a function of note velocity, 
allowing a very effective recreation of the acoustic instrument timbre.  

Another important application of digital filtering is in smoothing out the transitions between 
samples in key-based splits. At the border between two splits, there will be two adjacent notes 
which are based on different samples. Normally, one of these samples will have been pitch shifted 
up to create the required note, while the other will have been shifted down in pitch. As a result, the 
timbre of these two adjacent notes may be significantly different, making the split obvious. This 
problem may be alleviated by employing a digital filter which uses the note number to control the 
filter characteristics. A table may be constructed containing the filter characteristics for each note 
number of a given instrument. The filter characteristics are chosen to compensate for the pitch 
shifting associated with the key splits used for that instrument.  



It is also common to control the characteristics of the digital filter using an envelope generator or an 
LFO. The result is an instrument timbre which has a spectrum which changes as a function of time. 
An envelope generator might be used to control the filter cutoff frequency generate a timbre which 
is very bright at the onset, but which gradually becomes more mellow as the note decays. Sweeping 
the cutoff frequency of a filter with a high Q setting using an envelope generator or LFO can help 
when trying to simulate the sounds of analog synthesizers.  

 

The PC to MIDI Connection 
To use MIDI with a personal computer, a PC to MIDI interface product is generally required (there 
are a few personal computers which come equipped with built-in MIDI interfaces). There are a 
number of MIDI interface products for PCs. The most common types of MIDI interfaces for IBM 
compatibles are add-in cards which plug into an expansion slot on the PC bus, but there are also 
serial port MIDI interfaces (connects to a serial port on the PC) and parallel port MIDI interfaces 
(connects to the PC printer port). Most other popular personal computers will use a serial port 
connection.  

The fundamental function of a MIDI interface for the PC is to convert parallel data bytes from the 
PC data bus into the serial MIDI data format and vice versa (a UART function). However, "smart" 
MIDI interfaces may provide a number of more sophisticated functions, such as generation of MIDI 
timing data, MIDI data buffering, MIDI message filtering, synchronization to external tape 
machines, and more.  

The specific interface design used has some specific importance to the multimedia market, due to 
the need for essentially transparent operation of games and other applications which use General 
MIDI. GM does not define how the game is supposed to connect with the synthesizer, so sound-
card standards are also needed to assure proper operation. While some PC operating systems 
provide device independence, this is not true of the typical IBM-PC running MS-DOS, where 
hardware MIDI interface standards are required.  

The defacto standard for MIDI interface add-in cards for the IBM-PC is the Roland MPU-401 
interface. The MPU-401 is a smart MIDI interface, which also supports a dumb mode of operation 
(often referred to as "UART mode"). There are a number of MPU-401 compatible MIDI interfaces 
on the market, some which only support the UART (dumb) mode of operation. In addition, many 
IBM-PC add-in sound cards include built-in MIDI interfaces which implement the UART mode 
functions of the MPU-401.  

PC Compatibility Issues  

There are two levels of compatibility which must be considered for MIDI applications running on 
the PC. First is the compatibility of the application with the MIDI interface being used. The second 
is the compatibility of the application with the MIDI synthesizer. For the purposes of this tutorial 
we will be talking only about IBM-PC and compatible systems, though much of this information 
can also be applied to other PC systems. Compatibility considerations under DOS and the Microsoft 
Windows operating system are discussed in the following paragraphs.  

MS-DOS Applications  



MS-DOS applications which utilize MIDI synthesizers include MIDI sequencing software, music 
scoring applications, and a variety of games. In terms of MIDI interface compatibility, virtually all 
of these applications support the MPU-401 interface, and most only require the UART mode. These 
applications should work correctly on any compatible PC equipped with a MPU-401, a full-featured 
MPU-401 compatible, or a sound card with a MPU-401 UART-mode capability. Other MIDI 
interfaces, such as serial port or parallel port MIDI adapters, will only work if the application 
provides support for that particular model of MIDI interface.  

A particular application may provide support for a number of different models of synthesizers or 
sound modules. Prior to the General MIDI standard, there was no widely accepted standard patch 
set for synthesizers, so applications generally needed to provide support for each of the most 
popular synthesizers at the time. If the application did not support the particular model of 
synthesizer or sound module that was attached to the PC, then the sounds produced by the 
application might not be the sounds which were intended. Modern applications can provide support 
for a General MIDI (GM) synthesizer, and any GM-compatible sound source should produce the 
correct sounds.  

 

Multimedia PC (MPC) Systems 
The number of applications for high quality audio functions on the PC (including music synthesis) 
grew explosively after the introduction of Microsoft Windows 3.0 with Multimedia Extensions 
("Windows with Multimedia") in 1991. These extensions are also incorporated into the Windows 
3.1 operating system. The Multimedia PC (MPC) specification, originally published by Microsoft in 
1991, is now published and maintained by the Multimedia PC Marketing Council, a subsidiary of 
the Software Publishers Association. The MPC specification states the minimum requirements for 
multimedia-capable Personal Computers to ensure compatibility in running multimedia applications 
based on Windows 3.1 or Windows with Multimedia.  

The audio capabilities of an MPC system must include digital audio recording and playback (linear 
PCM sampling), music synthesis, and audio mixing. The current MPC specifications define two 
different levels of performance. The requirements for music synthesizers in MPC level 1 and MPC 
level 2 systems are essentially the same, although the digital audio recording and playback 
requirements for MPC level 1 and MPC level 2 compliance are different.  

For MIDI, the current MPC specifications attempt to balance performance and cost issues by 
defining two types of synthesizers; a "Base Multitimbral Synthesizer", and an "Extended 
Multitimbral Synthesizer". Both the Base and the Extended synthesizer are expected to use a 
General MIDI patch set, but neither actually meets the full requirements of General MIDI 
polyphony or simultaneous timbres. Base Multitimbral Synthesizers must be capable of playing 6 
"melodic notes" and "2 percussive" notes simultaneously, using 3 "melodic timbres" and 2 
"percussive timbres".  

The formal requirements for an Extended Multitimbral Synthesizer are only that it must have 
capabilities which exceed those specified for a Base Multitimbral Synthesizer. However, the "goals" 
for an Extended synthesizer include the ability to play 16 melodic notes and 8 percussive notes 
simultaneously, using 9 melodic timbres and 8 percussive timbres.  



The MPC specification also includes an authoring standard for MIDI composition. This standard 
requires that each MIDI file contain two arrangements of the same song, one for Base synthesizers 
and one for Extended synthesizers, allowing for differences in available polyphony and timbres. 
The MIDI data for the Base synthesizer arrangement is sent on MIDI channels 13 - 16 (with the 
percussion track on Channel 16), and the Extended synthesizer arrangement utilizes channels 1 - 10 
(percussion is on Channel 10).  

This technique is intended to optimize the MIDI file to play on both types of synthesizer, but is also 
a potential source of problems for GM synthesizers. A GM synthesizer will receive on all 16 
Channels and subsequently play both performances, including playing the Channel 16 percussion 
track, but with a melodic instrument.  

Microsoft has addressed this issue for future versions of Windows by recommending the full 
General MIDI model instead of the Base/Extended model. However, existing MIDI data which has 
been authored for the Microsoft dual-format will continue to be a problem for next-generation 
Windows systems, and is a problem in any system today that contains a full GM-compatible 
synthesizer.  

The only current solution is to use the Windows MIDI mapper, as described below, to block the 
playback of the extra Channels. Unfortunately, this will also result in blocking needed data on those 
same Channels in a GM-compatible score. The ideal solution might be to develop a scheme for 
identifying Standard MIDI Files containing base/extended data, and to provide a "dynamic" MIDI 
mapping scheme which takes into account the type of file being played. This approach could also be 
applied to other standardized formats which offer some small problems for GM hardware, such as 
Roland's GS and Yamaha's XG formats.  

 

Microsoft Windows Configuration 
Windows applications address hardware devices such as MIDI interfaces or synthesizers through 
the use of drivers. The drivers provide applications software with a common interface through 
which hardware may be accessed, and this simplifies the hardware compatibility issue. Synthesizer 
drivers must be installed using the Windows Driver applet within the Control Panel.  

When a MIDI interface or synthesizer is installed in the PC and a suitable device driver has been 
loaded, the Windows MIDI Mapper applet will then appear within the Control Panel. MIDI 
messages are sent from an application to the MIDI Mapper, which then routes the messages to the 
appropriate device driver. The MIDI Mapper may be set to perform some filtering or translations of 
the MIDI messages in route from the application to the driver. The processing to be performed by 
the MIDI Mapper is defined in the MIDI Mapper Setups, Patch Maps, and Key Maps.  

MIDI Mapper Setups are used to assign MIDI channels to device drivers. For instance, If you have 
an MPU-401 interface with a General MIDI synthesizer and you also have a Creative Labs Sound 
Blaster card in your system, you might wish to assign channels 13 to 16 to the Ad Lib driver (which 
will drive the Base-level FM synthesizer on the Sound Blaster), and assign channels 1 - 10 to the 
MPU-401 driver. In this case, MPC compatible MIDI files will play on both the General MIDI 
synthesizer and the FM synthesizer at the same time. The General MIDI synthesizer will play the 
Extended arrangement on MIDI channels 1 - 10, and the FM synthesizer will play the Base 
arrangement on channels 13-16.  



The MIDI Mapper Setups can also be used to change the Channel number of MIDI messages. If you 
have MIDI files which were composed for a General MIDI instrument, and you are playing them on 
a Base Multitimbral Synthesizer, you would probably want to take the MIDI percussion data 
coming from your application on Channel 10 and send this information to the device driver on 
Channel 16.  

The MIDI Mapper patch maps are used to translate patch numbers when playing MPC or General 
MIDI files on synthesizers which do not use the General MIDI patch numbers. Patch maps can also 
be used to play MIDI files which were arranged for non-GM synthesizers on GM synthesizers. For 
example, the Windows-supplied MT-32 patch map can be used when playing GM-compatible .MID 
files on the Roland MT-32 sound module or LAPC-1 sound card. The MIDI Mapper key maps 
perform a similar function, translating the key numbers contained in MIDI Note On and Note Off 
messages. This capability is useful for translating GM-compatible percussion parts for playback on 
non-GM synthesizers or vice-versa. The Windows-supplied MT-32 key map changes the key-to-
drum sound assignments used for General MIDI to those used by the MT-32 and LAPC-1.  

 

Summary 
The MIDI protocol provides an efficient format for conveying musical performance data, and the 
Standard MIDI Files specification ensures that different applications can share time-stamped MIDI 
data. While this alone is largely sufficient for the working MIDI musician, the storage efficiency 
and on-the-fly editing capability of MIDI data also makes MIDI an attractive vehicle for generation 
of sounds in multimedia applications, computer games, or high-end karaoke equipment.  

The General MIDI system provides a common set of capabilities and a common patch map for high 
polyphony, multitimbral synthesizers, providing musical sequence authors and multimedia 
applications developers with a common target platform for synthesis. With the greater realism 
which comes from wavetable synthesis, and as newer, interactive, applications come along, MIDI-
driven synthesizers will continue to be an important component for sound generation devices and 
multimedia applications.  
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