
Tutorial Week 6 – LC3 and Assembly 1

 Today we will cover some exercises and
questions regarding assembly and the LC-3.

 Keep in mind that these will be useful for
solving the problems you may face while
doing assignment 2!

 1) The digits of your ID must not be directly
visible in their proper order in the assembly
language code!

 E.g. swap letters, reverse string, a
substitution cipher or an intermediary
encoding with ASCII conversion look-up
table.

 2) How can multiplication and division on LC-
3 be performed?

 Answer: iteration.
◦ Multiplication: through iterative addition e.g. 2*5 =

2 + 2 + 2 + 2 + 2
◦ Division: through iterative subtraction e.g. 10/3 =

the number of times you can subtract 2 before the
remainder is <= 0, which is 3 remainder 1.

◦ What is nice about binary representation of powers
of two?

◦ What about exponentiation? (This is a very similar
process. Example next.)

 3) How would you calculate powers of ten in
binary using only addition?
◦ Idea is the same for powers of any base:

◦ A = 102 = 10*10 = 10 + 10 + 10 + 10 + 10 +

◦ 10 + 10 + 10 + 10 + 10

◦ B = A*10 = 103 = A + A + A + A + A +

◦ A + A + A + A + A

 4) How could arithmetic to deal with 2s
compliment integers larger than 16 bits be
handled on LC-3?

 By using an arbitrary precision arithmetic approach.
◦ Numbers that are larger than 16-bits will here be referred to as

‘BigNums’.

 A possible approach focuses on manually handling carry
bits (feel free to critique it):

 Allocate a few memory locations (e.g. 4 locations = 4*16
bits to give 64 bits, enough for values up to 2^50) to store
BigNums across them.

 Process BigNums in blocks:
◦ Do this by handling the carries manually when performing LC-3

ADD operations and adding any carries into the next data block.
◦ To do this 15 of the 16 bits could be used to store values in each

of the memory locations so that the carry could be identified in
the 16th bit during addition.

◦ LC-3 has 8 registers so loading and storing between registers and
memory to deal with two BigNum integers.

 This process would also work with
subtraction by filling a BigNum memory
location with a divisor value, then taking the
2s complement of the data while zeroing the
16th bits of the first 3 lower data blocks (we
want those free for noting the carries).

 Example (on board) using two 4-bit blocks
(and a system with 4-bit 2s complement):
◦ The large number problem is basically an

implementation issue!

 After reviewing the past few exercises on
multiplication, division and bignums – it’s
probably clear that implementing these
features with an ISA like the LC-3 is a lot of
work!

 What would be an alternative implementation
approach? See next slide.

 5) Using Look-up tables

 Pre-compute values and store them in a
program.
◦ Benefit:

 Reduce programming effort if data can be obtained
easily

 Reduce computational complexity of program

◦ But, may impact on code size, or be inflexible if
more values or higher data accuracy is needed

◦ Example ->

LookUp10 .FILL #0

.FILL #10

.FILL #20

.FILL #30

.FILL #40

.FILL #50

.FILL #60

.FILL #70

.FILL #80

.FILL #90

 How could this table
be used?

 E.g. (assume all
registers cleared,
except for R4)

 LEA R5, LookUp10
 ADD R5, R5, R4
 LDR R4, R5, #0
 ADD R0, R0, R4

 R4 stores a number
n, 0-9

 R0 stores the result
of n * 10.

 6) The following program adds the values
stored in memory locations A, B, and C,
and stores the result into memory. There
are two errors in the code. For each,
describe the error and indicate whether it
will be detected at assembly or run time.

 (on next slide)

Line No.

1 .ORIG x3000

2 ONE LD R0, A

3 ADD R1, R1, R0

4 TWO LD R0, B

5 ADD R1, R1, R0

6 THREE LD R0, C

7 ADD R1, R1, R0

8 ST R1, SUM

9 TRAP x25

10 A .FILL x0001

11 B .FILL x0002

12 C .FILL x0003

13 D .FILL x0004

14 .END

 Answer:
◦ SUM is not defined – assembly time error.

◦ R1 is not cleared before the ADD operation, run
time error (R1 might contain a value and should be
set to zero).

 7) The following is an LC-3 program that
performs a function. Assume a sequence of
integers is stored in consecutive memory
locations, one integer per memory location,
starting at the location x4000. The sequence
of numbers terminates with the number
x0000. What does the following program do?

 (on next slide)

Line No.

1 .ORIG x3000

2 LD R0, NUMBERS

3 LD R2, MASK

4 LOOP LDR R1, R0, #0

5 BRz DONE

6 AND R5, R1, R2

7 BRz L1

8 BRnzp NEXT

9 L1 ADD R1, R1, R1

10 STR R1, R0, #0

11 NEXT ADD R0, R0, #1

12 BRnzp LOOP

13 DONE HALT

14 NUMBERS .FILL x4000

15 MASK .FILL x8000

16 .END

 Answer: The program finds all positive
numbers, doubles them, and stores the
doubled results back to their original
locations.
◦ The mask x8000 has a one in the MSB, therefore an

AND operation with a negative number will give a
result >0 and on line 7, wont branch to L1.

 8) What values do registers R0,..R4 have after
this code block is run? Assume all registers
are cleared beforehand.
 For this exercise it’s OK to write the equivalent

assembly code instead of the hexadecimal for each
register.

…

0xA400 THIS1 LEA R0, THIS1

0xA401 THIS2 LD R1, THIS2

0xA402 THIS3 LDI R2, THIS5

0xA403 THIS4 LDR R3, R0, #2

0xA404 THIS5 .FILL xA400

…

 Answer:

 R0 = 0xA400

 R1 = LD R1, THIS2

 R2 = LEA R0, THIS

 R3 = LDI R2, THIS5

 9) What are two possible formats you could
use to store integers in LC-3 memory?

 Answer: binary numeral system or ASCII format
….. Or binary coded decimal (BCD)

 E.g. representing 1110 in the following formats:
◦ Binary: 00001011 (8-bit representation)

◦ BCD: 0001 0001 (i.e. two nibbles each with a value of
one, each nibble having a max. of 1001

◦ ASCII: x3131 (hexadecimal)

 What formats would be useful for your
assignment?

 10) Say you were to write a ‘long’ program on
the LC-3 and needed to store a ‘large’
amount of data in your code. You also note
that, for example the LD and LDI opcodes use
9 bits to specify Pc-offsets in order to access
the program data.

 What could you do to ensure that needed
data is always no further than +255 to -256
addresses away (the range for 9-bits 2s
compliment)?

 Suggestion: you could intersperse code with
data, so that required data isn’t more than
+255 or -256 addresses away.
◦ Using the BR statement would allow for skipping

over the data sections.

 11) What is the benefit of using interrupts to
handle I/O? When might you use polling for
handling I/O?

 Answer: the processor can spend time
performing other tasks instead of polling a
device continually.

 Polling can be efficient when events are being
received regularly.

 12) Something worth doing: review the TRAP
service routines for LC-3.

