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Abstract

 We analyse the components that are needed in programming environments for
Big Data Analysis Systems with scalable HPC performance and the functionality of
ABDS — the Apache Big Data Software Stack.

* One highlight is Harp-DAAL which is a machine library exploiting the Intel node
library DAAL and HPC communication collectives within the Hadoop ecosystem.

* Another highlight is Twister2 which consists of a set of middleware components
to support batch or streaming data capabilities familiar from Apache Hadoop,
Spark, Heron and Flink but with high performance

* Twister2 covers bulk synchronous and data flow communication; task
management as in Mesos, Yarn and Kubernetes; dataflow graph execution
models; l[aunching of the Harp-DAAL library; streaming and repository data
access interfaces, in-memory databases and fault tolerance at dataflow nodes.

* Similar capabilities are available in current Apache systems but as integrated
packages which do not allow needed customization for different application
scenarios.
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Requirements

* On general principles parallel and distributed computing have different requirements even if
sometimes similar functionalities

* Apache stack ABDS typically uses distributed computing concepts
* For example, Reduce operation is different in MPI (Harp) and Spark
e Large scale simulation requirements are well understood
* Big Data requirements are not agreed but there are a few key use types
1) Pleasingly parallel processing (including local machine learning LML) as of different
tweets from different users with perhaps MapReduce style of statistics and
visualizations; possibly Streaming
2) Database model with queries again supported by MapReduce for horizontal scaling
3) Global Machine Learning GML with single job using multiple nodes as classic parallel
computing
4) Deep Learning certainly needs HPC — possibly only multiple small systems
e Current workloads stress 1) and 2) and are suited to current clouds and to Apache Big Data
Software (with no HPC)
* This explains why Spark with poor GML performance can be so successful
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Need a toolkit covering all applications with same API but different implementations

- Difficulty in Parallelism :

Loosely Coupled | Sjze of Synchronization constraints Tightly Coupled

HPC Clouds/Supercomputers
Memory access also critical

Commodity Clouds HPC Clouds
High Performance Interconnect

Size of Ma .
pReduce as in : - :
Disk 1/0 scalable databases Global Machine | | peep Learning Unst.ructu.red Adaptive Sparsity
R Learning Medium size Jobs
Pleasingly Parallel e.g. parallel Graoh Analviics o
Often independent events clustering LDA P YHES ©.8.
subgraph mining
Current major Big Linear Algebra at core Large scale
Data category (typically not sparse) simulations

Parameter sweep

) i Structured Adaptive Sparsity
simulations

Huge Jobs

Spectrum of Applications and Algorithms
There is also distribution seen in grid/edge computing

Exascale Supercomputers
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Need a toolkit covering 5 main paradigms with same API but different implementations

Six Computation Paradigms for Data Analytics

Note Problem and System Architecture as efficient execution says they must match

(1) Map Only (2) Classic (3) Iterative Map Reduce or (4) Point to Point or (6) Shared memory
. L (5) Map-Streaming o
Pleasingly Parallel Map-Reduce Map-Collective Map-Communication Map-Communication
Input Iterations
Input Input
Shared Memory
map map
¢ L Mipf Efmuni%n
o 0000
- BLAST Analysis - High Energy Physics - Expectation Maximization |- Classic MPI _ Streaming images from - Difficult to parallelize
_ Local Machine (HEP) Histograms, _ Clustering - PDE Solvers and Synchrotron sources, - asynchronous parallel
Learning - Web search - Linear Algebra Particle Dynamics Telescopes, Graph
_ Pleasingly Parallel - Recommender Engines | _ PageRank - Graph Internet of Things
Global Machine | Learning
< > >
Classic Cloud Workload These 3 are focus of Twister2 but we need to preserve

capability on first 2 paradigms
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Comparing Spark, Flink and MPI
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Machine Learning with MPI, Spark and Flink

* Three algorithms implemented in three runtimes
* Multidimensional Scaling (MDS)
* Terasort
e K-Means (drop as no time and looked at later)

* Implementation in Java
 MDS is the most complex algorithm - three nested parallel loops
* K-Means - one parallel loop
* Terasort - no iterations

* With care, Java performance ~ C performance
* Without care, Java performance << C performance (details omitted)
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Multidimensional Scaling: 3 Nested Parallel Sections

Weight
Matrix

Initial
Points - X

Distance
Matrix

Kmeans also bad — see later
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No of points No of nodes

MPI Factor of 20-200 Faster than Spark/Flink o _
MDS execution time with 32000

MDS execution time on 16 nodes points on varying number of nodes.
with 20 processes in each node with Each node runs 20 parallel tasks
varying number of points Spark, Flink No Speedup
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1200

MPI Communication
Te ra SO rt 1000 [] Sorting time

[ Data loading and sampling

800

Sorting 1TB of data records

600

Time(s)

Calculate partitions and

send the data to correct 00

Sort & Save

200

Spark Flink MPI- MPI-IB Spark Flink MPI- MPI-IB
TCP TCP
32 64

Terasort execution time in 64 and 32 nodes. Only
MPI shows the sorting time and communication
time as other two frameworks doesn't provide a

clear method to accurately measure them. Sorting

time includes data save time.
MPI-IB - MPI with Infiniband

Partition the data using a sample and regroup
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Software
HPC-ABDS
HPC-FaaS
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NSF 1443054: CIF21
DIBBs: Middleware
and High Performance
Analytics Libraries for
Scalable Data Science

Ogres Application
Analysis

HPC-ABDS and HPC-
FaaS Software

Harp and Twister2
Building Blocks

SPIDAL Data

Analytics Library

University

Biomolecular
Simulations




Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies

HPC-ABDS

Cross-
Cutting
Functions

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, Trident, BioKepler, Galaxy, IPython, Dryad,
Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA),
Jitterbit, Talend, Pentaho, Apatar, Docker Compose, KeystoneML

Integrated

1) Message
and Data
Protocols:
Avro, Thrift,
Protobuf

16) Application and Analytics: Mahout , MLIlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, OpenCV, Scalapack, PetSc, PLASMA MAGMA,
Azure Machine Learning, Google Prediction API & Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j,
H20, IBM Watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Parasol, Dream:Lab, Google Fusion Tables,
CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk, Tableau, D3.js, three.js, Potree, DC.js, TensorFlow, CNTK

wide range
of HPC and

2) Distributed
Coordination
: Google
Chubby,
Zookeeper,
Giraffe,
JGroups

15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku, Aerobatic, AWS Elastic Beanstalk, Azure, Cloud
Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic, Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT,
Agave, Atmosphere

15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP HANA, HadoopDB, PolyBase, Pivotal HD/Hawq,
Presto, Google Dremel, Google BigQuery, Amazon Redshift, Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird

Big Data
technologies.

3) Security &
Privacy:
InCommon,
Eduroam
OpenStack
Keystone,
LDAP, Sentry,
Sqrrl, OpenlD,
SAML OAuth

14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn, Twitter Heron, Databus, Facebook
Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark Streaming, Flink Streaming, DataTurbine

14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI, Stratosphere (Apache Flink), Reef, Disco,
Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, Medusa-GPU, MapGraph, Totem

13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo BEAST HPX-5 BEAST PULSAR, Harp, Netty,
ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, IMS, AMQP, Stomp, MQTT, Marionette Collective, Public Cloud: Amazon
SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs

12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key value), Hazelcast, Ehcache, Infinispan, VoltDB,
H-Store

12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC

12) Extraction Tools: UIMA, Tika

| gave up

4)
Monitoring:
Ambari,
Ganglia,
Nagios, Inca

11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera Cluster, SciDB, Rasdaman, Apache Derby, Pivotal
Greenplum, Google Cloud SQL, Azure SQL, Amazon RDS, Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL

11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon, Tyrant, MongoDB, Espresso, CouchDB,
Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RY A, Sqrrl, Neo4J,
graphdb, Yarcdata, AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame

Public Cloud: Azure Table, Amazon Dynamo, Google DataStore

updating list
in January
2016!

INDIANA UNIVERSITY

SCHOOL OF |

21 layers
Over 350
Software
Packages

January
29
2016

11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet

10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal GPLOAD/GPFDIST

9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, Celery, HTCondor, SGE, OpenPBS, Moab, Slurm,
Torque, Globus Tools, Pilot Jobs

8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage

7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis

6) DevOps: Docker (Machine, Swarm), Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh, Juju, Foreman, OpenStack Heat,
Sahara, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu Maa$S, Facebook Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes,
Buildstep, Gitreceive, OpenTOSCA, Winery, CloudML, Blueprints, Terraform, DevOpSlang, Any2Api

5) IaaS Management from HPC to hypervisors: Xen, KVM, QEMU, Hyper-V, VirtualBox, OpenVZ, LXC, Linux-Vserver, OpenStack, OpenNebula,
Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware ESXi, vSphere and vCloud, Amazon, Azure, Google and other public Clouds
Networking: Google Cloud DNS, Amazon Route 53




Different choices in
software systems in
Clouds and HPC.
HPC-ABDS takes
cloud software
augmented by HPC
when needed to
improve
performance

16 of 21 layers plus
languages
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HPC-ABDS Stack

17. Orchestration Beam >

16. Libraries SPIDAL, TensorFlow, Python —
15A. High Level Programming Pig, Hive, Drill —

15B. Platform as a Service Twister2 —mm

Equivalent HPC, Cluster

<«——— Kepler, Pegasus, Taverna

<+«—— ScalAPACK, PETSc, Matlab
<«—Domain-specific Languages

<«——— XSEDE Software Stack

Big Data
Languages Java, Erlang, Scala, SQL, SPARQL, Python Simulation Fortran, C/C++, Python
> +—
14B. Streaming Heron > Clouds
13,14A. Parallel Runtime Hadoop, Harp ——» HPC <— MPI OpenMP
2. Coordination Zookeeper > £UDAOpencE
12. Caching Memcached > IntegratEd Exascale Runtime
11. Data Management Hbase, MongoDB ~ —» Software « iRODS
10. Data Transfer Globus, HTTP, Pub-Sub — Stack < Globus
9. Scheduling Yarn, Mesos > <« Slurm
8. File Systems HDFS, Object Stores ——» » Lustre

A 4

1, 11A Formats Thrift, Protobuf

\ 4

5. laaS Docker, Serverless

Infrastructure HPC CLOUDS

<«— FITS, HDF

<«—— Linux, Bare-metal, SR-IOV

Clusters, SUPERCOMPUTERS
8/14/18 13



Harp Plugin for Hadoop: Important part of Twister2

Work of Judy Qiu
Parallelism Model Architecture

MapReduce Model MapCollective Model

MapReduce MapCollective
Applications Applications

Application

Framework
- Collective Communication MapReduce V2

Resource
Manager

Harp is an open-source project developed at Indiana University [6], it has:
* MPI-like collective communication operations that are highly optimized for big data problems.
« Harp has efficient and innovative computation models for different machine learning problems.

[6] Harp project. Available at https://dsc-spidal.github.io/harp



Run time software for Harp

PTOCESS 0 broadcast m m m o PI’OCESS 0 PI'OCGSS 1 PI’OCESS 2 Process 3 Process 0 Process 1 Process 2 Process 3

m m m reduce @ pmcesso Process pmessz process 3

i Partition 1

Partition 0 Partition 0
Partition 1 Partition 1
Partition 2 Partition 2 Partition 2 Partition 2

Partition 3 Partition 3
allgather

broadcast reduce allreduce

Partition 0 Local Tables GBI Global Table
Partition 1

el
QU
=l
=¢
=t
o
=]
-

Partition 0 Partition 1 Partition 2 Partition 3
s e i Process 0 Process 1 Process 2 Process 3
partition2 P2
Partition 3

Process 0 Process 1 Process 2 Process 3

Process 0 Process 1 Process 2 Process 3

Process 0 Process 1 Process 2 Process 3

Local Tables

Partition 0 Partition 1 Partition 2 Partition 3

Process 0 Process 1 Process 2 Process 3 — — —
Partition 1 Partition 1 Partition 1
lobalTable
Partition 0 Partition 1 Partition 2 Partition 3 Partition 0 Partition 1 Partition 2 Partition 3 Partition 3 Partition 3 Partition 3

rotate

Map Collective Run timé mérges MapReduce and
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Dynamic Rotation Control for Latent Dirichlet Allocation and Matrix
Factorization SGD (stochastic gradient descent)

Multi-Thread
Execution

Model Parameters
From Rotation

’fi
| | |
Model Related Data Computes until the time arrives, then starts
Other Model Parameters model rotation to address load imbalance

From Caching
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Harp v. Spark Harp v. Torch Harp v. MPI

Performance Comparison

2500l gy e OAAL 5| I EAA. 690 e ot rasc
5 T | ' S 5,000
& 2,000 g )
° k) © 4,000
E o 4 E
E 1,500 é ) E 3,000
% 1,000 % : ‘é ——
’ 500 - 1 1.000
I _ I 0 ()
10KNL 20KNL 500K 1Million u10-2 ut2-2
K means PCA Subgraph
e Datasets: 5 million points, 10 thousand * Datasets: 500K or 1 million data * Datasets: Twitter with 44 million
centroids, 10 feature dim:ensions points of feature dimension 300 vertices, 2 billion edges, subgraph
e 10to 20 r;odes of Intel KNL7250 * Running on single KNL 7250 templates of 10 to 12 vertices
processors (Harp-DAAL) vs. single K80 GPU « 25 nodes of Intel Xeon E5 2670
* Harp-DAAL has 15x speedups over Spark (PyTorch) . * Harp-DAAL has 2x to 5x speedups
MLIib * Harp-DAAL achieves 3x to 6x over state-of-the-art MPI-Fascia
speedups solution
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Developers Mahout-Samsarz Algorithms MapReduce Basics Mahout MapReduce

» 0 Features by Engine Naive Bayes

- Hidden Markov Models

Mahout and SPIDAL

* Mahout was Hadoop machine learning Single - MapReduce | o Fores
library but largely abandoned as Spark B
outperformed Hadoop

SPIDAL outperforms Spark MLlib and Flink

nteractive REPL shell for Spark optimized Mahout DSL

due to better communication and better

Canopy

dataflow or BSP communication.

Streaming KMeans

Wikipedia XML parser and classifier

Spectral Clustering

Has Harp-(DAAL) optimized machine ‘
learning interface o ‘

Matrix Factorization with ALS on Implicit Feedback X X Options for Canopy

Options for Fuzzy k-Means

SPIDAL also has community algorithms
o BiomOIeCUIar SimU|ation Classification with CLI drivers

Logistic Regression - trained via SGD deprecated

Synthetic data

* Graphs for Network Science serecsed | usirvmaton

dden Markov Models deprecated

* Image processing for pathology and

po I a r Sci e n Ce Clustering with CLI drivers in 5 minutes

Canopy Clustering Matrix factorization-based
recommenders
kK-Means Clustering

Overview

ated d
Fuzzy k-Means deprecated deprecated Intro to item-based recommendations
INDIANA UNIVERSITY Streaming kMeans eprecated  deprecateg | Wt Hadoop
SCHOOL OF IN FORMATICS, COM PUTI Spectral Clustering eoreemted Iﬂ]tl'o;icjf.«c_é‘pr-;c-::n’m»:n::at ons
PeLud LiUSIng geprecaico with Hadoo

Q Q Q Q
D o o
-y




Qiu Core SPIDAL Parallel HPC Library with Collective Used

 DA-MDS Rotate, AllIReduce, Broadcast

* Directed Force Dimension Reduction AllGather,
Allreduce

* Irregular DAVS Clustering Partial Rotate, AllIReduce,
Broadcast

* DA Semimetric Clustering (Deterministic Annealing)
Rotate, AllIReduce, Broadcast

* K-means AllReduce, Broadcast, AllGather DAAL

* SVM AllReduce, AllGather

* SubGraph Mining AllGather, AlIReduce

* Latent Dirichlet Allocation Rotate, AllReduce

e Matrix Factorization (SGD) Rotate DAAL

« Recommender System (ALS) Rotate DAAL

* Singular Value Decomposition (SVD) AllGather DAAL

* QR Decomposition (QR) Reduce, Broadcast DAAL
Neural Network AllReduce DAAL

Covariance AllReduce DAAL

Low Order Moments Reduce DAAL

Naive Bayes Reduce DAAL

Linear Regression Reduce DAAL

Ridge Regression Reduce DAAL

Multi-class Logistic Regression Regroup, Rotate,
AllGather

Random Forest AllReduce

Principal Component Analysis (PCA) AlIReduce
DAAL

DAAL implies integrated on node with Intel DAAL Optimized Data Analytics Library
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Iterative MapReduce

http://www.iterativemapreduce.org/

Implementing Twister2
in detail |

This breaks rule from 2012-2017 of not “competing” with but rather “enhancing” Apache
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Twister2: “Next Generation Grid - Edge — HPC Cloud”

Programming Environment
* Analyze the runtime of existing systems

 Hadoop, Spark, Flink, Pregel Big Data Processing

OpenWhisk and commercial FaaS

Storm, Heron, Apex Streaming Dataflow

Kepler, Pegasus, NiFi workflow systems

Harp Map-Collective, MPl and HPC AMT runtime like DARMA

* And approaches such as GridFTP and CORBA/HLA (!) for wide area data links

* A lot of confusion coming from
different communities (database, r O —
distributed, parallel computing, W/;ter -
machine learning, computational/ __—__-
dess with it knowedge exchange lterative MapReduce =

and mixed up (unclear) requirements

http://www.iterativemapreduce.org/
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Integrating HPC and Apache Programming Environments

* Harp-DAAL with a kernel Machine Learning library exploiting the Intel node library DAAL and
HPC communication collectives within the Hadoop ecosystem. The broad applicability of Harp-
DAAL is supporting all 5 classes of data-intensive computation, from pleasingly parallel to
machine learning and simulations.

* Twister2 is a toolkit of components that can be packaged in different ways

* Integrated batch or streaming data capabilities familiar from Apache Hadoop, Spark, Heron
and Flink but with high performance.

* Separate bulk synchronous and data flow communication;
* Task management as in Mesos, Yarn and Kubernetes

* Dataflow graph execution models

Launching of the Harp-DAAL library

* Streaming and repository data access interfaces,

* In-memory databases and fault tolerance at dataflow nodes. (use RDD to do classic
checkpoint-restart)
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Approach

* Clearly define and develop functional layers (using existing
technology when possible)

* Develop layers as independent components

* Use interoperable common abstractions but multiple polymorphic
implementations.

* Allow users to pick and choose according to requirements such as
* Communication + Data Management
 Communication + Static graph

e Use HPC features when possible
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noan
LILAY ] |

[P

ister2 Com

onents |

o
IIIIPIGIIIGII IV

State and Configuration Management;

Change execution mode; save and

Architecture
Specification

Coordination Points

Evaciitinn

Program, Data and Message Level

Mapping of Resources to Rnl’rq/Mapq in

reset state

Different qu’rpmq make different

|™VANYAYA" L1A4A N |

Semantics

Containers, Processes, Threads

choices - why?

(F)ynamin/S’ra’rin)

Spark Flink Hadnnp Prpgpl MPIl modes

Plugins for Slurm _Yarn _Mesos,

Owner (‘.nmpu’rpg Rule

Client API (p g Py’rhnn) for Job

Job submission

Resource Allocation

Marathon, Aurora
Mnni’rnring of tasks and migra’ring tasks

Management

Task System

l[ask migration

for better resource utilization

S’rrpaming and

Opanhiqk

Heron OpenWhisk, Kafka/RabbitMQ

FaaS Events
Task Execution

Process Threads_Queues

F)ynamir‘ Sr‘hpduling, Static Sr‘hpduling,

rask Scheduling

Pluggable Scheduling Algorithms
Static Graph Dynamic Graph

Task Graph

Generation

Task-based programming with
Dynamic or Static Graph API;

FaaS API;

Support accelerators (CUDA,KNL)




Comments

Area

comandiWiSter2 Components |l

Communication
API

Communication

BSP Communication

Coarse grain Dataflow from NiFi, Kepler?

Conventional MPl_Harp

Messages Heron This is user level and could map to
Eine-Grain Twister? Dataflow ngﬁ@wpwgaiﬂﬂwﬁﬁﬁms
Dataflow communications: MP|, TCP and RMA

Define new Dataflow communication
API and library
MPI1 Paoint to Point and Collective API

Map-Collective

Data Access Static( | File Systems _NaoSQL, SQl —
- Streaming Data Message Brokers Spouts

Data — Relaxed .F)iq’rrihu’rpd Shared Data Transformation API;

Management Distributed Data Set | Memory(immutable data),

Mutable Distributed Data

Upstream (streaming) backup;

Spark RDD, Heron Streamlet

Fault Tolerance

Check Pointing

Storage. Messaqing
J 7 -J ~J J

Lightweight; Coordination Points; Spark/
Flink, MPI and Heron models
Research needed

Streaming and batch cases
distinct; Crosses all components

Craosses all (‘.nmpnnpn’rq

Security

execution




Different applications at different layers

o Capabilities
Type of applications
Data Task System Communications
Streaming Distributed Data Set Static Graph Dataflow Communications
Data Pipelines Distributed Data Set Static Graph or Dynamic Graph Dataflow Communications
Machine Learning Distributed Shared Memory Dynamic Graph Dataflow Communications / BSP
Communications
FaaS Stateless Dynamic Graph Dataflow, P2P Communication

higher
Spark. Flink __ Distributed Data | e Distributed Shared Memory (] s Suitable for Simple applications
park, Flin AP « Streaming, Data pipelines é“ Ex— Pleasingly Parallel Applications
Y =
ororP 2 Task/Faas AP| | Lok craeh 3
Heron, © » Streaming, Data pipelines, Machine learning, FaaS -
Storm 4 o
W . o
Communication | DataFlow/BSP Communications, Map Collective = Suitable for Complex applications
None AP| » Streaming, Data pipelines, Machine learning, Faa$S JL < L Ex-MDS,Complex ML Algorithms
B higher
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Twister é_—?

Ilterative MapReduce

http://www.iterativemapreduce.org/

Implementing Twister2
in detail Il

Look at Communication in detail
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Communication Models

« MPI Characteristics: Tightly synchronized applications
e Efficient communications (us latency) with use of advanced hardware
* In place communications and computations (Process scope for state)

* Basic dataflow: Model a computation as a graph S

* Nodes do computations with Task as computations and
edges are asynchronous communications

* A computation is activated when its input data dependencies 5
are satisfied

e Streaming dataflow: Pub-Sub with data partitioned into streams

e Streams are unbounded, ordered data tuples
* Order of events important and group data into time windows

 Machine Learning dataflow: Iterative computations and keep track of state
* There is both Model and Data, but typically only communicate the model

* Collective communication operations such as AllIReduce AllGather (no differential operators in
Big Data problems)

e Can use in-place MPI style communication

INDIANA UNIVERSITY
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Twister2 Dataflow Communications

 Twister:Net offers two communication models

e BSP (Bulk Synchronous Processing) communication using TC or MPI separated from its
task management plus extra Harp collectives

* plus a new Dataflow library DFW built using MPI software but at data
movement not message level BSP Style AllReduce Dataflow Style
* Non-blocking

* Dynamic data sizes %é >><< |>><<. %g

e Streaming model
* Batch case is modeled as a finite stream >§§<
* The communications are between a set of W
tasks in an arbitrary task graph
* Key based communications

 Communications spilling to disks . Q Mesage Intermediate
. Result
 Target tasks can be different from source tasks

Result
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« Communication operators are stateful
- * Buffer data
Twister:Net . . .
* handle imbalanced dynamically sized communications,
e actasacombiner

AP * Thread safe

D * |nitialization
Collective Operations .
| | ] Serialization / Disk / 'V'e"?‘”y * M Pl
Deserialization Mapped Files
Routing & Buffer ] Storage  TCP / ZooKee per
Management
\ J e Buffer management
Network Interface * The messages are serialized by the library
il L * Back-pressure

Architecture e Uses flow control by the underlying channel

Reduce Gather Partition Broadcast

g_,%oge% AllReduce AllGather Keyed-Partition

Keyed-Reduce KeyedGather

(O Source () Stateful operator (") Receiver

Optimized operation vs Basic (Flink, Heron) Batch and Streaming versions of above currently available
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Bandwidth & Latency Kernel

Latency
10° | e
40 Bandwidth Utilization "
351 Z4 Flink | i _ zrl—r—k
Q Q - [IT0 DFW | 2 10%¢
3.0 . . :
- B9 BSP | £ o DFW-IB___———"
_ 2.5} 1 2 | == BSP-I1B
Latency and bandwidth ; 1 = 10
oot ; @5 &4 DFW-10Gbps
between two tasks Qg <V ] v v BSP-10Gbps
running in two nodes L5} : ; o6 Heron-10Gbps
: ] 0
1O} 7 : 100—10 20 30 40 50 60 70
05 P 7 message size (KB)
0.0 ez L n
1 10 40
Different networks Latency of MPI and Twister:Net

with different message sizes on a

Bandwidth utilization of Flink, Twister2 and
two-node setup

OpenMPI over 1Gbps, 10Gbps and IB with
Flink on IPolB
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Flink, BSP and DFW Performance

Latency of Reduce Latency of Gather

Total time Reduce 10° Total time Partition 10
. — : : : : , :

10 _/—.'"‘/ - 101 Le—"] = ;/"‘/;7}
2 10° o <] — o 1 1 I R
8 — o — o —T""|
4 B = | | ——% ] FA——"‘) | _—4
g _ ] S Y e — S ——

3 o—e Flink-IPoIB | 3 ¢ 3 10° = g ;ﬁ Pail
= 10 £ p = | U 1n0
2 ~— DFW-IB £ o 2 2 1 =
s o DFW-1Gbps | £ 5 =
© ’ - T 4 =
s | ———A 5 10 5
10° | —&] A— —x = = .;/‘
be——T |
X’-”"
P . .
16 32 10°%"10 20 30 40 50 60 70 1900 05 1.0 15 20 25 3.0 35 40

105 10 15 20 25 30 35

message size (KB) message size (KB)

' Parallelism ' message size (KB)
2 Flink-IPolB BB Fink-1Gpbs e—e BSP-INT < BSP-OBJECT &4 DFW-INT v DFW-OBJECT

E=3 DFW-IB I DFW-1Gbps

Latency for Reduce and Gather operations in 32
nodes with 256-way parallelism. The time is for 1
million messages in each parallel unit, with the given
message size. For BSP-Object case we do two MPI
calls with MPIAlIReduce / MPIAllIGather first to get
the lengths of the messages and the actual call.
InfiniBand network is used.

Total time for Flink and Twister:Net for Reduce and Partition
operations in 32 nodes with 640-way parallelism. The time is
for 1 million messages in each parallel unit, with the given

message size
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K-Means algorithm performance

AllIReduce Communication

K-Means K-Means
—
§ Spark/Flink All Reduction MPI All Reduction
10°F N .
‘R s § | y  (Time
o) N > o 10° IS N
s) N o I
0 N \ - s ] N /'
g N \ q g T u N\
E otk N N / £ VI %: N\ Iteration
\ A 1 i u
-\ s u
A 9= H . .
/E: 8 Iteration with
% | AL u Broadcast
10" 2 4 8 16 10° 4 8 16 s
Centers x 1000 Nodes : ' ' '
[Z3J DFW IB W BSP-IB X0 Spark - 10Gbps ' O Message
Bl DFW 10Gbps ~ EEEN BSP - 10Gbps O Partially reduced result

@ All reduced result

Left: K-means job execution time on 16 nodes with varying centers, 2 million I Parallel map tasks I Reduce task |] MARIL S

points with 320-way parallelism. Right: K-Means wth 4,8 and 16 nodes
where each node having 20 tasks. 2 million points with 16000 centers used.
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Sorting Records

Calculate partitions and

send the data to correct
process Sort & Save

_______________________________________________________

_____________________________________________________

______________________________________________________

Partition the data using a sample and regroup

time(s) log

For DFW case, a single node can get congested if many
processes send message simultaneouslv.

102 Terasort Terasort

77__.
i i
e g1 HH
_ == % L HH
o5 A 2 L
; s £ i
P Zis % Zzz g
= /:- an 4 e T
10" 57 64 128 " 256 10" 55 T
Data - Gigabytes Data - Terabytes

[Z_4 BSP-IB-Com [ Flink-1PolB EZZ1 Rest of time Z] BSP-IB
E=H DFW-IB-Com Bl Flink-10Gbps BE= DFW-IB

Left: Terasort time on a 16 node cluster with 384 parallelism. BSP
and DFW shows the communication time. Right: Terasort on 32
nodes with .5 TB and 1TB datasets. Parallelism of 320. Right 16
node cluster (Victor), Left 32 node cluster (Juliet) with InfiniBand.

BSP algorithm waits for others to send messages in a ring topology and can be in-efficient compared to

DFW case where processes do not wait.
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Twister:Net and Apache Heron for Streaming

Latency of Partition Latency of Reduce 103 Latency of Broadcast

—T ® 103 L e —
i [

107

/.————"-—.’—’— F o | r
i ] [ Lo |

. . : , ]
10 / | 10° ri//( 10} il
10° } I

/
— : | A& ;
I /?""-‘ 0l ) :
0 1

10"

\

[y
o

Latency (ms) Log

Latency (ms) Log
Latency (ms) Log

_______.'———‘X

n-—-/

o P
0 20 30 40 50 60 70 10 0 10 20 30 40 50 60 70
message size (KB)

-1 -1
10°—10 20 30 a0 50 60 70 10

message size (KB) message size (KB)

e—e Heron-1Gbps —x DFW-IB &~ DFW-1GBps

Latency of Apache Heron and Twister:Net DFW (Dataflow) for Reduce,
Broadcast and Partition operations in 16 nodes with 256-way parallelism
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Robot Algorithms

Simultaneous Localization and Mapping N-Body Collision Avoidance

WJ‘ b
Py
PR
P

Map Built from Robot data Robot with a Robots need to avoid
Laser Range collisions when they move
Finder
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SLAM Simultaneous Localization and Mapping

Rao blackwellized particle filter based SLAM

Sending to Sending to
pub-sub Persisting

T T to storage

— Multiple
streaming
T ? workflows
- @® ®© © o
T A stream

application with

Streaming )
Kfl O O some tasks runni
workilow in parallel

8

Gateway Message Brokers I I :
RabbitMQ, Kafka
Streaming SLAM Algorithm
Apache Storm
End to end delays without any Hosted in FutureSystems OpenStack cloud
processing is less than 10ms which is accessible through IU network
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Performance of SLAM Storm v. Twister2

180 Laser readings Twister2 Implementation speedup.

10
—— 20
- 60
8 H—< 100
7k
e 20 Speedup 20 Speedup
2 e—e | 100 Particles 8 e—e | 100 Particles
51 18 1
1 1 16 16 e
2;,.——————’“ 14 14 /
4 8 12 16 20 . — P
Parallel Tasks ® ®
. ” 8 // 7 8
640 Laser readings o
1200 §40 Laser' Readingys 14 6.40 Laserl Readingys 6 6
O T 4 4
1000 —<— 100 H 12 /=< 100
2 2

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
= Parallel tasks Parallel tasks
E
180 Laser readings 640 Laser readings

4 8 12 16 20 4 8 12 16 20
Parallel Tasks Parallel Tasks

Storm Implementation Speedup
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Twister é_—?

Ilterative MapReduce

http://www.iterativemapreduce.org/

Implementing Twister2
in detail Il

State
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Resource Allocation

* Job Submission & Management

e twister2 submit

Logging

Persistent Storage

ZooKeeper Worker Discovery
* Resource Managers TCP < 1

e Slurm ]
* Nomad [ Job Client ]—> Resource |,

L5 Workers '
e Kubernetes L J

|

* Mesos

Staging Job files and Twsiter2

Distribution
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Kubernetes and Mesos Worker
Initialization Times

3workersperpod #=1workerperpod ====3 workers per executor ====1 worker per executor

18.0

m 18.0 =

% 16.0 g 160

® 14.0 é 14.0

£ 120 = 120

= v 10.0

£ 10.0 ° '

n 8.0 / & 8.0

. g 60

3 60 o

S 4.0 = 4.0

= 0 2.0
0.0

0.0
3 9 18 36 54 3 ? 18 3 >4

Total Number of Workers
Total Number of Workers

Kubernetes Mesos

* |t takes around 5 seconds to initialize a worker in Kubernetes.

* |t takes around 3 seconds to initialize a worker in Mesos.

* When 3 workers are deployed in one executor or pod, initialization times are faster in
both systems.
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Task System

User defined operator Parallelism

Resources

* Generate computation graph dynamically
* Dynamic scheduling of tasks
* Allow fine grained control of the graph S

Operators

Data

Communication

* Generate computation graph statically
* Dynamic or static scheduling
 Suitable for streaming and data query applications
* Hard to express complex computations, especially with loops

Configurations

* Hybrid approach

* Combine both static and dynamic graphs
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Task Graph Execution

User Graph Scheduler Scheduler Plan Execution Execution Plan Executor
Planner
Worker Plan Network
Scheduling Algorithms
* Task Scheduler is pluggable * Streaming
* Executor is pluggable * Round robin
 Scheduler running on all the workers * First fit

* Batch
* Data locality aware
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Coarse Grain Dataflows links jobs in such a pipeline

But internally to each
job you can also
elegantly express

algorithm as dataflow

but with more
stringent
performance
constraints

Data preparatlon

Visualization

' Dimension
Clustering Reduction
— —

Corresponding to classic Spark K-means Dataflow

= loadPoints()

Internal Execution o (C — :
e e C = loadInitCenters()
* for (inti=0;i<10; i++) {
_— e T=P.map().withBroadcast(C)
Reduce “—— o C=T.reduce() }
Iterate

HPC

Communication Dataflow at Different
Grain sizes

: I EENEENEN

N1
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Workflow vs Dataflow: Different grain sizes
and different performance trade-offs

The dataflow can expand from Edge to Cloud

Streaming BSP ML
- — —
5 > OO0 E—
Tlnvoke ___________________________________________________________________________
Workflow Controller | | Input [ 1 MPIProcess
— Coarse Grain
— Output
\7\ Input O Data transformation |—| P B _"___Pataﬂow
— peseeey Fine grain dataflow : Single Job
|| Output D Application i i Job O g — g
Workflow Controlled by Workflow Engine or a Script Dataflow application running as a single job
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NiFi Workflow
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Systems State Spark Kmeans Dataflow

e State is handled differently in
e P =loadPoints()

systems

e CORBA, AMT, MPI and Storm/ * C = loadInitCenters()
Heron have long running tasks lterate
that preserve state — o for (inti=0;i<10;i++){

 Spark and Flink preserve datasets

across dataflow node using in-
memory databases

e T=P.map().withBroadcast(C)

«— ¢ C=T.reduce() }

* All systems agree on coarse grain I
dataflow; only keep state by Save State at Coordination Point
exchanging data Store C in RDD
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Fault Tolerance and State

e Similar form of check-pointing mechanism is used already in HPC
and Big Data

* although HPC informal as doesn’t typically specify as a dataflow graph

* Flink and Spark do better than MPI due to use of database technologies;
MPI is a bit harder due to richer state but there is an obvious integrated
model using RDD type snapshots of MPI style jobs

* Checkpoint after each stage of the dataflow graph (at location of
intelligent dataflow nodes)

* Natural synchronization point
* Let’s allows user to choose when to checkpoint (not every stage)

 Save state as user specifies; Spark just saves Model state which is
insufficient for complex algorithms
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Twister é_—?

Ilterative MapReduce

http://www.iterativemapreduce.org/

Implementing Twister2
Futures
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Twister2 Timeline: End of August 2018

e Twister:Net Dataflow Communication API
e Dataflow communications with MPI or TCP

* Harp for Machine Learning (Custom BSP Communications)

* Rich collectives
* Around 30 ML algorithms

* HDFS Integration
e Task Graph

e Streaming - Storm model
e Batch analytics - Hadoop

* Deployments on Docker, Kubernetes, Mesos (Aurora), Nomad, Slurm
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Twister2 Timeline: End of December 2018

* Native MPI integration to Mesos, Yarn
* Naiad model based Task system for Machine Learning
* Link to Pilot Jobs

* Fault tolerance

* Streaming
e Batch

e Hierarchical dataflows with Streaming, Machine Learning and Batch
integrated seamlessly

» Data abstractions for streaming and batch (Streamlets, RDD)

. YXBBI()ﬂOW graphs (Kepler, Spark) with linkage defined by Data Abstractions

* End to end applications
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Twister2 Timeline: After December 2018

* Dynamic task migrations
e RDMA and other communication enhancements

* Integrate parts of Twister2 components as big data systems enhancements
(i.e. run current Big Data software invoking Twister2 components)

* Heron (easiest), Spark, Flink, Hadoop (like Harp today)

e Support different APIs (i.e. run Twister2 looking like current Big Data
Software)

* Hadoop
e Spark (Flink)
e Storm

e Refinements like Marathon with Mesos etc.

 Function as a Service and Serverless

e Support higher level abstractions
 Twister:SQL
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Summary of Twister2: Next Generation HPC Cloud + Edge + Grid
* We have built a high performance data analysis library SPIDAL

* We have integrated HPC into many Apache systems with HPC-ABDS with rich set of
collectives

 We have done a preliminary analysis of the different runtimes of Hadoop, Spark, Flink,
Storm, Heron, Naiad, DARMA (HPC Asynchronous Many Task) and identified key
components

* There are different technologies for different circumstances but can be unified by high
level abstractions such as communication/data/task API’s

e Apache systems use dataflow communication which is natural for distributed systems
but slower for classic parallel computing

* No standard dataflow library (why?). Add Dataflow primitives in MPI1-4?

 HPC could adopt some of tools of Big Data as in Coordination Points (dataflow nodes),
State management (fault tolerance) with RDD (datasets)

* Could integrate dataflow and workflow in a cleaner fashion
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