Twister2: A High-Performance Big Data Programming Environment

HPBDC 2018: The 4th IEEE International Workshop on High-Performance Big Data, Deep Learning, and Cloud Computing

Geoffrey Fox, May 21, 2018 Judy Qiu, Supun Kamburugamuve

Department of Intelligent Systems Engineering

gcf@indiana.edu, http://www.dsc.soic.indiana.edu/, http://spidal.org/

Work with Shantenu Jha, Kannan Govindarajan, Pulasthi Wickramasinghe, Gurhan Gunduz, Ahmet Uyar

Abstract

- We analyse the components that are needed in programming environments for Big Data Analysis Systems with scalable HPC performance and the functionality of ABDS – the Apache Big Data Software Stack.
- One highlight is Harp-DAAL which is a machine library exploiting the Intel node library DAAL and HPC communication collectives within the Hadoop ecosystem.
- Another highlight is Twister2 which consists of a set of middleware components to support batch or streaming data capabilities familiar from Apache Hadoop, Spark, Heron and Flink but with high performance
- Twister2 covers bulk synchronous and data flow communication; task management as in Mesos, Yarn and Kubernetes; dataflow graph execution models; launching of the Harp-DAAL library; streaming and repository data access interfaces, in-memory databases and fault tolerance at dataflow nodes.
- Similar capabilities are available in current Apache systems but as integrated packages which do not allow needed customization for different application scenarios.

Requirements

- On general principles **parallel and distributed computing** have different requirements even if sometimes similar functionalities
 - Apache stack ABDS typically uses distributed computing concepts
 - For example, Reduce operation is different in MPI (Harp) and Spark
- Large scale simulation requirements are well understood
- Big Data requirements are not agreed but there are a few key use types
 - 1) Pleasingly parallel processing (including local machine learning LML) as of different tweets from different users with perhaps MapReduce style of statistics and visualizations; possibly Streaming
 - 2) Database model with queries again supported by MapReduce for horizontal scaling
 - **3)** Global Machine Learning GML with single job using multiple nodes as classic parallel computing
 - 4) Deep Learning certainly needs HPC possibly only multiple small systems
- Current workloads stress 1) and 2) and are suited to current clouds and to Apache Big Data Software (with no HPC)
 - This explains why Spark with poor GML performance can be so successful

Need a toolkit covering 5 main paradigms with same API but different implementations Six Computation Paradigms for Data Analytics

Note Problem and System Architecture as efficient execution says they must match

Ψs

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Comparing Spark, Flink and MPI

• On Global Machine Learning GML.

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Machine Learning with MPI, Spark and Flink

- Three algorithms implemented in three runtimes
 - Multidimensional Scaling (MDS)
 - Terasort
 - K-Means (drop as no time and looked at later)
- Implementation in Java
 - MDS is the most complex algorithm three nested parallel loops
 - K-Means one parallel loop
 - Terasort no iterations
- With care, Java performance ~ C performance
- Without care, Java performance << C performance (details omitted)

Multidimensional Scaling: 3 Nested Parallel Sections

Each node runs 20 parallel tasks Spark, Flink No Speedup

Final

Points – X

with 20 processes in each node with

varying number of points

Terasort

Sorting 1TB of data records

Partition the data using a sample and regroup

Terasort execution time in 64 and 32 nodes. Only MPI shows the sorting time and communication time as other two frameworks doesn't provide a clear method to accurately measure them. Sorting time includes data save time. MPI-IB - MPI with Infiniband

Software HPC-ABDS HPC-FaaS

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

NSF 1443054: CIF21 DIBBs: Middleware and High Performance Analytics Libraries for Scalable Data Science

Ogres Application Analysis

HPC-ABDS and HPC-FaaS Software Harp and Twister2 Building Blocks

SPIDAL Data Analytics Library

HPC-ABDS

Integrated
wide range
of HPC and
Big Data
technologies.

I gave up updating list in January 2016!

	Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies					
ABUC	Cross-	17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, Trident, BioKepler, Galaxy, IPython, Dryad,				
ADD J	Cutting	Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA),				
	Functions	Jitterbit, Talend, Pentaho, Apatar, Docker Compose, KeystoneML				
	1) Message	16) Application and Analytics: Mahout, MLlib, MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, OpenCV, Scalapack, PetSc, PLASMA MAGMA,				
	and Data	Azure Machine Learning, Google Prediction API & Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j,				
-	Protocols:	H2O, IBM watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Parasol, Dream:Lab, Google Fusion Tables,				
ratod	Avro, Thrift,	CINET, NWB, Elasticsearch, Kibana, Logstash, Glaylog, Splunk, Tableau, D5.js, Intee.js, Poulee, DC.js, TensorFlow, CNTK				
ιαιευ	Protobuf	15b) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenSnill, Heloku, Aerobalic, AwS Elastic Beanstalk, Azure, Cloud Foundry Pivotal IBM BlueMix Ninefold Jelastic Stackato applog CloudBeas Engine Vard CloudControl dotCloud Dokku OSGi HUBzero OODT				
	2) Distributed	Agave Atmosphere				
rango	Coordination	15A) High level Programming: Kite Hive HCatalog Taio Shark Phoenix Impala MROL SAP HANA HadoonDB PolyBase Pivotal HD/Hawa				
Iange	: Google	Presto, Google Dremel, Google BigOuery, Amazon Redshift, Drill, Kvoto Cabinet, Pig. Sawzall, Google Cloud DataFlow, Summingbird				
	Chubby,	14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn, Twitter Heron, Databus, Facebook				
C and	Zookeeper,	Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark Streaming, Flink Streaming, DataTurbine				
L allu	Giraffe,	14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI, Stratosphere (Apache Flink), Reef, Disco,				
	JGroups	Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, Medusa-GPU, MapGraph, Totem				
ata	3) Security &	13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo BEAST HPX-5 BEAST PULSAR, Harp, Netty,				
αια	Privacy:	ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, Marionette Collective, Public Cloud: Amazon				
	InCommon,	SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs				
	OpenStack	12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key value), Hazelcast, Ehcache, Infinispan, VoltDB,				
lologies.	Keystone	H-Store				
0.01	LDAP Sentry	12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC				
	Sarrl. OpenID.	12) Extraction Tools: UIMA, Tika				
	SAML OAuth	11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera Cluster, SciDB, Rasdaman, Apache Derby, Pivotal				
	4)	Greenplum, Google Cloud SQL, Azure SQL, Amazon RDS, Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL				
	Monitoring:	11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon, Tyrant, MongoDB, Espresso, CouchDB,				
e up	Ambari,	Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J,				
	Ganglia,	graphdb, Yarcdata, AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame				
	Nagios, Inca	Public Cloud: Azure Lable, Amazon Dynamo, Google DataStore				
ting list		11A) File management: IKODS, NeiCDF, CDF, HDF, OPENDAP, FITS, KCFile, OKC, Parquet 10) Data Transment: DitTament LITTD, ETD, SSU, Clabra Online (CridETD), Element Screen, Directal CDL OAD/CDEDIST				
00	21 layers	10) Data Transport: Bittorieni, HTTP, FTP, SSH, Globus Online (Glub TP), Flume, Sqoop, Pivotal GPLOAD/GPFDIST				
	, Over 250	Torque Globus Tools, Pilot Jobs				
iuarv	0001 330	2) Eile systemse UDES, Switt Haustack ff. Cinder Conk EUSE Chuster Lustre CDES, CEES				
	Software	b) File systems: HDFS, Switt, Haystack, 14, Cinder, Cepit, FUSE, Gluster, Lustre, GFFS, GFFS Public Cloud: Amazon S3, Azura Blob, Google Cloud Storage				
	Packages	Tuble Cloud. Anazon 55, Azure Blob, Google Cloud Stolage				
		1) Interoperating: Libvin, Libvin, Libvin, Journal, Obsta, Occi, CDMi, Whit, Saga, Genesis				
-		b) DevOps: Docker (Machine, Swarm), Pupper, Cher, Ansible, Sansiack, Bolo, Cobbier, Acar, Razor, Cloudiviesh, Juju, Foreman, OpenStack Heat, Sahara, Boaka, Cisao Intelligent Automation for Cloud, Ubuntu MaaS, Eacaboak Tunnerwara, AWS, Oneworka, OpenStack Ironia, Coogle Kubernetes				
	January	Buildsten Gitreceive OpenTOSCA Winery CloudMI Blueprints Terraform DevOnSlang Anv2Ani				
	20 ,	5) Jaas Management from HPC to hypervisors: Xen KVM OEMIJ Hyper-V VirtualBox OnenVZ LXC Linux-Vserver OnenStack OnenNebula				
SCHOOL OF	23	Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware ESXi, vSphere and vCloud Amazon Azure Google and other public Clouds				
	2016	Networking: Google Cloud DNS, Amazon Route 53				

Different choices in software systems in Clouds and HPC. HPC-ABDS takes cloud software augmented by HPC when needed to improve performance

16 of 21 layers plus languages

INDIANA UNIVERSITY

SCHOOL OF INF

HPC-ABDS Stack

17. Orchestration	Beam	→
L6. Libraries	SPIDAL, TensorFlow, Python -	→
L5A. High Level Prog	ramming Pig, Hive, Drill 🛶	
L5B. Platform as a Se	ervice Twister2	Big Da
anguages Java, Er	ang, Scala, SQL, SPARQL, Pyth	^{on} Simulati
L4B. Streaming L3,14A. Parallel Run	Heron — — — — — — — — — — — — — — — — — — —	Cloud
2. Coordination L2. Caching	Zookeeper — — → Memcached — — →	Integrat
L1. Data Manageme L0. Data Transfer	nt Hbase, MongoDB → Globus, HTTP, Pub-Sub →	Softwa Stack
9. Scheduling	Yarn, Mesos 🛛 ———————————————————————————————————	
3. File Systems	HDFS, Object Stores ———	•
l, 11A Formats	Thrift, Protobuf	→
5. laaS	Docker, Serverless	\rightarrow
nfrastructure	HPC CLOUDS	

Equivalent HPC, Cluster

Kepler, Pegasus, Taverna ScaLAPACK, PETSc, Matlab Domain-specific Languages XSEDE Software Stack Data Fortran, C/C++, Python ulation ouds **MPI OpenMP** CUDA, OpenCL grated **Exascale Runtime** tware iRODS tack Globus Slurm Lustre FITS, HDF Linux, Bare-metal, SR-IOV **Clusters, SUPERCOMPUTERS** 8/14/18 13

Harp Plugin for Hadoop: Important part of Twister2

Work of Judy Qiu

Parallelism Model

Architecture

Harp is an open-source project developed at Indiana University [6], it has:

- MPI-like **collective communication** operations that are highly optimized for big data problems.
- Harp has efficient and innovative computation models for different machine learning problems.

Run time software for Harp

Map Collective Run time merges MapReduce and HPC

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Dynamic Rotation Control for Latent Dirichlet Allocation and Matrix Factorization SGD (stochastic gradient descent)

Harp v. Spark

Harp v. Torch

Harp v. MPI

Performance Comparison

K means

- Datasets: 5 million points, 10 thousand centroids, 10 feature dimensions
- 10 to 20 nodes of Intel KNL7250 processors
- Harp-DAAL has 15x speedups over Spark MLlib

PCA

- Datasets: 500K or 1 million data points of feature dimension 300
- Running on single KNL 7250 ٠ (Harp-DAAL) vs. single K80 GPU (PyTorch)
 - Harp-DAAL achieves 3x to 6x speedups

Subgraph

- Datasets: Twitter with 44 million • vertices, 2 billion edges, subgraph templates of 10 to 12 vertices
- 25 nodes of Intel Xeon E5 2670 •
- Harp-DAAL has 2x to 5x speedups over state-of-the-art MPI-Fascia solution

Mahout and SPIDAL

- Mahout was Hadoop machine learning library but largely abandoned as Spark outperformed Hadoop
- SPIDAL outperforms Spark MLlib and Flink due to better communication and better dataflow or BSP communication.
- Has Harp-(DAAL) optimized machine learning interface
- SPIDAL also has community algorithms
 - Biomolecular Simulation
 - Graphs for Network Science
 - Image processing for pathology and polar science

OOL OF INFORMATICS, COMPUTIN

General	Developers	manout-samsara	Agonums	марка	suuce basics	Manout MapReduce*
Mahaut 0 12 0 Ea	aturas by Engine					CLASSIFICATION
	atures by Engine					Hidden Markov Models
						Logistic Regression (Single Machine
				Single Machine	MapReduce	Random Forest
Mahout Math-S	cala Core Library	and Scala DSL				CLASSIFICATION EXAMPLES
Mahout Distribut	ed BLAS. Distribu	ted Row Matrix API with	n R and			Breiman example
Matlab like open	ators. Distributed /	ALS, SPCA, SSVD, thin	-QR.			20 newsgroups example
Similarity Analys	45.					SGD classifier bank marketing
Mahout Interac	tive Shell					Wikipedia XML parser and classifier
manout interac	uve shen					CLUSTERING
Interactive REPI	shell for Spark o	ptimized Mahout DSL				k-Means
						Canopy
Collaborative F	iltering with CLI of	trivers				Fuzzy k-Means
User-Based Coll	aborative Filtering	1	d	eprecated	deprecated	Streaming KMeans
Item-Based Coll	aborative Eiltering					Spectral Clustering
nem-based con	aborative rittering			^	Ŷ	CLUSTERING COMMANDLINE USAGE
Matrix Factoriza	tion with ALS			х	x	Options for k-Means
Matrix Factoriza	tion with ALS on I	mplicit Feedback		х	x	Options for Canopy
Weighted Matrix	Factorization, SV	D++		х		Options for Fuzzy k-Means
						CLUSTERING EXAMPLES
Classification v	vith CLI drivers					Synthetic data
Legistia Degrees	ion trained via C	~ D		a proporte d		CLUSTER POST PROCESSING
Logistic Regress	sion - trained via 5	GD	a	eprecated		Cluster Dumper tool
Naive Bayes / C	omplementary Na	ive Bayes			deprecated	Cluster visualisation
Hidden Markov I	Models		d	eprecated		RECOMMENDATIONS
						First Timer FAQ
Clustering with	CLI drivers					A user-based recommender in 5 minutes
Canopy Clusteri	ng		d	eprecated	deprecated	Matrix factorization-based
k-Means Cluster	ing		d	eprecated	deprecated	Overview
Fuzzy k-Means			d	eprecated	deprecated	Intro to item-based recommendation
Streaming k-Me	ans		d	eprecated	deprecated	with Hadoop
Spectral Cluster	ing				deprecated	Intro to ALS recommendations with Hadoop

Qiu Core SPIDAL Parallel HPC Library with Collective Used

- **DA-MDS** Rotate, AllReduce, Broadcast
- Directed Force Dimension Reduction AllGather, Allreduce
- Irregular DAVS Clustering Partial Rotate, AllReduce, Broadcast
- DA Semimetric Clustering (Deterministic Annealing) Rotate, AllReduce, Broadcast
- K-means AllReduce, Broadcast, AllGather DAAL
- **SVM** AllReduce, AllGather
- SubGraph Mining AllGather, AllReduce
- Latent Dirichlet Allocation Rotate, AllReduce
- Matrix Factorization (SGD) Rotate DAAL
- Recommender System (ALS) Rotate DAAL
- Singular Value Decomposition (SVD) AllGather DAAL

- QR Decomposition (QR) Reduce, Broadcast DAAL
- Neural Network AllReduce DAAL
- Covariance AllReduce DAAL
- Low Order Moments Reduce DAAL
- Naive Bayes Reduce DAAL
- Linear Regression Reduce DAAL
- Ridge Regression Reduce DAAL
- Multi-class Logistic Regression Regroup, Rotate, AllGather
- Random Forest AllReduce
- Principal Component Analysis (PCA) AllReduce DAAL
- DAAL implies integrated on node with Intel DAAL Optimized Data Analytics Library

Implementing Twister2 in detail I

This breaks rule from 2012-2017 of not "competing" with but rather "enhancing" Apache

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

20

Twister2: "Next Generation Grid - Edge – HPC Cloud" Programming Environment

- Analyze the runtime of existing systems
 - Hadoop, Spark, Flink, Pregel Big Data Processing
 - OpenWhisk and commercial FaaS
 - Storm, Heron, Apex Streaming Dataflow
 - Kepler, Pegasus, NiFi workflow systems
 - Harp Map-Collective, MPI and HPC AMT runtime like DARMA
 - And approaches such as GridFTP and CORBA/HLA (!) for wide area data links
- A lot of confusion coming from different communities (database, distributed, parallel computing, machine learning, computational/ data science) investigating similar ideas with little knowledge exchange and mixed up (unclear) requirements

http://www.iterativemapreduce.org/

Integrating HPC and Apache Programming Environments

- Harp-DAAL with a kernel Machine Learning library exploiting the Intel node library DAAL and HPC communication collectives within the Hadoop ecosystem. The broad applicability of Harp-DAAL is supporting all 5 classes of data-intensive computation, from pleasingly parallel to machine learning and simulations.
- **Twister2** is a toolkit of components that can be packaged in different ways
 - Integrated batch or streaming data capabilities familiar from Apache Hadoop, Spark, Heron and Flink but with high performance.
 - Separate bulk synchronous and data flow communication;
 - Task management as in Mesos, Yarn and Kubernetes
 - Dataflow graph execution models
 - Launching of the Harp-DAAL library
 - Streaming and repository data access interfaces,
 - In-memory databases and fault tolerance at dataflow nodes. (use RDD to do classic checkpoint-restart)

Approach

- Clearly define and develop functional layers (using existing technology when possible)
- Develop layers as independent components
- Use **interoperable** common abstractions but multiple **polymorphic** implementations.
- Allow users to pick and choose according to requirements such as
 - Communication + Data Management
 - Communication + Static graph
- Use HPC features when possible

Twister2 Components I

Commonts · Usor API

71104	eomponom		
	Coordination Points	State and Configuration Management; Program, Data and Message Level	Change execution mode; save and reset state
Architecture Specification	Execution Semantics	Mapping of Resources to Bolts/Maps in Containers, Processes, Threads	Different systems make different choices - why?
	Parallel Computing	Spark Flink Hadoop Pregel MPI modes	Owner Computes Rule
Job Submission	(Dynamic/Static) Resource Allocation	Plugins for Slurm, Yarn, Mesos, Marathon, Aurora Monitoring of tasks and migrating tasks	Client API (e.g. Python) for Job Management
Task System	Task migration Elasticity Streaming and FaaS Events Task Execution Task Scheduling Task Graph	for better resource utilization OpenWhisk Heron, OpenWhisk, Kafka/RabbitMQ Process, Threads, Queues Dynamic Scheduling, Static Scheduling, Pluggable Scheduling Algorithms Static Graph, Dynamic Graph Generation	Task-based programming with Dynamic or Static Graph API; FaaS API; Support accelerators (CUDA,KNL)

Aroa

Component Wister2 Components II

Area

Comments

	•	•	
	Messages	Heron	This is user level and could map to
Communication	wessayes	Fine-Grain Twister2 Dataflow	sultiple communication systems
	Dataflow	communications: MPI,TCP and RMA	
API	Communication	Coarse grain Dataflow from NiFi, Kepler?	Define new Dataflow communication API and library
	BSP Communication	Conventional MPI, Harp	MPI Point to Point and Collective API
	Map-Collective		
	Static (Batch) Data	File Systems, NoSQL, SQL	
Data Access	Streaming Data	Message Brokers, Spouts	Data API
		Relaxed Distributed Shared	Data Transformation API:
Data	Distributed Data Set	Memory(immutable data),	,
management		Mutable Distributed Data	Spark RDD, Heron Streamlet
		Upstream (streaming) backup;	
Fault Tolerance	Check Pointing	Lightweight; Coordination Points; Spark/	Streaming and batch cases
	-	Flink, MPI and Heron models	distinct; Crosses all components
Socurity	Storage, Messaging,	Research needed	Crosses all Components
Security	execution		
			9/25/2017 25
	OL OF INFORMATIO	CS, COMPUTING, AND ENGINEERIN	

Different applications at different layers

Type of applications	Capabilities					
	Data	Task System	Communications			
Streaming	Distributed Data Set	Static Graph	Dataflow Communications			
Data Pipelines	Distributed Data Set	Static Graph or Dynamic Graph	Dataflow Communications			
Machine Learning Distributed Shared Memory		Dynamic Graph	Dataflow Communications / BSP			
			Communications			
FaaS	Stateless	Dynamic Graph	Dataflow, P2P Communication			

Implementing Twister2 in detail II

Look at Communication in detail

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Communication Models

- MPI Characteristics: Tightly synchronized applications
 - Efficient communications (µs latency) with use of advanced hardware
 - In place communications and computations (Process scope for state)
- Basic dataflow: Model a computation as a graph
 - Nodes do computations with Task as computations and edges are asynchronous communications
 - A computation is activated when its input data dependencies are satisfied
- Streaming dataflow: Pub-Sub with data partitioned into streams
 - Streams are unbounded, ordered data tuples
 - Order of events important and group data into time windows
- Machine Learning dataflow: Iterative computations and keep track of state
 - There is both Model and Data, but typically only communicate the model
 - Collective communication operations such as AllReduce AllGather (no differential operators in Big Data problems)
 - Can use in-place MPI style communication

Twister2 Dataflow Communications

- Twister:Net offers two communication models
 - **BSP** (Bulk Synchronous Processing) communication using TC or MPI separated from its task management plus extra Harp collectives
- plus a new Dataflow library DFW built using MPI software but at data movement not message level
 BSP Style
 AllReduce
 Dataflow
 - Non-blocking
 - Dynamic data sizes
 - Streaming model
 - Batch case is modeled as a finite stream
 - The communications are between a set of tasks in an arbitrary task graph
 - Key based communications
 - Communications spilling to disks
 - Target tasks can be different from source tasks

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Twister:Net

Optimized operation vs Basic (Flink, Heron)

- Communication operators are stateful
 - Buffer data
 - handle imbalanced dynamically sized communications,
 - act as a combiner
- Thread safe
- Initialization
 - MPI
 - TCP / ZooKeeper
- Buffer management
 - The messages are serialized by the library
- Back-pressure
 - Uses flow control by the underlying channel

Reduce	Gather	Partition	Broadcast
AllReduce	AllGather	Keyed-Partition	
Keyed-Reduce	KeyedGather		

Batch and Streaming versions of above currently available

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Bandwidth & Latency Kernel

Latency and bandwidth between two tasks running in two nodes

Bandwidth utilization of Flink, Twister2 and OpenMPI over 1Gbps, 10Gbps and IB with Flink on IPoIB

with different message sizes on a two-node setup

Flink, BSP and DFW Performance

Total time for Flink and Twister:Net for Reduce and Partition operations in 32 nodes with 640-way parallelism. The time is for 1 million messages in each parallel unit, with the given message size Latency for Reduce and Gather operations in 32 nodes with 256-way parallelism. The time is for 1 million messages in each parallel unit, with the given message size. For BSP-Object case we do two MPI calls with MPIAIIReduce / MPIAIIGather first to get the lengths of the messages and the actual call. InfiniBand network is used.

K-Means algorithm performance

Left: K-means job execution time on 16 nodes with varying centers, 2 million points with 320-way parallelism. Right: K-Means wth 4,8 and 16 nodes where each node having 20 tasks. 2 million points with 16000 centers used.

For DFW case, a single node can get congested if many processes send message simultaneously.

Partition the data using a sample and regroup

Left: Terasort time on a 16 node cluster with 384 parallelism. BSP and DFW shows the communication time. Right: Terasort on 32 nodes with .5 TB and 1TB datasets. Parallelism of 320. Right 16 node cluster (Victor), Left 32 node cluster (Juliet) with InfiniBand.

BSP algorithm waits for others to send messages in a ring topology and can be in-efficient compared to DFW case where processes do not wait.

Twister:Net and Apache Heron for Streaming

Latency of Apache Heron and Twister:Net DFW (Dataflow) for Reduce, Broadcast and Partition operations in 16 nodes with 256-way parallelism

Robot Algorithms

Simultaneous Localization and Mapping

Map Built from Robot data

Robot with a Laser Range Finder

N-Body Collision Avoidance

Robots need to avoid collisions when they move

SLAM Simultaneous Localization and Mapping

Rao blackwellized particle filter based SLAM

Apache Storm

End to end delays without any processing is less than 10ms

Hosted in FutureSystems OpenStack cloud which is accessible through IU network

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Performance of SLAM Storm v. Twister2

Storm Implementation Speedup

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Implementing Twister2 in detail III

State

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Resource Allocation

- Job Submission & Management
 - twister2 submit
- Resource Managers
 - Slurm
 - Nomad
 - Kubernetes
 - Mesos

Kubernetes and Mesos Worker Initialization Times

Kubernetes

- It takes around 5 seconds to initialize a worker in Kubernetes.
- It takes around 3 seconds to initialize a worker in Mesos.
- When 3 workers are deployed in one executor or pod, initialization times are faster in both systems.

Task System

- Generate computation graph dynamically
 - Dynamic scheduling of tasks
 - Allow fine grained control of the graph
- Generate computation graph statically
 - Dynamic or static scheduling
 - Suitable for streaming and data query applications
 - Hard to express complex computations, especially with loops
- Hybrid approach
 - Combine both static and dynamic graphs

Task Graph Execution

- Task Scheduler is pluggable
- Executor is pluggable
- Scheduler running on all the workers

Scheduling Algorithms

- Streaming
 - Round robin
 - First fit
- Batch
 - Data locality aware

INDIANA UNIVERSITY Iterate SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Workflow vs Dataflow: Different grain sizes and different performance trade-offs

The dataflow can expand from Edge to Cloud

Workflow Controlled by Workflow Engine or a Script

Dataflow application running as a single job

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

NiFi Workflow

000

-9-

UT)

-

3

 \Rightarrow

ur

11 8 4 🕺 💥

5

23 🔇

Search

Systems State

- State is handled differently in systems
 - CORBA, AMT, MPI and Storm/ Heron have long running tasks that preserve state
 - Spark and Flink preserve datasets across dataflow node using inmemory databases
 - All systems agree on coarse grain dataflow; only keep state by exchanging data

Spark Kmeans Dataflow

- P = loadPoints()
- C = loadInitCenters()

Iterate

• T = P.map().withBroadcast(C)

Save State at Coordination Point Store C in RDD

48

Fault Tolerance and State

- Similar form of check-pointing mechanism is used already in HPC and Big Data
 - although HPC informal as doesn't typically specify as a dataflow graph
 - Flink and Spark do better than MPI due to use of **database** technologies; MPI is a bit harder due to richer state but there is an obvious integrated model using RDD type snapshots of MPI style jobs
- Checkpoint after each stage of the dataflow graph (at location of intelligent dataflow nodes)
 - Natural synchronization point
 - Let's allows user to choose when to checkpoint (not every stage)
 - Save state as user specifies; Spark just saves Model state which is insufficient for complex algorithms

Implementing Twister2 Futures

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Twister2 Timeline: End of August 2018

- Twister:Net Dataflow Communication API
 - Dataflow communications with MPI or TCP
- Harp for Machine Learning (Custom BSP Communications)
 - Rich collectives
 - Around 30 ML algorithms
- HDFS Integration
- Task Graph
 - Streaming Storm model
 - Batch analytics Hadoop
- Deployments on Docker, Kubernetes, Mesos (Aurora), Nomad, Slurm

Twister2 Timeline: End of December 2018

- Native MPI integration to Mesos, Yarn
- Naiad model based Task system for Machine Learning
- Link to Pilot Jobs
- Fault tolerance
 - Streaming
 - Batch
- Hierarchical dataflows with Streaming, Machine Learning and Batch integrated seamlessly
- Data abstractions for streaming and batch (Streamlets, RDD)
- Workflow graphs (Kepler, Spark) with linkage defined by Data Abstractions (RDD)
- End to end applications

52

Twister2 Timeline: After December 2018

- Dynamic task migrations
- RDMA and other communication enhancements
- Integrate parts of Twister2 components as big data systems enhancements (i.e. run current Big Data software invoking Twister2 components)
 - Heron (easiest), Spark, Flink, Hadoop (like Harp today)
- Support different APIs (i.e. run Twister2 looking like current Big Data Software)
 - Hadoop
 - Spark (Flink)
 - Storm
- Refinements like Marathon with Mesos etc.
- Function as a Service and Serverless
- Support higher level abstractions
 - Twister:SQL

Summary of Twister2: Next Generation HPC Cloud + Edge + Grid

- We have built a high performance data analysis library SPIDAL
- We have integrated HPC into many Apache systems with HPC-ABDS with rich set of collectives
- We have done a preliminary analysis of the different runtimes of Hadoop, Spark, Flink, Storm, Heron, Naiad, DARMA (HPC Asynchronous Many Task) and identified key components
- There are different technologies for different circumstances but can be unified by high level abstractions such as communication/data/task API's
- Apache systems use dataflow communication which is natural for distributed systems but slower for classic parallel computing
 - No standard dataflow library (why?). Add Dataflow primitives in MPI-4?
- HPC could adopt some of tools of Big Data as in Coordination Points (dataflow nodes), State management (fault tolerance) with RDD (datasets)
- Could integrate dataflow and workflow in a cleaner fashion
- Not clear so many big data and resource management approaches needed

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING