
`,		Work	with	Shantenu	Jha,	Kannan	Govindarajan,	Pulasthi	Wickramasinghe,	Gurhan	Gunduz,	Ahmet	Uyar	

8/14/18	 1	

HPBDC	2018:	The	4th	IEEE	International	Workshop	on	High-Performance	Big	
Data,	Deep	Learning,	and	Cloud	Computing	

	
Geoffrey	Fox,	May	21,	2018	

Judy	Qiu,	Supun	Kamburugamuve	
Department	of	Intelligent	Systems	Engineering	

gcf@indiana.edu,	http://www.dsc.soic.indiana.edu/,	http://spidal.org/	

Twister2:	A	High-Performance	Big	Data	
Programming	Environment		

Abstract	
•  	We	analyse	the	components	that	are	needed	in	programming	environments	for	
Big	Data	Analysis	Systems	with	scalable	HPC	performance	and	the	functionality	of	
ABDS	–	the	Apache	Big	Data	Software	Stack.		

• One	highlight	is	Harp-DAAL	which	is	a	machine	library	exploiting	the	Intel	node	
library	DAAL	and	HPC	communication	collectives	within	the	Hadoop	ecosystem.	

• Another	highlight	is	Twister2	which	consists	of	a	set	of	middleware	components	
to	support	batch	or	streaming	data	capabilities	familiar	from	Apache	Hadoop,	
Spark,	Heron	and	Flink	but	with	high	performance	

•  Twister2	covers	bulk	synchronous	and	data	flow	communication;	task	
management	as	in	Mesos,	Yarn	and	Kubernetes;	dataflow	graph	execution	
models;	launching	of	the	Harp-DAAL	library;	streaming	and	repository	data	
access	interfaces,	in-memory	databases	and	fault	tolerance	at	dataflow	nodes.		

•  Similar	capabilities	are	available	in	current	Apache	systems	but	as	integrated	
packages	which	do	not	allow	needed	customization	for	different	application	
scenarios.		

8/14/18	 2	

•  On	general	principles	parallel	and	distributed	computing	have	different	requirements	even	if	
sometimes	similar	functionalities	

•  Apache	stack	ABDS		typically	uses	distributed	computing	concepts	
•  For	example,	Reduce	operation	is	different	in	MPI	(Harp)	and	Spark	

•  Large	scale	simulation	requirements	are	well	understood	
•  Big	Data	requirements	are	not	agreed	but	there	are	a	few	key	use	types	

1)  Pleasingly	parallel	processing	(including	local	machine	learning	LML)	as	of	different	
tweets	from	different	users	with	perhaps	MapReduce	style	of	statistics	and	
visualizations;	possibly	Streaming	

2)  Database	model	with	queries	again	supported	by	MapReduce	for	horizontal	scaling	
3)  Global	Machine	Learning	GML		with	single	job	using	multiple	nodes	as	classic	parallel	

computing	
4)  Deep	Learning	certainly	needs	HPC	–	possibly	only	multiple	small	systems	

•  Current	workloads	stress	1)	and	2)	and	are	suited	to	current	clouds	and	to	Apache	Big	Data	
Software	(with	no	HPC)	

•  This	explains	why	Spark	with	poor	GML	performance	can	be	so	successful	

Requirements	

8/14/18	 3	

Difficulty	in	Parallelism	
Size	of	Synchronization	constraints	

Spectrum	of	Applications	and	Algorithms	
There	is	also	distribution	seen	in	grid/edge	computing	

8/14/18	 4	

Pleasingly	Parallel	
Often	independent	events	

MapReduce	as	in	
scalable	databases	

Structured	Adaptive	Sparsity	
Huge	Jobs	

Loosely	Coupled	

Large	scale	
simulations	

Current	major	Big	
Data	category	

Commodity	Clouds	 HPC	Clouds	
High	Performance	Interconnect	

Exascale	Supercomputers	

Global	Machine	
Learning	
e.g.	parallel	
clustering		

Deep	Learning	

HPC	Clouds/Supercomputers	
Memory	access	also	critical	

Unstructured	Adaptive	Sparsity	
Medium	size	Jobs	

Graph	Analytics	e.g.	
subgraph	mining	

LDA	

Linear	Algebra	at	core	
(typically	not	sparse)	

Size	of	
Disk	I/O	

Need	a	toolkit	covering	all	applications	with	same	API	but	different	implementations	

Tightly	Coupled	

Parameter	sweep	
simulations	

These	3	are	focus	of	Twister2	but	we	need	to	preserve	
capability	on	first	2	paradigms	

Classic	Cloud	Workload	

Global	Machine				Learning	

Note	Problem	and	System	Architecture	as	efficient	execution	says	they	must	match	

8/14/18	 5	

Need	a	toolkit	covering	5	main	paradigms	with	same	API	but	different	implementations	

Comparing	Spark,	Flink	and	MPI	
•  On	Global	Machine	Learning	GML.	

8/14/18	 6	

Machine	Learning	with	MPI,	Spark	and	Flink	

•  Three	algorithms	implemented	in	three	runtimes	
•  Multidimensional	Scaling	(MDS)	
•  Terasort	
•  K-Means	(drop	as	no	time	and	looked	at	later)	

•  Implementation	in	Java	
•  MDS	is	the	most	complex	algorithm	-	three	nested	parallel	loops	
•  K-Means	-	one	parallel	loop	
•  Terasort	-	no	iterations	

• With	care,	Java	performance	~	C	performance	
• Without	care,	Java	performance	<<	C	performance	(details	omitted)	

8/14/18	 7	

Multidimensional	Scaling:	3	Nested	Parallel	Sections	

MDS	execution	time	on	16	nodes	
with	20	processes	in	each	node	with	

varying	number	of	points	

MDS	execution	time	with	32000	
points	on	varying	number	of	nodes.	
Each	node	runs	20	parallel	tasks	

Spark,	Flink	No	Speedup	

8/14/18	 8	

Flink	

Spark	

MPI	

MPI	Factor	of	20-200	Faster	than	Spark/Flink	

Kmeans	also	bad	–	see	later	

Terasort	

9	

Sorting	1TB	of	data	records	

Terasort	execution	time	in	64	and	32	nodes.	Only	
MPI	shows	the	sorting	time	and	communication	
time	as	other	two	frameworks	doesn't	provide	a	
clear	method	to	accurately	measure	them.	Sorting	

time	includes	data	save	time.		
MPI-IB	-	MPI	with	Infiniband	

Partition	the	data	using	a	sample	and	regroup	

Software	
HPC-ABDS	
HPC-FaaS	

8/14/18	 10	

NSF 1443054: CIF21
DIBBs: Middleware
and High Performance
Analytics Libraries for
Scalable Data Science

Ogres Application
Analysis

HPC-ABDS and HPC-
FaaS Software
Harp and Twister2
Building Blocks

SPIDAL Data
Analytics Library	

8/14/18	 11	

Software:	MIDAS	
HPC-ABDS	

HPC-ABDS	
	
Integrated	
wide	range	
of	HPC	and	
Big	Data	
technologies.	
	
I	gave	up	
updating	list	
in	January	
2016!	

8/14/18	 12	

Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies
Cross-
Cutting

Functions
1) Message
and Data
Protocols:
Avro, Thrift,
Protobuf
2) Distributed
Coordination
: Google
Chubby,
Zookeeper,
Giraffe,
JGroups
3) Security &
Privacy:
InCommon,
Eduroam
OpenStack
Keystone,
LDAP, Sentry,
Sqrrl, OpenID,
SAML OAuth
4)
Monitoring:
Ambari,
Ganglia,
Nagios, Inca

	

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, Trident, BioKepler, Galaxy, IPython, Dryad,
Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA),
Jitterbit, Talend, Pentaho, Apatar, Docker Compose, KeystoneML
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, OpenCV, Scalapack, PetSc, PLASMA MAGMA,
Azure Machine Learning, Google Prediction API & Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j,
H2O, IBM Watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Parasol, Dream:Lab, Google Fusion Tables,
CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk, Tableau, D3.js, three.js, Potree, DC.js, TensorFlow, CNTK
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku, Aerobatic, AWS Elastic Beanstalk, Azure, Cloud
Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic, Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT,
Agave, Atmosphere
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP HANA, HadoopDB, PolyBase, Pivotal HD/Hawq,
Presto, Google Dremel, Google BigQuery, Amazon Redshift, Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird
14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn, Twitter Heron, Databus, Facebook
Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark Streaming, Flink Streaming, DataTurbine
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI, Stratosphere (Apache Flink), Reef, Disco,
Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, Medusa-GPU, MapGraph, Totem
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo BEAST HPX-5 BEAST PULSAR, Harp, Netty,
ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, Marionette Collective, Public Cloud: Amazon
SNS, Lambda, Google Pub Sub, Azure Queues, Event Hubs
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key value), Hazelcast, Ehcache, Infinispan, VoltDB,
H-Store
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC
12) Extraction Tools: UIMA, Tika
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera Cluster, SciDB, Rasdaman, Apache Derby, Pivotal
Greenplum, Google Cloud SQL, Azure SQL, Amazon RDS, Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon, Tyrant, MongoDB, Espresso, CouchDB,
Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J,
graphdb, Yarcdata, AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal GPLOAD/GPFDIST
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, Celery, HTCondor, SGE, OpenPBS, Moab, Slurm,
Torque, Globus Tools, Pilot Jobs
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis
6) DevOps: Docker (Machine, Swarm), Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, CloudMesh, Juju, Foreman, OpenStack Heat,
Sahara, Rocks, Cisco Intelligent Automation for Cloud, Ubuntu MaaS, Facebook Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes,
Buildstep, Gitreceive, OpenTOSCA, Winery, CloudML, Blueprints, Terraform, DevOpSlang, Any2Api
5) IaaS Management from HPC to hypervisors: Xen, KVM, QEMU, Hyper-V, VirtualBox, OpenVZ, LXC, Linux-Vserver, OpenStack, OpenNebula,
Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware ESXi, vSphere and vCloud, Amazon, Azure, Google and other public Clouds
Networking: Google Cloud DNS, Amazon Route 53

	

	

21	layers	
Over	350	
Software	
Packages	
	
January	
29	
2016

Different	choices	in	
software	systems	in	
Clouds	and	HPC.	
HPC-ABDS	takes	
cloud	software	
augmented	by	HPC	
when	needed	to	
improve	
performance	
	
16	of	21	layers	plus	
languages	

8/14/18	 13	

Harp	Plugin	for	Hadoop:	Important	part	of	Twister2	

14	

Work	of	Judy	Qiu	

Map Collective Run time merges MapReduce and
HPC

allreduce reduce

rotate push & pull

allgather

regroup

broadcast

Run	time	software	for	Harp	

15	

Dynamic	Rotation	Control	for	Latent	Dirichlet	Allocation	and	Matrix	
Factorization	SGD	(stochastic	gradient	descent)	

Other	Model	Parameters		
From	Caching	

Model	Parameters	
From	Rotation	

Model	Related	Data	 Computes	until	the	time	arrives,	then	starts	
model	rotation	to	address	load	imbalance	

Multi-Thread	
Execution	

•  Datasets:	5	million	points,	10	thousand	
centroids,	10	feature	dimensions	

•  10	to	20	nodes	of	Intel	KNL7250	
processors	

•  Harp-DAAL	has	15x	speedups	over	Spark	
MLlib	

•  Datasets:	500K	or	1	million	data	
points	of	feature	dimension	300	

•  Running	on	single	KNL	7250	
(Harp-DAAL)	vs.	single	K80	GPU	
(PyTorch)	

•  Harp-DAAL	achieves	3x	to	6x	
speedups			

•  Datasets:	Twitter	with	44	million	
vertices,	2	billion	edges,	subgraph	
templates	of	10	to	12	vertices	

•  25	nodes	of	Intel	Xeon	E5	2670		
•  Harp-DAAL	has	2x	to	5x	speedups	

over	state-of-the-art	MPI-Fascia	
solution		

						Harp	v.	Spark																			Harp	v.	Torch												Harp	v.	MPI	
	

17	

•  Mahout	was	Hadoop	machine	learning	
library	but	largely	abandoned	as	Spark	
outperformed	Hadoop	

•  SPIDAL	outperforms	Spark	MLlib	and	Flink	
due	to	better	communication	and	better	
dataflow	or	BSP	communication.	

•  Has	Harp-(DAAL)	optimized	machine	
learning	interface	

•  SPIDAL	also	has	community	algorithms	
•  Biomolecular	Simulation	
•  Graphs	for	Network	Science	
•  Image	processing	for	pathology	and	
polar	science	

Mahout	and	SPIDAL	

18	

Qiu	Core	SPIDAL	Parallel	HPC	Library	with	Collective	Used	

19	

•  DA-MDS	Rotate,	AllReduce,	Broadcast	
•  Directed	Force	Dimension	Reduction	AllGather,	
Allreduce	

•  Irregular	DAVS	Clustering	Partial	Rotate,	AllReduce,	
Broadcast	

•  DA	Semimetric	Clustering	(Deterministic	Annealing)	
Rotate,	AllReduce,	Broadcast	

•  K-means	AllReduce,	Broadcast,	AllGather	DAAL	

•  SVM	AllReduce,	AllGather	
•  SubGraph	Mining	AllGather,	AllReduce	

•  Latent	Dirichlet	Allocation	Rotate,	AllReduce	
•  Matrix	Factorization	(SGD)	Rotate	DAAL	

•  Recommender	System	(ALS)	Rotate	DAAL	
•  Singular	Value	Decomposition	(SVD)	AllGather	DAAL	

•  QR	Decomposition	(QR)	Reduce,	Broadcast	DAAL	
•  Neural	Network	AllReduce	DAAL	
•  Covariance	AllReduce	DAAL	
•  Low	Order	Moments	Reduce	DAAL	
•  Naive	Bayes	Reduce	DAAL	
•  Linear	Regression	Reduce	DAAL	
•  Ridge	Regression	Reduce	DAAL	
•  Multi-class	Logistic	Regression	Regroup,	Rotate,	
AllGather	

•  Random	Forest	AllReduce	
•  Principal	Component	Analysis	(PCA)	AllReduce	
DAAL	

DAAL	implies	integrated	on	node	with	Intel	DAAL	Optimized	Data	Analytics	Library	

Implementing		Twister2	
in	detail	I	

This	breaks	rule	from	2012-2017	of	not	“competing”	with	but	rather	“enhancing”	Apache	

8/14/18	 20	

http://www.iterativemapreduce.org/	

•  Analyze	the	runtime	of	existing	systems	
•  Hadoop,	Spark,	Flink,	Pregel	Big	Data	Processing	
•  OpenWhisk	and	commercial	FaaS	
•  Storm,	Heron,	Apex	Streaming	Dataflow	
•  Kepler,	Pegasus,	NiFi	workflow	systems	
•  Harp	Map-Collective,	MPI	and	HPC	AMT	runtime	like	DARMA	
•  And	approaches	such	as	GridFTP	and	CORBA/HLA	(!)	for	wide	area	data	links	

•  A	lot	of	confusion	coming	from		
different	communities	(database,		
distributed,	parallel	computing,		
machine	learning,	computational/	
data	science)		investigating	similar		
ideas	with	little	knowledge	exchange		
and	mixed	up	(unclear)	requirements	

Twister2:	“Next	Generation	Grid	-	Edge	–	HPC	Cloud”	
Programming	Environment		

21	

http://www.iterativemapreduce.org/	

•  Harp-DAAL	with	a	kernel	Machine	Learning	library	exploiting	the	Intel	node	library	DAAL	and	
HPC	communication	collectives	within	the	Hadoop	ecosystem.	The	broad	applicability	of	Harp-
DAAL	is	supporting	all	5	classes	of	data-intensive	computation,	from	pleasingly	parallel	to	
machine	learning	and	simulations.		

•  Twister2	is	a	toolkit	of	components	that	can	be	packaged	in	different	ways	
•  Integrated	batch	or	streaming	data	capabilities	familiar	from	Apache	Hadoop,	Spark,	Heron	
and	Flink	but	with	high	performance.		

•  Separate	bulk	synchronous	and	data	flow	communication;		
•  Task	management	as	in	Mesos,	Yarn	and	Kubernetes	
•  Dataflow	graph	execution	models	
•  Launching	of	the	Harp-DAAL		library	
•  Streaming	and	repository	data	access	interfaces,		
•  In-memory	databases	and	fault	tolerance	at	dataflow	nodes.	(use	RDD	to	do	classic	
checkpoint-restart)	

Integrating	HPC	and	Apache	Programming	Environments	

22	

Approach	
• Clearly	define	and	develop	functional	layers	(using	existing	
technology	when	possible)	

•  	Develop	layers	as	independent	components	
• Use	interoperable	common	abstractions	but	multiple	polymorphic	
implementations.	

• Allow	users	to	pick	and	choose	according	to	requirements	such	as	
•  Communication	+	Data	Management	
•  Communication	+	Static	graph		

• Use	HPC	features	when	possible	

23	

Twister2	Components	I	

9/25/2017	 24	

Area Component Implementation Comments: User API

Architecture
Specification

Coordination Points
State and Configuration Management;
Program, Data and Message Level

Change execution mode; save and
reset state

Execution
Semantics

Mapping of Resources to Bolts/Maps in
Containers, Processes, Threads

Different systems make different
choices - why?

Parallel Computing Spark Flink Hadoop Pregel MPI modes Owner Computes Rule

Job Submission (Dynamic/Static)
Resource Allocation

Plugins for Slurm, Yarn, Mesos,
Marathon, Aurora

Client API (e.g. Python) for Job
Management

Task System

Task migration Monitoring of tasks and migrating tasks
for better resource utilization

Task-based programming with
Dynamic or Static Graph API;

FaaS API;

Support accelerators (CUDA,KNL)

Elasticity OpenWhisk

Streaming and
FaaS Events

Heron, OpenWhisk, Kafka/RabbitMQ

Task Execution Process, Threads, Queues

Task Scheduling Dynamic Scheduling, Static Scheduling,
Pluggable Scheduling Algorithms

Task Graph Static Graph, Dynamic Graph
Generation

Twister2	Components	II	

9/25/2017	 25	

Area Component Implementation Comments

Communication
API

Messages Heron This is user level and could map to
multiple communication systems

Dataflow
Communication

Fine-Grain Twister2 Dataflow
communications: MPI,TCP and RMA

Coarse grain Dataflow from NiFi, Kepler?

Streaming, ETL data pipelines;

Define new Dataflow communication
API and library

BSP Communication
Map-Collective

Conventional MPI, Harp MPI Point to Point and Collective API

Data Access
Static (Batch) Data File Systems, NoSQL, SQL

Data API
Streaming Data Message Brokers, Spouts

Data
Management Distributed Data Set

Relaxed Distributed Shared
Memory(immutable data),
Mutable Distributed Data

Data Transformation API;

Spark RDD, Heron Streamlet

Fault Tolerance Check Pointing
Upstream (streaming) backup;
Lightweight; Coordination Points; Spark/
Flink, MPI and Heron models

Streaming and batch cases
distinct; Crosses all components

Security Storage, Messaging,
execution

Research needed Crosses all Components

Different	applications	at	different	layers	

26	

Spark,	Flink	

Hadoop,		
Heron,		
Storm	

None	

Implementing		Twister2	
in	detail	II	

Look	at	Communication	in	detail	

8/14/18	 27	

http://www.iterativemapreduce.org/	

Communication	Models	
•  MPI	Characteristics:	Tightly	synchronized	applications	

•  Efficient	communications	(µs	latency)	with	use	of	advanced	hardware		
•  In	place	communications	and	computations	(Process	scope	for		state)	

•  Basic	dataflow:	Model	a	computation	as	a	graph	
•  Nodes	do	computations	with	Task	as	computations	and		
edges	are	asynchronous		communications	

•  A	computation	is	activated	when	its	input	data	dependencies	
	are	satisfied	

•  Streaming	dataflow:	Pub-Sub	with	data	partitioned	into	streams	
•  Streams	are	unbounded,	ordered	data	tuples	
•  Order	of	events	important	and	group	data	into	time	windows	

• Machine	Learning	dataflow:	Iterative	computations	and	keep	track	of	state	
•  There	is	both	Model	and	Data,	but	typically	only	communicate	the	model	
•  Collective	communication	operations	such	as	AllReduce	AllGather	(no	differential	operators	in	
Big	Data	problems)	

•  Can	use	in-place	MPI	style	communication	

S	

W	 G	

S	

W	

W	
Dataflow	

8/14/18	 28	

Twister2	Dataflow	Communications	
•  Twister:Net	offers	two	communication	models	

•  BSP	(Bulk	Synchronous	Processing)	communication	using	TC	or	MPI	separated	from	its	
task	management	plus	extra	Harp	collectives	

• plus	a	new	Dataflow	library	DFW	built	using	MPI	software	but	at	data	
movement	not	message	level	

•  Non-blocking	
•  Dynamic	data	sizes	
•  Streaming	model	

•  Batch	case	is	modeled	as	a	finite	stream	
•  The	communications	are	between	a	set	of		
tasks	in	an	arbitrary	task	graph	

•  Key	based	communications	
•  Communications	spilling	to	disks	
•  Target	tasks	can	be	different	from	source	tasks	

29	

Twister:Net	

30	

•  Communication	operators	are	stateful	
•  Buffer	data	
•  handle	imbalanced	dynamically	sized	communications,		
•  act	as	a	combiner			

•  Thread	safe		
•  Initialization	

•  MPI	
•  TCP	/	ZooKeeper	

•  Buffer	management	
•  The	messages	are	serialized	by	the	library	

•  Back-pressure	
•  Uses	flow	control	by	the	underlying	channel	
	

	

Architecture	

Optimized	operation	vs	Basic	(Flink,	Heron)	

Reduce	 Gather	 Partition	 Broadcast	

AllReduce	 AllGather	 Keyed-Partition	

Keyed-Reduce	 KeyedGather	

Batch	and	Streaming	versions	of	above	currently	available	

Latency	of	MPI	and	Twister:Net	
with	different	message	sizes	on	a	

two-node	setup	
Bandwidth	utilization	of	Flink,	Twister2	and	
OpenMPI	over	1Gbps,	10Gbps	and	IB	with	
Flink	on	IPoIB	

Bandwidth	&	Latency	Kernel	

Latency	and	bandwidth	
between	two	tasks	
running	in	two	nodes	

Latency	for	Reduce	and	Gather	operations	in	32	
nodes	with	256-way	parallelism.	The	time	is	for	1	
million	messages	in	each	parallel	unit,	with	the	given	
message	size.	For	BSP-Object	case	we	do	two	MPI	
calls	with	MPIAllReduce	/	MPIAllGather	first	to	get	
the	lengths	of	the	messages	and	the	actual	call.		
InfiniBand	network	is	used.	

Total	time	for	Flink	and	Twister:Net	for	Reduce	and	Partition	
operations	in	32	nodes	with	640-way	parallelism.	The	time	is	
for	1	million	messages	in	each	parallel	unit,	with	the	given	
message	size	

Flink,	BSP	and	DFW	Performance	

Left:	K-means	job	execution	time	on	16	nodes	with	varying	centers,	2	million	
points	with	320-way	parallelism.	Right:	K-Means	wth	4,8	and	16	nodes	
where	each	node	having	20	tasks.	2	million	points	with	16000	centers	used.	

K-Means	algorithm	performance	
AllReduce	Communication	

Left:	Terasort	time	on	a	16	node	cluster	with	384	parallelism.	BSP	
and	DFW	shows	the	communication	time.	Right:	Terasort	on	32	
nodes	with	.5	TB	and	1TB	datasets.	Parallelism	of	320.	Right	16	
node	cluster	(Victor),	Left	32	node	cluster	(Juliet)	with	InfiniBand.	

Partition	the	data	using	a	sample	and	regroup	

Sorting	Records	
For	DFW	case,	a	single	node	can	get	congested	if	many	

processes	send	message	simultaneously.	

BSP	algorithm	waits	for	others	to	send	messages	in	a	ring	topology	and	can	be	in-efficient	compared	to	
DFW	case	where	processes	do	not	wait.	

Latency	of	Apache	Heron	and	Twister:Net	DFW	(Dataflow)	for	Reduce,	
Broadcast	and	Partition	operations	in	16	nodes	with	256-way	parallelism	

Twister:Net	and	Apache	Heron	for	Streaming	

Robot	Algorithms	

Robot	with	a	
Laser	Range	

Finder	

Map	Built	from	Robot	data	 Robots	need	to	avoid	
collisions	when	they	move	

N-Body	Collision	Avoidance	Simultaneous	Localization	and	Mapping	

SLAM	Simultaneous	Localization	and	Mapping	

Message	Brokers	
RabbitMQ,	Kafka	

Gateway	

Sending	to		
pub-sub	

Sending	to		
Persisting		
to	storage	

Streaming		
workflow	

A	stream	
application	with	
some	tasks	running	
in	parallel	

Multiple		
streaming		
workflows	

Streaming	SLAM	Algorithm	
Apache	Storm	

Hosted	in	FutureSystems	OpenStack	cloud	
which	is	accessible	through	IU	network	

End	to	end	delays	without	any	
processing	is	less	than	10ms	

Rao	blackwellized	particle	filter	based	SLAM	

Performance	of	SLAM	Storm	v.	Twister2	

38	

180	Laser	readings	

Storm	Implementation	Speedup	

Twister2	Implementation	speedup.	

640	Laser	readings	

180	Laser	readings	

640	Laser	readings	

Implementing		Twister2	
in	detail	III	

State	

8/14/18	 39	

http://www.iterativemapreduce.org/	

Resource	Allocation	

40	

•  Job	Submission	&	Management	
•  twister2	submit	

•  Resource	Managers	
•  Slurm	

•  Nomad	
•  Kubernetes	
•  Mesos	

•  It	takes	around	5	seconds	to	initialize	a	worker	in	Kubernetes.		
•  It	takes	around	3	seconds	to	initialize	a	worker	in	Mesos.			
•  When	3	workers	are	deployed	in	one	executor	or	pod,	initialization	times	are	faster	in	

both	systems.	

Kubernetes and Mesos Worker
Initialization Times

Kubernetes Mesos

0.0	
2.0	
4.0	
6.0	
8.0	

10.0	
12.0	
14.0	
16.0	
18.0	
20.0	

3 9 18 36 54

W
or

ke
r S

ta
rt

Ti
m

es
 (s

ec
)

Total	Number	of	Workers	

3workersperpod	 1workerperpod	

0.0	
2.0	
4.0	
6.0	
8.0	
10.0	
12.0	
14.0	
16.0	
18.0	
20.0	

3	 9	 18	 36	 54	

W
or
ke
r	S

ta
rt
	T
im

es
	(s
ec
)	

	

Total	Number	of	Workers	
	

3	workers	per	executor	 1	worker	per	executor	

Task	System	

• Generate	computation	graph	dynamically	
•  Dynamic	scheduling	of	tasks	
•  Allow	fine	grained	control	of	the	graph	

• Generate	computation	graph	statically	
•  Dynamic	or	static	scheduling	
•  Suitable	for	streaming	and	data	query	applications	
•  Hard	to	express	complex	computations,	especially	with	loops	

• Hybrid	approach	
•  Combine	both	static	and	dynamic	graphs	

42	

User	defined	operator	

Communication	

Task	Graph	Execution	

43	

User	Graph	 Scheduler	Plan	

Worker	Plan		

Scheduler	

Network	

Execution	
Planner	 Executor	Execution	Plan	

•  Task	Scheduler	is	pluggable	
•  Executor	is	pluggable	
•  Scheduler	running	on	all	the	workers	

•  Streaming	
•  Round	robin	
•  First	fit	

•  Batch	
•  Data	locality	aware	

	

Scheduling	Algorithms	

Dataflow	at	Different	
Grain	sizes	

8/14/18	 44	

Reduce	

Maps	

Iterate	

Internal	Execution	
Dataflow	Nodes	

HPC	
Communication	

Coarse	Grain	Dataflows	links	jobs	in	such	a	pipeline	

Data	preparation	 Clustering	
Dimension	
Reduction	

Visualization	

But	internally	to	each	
job	you	can	also	
elegantly	express	
algorithm	as	dataflow	
but	with	more	
stringent	
performance	
constraints	

•  P	=	loadPoints()	
•  C	=	loadInitCenters()	
•  for	(int	i	=	0;	i	<	10;	i++)	{	
•  		T	=	P.map().withBroadcast(C)	
•  		C	=	T.reduce()					}	
	Iterate	

Corresponding	to	classic	Spark	K-means	Dataflow	

Workflow	vs	Dataflow:	Different	grain	sizes	
and	different	performance	trade-offs	

45	

Workflow	Controlled	by	Workflow	Engine	or	a	Script	 Dataflow	application	running	as	a	single	job	

The	dataflow	can	expand	from	Edge	to	Cloud	

NiFi	Workflow	

8/14/18	 46	

Flink	MDS	Dataflow	Graph	

8/30/2017	

Systems	State																															Spark	Kmeans	Dataflow	

• P	=	loadPoints()	
• C	=	loadInitCenters()	
	
•  for	(int	i	=	0;	i	<	10;	i++)	{	
•  		T	=	P.map().withBroadcast(C)	
•  		C	=	T.reduce()					}	
	
	
Save	State	at	Coordination	Point	
Store	C	in	RDD	

8/14/18	 48	

•  State	is	handled	differently	in	
systems	
•  CORBA,	AMT,	MPI	and	Storm/

Heron	have	long	running	tasks	
that	preserve	state	

•  Spark	and	Flink	preserve	datasets	
across	dataflow	node	using	in-
memory	databases	

•  All	systems	agree	on	coarse	grain	
dataflow;	only		keep	state	by	
exchanging	data	

Iterate	

Fault	Tolerance	and	State 	 		
• Similar	form	of	check-pointing	mechanism	is	used	already	in	HPC	
and	Big	Data		

• although	HPC	informal	as	doesn’t	typically	specify	as	a	dataflow	graph	
• Flink	and	Spark	do	better	than	MPI	due	to	use	of	database	technologies;	
MPI	is	a	bit	harder	due	to	richer	state	but	there	is	an	obvious	integrated	
model	using	RDD	type	snapshots	of	MPI	style	jobs	

• Checkpoint	after	each	stage	of	the	dataflow	graph	(at	location	of	
intelligent	dataflow	nodes)	

• Natural	synchronization	point	
• Let’s	allows	user	to	choose	when	to	checkpoint	(not	every	stage)	
• Save	state	as	user	specifies;	Spark	just	saves	Model	state	which	is	
insufficient	for	complex	algorithms	

8/14/18	 49	

Implementing		Twister2	
Futures	

8/14/18	 50	

http://www.iterativemapreduce.org/	

Twister2	Timeline:	End	of	August	2018	
•  Twister:Net	Dataflow	Communication	API	

•  Dataflow	communications	with	MPI	or	TCP		
• Harp	for	Machine	Learning	(Custom	BSP	Communications)	

•  Rich	collectives	
•  Around	30	ML	algorithms	

• HDFS	Integration	
•  Task	Graph	

•  Streaming	-	Storm	model	
•  Batch	analytics	-	Hadoop		

• Deployments	on	Docker,	Kubernetes,	Mesos	(Aurora),	Nomad,	Slurm	

8/14/18	 51	

Twister2	Timeline:	End	of	December	2018	
•  Native	MPI	integration	to	Mesos,	Yarn	
•  Naiad	model	based	Task	system	for	Machine	Learning	
•  Link	to	Pilot	Jobs	
•  Fault	tolerance	

•  Streaming	
•  Batch	

•  Hierarchical	dataflows	with	Streaming,	Machine	Learning	and	Batch	
integrated	seamlessly	

•  Data	abstractions	for	streaming	and	batch	(Streamlets,	RDD)	
• Workflow	graphs	(Kepler,	Spark)	with	linkage	defined	by	Data	Abstractions	
(RDD)	

•  End	to	end	applications	

8/14/18	 52	

Twister2	Timeline:	After	December	2018	
•  Dynamic	task	migrations		
•  RDMA	and	other	communication	enhancements	
•  Integrate	parts	of	Twister2	components	as	big	data	systems	enhancements	
(i.e.	run	current	Big	Data	software	invoking	Twister2	components)	

•  Heron	(easiest),	Spark,	Flink,	Hadoop	(like	Harp	today)	
•  Support	different	APIs	(i.e.	run	Twister2	looking	like	current	Big	Data	
Software)	

•  Hadoop	
•  Spark	(Flink)	
•  Storm	

•  Refinements	like	Marathon	with	Mesos	etc.	
•  Function	as	a	Service	and	Serverless	
•  Support	higher	level	abstractions	

•  Twister:SQL	

8/14/18	 53	

Summary of Twister2: Next Generation HPC Cloud + Edge + Grid
• We	have	built	a	high	performance	data	analysis	library	SPIDAL	
• We	have	integrated	HPC	into	many	Apache	systems	with	HPC-ABDS	with	rich	set	of	
collectives	

• We	have	done	a	preliminary	analysis	of	the	different	runtimes	of	Hadoop,	Spark,	Flink,	
Storm,	Heron,	Naiad,	DARMA	(HPC	Asynchronous	Many	Task)	and	identified	key	
components	

•  There	are	different	technologies	for	different	circumstances	but	can	be	unified	by	high	
level	abstractions	such	as	communication/data/task	API’s	

•  Apache	systems	use	dataflow	communication	which	is	natural	for	distributed	systems	
but	slower	for	classic	parallel	computing	

•  No	standard	dataflow	library	(why?).	Add	Dataflow	primitives	in	MPI-4?	
•  HPC	could	adopt	some	of	tools	of	Big	Data	as	in	Coordination	Points	(dataflow	nodes),	
State	management	(fault	tolerance)	with	RDD	(datasets)	

•  Could	integrate	dataflow	and	workflow	in	a	cleaner	fashion	
•  Not	clear	so	many	big	data	and	resource	management	approaches	needed	

8/14/18	 54	

