
 

DEPARTMENT: Expert Opinion 

Two Billion Devices and 
Counting  
An Industry Perspective on the State of Mobile 
Computer Architecture 

Mobile computing has grown drastically over the past 

decade. Despite the rapid pace of advancements, 

mobile device understanding, benchmarking, and 

evaluation are still in their infancies, both in industry and academia. This article presents 

an industry perspective on the challenges facing mobile computer architecture, 

specifically involving mobile workloads, benchmarking, and experimental methodology, 

with the hope of fostering new research within the community to address pending 

problems. These challenges pose a threat to the systematic development of future 

mobile systems, which, if addressed, can elevate the entire mobile ecosystem to the 

next level.  

Mobile devices have come a long way from the first portable cellular phone developed by 
Motorola in 1973. Most modern smartphones are good enough to replace desktop computers. A 
smartphone today has enough computing power to be on par with the fastest supercomputers 
from the 1990s. For instance, the Qualcomm Adreno 540 GPU found in the latest smartphones 
has a peak compute capability of more than 500 Gflops, putting it in competition with supercom-
puters that were on the TOP500 list in the early to mid-1990s. 

Mobile computing has experienced an unparalleled level of growth over the past decade. At the 
time of this writing, there are more than 2 billion mobile devices in the world.1 But perhaps even 
more importantly, mobile phones are showing no signs of slowing in uptake. In fact, smartphone 
adoption rates are on the rise. The number of devices is rising as mobile device penetration in-
creases in markets like India and China. It is anticipated that the number of mobile subscribers 
will grow past 6 billion in the coming years.2 As Figure 1 shows, while the Western European 
and North American markets are reaching saturation, the vast majority of growth is coming from 
countries in Asia. Given that only 35 percent of the world’s population has thus far adopted mo-
bile technology, there is still significant room for growth and innovation. 
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Figure 1. Mobile technology is still a strongly growing market. Only 35 percent of the world has so 
far adopted mobile technology.  

The two strong drivers behind the widespread and rapid adoption of mobile devices worldwide 
are the ARM processors and Android operating system (OS). Licensing ARM’s IP lowers the 
barrier of entry into the smartphone market. At the same time, the open-source Android OS al-
lows the vendors to customize the OS to their specific hardware and provide unique user inter-
faces. A vast number of , if not all, smartphones today ship with ARM processors, and more than 
80 percent of all smartphones in the world run using the Android OS. 

In this article, we focus on the hardware. ARM processors are typically customized and pack-
aged into different system-on-chip (SoC) architectures, or chipsets, that enable hardware vendors 
to differentiate themselves from one another by providing unique performance, power, and func-
tional capabilities. As a result, as Figure 2 shows, the total number of ARM processor shipments 
has steadily increased over time. ARM shipments vastly outpace x86 processor shipments, where 
the ability to customize the processor is non-existent outside the walls of Intel and AMD.  

 

Figure 2. The number of x86 and ARM shipments from 2007 to 2016.3,4 ARM processor shipments 
far outpace the number of x86 units shipped each year. 

Processor customization, as a result of consumers’ diverse demands, has led to a diverse market-
place, filled with low- to high-end mobile computing chipsets. As Figure 3 shows, during the pe-
riod between 2011 and 2015, the number of SoC architectures that existed in the market each 
year (as adopted by smartphones and other mobile devices such as tablets) increased steadily.  
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Figure 3: SoC diversification from 2007 to 2017. We mined and analyzed data from gsmarena.com, 
which is an online public resource for handset information. 

However, starting in 2016, we see a new trend. The number of new chipsets available in the con-
sumer market each year is diminishing. We analyzed the processor data, which we mined from 
gsmarena.com, and found two possible reasons. First, as Figure 3 shows, fewer companies are 
competing in the aggressive mobile consumer market. To gain a deeper level of understanding, 
we dissect the data in Figure 3 further and hone our analysis on a subset of the most widely 
known chipset manufacturers. As Figure 4 shows, Texas Instruments (TI) was producing a vari-
ety of OMAP processors between 2007 and 2012. But then, TI ceased the OMAP line. Similarly, 
Intel's foray into mobile computing was short-lived. After introducing the Atom processor in 
2012, Intel ceased its mobile processor efforts in 2016. The same is true of other companies. Sec-
ond, mobile vendors appear to be consolidating their effort into fewer, more-capable chipsets. 
For instance, in 2014, there were 49 Qualcomm chipsets, whereas in 2017, there were only 27. 
MediaTek also appears to be following a similar trend. We postulate that this is because most 
smartphones today require high-end capabilities. The exceptions are Apple and Samsung who 
have almost always focused on producing high-end consumer chipsets for premier devices.  

 

Figure 4. A breakdown of SoC chipsets from 2007 to 2017 for the most dominant industry players 
in the mobile handset consumer market. 

Despite the decreasing trend in chipset diversity, we expect that processor customization will 
continue. The end of Dennard scaling coupled with Moore’s law slowing down to a halt means 
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that processor customization is necessary to deliver expected generational improvements in hard-
ware performance. In the foreseeable future, many believe that domain-specific processor cus-
tomization is the only practically viable means to close the “specialization gap”5 (the growing 
gap between hardware capabilities and applications’ demand for more performance). 

Customization has resulted in mobile processors evolving to have high core clock frequencies, 
aggressive microarchitectures, multicore designs, asymmetric architectures, heterogeneous exe-
cution, and domain-specific acceleration. Matthew et al. present a discussion about the evolution 
of mobile processors over the past decade.6 Based on their findings, one can argue that mobile 
processors are on par with the complexity and orchestration needs of their desktop counterparts. 

In practice, however, building a high-performance mobile device extends well beyond the capa-
bilities of the processor. As Figure 5 shows, mobile computer architecture has a symbiotic rela-
tionship with users, applications, and the rest of the mobile form factor. The device form factor 
imposes strict power, energy, and thermal constraints. The processor architecture must operate 
within these confines to deliver good performance for applications. Users use these applications 
only if the processor provides a satisfactory user experience; no user wants a sluggish user expe-
rience even if the processor boasts outlandish capabilities and the application touts rich features. 
Therefore, users ultimately drive the features and capability requirements of future processors, 
which architects must strive to deliver in the face of increasing power consumption. This “virtu-
ous” (sometimes “vicious”) cycle of innovation is the source of many challenges in the industry. 

 

Figure 5. The “mobile device virtuous cycle” of development and innovation. 

THE DEARTH OF MOBILE COMPUTER 
ARCHITECTURE RESEARCH  
Sustaining the “mobile device virtuous cycle” warrants a holistic approach to designing mobile 
processors efficiently. We must understand the role of the processor architecture in the context of 
the whole system. However, the vast majority of mobile computer architecture work in industry 
and academia tends to focus on a subset of the picture illustrated in Figure 5. The focus is almost 
always on the siloed interaction between the applications and architecture. Architects optimize 
the system based on readily measurable observables, such as performance and energy, and fail to 
consider extraneous factors, such as user satisfaction and the device’s imposing constraints.  

To overcome the myopic view adopted by many, we require active research. But despite the 
overwhelming number of mobile processors “in the wild,” in our pursuit to understand the state 
of mobile computer architecture research, we find that a dishearteningly small number of re-
searchers pay attention to mobile computer architecture design. We searched through previously 
published literature and found that only 1 percent of all accepted papers (24 out of 1,502 papers) 
in HPCA, ISCA, MICRO, and ASPLOS combined (which are widely accepted as the “Tier 1” or 
“flagship” computer architecture conferences) focus on mobile computer architecture.  

In fact, we uncover that the community pays more attention to processor architecture research for 
datacenter computing than for mobile computing. Figure 6 shows the number of accepted papers 
on mobile computing in each of the top conferences as compared to the number of papers on dat-
acenters since 2007. While datacenter research has become mainstream in the conferences (the 
number of papers is on par with traditional topics such as cache optimization and core design), 
mobile architecture research is still very much in its infancy. The total number of papers in 2016 
on mobile computing is smaller than that of datacenters in 2010.  

End Users Applications Architecture Mobile 
Device

Satisfaction

Features and Capabilities

Performance
Power Consumption

Power/Energy and
Thermal Budgets
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Figure 6. The number of accepted papers on mobile computing vs. datacenters from 2007 to 2017. 

So why is it that only 1 percent of all architecture research papers published each year in the top 
computer architecture conferences focus on mobile computing? Surely it can’t be that the archi-
tecture community thinks that mobile computing is less important than datacenter computing. 
There are more than two billion mobile devices. Taking all of the major cloud service provid-
ers—Google, Amazon, Microsoft, and Facebook—into account, a liberal estimate of the number 
of servers worldwide is perhaps 10 million. So, the current smartphone-to-server ratio is 200:1. 

We believe that the dearth of research on mobile computer architecture fundamentally stems 
from the severe lack of knowledge about how mobile devices are used on a daily basis, how they 
perform “in the wild,” and what challenges the industry is facing with mobile computer architec-
ture design.  

To this end, in this article, we discuss the reasons for the dearth of mobile computer architecture 
research from an industry perspective and focus on the challenges and opportunities as we look 
into the future. Understanding the mobile computer architecture challenges will enable us to 
comprehend not only the appropriate target workloads but also the metrics and methodologies to 
consider that can enable future findings. To fully understand and address all of these issues, we 
present our perspective in the form of “ten commandments” that ought to be observed in con-
ducting mobile computer architecture research. We validate our commandment claims with data 
from the field, if possible, and, if not, we conduct experiments to justify the commandments.   

The commandments strike at the heart of three primary categories: workloads (§1), metrics (§2), 
and methodology (§3). For each category, we present our opinions to help the community avoid 
common pitfalls. While a large number of our observations are based on smartphone computing 
principles, toward the end, we also discuss how they apply to other personal consumer devices. 

The ten commandments of mobile computer architecture are: 

1. Thou shalt not rely solely on benchmarks. (§1) 
2. Thou shalt not cherry-pick applications. (§1) 
3. Thou shalt not ignore the web browser. (§1) 
4. Thou shalt not drop a frame. (§2) 
5. Thou shalt not idolize microarchitectural efficiency. (§2) 
6. Thou shalt not ignore tails in user experience. (§2) 
7. Thou shalt not assume software is hardware-agnostic. (§3) 
8. Thou shalt not disregard the IP blocks. (§3) 
9. Thou shalt not turn a blind eye to energy and thermal. (§3) 
10. Thou shalt not presume this list is complete. (§1,§2,§3) 

WORKLOADS 

1. Thou shalt not rely solely on benchmarks. 
Numerous benchmarks have emerged to act as steadfast workloads for evaluating mobile de-
vices. SPEC CPU, Geekbench, AnTuTu, and Quadrant are some of the most widely popular 
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benchmarks. Although SPEC CPU is generally targeted at desktop and server systems, efforts 
have been made to port the workload to evaluate it on mobile processors for evaluation purposes. 
Benchmarks like Geekbench and AnTuTu focus on core computational kernels (such as Dijkstra, 
JPEG compression, GEMM, and FFT) that exercise the CPU and GPU steadily.  

In contrast to many of the steadfast benchmarks, which are composed of a handful of select ap-
plications, the mobile application ecosystem is diverse and the application’s characteristics 
change overwhelmingly fast. After ten years of mobile computing, there are more than 3 million 
applications currently in the Google Play Store. The number of applications available first ex-
ceeded 1.5 million in 2015. This means more than 60,000 new applications are released in the 
Google Play Store each month. Keeping pace with the mobile ecosystem is challenging because 
benchmarks evolve more slowly than real-world applications. Take, for example, the continu-
ously widening gap between SPEC CPU release dates: 1992, 1995, 2000, 2006, and 2017. Over 
the years, time between releases has lengthened despite workload advances in the real world. 

The key workload challenge is the strong discrepancy between the performance characteristics of 
the real-world mobile applications and the mobile benchmarks. Many real-world applications are 
highly multithreaded and frequently communicate with other processes. Their performance char-
acteristics are affected by the user’s interactions. User satisfaction in the real world is determined 
in the order of milliseconds, on a per-event touch response latency rather than on computation-
ally intensive steady state behavior. As a result, many of the steady state benchmarks fall short of 
faithfully capturing the interactive effects that are common on mobile devices.  

Moreover, the benchmarks tend to undermine the importance of looking at the SoC as a whole 
and involve communication with other processes and several subcomponents, such as the ISP, 
IPU, and video/audio decoders and encoders, all of which contribute to the overall device perfor-
mance and user experience. As we discuss later in the eighth commandment, understanding the 
role of the IPs and faithfully capturing holistic workload activity is important. 

Mis-representativeness between real-world applications and benchmarks can have severe impli-
cations when making architectural design decisions. Architects might be misled to optimize for 
the wrong bottlenecks and make incorrect trade-offs if they misunderstand the consequences of 
using these benchmarks. Therefore, a strong call to action is the development of a benchmark 
suite that faithfully represents real-world application characteristics and user interactivity. But 
this in and of itself presents a new set of challenges, as the following two commandments state. 

2. Thou shalt not cherry-pick applications. 
Now that we have emphasized the focus on real-world applications, the next important step is to 
ensure that we pick the right applications to investigate deeply for architectural design decisions. 
It is typical practice in the community to select the top applications from the app stores to con-
duct detailed microarchitectural analysis studies. But architects must learn to be cognizant of the 
aforementioned pace of change, as the popularity of mobile applications can evolve quickly.  

Figure 7 shows the popularity for three well-known applications: Google Chrome, Angry Birds, 
and Pokémon GO. The data presented here comes from Google Trends. Each of the three appli-
cations show distinctly different behavior over the course of time. We see a rapid decline in the 
interest in Angry Birds; it has dropped by about 80 percent over the past five years. Interest in 
Pokémon GO spiked briefly when the game introduced location-based and AR technology in 
mid-2016 but collapsed quickly. In contrast, Google Chrome shows less-dramatic shifts in popu-
larity over time, holding a stable level of popularity over the course of nearly seven years. 

However, Angry Birds is still a popular application for benchmarking mobile systems in the lit-
erature, and, as such, characterizing and optimizing the processor’s architecture for this workload 
(that is trending out of popularity) will have little future impact. The conclusions drawn from 
studying old applications like Angry Birds might hurt processor architects when the design is 
shipped into products because they would be optimizing future processors for past workloads. 

Therefore, it is important for hardware vendors and architects to keep pace with which applica-
tions are really “hot” and keep the mobile benchmarking application suite updated. Given that 
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SoCs take more than a year to build, it is important to project into the future and anticipate novel 
use cases. This is likely easier said than done, but we believe it can be achieved. For instance, if 
we take mobile gaming applications that rely on rendering engines as an example, we can antici-
pate the expected demands of future games by selecting the most challenging frames that the 
processor has to process in the rarest of all events and assume that they will be the common case. 

 

Figure 7. Changing application interest from 2010 to 2017. 

3. Thou shalt not ignore the web browser. 
As of August 2017, mobile was responsible for 52 percent of all Internet traffic,7 and the gate-
way to the Internet is the web browser. Moreover, in many developing countries, users tend to 
prefer the browser over installing single-purpose or dedicated native applications, since web 
browsers are typically well optimized for dealing with variability in operating environments, 
such as intermittent network connectivity and data usage conditions. Therefore, the browser is a 
canonical application to include in any new benchmark suite and study on a mobile device.  

In addition, many mobile applications, such as social and messenger applications, allow users to 
load webpages inside the application using so-called “WebView.” A WebView allows develop-
ers to seemingly roll in their own web browser and display online content using the browser-ren-
dering engine. This also allows developers to display webpages and include methods to navigate 
forward and backward through a history, zoom in and out, perform text searches, and more. This 
level of flexibility for deploying mobile applications further solidifies the browser’s significance.  

The browser’s broad capabilities and flexibility are causing it to outpace many mobile applica-
tions in density and complexity. Figure 8 shows the change in Android Package Kit (APK) size 
for Google applications such as Gmail, Google Photos, Chrome, and YouTube. In a short period 
of two years, most applications have doubled. In contrast, Chrome has grown exceptionally fast. 
It has grown by eight times over the past five years. Chrome is six times larger than YouTube 
and Gmail and three times larger than Photos in its raw code and data footprint alone.  

More than 70 percent of Chrome’s APK is code and libraries, while the rest can be attributed to 
manifest files and other resources. The code contained within the APK exhibits highly irregular 
and complex control flows that stress virtually any mobile processor’s capabilities. Since the 
browser, a single application, can render any of the billion webpages on the Internet, it can ex-
hibit vastly different runtime code characteristics based on its input.8 So, the performance of the 
browser-rendering engine plays an important role in the overall mobile device user experience.  

Traditionally, it is believed that the mobile web browser is a network-bound (and network per-
formance-limited) application. In other words, many assume that user experience while browsing 
is solely affected by network performance. However, advancements in LTE network and WiFi 
speeds have caused the browser to be more compute-bound.9 As such, the browser relies heavily 
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on the CPU for its rendering and network processing. The browser typically spawns tens of 
threads that require a large amount of data and code footprints along with frequent inter-process 
(thread) communication.10 Moreover, most browsers like Chrome rely on an asynchronous exe-
cution model that exercises nearly all of the IPs in a mobile SoC, including the CPU, GPU, video 
and audio decoders, networking, crypto-engine, and the various communication IP blocks. 

 

Figure 8. APK size increase from 2012 to 2017. Chrome was 157 MB in July 2017. 

Mobile processor architects must include the browser in the creation of a benchmark suite and 
any sort of hardware or software optimization analysis. In many ways, the browser is akin to the 
GCC benchmark from the SPEC CPU benchmark suite, which has stood the test of time. GCC is 
one benchmark that has consistently retained its place through the evolution of the SPEC CPU 
suite, starting from CPU’92 and lasting all the way to the latest release of the CPU 2017 suite. 
The browser is similar to GCC in that it has also stood the test of time. Virtually every mobile 
device on the planet comes with a browser. So, it only makes sense to study the browser. 

METRICS 

4. Thou shalt not drop a frame. 
Traditional architecture research focuses on hardware-centric metrics, such as instructions-per-
cycle (IPC), cache misses-per-kilo-instructions (MPKI), and the runtime of an application. This 
works well for steady-state, streaming-style applications found in server class systems. However, 
except for video streaming (record or playback) applications, the majority of mobile applications 
are event-driven—the processor is waiting for user events. Events trigger task processing. So, it 
is important to evaluate mobile systems using event-driven characteristics that matter to the user. 

An average user taps, types, swipes, or clicks her or his device 2,617 times a day, and about 10 
percent of us perform those actions 5,427 times a day.11 So, what matters to users is the touch 
responsiveness of the system (the time it takes to render a frame after a touch input). To ensure 
“buttery smooth” responsiveness, the system architecture as a whole must maintain 60 frames 
per second (FPS)12 consistently without any dropped (or delayed) frames, commonly referred to 
as “jank.” This proves challenging because maintaining 60 FPS means all processing (compu-
ting, networking, and rendering) must take place within 16.67 ms per frame.  

As a general rule, it is better to design a system that can provide a sustainable throughput with no 
dropped frames than to build a system that has a high frame rate (such as 120 FPS) but drops 
frames even occasionally. For example, it is better to have an average frame time of 15 ms with 
no frames taking longer than 16 ms than to have 99 percent of the frames taking 14 ms and 1 
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percent taking 17 ms. Because in the latter scenario, a system would glitch once every two sec-
onds! This sort of display jank is extremely noticeable to the sensitive human eye.13  

Given the criticality of responsiveness for user experience, it would be prudent for mobile archi-
tectural simulators to report the frames that have been successfully processed and those that have 
been dropped per second, in addition to the more traditional raw runtime and microarchitectural 
efficiency metrics of the processor. Tools such as gfxinfo that are readily available and ship with 
the Android Open Source Project (AOSP) allow researchers to collect this type of user perceiva-
ble data on devices. Established simulators such as gem5 that are capable of full-system simula-
tion already support this sort of capability. They simply need to be considered as a metric. 

5. Thou shalt not idolize microarchitectural efficiency. 
The textbook “Computer Architecture: A Quantitative Approach” by David A. Patterson and 
John L. Hennessy has taught every architecture student to have a strong and quantitatively rigor-
ous approach to measuring simulated or real hardware performance. But a lot has changed over 
the past 10 years since the arrival of the smartphone. The measure of performance in a mobile 
device is not how fast a processor can compute; rather, its true capability lies in its ability to de-
liver user-perceivable satisfaction improvements. For instance, doubling the TLB from 32 to 64 
entries or increasing CPU clock frequency might seem like the right trade-off to improve perfor-
mance at the expense of power consumption. In practice, however, if the microarchitectural en-
hancements cannot translate to measurable user experience, doing so won’t be useful.  

As an example, Figure 9 shows the cumulative distribution function (CDF) for frame rendering 
latency for the “Invalidate” test in UiBench. We consider 8,000 sample frames. We vary the 
CPU clock frequency of a Google Pixel XL device, which consists of asymmetric cores, to eval-
uate the impact on consistently maintaining a fixed FPS rate. Configurations with lower fre-
quency gradually show longer rendering latency per frame on average and much longer, 
noticeable tails. For example, the fastest configuration (blue line) shows a 5-ms gap between the 
maximum and minimum rendering latency, whereas we notice a more-than-15-ms gap for the 
slowest configuration (green line). But if we assume a 60 FPS VSync rate, the data indicates that 
there is an opportunity to slack in the computation and save power. By dropping from 2.15 GHz 
to 1.67 GHz, we can still meet the 16.67-ms cut-off for all the frames, save a significant amount 
of power and energy, and run cooler. Put another way, increasing the frequency from 1.06 GHz 
to 1.67 GHz is worth the extra energy, as it helps meet the cut-off latency. Pushing beyond 1.67 
GHz can be wasteful in terms of performance and energy. There is an interesting trade-off here: 
In terms of overall power efficiency and user experience, are high-performance, high-power 
cores better than slower, low-power cores that just meet the latency requirement? 

 

Figure 9. Distribution of frame rendering latency for the UiBench application for different CPU 
clock frequencies.  
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Therefore, it is important to understand the relationship between microarchitectural enhance-
ments and the actual user impact. Zhu et al. provide a model to think about performance in the 
form of “perceptibility,” “tolerability,” and “un-usability.”14 It is possible that a systematic con-
struct can be useful in rationalizing about the benefits of certain optimizations. But without such 
approaches, it is hard for architectural design-time decisions to have real-world product impact. 

6. Thou shalt not ignore tails in user experience. 
Tail latency is a well-known problem in data centers.15 It occurs when the overall response time 
for a request is dominated by a long tail distribution because of multiple servers operating in par-
allel to service the request. But little do people realize that mobile applications also suffer from 
long tail latency issues. There are multiple sources of variation in a mobile device: thermal throt-
tling, code interpretation, dynamic recompilation, garbage collection, background killing of ap-
plications due to memory pressure, nondeterministic networking and communication, Android 
device differences, kernel scheduling differences, and so on. The list is long. Ultimately, all of 
these sources of variation affect user experience because users recall “long tail” experiences. 

Figure 10 shows a histogram of response times for the onCreate user event from two first-party 
Google applications, both of which have at least a few hundred million users. The curves for the 
two applications are different because the activity corresponding to the event is different between 
the two applications. However, both applications show a long tail. The average response time is 
around 500 ms, though the tail can be more than eight times as long (> 4,000 ms).  

 

Figure 10. Distribution of latencies for an event in two widely used first-party Google applications 
based on field data. 

The precise reasons for the variance we observe in Figure 10 are hard to pinpoint given the na-
ture of the complex Android OS. Controlling for such variability is challenging, yet important. 
At present, there is no well-known way to control this variability, because there are too many 
sources. This means that to have confidence in whether any architectural optimization has im-
pact, the optimization must first withstand the variance in the execution times. Otherwise, we do 
not know if the improvement is truly from the experiment or if it’s by chance. So, often, the saf-
est way is to report the distribution or assume the worst case and report results accordingly.   
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METHODOLOGY 

7. Thou shalt not assume software is hardware-agnostic. 
Mobile applications are written with user experience and hardware capabilities in mind. There 
are more than 24,093 distinct Android devices in the world, and the performance capabilities of 
these devices vary drastically.16 The Android OS has built-in capabilities for applications to take 
different execution paths (silently) based on a queried hardware feature. Such functionality al-
lows some hardware to be restricted from sophisticated features by popular applications because 
parts of the application might not be fast enough to provide responsive user experience.  

We use Chrome as an example to illustrate the extent of such “software specialization.” Consider 
the real-world case of the Chrome browser dealing with video encoding. Different mobile de-
vices support different codecs (or codec variations) in their hardware decode engine, and so the 
browser must adapt to them, with a fallback to software decoding in the event that the codec 
used by a video isn’t supported in hardware. Another example involves different GPUs. Some 
GPUs expose different extensions over the base OpenGL ES, and applications like Chrome 
might use different rendering algorithms based on the presence, or absence, of particular hard-
ware extensions. For example, NVIDIA GPUs support a proprietary “path rendering” extension 
that the Chrome browser will use if the GPU supports it, which re-
duces 2D rendering costs for curves. But if it is not present, the 
browser takes a completely different software code path. 

So, one cannot assume that a given workload runs identically on dif-
ferent devices. Given the extent of heterogeneity in the mobile hard-
ware ecosystem, one needs to understand that the same application can 
be hard-coded differently on different devices to perform differently. 
Because hardware-aware software tuning isn’t rare in the mobile eco-
system, when we perform comparative performance analysis between 
any two platforms, we need to be aware of such crucial differences. 
Sadly, however, this requires an inscrutable level of domain-specific 
application level knowledge. But that is the price to pay for working in 
a rich and highly heterogeneous system.  

8. Thou shalt not disregard the IP blocks. 
The mainstream architecture community has long focused on general-
purpose CPUs and GPUs. However, unlike CPUs and GPUs that have 
been optimized for decades, SoCs are, by definition, a modular collec-
tion of special-purpose compute, communication, and storage IP units. 
In a high-performance SoC, the majority of the die area is dominated 
by IP blocks. The Apple A8 SoC supposedly has close to 30 IP blocks, 
and the application processor occupies less than 20 percent of the total 
die area.17 Qualcomm also touts similar claims: “[O]n a modern Snap-
dragon processor, less than one-third of the total silicon real estate is 
taken up by the CPU.”18 Many of the IP blocks are typically licensed 
from third-party companies and assembled together through standard 
interfaces (such as ARM AXI/ACE bus) to meet a targeted purpose.  

In an SoC, multiple IP blocks are active at the same time and com-
municate frequently with each other over the Network-on-Chip (NOC) 
fabric. These interactions prove particularly challenging for architects 
to design for because they often manifest in less-than-expected perfor-
mance post-tapeout when the chip is running realistic use cases and 
the IPs are operating concurrently. Often, however, the IPs are studied 
in isolation. In reality, the IPs are concurrently competing for various 
resources when they are deployed to handle an everyday, realistic use 
case scenario.  

One cannot assume 

that a given 

workload runs 

identically on 

different devices. 

Given the extent of 

heterogeneity in the 

mobile hardware 

ecosystem, one 

needs to 

understand that the 

same application 

can be hard-coded 

differently on 

different devices to 

perform differently. 
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To understand the significance of studying multiple IP flows concurrently, consider the typical 
use case of recording a 4K display resolution video. Figure 11 shows the dataflow between the 
various IP blocks. Compressed raw frame data from a camera-sensor feeds into the Image Signal 
Processor (ISP) that performs pixel processing and writes the frame out to DRAM. The frame 
data then diverges into two streams: a “preview stream” to the display and a “video stream” to 
the storage subsystem. The preview data stream is sent from the ISP to the display pipeline 
through the DRAM. The display pipeline handles the UI layers compositing (both the display 
controller and the GPU do compositing depending on layer count), and they finally render the 
preview to the screen. The video stream in the ISP is compressed and undergoes several addi-
tional passes through the GPU. The compressed ready frames are delivered to the video encoder 
buffer in DRAM. The video encoder processes multiple frames at a time and writes the encoded 
compressed stream to DRAM where the CPU ultimately streams it to storage. A real-time audio 
stream is routed through the DSP and encoded into the video stream for persistent storage. 

Hopefully, this everyday use case illustrates the complexity and heterogeneous processing in a 
mobile system. Furthermore, the magnitude of concurrency in a mobile system should reinforce 
the need for computer architects to understand the system as a whole, and not focus solely on the 
CPU subsystem. The brunt of the work in a mobile device is handled by the IP blocks, and the 
CPU generally plays a minimal role, mostly coordinating activity between the different IPs. 

 

Figure 11. This example of a 4K, 60 FPS video capture use case shows the importance of 
considering IP flows. 4K refers to a horizontal screen display resolution in the order of 4,000 pixels. 

Therefore, architects are strongly encouraged to consider the role of the various IP blocks in the 
process of evaluating a mobile system. There are numerous opportunities for research and devel-
opment of novel solutions to enhance mobile processor performance. For instance, consider the 
number of memory streams that are concurrently active in the mobile chipset in the 4K video ex-
ample above. One could envision new caching policies to minimize the overall DRAM traffic, 
develop point-to-point communication channels between the various IPs, and so forth. Solutions 
can be developed to either enhance performance of the system or lower its power consumption. 

9. Thou shalt not turn a blind eye to energy and thermal. 
No discussion on mobile is ever complete without stating the obvious. Mobile devices operate 
under strict thermal and energy budgets. But perhaps a little less-known fact is that there is no 
Moore’s law for batteries.19 Battery density doesn’t double until every ten years, while Moore’s 
law continues every two years. As a result, we witness increasing battery sizes in smartphones, 
which directly translates to capacity. The Samsung Galaxy S8 (2018) has a 3,000 milliampere 
hour (mAh), while the Samsung Galaxy S (2009) had a 1,500 mAh. The five-fold discrepancy 
between battery density improvements and Moore’s law implies there is a steadily widening gap 
between compute requirements and energy availability in a mobile form factor.   
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It is easy to tout performance improvements from different microar-
chitectural solutions without fully considering the consequences. 
However, we should consider ourselves warned because passive cool-
ing and limited battery power impose severe restrictions on the de-
vice’s capabilities. Cooling is a major problem because all humans 
have a low tolerance for high surface temperatures. We can handle at 
most 45 degrees Celsius before our skin starts experiencing pain.20 
With the end of Dennard scaling, rising power density is a serious is-
sue. Increasing power density is leading to thermal challenges that far 
exceed a device’s inherent passive cooling capability.  

To overcome this issue, it is important to understand that energy con-
sumption and thermals in a mobile device are highly subjective to 
real-world use cases, and, therefore, diverse use cases must be consid-
ered altogether to comprehensively evaluate the power efficiency of a 
mobile device. For example, consider the power consumption of the 
SoC under two common, but extremely different use cases: web 
browsing and 4K video recording. Figure 12 shows the SoC power 
distributions of these use cases, which indicates that Chrome is a 
CPU-intensive application, while the video recording heavily employs 
many other IPs on the SoC (as shown previously in Figure 11). The 
SoC consumes five times more power for 4K video recording 
(3,473.55 mW) than for running Chrome and scrolling through a lo-
cally cached website (651.77 mW).  

The differences in the power consumption and activation of different 
IP blocks indicates that we need to optimize the system as a whole by 
considering power, thermal, and performance together. We expect this 
trend will continue as more IP blocks and custom accelerators are inte-
grated into the SoC for emerging use cases, such as machine learning 
and augmented reality. Therefore, measuring and quantifying the 
power peaks and energy consumption of new ideas is necessary given 
that battery and heat dissipation are first-order constraints for mobile 
systems. 

 

Figure 12. Power distribution differences for two common mobile device use cases. (left) Web 
browser scrolling with a total power consumption of 651.77 mW. (right) 4K video recording with a 
total power consumption of 3,473.55 mW. 

10. Thou shalt not presume this list is complete. 
Mobile computing is a rapidly and continuously evolving ecosystem, and the hardware require-
ments will need to evolve as time progresses. It would be presumptuous for anyone to assume 
that any one set of commandments can ever be complete. To this end, the tenth commandment 
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acknowledges that the current list is by nature incomplete and that the aforementioned com-
mandments should be improved upon over time as mobile computing evolves. 

A CALL TO ACTION 
Mobile computing is here to stay, and it presents unique challenges that are different from server 
and desktop systems. The goal of this article is to motivate the community to address these chal-
lenges. Here, we present some recommendations for mobile architecture research based on the 
commandments that span the three important areas: workloads, metrics, and methodology. 

Workloads (commandments 1 through 3): We make a case for using real workloads to drive 
the performance evaluation of mobile devices. But real workloads are complex and need to be 
dissected further to gain deeper insights. We recommend splitting a workload into smaller parts 
called regions of interest (ROIs). An ROI is a slice or portion of a workload that represents an 
interesting aspect that needs to be studied carefully. For example, application startup is a specific 
ROI because it indicates a device’s capability and impacts user experience. An application may 
have multiple ROIs. For example, a user opens Chrome and wants to search for an article. There 
are many stages. Each of the different actions (such as Chrome startup, typing a keyword, scroll-
ing, and hitting one of the search results) can be qualified as a distinct 
ROI. These distinct ROIs need to be isolated and studied in greater de-
tail under improved architectural simulators. 

Metrics (commandments 4 through 6): We state that user experi-
ence should be measured using jank and long tails in addition to tradi-
tional microarchitectural metrics. But there are several other metrics 
that also matter, including application startup latency (the time from 
clicking the icon to the first interaction with the application), tab 
switching latency (when a user wants to switch from one foreground 
task to another), and touch latency (the time it takes for the user to no-
tice a difference on the screen as a result of his or her touch-screen in-
put). Some metrics, such as startup latency, can be directly measured 
using existing benchmarks and applications. However, other metrics, 
such as tab switching latency, can’t be captured using existing work-
loads. We must construct benchmarks to isolate and capture such ef-
fects. Understanding these different “phases” of application behavior 
can have a direct consequence on the architectural design.21 

Methodology (commandments 7 through 9): We emphasize the 
need for systematic evaluation. Benchmarking mobile devices is tricky 
due to the interactivity. Mobile application ROIs are small (for exam-
ple, responsiveness to a button click), so measurement error can be 
large if care isn’t taken to benchmark systematically. Therefore, a key 
requirement for benchmarking is repeatability, which restricts work-
load variability. The goal for each “curated” workload ought to be to 
craft the workload in such a way that all or some parts of the workload 
can be run with strong repeatability on a variety of platforms, including simulators and real de-
vices.  

Simulation platforms are also an important requirement. Mobile simulators need to be of a dif-
ferent breed than the ones that have driven architecture research over the past two decades. SoC 
simulators need to be able to boot up-to-date Android, support a rich set of IP blocks, and inter-
face with sensors. Detailed cycle-level models are likely to be less useful for initial fast and rapid 
design space exploration studies. Instead, we need a new breed of mobile architecture simulators, 
which need to be integrated with abstract models of the various IP blocks and network fabrics to 
help analyze complex use cases and their data flows (such as 4K video recording). 
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CONCLUSION 
Mobile computer architecture is still in a nascent stage despite the proliferation of handheld de-
vices. It is a rapidly evolving ecosystem, making it challenging to establish benchmarks, metrics, 
and experimental methodologies. But given its prevalence, it’s paramount that these issues be 
addressed by both academia and industry. The ten commandments we present help identify many 
of the issues facing mobile architecture research, although it would be presumptuous to assume 
that any one set of commandments can be comprehensive and complete enough to capture the 
space in such a fast-moving environment. Therefore, the commandments should be improved 
upon over time, and the existing commandments taken with a grain of salt. The call to action for 
the community is to develop (and release) the vessels needed to improve today’s ad-hoc prac-
tices. We should be able to evaluate realistic workloads using meaningful metrics and develop 
new methodologies that allow us to optimize complex use cases across the entire SoC, not just 
the CPU/GPU. We hope that the issues discussed here serve as a seedling for deeper research. 

Many of the things discussed here are based on lessons learned from touch screen-based inter-
faces over the past decade. However, consumer devices are on the cusp of a new evolution in-
volving head-mounted displays that have more stringent response time latency requirements than 
smartphones. Meanwhile, the medium for interaction is also changing. In the coming decade, 
speech will likely become an important modality for interacting with consumer devices. The 
community needs to think about how it can improve simulation and research infrastructure to 
new heights so that it can investigate these complex systems across all layers of the system stack.  
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