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Preface

What does it look like when a mathematician explains something to a fel-
low mathematician? Everyone knows: many pictures on the blackboard,
lots of intuition flying around, and so on. It is not surprising that mathe-
maticians often prefer a conversation with a colleague to “simply” reading
a book. So, in view of this, my initial goal was to write a book as if I were
just explaining things to a colleague or a research student. In such a book
there should be a lot of pictures and plenty of detailed explanations, so that
the reader would hardly have any questions left. After all, wouldn’t it be
nice if a person (hmm. . . well, a mathematician) could just read it in a bus
(bed, park, sofa, etc.) and still learn some ideas from contemporary math-
ematics? I have to confess that, unfortunately, as attested by many early
readers, I have not always been successful in creating a text with the pre-
ceding properties. Still, I hope that at least some pieces will be up to the
mission.

To explain my motivation, consider the following well known fact: fre-
quently, the proof of a mathematical result is difficult, containing lots of
technicalities which are hard to follow. It is not uncommon that people
struggle to understand such proofs without first getting a “general idea”
about what is going on. Also, one forgets technicalities1 but general ideas
remain (and if the ideas are retained, the technical details can usually be
reconstructed with some work). So, in this book the following approach
is used. I will always prefer to explain the intuition first. If the proof is
instructive and not too long, it will be included. Otherwise, I will let the
interested reader look up the details in other books and/or papers.

The approach can be characterized as striving to understand all things
through direct probabilistic intuition. Yes, I am aware that this is not always
possible. Nonetheless, when facing a complex task, it is frequently easier to

1 even of one’s own proofs, as the author has learned on quite a few occasions
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viii Preface

tackle it using familiar tools2 (even in a non-optimal way) as much as pos-
sible than to employ other (possibly more adequate) tools one is unfamiliar
with. Also, advanced approaches applied to basic tasks have a tendency to
“hide” what is really going on (one becomes enchanted with the magic,
while still not being able to perform it oneself).

This book revolves around two-dimensional simple random walk, which
is not actually so simple, but in fact a rich and fascinating mathematical ob-
ject. Our purpose here is not to provide a complete treatment of that object,
but rather to make an interesting tour around it. In the end we will come
to the relatively new topic of random interlacements (which can be viewed
as “canonical” nearest-neighbour loops through infinity). Also, on the way
there will be several “side-quests”: we will take our time to digress to some
related topics which are somewhat underrepresented in the literature, such
as Lyapunov functions and Doob’s h-transforms for Markov chains.

Intended audience

I expect this book to be of interest to research students and postdocs work-
ing with random walks, and to mathematicians in neighbouring fields. Given
the approach I take, it is better suited to those who want to “get the intuition
first”, i.e., first obtain a general idea of what is going on, and only after that
pass to technicalities. I am aware that not everybody likes this approach but
I hope that the book will find its audience. Although this book is designed
primarily for self-study, it can also be used for a one-semester course on
additional topics in Markov chains.

The technical prerequisites are rather mild. The material in the book
will be at a level accessible to readers familiar with the basic concepts of
probability theory, including convergence of random variables and uniform
integrability, with also some background in martingales and Markov chains
(at the level of [43], for example). The book is meant to be mostly self-
contained (and we recall all necessary definitions and results in Chapter 1).

Many topics in the book are treated at length in the literature, e.g. [40, 62,
70, 90]; on the other hand, we also discuss some recent advances (namely,
soft local times and two-dimensional random interlacements) that have not
been covered in other books. In any case, the main distinguishing feature
of this book is not its content, but rather the way it is presented.

2 In Russia, the ability to build a log house using only an axe was considered proof of a
carpenter’s craftsmanship.
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Overview of content

The content of the book is described here. Each chapter (except for the
introduction) ends with a list of exercises, and a section with hints and
solutions to selected exercises appears at the end of the book. A note about
the exercises: they are mostly not meant to be easily solved during a walk
in the park; the purpose of at least some of them is to guide an interested
reader who wants to dive deeper into the subject.

1. Basic definitions. We recall here some basic definitions and facts for
Markov chains and martingales, mainly for reference purposes.

2. Recurrence of simple random walk in two dimensions. First, we recall
two well-known proofs of recurrence of two-dimensional simple ran-
dom walk: the classical combinatorial proof and the proof with elec-
trical networks. We then observe that the first proof relies heavily on
specific combinatorics and so is very sensitive to small changes in the
model’s parameters, and the second proof applies only to reversible
Markov chains. Then, we present a very short introduction to the Lya-
punov function method – which neither requires reversibility nor is sen-
sitive to small perturbations of transition probabilities.

3. Some potential theory for simple random walk. This chapter gives a
gentle introduction to the potential theory for simple random walks,
first in the transient case (d ≥ 3), and then in two dimensions. The idea
is to recall and discuss the basic concepts (such as Green’s function,
potential kernel, harmonic measure) needed in the rest of the book; this
chapter is not intended to provide a profound treatment of the subject.

4. Simple random walk conditioned on not hitting the origin. Here, we first
recall the idea of Doob’s h-transform, which permits us to represent a
conditioned (on an event of not hitting some set) Markov chain as a (not
conditioned) Markov chain with a different set of transition probabili-
ties. We consider a few classical examples and discuss some properties
of this construction. Then, we work with Doob’s transform of simple
random walk in two dimensions with respect to its potential kernel. It
turns out that this conditioned simple random walk is a fascinating ob-
ject on its own right: just to cite one of its properties, the probability that
a site y is ever visited by a walk started somewhere close to the origin
converges to 1/2 as y → ∞. Perhaps even more surprisingly, the pro-
portion of visited sites of “typical” large sets approaches in distribution
a Uniform[0, 1] random variable.

5. Intermezzo: Soft local times and Poisson processes of objects. This
chapter is about two subjects, apparently unrelated to simple random
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walk. One is called soft local times; generally speaking, the method of
soft local times is a way to construct an adapted stochastic process on
a general space Σ using an auxiliary Poisson point process on Σ × R+.
In Chapter 6 this method will be an important tool for dealing with ex-
cursion processes. Another topic we discuss is “Poisson processes of
infinite objects”, using as an introductory example the Poisson line pro-
cess. While this example per se is not formally necessary for the book,
it helps us to build some intuition about what will happen in the next
chapter.

6. Two-dimensional random interlacements. In this chapter we discuss
random interlacements, which are Poisson processes of simple random
walk trajectories. First, we review Sznitman’s random interlacements
model [92] in dimension d ≥ 3. Then, we discuss the two-dimensional
case recently introduced in [25]; it is here that various plot lines of this
book finally meet. This model will be built of the trajectories of simple
random walk conditioned on not hitting the origin, studied in Chapter 4.
Using the estimates of two-dimensional capacities and hitting probabil-
ities obtained with the technique of Chapters 3 and 4, we then prove
several properties of the model, and the soft local times of Chapter 5
will enter as an important tool in some of these proofs. As stated by
Sznitman in [96], “One has good decoupling properties of the excur-
sions . . . when the boxes are sufficiently far apart. The soft local time
technique . . . offers a very convenient tool to express these properties”.
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Notation

Here we list the notation recurrently used in this book.

• We write X := . . . to indicate the definition of X, and will also occasion-
ally use . . . =: X.

• a ∧ b := min{a, b}, a ∨ b := max{a, b};

• for a real number x, bxc is the largest integer not exceeding x, and dxe is
the smallest integer no less than x;

Sets

• |A| is the cardinality of a finite set A;

• R is the set of real numbers, and R+ = [0,+∞) is the set of real nonneg-
ative numbers;

• Z is the set of integer numbers, N = {1, 2, 3, . . .} is the set of natural
numbers, Z+ = {0, 1, 2, . . .} is the set of integer nonnegative numbers,
Z+ = Z+ ∪ {+∞};

• Rd is the d-dimensional Euclidean space and Zd is the d-dimensional
integer lattice (with the usual graph structure);

• Zd
n = Zd/nZd is the d-dimensional torus of (linear) size n (with the graph

structure inherited from Zd);

• for A ⊂ Zd, A{ = Zd \ A is the complement of A, ∂A = {x ∈ A :
there exist y ∈ A{ such that x ∼ y} is the boundary of A, and ∂eA = ∂A{

is the external boundary of A;

• N = ∂e{0} = {±e1,2} ⊂ Z
2 is the set of the four neighbours of the origin

(in two dimensions);

• B(x, r) = {y : ‖y − x‖ ≤ r} is the ball (disk) in Rd or Zd; B(r) stands for
B(0, r);

xi



xii Notation

Asymptotics of functions
• f (x) � g(x) means that there exist 0 < C1 < C2 < ∞ such that C1g(x) ≤

f (x) ≤ C2g(x) for all x; f (x) . g(x) means that there is C3 > 0 such that
f (x) ≤ C3g(x) for all x;

• f (x) = O(g(x)) as x → a means that lim supx→a

∣∣∣ f (x)
g(x)

∣∣∣ < ∞, where a ∈

R ∪ {∞}; f (x) = o(g(x)) as x→ a means that limx→a
f (x)
g(x) = 0;

Euclidean spaces and vectors
• ‖x‖ is the Euclidean norm of x ∈ Rd or x ∈ Zd;
• x · y is the scalar product of x, y ∈ Rd;
• we write x ∼ y if x and y are neighbours in Zd (i.e., x, y ∈ Zd and
‖x − y‖ = 1);

• (ek, k = 1, . . . , d) are the canonical coordinate vectors in Rd or Zd;
• for A, B ⊂ Rd or Zd, dist(A, B) = infx∈A,y∈B ‖x − y‖, and dist(x, A) :=

dist({x}, A); also, diam(A) = supx,y∈A ‖x − y‖;

General probability and stochastic processes
• (Fn, n ≥ 0) is a filtration (a nondecreasing sequence of sigma-algebras);
• a.s. stands for “almost surely” (with probability 1);
• 1{event} is the indicator function of event

{
event

}
;

• (p(x, y), x, y ∈ Σ) are transition probabilities of a Markov chain on a state
space Σ, and (pn(x, y), x, y ∈ Σ) are the n-step transition probabilities;

• Px and Ex are probability and expectation for a process (normally, a ran-
dom walk – the one that we are considering at the moment) starting
from x;

• SRW is an abbreviation for “simple random walk”;
• Ln(z) =

∑n
k=1 1{Xk = z} is the local time at z of the process X at time n;

we write LX
n (z) in case when where might be an ambiguity about which

process we are considering;3

• Gn(z) is the soft local time of the process at time n at site z;

Simple random walk
• (S n, n ≥ 0) is the simple random walk in Zd;
• τA ≥ 0 and τ+

A ≥ 1 are entrance and hitting times of A by the SRW;
• EsA(x) = Px[τ+

A = ∞]1{x ∈ A} is the escape probability from x ∈ A for
SRW in dimensions d ≥ 3;

• G(·, ·) is Green’s function for the SRW in three or more dimensions,
GΛ(·, ·) is Green’s function restricted on Λ;

3 We use different notation for local times of SRW and conditioned SRW, see below.



Notation xiii

• a(·) is the potential kernel for the two-dimensional SRW;
• hmA(x) is the value of the harmonic measure in x ∈ A;
• cap(A) is the capacity of A (in two or more dimensions);
• Nx =

∑∞
j=0 1{S j = x} is the total number of visits to x, and N(k)

x =∑k
j=0 1{S k = x} is the total number of visits to x up to time k (i.e., the

local time at x at time k);
• let A be a fixed subset of Z2; then N[

x =
∑τ+

A−1
j=0 1{S j = x} is the number of

visits to x before the first return to A, and by N]
x =

∑∞
j=τ+

A
1{S j = x} the

number of visits to x after the first return to A (with N]
x = 0 on {τ+

A = ∞});

Conditioned simple random walk
• (Ŝ n, n ≥ 0) is the simple random walk in Z2 conditioned on never hitting

the origin;
• τ̂A ≥ 0 and τ̂+

A ≥ 1 are entrance and hitting times of A by the conditioned
SRW

• ÊsA(x) = Px[τ̂+
A = ∞]1{x ∈ A} is the escape probability from x ∈ A for

the conditioned SRW in two dimensions
• ĥmA(x) is the harmonic measure for the conditioned walk;
• ĉap(A) = cap(A ∪ {0}) is the capacity of set A with respect to the condi-

tioned SRW;
• Ĝ(x, y) = a(y)(a(x) + a(y) − a(x − y))/a(x) is Green’s function of the

conditioned walk;
• ˆ̀(x, y) = 1 +

a(y)−a(x−y)
a(x) =

Ĝ(x,y)
a(y) , and ĝ(x, y) =

Ĝ(x,y)
a2(y) = ĝ(y, x) is the

“symmetrized” Ĝ;
• N̂x, N̂

(k)
x , N̂[

x, N̂
]
x are defined just as Nx,N

(k)
x ,N[

x,N
]
x, but with the condi-

tioned walk Ŝ instead of SRW S ;

Random interlacements
• RI(α) is the random interlacement process on level α > 0;
• Eu is the expectation for random interlacements on level u > 0;
• Iu and Vu are the interlacement and vacant sets for the random inter-

lacement model on level u > 0 in dimensions d ≥ 3; in two dimensions,
we usually denote the level by α, so these become Iα andVα.
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Introduction

The main subject of this book is simple random walk (also abbreviated
as SRW) on the integer lattice Zd and we will pay special attention to the
case d = 2. SRW is a discrete-time stochastic process which is defined in
the following way: if at a given time the walker is at x ∈ Zd, then at the
next time moment it will be at one of x’s 2d neighbours chosen uniformly
at random.1 In other words, the probability that the walk follows a fixed
length-n path of nearest-neighbour sites equals (2d)−n. As a general fact, a
random walk may be recurrent (i.e., almost surely it returns infinitely many
times to its starting location) or transient (i.e., with positive probability it
never returns to its starting location). A fundamental result about SRWs on
integer lattices is Pólya’s classical theorem [75]:

Theorem 1.1. Simple random walk in dimension d is recurrent for d = 1, 2
and transient for d ≥ 3.

A well-known interpretation of this fact, attributed to Shizuo Kakutani,
is: “a drunken man always returns home, but a drunken bird will eventually
be lost”. This observation may explain why birds do not drink vodka. Still,
despite recurrence, the drunken man’s life is not so easy either: as we will
see, it may take him quite some time to return home.

Indeed, as we will see in (3.42), the probability that two-dimensional
SRW gets more than distance n away from its starting position without
revisiting it is approximately (1.0293737 + 2

π
ln n)−1 (and this formula be-

comes very precise as n grows). While this probability indeed converges
to zero as n → ∞, it is important to notice how slow this convergence
is. To present a couple of concrete examples, assume that the size of the
walker’s step is equal to 1 metre. First of all, let us go to one of the most
beautiful cities in the world, Paris, and start walking from its centre. The

1 Here, the author had to resist the temptation of putting a picture of an SRW’s trajectory
in view of the huge number of animated versions easily available in the Internet, e.g., at
https://en.wikipedia.org/wiki/Random_walk.

1
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radius of Paris is around 5000m, and (1.0293737 + 2
π

ln 5000)−1 is approx-
imately 0.155; that is, in roughly one occasion out of seven you would
come to the Boulevard Périphérique before returning to your starting lo-
cation. The next example is a bit more extreme: let us do the same walk
on the galactic plane of our galaxy. (Yes, when one starts in the centre of
our galaxy, there is a risk that the starting location could happen to be too
close to a massive black hole;2 we restrict ourselves to purely mathematical
aspects of the preceding question, though.) The radius of the Milky Way
galaxy is around 1021m, and (1.0293737 + 2

π
ln 1021)−1 ≈ 0.031, which is

surprisingly large. Indeed, this means that the walker3 would revisit the
origin only around 30 times on average, before leaving the galaxy; this is
not something one would normally expect from a recurrent process.

Incidentally, these sorts of facts explain why it is difficult to verify con-
jectures about two-dimensional SRW using computer simulations. (For ex-
ample, imagine that one needs to estimate how long we will wait until the
walk returns to the origin, say, a hundred times.)

As we will see in Section 2.1, the recurrence of d-dimensional SRW
is related to the divergence of the series

∑∞
n=1 n−d/2. Notice that this se-

ries diverges if and only if d ≤ 2, and for d = 2 it is the harmonic series
that diverges quite slowly. This might explain why the two-dimensional
case is, in some sense, really critical (and therefore gives rise to the pre-
vious “strange” examples). It is always interesting to study critical cases
– they frequently exhibit behaviours not observable away from criticality.
For this reason, in this book we dedicate more attention to dimension two
than to other dimensions: two-dimensional SRW is a fascinating mathe-
matical object indeed and this already justifies one’s interest in exploring
its properties (and also permits the author to keep this introduction short).

The next section is intentionally kept concise, since it is not really in-
tended for reading but rather for occasional use as a reference.

1.1 Markov chains and martingales: basic definitions and facts

First, let us recall some basic definitions related to real-valued stochastic
processes in discrete time. In the following, all random variables are de-
fined on a common probability space (Ω,F ,P). We write E for expectation
corresponding to P, which will be applied to real-valued random variables.
Set N = {1, 2, 3, . . .},Z+ = {0, 1, 2, . . .},Z+ = Z+ ∪ {+∞}.

2 https://en.wikipedia.org/wiki/Sagittarius_A*.
3 Given the circumstances, let me not say “you” here.

https://en.wikipedia.org/wiki/Sagittarius_A*
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Definition 1.2 (Basic concepts for discrete-time stochastic processes).

• A discrete-time real-valued stochastic process is a sequence of random
variables Xn : (Ω,F )→ (R,B) indexed by n ∈ Z+, where B is the Borel
σ-field. We write such sequences as (Xn, n ≥ 0), with the understanding
that the time index n is always an integer.

• A filtration is a sequence ofσ-fields (Fn, n ≥ 0) such thatFn ⊂ Fn+1 ⊂ F

for all n ≥ 0. Let us also define F∞ := σ
(⋃

n≥0 Fn
)
⊂ F .

• A stochastic process (Xn, n ≥ 0) is adapted to a filtration (Fn, n ≥ 0) if
Xn is Fn-measurable for all n ∈ Z+.

• For a (possibly infinite) random variable τ ∈ Z+, the random variable Xτ

is (as the notation suggests) equal to Xn on {τ = n} for finite n ∈ Z+ and
equal to X∞ := lim supn→∞ Xn on {τ = ∞}.

• A (possibly infinite) random variable τ ∈ Z+ is a stopping time with
respect to a filtration (Fn, n ≥ 0) if {τ = n} ∈ Fn for all n ≥ 0.

• If τ is a stopping time, the corresponding σ-field Fτ consists of all
events A ∈ F∞ such that A ∩ {τ ≤ n} ∈ Fn for all n ∈ Z+. Note that
Fτ ⊂ F∞; events in Fτ include {τ = ∞}, as well as {Xτ ∈ B} for all
B ∈ B.

• For A ∈ B, let us define

τA = min{n ≥ 0 : Xn ∈ A}, (1.1)

and

τ+
A = min{n ≥ 1 : Xn ∈ A}; (1.2)

we may refer to either τA or τ+
A as the hitting time of A (also called the

passage time into A). It is straightforward to check that both τA and τ+
A

are stopping times.

Observe that, for any stochastic process (Xn, n ≥ 0), it is possible to
define the minimal filtration to which this process is adapted via Fn =

σ(X0, X1, . . . , Xn). This is the so-called natural filtration.
To keep the notation concise, we will frequently write Xn and Fn instead

of (Xn, n ≥ 0) and (Fn, n ≥ 0) and so on, when no confusion will arise.
Next, we need to recall some martingale-related definitions and facts.

Definition 1.3 (Martingales, submartingales, supermartingales). A real-
valued stochastic process Xn adapted to a filtration Fn is a martingale (with
respect to Fn) if, for all n ≥ 0,

(i) E|Xn| < ∞, and
(ii) E[Xn+1 − Xn | Fn] = 0.
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If in (ii) “=” is replaced by “≥” (respectively, “≤”), then Xn is called a sub-
martingale (respectively, supermartingale). If the filtration is not specified,
that means that the natural filtration is used.

Clearly, if Xn is a submartingale, then (−Xn) is a supermartingale, and
vice versa; a martingale is both a submartingale and a supermartingale.
Also, it is elementary to observe that if Xn is a (sub-, super-)martingale,
then so is Xn∧τ for any stopping time τ.

Martingales have a number of remarkable properties, which we will not
even try to elaborate on here. Let us only cite the paper [74], whose title
speaks for itself. In the following, we mention only the results needed in
this book.

We start with

Theorem 1.4 (Martingale convergence theorem). Assume that Xn is a sub-
martingale such that supn EX+

n < ∞. Then there is an integrable random
variable X such that Xn → X a.s. as n→ ∞.

Observe that, under the hypotheses of Theorem 1.4, the sequence EXn

is non-decreasing (by the submartingale property) and bounded above by
supn E[X+

n ]; so limn→∞ EXn exists and is finite. However, it is not necessar-
ily equal to EX.

Using Theorem 1.4 and Fatou’s lemma, it is straightforward to obtain
the following result.

Theorem 1.5 (Convergence of non-negative supermartingales). Assume
that Xn ≥ 0 is a supermartingale. Then there is an integrable random vari-
able X such that Xn → X a.s. as n→ ∞, and EX ≤ EX0.

Another fundamental result that we will use frequently is the following:

Theorem 1.6 (Optional stopping theorem). Suppose that σ ≤ τ are stop-
ping times, and Xτ∧n is a uniformly integrable submartingale. Then EXσ ≤

EXτ < ∞ and Xσ ≤ E[Xτ | Fσ] a.s.

Note that, if Xn is a uniformly integrable submartingale and τ is any
stopping time, then it can be shown that Xτ∧n is also uniformly integrable:
see, e.g., section 5.7 of [43]. Also, observe that two applications of The-
orem 1.6, one with σ = 0 and one with τ = ∞, show that for any uni-
formly integrable submartingale Xn and any stopping time τ, it holds that
EX0 ≤ EXτ ≤ EX∞ < ∞, where X∞ := lim supn→∞ Xn = limn→∞ Xn exists
and is integrable, by Theorem 1.4.

Theorem 1.6 has the following corollary, obtained by considering σ = 0
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and using well-known sufficient conditions for uniform integrability (e.g.,
sections 4.5 and 4.7 of [43]).

Corollary 1.7. Let Xn be a submartingale and τ a finite stopping time.
For a constant c > 0, suppose that at least one of the following conditions
holds:

(i) τ ≤ c a.s.;
(ii) |Xn∧τ| ≤ c a.s. for all n ≥ 0;

(iii) Eτ < ∞ and E[|Xn+1 − Xn| | Fn] ≤ c a.s. for all n ≥ 0.

Then EXτ ≥ EX0. If Xn is a martingale and at least one of the conditions (i)
through (iii) holds, then EXτ = EX0.

Next, we recall some fundamental definitions and facts for Markov pro-
cesses in discrete time and with countable state space, also known as count-
able Markov chains. In the following, (Xn, n ≥ 0) is a sequence of random
variables taking values on a countable set Σ.

Definition 1.8 (Markov chains).

• A process Xn is a Markov chain if, for any y ∈ Σ, any n ≥ 0, and any
m ≥ 1,

P[Xn+m = y | X0, . . . , Xn] = P[Xn+m = y | Xn], a.s.. (1.3)

This is the Markov property.
• If there is no dependence on n in (1.3), the Markov chain is homoge-

neous in time (or time homogeneous). Unless explicitly stated otherwise,
all Markov chains considered in this book are assumed to be time homo-
geneous. In this case, the Markov property (1.3) becomes

P[Xn+m = y | Fn] = pm(Xn, y), a.s., (1.4)

where pm : Σ × Σ → [0, 1] are the m-step Markov transition probabili-
ties, for which the Chapman–Kolmogorov equation holds: pn+m(x, y) =∑

z∈Σ pn(x, z)pm(z, y). Also, we write p(x, y) := P[X1 = y | X0 = x] =

p1(x, y) for the one-step transition probabilities of the Markov chain.
• We use the shorthand notation Px[ · ] = P[ · | X0 = x] and Ex[ · ] =

E[ · | X0 = x] for probability and expectation for the time homogeneous
Markov chain starting from initial state x ∈ Σ.

• A time homogeneous, countable Markov chain is irreducible if for all
x, y ∈ Σ there exists n0 = n0(x, y) ≥ 1 such that pn0 (x, y) > 0.
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• For an irreducible Markov chain, we define its period as the greatest
common divisor of {n ≥ 1 : pn(x, x) > 0} (it is not difficult to show that
it does not depend on the choice of x ∈ Σ). An irreducible Markov chain
with period 1 is called aperiodic.

• Let Xn be a Markov chain and τ be a stopping time with respect to the
natural filtration of Xn. Then, for all x, y1, . . . , yk ∈ Σ, n1, . . . , nk ≥ 1, it
holds that

P[Xτ+n j = y j, j = 1, . . . , k | Fτ, Xτ = x] = Px[Xτ+n j = y j, j = 1, . . . , k]

(this is the strong Markov property).
• For a Markov chain, a probability measure (π(x), x ∈ Σ) is called an

invariant measure if
∑

x∈Σ π(x)p(x, y) = π(y) for all y ∈ Σ. It then holds
that Pπ[Xn = y] = π(y) for all n and y (where Pπ means that the initial
state of the process is chosen according to π).

Suppose now that Xn is a countable Markov chain. Recall the definitions
of hitting times τA and τ+

A from (1.1)–(1.2). For x ∈ Σ, we use the notation
τ+

x := τ+
{x} and τx := τ{x} for hitting times of one-point sets. Note that for

any x ∈ A it holds that Px[τA = 0] = 1, while τ+
A ≥ 1 is then the return time

to A. Also note that Px[τA = τ+
A] = 1 for all x ∈ Σ \ A.

Definition 1.9. For a countable Markov chain Xn, a state x ∈ Σ is called

• recurrent if Px[τ+
x < ∞] = 1;

• transient if Px[τ+
x < ∞] < 1.

A recurrent state x is classified further as

• positive recurrent if Exτ
+
x < ∞;

• null recurrent if Exτ
+
x = ∞.

It is straightforward to see that the four properties in Definition 1.9 are
class properties, which entails the following statement.

Proposition 1.10. For an irreducible Markov chain, if a state x ∈ Σ is
recurrent (respectively, positive recurrent, null recurrent, transient), then
all states in Σ are recurrent (respectively, positive recurrent, null recurrent,
transient).

By the preceding fact, it is legitimate to call an irreducible Markov chain
itself recurrent (positive recurrent, null recurrent, transient).

Next, the following proposition is an easy consequence of the strong
Markov property.
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Proposition 1.11. For an irreducible Markov chain, if a state x ∈ Σ is
recurrent (respectively, transient), then, regardless of the initial position of
the process, it will be visited infinitely (respectively, finitely) many times
almost surely.

Finally, let us state the following simple result which sometimes helps
in proving recurrence or transience of Markov chains.

Lemma 1.12. Let Xn be an irreducible Markov chain on a countable state
space Σ.

(i) If for some x ∈ Σ and some nonempty A ⊂ Σ it holds that Px[τA < ∞] <
1, then Xn is transient.

(ii) If for some finite nonempty A ⊂ Σ and all x ∈ Σ \ A it holds that
Px[τA < ∞] = 1, then Xn is recurrent.

(For the proof, cf. e.g. lemma 2.5.1 of [70].)



2

Recurrence of two-dimensional SRW

This chapter is mainly devoted to the proof of the recurrence part of The-
orem 1.1 (although we still discuss the transience in higher dimensions
later in the exercises). We first present a direct “path-counting” proof, and
then discuss the well-known correspondence between reversible Markov
chains and electrical networks, which also yields a beautiful proof of re-
currence of SRW in dimensions one and two. Then, we go for a side-quest:
we do a basic exploration of the Lyapunov function method, a powerful
tool for proving recurrence or transience of general Markov chains. With
this method, we add yet another proof of recurrence of two-dimensional
SRW to our collection.

2.1 Classical proof

In this section, we present the classical combinatorial proof of recurrence
of two-dimensional simple random walk.

Let us start with some general observations on recurrence and tran-
sience of random walks, which, in fact, are valid in a much broader setting.
Namely, we will prove that the number of visits to the origin is a.s. finite
if and only if the expected number of visits to the origin is finite (note that
this is something which is not true for general random variables). This is
a useful fact, because, as it frequently happens, it is easier to control the
expectation than the random variable itself.

Let pm(x, y) = Px[S m = y] be the transition probability from x to y in m
steps for the simple random walk in d dimensions. Let qd = P0[τ+

0 < ∞]
be the probability that, starting at the origin, the walk eventually returns to
the origin. If qd < 1, then the total number of visits (counting the initial
instance S 0 = 0 as a visit) is a geometric random variable with success
probability 1 − qd, which has expectation (1 − qd)−1 < ∞. If qd = 1, then,
clearly, the walk visits the origin infinitely many times a.s.. So, random
walk is transient (i.e., qd < 1) if and only if the expected number of visits

8
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to the origin is finite. This expected number equals1

E0

∞∑
k=0

1{S k = 0} =

∞∑
k=0

E01{S k = 0} =

∞∑
n=0

P0[S 2n = 0]

(observe that the walk can be at the starting point only after an even number
of steps). We thus obtain that the recurrence of the walk is equivalent to

∞∑
n=0

p2n(0, 0) = ∞. (2.1)

Before actually proving anything, let us try to understand why Theo-
rem 1.1 should hold. One can represent the d-dimensional simple random
walk S as

S n = X1 + · · · + Xn,

where (Xk, k ≥ 1) are independent and identically distributed (i.i.d.) ran-
dom vectors, uniformly distributed on the set {±e j, j = 1, . . . , d}, where
e1, . . . , ed is the canonical basis of Rd. Since these random vectors are cen-
tred (expectation is equal to 0, component-wise), one can apply the (mul-
tivariate) Central Limit Theorem (CLT) to obtain that S n/

√
n converges in

distribution to a (multivariate) centred Normal random vector with a diag-
onal covariance matrix. That is, it is reasonable to expect that S n should be
at distance of order

√
n from the origin.

So, what about p2n(0, 0)? Well, if x, y ∈ Zd are two even sites2 at dis-
tance of order at most

√
n from the origin, then our CLT intuition tell us

that p2n(0, x) and p2n(0, y) should be comparable, i.e., their ratio should be
bounded away from 0 and ∞. In fact, this statement can be made rigorous
by using the local Central Limit Theorem (e.g., theorem 2.1.1 from [62]).
Now, if there are O(nd/2) sites where p2n(0, ·) are comparable, then the value
of these probabilities (including p2n(0, 0)) should be of order n−d/2. It re-
mains only to observe that

∑∞
n=1 n−d/2 diverges only for d = 1 and 2 to

convince oneself that Pólya’s theorem indeed holds. Notice, by the way,
that for d = 2 we have the harmonic series which diverges just barely; its
partial sums have only logarithmic growth.3

Now, let us prove that (2.1) holds for one- and two-dimensional simple
random walks. In the one-dimensional case, it is quite simple to calcu-
late p2n(0, 0): it is the probability that a Binomial(2n, 1

2 )-random variable

1 Note that we can put the expectation inside the sum because of the Monotone
Convergence Theorem.

2 A site is called even if the sum of its coordinates is even; observe that the origin is even.
3 As some physicists say, “in practice, logarithm is a constant!”
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equals 0, so it is 2−2n
(

2n
n

)
. Certainly, this expression is concise and beauti-

ful; it is, however, not a priori clear which asymptotic behaviour it has (as
it frequently happens with concise and beautiful formulas). To clarify this,
we use Stirling’s approximation4, n! =

√
2πn(n/e)n(1+o(1)), to obtain that

2−2n

(
2n
n

)
= 2−2n (2n)!

(n!)2

= 2−2n

√
4πn(2n/e)2n

2πn(n/e)2n (1 + o(1))

(fortunately, almost everything cancels)

=
1
√
πn

(1 + o(1)). (2.2)

The series
∑∞

k=1 k−1/2 diverges, so (2.1) holds, and this implies recurrence
in dimension 1.

Let us now deal with the two-dimensional case. For this, we first count
the number of paths N2n of length 2n that start and end at the origin. For
such a path, the number of steps up must be equal to the number of steps
down, and the number of steps to the right must be equal to the number
of steps to the left. The total number of steps up (and, also, down) can be
any integer k between 0 and n; in this case, the trajectory must have n − k
steps to the left and n − k steps to the right. So, if the number of steps up
is k, the total number of trajectories starting and ending at the origin is the
polynomial coefficient

(
2n

k,k,n−k,n−k

)
. This means that

N2n =

n∑
k=0

(
2n

k, k, n − k, n − k

)
=

n∑
k=0

(2n)!
(k!)2((n − k)!)2 .

Note that
(2n)!

(k!)2((n − k)!)2 =

(
2n
n

)(
n
k

)(
n

n − k

)
;

the last two factors are clearly equal, but in a few lines it will become
clear why we have chosen to write it this way. Since the probability of any
particular trajectory of length m is 4−m, we have

p2n(0, 0) = 4−2nN2n

= 4−2n

(
2n
n

) n∑
k=0

(
n
k

)(
n

n − k

)
. (2.3)

4 See, e.g., http://mathworld.wolfram.com/StirlingsApproximation.html.

http://mathworld.wolfram.com/StirlingsApproximation.html
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There is a nice combinatorial argument that allows one to deal with the sum
in the right-hand side of (2.3). Consider a group of 2n children of which n
are boys and n are girls. What is the number of ways to choose a subgroup
of n children from that group? On one hand, since there are no restrictions
on the gender composition of the subgroup, the answer is simply

(
2n
n

)
. On

the other hand, the number of boys in the subgroup can vary from 0 to n,
and, given that there are k boys (and, therefore, n−k girls), there are

(
n
k

)(
n

n−k

)
ways to choose the subgroup; so, the answer is precisely the preceding sum.
This means that this sum just equals

(
2n
n

)
, and we thus obtain that, in two

dimensions,

p2n(0, 0) =

(
2−2n

(
2n
n

))2

. (2.4)

The calculation (2.2) then implies that

p2n(0, 0) =
1
πn

(1 + o(1)) (2.5)

for two-dimensional SRW, and, using the fact that the harmonic series di-
verges, we obtain (2.1) and therefore recurrence. �

It is curious to notice that (2.4) means that the probability of being at the
origin at time 2n for two-dimensional SRW is exactly the square of corre-
sponding probability in one dimension. Such coincidences usually happen
for a reason, and this case is no exception: in fact, it is possible to de-
couple the “one-dimensional components” of the two-dimensional SRW
by considering its projections on the axes rotated π/4 anticlockwise; these
projections are independent.5 Indeed, it is straightforward to verify6 that
S n · (e1 + e2) and S n · (e1 − e2) are independent one-dimensional SRWs.

2.2 Electrical networks

First, we recall the following.

Definition 2.1. A Markov chain with transition probabilities (p(x, y), x, y ∈
Σ) is called reversible with the reversible measure π = (π(x), x ∈ Σ) when
π(x)p(x, y) = π(y)p(y, x) for all x, y ∈ Σ.

It is important to note that, in Definition 2.1, we do not assume that π
is a probability measure; its total mass can be any positive number or even

5 This fact is folklore, but the author thanks Alejandro Ramirez for making him aware of
it.

6 This is left as an exercise.
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infinity (in the case when the state space Σ is infinite). For example, note
that π ≡ 1 is reversible for the SRW (in any dimension). However, when the
total mass of the reversible measure is 1, it is also invariant for the Markov
chain, as shown by the following simple calculation:∑

x∈Σ

π(x)p(x, y) =
∑
x∈Σ

π(y)p(y, x) = π(y)
∑
x∈Σ

p(y, x) = π(y).

Also, a reversible measure cannot be unique: if π is a reversible measure,
then so is cπ for any c > 0.

In this book we will not take a deep dive into the theory of reversible
Markov chains; let us only note that the latter is rich and useful. It is good to
know the following criterion of reversibility: one can check if the Markov
chain is reversible without actually calculating the reversible measure.

Theorem 2.2. A Markov chain is reversible if and only if for any cycle
x0, x1, . . . , xn−1, xn = x0 of states it holds that:

n−1∏
k=0

p(xk, xk+1) =

n∏
k=1

p(xk, xk−1); (2.6)

that is, the product of the transition probabilities along the cycle does not
depend on the direction.

Proof First, assume that the Markov chain is reversible, and let us do the
proof for n = 2 (i.e., cycle of size 3); the reader will easily see that the
same argument works for all n. The idea is to multiply (2.6) by π(x0) and
then “let it go through the cycle”:

π(x0)p(x0, x1)p(x1, x2)p(x2, x0) = p(x1, x0)π(x1)p(x1, x2)p(x2, x0)

= p(x1, x0)p(x2, x1)π(x2)p(x2, x0)

= p(x1, x0)p(x2, x1)p(x0, x2)π(x0),

then we cancel π(x0) and obtain the claim.
Now, let us assume that (2.6) holds, and prove that the Markov chain

is reversible. The main difficulty is to find a good candidate for the re-
versible measure – in principle, a priori there is none. But if one recalls
what the reversible measure for one-dimensional nearest-neighbour ran-
dom walk looks like (see Exercise 2.7), one may come out with following
procedure:

• fix some site x0 and put π(x0) = 1;
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x0

x1

x2

xk

x
y

z1 z2

z`

Figure 2.1 On the proof of the reversibility criterion.

• for x , x0, fix a path (x0, x1, . . . , xk, x) which goes from x0 to x; then, set

π(x) =
p(x0, x1)p(x1, x2) · · · p(xk, x)
p(x1, x0)p(x2, x1) · · · p(x, xk)

. (2.7)

We then need to check that this definition is correct in the sense that if there
is another path (x0, z1, . . . , z`, x) which goes from x0 to x, then

p(x0, x1)p(x1, x2) · · · p(xk, x)
p(x1, x0)p(x2, x1) · · · p(x, xk)

=
p(x0, z1)p(z1, z2) · · · p(z`, x)
p(z1, x0)p(z2, z1) · · · p(x, zk)

;

this, however, immediately follows from the condition (2.6) with the cycle
(x0, x1, . . . , xk, x, z`, . . . , z1, x0). It remains to take some y adjacent to x (as
on Figure 2.1) and check that π(x)p(x, y) = π(y)p(y, x); this is because,
by (2.7), π(y) = π(x) p(x,y)

p(y,x) (note that (x0, x1, . . . , xk, x, y) is a path from x0

to y). �

Now, one of the advantages of reversibility is that, somewhat unexpect-
edly, it permits us to use physical intuition for analysing the Markov chain.
More concretely, it is possible to represent a reversible Markov chain via
an electrical network (think of the edges of its transition graph as wires
that have some conductance/resistance). In the following, we assume that
p(x, x) = 0 for all x ∈ Σ; this will permit us to avoid loops which do not
make much sense in electricity.

Definition 2.3. An electrical network is a (non-oriented) graph (V, E) with-
out loops, with positive weights (c(e), e ∈ E) assigned to its edges. The
quantity c(e) is thought of as conductance of e, and r(e) := 1/c(e) stands
for the resistance of the edge e.

An important observation is that we can actually permit the conduc-
tances (as well as resistances) to assign values in [0,+∞] (however, the
graph will have to be modified): if c(e) = 0 (or r(e) = ∞), that means that
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the edge e is simply removed (no wire at all), and if c(e) = ∞ (or r(e) = 0)
for e = (x, y), that means that the vertices x and y are “glued together”
(short-circuited by wires of zero resistance).

The correspondence between reversible Markov chains and electrical
networks is described in the following way. Given an electrical network, the
transition probabilities of the corresponding Markov chain are then defined
by

p(x, y) =
c(x, y)
C(x)

, where C(x) =
∑
v:v∼x

c(x, v). (2.8)

It is then straightforward to verify that it is reversible with the reversible
measure C. Conversely, consider a reversible Markov chain with the re-
versible measure π and with p(x, x) = 0 for all x; then define c(x, y) =

π(x)p(x, y). Also, clearly, the SRW (on any graph) corresponds to the elec-
trical network with all conductances being equal to 1.

We will now take the following route. Instead of proving our way to the
desired tools, we will just formulate the necessary facts and explain infor-
mally why they should be valid; this is because the author feels that there
are already many great sources for learning this theory. First of all, the clas-
sical book [38] is an absolute must-read. I can recommend also chapter 9
of [63] for a modern short introduction to the subject, and chapters 2, 3,
and 9 of [65] for an in-depth treatment.

The central notion of this theory is that of effective resistance. The “phys-
ical” definition of effective resistance between x and y (denoted byReff(x, y))
is simple: attach a 1 volt battery to x and y, measure the (outgoing) cur-
rent I at x, and define, in accordance with Ohm’s law, Reff(x, y) = 1/I.
We can also recall how to calculate resistances of several wires which are
put together in the simplest cases of serial and parallel connections; see
Figure 2.2.

Next, for a subset B ⊂ V such that x ∈ B\∂B, define Reff(x, ∂B) to be the
effective resistance between x and all vertices of ∂B glued together. Then,
B(x, n) being the ball of radius n with respect to the graph distance, define
effective resistance to infinity Reff(x,∞) as

Reff(x,∞) = lim
n→∞
Reff(x, ∂B(x, n))

(the limit exists because that sequence is monotonously increasing, as it is
not difficult to see). Intuitively, we just measure the resistance between x
and the infinity; see Figure 2.3.

Now, it is possible to prove a remarkable fact that relates the escape
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r1 + · · · + rk
⇔r1 r2

rk

c1

c2

ck

c1 + · · · + ck
⇔

Figure 2.2 Dealing with connections in series and in parallel: in
the first case, sum the resistances; in the second case, sum the
conductances.

0

∞

1V

Figure 2.3 On the definition of effective resistance to infinity.

probability from x to the effective resistance:

Px[τ+
x = ∞] =

1
C(x)Reff(x,∞)

; (2.9)

this implies that the effective resistance to infinity is infinite if and only if
the corresponding Markov chain is recurrent.7

The following properties of effective resistance are physically evident
(but have a non-trivial proof; they are consequences of Rayleigh’s Mono-
tonicity Law):

7 Intuitively: if the particle cannot escape to infinity, then the “current” does not flow to
infinity, et voilà, the infinite resistance.
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0 10
. . . . . . . . . . . .⇔

n n + 1

4 12 4(2n + 1)

Figure 2.4 Another proof of recurrence in two dimensions.

(i) if we cut certain edges of the network (i.e., set the conductances of
these edges to 0), then the effective resistance cannot decrease;

(ii) if we “glue” (short-circuit) certain vertices together (i.e., connect them
with edges of infinite conductance), then the effective resistance cannot
increase.

A curious consequence of (i) is that the SRW on any subgraph of Z2 is re-
current (just imagine trying to prove this with the approach of the previous
section!).

Let us now obtain another proof of recurrence of the two-dimensional
SRW, this time with electrical networks. As we noted before, we need to
prove that the effective resistance to infinity is infinite. Let us use the pre-
vious observation (ii): if we short-circuit some vertices together and prove
that the effective resistance is still infinite, then we are done. Now, look at
Figure 2.4: let us glue together the vertices that lie on (graph) distance n
from the origin, for n = 1, 2, 3, . . .. We use the two rules depicted on Fig-
ure 2.2: there are 4(2n + 1) edges from level n − 1 to level n, so the overall
conductance of the “superedge” between n−1 and n is 4(2n + 1), and so its
resistance is 1

4(2n+1) . The resistance to infinity of this new graph is therefore

∞∑
n=0

1
4(2n + 1)

= ∞,

as required. The harmonic series strikes again!

2.3 Lyapunov functions

The proofs of Sections 2.1 and 2.2 are simple and beautiful. In principle,
this is good, but: not infrequently, such proofs are not very robust, in the
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sense that they do not work anymore if the setup is changed even a lit-
tle bit. Indeed, assume that we modify the transition probabilities of two-
dimensional simple random walk in only one site, say, (1, 1). For example,
let the walk go from (1, 1) to (1, 0), (1, 2), (0, 1), (2, 1), with probabilities,
say, 1/7, 1/7, 2/7, 3/7, respectively. We keep all other transition prob-
abilities intact. Then, after this apparently innocent change, both proofs
break down! Indeed, in the classical proof of Section 2.1 the weights of
any trajectory that passes through (1, 1) would no longer be equal to 4−2n,
and so the combinatorics would be hardly manageable (instead of simple
formula (2.3), a much more complicated expression will appear). The situ-
ation with the proof of Section 2.2 is not very satisfactory as well: random
walk is no longer reversible (cf. Exercise 2.8), so the technique of the pre-
vious section does not apply at all! It is therefore a good idea to search
for a proof which is more robust, i.e., less sensible to small changes of the
model’s parameters.

In this section, we present a very short introduction to the Lyapunov
functions method. Generally speaking, this method consists of finding a
function (from the state space of the stochastic process to R) such that
the image under this function of the stochastic process is, in some sense,
“nice”. That is, this new one-dimensional process satisfies some conditions
that enable one to obtain results about it and then transfer these results to
the original process.

We emphasize that this method is usually “robust”, in the sense that
the underlying stochastic process need not satisfy simplifying assumptions
such as the Markov property, reversibility, or time homogeneity, for in-
stance, and the state space of the process need not be necessarily countable.
In particular, this approach works for non-reversible Markov chains.

In this section, we follow mainly [70] and [45]. Other sources on the
Lyapunov functions method are e.g. [5, 13, 71]; see also [91] for a take on
Lyapunov functions from a more applied perspective.

The next result is the main Lyapunov functions tool for proving recur-
rence of Markov chains.

Theorem 2.4 (Recurrence criterion). An irreducible Markov chain Xn on
a countably infinite state space Σ is recurrent if and only if there exist a
function f : Σ→ R+ and a finite nonempty set A ⊂ Σ such that

E[ f (Xn+1) − f (Xn) | Xn = x] ≤ 0, for all x ∈ Σ \ A, (2.10)

and f (x)→ ∞ as x→ ∞.

The quantity in (2.10) can be thought of as the drift vector at x with
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f (x) = c3

f (x) = c2

f (x) = c1

Figure 2.5 The drift vectors point inside the level sets (here,
0 < c1 < c2 < c3).

respect to the function f . To understand the meaning of Theorem 2.4, recall
first that, for a function f : Rd 7→ R, the level sets are sets of the form
{x ∈ Rd : f (x) = c} for c ∈ R; in the following heuristics, we think of f
as a function of continuous argument, just to be able to visualize the things
better. If f converges to infinity as x→ ∞, then8 the level sets will look as
depicted in Figure 2.5, and Theorem 2.4 says that, to prove the recurrence,
it is enough to find a function as shown in Figure 2.5 such that the drift
vectors point inside its level sets. In fact, just by observing Figure 2.5 it
is easy to believe that the Markov chain should be recurrent, since it has a
“tendency” to “go inside”.

The term “Lyapunov function” comes from Differential Equations: there,
a similar (in spirit) construction is used to prove stability9 of the solutions;
see e.g. [61].

Proof of Theorem 2.4 To prove that having a function that satisfies (2.10)
is sufficient for the recurrence, let x ∈ Σ be an arbitrary state, and take
X0 = x. Let us reason by contradiction, assuming that Px[τA = ∞] > 0
(which would imply, in particular, that the Markov chain is transient). Set
Yn = f (Xn∧τA ) and observe that Yn is a non-negative supermartingale. Then,

8 The reader may wonder what “x→ ∞” might mean on an arbitrary countable set, with
no particular enumeration fixed. Notice, however, that if a sequence of sites converges to
infinity with respect to one enumeration, it will do so with respect to any other one; so,
writing “x→ ∞” is legitimate in any case.

9 This can be seen as a deterministic analogue of recurrence.
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A

GM

GM+1

GM+2x

Figure 2.6 On the proof of Theorem 2.4: a transient Markov
chain can visit any finite set only finitely many times.

by Theorem 1.5, there exists a random variable Y∞ such that Yn → Y∞ a.s.
and

ExY∞ ≤ ExY0 = f (x), (2.11)

for any x ∈ Σ. On the other hand, since f → ∞, it holds that the set
VM := {y ∈ Σ : f (y) ≤ M} is finite for any M ∈ R+; so, our assumption on
transience implies that VM will be visited only finitely many times, mean-
ing that limn→∞ f (Xn) = +∞ a.s. on {τA = ∞} (see Figure 2.6). Hence,
on {τA = ∞}, we must have Y∞ = limn→∞ Yn = +∞, a.s.. This would
contradict (2.11) under the assumption Px[τA = ∞] > 0, because then
Ex[Y∞] ≥ Ex[Y∞1{τA = ∞}] = ∞. Hence Px[τA = ∞] = 0 for all x ∈ Σ,
which means that the Markov chain is recurrent, by Lemma 1.12 (ii).

For the “only if” part (i.e., recurrence implies that there exist f and A as
in the preceding instance), see the proof of theorem 2.2.1 of [45]. See also
Exercise 2.21. �

As a (very simple) example of application of Theorem 2.4, consider the
one-dimensional simple random walk S (1), together with the set A = {0}
and the function f (x) = |x|. Then (2.10) holds with equality, which shows
that S (1) is recurrent.
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Although in this chapter we are mainly interested in the recurrence, let
us also formulate and prove a criterion for transience, for future reference:

Theorem 2.5 (Transience criterion). An irreducible Markov chain Xn on a
countable state space Σ is transient if and only if there exist a function f :
Σ→ R+ and a nonempty set A ⊂ Σ such that

E[ f (Xn+1) − f (Xn) | Xn = x] ≤ 0, for all x ∈ Σ \ A, (2.12)

and

f (y) < inf
x∈A

f (x), for at least one site y ∈ Σ \ A. (2.13)

Note that (2.12) by itself is identical to (2.10); the difference is in what
we require of the nonnegative function f (we need (2.13) instead of con-
vergence to infinity; in most applications of Theorem 2.5, the function f
will converge to 0). Also, differently from the recurrence criterion, in the
preceding result the set A need not be finite.

Proof of Theorem 2.5 Assume that X0 = y, where y is from (2.13), and
(similarly to the previous proof) define the process Yn = f (Xn∧τA ). Then,
the relation (2.12) implies that Yn is a supermartingale. Since Yn is also
non-negative, Theorem 1.5 implies that there is a random variable Y∞ ≥ 0
such that limn→∞ Yn = Y∞ a.s., and EY∞ ≤ EY0 = f (y). Observe that, if
the Markov chain eventually hits the set A, then the value of Y∞ equals the
value of f at some random site (namely, XτA ) belonging to A; formally, we
have that, a.s.,

Y∞1{τA < ∞} = lim
n→∞

Yn1{τA < ∞} = f (XτA )1{τA < ∞}

≥ inf
x∈A

f (x)1{τA < ∞}.

So, we obtain

f (y) = EY0 ≥ EY∞ ≥ EY∞1{τA < ∞} ≥ Py[τA < ∞] inf
x∈A

f (x),

which implies

Py[τA < ∞] ≤
f (y)

infx∈A f (x)
< 1,

proving the transience of the Markov chain Xn, by Lemma 1.12(i).
For the “only if” part, see Exercise 2.15. �
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Let us now think about how to apply Theorem 2.4 to the simple ran-
dom walk in two dimensions. For this, we need to find a (Lyapunov) func-
tion f : Z2 7→ R+, such that the “drift with respect to f ”

E[ f (S n+1) − f (S n) | S n = x] (2.14)

is nonpositive for all but finitely many x ∈ Z2, and also such that f (x)→ ∞
as x → ∞. The reader must be warned, however, that finding a suitable
Lyapunov function is a kind of an art, which usually involves a fair amount
of guessing and failed attempts. Still, let us try to understand how it works.
In the following, the author will do his best to explain how it really works,
with all the failed attempts and guessing.

First of all, it is more convenient to think of f as a function of real
arguments. Now, if there is a general rule of finding a suitable Lyapunov
function for processes that live in Rd, then it is the following: consider the
level sets of f and think how they should look. In the two-dimensional
case, we speak about the level curves; of course, we need the function to
be sufficiently “good” to ensure that the level curves are really curves in
some reasonable sense of this word.

Now, we know that the simple random walk converges to the (two-
dimensional) Brownian motion, if suitably rescaled. The Brownian motion
is invariant under rotations, so it seems reasonable to search for a function
that only depends on the Euclidean norm of the argument, f (x) = g(‖x‖)
for some increasing function g : R 7→ R+. Even if we did not know about
the Brownian motion, it would still be reasonable to make this assump-
tion because, well, why not? It is easier to make calculations when there
is some symmetry. Notice that, in this case, the level curves of f are just
circles centred at the origin.10

So, let us begin by looking at the level curves of a very simple function
f (x) = ‖x‖, and see what happens to the drift (2.14). Actually, let us just
look at Figure 2.7; the level curves shown are {‖x‖ = k − 1}, {‖x‖ = k},
{‖x‖ = k + 1} on the right, and {‖x‖ =

√
j2 + ( j − 1)2}, {‖x‖ = j

√
2}, {‖x‖ =

2
√

2 j−
√

j2 + ( j − 1)2} on the left.11 It is quite clear then that the drift with
respect to f (x) = ‖x‖ is strictly positive in both cases. Indeed, one sees that,
in the first case, the jumps to the left and to the right “compensate” each
other, while the jumps up and down both slightly increase the norm. In the
second case, jumps up and to the left change the norm by a larger amount
10 There are many examples where they are not circles/spheres; let us mention e.g.

section 4.3 of [70], which is based on [73].
11 Observe that, similarly to the previous case, these level curves have form {‖x‖ = a − b},
{‖x‖ = a}, {‖x‖ = a + b} with a = j

√
2, b = j

√
2 −

√
j2 + ( j − 1)2.
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0

(k, 0)

(− j, j)

Figure 2.7 The drift with respect to f (x) = ‖x‖ is positive.

than the jumps down and to the right. In fact, it is possible to prove that the
drift is positive for all x ∈ Z2, but the preceding examples show that, for
proving the recurrence, the function f (x) = ‖x‖ will not work anyway.

Now, think e.g. about the “diagonal case”: if we move the third level
curve a little bit outside, then the drift with respect to the function would
become nonpositive; look at Figure 2.8. It seems to be clear that, to produce
such level curves, the function g should have a sublinear growth. Recall that
we are “guessing” the form that g may have, so such nonrigorous reasoning
is perfectly acceptable; we just need to find a function that works, and the
way how we arrived to it is totally unimportant from the formal point of
view. A natural first candidate would be then g(s) = sα, where α ∈ (0, 1).
So, let us try it! Let x ∈ Z2 be such that ‖x‖ is large, and let e be a unit
vector (actually, it is ±e1 or ±e2). Write (being y · z the scalar product of
y, z ∈ Z2)

‖x + e‖α − ‖x‖α = ‖x‖α
((‖x + e‖
‖x‖

)α
− 1

)
= ‖x‖α

(( (x + e) · (x + e)
‖x‖2

)α/2
− 1

)
= ‖x‖α

((‖x‖2 + 2x · e + 1
‖x‖2

)α/2
− 1

)
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0

0

a
a + b

a − b

s

g(s)

x

Figure 2.8 What should the function g look like? (For x on the
diagonal, we have a = g(‖x‖), a ± b = g(‖x ± e1‖); note that
‖x + e1‖ − ‖x‖ > ‖x‖ − ‖x − e1‖.)

= ‖x‖α
((

1 +
2x · e + 1
‖x‖2

)α/2
− 1

)
.

Now, observe that |x · e| ≤ ‖x‖, so the term 2x·e+1
‖x‖2 should be small (at most

O(‖x‖−1)); let us also recall the Taylor expansion (1+y)α/2 = 1+ α
2 y− α

4

(
1−

α
2

)
y2 + O(y3). Using that, we continue the preceding calculation:

‖x + e‖α − ‖x‖α

= ‖x‖α
(αx · e
‖x‖2

+
α

2‖x‖2
−
α

4

(
1 −

α

2

) (2x · e + 1)2

‖x‖4
+ O(‖x‖−3)

)
= α‖x‖α−2

(
x · e +

1
2
−

(
1 −

α

2

) (x · e)2

‖x‖2
+ O(‖x‖−1)

)
. (2.15)

Observe that in the preceding display the O(·)’s actually depend also on
the direction of x (that is, the unit vector x/‖x‖), but this is not a problem
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since they are clearly uniformly bounded from above. Now, notice that,
with x = (x1, x2) ∈ Z2,∑

e∈{±e1,±e2}

x · e = 0, and
∑

e∈{±e1,±e2}

(x · e)2 = 2x2
1 + 2x2

2 = 2‖x‖2. (2.16)

Using (2.15) and (2.16), we then obtain for f (x) = ‖x‖α, as ‖x‖ → ∞,

E[ f (S n+1) − f (S n) | S n = x]

=
1
4

∑
e∈{±e1,±e2}

(
‖x + e‖α − ‖x‖α

)
= α‖x‖α−2

(1
2
−

(
1 −

α

2

) ‖x‖2
2‖x‖2

+ O(‖x‖−1)
)

= α‖x‖α−2
(α

4
+ O(‖x‖−1)

)
, (2.17)

which, for all α ∈ (0, 1), is positive for all sufficiently large x. So, un-
fortunately, we had no luck with the function g(s) = sα. That does not
mean, however, that the previous calculation was in vain; with some small
changes, it will be useful for one of the exercises at the end of this chapter.

Since g(s) = sα is still “too much”, the next natural guess is g(s) = ln s
then.12 Well, let us try it now (more precisely, we set f (x) = ln ‖x‖ for
x , 0 and f (0) = 0, but in the following calculation x is supposed to be
far from the origin in any case). Using the Taylor expansion ln(1 + y) =

y − 1
2 y2 + O(y3), we write

ln ‖x + e‖ − ln ‖x‖ = ln
(x + e) · (x + e)

‖x‖2

= ln
(
1 +

2x · e + 1
‖x‖2

)
=

2x · e
‖x‖2

+
1
‖x‖2

−
2(x · e)2

‖x‖4
+ O(‖x‖−3), (2.18)

so, using (2.16) again, we obtain (as x→ ∞)

E[ f (S n+1) − f (S n) | S n = x] =
1
4

∑
e∈{±e1,±e2}

(
ln ‖x + e‖ − ln ‖x‖

)
=

1
‖x‖2

−
1
4
×

4‖x‖2

‖x‖4
+ O(‖x‖−3)

12 The reader may have recalled that ln ‖x‖ is a harmonic function in two dimensions, so
ln ‖Bt‖ is a (local) martingale, where B is a two-dimensional standard Brownian motion.
But, lattice effects may introduce some corrections. . .
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= O(‖x‖−3),

which gives us absolutely nothing. Apparently, we need more terms in the
Taylor expansion, so let us do the work: with ln(1 + y) = y − 1

2 y2 + 1
3 y3 −

1
4 y4 + O(y5), we have13

ln ‖x + e‖ − ln ‖x‖ = ln
(
1 +

2x · e + 1
‖x‖2

)
=

2x · e
‖x‖2

+
1
‖x‖2

−
2(x · e)2

‖x‖4
−

2x · e
‖x‖4

−
1

2‖x‖4

+
8(x · e)3

3‖x‖6
+

4(x · e)2

‖x‖6
−

4(x · e)4

‖x‖8
+ O(‖x‖−5).

Then, using (2.16) together with the fact that∑
e∈{±e1,±e2}

(x · e)3 = 0, and
∑

e∈{±e1,±e2}

(x · e)4 = 2(x4
1 + x4

2),

we obtain

E[ f (S n+1) − f (S n) | S n = x]

=
1
‖x‖2

−
1
‖x‖2

−
1

2‖x‖4
+

2‖x‖2

‖x‖6
−

2(x4
1 + x4

2)
‖x‖8

+ O(‖x‖−5)

= ‖x‖−4
(3
2
−

2(x4
1 + x4

2)
‖x‖4

+ O(‖x‖−1)
)
. (2.19)

We want the right-hand side of (2.19) to be nonpositive for all x large
enough, and it is indeed so if x is on the axes or close enough to them
(for x = (a, 0) or (0, a), the expression in the parentheses becomes 3

2 − 2 +

O(‖x‖−1) < 0 for all large enough x). Unfortunately, when we check it for
the “diagonal” sites (i.e., x = (±a,±a), so that 2(x4

1+x4
2)

‖x‖4 =
2(a4+a4)

4a4 = 1), we
obtain that the expression in the parentheses is 3

2 − 1 + O(‖x‖−1), which is
strictly positive for all large enough x.

So, this time we were quite close, but still missed the target. A next
natural candidate would be a function that grows even slower than the log-
arithm; so, let us try the function f (x) = lnα ‖x‖ with α ∈ (0, 1). Hoping for
the best, we write (using (1 + y)α = 1 + αy − α(1−α)

2 y2 + O(y3) in the last
passage)

lnα ‖x + e‖ − lnα ‖x‖

= lnα ‖x‖
( lnα ‖x + e‖

lnα ‖x‖
− 1

)
13 The reader is invited to check that only one extra term is not enough.
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= lnα ‖x‖
(( ln

(
‖x‖2

(
1 + 2x·e+1

‖x‖2
))

ln ‖x‖2

)α
− 1

)
= lnα ‖x‖

((
1 + (ln ‖x‖2)−1 ln

(
1 +

2x · e + 1
‖x‖2

))α
− 1

)
(by (2.18))

= lnα ‖x‖
((

1 + (ln ‖x‖2)−1
(2x · e
‖x‖2

+
1
‖x‖2

−
2(x · e)2

‖x‖4
+ O(‖x‖−3)

))α
− 1

)
= lnα ‖x‖

(
α(ln ‖x‖2)−1

(2x · e
‖x‖2

+
1
‖x‖2

−
2(x · e)2

‖x‖4
+ O(‖x‖−3)

)
−
α(1 − α)

2
(ln ‖x‖2)−2 4(x · e)2

‖x‖4
+ O

(
‖x‖−3(ln ‖x‖)−2)).

Then, using (2.16) we obtain

E[ f (S n+1) − f (S n) | S n = x]

=
α

2
lnα−1

‖x‖
( 1
‖x‖2

−
‖x‖2

‖x‖4
+ O(‖x‖−3)

−
(1 − α)

2
(ln ‖x‖2)−1 2‖x‖2

‖x‖4
+ O

(
(‖x‖ ln ‖x‖)−2))

= −
α

2‖x‖2 ln2−α
‖x‖

( (1 − α)
2

+ O
(
‖x‖−1 ln ‖x‖

))
,

which is14 negative for all sufficiently large x. Thus Theorem 2.4 shows
that SRW on Z2 is recurrent, proving Pólya’s theorem (Theorem 1.1) in the
two-dimensional case.

Now, it is time to explain why the author likes this method of prov-
ing recurrence (and many other things) of countable Markov chains. First,
observe that the preceding proof does not use any trajectory-counting ar-
guments (as in Section 2.1) or reversibility (as in Section 2.2), recall the
example in the beginning of this section. Moreover, consider any Markov
chain Xn on the two-dimensional integer lattice with asymptotically zero
drift, and let us abbreviate Dx = X1 − x. Analogously to the preceding
proof, we can obtain (still using f (x) = lnα ‖x‖ with α ∈ (0, 1))

E[ f (Xn+1) − f (Xn) | Xn = x]

14 Finally!
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= −
α

‖x‖2 ln2−α
‖x‖

(
− ln ‖x‖2Exx · Dx − ln ‖x‖2Ex‖Dx‖

2

+ ln ‖x‖2
2Ex(x · Dx)2

‖x‖2
+ 2(1 − α)

Ex(x · Dx)2

‖x‖2
+ O

(
(ln ‖x‖)−1)).

Now, if we can prove that the expression in the parentheses is positive for
all large enough x, then this would imply the recurrence. It seems to be
clear that it will be the case if the transitions probabilities at x are suffi-
ciently close to those of the simple random walk (and the difference con-
verges to 0 sufficiently fast as x→ ∞). This is what we meant when saying
that the method of Lyapunov functions is robust: if it works for a particular
model (the simple random walk in two dimensions, in our case), then one
may expect that the same (or almost the same) Lyapunov function will also
work for “close” models. See also Exercise 2.20 for some further ideas.

Also, besides proving recurrence/transience, Lyapunov functions may
be useful for doing many other things; see e.g. [23, 68, 69] as well as [70].

2.4 Exercises

Combinatorial proofs (Section 2.1)
Exercise 2.1. Understand the original proof of Pólya [75]. (Warning: it
uses generating functions, and it is in German.)

Exercise 2.2. Let p(d)
2n be the probability that d-dimensional SRW finds

itself at its starting position after 2n steps. In the end of Section 2.1, we have
seen that p(2)

2n =
(
p(1)

2n

)2, because it is possible to decouple the components
of a two-dimensional SRW. Can this decoupling be done for at least some
d ≥ 3 as well (so that, in particular, p2n(0, 0) =

(
p(1)

2n (0, 0)
)d would hold)?

Exercise 2.3. Find a direct (combinatorial) proof of the recurrence of sim-
ple random walk on some other regular lattice (e.g., triangular, hexagonal,
etc.) in two dimensions.

Exercise 2.4. If S n is the two-dimensional SRW, prove that S n · (e1 + e2)
and S n · (e1 − e2) are independent one-dimensional SRWs.

Exercise 2.5. Using the result of the previous exercise, can one derive a
version of local Central Limit Theorem for the two-dimensional SRW from
the de Moivre–Laplace theorem?

Exercise 2.6. Find a “direct” proof of recurrence of two-dimensional SRW
(i.e., not using the fact that, for any Markov chain, the total number of visits
to a site has geometric distribution, which permitted us to relate the actual
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number of visits to the expected number of visits) by showing that there
exists δ > 0 such that for any n0

P[there is k ≥ n0 such that S k = 0] ≥ δ.

Suggestion: use (a particular case of) the Paley–Zygmund inequality:
if Z is a nonnegative random variable with finite second moment, then
P[Z > 0] ≥ (EZ)2/EZ2. Then, given n0, find n1 > n0 such that the Pa-
ley–Zygmund inequality works well when applied on the random variable∑n1

k=n0
1{S k = 0}.

Reversibility and electrical networks (Section 2.2)
Exercise 2.7. Consider a nearest-neighbour random walk on Z with tran-
sition probabilities px = p(x, x − 1), qx = 1 − px = p(x, x + 1). Show that it
is reversible and write its reversible measure.

Exercise 2.8. Show that the random walk described in the beginning of
Section 2.3 (the one where we changed the transition probabilities at the
site (1, 1)) is not reversible.

Exercise 2.9. Consider a reversible Markov chain on a finite state space Σ

with reversible measure π. Let us think of it as a linear operator P acting
on functions f : Σ → R in the following way: P f (x) =

∑
y∈Σ p(x, y) f (y).

Prove that all the eigenvalues of P are real and belong to [−1, 1].

Exercise 2.10. Consider an irreducible reversible Markov chain on a count-
able state space Σ with the reversible measure π, and let 0 ∈ Σ be a fixed
state. Assume that Σ =

⋃∞
k=0 Σk, where Σ0 = {0} and Σks are disjoint. Fur-

ther, assume that for all k

π̃k :=
∑
x∈Σk

π(x) < ∞,

and P0[τR{k
< ∞] = 1, where Rk :=

⋃k
j=1 Σk. Let us define another Markov

chain X̃ on the state space Z+ with transition probabilities

p̃(k, `) =
1
π̃k

∑
x∈Σk
y∈Σ`

π(x)p(x, y).

Intuitively, this new Markov chain works in the following way: when the
original process is in Σk, we resample its location according to the distri-
bution π(·)/πk; the process X̃ then just “observes” in which of the Σs is this
“modified” walker.
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Prove that the Markov chain X̃ is irreducible on Z+ and reversible with
the reversible measure π̃.

Exercise 2.11. In the setting of the previous exercise, theorem 6.10 of [64]
implies that if the new Markov chain X̃ is recurrent, then so is the original
Markov chain. Apply this result to obtain yet another proof of recurrence
of two-dimensional SRW.

Exercise 2.12. Show that, for any a, b, c, d > 0

(a + c)(b + d)
a + b + c + d

≥
ab

a + b
+

cd
c + d

(2.20)

(the reader has probably figured out that the idea is to find an “electrical
proof” of this inequality).

Exercise 2.13. There are also ways to prove transience using electrical
networks; review theorem 2.11 of [65] and, using it, prove that SRW in
three dimensions (and, consequently, in any dimension d ≥ 3) is transient.

Exercise 2.14. Fix ε ∈ (0, 1], and consider the set {x ∈ Z3 : |x · e3| ≤

(|x · e1|+ |x · e2|)ε} with the graph structure inherited from Z3. Prove that the
SRW on this set is transient. (It can be easily seen that the size of the ball of
radius r centred in the origin with respect to the graph distance is O(r2+ε);
so the preceding can be informally seen as “SRW in dimension 2 + ε”.)

Lyapunov functions (Section 2.3)
Exercise 2.15. Prove the “only if” part of the transience criterion (Theo-
rem 2.5).

Exercise 2.16. Find a Lyapunov-function proof of transience of a nearest-
neighbour random walk on Z with constant drift.

Exercise 2.17. Now, consider a Markov chain (Xn) on Z+ such that

• there exists K > 0 such that |Xn+1 − Xn| ≤ K a.s. (i.e., the jumps are
uniformly bounded);

• there exists ε > 0 such that ExX1 ≥ x + ε for all x (i.e., the drift is
uniformly positive).

Prove that it is transient.

Exercise 2.18. Using Theorem 2.5, prove that simple random walk in di-
mensions d ≥ 3 is transient. Hint: use f (x) = ‖x‖−α for some α > 0.
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Exercise 2.19. Show that f (x) = ln ln ‖x‖ (suitably redefined at the origin
and at the sites which are at distance at most e from it) would also work for
proving the recurrence of two-dimensional simple random walk.

Exercise 2.20. Using Lyapunov functions, prove the recurrence of a two-
dimensional spatially homogeneous zero-mean random walk with bounded
jumps.

Exercise 2.21. Understand the proof of the “only if” part of the recurrence
criterion (Theorem 2.4) — see the proof of theorem 2.2.1 of [45]. Can you
find15 a simpler proof?

Exercise 2.22. Is it always possible to find a function which is a martingale
outside the origin (i.e., in Theorem 2.4, A is a singleton and (2.4) holds with
equality) for a recurrent Markov chain? Also, prove that this is possible for
a recurrent Markov chain on Z+ with nearest-neighbour jumps by writing
down such a function explicitly.

Exercise 2.23. The following result (also known as Foster’s criterion or
Foster–Lyapunov theorem) provides a criterion for the positive recurrence
of an irreducible Markov chain:

An irreducible Markov chain Xn on a countable state space Σ is positive
recurrent if and only if there exist a positive function f : Σ → R+, a finite
nonempty set A ⊂ Σ, and ε > 0 such that

E[ f (Xn+1) − f (Xn) | Xn = x] ≤ −ε, for all x ∈ Σ \ A, (2.21)

E[ f (Xn+1) | Xn = x] < ∞, for all x ∈ A. (2.22)

(i) Prove the “only if” part.
(ii) Understand the proof of the “if” part (see e.g. theorems 2.6.2 and 2.6.4

of [70]).

Exercise 2.24. Consider the function f : N → N, defined in the following
way:

f (n) =

 n
2 , if n is even,
3n+1

2 , if n is odd.

The (yet unproven, and very difficult) Collatz conjecture asserts that, for
any n ∈ N, the sequence f (n), f ( f (n)), f ( f ( f (n))), . . .will eventually reach 1.

(i) Do not try to prove the Collatz conjecture.

15 If you find it, please, let me know.
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X0

X1

X2

X3

Figure 2.9 A random walk on R2.

(ii) Consider, however, the stochastic process (Yn, n ≥ 1) living on (0,+∞),
defined as follows:

Yn+1 =

 Yn
2 , with probability 1

2 ,
3Yn+1

2 , with probability 1
2 .

Prove that this process is “positive recurrent”, in the sense that E(min{k :
Yk ≤ 1} | Y0 = y) < ∞ for any y ≥ 1.

(Since, informally, “half of all natural numbers are even”, the recurrence of
the process in (ii) may be considered as an “empirical evidence” in favour
of the Collatz conjecture. See [57] and references therein for much more
discussion on stochastic models “related” to the Collatz conjecture.)

Exercise 2.25. Let (Xn, n ≥ 0) be a discrete-time Markov process on the
(continuous) state space R2, defined in the following way. Let X0 = 0
and, given that Xn = x ∈ R2, the next state Xn+1 is uniformly distributed
on ∂B(x, 1) (see Figure 2.9). Prove that this process is Harris recurrent, in
the sense that it visits any fixed neighbourhood of the origin (and, conse-
quently, any fixed neighbourhood of any other point) infinitely many times
a.s..

Exercise 2.26. For the d-dimensional simple random walk, show that the
first and the second moments of ∆x := ‖S 1‖ − ‖x‖ under Ex are given by

Ex∆x =
d − 1
2d‖x‖

+ O(‖x‖−2), (2.23)

Ex∆
2
x =

1
d

+ O(‖x‖−1). (2.24)

Exercise 2.27. Suppose now that (Xn, n ≥ 0) is a time homogeneous
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Markov chain on an unbounded subset Σ of R+. Assume that Xn has uni-
formly bounded increments, so that

P[|Xn+1 − Xn| ≤ b] = 1 (2.25)

for some b ∈ R+. For k = 1, 2 define

µk(x) := E[(Xn+1 − Xn)k | Xn = x].

The first moment function, µ1(x), is also called the one-step mean drift
of Xn at x.

Lamperti [58, 59, 60] investigated the extent to which the asymptotic
behaviour of such a process is determined by µ1,2(·), in a typical situation
when µ1(x) = O(x−1) and µ2(x) = O(1). The following three statements are
particular cases of Lamperti’s fundamental results on recurrence classifica-
tion:

(i) If 2xµ1(x)+µ2(x) < −ε for some ε > 0 and all large enough x, then Xn

is positive recurrent;
(ii) If 2xµ1(x)−µ2(x) < −ε for some ε > 0 and all large enough x, then Xn

is recurrent;
(iii) If 2xµ1(x) − µ2(x) > ε for some ε > 0 and all large enough x, then Xn

is transient.

Prove (i), (ii), and (iii).

Exercise 2.28. Let d ≥ 3. Show that for any ε > 0 there exists C =

C(d, ε) such that ‖S n∧τ‖
−(d−2)−ε is a submartingale and ‖S n∧τ‖

−(d−2)+ε is a
supermartingale, where τ = τ+

B(C). What happens in the case ε = 0?
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Some potential theory for simple random
walks

Disclaimer: this chapter is by no means a systematic treatment of the sub-
ject, not even remotely so. If the reader is looking for one, the author can
recommend e.g. [37, 85] or chapters 4 and 6 of [62]. Here we rather adopt a
“customer’s point of view”: we only recall a few general notions and tools
that permit us to obtain estimates on what we are concerned about in this
book – probabilities related to simple random walks. We also do not try to
discuss the reason why it is called “potential theory” and what exactly are
its relations to the classical theory of harmonic functions – this would take
quite some time, and the author has to confess that he does not understand
it quite well anyway.

We are going to consider the transient and the recurrent cases separately;
it is true that in this book we are mainly concerned with the latter one, but
it is still more convenient to begin with the transient case (i.e., SRW in
dimensions d ≥ 3), which is somehow conceptually simpler.1 Let us begin,
though, with the following result, which is dimension independent:

Proposition 3.1. Let h : Zd → R be a harmonic function, i.e.,

h(x) =
1

2d

∑
y∼x

h(y) for all x ∈ Zd. (3.1)

Assume also that it is bounded, i.e., there exists K > 0 such that |h(x)| ≤ K
for all x ∈ Zd. Then h is constant.

Proof Let us reason by contradiction: assume that a function h as in this
proposition is not constant. Then it must be nonconstant on both the set
of even2 sites and the set of odd sites. Indeed, its value on an even site
is the average of its values on the neighbouring odd sites and vice versa;
so, if it is equal to a constant on one of these two sets, it will have to be

1 Also, we’ll need some of these transient-case results in Chapter 6 when discussing the
“classical” random interlacement model in dimensions d ≥ 3.

2 Recall that even (odd) sites are sites with even (odd) sum of their coordinates.

33
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the same constant on the other one. Now, we can find two sites x and y
of the same parity such that x − y = ±2ek for some k ∈ {1, . . . , d} and
h(x) , h(y). Note that, if h is harmonic in the sense of (3.1), then so are its
translations/rotations/reflections. Therefore, without restricting generality,
we can assume that h(e1) , h(−e1).

For x = (x1, x2, . . . , xd) ∈ Zd, let us denote x̄ = (−x1, x2, . . . , xd) the “mir-
rored” site with respect to the hyperplane orthogonal to the first coordinate
axis. Let (S n) be the SRW starting at e1, and (S̄ n) be the corresponding
“mirrored” SRW (which, clearly, starts at (−e1)). Define the stopping time

σ = min{k : S k · e1 = 0} = min{k : S k = S̄ k}

to be the moment when S meets S̄ . Note that σ < ∞ a.s., due to the recur-
rence of one-dimensional SRW.

Now, the harmonicity of h implies that h(S n) is a martingale: indeed,
E(h(S n+1) | S n = x) = (2d)−1 ∑

y∼x h(y) = h(x) by (3.1); clearly, the same
argument also implies that h(S̄ n) is a martingale. Since h is bounded, Corol-
lary 1.7 implies that

h(e1) = Eh(S σ) = Eh(S̄ σ) = h(−e1),

which is the desired contradiction (recall that we just assumed that h(x) ,
h(y)). �

3.1 Transient case

First, let us go to dimensions d ≥ 3, where the SRW is transient. We specif-
ically concentrate on the simple random walk case, although a similar the-
ory can be developed for random walks with arbitrary jump distribution,
or even general transient reversible Markov chains. We need first to recall
some basic definitions related to simple random walks in higher dimen-
sions.

The three main objects that we need are Green’s function, the capacity,
and the harmonic measure. Specifically, it holds the following:

• Green’s function G is harmonic outside the origin, and so the process
G(S n∧τ0 ) is a martingale. This gives us a convenient tool for calculating
certain exit probabilities via the optional stopping theorem.3

• Informally speaking, the capacity of a set measures how big this set is

3 Stated as Theorem 1.6 in this book; in fact, Corollary 1.7 will usually be enough for our
needs.
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from the point of view of the simple random walk. This permits us to
obtain some refined bounds on probabilities of hitting sets.

• The harmonic measure is a probability distribution that lives on the
boundary of a set, and is the “conditional entrance measure from in-
finity”. When we are concerned with entrance measures starting from
some fixed site, sometimes it is possible to argue that this entrance mea-
sure is not much different from the harmonic measure, thus allowing us
to have some control on where the random walk enters that set.

Let us now elaborate.

Green’s function
For d ≥ 3, Green’s function G : (Zd)2 → R+ is defined in the following
way:

G(x, y) = Ex

( ∞∑
k=0

1{S k = y}
)

=

∞∑
k=0

Px[S k = y]. (3.2)

That is, G(x, y) is equal to the mean number of visits to y starting from x. It
is important to note that in the case x = y we do count this as one “initial”
visit (so, in particular, G(x, x) > 1 in all dimensions). By symmetry it holds
that G(x, y) = G(y, x) = G(0, y− x); thus, we can abbreviate G(y) := G(0, y)
so that G(x, y) = G(x−y) = G(y−x). Now, a very important property of G(·)
is that it is harmonic outside the origin, i.e.,

G(x) =
1

2d

∑
y∼x

G(y) for all x ∈ Zd \ {0}. (3.3)

Since, as observed earlier, G(x) is the mean number of visits to the origin
starting from x, one readily obtains the preceding from the total expectation
formula, with only a little bit of thinking in the case when x is a neighbour
of the origin. An immediate consequence of (3.3) is the following.

Proposition 3.2. The process G(S n∧τ0 ) is a martingale.

Now, how should G(x) behave as x→ ∞? It is (almost) clear that it con-
verges to 0 by transience, but how fast? It is not difficult to see4 that G(x)
must be of order ‖x‖−(d−2), due to the following heuristic argument. Fix
x ∈ Zd, x , 0. First, as is well known (think e.g. of the Central Limit The-
orem), the simple random walk is diffusive, i.e., it needs time of order ‖x‖2

to be able to deviate from its initial position by distance ‖x‖ (which is a
necessary condition if it wants to go to x). Then, at time m > ‖x‖2, the walk

4 “To see” does not mean “to prove”.
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can be anywhere5 in a ball of radius roughly m1/2, which has volume of
order md/2. So, the chance that the walk is in x should be6 of order m−d/2;
therefore, Green’s function’s value in x is roughly

∞∑
m=‖x‖2

m−d/2 �
(
‖x‖2

)−d/2+1
= ‖x‖−(d−2).

Note also that

G(x) = Px[τ0 < ∞]G(0); (3.4)

indeed, starting from x, the mean number of visits to 0 is zero given that
τ0 = ∞ and is G(0) given that τ0 < ∞, so the preceding again comes
out from the total expectation formula. This implies that the probability of
ever visiting y starting from x (which is the same as the probability of ever
visiting 0 starting from x − y) is also of order ‖x − y‖−(d−2).

Now, since the SRW is “roughly spherically symmetric”, it is reasonable
to expect that Green’s function should be asymptotically “well behaved”
and, in particular, depend (almost) only on ‖x‖ as x → ∞. In fact, it is
possible to obtain that

G(x) =
γd

‖x‖d−2 + O
(
‖x‖−d), (3.5)

with γd =
Γ(d/2)d
πd/2(d−2) ; see theorem 4.3.1 of [62]. We prefer not to include the

complete proof here (that is, we will take this fact for granted), but see
Exercises 3.3 through 3.5.

We are now able to obtain a straightforward (and useful) estimate for
the probability that the simple random walk escapes an annulus through its
outer boundary:

Lemma 3.3. For all x ∈ Zd, d ≥ 3, and R > r > 0 such that x ∈ B(R)\B(r),
we have

Px
[
τ+
∂B(R) < τ

+
B(r)

]
=

r−(d−2) − ‖x‖−(d−2) + O(r−(d−1))
r−(d−2) − R−(d−2) + O(r−(d−1))

, (3.6)

as r → ∞.

Proof This comes out of an application of the optional stopping theorem
to the martingale G(S n∧τ0 ). Indeed, let us abbreviate by p the probability in
the left-hand side of (3.5); also, let g↓ and g↑ be the (conditional) expected

5 Well, not really (observe that the simple random walk has period two), but you
understand what I mean.

6 Recall that we used a very similar heuristic argument in the beginning of Section 2.1.
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values of G(S ) on first-hitting the inner and the outer boundaries of the
annulus, i.e.,

g↓ = Ex
(
G(S τ+

B(r)
) | τ+

B(r) < τ
+
∂B(R)

)
,

g↑ = Ex
(
G(S τ+

∂B(R)
) | τ+

∂B(R) < τ
+
B(r)

)
.

Since S 0 = x, the optional stopping theorem (Corollary 1.7) implies that

G(x) = G(S 0) = ExG
(
S τB(r)∪∂B(R)

)
= pg↑ + (1 − p)g↓,

meaning that

p =
g↓ −G(x)

g↓ − g↑
. (3.7)

Note that S τ+
B(r)
∈ ∂B(r) because x < B(r); since for any y ∈ ∂B(h) it holds

that h − 1 < ‖y‖ ≤ h, we have by (3.5) that

g↓ =
γd

rd−2

(
1 + O(r−1)

)
,

and

g↑ =
γd

Rd−2

(
1 + O(R−1)

)
.

Plugging (3.5) and the preceding into (3.7), we obtain (3.6). �

Sending R to infinity in (3.6), we obtain that, for any x < B(r),

Px[τB(r) = ∞] = 1 −
‖x‖−(d−2) + O(r−(d−1))
r−(d−2) + O(r−(d−1))

= 1 −
( r
‖x‖

)d−2
+ O(r−1). (3.8)

Let us now move on to the next fundamental notion of the (discrete)
potential theory.

Capacity
For finite A ⊂ Zd and x ∈ Zd, let us denote

EsA(x) = Px[τ+
A = ∞]1{x ∈ A}. (3.9)

By definition, this quantity is 0 outside A, and, at x ∈ A, it is the escape
probability from A. Note that EsA(x) can be positive only if x ∈ ∂A.

The capacity of a finite set A ⊂ Zd is defined by

cap(A) =
∑
x∈A

EsA(x); (3.10)
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A

x

y

Figure 3.1 On the proof of (3.11).

clearly, it holds that the capacity is translation invariant, and cap(A) =

cap(∂A).
What is this notion of capacity good for? To answer this question, we

need some preparatory steps. Consider a finite A ⊂ Zd. Let us prove a
relation that will be used many times later in this chapter: for any y ∈ Zd,
it holds that

Px[τA < ∞] =
∑
y∈A

G(x, y) EsA(y) =
∑
y∈Zd

G(x, y) EsA(y). (3.11)

For the proof, we use an important idea called the last-visit decomposition.
On the event {τA < ∞}, let

σ = max{n : S n ∈ A}

be the moment of the last visit to A (if the walk did not hit A at all, just setσ
to be 0). By transience (recall that A is finite!), it is clear that σ is a.s. finite.
It is important to note that σ is not a stopping time, which actually turns
out to be good! To understand why, let us first observe that, by the strong
Markov property, the walk’s trajectory after any stopping time is “free”,
that is, it just behaves as a simple random walk starting from the position
it had at that stopping time. Now, if we know that σ happened at a given
moment, then we know something about the future, namely, we know that
the walk must not return to A anymore. In other words, after σ the walk’s
law is the conditioned (on τ+

A = ∞) one.7 Now, look at Figure 3.1: what is
the probability that the walker visits y ∈ A exactly k times (on the picture,
k = 2), and then escapes to infinity, being y the last visited point of A?

This probability is the total weight of the trajectories such that first they
visit y exactly k times and then escape to infinity not touching A anymore.

7 Strictly speaking, this statement needs a rigorous proof; we leave it to the reader as an
exercise.
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This means that for any y ∈ A and k ≥ 1, it holds that

Px[exactly k visits to y, S σ = y] = Px[at least k visits to y] EsA(y). (3.12)

Okay, maybe, at first sight it is not clear why “exactly k visits” in the left-
hand side became “at least k visits” in the right-hand side. To understand
this, think again of the piece of the trajectory till σ. If we consider only
such trajectories, they correspond to the event {y is visited at least k times}
– indeed, if we only observe the trajectory till the kth visit, we then know
that this last event occurred.

Then, summing (3.12) in k from 1 to∞, we obtain8

Px[τA < ∞, S σ = y] = G(x, y) EsA(y), (3.13)

and summing (3.13) in y ∈ A, we obtain (3.11).
Now, we are able to obtain the following useful corollary of (3.11):

cap(A) min
z∈A

G(x, z) ≤ Px[τA < ∞] ≤ cap(A) max
z∈A

G(x, z); (3.14)

informally, at least in the case when minz∈A ‖x− z‖ and maxz∈A ‖x− z‖ are of
the same order, (3.14) means that the probability of ever hitting the set A is
proportional to its capacity, and (by (3.5)) is inversely proportional to the
distance to that set to power d − 2. This justifies the (already mentioned)
intuition that the capacity measures how large the set is from the point of
view of the simple random walk.

Next, let us obtain the exact expressions (in terms of the Green func-
tion G) for capacities of one- and two-point sets. We are going to prove
that

cap({0}) =
1

G(0)
, (3.15)

cap({0, x}) =
2

G(0) + G(x)
(3.16)

(by translation invariance, the preceding equations also yield the expres-
sions for cap({x}) and cap({x, y})). Indeed, first, under P0, the number of
visits to the origin (counting the “initial” one at time 0) is a geometric ran-
dom variable with success probability Es{0}(0). So, its mean is 1/Es{0}(0)
on one hand and G(0) on the other hand, meaning that Es{0}(0) = 1/G(0).
Since, by definition, cap({0}) = Es{0}(0), we obtain (3.15). The argument
for two-point sets is very similar: let p := Es{0,x}(0); by symmetry, it holds
also that p = Es{0,x}(x). So, the total number of visits to {0, x} (starting from

8 Recall that, for a nonnegative integer-valued random variable ζ, it holds that
Eζ =

∑
k≥1 P[ζ ≥ k].
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B(r)

x

r + c

r + c + 1

Figure 3.2 Escaping from a ball.

either 0 or x) has geometric distribution with success probability p, mean-
ing that p−1 = G(0) + G(x). Since cap({0, x}) = Es{0,x}(0) + Es{0,x}(x) = 2p,
(3.16) follows.

The preceding argument can be also used to calculate the capacities of
other symmetric sets, like e.g. the four vertices of a “spacial rectangle” or
other similar things.

As for the capacity of a d-dimensional (discrete) ball, let us show that
(with the constant γd from (3.5))

cap(B(r)) ∼
rd−2

γd
as r → ∞. (3.17)

To understand why cap(B(r)) should be of order rd−2, consider x such that
‖x‖ ∈ [r+c, r+c+1], where c > 0 is a large enough constant; see Figure 3.2.
Note that (3.8) yields

Px[τ+
B(r) = ∞] = 1 −

( r
‖x‖

)d−2
+ O(r−1)

= 1 −
(
1 +
‖x‖ − r

r

)−(d−2)
+ O(r−1)

= −
(d − 2)c

r
+ O(r−1)

(where there is no dependence on c in the O’s). The two terms in the pre-
ceding expression are of the same order, but we are allowed to make c as
large as we want; this will imply that, for such x, Px[τ+

B(r) = ∞] � r−1.
This by its turn means that EsB(r)(y) � r−1 (observe that, clearly, from any
boundary point of B(r) it is possible to walk to some x as before with uni-
formly positive probability). Since |∂B(r)| � rd−1, we see that the capacity
of B(r) is indeed of order rd−1 × r−1 = rd−2.
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To obtain the more precise relation (3.17), we need the following.

Proposition 3.4. For any finite A ⊂ Zd, it holds that

cap(A) = lim
x→∞

Px[τA < ∞]
G(x)

= lim
x→∞

‖x‖d−2

γd
Px[τA < ∞]. (3.18)

Proof This is a direct consequence of (3.14) and (3.5): note that as x →
∞, both minz∈A G(x, z) and maxz∈A G(x, z) are asymptotically equivalent
to γd‖x‖−(d−2). �

It remains to observe that the asymptotics of the capacity of a ball (rela-
tion (3.17)) follows from (3.8) and Proposition 3.4.

We are now going to present an interesting application of the technique
we just developed. Let us recall the following

Definition 3.5. We say that A ⊂ Zd is recurrent, if Px[τA < ∞] = 1 for all
x ∈ Zd. Otherwise, we call the set A transient.

Clearly, the question if a set is recurrent or transient is, in principle, not
so trivial. As a start, we obtain the following result:

Proposition 3.6. If A is recurrent, then
∞∑

k=1

1{S k ∈ A} = ∞ Px-a.s.,

for all x ∈ Zd, that is, regardless of the starting point, A is visited infinitely
many times a.s.. If A is transient, then

∞∑
k=1

1{S k ∈ A} < ∞ Px-a.s.,

for all x ∈ Zd.

Proof The first part (that recurrence implies that A is visited infinitely
many times a.s.) is evident; let us prove the second part. Let A be a transient
set and let us define the function h by

h(x) = Px[A is visited infinitely often].

An immediate observation is that h is harmonic – just use the formula of
total probability, conditioning on the first step. So, since h is also obviously
bounded, Proposition 3.1 implies that this function is constant, h(x) = p ∈
[0, 1] for all x.

Now, what can be the value of p? First, it has to be strictly less than 1
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by transience of A (there is at least one site x0 such that Px0 [τA < ∞] < 1
and, obviously, h(x0) ≤ Px0 [τA < ∞]). Next, write (conditioning on the first
entrance to A, if any)

p = h(x0)

=
∑
y∈A

Px0 [τA < ∞, S τA = y]h(y)

= p
∑
y∈A

Px0 [τA < ∞, S τA = y]

= pPx0 [τA < ∞],

and (since, as we just assumed, Px0 [τA < ∞] < 1) this implies that p =

0. �

As we know already, in dimensions d ≥ 3 the one-point sets are tran-
sient; Proposition 3.6 then implies9 that all finite sets are transient as well.
But what can we say about infinite sets? The answer is given by the fol-
lowing theorem:

Theorem 3.7 (Wiener’s criterion). For d ≥ 3, A ⊂ Zd is recurrent if and
only if

∞∑
k=1

cap(Ak)
2(d−2)k = ∞, (3.19)

where

Ak =
{
x ∈ A : 2k−1 < ‖x‖ ≤ 2k}

is the intersection of A with the annulus B(2k) \ B(2k−1).

The proof is left to the reader (Exercises 3.13 and 3.14).
The last of the three main ingredients that make our naive view of the

potential theory is harmonic measure; we start looking at it now.

Harmonic measure
As before, let A be a finite subset of Zd, d ≥ 3. The harmonic measure
hmA(·) on A is defined by

hmA(x) =
EsA(x)
cap(A)

, x ∈ A, (3.20)

9 How exactly?
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that is, the value of hmA(x) is proportional to the escape probability from x
to infinity. Remarkably, it is also true that hmA is the “entrance measure
to A from infinity”, that is, the following result holds:

Theorem 3.8. For all y ∈ A, we have

hmA(y) = lim
x→∞
Px[S τA = y | τA < ∞]. (3.21)

Why should Theorem 3.8 be valid? Let us first give an informal expla-
nation. Consider y, z ∈ ∂A, such that y , z and both EsA(y) and EsA(z) are
strictly positive. Then, the ratio of the “total weights” of trajectories which
escape A from, respectively, y and z, equals EsA(y)/EsA(z). Now, if x is
very far away from A and the walker that started somewhere at A happens
to pass through x, it likely does not “remember” its exact starting position.
Since the time reversal does not change the “weight” of the trajectory,10

the ratio of the chances that a trajectory passing through x will end up in y
(respectively, in z) should be then EsA(y)/EsA(z) as well.

Now, the rigorous proof of the preceding result may look not very in-
tuitive at first sight, but note that it also makes use of this reversibility
property.

Proof of Theorem 3.8. We now use a trajectory-counting argument very
similar to the one in the proof of (3.11). For x < A, y ∈ ∂A, and n ≥ 1, let
us denote by Θ

(n)
xy the set of nearest-neighbour trajectories ℘ = (z0, . . . , zk)

such that

• z0 = x, zk = y, and z j < A for all j ≤ k − 1, i.e., the trajectory ends on the
first entrance to A, which takes place in y;

•
∑k

j=0 1{z j = x} = n, i.e., the trajectory visits x exactly n times (note that
we do count z0 = x as one visit);

see Figure 3.3. For such trajectory, we also write |℘| = k to denote its
length, and P℘ = (2d)−|℘| to denote its weight (a.k.a. probability). Let us
also denote by

Nx =

∞∑
j=0

1{S j = x}

the total number of visits to x < A, by

N[
x =

τ+
A−1∑
j=0

1{S j = x}

10 Formally, for infinite trajectories this only means that 0 = 0, but you understand what I
wanted to say.
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A
x

y

Figure 3.3 On the proof of Theorem 3.8: an example of a
trajectory from Θ

(2)
xy .

the number of visits to x before the first return to A, and by

N]
x =

∞∑
j=τ+

A

1{S j = x}

the number of visits to x after the first return to A (naturally, setting N]
x = 0

on {τ+
A = ∞}).

Now, it is clear that

Px[τA < ∞, S τA = y] =

∞∑
n=1

∑
℘∈Θ(n)

xy

P℘ (3.22)

(we just sum the weights of all trajectories starting at x and entering A at y).
The next relation may seem a bit less clear, but it is here where we use the
reversibility property:

Py[N[
x ≥ n] =

∑
℘∈Θ(n)

xy

P℘. (3.23)

Indeed (quite analogously to the proof of (3.11)), when, starting at y, we
see a reversal of a trajectory from Θ

(n)
xy , we are sure that the event {N[

x ≥ n}
occurs. Therefore, we can write

Px[S τA = y | τA < ∞]

=
Px[τA < ∞, S τA = y]
Px[τA < ∞]

(by (3.22) and (3.23))

= (Px[τA < ∞])−1
∞∑

n=1

Py[N[
x ≥ n]
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= (Px[τA < ∞])−1EyN[
x

(since, clearly, Nx = N[
x + N]

x)

= (Px[τA < ∞])−1(EyNx − EyN]
x)

(conditioning on the position of the first re-entry to A)

= (Px[τA < ∞])−1
(
G(y, x) −

∑
z∈∂A

Py[τ+
A < ∞, S τ+

A
= z]G(z, x)

)
. (3.24)

Then, Proposition 3.4 together with (3.5) imply that, for any fixed z ∈ Zd,

G(z, x)
Px[τA < ∞]

→
1

cap(A)
as x→ ∞.

So, sending x to infinity in (3.24), we obtain

lim
x→∞
Px[S τA = y | τA < ∞] =

1
cap(A)

(
1 −

∑
z∈∂A

Py[τ+
A < ∞, S τ+

A
= z]

)
=

1
cap(A)

(
1 − Py[τ+

A < ∞]
)

=
Py[τ+

A = ∞]
cap(A)

= hmA(y),

thus concluding the proof of Theorem 3.8. �

Many other interesting things can be said about the transient case, but
we prefer to stop here and pass to the recurrent one. 11

3.2 Potential theory in two dimensions

In this section, we try to do roughly the same as in the previous one,
only in two dimensions. As we know, there is one big difference between
the dimension two and higher dimensions: as shown in Chapter 2, unlike
the higher-dimensional SRW, the two-dimensional SRW is recurrent. This
means that the mean number of visits from any site to any other site equals
infinity; this prevents us from defining Green’s function in the same way
as in Chapter 3.1. In spite of this unfortunate circumstance, we still would
like to use martingale arguments, so a “substitute” of Green’s function is
needed. Now, here comes the key observation: while the mean number of
visits to the origin is infinite, the difference between the mean number of
11 Revenons à nos moutons c©.
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0

x

Figure 3.4 The coupling of two random walks starting at 0
and x = (4, 2). Note that their first coordinates become equal at
time 3 (when the first walk is at (2,−1) and the second one is
at (2, 3)), and the walks meet at time 6 at site (1, 1).

visits to the origin starting from 0 and starting from x is finite, if suitably
defined. Let us do it now.

Potential kernel
Namely, let us define the potential kernel a(·) by

a(x) =

∞∑
k=0

(
P0[S k = 0] − Px[S k = 0]

)
, x ∈ Z2. (3.25)

By definition, it holds that a(0) = 0. To see that the limit (finite or infinite)
in (3.25) actually exists is a little bit more subtle, but still quite elementary.
Indeed, Exercise 3.28 (iii) implies that

• if x is an even site (i.e., the sum of its coordinates is even), then all
terms in the summation (3.25) are nonnegative (more precisely, they are
positive for even k and zero for odd k);

• if x is an odd site, then we have a series with alternating signs in (3.25),
but the sums of each two consecutive terms (i.e., P0[S 2k = 0]−Px[S 2k+1 =

0]) are again strictly positive and converge to zero, which clearly implies
that the sum is well defined.

Note that the preceding argument also implies that a(x) > 0 for all x , 0.
Now, let us convince ourselves that the series converges (i.e., a(x) is fi-

nite) for all x ∈ Z2, and figure out how large a(x) should be. The “normal”
approach would be employing the local Central Limit Theorem12 for this,
12 Analogous to the De Moivre-Laplace one, only in two dimensions; see e.g.

theorem 2.1.1 of [62].
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but we prefer to use another interesting and very useful tool called cou-
pling.13 It will be a long argument (sorry for that!) since we will need to
do a three-parts divide-and-conquer argument (later it will be clear what is
meant by this), but it is still nice and instructive. Assume that both coordi-
nates of x , 0 are even, so, in particular, two random walks simultaneously
started at x and at the origin can meet. Next, we construct these two ran-
dom walks together, that is, on the same probability space. We do this in
the following way: we first choose one of the two coordinates at random,
and then make the walks jump in the opposite directions if the values of the
chosen coordinates of the two walks are different, and in the same direc-
tion in case they are equal; see Figure 3.4. Formally, assume that, at a given
moment n the positions of the walks are S ′n and S ′′n ; we have then S ′0 = 0,
S ′′0 = x. Let Jn and Zn be independent random variables assuming values
in {1, 2} and {−1, 1} respectively, with equal (to 1

2 ) probabilities. Then, we
set:

(S ′n+1, S
′′
n+1) =

(S ′n + ZneJn , S
′′
n − ZneJn ), if S ′n · eJn , S ′′n · eJn ,

(S ′n + ZneJn , S
′′
n + ZneJn ), if S ′n · eJn = S ′′n · eJn .

Note that if the first (second) coordinates of the two walks are equal at
some moment, then they will remain so forever. This means, in particu-
lar, that, when the two walks meet, they stay together. Let us assume, for
definiteness, that x belongs to the first quadrant, that is, x = (2b1, 2b2) for
b1,2 ≥ 0. Let

T j = min{n ≥ 0 : S ′n · e j = S ′n · e j}

for j = 1, 2; that is, T j is the moment when the jth coordinates of S ′ and S ′′

coincide for the first time. Notice that, alternatively, one can express them
in the following way:

T j = min{n ≥ 0 : S ′n · e j = b j} = min{n ≥ 0 : S ′′n · e j = b j} (3.26)

(clearly, they have to meet exactly in the middle). Let also T = T1 ∨ T2

be the coupling time, i.e., the moment when the two walks meet and stay
together.

Now, we go back to (3.25) and use the strategy usually called “divide
and conquer”: write

a(x) =
∑
k<‖x‖

(
P0[S k = 0] − Px[S k = 0]

)
13 We used it already (without calling it so) in the proof of Proposition 3.1; here, we take it

further.
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+
∑

k∈[‖x‖,‖x‖3]

(
P0[S k = 0] − Px[S k = 0]

)
+

∑
k>‖x‖3

(
P0[S k = 0] − Px[S k = 0]

)
=: M1 + M2 + M3,

and then let us deal with the three terms separately.
First, let us recall the calculations from Section 2.1: we have obtained

there that

P0[S 2k = 0] �
1
k
. (3.27)

To deal with the term M1, just observe that Px[S k = 0] = 0 for k < ‖x‖
— there is simply not enough time for the walker to go from x to 0. The
relation (3.27) then implies that

M1 � ln ‖x‖. (3.28)

For the second term, we have already observed that all summands there are
nonnegative, so (3.27) implies that

0 ≤ M2 . ln ‖x‖. (3.29)

That is, M1 is of order ln ‖x‖, and M2 is nonnegative and at most of order
ln ‖x‖; this clearly implies that the sum of them is also of order ln ‖x‖.

It remains to deal with the term M3. It is here that we use the coupling
idea: let us write∑

k>‖x‖3

(
P0[S k = 0] − Px[S k = 0]

)
= E

∑
k>‖x‖3

(
1{S ′k = 0} − 1{S ′′k = 0}

)
(write 1 = 1{T ≤ k} + 1{T > k}, and note that the kth term is 0 on {T ≤ k})

= E
∑

k>‖x‖3

(
1{S ′k = 0} − 1{S ′′k = 0}

)
1{T > k}

(if T > k, then S ′′k cannot be at the origin; recall (3.26))

= E
∑

k>‖x‖3
1{S ′k = 0}1{T > k}

=
∑

k>‖x‖3
P[S ′k = 0,T > k]
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(since {T > k} = {T1 > k} ∪ {T2 > k})

≤
∑

k>‖x‖3
P[S ′k = 0,T1 > k] +

∑
k>‖x‖3

P[S ′k = 0,T2 > k]

(by symmetry)

= 2
∑

k>‖x‖3
P[S ′k = 0,T1 > k]. (3.30)

We are now going to prove that the terms in the preceding sum are at most
of order k−4/3. For this, we first prove that, for all m ≥ b3

1,

P0[X2m = 0, T̂ (b1) > 2m] ≤ m−5/6, (3.31)

where X is a one-dimensional simple random walk, and T̂ (s) = min{` >
0 : X` = s}. To show (3.31), we use the following well known fact:

Proposition 3.9 (The Reflection Principle). Let us consider oriented paths14

in Z2, such that from x the path can go to either to x + e1 − e2 or to
x + e1 + e2 (that is, it can go to northeast and southeast directions). Let
two sites x = (x1, x2) and y = (y1, y2) be such that x1 < y1, x2 > 0, y2 > 0.
Then the number of paths that go from x to y and have at least one common
point with the horizontal axis is equal to the total number of paths that go
from x̃ = (x1,−x2) to y.

Proof Just look at Figure 3.5 (on the right). In a way, it is the same cou-
pling as before, only in dimension 1. �

Now, we write

P0[X2m = 0, T̂ (b1) ≤ 2m] = Pb1 [X2m = b1, T̂ (0) ≤ 2m]

(by the Reflection Principle)

= P−b1 [X2m = b1]

= 2−2m

(
2m

m − b1

)
.

So, we have for m ≥ b3
1,

P0[X2m = 0, T̂ (b1) > 2m]

= 2−2m
((2m

m

)
−

(
2m

m − b1

))
14 These are the space-time paths of one-dimensional simple random walk, the horizontal

axis represents time and the vertical axis represents space.
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Figure 3.5 Two famous visual proofs.

= 2−2m

(
2m
m

)(
1 −

(m − b1 + 1) · · · (m − 1)m
(m + 1) · · · (m + b1)

)
= 2−2m

(
2m
m

)(
1 −

(
1 −

b1

m + 1

)
· · ·

(
1 −

b1

m + b1

))
≤ 2−2m

(
2m
m

)(
1 −

(
1 −

b1

m

)b1)
(using the simple inequality (1 − x)a ≥ 1 − ax for x ∈ [0, 1] and a ≥ 1)

≤ 2−2m

(
2m
m

)
×

b2
1

m

(recall the calculation (2.2) from Section 2.1 and use that b2
1 ≤ m2/3)

≤
1

m1/2 ×
m2/3

m

=
1

m5/6 ,

thus proving (3.31). Note also that, if Bk is a Binomial(2k, 1
2 ) random vari-

able (think of the number of steps in vertical direction of two-dimensional
simple random walk up to time 2k), then it holds that15

P
[ 2

3 k ≤ Bk ≤
4
3 k

]
= P

[
|Bk − EBk| ≤

1
3 k

]
≥ 1 − e−ck. (3.32)

15 Use e.g. Chernoff’s bound.
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So, we have

P[S ′2k = 0,T1 > 2k]

=

k∑
m=0

P[Bk = m]P0[X2m = 0, T̂ (b1) > 2m]P0[X2(k−m) = 0]

(due to (3.32), only the “middle terms” matter, and they are all of the same order)

.
1

k5/6 ×
1

k1/2

= k−4/3;

going back to (3.30), we find that the term M3 is bounded above by a con-
stant (in fact, even polynomially small in ‖x‖), and this finally shows that,
for x ∈ Z2 with both coordinates even, a(x) exists and is of order ln ‖x‖. We
are finally done with the long proof of existence, but the reader is advised
to see Exercise 3.29.

The preceding argument can be tweaked to treat all x ∈ Z2, but, as we
will see now, this is unnecessary. Let us show that the function a is har-
monic outside the origin, i.e.,

a(x) =
1
4

∑
y∼x

a(y) for all x , 0. (3.33)

Then, assuming that (3.33) holds, it is clear that the fact that a(x) < ∞ for
some x , 0 implies that a(x) < ∞ for all x ∈ Z2 (indeed, if a(x) < ∞ then
a(y) should also be finite for all y ∼ x, etc.). Also, if x, y , 0 and y ∼ x,
then (3.33) implies that 1

4 a(x) ≤ a(y) ≤ 4a(x), and this shows that a(x)
should be of order ln ‖x‖ as x→ ∞ indeed.

Now, we prove (3.33). This is again a consequence of the total expecta-
tion formula; we only need to take some more care this time because of the
limits involved. Let

N(k)
z =

k∑
j=0

1{S k = z} (3.34)

be the number of visits to z up to time k; with this notation, we have a(x) =

limk→∞(E0N(k)
0 −ExN(k)

0 ). The total expectation formula (conditional on the
first step) gives us that, for x , 0,

ExN(k)
0 =

1
4

∑
y∼x

EyN(k−1)
0 ,
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so

E0N(k)
0 − ExN(k)

0 = E0N(k)
0 −

1
4

∑
y∼x

EyN(k−1)
0

= E0N(k−1)
0 + P0[S k = 0] −

1
4

∑
y∼x

EyN(k−1)
0

= P0[S k = 0] +
1
4

∑
y∼x

(E0N(k−1)
0 − EyN(k−1)

0 ).

Sending k to infinity in the preceding, we obtain (3.33).
Let N = {±ei, i = 1, 2} be the set of the four neighbours of the origin.

Another useful fact is that

a(x) = 1 for all x ∈ N . (3.35)

To see this, first, observe that, by symmetry, a(·) must have the same value
on the sites of N . Then, again by the total expectation formula,

E0N(k)
0 = 1 +

1
4

∑
y∈N

EyN(k−1)
0 = 1 + Ee1 N(k−1)

0

(note that the time-zero visit counts, and then use symmetry). The preced-
ing implies that

E0N(k)
0 − Ee1 N(k)

0 = (1 + Ee1 N(k−1)
0 ) − (Ee1 N(k−1)

0 + Pe1 [S k = 0])

= 1 − Pe1 [S k = 0],

and, sending k to infinity, we obtain (3.35).
Again, as with Green’s function in the previous section (expression (3.5)),

we argue that the common wisdom suggests that the potential kernel should
be roughly spherically symmetric, and “well behaved” in general. Indeed,
it is possible to prove that, as x→ ∞,

a(x) =
2
π

ln ‖x‖ + γ′ + O(‖x‖−2), (3.36)

where, being γ = 0.5772156 . . . the Euler–Mascheroni constant16,

γ′ =
2γ + ln 8

π
= 1.0293737 . . . , (3.37)

cf. theorem 4.4.4 of [62], and see Exercises 3.31 and 3.32. We also note
that it is possible to obtain exact values of a(·) in other sites (close to the

16 γ = limn→∞
(
1 + 1

2 + · · · + 1
n − ln n

)
.
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origin); for example, it holds that a(e1 + e2) = 4
π
, a(2e1) = 4− 8

π
, and so on;

see section III.15 of [90].
Observe that the harmonicity of a outside the origin (established in (3.33))

immediately implies that the following result holds:

Proposition 3.10. The process a(S k∧τ0 ) is a martingale.

We will repeatedly use this fact in the sequel. What we will also repeat-
edly use, is that, due to (3.36),

a(x + y) − a(x) = O
( ‖y‖
‖x‖

)
(3.38)

for all x, y ∈ Z2 such that (say) ‖x‖ > 2‖y‖.
With some (slight) abuse of notation, we also consider the function

a(r) =
2
π

ln r + γ′

of a real argument r ≥ 1. Note that, in general, a(x) need not be equal to
a(‖x‖), although they are of course quite close for large x. The advantage
of using this notation is e.g. that, due to (3.36) and (3.38), we may write
(for fixed x or at least x such that 2‖x‖ ≤ r)∑

y∈∂B(x,r)

ν(y)a(y) = a(r) + O
( ‖x‖∨1

r

)
as r → ∞ (3.39)

for any probability measure ν on ∂B(x, r).
As in the higher-dimensional case, we need an asymptotic expression for

the probability that a random walk in an annulus leaves it through its outer
boundary. Quite analogously to the proof of Lemma 3.3, we can obtain the
following result from (3.36), Proposition 3.10, and the optional stopping
theorem:

Lemma 3.11. For all x ∈ Z2 and R > r > 0 such that x ∈ B(y,R) \ B(r),
we have

Px
[
τ∂B(y,R) < τB(r)

]
=

a(x) − a(r) + O(r−1)

a(R) − a(r) + O
(
r−1 +

‖y‖+1
R

) , (3.40)

as r,R→ ∞. The preceding also holds with τB(y,R){ on the place of τ∂B(y,R).

We do not write its proof here (since it is really analogous); but, in case
the reader prefers to see a similar proof again, we prove the following result
for the probability of escaping the origin:
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Lemma 3.12. Assume that x ∈ B(y, r) and x , 0. Then

Px
[
τ∂B(y,r) < τ

+
0
]

=
a(x)

a(r) + O
( ‖y‖+1

r

) , (3.41)

as r → ∞. As before, this lemma also holds with τB(y,R){ on the place
of τ∂B(y,r).

Proof Indeed, use Proposition 3.10, and the optional stopping theorem to
write (recall that a(0) = 0)

a(x) = Px
[
τ∂B(y,r) < τ

+
0
]
Ex

(
a(S τ∂B(y,r) ) | τ∂B(y,r) < τ

+
0
)
,

and then use (3.39). �

Note that Lemma 3.12 implies that (since, from the origin, on the next
step the walk will go to a site in N where the potential kernel equals 1)

P0[τ∂B(r) < τ
+
0 ] =

1
a(r) + O(r−1)

=
(2
π

ln r + γ′ + O(r−1)
)−1
. (3.42)

The reader may have recalled that this was the formula that was used in the
introduction to calculate the probability of going to the edge of our galaxy
before returning to the initial point.

Green’s function
Wait, but didn’t we agree in the beginning of this section that there is no
Green’s function in two dimensions? Well, this applies to Green’s function
in the whole space, but we also can define a “restricted Green’s function”,
which can be still quite useful. Let Λ be a (typically, finite) subset of Z2.
For x, y ∈ Λ, let us define

GΛ(x, y) = Ex

τ
Λ{
−1∑

k=0

1{S k = y} (3.43)

to be the mean number of visits to y starting from x before stepping out
of Λ. Notice that this definition formally makes sense17 also in the case
when at least one of the arguments is outside of Λ, in which case GΛ(x, y) =

0.
This notion is, of course, less convenient than that of Green’s function

in the whole space, since we (clearly) lose the translation invariance, and

17 With the usual convention that
∑−1

k=0 = 0.
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also (apparently) lose the symmetry. It is quite remarkable, however, that,
in fact, the symmetry is not lost! Indeed, let us prove that

GΛ(x, y) = GΛ(y, x) for any x, y ∈ Λ. (3.44)

We use the usual trick of getting rid of random sums (such as the one
in (3.43)):

Ex

τ
Λ{
−1∑

k=0

1{S k = y} = Ex

∞∑
k=0

1{S k = y, τΛ{ > k}

=

∞∑
k=0

Px[S k = y, τΛ{ > k]

and so, to prove (3.44), it is enough to show that

Px[S k = y, τΛ{ > k] = Py[S k = x, τΛ{ > k]

for any k. But this is quite evident: indeed, the number of k-step trajectories
that lie fully inside Λ, start at x and end at y, is obviously the same as the
number of such trajectories that start at y and end at x.

Next, there is a useful relation connecting the restricted Green’s function
to the potential kernel:

Theorem 3.13. Assume that Λ is finite. Then, it holds that

GΛ(x, y) = Exa(S τ
Λ{
− y) − a(x − y). (3.45)

Proof First, Proposition 3.10 together with (3.35) imply that the process
a(S n−y) is a submartingale: indeed, when the walk is not at y, its expected
drift equals zero, while, when it is at y, its value is 0 and will become 1 on
the next step (so the expected drift equals 1). With a moment of thought,
one can see18 that the process (recall the notation from (3.34))

Yn = a(S n − y) − N(n−1)
y (3.46)

is a martingale – the drift of a(S n−y) (which is present when the walker vis-
its y) is “compensated” by the increase of the value of Ny. Since GΛ(x, y) =

ExN
(τ

Λ{
−1)

y , it is enough to apply the optional stopping theorem19 to the
martingale Yn and the stopping time τΛ{ :

a(x − y) = ExY0 = ExYτ
Λ{

= Exa(S τ
Λ{
− y) −GΛ(x, y),

thus proving (3.45). �

18 Exercise: prove it formally.
19 Indeed, item (iii) of Corollary 1.7 works fine here, due to the finiteness of Λ and

Exercise 3.30.
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We use Theorem 3.13 to obtain a convenient expression for the restricted
Green’s function in the case Λ = B(R), with a large R. Let x, y ∈ B(R). Note
that, for any z ∈ ∂eB(R), it holds that

a(z − y) = a(R) + O
( ‖y‖+1

R

)
(indeed, analogously to (3.38) just observe that

∣∣∣‖z − y‖ − R
∣∣∣ ≤ ‖y‖ + 1 and

use that ln ‖z − y‖ = ln R + ln
(
1 +

‖z−y‖−R
R

)
). So, Theorem 3.13 implies that,

for x, y ∈ B(R)

GB(R)(x, y) = a(R) − a(x − y) + O
( 1+‖x‖∧‖y‖

R

)
(3.47)

(as ‖x − y‖ → ∞)

=
2
π

ln
R

‖x − y‖
+ O

( 1+‖x‖∧‖y‖
R + 1

‖x−y‖2
)

(3.48)

(note that, by the symmetry property (3.44), we can assume without loss
of generality that ‖y‖ ≤ ‖x‖, so we can choose “the better term” in the
preceding O’s).

Harmonic measure
Here (I mean, in two dimensions) we take a different route: we first define
and discuss the notion of harmonic measure, and only then pass to that of
capacity. For a finite A ⊂ Z2 and x ∈ Z2 let us define

qA(x) = a(x − y0) − Exa(S τA − y0), (3.49)

where y0 is some site of A (later we will prove that the value of qA(x) does
not depend on the choice of this y0). Note that qA(x) = 0 for all x ∈ A
(since τA = 0 when the walk starts at x ∈ A); also, the preceding definition
is invariant under translations, i.e., qA+z(x + z) = qA(x) for any z ∈ Z2. The
importance of this quantity is underlined by the following fact:

Proposition 3.14. For any finite A ⊂ Z2 and any x, y ∈ Z2, it holds that

qA(x) = lim
R→∞

a(R)Px[τB(y,R){ < τA] =
2
π

lim
R→∞
Px[τB(y,R){ < τA] ln R. (3.50)

Proof We use a martingale argument similar to the proofs of Lemmas 3.3,
3.11, and 3.12; we only need to take a bit more care in order to “separate”
the term Exa(S τA ) so that it remains “free from conditioning”. Assume
without restricting generality that y0 = 0 (otherwise we can just “shift”
the origin there) and let us apply the optional stopping theorem20 to the

20 Formally, to justify its use, Corollary 1.7 (ii) is enough.
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martingale a(S n∧τ0 ) with the stopping time τA ∧ τB(y,R){ :

a(x) = Exa(S τA∧τB(y,R){
)

= Ex
(
a(S τ

B(y,R){
)1{τB(y,R){ < τA}

)
+ Ex

(
a(S τA )1{τA < τB(y,R){}

)
(writing 1{τA < τB(y,R){ } = 1 − 1{τB(y,R){ < τA} in the second term)

= Px[τB(y,R){ < τA]Ex
(
a(S τ

B(y,R){
) | τB(y,R){ < τA

)
+ Exa(S τA ) − Ex

(
a(S τA )1{τB(y,R){ < τA}

)
= Px[τB(y,R){ < τA]Ex

(
a(S τ

B(y,R){
) | τB(y,R){ < τA

)
+ Exa(S τA ) − Px[τB(y,R){ < τA]Ex

(
a(S τA ) | τB(y,R){ < τA

)
,

so, abbreviating b = 1 + maxx∈A ‖x‖, we obtain that

Px[τB(y,R){ < τA] =
a(x) − Exa(S τA )

Ex
(
a(S τ

B(y,R){
) − a(S τA ) | τB(y,R){ < τA

) (3.51)

(using (3.39))

=
qA(x)

a(R) − O(ln b) + O
( ‖y‖+1

R

) , (3.52)

and this implies (3.50). �

Since the limit in (3.50) does not depend on y, this means that Proposi-
tion 3.14 indeed shows that the definition (3.49) of qA does not depend on
the choice of y0 ∈ A (since “moving y0 within A” effectively amounts to
changing y in (3.50)).

Now, we are ready to define the notion of the harmonic measure in two
dimensions:

Definition 3.15. For a finite set A ⊂ Z2, the harmonic measure (hmA(y), y ∈
A) is defined as follows:

hmA(y) =
1
4

∑
z∼y

qA(z) =
1
4

∑
z<A:
z∼y

(a(z) − Eza(S τA )). (3.53)

Admittedly, at this point it may be not completely clear why hmA(·)
should be even nonnegative (it is because of Proposition 3.14); what is
definitely not clear, is why it sums to 1 on ∂A. Things start to make sense,
though, when we observe that (3.53) is very similar to (3.20) (i.e., the corre-
sponding definition in the many-dimensional case): the harmonic measure
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is proportional to the escape probability. To see this, observe that Proposi-
tion 3.14 implies that

hmA(y) = lim
R→∞

a(R)Py[τ+
A > τB(R){] =

2
π

lim
R→∞
Py[τ+

A > τB(R){] ln R; (3.54)

indeed, just write, conditioning on the first step,

Py[τ+
A > τB(R){] =

1
4

∑
z<A:
z∼y

Pz[τB(R){ < τA],

then multiply both sides by a(R) and pass to the limit.
To complete the analogy with the many-dimensional case, we have to

prove that the harmonic measure is the entrance law “starting at infinity”
(compare to Theorem 3.8; since the walk is recurrent in two dimensions,
we do not need to condition on {τA < ∞}):

Theorem 3.16. For all finite A ⊂ Z2 and all y ∈ A, we have

hmA(y) = lim
x→∞
Px[S τA = y]. (3.55)

Proof First, it is clear that, without restricting generality, we can assume
that 0 ∈ A. Recall the notation N[

x =
∑τ+

A−1
k=0 1{S k = x} from the proof of

Theorem 3.8; also, let us define

N[
x,R =

(τ+
A−1)∧τ

B(R){∑
k=0

1{S k = x}, N]
x,R =

τ
B(R){∑

k=τ+
A

1{S k = x},

Nx,R := N[
x,R + N]

x,R =

τ
B(R){∑
k=0

1{S k = x}

to be the corresponding (i.e., before the first re-entry, after the first re-entry,
and total) visit counts “restricted” on B(R). Quite similarly to the proof of
Theorem 3.8, one can write

Px[S τA = y]

= EyN[
x

(by the Monotone Convergence Theorem)

= lim
R→∞
EyN[

x,R

= lim
R→∞

(
EyNx,R − EyN]

x,R
)

= lim
R→∞

(
GB(R)(y, x) −

∑
z∈A

Py[τ+
A < τB(R){ , S τ+

A
= z]GB(R)(z, x)

)
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(using (3.47))

= lim
R→∞

(
a(R) − a(y − x) + O

( ‖y‖+1
R

)
−

∑
z∈A

Py[τ+
A < τB(R){ , S τ+

A
= z]

(
a(R) − a(z − x) + O

( ‖z‖+1
R

)))
(note that Py[τ+

A < τB(R){ , S τ+
A

= z]→ Py[S τ+
A

= z] as R→ ∞)

= lim
R→∞

a(R)
(
1 −

∑
z∈A

Py[τ+
A < τB(R){ , S τ+

A
= z]

)
− a(y − x) +

∑
z∈A

Py[S τ+
A

= z]a(z − x)

(observe that, in the first parentheses, we have Py[τ+
A > τB(R){ ], then use (3.54))

= hmA(y) − a(y − x) +
∑
z∈A

Py[S τ+
A

= z]a(z − x). (3.56)

From (3.38), it is straightforward to obtain that

a(y − x) −
∑
z∈A

Py[S τ+
A

= z]a(z − x)

=
∑
z∈A

Py[S τ+
A

= z]
(
a(y − x) − a(z − x)

)
= O

( diam(A)
‖x‖

)
,

which converges to 0 as x → ∞, and so the proof of (3.55) is concluded.
�

Then, Theorem 3.16 implies that hmA(·) is indeed a probability measure
(because, due to the recurrence, so is the entrance measure to A for any
fixed starting point).

Now, we are happy with Theorem 3.16, but not completely so. This is
because it is a qualitative result, which does not say how fast the conver-
gence occurs. Imagine, for example, that the set A is “large” (say, a disk
of radius r2), and the distance from x to A is even larger (say, of order r3).
How does the entrance measure from x to A compare to the harmonic mea-
sure then? Well, in the end of the proof of Theorem 3.16 we obtained some
estimate, but it is not quite sharp – in the example we just considered, the
term O

( diam(A)
‖x‖

)
would be of order r−1, while hmA(y) itself would be of or-

der r−2 (since there are O(r2) sites on the boundary of the disk), which, to
put it mildly, is not quite satisfactory. The following theorem gives a much
better estimate:
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Theorem 3.17. Let A be a finite subset of Z2 and assume that dist(x, A) ≥
3 diam(A) + 1. Then it holds that

Px[S τA = y] = hmA(y)
(
1 + O

( diam(A)
dist(x,A)

))
. (3.57)

Proof Again, without restricting generality, we assume that 0 ∈ A and
|A| ≥ 2, so diam(A) ≥ 1. Recall that in the calculation (3.56) we obtained

Px[S τA = y] − hmA(y) = −a(y − x) +
∑
z∈A

Py[S τ+
A

= z]a(z − x). (3.58)

The idea is to estimate the right-hand side of the preceding expression using
a martingale argument similar to that in the proof of Proposition 3.14. We
need some preparations, though. From the asymptotic expression (3.36)
for a, it is straightforward to obtain that there exist constants θ1,2 > 0 such
that whenever ‖x‖ > θ1 and 2‖y‖ ≤ ‖x‖ it holds that a(x) − a(y) > θ2

(in fact, it is even clear that for any θ2 <
2
π

ln 2 it is possible to choose a
large enough θ1 such that the preceding holds, but we do not need to be so
precise).

Let us now abbreviate V = ∂eB
(
(2 diam(A)) ∨ θ1

)
, so that, due to the

preceding discussion,

a(v) − a(z) ≥ θ2 for all v ∈ V and z ∈ A. (3.59)

We assume additionally that ‖x‖ > θ1; the reader is invited to check (or to
just accept) that this assumption does not restrict generality.

Let us apply the optional stopping theorem to the martingale a(S n∧τx − x)
and the stopping time τ+

A ∧ τV (see Figure 3.6; observe that τV < τx for the
walk that starts at y ∈ ∂A)

a(y − x) = Eya(S τ+
A∧τV − x)

= Ey
(
a(S τ+

A
− x)1{τ+

A < τV }
)

+ Ey
(
a(S τV − x)1{τV < τ

+
A}

)
(writing 1{τ+

A < τV } = 1 − 1{τV < τ+
A} in the first term)

= Eya(S τ+
A
− x)

+ Ey
((

a(S τV − x) − a(S τ+
A
− x)

)
1{τV < τ

+
A}

)
=

∑
z∈A

Py[S τ+
A

= z]a(z − x)

+ Ey
(
a(S τV − x) − a(S τ+

A
− x) | τV < τ

+
A
)
Py[τV < τ

+
A].

So, the preceding together with (3.58) implies that

hmA(y) − Px[S τA = y] = Ey
(
a(S τV − x) − a(S τ+

A
− x) | τV < τ

+
A
)

× Py[τV < τ
+
A]. (3.60)
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0
A

V

x

z

v

y

Figure 3.6 On the proof of Theorem 3.17: the random walk starts
at y ∈ ∂A and ends either on the first re-entry to A or entry to V .

Let us now recall the expression (3.51) from the proof of Proposition 3.14
together with the definition (3.53) of the harmonic measure. For the second
factor in the right-hand side of (3.60), we have

Py[τV < τ
+
A] =

1
4

∑
z<A
z∼y

Pu[τV < τ
+
A]

=
1
4

∑
z<A
z∼y

qA(z)
Ez

(
a(S τV ) − a(S τA ) | τV < τA

)
(by our choice of V and (3.59))

≤
hmA(y)
θ2

.

We also to observe that, for any v ∈ V and z ∈ A, from (3.38) we obtain
that a(x − v) − a(x − z) = O

( diam(A)
dist(x,A)

)
(look again at Figure 3.6), so the first

factor in the right-hand side of (3.60) is O
( diam(A)

dist(x,A)

)
as well. This shows that

the right-hand side of (3.60) is indeed O
( diam(A)

dist(x,A)

)
× hmA(y) and therefore

concludes the proof of Theorem 3.17. �

Capacity
When one learns something new, it is a good idea to review one’s old notes
and see if there was something interesting that went unnoticed at that time.
Specifically, let us revisit the calculations in and around Proposition 3.14.
Recall that, for a finite A ⊂ Z2 and y0 ∈ A, we defined in (3.49) the quanti-
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ties

qA(x) = a(x − y0) − Exa(S τA − y0), x ∈ Z2,

and proved that qA(x) does not depend on the choice of y0 (as long as y0 ∈

A). Let us reexamine the second term in that definition in the light of The-
orem 3.17. If x is far away from A, the entrance measure to A is “almost
harmonic” and, quantitatively,

Exa(S τA − y0) =
∑
z∈A

Px[S τA = z]a(z − y0)

=
∑
z∈A

hmA(z)a(z − y0)
(
1 + O

( diam(A)
dist(x,A)

))
. (3.61)

The main term in (3.61) does not depend on x and therefore looks as some-
thing important. It is so indeed:

Definition 3.18. For a finite set A with y0 ∈ A, we define its capacity by

cap(A) =
∑
x∈A

a(x − y0) hmA(x). (3.62)

First, we need to show that Definition 3.18 does not depend on the choice
of y0 ∈ A. Basically, this is a consequence of the fact that qA(x) does not
depend on the choice of y0 ∈ A. Indeed, if y1 ∈ A, we also have qA(x) =

a(x − y1) − Exa(S τA − y1) and so, by (3.61),

a(x − y0) − a(x − y1) =
(

cap(A) −
∑
z∈A

hmA(z)a(z − y1)
)(

1 + O
( diam(A)

dist(x,A)

))
.

Since the left-hand side of the preceding equation clearly converges to 0 as
x → ∞, the expression in the first parentheses in the right-hand side must
be equal to 0 (since it does not depend on x).

Now, assume that y0 ∈ A ⊂ B(rA). Then, (3.61) implies that

qA(x) = a(x − y0) − cap(A)
(
1 + O

( rA
‖x‖

))
,

and then, recalling the calculation (3.51), we can write21

Px[τB(R){ < τA] =
a(x − y0) − cap(A)

(
1 + O

( rA
‖x‖

))
a(R) + O(R−1) − cap(A)

(
1 + O

( rA
‖x‖

)) . (3.63)

That is, if we know the capacity of A, we are then able to compute the
escape probabilities as before with higher precision. Notice that, the larger
21 Observe that Ex(S τA | τB(R){ < τA) is also quite close to cap(A), as can be seen by

conditioning on the location of S τ
B(R){

.
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cap(A) is, the smaller is the probability in (3.63). This again justifies the
intuition “the capacity measures how big is the set from the point of view
of SRW”; only in two dimensions it enters to the second-order term (and
not to the principal one, as in the higher-dimensional case).

Before going further, let us also obtain a finer expression on the escape
probability from y ∈ ∂A to the boundary of a large disk. Assume that 0 ∈ A;
then, analogously to the previous calculation, we can write

Py[τ+
A > τB(R){] =

1
4

∑
z<A
z∼y

Pz[τ+
A > τB(R){]

=
1
4

∑
z<A
z∼y

qA(z)
a(R) + O(R−1) − cap(A)

(
1 + O

( rA
‖x‖

))
=

hmA(z)
a(R) + O(R−1) − cap(A)

(
1 + O

( rA
‖x‖

)) . (3.64)

Now, let us discuss the simplest cases where the two-dimensional capac-
ities can be calculated. To start with, what can we say about capacities of
one- and two-point sets? The first question is easy: since a(0) = 0, it holds
that cap

(
{x}

)
= 0 for any x ∈ Z2. As for two-point sets, observe that, by

symmetry, the harmonic measure of any two-point set is uniform, so

cap
(
{x, y}

)
=

a(y − x)
2

(3.65)

for any x, y ∈ Z2, x , y. As for the capacity of a disk, (3.39) implies that

cap
(
B(r)

)
= a(r) + O(r−1). (3.66)

It is remarkable to observe that the capacities of a two-point set {0, x} with
‖x‖ = r and the whole disk B(r) only differ by a factor of 2 (this is asymp-
totically, as r → ∞). Dimension two sometimes brings surprises.

Next, it is not difficult to obtain from (3.63) that

cap(A) = lim
x→∞

(
a(x − y0) − lim

R→∞

(
a(R)Px[τB(R){ < τA]

))
(3.67)

(first, multiply it by a(R) and let R→ ∞ to get rid of the denominator, then
“separate” the term cap(A) from the numerator). An easy corollary of this
fact is the following:

Proposition 3.19. (i) Assume that A ⊂ B are finite nonempty subsets
of Z2. Then cap(A) ≤ cap(B).

(ii) Let A, B be finite subsets of Z2 such that A ∩ B is nonempty. Then
cap(A ∪ B) ≤ cap(A) + cap(B) − cap(A ∩ B).
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Proof Note that, in both cases, we may choose y0 ∈ A ∩ B. The part (i)
is straightforward: just observe that Px[τB(R){ < τA] ≥ Px[τB(R){ < τB] for
A ⊂ B (indeed, it is easier to avoid a smaller set), and use (3.67). The proof
of part (ii) is only a bit more complicated: write

Px[τB(R){ < τA∪B]

= 1 − Px
[
{τA < τB(R){} ∪ {τB < τB(R){}

]
= 1 − Px[τA < τB(R){] − Px[τB < τB(R){] + Px[τA ∨ τB < τB(R){]

(since τA∩B ≥ τA ∨ τB)

≥ 1 − Px[τA < τB(R){] − Px[τB < τB(R){] + Px[τA∩B < τB(R){]

= Px[τB(R){ < τA] + Px[τB(R){ < τB] − Px[τB(R){ < τA∩B],

and then use (3.67) again. �

Observe that is it essential to require in (ii) that these two sets have
nonempty intersection – otherwise A = {x} and B = {y} with x , y would,
sort of, provide a counterexample. A possible way to get around it (so
that (ii) would be valid for all A, B) would be to declare the capacity of an
empty set to be equal to (−∞) – this is formally in agreement with (3.67),
by the way.

To conclude this section, we formulate and prove a result analogous
to Theorem 3.17 (which is, in fact, its corollary; so we let the proof be
rather sketchy), but for the conditional entrance measure. This result will
be important for applications, since it is frequent that one needs to con-
sider entrance measures which are not “clean” (i.e., they are conditioned
on something else in addition).

Theorem 3.20. Let A be a finite subset of Z2 and assume that dist(x, A) ≥
5 diam(A) + 1. Assume additionally that (finite or infinite) A′ ⊂ Z2 is such
that dist(A, A′) ≥ dist(x, A) + 1. Then, it holds that

Px[S τA = y | τA < τA′] = hmA(y)
(
1 + O

(Ψ diam(A)
dist(x,A)

))
, (3.68)

where Ψ =
(
a(dist(x, A)) − cap(A)

)
∨ 1.

Note that, in the case A = B(r) and ‖x‖ = s, it holds that O
(Ψ diam(A)

dist(x,A)

)
=

O
( r

s ln s
r

)
, which is the usual error term that one finds in the literature (see

e.g. lemma 2.2 of [33]).

Proof Let us assume without restricting generality that 0 ∈ A, A ⊂ B(r)
for r ≤ diam(A), and abbreviate ‖x‖ = s. First, using the usual last-exit-
decomposition reasoning, it is clear that it is enough to prove (3.68) for
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A′ = B(s){. Then, since on its way to A the walker must pass through ∂B( 2
3 s),

it would be enough to prove that

Pz[S τA = y | τA < τB(s){] = hmA(y)
(
1 + O

(Ψr
s

))
(3.69)

for any z ∈ ∂B( 2
3 s). Now, we write

Pz[S τA = y, τA < τB(s){]

= Pz[S τA = y] − Pz[S τA = y, τB(s){ < τA]

= Pz[S τA = y] −
∑

z′∈B(s){

Pz[S τ
B(s){

= z′, τB(s){ < τA]Pz′[S τA = y]

(by Theorem 3.17)

= hmA(y)
(
1 + O

( r
s

))
− Pz[τB(s){ < τA] hmA(y)

(
1 + O

( r
s

))
= hmA(y)

(
Pz[τA < τB(s){] + O

( r
s

))
and, since (3.64) implies that Pz[τA < τB(s){] ≥ O(1/Ψ), we obtain (3.69)
by dividing the preceding by Pz[τA < τB(s){]. �

3.3 Exercises

Exercise 3.1. Prove that in Proposition 3.1 it is enough to assume that h is
bounded only from one side (i.e., either h(x) ≤ K for all x, or h(x) ≥ K for
all x).

Transient case (Section 3.1)
Exercise 3.2. Prove that G(0) −G(e1) = 1.

Exercise 3.3. Prove the following exact expression for Green’s function:

G(x) =
1

(2π)d

∫
[−π,π]d

ei(θ,x)

1 − Φ(θ)
dθ, (3.70)

where Φ(θ) = d−1 ∑d
k=1 cos θk. In particular, it holds that

G(0) =
1

(2π)d

∫
[−π,π]d

1
1 − Φ(θ)

dθ. (3.71)

Exercise 3.4. Follow the proof of theorem 4.3.1 of [62] to see how to
obtain (3.5) from the local CLT.

Exercise 3.5. Assume that we only know that, for some c > 0, G(x) ∼
c‖x‖−(d−2) as x → ∞. Prove that d−2

2c equals the volume of the unit ball
in Rd.
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Exercise 3.6. Obtain a direct proof (i.e., a proof that does not use (3.5)) that
EsB(r)(y) � r−1 for any y ∈ B(R){ (and therefore also that cap(B(r)) � rd−2).
Suggestion: use Lyapunov functions.

Exercise 3.7. Note that the definition (3.43) of the restricted Green’s func-
tion makes sense in any dimension. For d ≥ 3, prove an analogue of Theo-
rem 3.13’s statement:

GΛ(x, y) = G(x − y) − ExG(S τ
Λ{
− y). (3.72)

Exercise 3.8. For d ≥ 2 and r ≥ 1, prove that there exist c2 > c1 > 0
(depending only on dimension) such that

c1

rd−1 ≤ Px
[
S τ∂eB(r) = y

]
≤

c2

rd−1 (3.73)

for all x ∈ B(r/4) and all y ∈ ∂eB(r).

Exercise 3.9. For A ⊂ Zd and x ∈ Zd, denote G(x, A) =
∑

y∈A G(x, y) to be
the mean number of visits to A starting from x. Prove that, for finite A,

|A|
maxy∈A G(y, A)

≤ cap(A) ≤
|A|

miny∈A G(y, A)
. (3.74)

We have to mention that (3.74) provides another useful way of estimating
capacities.

Exercise 3.10. For a finite A ⊂ Zd, let KA be a class of nonnegative func-
tions, defined in the following way:

KA =
{
h : Zd → R+ such that h(x) = 0 for all x < A

and
∑
x∈Zd

G(y, x)h(x) ≤ 1 for all y ∈ Zd
}
.

Prove that

cap(A) = sup
h∈KA

∑
x∈A

h(x).

Exercise 3.11. Prove that the capacity (defined as in (3.10)) of any infinite
transient set is infinite.

Exercise 3.12. Estimate (in the sense of “�”) the capacities of various sets
(and in various dimensions), such as

• a line segment (i.e., a sequence of neighbouring sites lying on a straight
line);

• a “plaquette” (i.e., a discrete two-dimensional square immersed in Zd);
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• a cylinder (product of a line segment with a (d − 1)-dimensional pla-
quette), with hight/width ratio varying arbitrarily;

• whatever else you can imagine.

Exercise 3.13. Prove the “only if” part of Theorem 3.7.

Exercise 3.14. Prove the “if” part of Theorem 3.7.

Exercise 3.15. Using Wiener’s criterion, prove that, in three dimensions,
the “ray”

{
(0, 0, k), k ≥ 0

}
⊂ Z3 is a recurrent set.

Exercise 3.16. Give an example of a transient set such that the expected
number of visits there is infinite.

Exercise 3.17. Let f : R+ → (0, 1] be a monotonously decreasing function
with lims→∞ f (s) = 0. Let us construct a random set A f ⊂ Z

d in the follow-
ing way: x ∈ Zd is included to A f with probability f (‖x‖), independently.

(i) Is it true that, for any such f , P[A f is transient] must be either 0 or 1?
(ii) Give (nontrivial) examples of functions for which the resulting random

set is recurrent/transient. What should be the “critical rate of decay”
of f which separates recurrence from transience?

Exercise 3.18. Give an example of a transient set A ⊂ Zd such that Px[τA <

∞] = 1 for infinitely many x ∈ Zd.

Exercise 3.19. For any transient set A and any ε > 0, prove that Px[τA <

∞] < ε for infinitely many x ∈ Zd.

Exercise 3.20. Prove that, for finite A,∑
y∈A

hmA(y)G(y, A) =
|A|

cap(A)
. (3.75)

Exercise 3.21. For r ≥ 1, prove that hmB(r)(x) � r−(d−1) for all x ∈ ∂B(r).

Exercise 3.22. Show that, for finite A ⊂ B ⊂ Zd (d ≥ 3). it holds

PhmB[τA < ∞] =
cap(A)
cap(B)

(3.76)

(here PhmB means the probability for the walk with the initial position cho-
sen according to the measure hmB).

Exercise 3.23. Prove that the harmonic measure is consistent, in the sense
that, for any finite A ⊂ B,

PhmB[S τA = y | τA < ∞] = hmA(y) (3.77)
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for all y ∈ A.

Exercise 3.24. Prove that for any finite A, B ⊂ Zd, d ≥ 3, it holds that

PhmA [τB < ∞] ≤
cap(B)
cap(A)

. (3.78)

Exercise 3.25. Can you obtain an analogue of Theorem 3.17 in the many-
dimensional case (i.e., d ≥ 3)? That is, prove that

Px[S τA = y | τA < ∞] = hmA(y)
(
1 + O

( diam(A)
dist(x,A)

))
. (3.79)

Exercise 3.26. Let A ⊂ Zd be finite and x < A, y ∈ ∂A.

(i) Prove that

Px[τA < ∞, S τA = y] = Py[τx < τ
+
A]

(
G(0) − O

( (diam(A))d−2

(dist(x,A))2d−4

))
, (3.80)

and that Px[τA < ∞, S τA = y] > G(0)Py[τx < τ+
A] (that is, the O(·)

in (3.80) is always strictly positive).
(ii) Prove that

Py[τx < ∞, τ
+
A = ∞] = Py[τx < ∞] EsA(y)

(
1 + O

( diam(A)
dist(x,A)

))
, (3.81)

that is, the events
{
eventually hit x

}
and

{
escape from A

}
are approximately

independent under Py when diam(A)
dist(x,A) → 0.

Exercise 3.27. Consider a transient and reversible Markov chain with the
reversible measure µ. Prove that (for Green’s function G defined in the
usual way)

µ(x)G(x, y) = µ(y)G(y, x)

for any x, y. Prove that the preceding also holds for the restricted Green’s
function GΛ.

Recurrent case (Section 3.2)
Exercise 3.28. Prove, preferably without any calculations, that

(i) P0[S 2n = 0] > P0[S 2n = e1 + e2] for all n.
(ii) P0[S k = x] ≥ P0[S k = x + 2e1], for all k and x such that x · e1 ≥ 0, and

the inequality is strict in the case when the first probability is strictly
positive.

(iii) Use the preceding to conclude that, for any x , 0 and any n,

P0[S 2n = 0] > P0[S 2n = x] + P0[S 2n+1 = x]. (3.82)
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Exercise 3.29. Can you simplify the proof of existence of the potential
kernel a using the coordinate decoupling idea from the end of Section 2.1?

Exercise 3.30. Give a rigorous proof that for any d and any finite Λ ⊂ Zd

it holds that ExτΛ{ < ∞ for all x.

Exercise 3.31. Prove that

a(x) =
1

(2π)2

∫
[−π,π]2

1 − cos(θ1x1 + θ2x2)
1 − 1

2 (cos θ1 + cos θ2)
dθ. (3.83)

Exercise 3.32. Derive (3.36) either by analysing (3.83) (cf. section III.12
of [90]) or by analysing (3.25) directly, via the Local Central Limit Theo-
rem (cf. section 4.4 of [62]).

Exercise 3.33. In the proof of Theorem 3.13, show that

a(x − y) = ExYτ
Λ{

without invoking the optional stopping theorem.

Exercise 3.34. Let x , 0 and define

ηx =

τ+
0−1∑
k=0

1{S k = x}

to be the number of visits to x before hitting the origin. Prove that Exηx =

2a(x) and E0ηx = 1.

Exercise 3.35. Prove that the harmonic measure is consistent in two di-
mensions as well (recall Exercise 3.23): for any finite A ⊂ B,

PhmB[S τA = y] = hmA(y) (3.84)

for all y ∈ A.

Exercise 3.36. Show that, in general, it is not possible to get rid of loga-
rithms in the error terms in (3.68) and (3.69) (i.e., substitute O

(Ψr
s

)
by O

( r
s

)
there; recall that the term Ψ is logarithmic) by considering the following
example. For k ≥ 5, let Λ = [−k, k]2 ⊂ Z2 be the (discrete) square of
size 2k centred at the origin, let y = e1, z = −e1, and let x ∈ Λ be such that
x · e1 ∈ [k/3, 2k/3] and x · e2 ∈ [−k/2, k/2] (see Figure 3.7).

(i) Show that Px[τy,z < τΛ{] �
1

ln k .
(ii) Prove that

Px[τy < τΛ{ , S j · e1 > 0 for all j ≤ τy] �
1
k
.
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z

Λ

y
0

x

Figure 3.7 The setup of Exercise 3.36.

(iii) From (i) and (ii), conclude that

Px[S τy,z = y | τy,z < τΛ{] − Px[S τy,z = z | τy,z < τΛ{] �
ln k
k
. (3.85)

Do you have a heuristic explanation about why there is this difference from
the unconditional entrance measure result (Theorem 3.17), where we do
not have logarithmic terms?

Exercise 3.37. Prove that if x ∈ A ⊂ B, then hmA(x) ≥ hmB(x).

Exercise 3.38. Prove that

cap(A) =
(

sup
y∈A

f (y)
)−1
,

where the supremum is over all nonnegative functions f on A such that∑
y∈A a(x − y) f (y) ≤ 1 for all x ∈ A.

Exercise 3.39. Let x1, x2, x3 ∈ Z
2 be three distinct sites, and abbreviate

v1 = x2 − x1, v2 = x3 − x2, v3 = x1 − x3. Prove that the capacity of the set
A = {x1, x2, x3} is given by the formula

a(v1)a(v2)a(v3)
a(v1)a(v2) + a(v1)a(v3) + a(v2)a(v3) − 1

2

(
a2(v1) + a2(v2) + a2(v3)

) . (3.86)

Exercise 3.40. What if we try to develop the same theory as in Section 3.1,
only on a finite set Λ ⊂ Z2 instead of the whole space Zd, d ≥ 3? The



3.3 Exercises 71

x

Figure 3.8 The walk hits the outer boundary.

analogy is clear: we regard the outside of Λ as “infinity”. Let A ⊂ Λ.
Analogously to (3.9), let us define for any x ∈ Λ

EsA,Λ(x) = Px[τ+
A > τΛ{]1{x ∈ A};

on A, this equals the probability of “escaping from A within Λ”. Also, let

uA,Λ(x) = Px[τA < τΛ{]

be the probability of “hitting A within Λ”; note that uA,Λ = 1 for all x ∈ A.

(i) Prove a relation analogous to (3.11):

uA,Λ(y) =
∑
x∈Λ

GΛ(y, x) EsA,Λ(x), (3.87)

or, in the matrix form, uA,Λ = GΛ EsA,Λ.
(ii) Let us define

capΛ(A) =
∑
x∈Λ

EsA,Λ(x). (3.88)

What general properties of this notion of capacity can one obtain?
(iii) Now, consider the case Λ = B(R), and let R grow to infinity. What hap-

pens then to the objects we just considered? How does the “canonical”
two-dimensional capacity (as defined in (3.18)) then relates to the one
defined in (3.88)?

Exercise 3.41. Lemma 3.11 permits us to obtain good approximations for
probabilities of exiting annuli at inner/outer boundaries, in the case when
the two circumferences are (almost) concentric. But what can be said about
the situation depicted on Figure 3.8 (of course, in the regime when the radii
of the circumferences are large)? Can you propose a method of obtaining a
good approximation for that probability?
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Exercise 3.42. Prove the existence of the potential kernel (defined in the
same way as in (3.25)) for the one-dimensional SRW. Can you actually
calculate it?

Exercise 3.43. Obtain an explicit formula (that is, more explicit than (3.45))
for the one-dimensional Green’s function (defined as in (3.43)) restricted
on an interval Λ.
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SRW conditioned on not hitting the origin

So far, the content of this book has been quite “traditional”. In this chapter,
we finally enter (relatively) unexplored lands. First, we review the classical
(however, somewhat underrepresented in the literature) notion of Doob’s
h-transforms. We then study two-dimensional SRW conditioned on never
entering the origin, which is the Doob’s h-transform of (unconditional)
two-dimensional SRW with respect to its potential kernel a. It turns out
that the conditioned walk Ŝ is quite an interesting object on its own. As
we will see in this chapter, some of its (sometimes surprising) properties
include

• Ŝ is transient; however,

lim
y→∞
Px0 [Ŝ ever hits y] =

1
2

for any x0 , 0;
• any infinite set is recurrent for Ŝ ;
• if A is a “nice” large set (e.g., a large disk or square or segment), then the

proportion of sites of A which are ever visited by Ŝ is a random variable
with approximately uniform distribution on [0, 1].

Also, studying the properties of trajectories of the conditioned walk Ŝ will
be important for us, since later in Chapter 6 we will make a soup of them.

4.1 Doob’s h-transforms

Let us start with a one-dimensional example. Let (S n, n ≥ 0) be the simple
random walk in dimension 1. It is well known that for any 0 < x < R

Px[τR < τ0] =
x
R

(4.1)

– this is the solution of Gambler’s Ruin Problem (found in most elemen-
tary probability books) for players of equal strength. For the purposes of

73



74 Conditioned SRW

this chapter, however, it is also important to notice that the preceding fact
follows, in a quite straightforward way, from the optional stopping theorem
applied to the martingale (S n) and the stopping time τ0∧τR. Now, how will
the walk behave if we condition it to reach R before reaching the origin?
Using (4.1), we write

Px[S 1 = x + 1 | τR < τ0]

=
Px[S 1 = x + 1, τR < τ0]

Px[τR < τ0]

=
Px[S 1 = x + 1]Px[τR < τ0 | S 1 = x + 1]

Px[τR < τ0]

=

1
2Px+1[τR < τ0]
Px[τR < τ0]

=

1
2 ×

x+1
R

x
R

=
1
2
×

x + 1
x

,

which also implies that Px[S 1 = x − 1 | τR < τ0] = 1
2 ×

x−1
x . Notice that, by

the way, the drift at x of the conditioned walk is of order 1
x – this is the so-

called Lamperti’s process which we have already seen in this book: recall
Exercises 2.26 and 2.27. The preceding calculation does not yet formally
show that the conditioned walk is a Markov process (strictly speaking, we
would have needed to condition on the whole history, to begin with), but let
us forget about that for now, and examine the new transition probabilities
we just obtained, p̂(x, x − 1) = 1

2 ×
x−1

x and p̂(x, x + 1) = 1
2 ×

x+1
x . First,

it is remarkable that they do not depend on R, which suggests that we can
just send R to infinity and obtain “the random walk conditioned on never
returning to the origin”. Secondly, just look at the arguments of p̂’s and the
second fraction in the right-hand sides: these new transition probabilities
are related to the old ones (which are p(x, y) = 1

2 for x ∼ y) in a special
way:

p̂(x, y) = p(x, y) ×
h(y)
h(x)

(4.2)

with h(x) = |x| (soon it will be clear why do we prefer to keep the function
nonnegative). What is special about this function h is that it is harmonic
outside the origin, so that h(S n∧τ0 ) is a martingale. It is precisely this fact
that permitted us to obtain (4.1) with the help of the optional stopping
theorem.
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Keeping the preceding discussion in mind, let us spend some time with
generalities. Consider a countable Markov chain on a state space Σ, and
let A ⊂ Σ be finite. Let h : Σ → R+ be a nonnegative function which
is zero on A and strictly positive and harmonic outside A, i.e., h(x) =∑

y p(x, y)h(y) for all x < A. We assume also that h(x)→ ∞ as x→ ∞; this
clearly implies that the Markov chain is recurrent (recall Theorem 2.4).

Definition 4.1. The new Markov chain with transition probabilities defined
as in (4.2) is called Doob’s h-transform of the original Markov chain with
respect to h.

Observe that the harmonicity of h implies that p̂’s are transition proba-
bilities indeed:∑

y

p̂(x, y) =
1

h(x)

∑
y

p(x, y)h(y) =
1

h(x)
× h(x) = 1.

To the best of the author’s knowledge, this kind of object first appeared
in [36], in the continuous-space-and-time context. In this book, we again
(as in Chapter 3) do not try build a comprehensive general theory of Doob’s
h-transforms, but rather only look at the simplified setup (only simple ran-
dom walks) and take our profits. Further information can be found e.g.
in [18, 63, 103], and the book [37] provides a systematic treatment of the
subject in full generality.

Note the following simple calculation: for any x < A ∪ ∂eA, we have
(note that h(y) , 0 for all y ∼ x then)

Ex
1

h(X̂1)
=

∑
y∼x

p̂(x, y)
1

h(y)

=
∑
y∼x

p(x, y)
h(y)
h(x)

1
h(y)

=
1

h(x)

∑
y∼x

p(x, y)

=
1

h(x)
,

which implies the following:

Proposition 4.2. The process 1/h(X̂n∧τA∪∂eA ) is a martingale and the Markov
chain X̂ is transient.

(The last statement follows from Theorem 2.5 since h(x) → ∞ as x →
∞.)
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A

ΛR

x0
xn

Figure 4.1 Comparing the weights of the path.

Now, let us try to get an idea about what the h-transformed chain really
does. For technical reasons, let us make another assumption1: there exists
c > 0 such that |h(x) − h(y)| ≤ c for all x ∼ y (for general Markov chains,
x ∼ y means p(x, y) + p(y, x) > 0).

For R > 0, let us define

ΛR = {x ∈ Σ : h(x) ≤ R};

under the previous assumptions, ΛR is finite for any R. Note that the op-
tional stopping theorem implies that, for x0 ∈ ΛR \ A

h(x0) = Px0 [τΛ
{
R
< τA]Ex0

(
h(Xτ

Λ
{
R

) | τ
Λ
{
R
< τA

)
,

(recall that Ex0 (h(XτA ) | τA < τ
Λ
{
R
) = 0 because h is zero on A) and, since

the second factor in the preceding display is in [R,R + c], we have

Px0 [τΛ
{
R
< τA] =

h(x0)
R

(
1 + O(R−1)

)
. (4.3)

Then, we consider another countable Markov chain X̂ on the state space Σ\

A with transition probabilities p̂(·, ·) defined as in (4.2) for x < A. Now,
consider a path ℘ = (x0, . . . , xn−1, xn), where x0, . . . , xn−1 ∈ ΛR \ A and
xn ∈ Σ \ ΛR (here, “path” is simply a sequence of neighbouring sites; in
particular, it need not be self-avoiding). The original weight of that path
(i.e., the probability that the Markov chain X follows it starting from x0) is

P℘ = p(x0, x1)p(x1, x2) . . . p(xn−1, xn),

1 One can live without this assumption, e.g., in the one-dimensional nearest-neighbour
case; see Exercises 4.3 and 4.4.
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and the weight of the path for the new Markov chain X̂ will be

P̂℘ = p(x0, x1)
h(x1)
h(x0)

p(x1, x2)
h(x2)
h(x1)

. . . p(xn−1, xn)
h(xn)

h(xn−1)

= p(x0, x1)p(x1, x2) . . . p(xn−1, xn)
h(xn)
h(x0)

= P℘

h(xn)
h(x0)

. (4.4)

Here comes the key observation: the last term in (4.4) actually equals
R

h(x0) (1 + O(R−1)), that is, it is almost inverse of the expression in the right-
hand side of (4.3). So, we have

P̂℘ =
P℘

Px0 [τΛ
{
R
< τA]

(
1 + O(R−1)

)
,

that is, the probability that the X̂ chain follows a path is almost the condi-
tional probability that that the original chain X follows that path, under the
condition that it goes out of ΛR before reaching A (and the relative error
goes to 0 as R→ ∞). Now, the (decreasing) sequence of events {τ

Λ
{
R
< τA}

converges to {τA = ∞} as R → ∞. Therefore, we can rightfully call X̂ the
Markov chain conditioned on never reaching A, even though the probabil-
ity of the latter event equals zero.

We end this section with an unexpected2 remark. Recall the conditioned
one-dimensional SRW we just constructed: denoting ∆x = S 1 − x, we cal-
culated that Ex∆x = 1

x ; and also, obviously, it holds that Ex∆
2
x = 1. So,

xEx∆x = Ex∆
2
x;

notice, by the way, that this relation remains unaffected if one rescales
the space by a constant factor. Now, recall Exercise 2.26: the preceding
equality will (asymptotically) hold in three dimensions (and only in three
dimensions) for the norm of the SRW (i.e., its distance to the origin).
This suggests that there may be some “hidden relationship” between the
one-dimensional conditioned SRW, and the norm of the three-dimensional
SRW. Since in the continuous limit such relationships often reveal them-
selves better, one may wonder if the (suitably defined) one-dimensional
conditioned (on not hitting the origin) Brownian motion is somehow re-
lated to the norm of the three-dimensional Brownian motion. The reader is
invited to look at this question more closely.

2 Well, maybe quite the contrary.
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4.2 Conditioned SRW in two dimensions: basic properties

As you probably expected, we now turn our attention to the two-dimensional
SRW. By (3.33), the potential kernel a is ready to play the role of the h, so
let us define another random walk (Ŝ n, n ≥ 0) on Z2 \ {0} in the following
way: its transition probability matrix equals

p̂(x, y) =


a(y)

4a(x)
, if x ∼ y, x , 0,

0, otherwise.
(4.5)

The discussion of the previous section then means that the random walk Ŝ
is the Doob h-transform of the simple random walk, under the condition
of not hitting the origin. Let τ̂ and τ̂+ be the entrance and the hitting times
for Ŝ ; they are defined as in (1.1) and (1.2), only with Ŝ . We summarize
the basic properties of the random walk Ŝ in the following:

Proposition 4.3. The following statements hold:

(i) The walk Ŝ is reversible, with the reversible measure µ(x) = a2(x).
(ii) In fact, it can be represented as a random walk on the two-dimensional

lattice with the set of conductances
(
a(x)a(y), x, y ∈ Z2, x ∼ y

)
.

(iii) The process 1/a(Ŝ n∧τ̂N ) is a martingale.3

(iv) The walk Ŝ is transient.

Proof Indeed, for (i) and (ii) note that

a2(x)p̂(x, y) =
a(x)a(y)

4
= a2(y)p̂(y, x)

for all adjacent x, y ∈ Z2 \ {0}, and, since a is harmonic outside the origin,

a(x)a(y)∑
z∼x a(x)a(z)

=
a(y)

4
∑

z∼x
1
4 a(z)

=
a(y)

4a(x)
= p̂(x, y).

Items (iii) and (iv) are Proposition 4.2. �

Next, we relate the probabilities of certain events for the walks S and Ŝ .
For D ⊂ Z2, let Γ

(x)
D be the set of all nearest-neighbour finite trajectories

that start at x ∈ D \ {0} and end when entering ∂D for the first time; denote
also Γ

(x)
y,R = Γ

(x)
B(y,R). ForH ⊂ Γ

(x)
D write S ∈ H (respectively, Ŝ ∈ H) if there

exists k such that (S 0, . . . , S k) ∈ H (respectively, (Ŝ 0, . . . , Ŝ k) ∈ H). In the
next result, we show that Px

[
S ∈ · | τ0 > τ∂B(R)

]
and Px[Ŝ ∈ · ] are almost

3 Recall that N is the set of the four neighbours of the origin.
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indistinguishable on Γ
(x)
0,R (that is, the conditional law of S almost coincides

with the unconditional law of Ŝ ).

Lemma 4.4. Let x ∈ B(R) \ {0}, and assumeH ⊂ Γ
(x)
0,R. We have

Px
[
S ∈ H | τ0 > τ∂B(R)

]
= Px

[
Ŝ ∈ H

](
1 + O((R ln R)−1)

)
. (4.6)

On sets which are distant from the origin, however, we show that S and Ŝ
have almost the same behaviour (without any conditioning):

Lemma 4.5. Suppose that 0 < D, and assume that H ⊂ Γ
(x)
D ; also, denote

s = dist(0,D), r = diam(D). Then, for x ∈ D,

Px[S ∈ H] = Px
[
Ŝ ∈ H

](
1 + O

( r
s ln s

))
. (4.7)

Proof of Lemmas 4.4 and 4.5 Let us prove (4.6). Assume without loss of
generality that no trajectory from H passes through the origin. Note that
for any path % = (x0, x1, . . . , xn) in Z2 \ {0} we have (as in (4.4))

Px0

[
Ŝ 1 = x1, . . . , Ŝ n = xn

]
=

a(x1)
4a(x0)

×
a(x2)
4a(x1)

× · · · ×
a(xn)

4a(xn−1)

=
a(xn)
a(x0)

(1
4

)n
, (4.8)

and therefore it holds that

Px[Ŝ ∈ H] =
∑
%∈H

a(%end)
a(x)

(1
4

)|%|
,

where |%| is the length of % and %end is the last site of %. On the other hand,
by Lemma 3.12

Px[S ∈ H | τ0 > τ∂B(R)] =
a(R) + O(R−1)

a(x)

∑
%∈H

(1
4

)|%|
.

Since %end ∈ ∂B(R), we have a(%end) = a(R)+O(R−1) by (3.38), and so (4.6)
follows.

The proof of (4.7) is essentially the same, only this time the factor a(%end)
a(x)

will be equal to 1 + O
( r

s ln s

)
, again due to (3.38). �

Next, we need an analogue of Lemma 3.11 for the conditioned random
walk, i.e., we would like to estimate the probability that the Ŝ -walk escapes
an annulus through its outer boundary:
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∂A

∂A′

Figure 4.2 Excursions (pictured as bold pieces of trajectories) of
random walks between ∂A and ∂A′.

Lemma 4.6. For all x ∈ Z2 and R > r > 0 such that x ∈ B(R) \ B(r), we
have

Px
[
τ̂∂B(R) < τ̂B(r)

]
= 1 −

(
a(x)

)−1
−

(
a(R) + O(R−1)

)−1(
a(r) + O(r−1)

)−1
−

(
a(R) + O(R−1)

)−1 , (4.9)

as r,R→ ∞.

Proof This is an argument of the type we have seen already many times in
this book: use the optional stopping theorem for the martingale 1/

(
Ŝ k∧τ̂N

)
with the stopping time τ̂∂B(R) ∧ τ̂B(r). We let the reader fill the details. �

Letting R→ ∞ in (4.9) yields

Corollary 4.7. Assume r ≥ 1 and ‖x‖ ≥ r + 1. We have

Px
[
τ̂B(r) = ∞

]
= 1 −

a(r) + O(r−1)
a(x)

. (4.10)

One typically needs relations such as (4.9) and (4.10) when dealing with
excursions of the conditioned random walk. If A ⊂ A′ are (finite) sub-
sets of Z2, then the excursions between ∂A and ∂A′ are pieces of nearest-
neighbour trajectories that begin on ∂A and end on ∂A′; see Figure 4.2,
which is, hopefully, self-explanatory. We refer to section 3.4 of [25] for
formal definitions.

For example, let A = B(r) and A′ = B(2r). Then, for each x ∈ ∂A′, (4.10)
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and (3.36) imply that

Px[τ̂B(r) = ∞] = 1 −
2
π

ln r + γ′ + O(r−1)
2
π

ln 2r + γ′ + O(r−1)

=
ln 2 + O(r−1)

ln r + ( π2γ
′ + ln 2) + O(r−1)

,

that is, the distribution of the total number of such excursions is very close
to geometric with success probability ln 2

ln r+( π2 γ
′+ln 2) . Arguments of this sort

will appear several times in the subsequent exposition.
What we do next is develop some potential theory for the conditioned

walk Ŝ .

4.3 Green’s function and capacity

Green’s function of the conditioned walk is defined in the following way
(completely analogous to (3.2)): for x, y ∈ Z2 \ {0}

Ĝ(x, y) = Ex

∞∑
k=0

1{Ŝ k = y}. (4.11)

It is remarkable that one is actually able to calculate this function in
terms of the potential kernel a (this is theorem 1.1 of [76]):

Theorem 4.8. For all x, y ∈ Z2 \ {0} it holds that

Ĝ(x, y) =
a(y)
a(x)

(
a(x) + a(y) − a(x − y)

)
. (4.12)

Proof First, we need a very simple general fact about hitting times of
recurrent Markov chains:

Lemma 4.9. Let (Xn) be a recurrent Markov chain on a state space Σ, and
x ∈ Σ, A, B ⊂ Σ are such that A ∩ B = ∅ and x < A ∪ B. Then

Px[τA < τB] = Px[τA < τB | τ
+
x > τA∪B] (4.13)

(that is, the events {τA < τB} and {τ+
x > τA∪B} are independent under Px).

Proof Informally (see Figure 4.3): let p := Px[τA < τB | τ
+
x > τA∪B] be

the value of the probability in the right-hand side of (4.13). At the moments
when the walker visits x, it tosses a coin to decide if it will revisit it before
coming to A ∪ B, or not. When it decides to definitely leave x for A ∪ B,
the probability of choosing A is p, so it is p overall. Making this argument
rigorous and boring is left as an exercise. �
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A
Bx

Figure 4.3 On the proof of Lemma 4.9.

We continue proving Theorem 4.8. Fix (a large) R > 0, abbreviate ΛR =

B(R) \ {0}, and let us denote for y ∈ ΛR

N∗y,R =

τ
Λ
{
R∑

k=0

1{S k = y},

N̂∗y,R =

τ̂
Λ
{
R∑

k=0

1{Ŝ k = y},

to be the numbers of visits to y before hitting 0 or ∂eB(R), for the SRW
and the conditioned SRW. Let us also denote ĜR(x, y) = ExN̂∗y,R. Before
looking at the next argument, it is a good idea to recall how “exactly k
visits” became “at least k visits” in (3.12). Now, let x ∈ ΛR and observe
that, on one hand,

Px[N∗y,R = n, τ∂eB(R) < τ0]

= Px[N∗y,R ≥ n]Py[τ∂eB(R) < τ0, τ
+
y > τΛ

{
R
]

= Px[N∗y,R ≥ n]Py[τ+
y > τΛ

{
R
]Py[τ∂eB(R) < τ0 | τ

+
y > τΛ

{
R
]

(by Lemma 4.9)

= Px[N∗y,R ≥ n]Py[τ+
y > τΛ

{
R
]Py[τ∂eB(R) < τ0]

= Px[N∗y,R = n]Py[τ∂eB(R) < τ0]

(by Lemma 3.12)

= Px[N∗y,R = n]
a(y)

a(R) + O(R−1)
, (4.14)

and, on the other hand, the same expression can be also treated in the fol-
lowing way:

Px[N∗y,R = n, τ∂eB(R) < τ0]

= Px[N∗y,R = n | τ∂eB(R) < τ0]Px[τ∂eB(R) < τ0]
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(by Lemma 4.4)

= Px[N̂∗y,R = n]
(
1 + O((R ln R)−1)

)
Px[τ∂eB(R) < τ0]

(again, by Lemma 3.12)

= Px[N̂∗y,R = n]
(
1 + O((R ln R)−1)

) a(x)
a(R) + O(R−1)

. (4.15)

Note also that a(R) + O(R−1) = a(R)
(
1 + O((R ln R)−1)

)
. So, since (4.14)

and (4.15) must be equal, we have

a(x)Px[N̂∗y,R = n] = a(y)Px[N∗y,R = n]
(
1 + O((R ln R)−1)

)
;

multiplying by n and summing in n ≥ 1, we obtain

a(x)ĜR(x, y) = a(y)GΛR (x, y)
(
1 + O((R ln R)−1)

)
. (4.16)

Note that ĜR(x, y)→ Ĝ(x, y) as R→ ∞, due to the Monotone Convergence
Theorem. Next, we are actually able to say something about GΛR (x, y): by
Theorem 3.13, it holds that4

GΛR (x, y) = Exa(S τ
Λ
{
R

− y) − a(x − y)

(once again, by Lemma 3.12)

=
a(x)

a(R) + O(R−1)
(
a(R) + O

( ‖y‖+1
R

))
+

(
1 −

a(x)
a(R) + O(R−1)

)
a(y) − a(x − y)

= a(x) + a(y) − a(x − y) + O
( ‖y‖+1

R +
a(x)a(y)

a(R)

)
.

Inserting this back to (4.16) and sending R to infinity, we obtain (4.12). �

At this point, let us recall that the function 1/a(·) is harmonic5 on Z2 \

(N∪{0}), and observe that Green’s function Ĝ(·, y) is harmonic on Z2\{0, y}
(as before, this is an immediate consequence of the total expectation for-
mula; recall (3.3)). It turns out that this “small” difference will be quite
important: indeed, the latter fact will be operational in some places later
in this chapter, for applying the optional stopping theorem in some partic-
ular settings. For future reference, we formulate the preceding fact in the
equivalent form:

4 By the way, recall the solution of Exercise 3.34.
5 With respect to the conditioned walk.
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Proposition 4.10. For any y ∈ Z2 \ {0}, the process (Ĝ(Ŝ n∧τ̂y , y), n ≥ 0) is
a martingale. Moreover, let us define

ˆ̀(x, y) = 1 +
a(y) − a(x − y)

a(x)
=

Ĝ(x, y)
a(y)

. (4.17)

Then the process ( ˆ̀(Ŝ n∧τ̂y , y), n ≥ 0) is a martingale.

By the way, notice that

lim
x→∞

ˆ̀(x, y) = 0 (4.18)

for any fixed y, so the last process is a “martingale vanishing at infinity”,
which makes it more convenient for applications via the optional stopping
theorem (so this is why we kept “1+” in (4.17)).

Now, as we already know from Section 3.1, it is possible to obtain exact
expressions (in terms of Green’s function) for one-site escape probabilities,
and probabilities of (not) hitting a given site. Indeed, since, under Px, the
number of visits (counting the one at time 0) to x is geometric with success
probability Px[τ̂x = ∞], using (4.13), we obtain

Px[τ̂+
x < ∞] = 1 −

1

Ĝ(x, x)
= 1 −

1
2a(x)

(4.19)

for x , 0. Also, quite analogously to (3.4), since

Ĝ(x, y) = Px[τ̂+
y < ∞]Ĝ(y, y) for x , y, x, y , 0

(one needs to go to y first, to start counting visits there), we have

Px[τ̂y < ∞] =
Ĝ(x, y)

Ĝ(y, y)
=

a(x) + a(y) − a(x − y)
2a(x)

. (4.20)

Let us also observe that (4.20) implies the following surprising fact: for
any x , 0,

lim
y→∞
Px[τ̂y < ∞] =

1
2
. (4.21)

It is interesting to note that this fact permits us to obtain a criterion for re-
currence of a set with respect to the conditioned walk. Quite analogously
to Definition 3.5, we say that a set is recurrent with respect to a (transient)
Markov chain, if it is visited infinitely many times almost surely; a set is
called transient, if it is visited only finitely many times almost surely. Re-
call that, for SRW in dimension d ≥ 3, the characterization is provided
by Wiener’s criterion (Theorem 3.7) formulated in terms of capacities of
intersections of the set with exponentially growing annuli. Although this



4.3 Green’s function and capacity 85

result does provide a complete classification, it may be difficult to apply it
in practice, because it is not always trivial to calculate (even to estimate) ca-
pacities. Now, it turns out that for the conditioned two-dimensional walk Ŝ
the characterization of recurrent and transient sets is particularly simple:

Theorem 4.11. A set A ⊂ Z2 is recurrent with respect to Ŝ if and only if A
is infinite.

Proof of Theorem 4.11 Clearly, we only need to prove that every infinite
subset of Zd is recurrent for Ŝ . As mentioned before, this is basically a
consequence of (4.21). Indeed, let Ŝ 0 = x0; since A is infinite, by (4.21)
one can find y0 ∈ A and R0 such that {x0, y0} ⊂ B(R0) and

Px0

[
τ̂y0 < τ̂∂B(R0)

]
≥

1
3
.

Then, for any x1 ∈ ∂B(R0), we can find y1 ∈ A and R1 > R0 such that
y1 ∈ B(R1) \ B(R0) and

Px1

[
τ̂y1 < τ̂∂B(R1)

]
≥

1
3
.

Continuing in this way, we can construct a sequence R0 < R1 < R2 < . . .

(depending on the set A) such that, for each k ≥ 0, the walk Ŝ hits A on its
way from ∂B(Rk) to ∂B(Rk+1) with probability at least 1

3 , regardless of the
past. This clearly implies that A is a recurrent set. �

Next, following the script of Section 3.1, let us discuss the notion of
capacity for the conditioned walk. It is tempting to just repeat the previous
definitions by reusing (3.10), but, at this point, some care has to be taken.
Namely, recall that in Section 3.1 we used path reversals a few times – for
SRW, the probability that it follows a path is the same as the probability
that it follows the reversed path. This is no longer true for the conditioned
walk; it is still reversible, but the reversible measure is not constant (recall
Proposition 4.3). As a consequence, we have that Green’s function (4.12)
for the conditioned walk is no longer symmetric; instead, it holds that

a2(x)Ĝ(x, y) = a2(y)Ĝ(y, x) (4.22)

for all x, y ∈ Z2 \ {0}. This, of course, follows directly from (4.12), but can
be also obtained independently, analogously to the proof of (3.44) (recall
also Exercise 3.27).

For finite A ⊂ Zd and x ∈ Zd, quite analogously to (3.9), let us denote by

ÊsA(x) = Px[τ̂+
A = ∞]1{x ∈ A} (4.23)
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0
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1

Figure 4.4 Conductances of the “thicker” edges are equal to 2,
and the conductances of all other edges (including the ones
orthogonal to this book, which are not shown on the picture) are 1.

the escape probability from x ∈ A with respect to the conditioned walk.
Now, the crucial observation (that the reader is strongly invited to check)
is that one can show that, for any A ⊂ Z2 \ {0},

Px[τ̂A < ∞] =
∑
y∈A

Ĝ(x, y) ÊsA(y) =
∑
y∈Zd

Ĝ(x, y) ÊsA(y) (4.24)

exactly in the same way as (3.11) was proved!
However, maybe somewhat surprisingly, it is not a good idea to define

the capacity for the conditioned walk as in (3.10). To explain this, consider
first a toy model. Let X be the random walk on the three-dimensional in-
teger lattice with conductances on all the horizontal planes defined as in
Figure 4.4, and the conductances of all vertical edges being equal to 1.
Clearly, X is transient and reversible, with the reversible measure

µ(x) =

6, if x · e1 is even,
7, if x · e1 is odd.

This informally means that the odds that the process is in a site with an
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odd abscissa is 6
6+7 = 6

13 . Now, consider the n-step transition probabil-
ity p(n)(x, y), where n is of the same parity as x− y. Intuitively, it should not
depend so much on x (since the walk normally “forgets” its initial point
anyway), but there should be a substantial dependence on y: by the pre-
ceding discussion, if, for example, y · e1 is even, the ratio p(n)(x,y)

p(n)(x,y′) should be
close to 6

7 in case when y′ · e1 is odd and y′ has the same parity as y and is
“not far away” from it. So, if we divide p(n)(x, y) by µ(y), this will (almost)
remove the dependence on the second argument; since Green’s function is
the sum of p(n)’s, G(x, y)/µ(y) looks like the “right” object to consider (it
“should” depend on the distance between x and y, but not so much on x
and y themselves). Then, an analogue of (3.11) would be

Px[τA < ∞] =
∑
y∈A

G(x, y) EsA(y) =
∑
y∈A

G(x, y)
µ(y)

× µ(y) EsA(y),

so, at least if A is finite and the starting point x is far away from A, the
probability of eventually hitting A would be a product of a factor which
(almost) only depends on the distance with

∑
y∈A µ(y) EsA(y). This indicates

that the last quantity might be the correct definition of the capacity.
It is important to notice, however, that the preceding correct definition is,

in principle, non-unique: as we remember from Section 2.2, the reversible
measure is not unique (one can always multiply it by a positive constant).
The same is also true with respect to the conductances: if we multiply all of
them by the same positive constant, the corresponding random walk will
remain the same. Still, we will see later that there is a canonical way to
define the capacity for conditioned random walks (i.e., we can choose that
multiplicative constant in a natural way).

Let us go back to the conditioned walk Ŝ . First, note that, by (3.38),

Ĝ(x, y) =
a(y)
a(x)

(a(x) + a(y) − a(x − y)) =
a(y)
a(x)

(
a(y) + O

( ‖y‖
‖x‖

))
(4.25)

as x→ ∞ and ‖y‖
‖x‖ → 0. By (4.12), we have

Ĝ(x, y)
a2(y)

=
Ĝ(y, x)
a2(x)

=
a(x) + a(y) − a(x − y)

a(x)a(y)
,

and so it is natural to introduce new notation ĝ(x, y) =
Ĝ(x,y)
a2(y) = ĝ(y, x) for

the “symmetrized” Green’s function. Then, (4.25) implies that

ĝ(x, y) =
Ĝ(x, y)
a2(y)

=
1

a(x)
(
1 + O

( ‖y‖
‖x‖ ln(‖y‖+1)

))
(4.26)
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as x → ∞, which indeed essentially depends on ‖x‖. Therefore, if we
rewrite (4.24) in the following way,

Px[τ̂A < ∞] =
∑
y∈A

ĝ(x, y) × a2(y) ÊsA(y), (4.27)

we see that the first terms in the previous summation are “almost” the same
for large x. According to the preceding discussion, it is then reasonable to
adopt the following definition for the capacity ĉap(·) with respect to the
conditioned walk:

ĉap(A) =
∑
y∈A

a2(y) ÊsA(y). (4.28)

Let us go back to the recent observation that, in principle, the capacity is
defined up to a multiplicative factor. Why is a better than, say, 3a for the
role of the function h of Section 4.1? How should we choose one of them
canonically? A reasonable way to do it is the following: h should be such
that E0h(Ŝ 1) = 1; as we know (recall (3.35)), h ≡ a is then the right choice
indeed.

Now, we have two notions of two-dimensional capacity: one for the orig-
inal recurrent walk, and another one for the transient conditioned walk.
What is the relationship between them? Remarkably, it is very simple:

Theorem 4.12. For all A ⊂ Z2 \ {0}, we have

ĉap(A) = cap
(
A ∪ {0}

)
. (4.29)

Proof Indeed, let us write for x ∈ A

ÊsA(x) = Px[τ̂+
A = ∞]

= lim
R→∞
Px

[
τ̂+

A > τ̂∂B(R)
]

(by Lemma 4.4)

= lim
R→∞
Px

[
τ+

A > τ∂B(R) | τ∂B(R) < τ0
]

(by Lemma 3.12)

= lim
R→∞
Px

[
τ+

A∪{0} > τ∂B(R)
]a(R) + O(R−1)

a(x)
(by (3.54))

=
hmA(x)

a(x)
. (4.30)
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To conclude the proof, just insert (4.30) into (4.28) and then compare the
result to the “usual” definition (3.62) of the two-dimensional capacity (with
y0 = 0). �

Let us also obtain an expression for the probability of avoiding any finite
set. The following estimate, however, only works well when the starting
point is much farther from the origin than the “target” set; nevertheless,
once again it validates the intuition that “capacity measures how big is the
set from the walker’s point of view”. Assume that A ⊂ B(r), and ‖x‖ ≥ r+1.
Then, with (4.28) in mind, just look at (4.26) and (4.27) to obtain that

Px[τ̂A < ∞] =
ĉap(A)

a(x)
(
1 + O

( r
‖x‖ ln(r+1)

))
. (4.31)

The remainder of this section will be a bit too technical for the author’s
taste, but, unfortunately, the lack of translational invariance of the condi-
tioned walk claims its price. The reader certainly remembers that the esti-
mate (3.38) on the two-point differences of the potential kernel was quite
instrumental in several arguments of this book; likewise, it will be impor-
tant to have difference estimates for the function ĝ as well:

Lemma 4.13. Assume that x, y, z ∈ Z2 \ {0} are distinct and such that
‖x − y‖ ∧ ‖x − z‖ ≥ 5‖y − z‖. Then∣∣∣ĝ(x, y) − ĝ(x, z)

∣∣∣ ≤ O
( ‖y−z‖
‖x−y‖ ln(1+‖x‖∨‖y‖∨‖z‖) ln(1+‖y‖∨‖z‖)

)
. (4.32)

Proof First, let us write

ĝ(x, y) − ĝ(x, z)

=
a(x) + a(y) − a(x − y)

a(x)a(y)
−

a(x) + a(z) − a(x − z)
a(x)a(z)

=
a(x)a(z) − a(x − y)a(z) − a(x)a(y) + a(x − z)a(y)

a(x)a(y)a(z)

(put ±a(x − z)a(z) to the numerator, then group accordingly)

=
a(x)(a(z) − a(y)) − a(x − z)(a(z) − a(y)) + a(z)(a(x − z) − a(x − y))

a(x)a(y)a(z)
.

(4.33)

Throughout this proof, let us assume without loss of generality that ‖y‖ ≥
‖z‖. Since the walk Ŝ is not spatially homogeneous (and, therefore, ĝ is not
translationally invariant), we need to take into account the relative positions
of the three sites with respect to the origin. Specifically, we will consider
the following three different cases (see Figure 4.5).
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Figure 4.5 On the proof of Lemma 4.13, the three cases to
consider (from left to right): (1) ‖x‖, ‖y‖ are of the same
logarithmic order and ‖x‖ is not much larger than ‖y‖, (2) ‖x‖ is
much smaller than ‖y‖, and (3) ‖x‖ is significantly larger than ‖y‖.

Case 1: ‖y‖1/2 ≤ ‖x‖ ≤ 2‖y‖.

In this case, the first thing to note is that

‖y − z‖ ≤
‖x − y‖

5
≤
‖x‖ + ‖y‖

5
≤

2‖y‖ + ‖y‖
5

=
3
5
‖y‖,

so ‖z‖ ≥ 2
5‖y‖, meaning that ‖y‖ and ‖z‖ must be of the same order; this

then implies that a(x), a(y), a(z) are all of the same order too. Then, we
use (3.38) on the three parentheses in the numerator of (4.33), to obtain af-
ter some elementary calculations that the expression there is at most of or-
der ‖y−z‖

‖x−y‖ ln ‖y‖, while the denominator is of order ln3
‖y‖. This proves (4.32)

in case 1.

Case 2: ‖x‖ < ‖y‖1/2.

Here, it is again easy to see that ‖y‖ and ‖z‖ must be of the same order.
Now, we note that, by (3.38), a(x − z) = a(z) + O

( ‖x‖
‖y‖

)
, so, inserting this

to (4.33) (and also using that a(y)− a(z) = O
( ‖y−z‖
‖y‖

)
), we find that it is equal

to

a(x)(a(z) − a(y)) + a(z)(a(y) − a(z) + a(x − z) − a(x − y)) + O
( ‖x‖
‖y‖ ·

‖y−z‖
‖y‖

)
a(x)a(y)a(z)

=
a(z) − a(y)

a(y)a(z)
+

a(y) − a(z) + a(x − z) − a(x − y)
a(x)a(y)

+ O
( ‖x‖·‖y−z‖
‖y‖2 ln2 ‖y‖

)
. (4.34)

Now, by (3.38) the first term is O
( ‖y−z‖
‖y‖ ln2 ‖y‖

)
(that is, exactly what we need,

since ‖y‖ and ‖y − x‖ are of the same order), and the third term is clearly
of smaller order. As for the second term, note that, by (3.36) and using the
fact that

∣∣∣‖x−y‖·‖z‖−‖y‖·‖x−z‖
∣∣∣ ≤ O(‖x‖·‖y−z‖) by Ptolemy’s inequality,
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we obtain

a(y) − a(z) + a(x − z) − a(x − y)

=
2
π

ln
‖y‖ · ‖x − z‖
‖x − y‖ · ‖z‖

+ O(‖y‖−2)

=
2
π

ln
(
1 −
‖x − y‖ · ‖z‖ − ‖y‖ · ‖x − z‖

‖x − y‖ · ‖z‖

)
+ O(‖y‖−2)

= O
( ‖x‖·‖y−z‖
‖x−y‖·‖z‖ + ‖y‖−2) = O

( ‖x‖·‖y−z‖
‖z‖2

)
,

so it is again of smaller order than the first term. This shows (4.32) in
case 2.

Case 3: ‖x‖ > 2‖y‖.
Notice that, in this case, ‖z‖ need not be of the same order as ‖y‖; it may

happen to be significantly smaller. Here (by also grouping the first two
terms in the numerator) we rewrite (4.33) as

(a(x) − a(x − z))(a(z) − a(y))
a(x)a(y)a(z)

+
a(x − z) − a(x − y)

a(x)a(y)
. (4.35)

By (3.38), the second term is O
( ‖y−z‖
‖x−y‖ ln(1+‖x‖) ln(1+‖y‖)

)
(that is, exactly what

we need). Next, observe that (recall that we assumed that ‖y‖ ≥ ‖z‖)

ln ‖y‖ − ln ‖z‖ = ln
‖y‖
‖z‖
≤
‖y‖
‖z‖
− 1 =

‖y‖ − ‖z‖
‖z‖

≤
‖y − z‖
‖z‖

.

Therefore (also using (3.38) on the first factor), the numerator of the first
term is O

( ‖z‖
‖x‖ ×

‖y−z‖
‖z‖

)
= O

( ‖y−z‖
‖x‖

)
, and so (since the denominator is not less

than a(x)a(y)) the first term in (4.35) is at most of the same order as the
second one. This concludes the proof of Lemma 4.13. �

Lemma 4.13 permits us to obtain the following useful expression for
the probability of ever hitting A from a distant site (which can be seen as a
generalization of (4.31)). Consider a finite A ⊂ Z2\{0}with y0 ∈ A and note
first that r0 := ‖y0‖ + diam(A) will be of the same order regardless of the
choice of y0. Assume now that dist(x, A) > 5 diam(A); then, it also holds
that ‖x‖ ∨ ‖y‖ ∨ ‖z‖ is of the same order as ‖x‖ ∨ (‖y0‖ + diam(A)) for any
choice of y, z ∈ A. Indeed, trivially ‖x‖∨‖y‖∨‖z‖ ≤ ‖x‖∨(‖y0‖+diam(A)); on
the other hand, ‖y‖+diam(A) < ‖y‖+dist(x, A) ≤ ‖y‖+‖x−y‖ ≤ ‖x‖+2‖y‖ ≤
3(‖x‖ ∨ ‖y‖ ∨ ‖z‖). Then, note that 1 + ‖y‖ + ‖y − z‖ ≤ 1 + 2‖y‖ + ‖z‖ ≤
3(1 + ‖y‖ ∨ ‖z‖) < (1 + ‖y‖ ∨ ‖z‖)3 (since the expression in parentheses is at
least 2), so

‖y − z‖
ln(1 + ‖y‖ ∨ ‖z‖)

≤ 3
‖y − z‖

ln(1 + ‖y‖ + ‖y − z‖)
≤ 3

diam(A)
ln(1 + ‖y‖ + diam(A))

,
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where the second inequality is due to the fact that the function f (x) = x
ln(a+x)

is increasing on (0,+∞) for any a ≥ 1. So, recalling (4.28) and (4.24), we
see that Lemma 4.13 gives us (in the case dist(x, A) > 5 diam(A)) that

Px[τ̂A < ∞] = ĉap(A)
(
ĝ(x, y0) + O

( diam(A)
dist(x,A) ln(1+‖x‖∨r0) ln(1+r0)

))
. (4.36)

So, following Section 3.1, we have now delivered Green’s function and
the capacity to the conditioned walk; we pass now to the third important
ingredient.

4.4 Harmonic measure

As before, we would like to define the harmonic measure as “the entrance
measure from infinity”. To figure out how it should be defined, recall the
informal explanation of the harmonic measure’s definition (for the tran-
sient case d ≥ 3) on page 43, just after Theorem 3.8. There is a sentence
there which reads, “Since the time reversal does not change the “weight”
of the trajectory. . . ”; now, this is no longer true! Since (recall Proposi-
tion 4.3 (i)) the conditioned walk is reversible with the reversible measure
(a2(x), x ∈ Z2 \ {0}), the “weight” of the reversed trajectory which starts at
y ∈ ∂A should now be multiplied by a2(y). So, that heuristic argument sug-
gests that, very similarly to what we have seen in Section 3.1, the harmonic
measure should be proportional to y’s contribution in the summation (4.28).

Indeed, it turns out to be the case. Let us define the harmonic measure
with respect to the conditioned walk in the following way:

ĥmA(y) =
a2(y) ÊsA(y)

ĉap(A)
=

a(y) hmA(y)
ĉap(A)

(4.37)

(the last equality holds by (4.30)). We can interpret (4.37) in the following
way: ĥm is hm biased by a.

Now, the goal will be to prove that, analogously to the harmonic mea-
sures considered in Chapter 3, ĥmA is indeed the “entrance measure from
infinity”. We will aim directly to prove a quantitative result, i.e., one that
contains explicit estimates on the Radon–Nikodym derivative of the en-
trance measure from a distant starting point with respect to the harmonic
measure. We will see that these estimates match those that we obtained for
SRW. However, before we will be able to obtain that result, we will need a
couple of technical facts.6 These are, honestly, a bit tedious to prove, and,

6 The results of the remaining part of this section are taken from [76].
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again, they are so because of the lack of the translational invariance of the
conditioned walk.

The first technical fact that we need is that the conditioned walk can go
out of an annulus with uniformly positive probability:

Lemma 4.14. Let b,C be positive constants such that 1 + b < C, and
assume that r ≥ 1, x0, y0 ∈ Z

2 \ {0} are such that x0 ∈ B(y0,Cr) and
‖x0 − y0‖ > (1 + b)r. Then, there exists a constant c′ > 0 (depending only
on b and C) such that

Px0 [τ̂∂B(y0,Cr) < τ̂B(y0,r)] ≥ c′. (4.38)

Proof Note that we can assume that r is large enough, otherwise the uni-
form ellipticity of the conditioned walk7 will imply the claim. First of all,
it is clear (and can be proved in several possible ways; see Exercise 4.12)
that the analogue of (4.38) holds for SRW, i.e., for all r, x0, y0 as before, it
holds that

Px0 [τ∂B(y0,2Cr) < τB(y0,r)] ≥ c′′ (4.39)

for some c′′ > 0 which depends only on b and C. Now, the idea is to de-
rive (4.38) from (4.39). Recall that (as in (4.8)) the weight P̂% with respect
to Ŝ of a finite path %which starts at x0 and does not pass through the origin
equals a(%end)

a(x0) P%, where P% is the weight of the same path with respect to the
SRW. We can then write for any R > 0 such that x0 ∈ B(y0,R)

Px0 [τ̂∂B(y0,R) < τ̂B(y0,r)]

≥ min
z∈∂B(y0,R)

a(z)
a(x0)

× Px0 [τ∂B(y0,R) < τB(y0,r), τ∂B(y0,R) < τ0]

≥ min
z∈∂B(y0,R)

a(z)
a(x0)

×
(
Px0 [τ∂B(y0,R) < τB(y0,r)] − Px0 [τ0 < τ∂B(y0,R)]

)
. (4.40)

Now, a key observation is that, for all large enough r, the property

a(z)
a(x0)

≥
1
2

for all z ∈ ∂B(y0,R) (4.41)

holds for either R = Cr or R = 2Cr (or both). Indeed, roughly speaking,
for (4.41) to hold it would be enough that ‖z‖ is of order r + ‖y0‖ for all
z ∈ ∂B(y0,R); this can be seen to be so in at least one of the previous cases
(look at the left side of Figure 4.6: if ∂B(y0,Cr) is “too close” to the origin,
then ∂B(y0, 2Cr) is not).

7 The fact that Ŝ is uniformly elliptic is almost evident, but see Exercise 4.10.
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0 y0

∂B(y0,Cr)

∂B(y0, 2Cr)

0
x0

y0

B(y0, r)

∂B(y0, (1 + b
2 )r)

Figure 4.6 On the proof of Lemma 4.14.

For definiteness, assume now that (4.41) holds for R = 2Cr. By (4.40),
we have then

Px0 [τ̂∂B(y0,Cr) < τ̂B(y0,r)]

≥ Px0 [τ̂∂B(y0,2Cr) < τ̂B(y0,r)]

≥
1
2

(
Px0 [τ∂B(y0,2Cr) < τB(y0,r)] − Px0 [τ0 < τ∂B(y0,2Cr)]

)
≥

1
2

(
c′′ − Px0 [τ0 < τ∂B(y0,2Cr)]

)
≥

c′′

4
,

provided that

Px0 [τ0 < τ∂B(y0,2Cr)] ≤
c′′

2
. (4.42)

Now, if 0 < B(y0,Cr), then (4.42) trivially holds; so, let us assume that
0 ∈ B(y0,Cr). We then consider two cases: ‖x0‖ ≥

b
4 r, and ‖x0‖ <

b
4 r. In

the first case, Lemma 3.12 implies that Px0 [τ0 < τ∂B(y0,2Cr)] � 1
ln r , so (4.42)

holds for large enough r. In the second case, note first that

Px0 [τ̂∂B(y0,Cr) < τ̂B(y0,r)] ≥ min
z∈∂B(y0,(1+ b

2 )r)
Pz[τ̂∂B(y0,Cr) < τ̂B(y0,r)]

and, for all z ∈ ∂B(y0, (1 + b
2 )r), it holds that ‖z‖ ≥ b

4 r (see Figure 4.6 on the
right). We may then repeat this reasoning with an arbitrary z ∈ ∂B(y0, (1 +
b
2 )r) on the place of x0 to finally obtain the claim. �



4.4 Harmonic measure 95

Next technical fact we need is the following lower bound on the proba-
bility that the conditioned walk never hits a disk:

Lemma 4.15. Fix b > 0 and assume that x0, y0 ∈ Z
2 \ {0} and r ≥ 1 are

such that ‖x0 − y0‖ ≥ (1 + b)r. Then there exists c = c(b) such that for all
x0, y0, r as before it holds that

Px0 [τ̂B(y0,r) = ∞] ≥
c

ln(‖y0‖ + r)
. (4.43)

Proof We need to consider two cases: B(y0, r) is (relatively to its size)
close to/far from the origin. First, let us assume that ‖y0‖ < 12r (so that
the disk is relatively close to the origin). In this case, we can assume ad-
ditionally that ‖x0 − y0‖ ≥ 51r (indeed, Lemma 4.14 implies that, for any
starting position x0 such that ‖x0 − y0‖ ≥ (1 + b)r, with at least a constant
probability the walk reaches ∂B(y0, 51r) before hitting B(y0, r)). Then, it
holds that B(y0, r) ⊂ B(13r), and8 B(26r) ⊂ B(y0, 51r). Now, Corollary 4.7
easily implies that, if r ≥ 1 and ‖x‖ ≥ 2r,

Px[τ̂B(r) = ∞] ≥
c′

ln r

(because (4.10) will work for large enough ‖x‖, and one can use the uniform
ellipticity of Ŝ otherwise); this proves (4.43) in the first case.

Now, suppose that ‖y0‖ ≥ 12r (that is, r ≤ 1
12‖y0‖). Analogously to the

previous case, Lemma 4.14 permits us to assume without loss of generality
that x0 ∈ ∂B(y0, 3r). We now use the martingale (recall Proposition 4.10)

ˆ̀(Ŝ n∧τ̂y0
, y0) = 1 +

a(y0) − a(Ŝ n∧τ̂y0
− y0)

a(Ŝ n∧τ̂y0
)

.

In exactly9 the same way as in the proof of Theorem 2.5 (page 20), we
obtain from the optional stopping theorem that

ˆ̀(x0, y0) =
∑

z∈∂B(y0,r)

Px0 [τ̂B(y0,r) < ∞, Ŝ τ̂B(y0 ,r) = z] ˆ̀(z, y0)

≥ Px0 [τ̂B(y0,r) < ∞] min
z∈∂B(y0,r)

ˆ̀(z, y0),

so

Px0 [τ̂B(y0,r) < ∞] ≤
ˆ̀(x0, y0)

minz∈∂B(y0,r) ˆ̀(z, y0)
. (4.44)

8 The reader is advised to make a picture.
9 Recall also (4.18).
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Assume z ∈ ∂B(y0, r) and write, using (3.36) and with γ′′ := πγ′/2,

ˆ̀(z, y0) =
a(z) + a(y0) − a(y0 − z)

a(z)

=
ln ‖z‖ + ln ‖y0‖ − ln r + γ′′ + O(‖y0‖

−2 + r−1)
ln ‖z‖ + γ′′ + O(‖z‖−2)

≥
ln(‖y0‖ − r) + ln ‖y0‖ − ln r + γ′′ + O(‖y0‖

−2 + r−1)
ln(‖y0‖ + r) + γ′′ + O(‖y0‖

−2 + r−1)

=
2 ln ‖y0‖ + ln

(
1 − r

‖y0‖

)
− ln r + γ′′ + O(r−1)

ln ‖y0‖ + ln
(
1 + r

‖y0‖

)
+ γ′′ + O(r−1)

:=
T1

T2
, (4.45)

and, denoting R := ‖x0 − y0‖ (so that R = 3r + O(1)),

ˆ̀(x0, y0) =
a(x0) + a(y0) − a(y0 − x0)

a(x0)

=
ln ‖x0‖ + ln ‖y0‖ − ln R + γ′′ + O(‖y0‖

−2 + R−2)
ln ‖x0‖ + γ′′ + O(‖x0‖

−2)

≤
ln(‖y0‖ + R) + ln ‖y0‖ − ln R + γ′′ + O(‖y0‖

−2 + R−2)
ln(‖y0‖ − R) + γ′′ + O(‖y0‖

−2 + R−2)

=
2 ln ‖y0‖ + ln

(
1 + R

‖y0‖

)
− ln R + γ′′ + O(R−2)

ln ‖y0‖ + ln
(
1 − R

‖y0‖

)
+ γ′′ + O(R−2)

:=
T3

T4
. (4.46)

Now, a straightforward calculation yields

T2

T4
= 1 +

ln 1+r/‖y0‖

1−R/‖y0‖
+ O(r−1)

ln ‖y0‖ + ln
(
1 − R

‖y0‖

)
+ γ′′ + O(R−2)

,

and

T3

T1
= 1 −

ln
(R

r ·
1−r/‖y0‖

1+R/‖y0‖

)
+ O(r−1)

2 ln ‖y0‖ − ln r
1−r/‖y0‖

+ γ′′ + O(r−1)

≤ 1 −
ln

(R
r ·

1−r/‖y0‖

1+R/‖y0‖

)
+ O(r−1)

2 ln ‖y0‖ + γ′′
.

Therefore, by (4.44) we have (after some more calculations, sorry)

Px0 [τ̂B(y0,r) < ∞]
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≤
T2

T4
×

T3

T1

≤ 1 −
ln

(R
r ·

1−r/‖y0‖

1+R/‖y0‖

)1/2
− ln 1+r/‖y0‖

1−R/‖y0‖
+ O((ln r)−1)

ln ‖y0‖
(
1 + O

( 1
ln ‖y0‖

)) . (4.47)

It remains only to observe that, if r is large enough, the numerator in (4.47)
is bounded from below by a positive constant: indeed, observe that R

r is
(asymptotically) 3, r

‖y0‖
and R

‖y0‖
are at most 1

12 and 1
4 respectively, and√

3 ×
1 − 1

12

1 + 1
4

×
1 − 1

4

1 + 1
12

=

√
891
845

> 1.

This concludes the proof of Lemma 4.15 in the case when r is large enough;
the case of smaller values of r, though, can be easily reduced to the former
one by using the uniform ellipticity of the Ŝ -walk. �

Now, we profit from the previous technical lemmas to obtain a quantita-
tive result for the entrance measure to a finite set; it is quite analogous to
Theorem 3.17, only this time for the conditioned walk:

Theorem 4.16. Assume that A ⊂ Z2 \ {0} is finite and x < A is such that
dist(x, A) ≥ 12(diam(A) + 1). For all y ∈ A, we have

Px[Ŝ τ̂A = y | τ̂A < ∞] = ĥmA(y)
(
1 + O

( diam(A)
dist(x,A)

))
. (4.48)

Proof We will begin as in the proof of Theorem 3.8 (page 43), and the
reader is also advised to recall the solution of Exercise 3.25, since the next
proof will have quite a few similarities to it. Let us assume without restrict-
ing generality that A contains at least two sites, so that diam(A) ≥ 1. First,
we proceed very similarly to the proof of Theorem 3.8. We keep the nota-
tion Θ

(n)
xy from that proof; also, recall that P℘ (respectively, P̂℘) is the weight

of the trajectory ℘ with respect to the SRW (respectively, to the Ŝ -walk).
We also keep (now with hats, as we are dealing with the Ŝ -walk) the no-
tations N̂x, N̂[

x, N̂
]
x for, respectively, the total number of visits to x < A, the

number of visits to x before the first return to A, and the number of visits
to x after the first return to A (again, setting N̂]

x = 0 on {τ̂+
A = ∞}).

As in (3.22), it is clear that

Px[τ̂A < ∞, Ŝ τ̂A = y] =

∞∑
n=1

∑
℘∈Θ(n)

xy

P̂℘

but, due to Proposition 4.3 (i), the relation corresponding to (3.23) will now
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be

Py[N̂[
x ≥ n]

a2(y)
a2(x)

=
∑
℘∈Θ(n)

xy

P̂℘.

Then, analogously to (3.24), we write

Px[Ŝ τ̂A = y | τ̂A < ∞]

=
Px[τ̂A < ∞, Ŝ τ̂A = y]
Px[τ̂A < ∞]

=
1

Px[τ̂A < ∞]

∞∑
n=1

a2(y)
a2(x)

Py[N̂[
x ≥ n]

=
a2(y)

a2(x)Px[τ̂A < ∞]
EyN̂[

x

=
a2(y)

a2(x)Px[τ̂A < ∞]
(EyN̂x − EyN̂]

x)

=
a2(y)

Px[τ̂A < ∞]

(Ĝ(y, x)
a2(x)

−
∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z]

Ĝ(z, x)
a2(x)

)
=

a2(y)
Px[τ̂A < ∞]

(
ĝ(y, x) −

∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z]ĝ(z, x)

)
=

a2(y)
Px[τ̂A < ∞]

(
ĝ(y, x)

(
ÊsA(y) +

∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z]

)
−

∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z]ĝ(z, x)

)
=

a2(y)ĝ(y, x) ÊsA(y)
Px[τ̂A < ∞]

+
a2(y)

Px[τ̂A < ∞]

∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z](ĝ(y, x) − ĝ(z, x)). (4.49)

Next, it is straightforward to obtain that

1
ĝ(x, y)

= O
(

ln(1 + ‖x‖ ∨ ‖y‖)
)

(4.50)

(see Exercise 4.14), So, by (4.36) it holds that

a2(y)ĝ(y, x) ÊsA(y)
Px[τ̂A < ∞]

= ĥmA(y)
(
1 + O

( diam(A)
dist(x,A)

))
. (4.51)

So, it remains to show that the second term in (4.49) is O
(

ĥmA(y) diam(A)
dist(x,A)

)
.
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Similarly to the proof of Theorem 3.8 and the solution of Exercise 3.25,
we are going to use the optional stopping theorem with the martingale M̂n∧τ̂x

where

M̂n = ĝ(y, x) − ĝ(Ŝ n∧τ̂x , x)

to estimate the second term in (4.49). Recall that y ∈ ∂A, and let us define

V = ∂B(y, 2 diam(A))

(the reader is advised to look again at Figure 3.6 on page 61). Let τ =

τ̂+
A ∧ τ̂V . We have (note that τ < τ̂x)

0 = EyM̂0

= EyM̂τ

= Ey
(
M̂τ̂+

A
1{τ̂+

A < τ̂V }
)

+ Ey
(
M̂τ̂V 1{τ̂V < τ̂

+
A}

)
(since 1{τ̂+

A < ∞} = 1{τ̂+
A < τ̂V } + 1{τ̂V < τ̂+

A < ∞})

= Ey
(
M̂τ̂+

A
1{τ̂+

A < ∞}
)
− Ey

(
M̂τ̂+

A
1{τ̂V < τ̂

+
A < ∞}

)
+ Ey

(
M̂τ̂V 1{τ̂V < τ̂

+
A}

)
.

Note that for any z ∈ V ∪ ∂A it holds that ‖y− z‖ ≤ 2 diam(A) and ‖x− z‖ ≥
10(diam(A) + 1), so in the following we will be able to apply Lemma 4.13.
Since

Ey
(
M̂τ̂+

A
1{τ̂+

A < ∞}
)

=
∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z]

(
ĝ(y, x) − ĝ(z, x)

)
,

we obtain that∑
z∈∂A

Py[τ̂+
A < ∞, Ŝ τ̂+

A
= z](ĝ(y, x) − ĝ(z, x))

= Ey
(
M̂τ̂+

A
1{τ̂V < τ̂

+
A < ∞}

)
− Ey

(
M̂τ̂V 1{τ̂V < τ̂

+
A}

)
= Py[τ̂V < τ̂

+
A]

(
Ey

(
M̂τ̂+

A
1{τ̂+

A < ∞} | τ̂V < τ̂
+
A
)
− Ey

(
M̂τ̂V | τ̂V < τ̂

+
A
))

(recall Lemma 4.13 and (4.36); note that M̂τ = ĝ(y, x) − ĝ(z, x) on {Ŝ τ = z})

≤ Py[τ̂V < τ̂
+
A] × O

( diam(A)
dist(x,A) ln(1+‖y‖+diam(A)) ln(1+‖x‖∨(‖y‖+diam(A)))

)
. (4.52)

Next, we can write

ÊsA(y) = Py[τ̂+
A = ∞]

=
∑
v∈V

Py[τ̂V < τ̂
+
A, Ŝ τ̂V = v]Pv[τ̂A = ∞]
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(by Lemma 4.15)

≥
c

ln(‖y‖ + diam(A))
Py[τ̂V < τ̂

+
A],

which means that

Py[τ̂V < τ̂
+
A] ≤ O

(
ÊsA(y) ln(‖y‖ + diam(A))

)
. (4.53)

Also, (4.51) implies that

a2(y)
Px[τ̂A < ∞]

= O
( ĥmA(y)

ÊsA(y)ĝ(x,y)

)
. (4.54)

It only remains to combine (4.52) through (4.54) with (4.50) to see that
the second term in (4.49) is indeed O

(
ĥmA(y) diam(A)

dist(x,A)

)
, thus concluding the

proof of Theorem 4.16. �

In the remaining section of this chapter, we are going to discuss some
even more surprising properties of the conditioned walk Ŝ .

4.5 Range of the conditioned SRW

For a set T ⊂ Z+ (thought of as a set of time moments) let

Ŝ T =
⋃
m∈T

{
Ŝ m

}
be the range of the walk Ŝ with respect to that set, i.e., it is made of sites
that are visited by Ŝ over T . For simplicity, we assume in the following
that the walk Ŝ starts at a fixed neighbour x0 of the origin, and we write P
for Px0 . For a nonempty and finite set A ⊂ Z2, let us consider the random
variable

R(A) =

∣∣∣A ∩ Ŝ [0,∞)

∣∣∣
|A|

;

that is, R(A) is the proportion of visited sites of A by the walk Ŝ (and,
therefore, 1 − R(A) is the proportion of unvisited sites of A). In this sec-
tion, we are interested in the following question: how should R(A) behave
for “large” sets? By (4.21), in average approximately half of A should be
covered, i.e., ER(A) should be close to 1/2. Now, keeping in mind how
difficult is to find something really new in these modern times, let us think
what are the usual examples of random variables which are concentrated
on [0, 1] and have expected value 1/2. Well, three examples come to mind:
Uniform[0, 1], Bernoulli(1/2), and 1/2 itself. Which one of them shall the
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walk Ŝ choose? It turns out that it is the first one which is the most rele-
vant for the conditioned walk.10 Indeed, the main result of this section is
the following surprising fact: the proportion of visited sites of a “typical”
large set (e.g., a disk, a rectangle, a segment) is a random variable which is
close in distribution to the Uniform[0, 1] law. The paper [47] contains the
corresponding results in greater generality, but here we content ourselves
in proving the result for a particular case of a large disk which does not
“touch” the origin:

Theorem 4.17. Let D ⊂ R2 be a closed disk such that 0 < D, and denote
Dn = nD ∩ Z2. Then, for all s ∈ [0, 1], we have, with positive constant c1

depending only on D,∣∣∣P[R(Dn) ≤ s] − s
∣∣∣ ≤ c1

( ln ln n
ln n

)1/3
. (4.55)

Also, we prove that the range of Ŝ contains many “big holes”.

Theorem 4.18. Let D and Dn be as in Theorem 4.17. Then,

P
[
Dn ∩ Ŝ [0,∞) = ∅ for infinitely many n

]
= 1. (4.56)

Theorem 4.18 invites the following:

Remark 4.19. A natural question to ask is whether there are also large disks
that are completely filled, that is, if a.s. there are infinitely many n such that
Dn ⊂ Ŝ [0,∞). It is not difficult to see that the answer to this question is “no”.
We, however, postpone explaining that to Chapter 6 (see Exercise 6.10).

We now obtain some refined bounds on the hitting probabilities for ex-
cursions of the conditioned walk.

Lemma 4.20. Let us assume that x, y ∈ Z2 \ {0} with x , y, and R >

max{‖x‖, ‖y‖} + 1. Then, we have

Px[τ̂y < τ̂∂B(R)]

=
a(R)(a(x) + a(y) − a(x − y)) − a(x)a(y)

(
1 + O

( ‖y‖
R ln(‖y‖+1)

))
a(x)(2a(R) − a(y)

(
1 + O

( ‖y‖
R ln(‖y‖+1)

))
)

. (4.57)

Proof Once again in this book, we use the optional stopping theorem, but

10 Although there are examples when the second and the third options also reveal
themselves; see Exercises 4.21 and 4.22.
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B(n) \ B(n/2)
∂B(n ln n) ∂B(n ln2 n)

Ex0 Ex1

Ex2

Dn

Figure 4.7 Excursions that may visit Dn.

this time with a new martingale, namely, Mn = ˆ̀(Ŝ n∧τ̂y , y) (recall Proposi-
tion 4.10). We have (recall (4.25))

ˆ̀(z, y) =
1

a(z)
(a(y) + a(z) − a(z − y))

=
1

a(R)
(
1 + O

( 1
R ln R

))
×

(
a(y) + O

( ‖y‖
R

))
=

a(y)
a(R)

(
1 + O

( ‖y‖
R ln(‖y‖+1)

))
(4.58)

for any z ∈ ∂B(R). Let us then abbreviate p = Px[τ̂y < τ̂∂B(R)] and write,
using the aforementioned theorem with stopping time τ̂y ∧ τ̂∂B(R)

ExM0 =
1

a(x)
(a(x) + a(y) − a(x − y))

(note that ˆ̀(y, y) = 2)

= 2p + (1 − p)Ex
( ˆ̀(Ŝ τ̂∂B(R) , y) | τ̂∂B(R) < τ̂y

)
(by (4.58))

= 2p + (1 − p)
a(y)
a(R)

(
1 + O

( ‖y‖
R ln(‖y‖+1)

))
.

Solving this equation for p, we obtain (4.57). �

Let us assume that x ∈ B(n ln n), y ∈ B(n), and abbreviate R = n ln2 n. A
quick calculation using Lemma 4.20 then shows that

Px[τ̂y < τ̂∂B(R)]
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=
a(R)(a(x) + a(y) − a(x − y)) − a(x)a(y)

(
1 + O(ln−3 n)

)
a(x)(2a(R) − a(y)

(
1 + O(ln−3 n)

)
)

. (4.59)

We proceed with

Proof of Theorem 4.17 First, we describe informally the idea of the proof.
We consider the visits to the set Dn during excursions of the walk from
∂B(n ln n) to ∂B(n ln2 n); see Figure 4.7. The crucial argument is the follow-
ing: the randomness of R(Dn) comes from the number Q of those excur-
sions and not from the excursions themselves. If the number of excursions
is approximately c× ln n

ln ln n , then it is possible to show, using a standard weak
law of large numbers (LLN) argument, that the proportion of covered sites
in Dn is concentrated around 1 − e−c. On the other hand, that number of
excursions can be modeled roughly as Y × ln n

ln ln n , where Y is an exponential
random variable with rate 1. Then,

P[R(Dn) ≥ 1 − s] ≈ P[Y ≥ ln s−1] = s,

as required.
In the following, we will assume, for concreteness, that B(1/2) ⊂ D ⊂

B(1) so that Dn ⊂ B(n) \ B(n/2) for all n; the extension of the proof to the
general case is straightforward.

We now give a rigorous argument. Let Ĥ be the conditional entrance
measure for the (conditioned) walk Ŝ , i.e.,

ĤDn (x, y) = Px
[
Ŝ τ̂Dn

= y | τ̂Dn < ∞
]
. (4.60)

Let us denote the initial piece of the trajectory by Ex0 = Ŝ [0,τ̂∂B(n ln n)]. Then,
we consider a Markov chain (Exk, k ≥ 1) of excursions between ∂B(n ln n)
and ∂B(n ln2 n), defined in the following way: for k ≥ 2, the initial site
of Exk is chosen according to the measure ĤB(n ln n)(zk−1, ·), where zk−1 ∈

∂B(n ln2 n) is the last site of the excursion Exk−1; also, the initial site of Ex1 is
the last site of Ex0; the weights of trajectories are chosen according to (4.5)
(i.e., each excursion is an Ŝ -walk trajectory). It is important to observe that
one may couple (Exk, k ≥ 1) with the “true” excursions of the walk Ŝ in an
obvious way: one just picks the excursions subsequently, each time tossing
a coin to decide if the walk returns to B(n ln n).

Let

ψn = min
x∈∂B(n ln2 n)

Px[τ̂∂B(n ln n) = ∞],

ψ∗n = max
x∈∂B(n ln2 n)

Px[τ̂∂B(n ln n) = ∞]
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be the minimal and maximal probabilities to avoid B(n ln n), starting at sites
of ∂B(n ln2 n). Using (4.10) together with (3.36), we obtain

Px[τ̂∂B(n ln n) = ∞] = 1 −
a(n ln n) + O

(
(n ln n)−1)

a(x)

=
a(n ln2 n) − a(n ln n) + O

(
(n ln n)−1)

a(n ln2 n) + O
(
(n ln2 n)−1)

(by (3.36)–(3.37), with γ′′ =
πγ′

2 = γ + 3
2 ln 2)

=
ln ln n

ln n + 2 ln ln n + γ′′
(
1 + o(n−1)

)
(4.61)

for any x ∈ ∂B(n ln2 n), and so it also holds that

ψn =
ln ln n

ln n + 2 ln ln n + γ′′
(
1 + o(n−1)

)
. (4.62)

Let us consider a sequence of i.i.d. random variables (ηk, k ≥ 0) such that
P[ηk = 1] = 1 − P[ηk = 0] = ψn. Let Q̂ = min{k : ηk = 1}, so that Q̂ is a
geometric random variable with mean ψ−1

n .

Lemma 4.21. The random variable Q̂ can be coupled with the actual num-
ber of excursions Q in such a way that Q ≤ Q̂ a.s. and

P[Q , Q̂] ≤ o(n−1). (4.63)

Moreover, this coupling can be constructed in such a way that Q̂ is inde-
pendent from the excursion sequence (Exk, k ≥ 1) itself.

Proof Let U1,U2,U3, . . . be a sequence of i.i.d. random variables with
Uniform[0, 1] distribution; we will now explain how to construct all ran-
dom variables of interest using this sequence. First, we set

ηk = 1{Uk ≤ ψn}.

Next, let η̃k = 1{Q < k} be the indicator of the event that the walk Ŝ does
not make its kth excursion. Given that η̃k−1 = 0 and zk−1 is the last site
of Exk−1, set

η̃k = 1{Uk ≤ Pzk−1 [τ̂∂B(n ln n) = ∞]}.

It is clear that, with this construction, Q ≤ Q̂ and that Q̂ is independent of
the excursions themselves. Then, we write

{Q > Q̂} =
{
there exists k ≤ Q̂ − 1

such that ψn < Uk ≤ Pzk−1 [τ̂∂B(n ln n) = ∞]
}
,
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so

P[Q > Q̂] ≤ P
[
there exists k ≤ Q̂ − 1 such that ψn < Uk ≤ ψ

∗
n
]
. (4.64)

In the following, assume without loss of generality that n is large enough
so that ψn < 1/2. By (4.64), we have

P[Q < k | Q̂ = k]

≤ P
[
there exists j ≤ k − 1 such that ψn < Uk ≤ ψ

∗
n

| U j > ψn for j = 1, . . . , k − 1,Uk ≤ ϕn
]

≤ 2(ψ∗n − ψn)k.

Now, (4.61) implies that ψ∗n − ψn ≤ o
( ln ln n

n ln n

)
for any x ∈ ∂B(n ln2 n), and so

(recall that, by (4.62), 1/ψn = O( ln n
ln ln n ))

P[Q < Q̂] ≤
∞∑

k=1

(1 − ϕn)k−1ψn × 2(ψ∗n − ψn)k

=
2(ψ∗n − ψn)

ψn
= o(n),

which concludes the proof. �

We continue proving Theorem 4.17. Define

R(k) =

∣∣∣Dn ∩ (Ex0 ∪ Ex1 ∪ . . . ∪ Exk)
∣∣∣

|Dn|
,

to be the proportion of visited sites in Dn with respect to the first k ex-
cursions together with the initial piece Ex0. According to the programme
outlined in the beginning of the proof, we now aim to verify that that R(k) is
concentrated around its mean value; we do this using a typical weak-law-
of-large-numbers argument.

Now it is straightforward to check11 that (4.59) implies that, for any
x ∈ ∂B(n ln n) and y ∈ Dn,

Px
[
τ̂y < τ̂∂B(n ln2 n)

]
=

ln ln n
ln n

(
1 + O

( ln ln n
ln n

))
, (4.65)

and, for y, z ∈ B(n) \ B(n/2) such that ‖y − z‖ = n/b with b ≤ 2 ln n,

Pz
[
τ̂y < τ̂∂B(n ln2 n)

]
=

2 ln ln n + ln b
ln n

(
1 + O

( ln ln n
ln n

))
(4.66)

(we leave checking this to the reader, as Exercise 4.20).
11 The calculation is a bit long, though; consistent with the approach of this book, it is

omitted.
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Next, for y ∈ Dn and a fixed k ≥ 1, consider the random variable

ξ(k)
y = 1{y < Ex0 ∪ Ex1 ∪ . . . ∪ Exk},

so that 1 − R(k) = |Dn|
−1 ∑

y∈Dn
ξ(k)

y . Now (4.65) implies that, for all j ≥ 1,

P[y < Ex j] = 1 −
ln ln n
ln n

(
1 + O

( ln ln n
ln n

))
,

and (4.66) implies that

P[y < Ex0] = 1 − O
( ln ln n

ln n

)
for any y ∈ Dn. Let µ(k)

y = Eξ(k)
y . Then we have

µ(k)
y = P[y < Ex0 ∪ Ex1 ∪ . . . ∪ Exk]

=
(
1 − O

( ln ln n
ln n

))
×

((
1 −

ln ln n
ln n

(
1 + O

( ln ln n
ln n

))))k

= exp
(
− k

ln ln n
ln n

(
1 + O

(
k−1 + ln ln n

ln n

)))
. (4.67)

Next, we need to estimate the covariance12 of ξ(k)
y and ξ(k)

z in case ‖y − z‖ ≥
n

ln n . First note that, for any x ∈ ∂B(n ln n),

Px
[
{y, z} ∩ Ex1 = ∅

]
= 1 − Px[y ∈ Ex1] − Px[z ∈ Ex1] + Px

[
{y, z} ⊂ Ex1

]
= 1 − 2

ln ln n
ln n

(
1 + O

( ln ln n
ln n

))
+ Px

[
{y, z} ⊂ Ex1

]
by (4.65); also, since{

τ̂y < τ̂z < τ̂∂B(n ln2 n)
}
⊂

{
τ̂y < τ̂∂B(n ln2 n),

Ŝ k = z for some τ̂y < k < τ̂∂B(n ln2 n)
}
,

from (4.65) and (4.66) we obtain

Px
[
{y, z} ⊂ Ex1

]
= Px

[
max{τ̂y, τ̂z} < τ̂∂B(n ln2 n)

]
= Px

[
τ̂y < τ̂z < τ̂∂B(n ln2 n)

]
+ Px

[
τ̂z < τ̂y < τ̂∂B(n ln2 n)

]
≤ Px

[
τ̂y < τ̂∂B(n ln2 n)

]
Py

[
τ̂z < τ̂∂B(n ln2 n)

]
+ Px

[
τ̂z < τ̂∂B(n ln2 n)

]
Pz

[
τ̂y < τ̂∂B(n ln2 n)

]
≤ 2

ln ln n
ln n

×
3 ln ln n

ln n

(
1 + O

( ln ln n
ln n

))
= O

(( ln ln n
ln n

)2)
.

12 Recall that we want a weak-LLN-type argument, that is, we need to estimate
Var

∑
y∈Dn ξ

(k)
y ; so, we will indeed need these covariances.
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Therefore, similarly to (4.67) we obtain

E(ξ(k)
y ξ(k)

z ) = exp
(
− 2k

ln ln n
ln n

(
1 + O

(
k−1 + ln ln n

ln n

)))
,

which, together with (4.67), implies after some elementary calculations
that, for all y, z ∈ Dn such that ‖y − z‖ ≥ n

ln n

cov(ξ(k)
y , ξ(k)

z ) = O
( ln ln n

ln n

)
(4.68)

uniformly in k, since(
ln ln n
ln n

+ k
( ln ln n

ln n

)2
)

exp
(
− 2k

ln ln n
ln n

)
= O

( ln ln n
ln n

)
uniformly in k. At this point, we are ready to write that weak-LLN argu-
ment. Using Chebyshev’s inequality, we write

P
[∣∣∣∣|Dn|

−1
∑
y∈Dn

(ξ(k)
y − µ

(k)
y )

∣∣∣∣ > ε]
≤ (ε|Dn|)−2 Var

( ∑
y∈Dn

ξ(k)
y

)
= (ε|Dn|)−2

∑
y,z∈Dn

cov(ξ(k)
y , ξ(k)

z )

= (ε|Dn|)−2
( ∑

y,z∈Dn,
‖y−z‖< n

ln n

cov(ξ(k)
y , ξ(k)

z ) +
∑

y,z∈Dn,
‖y−z‖≥ n

ln n

cov(ξ(k)
y , ξ(k)

z )
)

≤ (ε|Dn|)−2
( ∑

y∈Dn

∣∣∣Dn ∩ B(y, n
ln n )

∣∣∣ + |Dn|
2O

( ln ln n
ln n

))
≤ ε−2O(ln−2 n + ln ln n

ln n

)
= ε−2O

( ln ln n
ln n

)
. (4.69)

Now, having established that R(k) is “almost deterministic”, we recall
that the number of excursions is “almost geometrically distributed”, and
work with this fact. Let

Φ(s) = min
{
k : R(k) ≥ 1 − s

}
be the number of excursions necessary to make the unvisited proportion
of Dn at most s. We have

P[R(Dn) ≥ 1 − s]

= P[Φ(s) ≤ Q]

= P[Φ(s) ≤ Q,Q = Q̂] + P[Φ(s) ≤ Q,Q , Q̂]

= P[Φ(s) ≤ Q̂] + P[Φ(s) ≤ Q,Q , Q̂] − P[Φ(s) ≤ Q̂,Q , Q̂],
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so, recalling (4.63),∣∣∣P[R(Dn) ≥ 1 − s] − P[Φ(s) ≤ Q̂]
∣∣∣ ≤ P[Q , Q̂] ≤ O(n−1). (4.70)

Next, by the “independence” part of Lemma 4.21, we write

P[Φ(s) ≤ Q̂] = E
(
P[Q̂ ≥ Φ(s) | Φ(s)]

)
= E(1 − ψn)Φ(s)

, (4.71)

and focus on obtaining lower and upper bounds on the expectation in the
right-hand side of (4.71). The idea is that, since R(k) is concentrated, Φ(s)

has to be concentrated as well; however, since it is in the exponent, some
extra care needs to be taken. Let us assume that s ∈ (0, 1) is fixed and
abbreviate

δn =
( ln ln n

ln n

)1/3

k−n =
⌊
(1 − δn) ln s−1 ln n

ln ln n

⌋
,

k+
n =

⌈
(1 + δn) ln s−1 ln n

ln ln n

⌉
;

we also assume that n is sufficiently large so that δn ∈ (0, 1
2 ) and 1 < k−n <

k+
n . Now, according to (4.67),

µ
(k±n )
y = exp

(
− (1 ± δn) ln s−1

(
1 + O

(
(k±n )−1 + ln ln n

ln n

)))
= s exp

(
− ln s−1

(
± δn + O

(
(k±n )−1 + ln ln n

ln n

)))
= s

(
1 + O

(
δn ln s−1 + ln ln n

ln n (1 + ln s−1)
))
,

so in both cases it holds that (observe that s ln s−1 ≤ 1/e for all s ∈ [0, 1])

µ
(k±n )
y = s + O

(
δn + ln ln n

ln n

)
= s + O(δn). (4.72)

With a similar calculation, one can also obtain that

(1 − ψn)(k±n ) = s + O(δn). (4.73)

We then write, using (4.72),

P[Φ(s) > k+
n ] = P[R(k+

n ) < 1 − s]

= P
[
|Dn|

−1
∑
y∈Dn

ξ
(k+

n )
y > s

]
= P

[
|Dn|

−1
∑
y∈Dn

(ξ(k+
n )

y − µ
(k+

n )
y ) > s − |Dn|

−1
∑
y∈Dn

µ
(k+

n )
y

]
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= P
[
|Dn|

−1
∑
y∈Dn

(ξ(k+
n )

y − µ
(k+

n )
y ) > O(δn)

]
. (4.74)

Then, (4.69) implies that

P[Φ(s) > k+
n ] ≤ O

(( ln ln n
ln n

)1/3)
. (4.75)

Quite analogously, one can also obtain that

P[Φ(s) < k−n ] ≤ O
(( ln ln n

ln n

)1/3)
. (4.76)

Using (4.73) and (4.75), we then write

E(1 − ψn)Φ(s)
≥ E

(
(1 − ψn)Φ(s)

1{Φ(s) ≤ k+
n }

)
≥ (1 − ψn)k+

n P[Φ(s) ≤ k+
n ]

≥
(
s − O

(( ln ln n
ln n

)1/3))(1 − O
(( ln ln n

ln n

)1/3))
, (4.77)

and, using (4.73) and (4.76),

E(1 − ψn)Φ(s)
= E

(
(1 − ψn)Φ(s)

1{Φ(s) ≥ k−n }
)

+ E
(
(1 − ψn)Φ(s)

1{Φ(s) < k−n }
)

≤ (1 − ψn)k−n + P[Φ(s) < k−n ]

≤
(
s + O

(( ln ln n
ln n

)1/3))
+ O

(( ln ln n
ln n

)1/3)
. (4.78)

Therefore, recalling (4.70) and (4.71), we obtain (4.55); this concludes the
proof of Theorem 4.17. �

Now, we prove that there are “big holes” in the range of Ŝ :

Proof of Theorem 4.18 For the sake of simplicity, let us still assume that
D ⊂ B(1) \ B(1/2); the general case can be treated in a completely analo-
gous way.

Consider two sequences of events

En =
{
τ̂D23n−1 > τ̂∂B(23n), ‖Ŝ j‖ > 23n−1 for all j ≥ τ̂∂B(23n)

}
,

E′n =
{
‖Ŝ j‖ > 23n−1 for all j ≥ τ̂∂B(23n)

}
and note that En ⊂ E′n and 23n−1D ∩ Ŝ [0,∞) = ∅ on En. Our goal is to
show that, almost surely, an infinite number of events (En, n ≥ 1) occurs.
Observe, however, that the events in each of the preceding two sequences
are not independent, so the “basic” second Borel–Cantelli lemma will not
work.
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In the following, we use a generalization of the second Borel–Cantelli
lemma, known as the Kochen–Stone theorem [54]: it holds that

P
[ ∞∑

k=1

1{Ek} = ∞
]
≥ lim sup

k→∞

(∑k
i=1 P[Ei]

)2∑k
i, j=1 P[Ei ∩ E j]

. (4.79)

We will now prove that there exists a positive constant c4 such that

P[En] ≥
c4

n
for all n ≥ 1. (4.80)

It is elementary to obtain13 that, for some c5 > 0,

Px
[
τD23n−1 > τ∂B(23n), τ

+
0 > τ∂B(23n)

]
> c5

for all x ∈ ∂B(23(n−1)). Lemma 4.4 then implies that, for some c6 > 0,

Px
[
τ̂D23n−1 > τ̂∂B(23n)

]
=

(
1 + o(2−3n)

)
Px

[
τD23n−1 > τ∂B(23n) | τ

+
0 > τ∂B(23n)

]
=

(
1 + o(2−3n)

)
Px

[
τD23n−1 > τ∂B(23n), τ

+
0 > τ∂B(23n)

]
> c6 (4.81)

for all x ∈ ∂B(23(n−1)). Let us denote, recalling (3.36), γ∗ = π
2 ×

1
ln 2 × γ

′ =
2γ+3 ln 2

2 ln 2 . Using (4.10), we then obtain

Pz
[
‖Ŝ j‖ > 23n−1 for all j ≥ 0

]
= 1 −

a(23n−1) + O(2−3n)
a(23n) + O(2−3n)

= 1 −
2
π
(3n − 1) ln 2 + γ′ + O(2−3n)

2
π
(3n) ln 2 + γ′ + O(2−3n)

=
1

3n + γ∗
(
1 + o(2−3n)

)
. (4.82)

for any z ∈ ∂B(23n). The inequality (4.80) follows from (4.81) and (4.82).
Now, we need an upper bound for P[Em ∩ En], m ≤ n. Clearly, Em ∩

En ⊂ E′m ∩ E′n, and note that the event E′m ∩ E′n means that the particle hits
∂B(23n) before ∂B(23m−1) starting from a site on ∂B(23m), and then never
hits ∂B(23n−1) starting from a site on ∂B(23n). So, again using (4.10) and
Lemma 4.4, we write analogously to (4.82) (and also omitting a couple of
lines of elementary calculations)

P[Em ∩ En] ≤ P[E′m ∩ E′n]

=
(a(23m−1))−1 − (a(23m))−1 + O(2−3m)
(a(23m−1))−1 − (a(23n))−1 + O(2−3m)

13 E.g., by comparison/coupling to Brownian motion, or directly, in the spirit of
Exercise 4.12.
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×
(
1 −

a(23n−1) + O(2−3n)
a(23n) + O(2−3n)

)
=

1
(3(n − m) + 1)(3m + γ∗)

(
1 + o(2−3m)

)
≤

c9

m(n − m + 1)
. (4.83)

Therefore, we can write
k∑

m,n=1

P[Ei ∩ E j] ≤ 2
∑

1≤m≤n≤k

P[Ei ∩ E j]

≤ 2c9

∑
1≤m≤n≤k

1
m(n − m + 1)

= 2c9

k∑
m=1

1
m

k∑
n=m

1
n − m + 1

≤ 2c9

k∑
m=1

1
m

k−m+1∑
n=m

1
n − m + 1

= 2c9

( k∑
m=1

1
m

)2
,

and so
∑k

i, j=1 P[Ei ∩ E j] ≤ c10 ln2 k. Now, (4.80) implies that
∑k

i=1 P[Ei] ≥
c11 ln k, so, using (4.79), we obtain that

P
[ ∞∑

k=1

1{Ek} = ∞
]
≥ c12 > 0.

To obtain that the probability in the preceding display must be equal to 1,
we need a suitable 0-1 law. Conveniently enough, it is provided by propo-
sition 3.8 in chapter 2 of [85]: if every set is either recurrent or transient
with respect to Ŝ , then every tail event must have probability 0 or 1. Now,
note that Theorem 4.11 implies that every set must be recurrent or transient
indeed. This concludes the proof of Theorem 4.18. �

4.6 Exercises

Exercise 4.1. For one-dimensional random walk Xn with drift (i.e., it jumps
to the left with probability p ∈

(
0, 1

2

)
and to the right with probability 1−p),

prove that (somewhat surprisingly) |Xn| is a Markov chain, and calculate its
transition probabilities.
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Exercise 4.2. Calculate Green’s function of the conditioned one-dimen-
sional SRW.

Exercise 4.3. Consider a nearest-neighbour random walk on Z+ with drift
towards the origin, p(n, n + 1) = 1 − p(n, n − 1) = p < 1

2 . What will be its
conditioned (on never hitting the origin) version?

Exercise 4.4. Now, consider a one-dimensional nearest-neighbour Lam-
perti random walk (recall Exercise 2.27): p(n, n+1) = 1−p(n, n−1) = 1

2 + c
n

with c < 1
4 , so that the random walk is recurrent. What can you say about

its conditioned version?

Exercise 4.5. Assume that the original Markov chain is reversible; must
its h-transform be reversible as well?

Exercise 4.6. For any finite A ⊂ Z2, find a (nontrivial) nonnegative func-
tion which is zero on A and harmonic outside A.

Exercise 4.7. Prove that

Px
[
τ̂N < ∞

]
=

1
a(x)

(4.84)

for any x ∈ Z2 \ {0}.

Exercise 4.8. Can you find an expression for Green’s function of the h-
transform in the general case (as in Section 4.1), i.e., an analogue of (4.12)?
What else should we assume for that?

Exercise 4.9. Do we actually need recurrence in Lemma 4.9?

Exercise 4.10. Prove that the conditioned walk Ŝ is uniformly elliptic, i.e.,
there exists c > 0 such that Px[Ŝ 1 = y] > c for all x, y ∈ Z2 \ {0} such that
x ∼ y.

Exercise 4.11. Can you find a heuristic explanation of (4.21) (i.e., that the
probability that Ŝ ever visits a very distant site is approximately 1/2)?

Exercise 4.12. Give at least a couple of different proofs of (4.39) which
do not use Lemma 3.11.

Exercise 4.13. Argue that it is evident that, for all y ∈ Z2 \ {0},

Ey
(
Ĝ(S 1, y) − Ĝ(y, y)

)
= 1. (4.85)

Nevertheless, verify (4.85) directly (i.e., using (4.12)).
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Exercise 4.14. Prove that there exist two positive constants c1, c2 such that,
for all x, y ∈ Z2 \ {0},

c1

ln(1 + ‖x‖ ∨ ‖y‖)
≤ ĝ(x, y) ≤

c2

ln(1 + ‖x‖ ∨ ‖y‖)
. (4.86)

Exercise 4.15. With a “direct” computation (i.e., not using the general
fact that Green’s functions give rise to martingales), prove that the process
( ˆ̀(Ŝ n∧τ̂y , y), n ≥ 0) (recall (4.17)) is a martingale.

Exercise 4.16. In Lemma 4.13, can one substitute the constant 5 by any
fixed positive number?

Exercise 4.17. Let A be a finite subset of Z2 \ {0}. Prove that∑
z∈A

ĝ(y0, z) ĥmA(z) =
1

ĉap(A)
(4.87)

for any y0 ∈ A.

Exercise 4.18. For any Λ ⊂ (Z2 \ {0}), and x, y ∈ Λ, quite analogously
to (3.43) we can define

ĜΛ(x, y) = Ex

τ̂
Λ{
−1∑

k=0

1{Ŝ k = y} (4.88)

to be the mean number of visits of the conditioned walk to y starting from x
before stepping out of Λ.

Prove that the analogue of (4.22) holds also for the restricted Green’s
function of the conditioned walk:

a2(x)ĜΛ(x, y) = a2(y)ĜΛ(y, x) (4.89)

for all x, y ∈ Λ.

Exercise 4.19. Prove the analogue of Theorem 3.13: for any Λ ⊂ (Z2 \ {0})

ĜΛ(x, y) = Ĝ(x, y) − ExĜ(Ŝ τ̂
Λ{
, y) (4.90)

for all x, y ∈ Λ.

Exercise 4.20. Check (4.65) and (4.66).

Exercise 4.21. Give examples of A ⊂ Z2 with |An| → ∞ such that (recall
that R(A) is the proportion of sites in A visited by the conditioned walk)

(i) R(An) converges in distribution to Bernoulli(1/2);
(ii) R(An) converges in probability to 1/2.
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Exercise 4.22. Can we somehow obtain mixtures of the three main limit
distributions of R(·), and how shall we recognize their “domains of attrac-
tion”? For example, try to analyse the following case: let An = B(rne1, n),
where rn → ∞ in some way.



5

Intermezzo: soft local times and Poisson
processes of objects

Here we (apparently) digress from our main topic of simple random walks,
and discuss the following two subjects. One of them is the method of soft
local times: it is an “algorithm” that permits us to obtain a realization of an
adapted stochastic process on a general space Σ taking an auxiliary Poisson
point process on Σ × R+ as an input. It turns out that this method can be
quite useful for dealing with sequences of random walk’s excursions; as
we remember from Section 4.5, analysing those is important for proving
interesting results about our models. So, it is unsurprising that it will also
come in handy later in Chapter 6.

Then in Section 5.2 we digress even more and discuss Poisson processes
of infinite objects, using the Poisson line process as a basic example.1 Given
that the next chapter is in fact devoted to Poisson processes of specific
infinite objects (which are random walk’s trajectories), it looks like a good
idea to spend some time on a simpler model of “similar” kind in order to
build some intuition about what will come next.

5.1 Soft local times

Let us start with the following elementary question. Assume that X and Y
are two random variables with the same support2 but different distributions.
Let X1, X2, X3, . . . be a sequence of independent copies of X. Does there
exist an infinite permutation3 σ = (σ(1), σ(2), σ(3), . . .) such that the se-
quence Xσ(1), Xσ(2), Xσ(3), . . . has the same law as the sequence Y1,Y2,Y3, . . .,

1 In the author’s experience, many people working with random walks do not know how
Poisson line processes are constructed; so this example by itself might be interesting to
some readers.

2 Informally, the support of a random variable Z is the (minimal) set where it lives.
Formally, it is the intersection of all closed sets F such that P[Z ∈ F] = 1 (therefore, in
particular, the support is a closed set).

3 I.e., a bijection σ : N 7→ N.
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a sequence of independent copies of Y? Of course, such a permutation
should be random: if it is deterministic, then the permuted sequence would
simply have the original law.4 For constructing σ, one is allowed to use ad-
ditional random variables (independent of the X-sequence) besides the re-
alization of the X-sequence itself. As far as the author knows, constructing
the permutation without using additional randomness (i.e., when the per-
mutation is a deterministic function of the random sequence X1, X2, X3, . . .)
is still an open problem, a rather interesting one.

As usual, when faced with such a question, one tries a “simple” case first,
to see if it gives any insight on the general problem. For example, take X
to be Binomial(n, 1

2 ) and Y to be discrete Uniform[0, n]. One may even
consider the case when X and Y are Bernoullis, with different probabilities
of success. How can one obtain σ in these cases?

After some thought, one will come with the following solution, sim-
ple and straightforward: just generate the i.i.d. sequence Y1,Y2,Y3, . . . in-
dependently, then there is a permutation that sends X-sequence to the Y-
sequence. Indeed (this argument works for any pair of discrete random
variables with the same support), almost surely any possible value of X
(and Y) occurs infinitely many times both in the X-sequence and the Y-
sequence. It is then quite straightforward to see that there is a permutation
that sends one sequence to the other.

Now, let us be honest with ourselves: this solution looks like cheating. In
a way, it is simply too easy. Common wisdom tells us, however, that there
ain’t no such thing as a free solution; in this case, the problem is that the
preceding construction does not work at all when the random variables are
continuous. Indeed, if we generate the two sequences independently, then,
almost surely, no element of the first sequence will be even present in the
second one. So, a different approach is needed.

Later in this section, we will see how to solve such a problem using a
sequence of i.i.d. exponential random variables as additional randomness.
The solution will come out as an elementary application of the method
of soft local times, the main subject of this section. Generally speaking,
the method of soft local times is a way to construct an adapted stochastic
process on a general space Σ, using an auxiliary Poisson point process on
Σ × R+.

Naturally, we assume that the reader knows what is a Poisson point pro-
cess in Rd with (not necessarily constant) rate λ. If one needs to consider a

4 Even more, the permutation σ should depend on X1, X2, X3, . . .; if it is independent of
the X-sequence, it is still easy to check that the permuted sequence has the original law.
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Poisson process on, say, Z × R, then it is still easy to understand what ex-
actly it should be (a union of Poisson processes on the straight lines indexed
by the sites of Z). In any case, all this fits into the Poissonian paradigm:
what happens in a domain does not affect what is going on in a disjoint
domain, the probability that there is exactly one point in a “small” domain
of volume δ located “around” x is δλ(x) (up to terms of smaller order), and
the probability that there are at least two points in that small domain is o(δ).
Here, the tradition dictates that the author cites a comprehensive book on
the subject, so [84].

Coming back to the soft local times method, we mention that, in full
generality, it was introduced in [78]; see also [24, 25] which contain short
surveys of this method applied to constructions of excursion processes.5

The idea of using projections of Poisson processes for constructions of
other (point) processes is not new; see e.g. [48, 49]. The key tool of this
method (Lemma 5.1) appears in [101] in a simpler form, and the motivating
example we gave in the beginning of this section is also from that paper.

Next, we are going to present the key result that makes the soft local
times possible. Over here, we call it “the magic lemma”. Assume that we
have a space Σ, which has enough structure6 that permits us to construct a
Poisson point process on Σ of rate µ, where µ is a measure on Σ.

Now, the main object we need is the Poisson point process on Σ × R+,
with rate µ⊗dv, where dv is the Lebesgue measure on R+. At this point, we
have to write some formalities. In the next display, Ξ is a countable index
set. We prefer not to use Z+ for the indexing, because we are not willing
to fix any particular ordering of the points of the Poisson process for the
reason that will become clear in a few lines. Let

M =
{
η =

∑
%∈Ξ

δ(z%,v%); z% ∈ Σ, v% ∈ R+,

and η(K) < ∞ for all compact K
}
, (5.1)

be the set7 of point configurations of this process. It is a general fact that
one can canonically construct such a Poisson point process η; see e.g.
proposition 3.6 on p. 130 of [84] for details of this construction.

The following result is our “magic lemma”: it provides us with a way
5 But this will be treated in a detailed way in Section 6.3.1.
6 For example, the following is enough: let Σ be a locally compact and Polish metric

space, and µ is a Radon measure (i.e., every compact set has finite µ-measure) on the
measurable space (Σ,B), where B is the Borel σ-algebra on Σ.

7 Endowed with sigma-algebraD generated by the evaluation maps η 7→ η(A),
A ∈ B ⊗ B(R).



118 Intermezzo

Z

ξg(·)

Σ

R+

(z%̂, v%̂)

Figure 5.1 The magic lemma. The random variable Z has
density g, •’s are points of η, and ◦’s are points of the new
Poisson process η′.

to simulate a random element of Σ with law absolutely continuous with
respect to µ, using the Poisson point process η. We first write it formally,
and then explain what it means.

Lemma 5.1. Let g : Σ→ R+ be a (nonnegative) measurable function such
that

∫
g(z)µ(dz) = 1. For η =

∑
%∈Ξ δ(z%,v%) ∈ M, we define

ξ = inf
{
t ≥ 0; there exists % ∈ Ξ such that tg(z%) ≥ v%

}
. (5.2)

Then, under the law Q of the Poisson point process η,

1. there exists a.s. a unique %̂ ∈ Ξ such that ξg(z%̂) = v%̂,
2. (z%̂, ξ) is distributed as g(z)µ(dz) ⊗ Exp(1),
3. η′ :=

∑
%,%̂ δ(z%,v%−ξg(z%)) has the same law as η and is independent of

(ξ, %̂).

That is, in plain words (see Figure 5.1):

• In (5.2) we define ξ as the smallest positive number such that there is
exactly one point (z%̂, v%̂) of the Poisson process on the graph of ξg(·),
and nothing below this graph.



5.1 Soft local times 119

?
?

?

Σ
εg(·)2εg(·)

R+

R

ε
∫

R g(z)µ(dz)

Figure 5.2 Slow exploration of the space: why Lemma 5.1 is
valid.

• The first coordinate Z of the chosen point is a random variable with
density g (with respect to µ). Also, ξ is exponential with parameter 1,
and it is independent of Z.

• Remove the point that was chosen, and translate every other point (z, v)
of η down by amount ξg(z). Call this new configuration η′. Then, η′

is also a Poisson point process on Σ × R+ with rate µ ⊗ dv, and it is
independent of ξ and Z.

Sketch of the proof of Lemma 5.1. The formal proof can be found in [78]
(Lemma 5.1 is proposition 4.1 of [78]), and here we give only an informal
argument to convince the reader that Lemma 5.1 is not only magic, but also
true. In fact, this result is one of those statements that become evident after
one thinks about it for a couple of minutes; so, it may be a good idea for
the reader to ponder on it for some time before going further.

So, one may convince oneself that the result is valid e.g. in the following
way. Fix a very small ε > 0 and let us explore the space as shown in
Figure 5.2. That is, first look at the domain {(z, u) : u ≤ εg(z)} and see if we
find a point of the Poisson process there (observe that finding two points
is highly improbable). If we don’t, then we look at the domain {(z, u) :
εg(z) < u ≤ 2εg(z)}, and so on.

How many steps do we need to discover the first point? First, observe
that g is a density, so it integrates to 1 with respect to µ, and therefore the
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area8 below εg equals ε. So, the number of points below εg is Poisson
with rate ε, which means that on the first step (as well as on each subse-
quent one) we are successful with probability 1 − e−ε. Hence the number
of steps Nε until the first success is geometric(1 − e−ε). It is then quite
straightforward to see that εNε converges in law to an exponential random
variable with parameter 1 as ε→ 0 (note that 1− e−ε = ε+ o(ε) as ε→ 0).
Therefore, ξ should indeed be exponential(1).

The preceding fact could have been established in a direct way (note
that Q[ξ > t] equals the probability that the set {(z, u) : u ≤ tg(z)} is empty,
and the “volume” of that set is exactly t), but with an argument such as the
previous one the questions about Z become more clear. Indeed, consider
an arbitrary (measurable) set R ⊂ Σ. Then, on each step, we find a point
with the first coordinate in R with probability 1 − exp

(
− ε

∫
R

g(z)µ(dz)
)

=

ε
∫

R
g(z)µ(dz)+o(ε). Note that this probability does not depend on the num-

ber of steps already taken; that is, independently of the past, the conditional
probability of finding a point with first coordinate in R given that something
is found on the current step9 is roughly

∫
R

g(z)µ(dz). This shows that ξ and Z
are independent random variables.

As for the third part, simply observe that, at the time we discovered the
first point, the shaded part on Figure 5.2 is still completely unexplored, and
so its contents are independent of the pair (ξ,Z). In other words, we have
a Poisson process on the set {(z, v) : v > ξg(z)} with the same rate, which
can be transformed to the Poisson process in Σ × R+ by subtracting ξg(·)
from the second coordinate (observe that such transformation is volume
preserving). �

Now, the key observation is that Lemma 5.1 allows us to construct vir-
tually any discrete-time stochastic process! Moreover, one can effectively
couple two or more stochastic processes using the same realization of the
Poisson process. One can better visualize the picture in a continuous space,
so, to give a clear idea of how the method works, assume that we de-
sire to obtain a realization of a sequence of (not necessarily independent
nor Markovian) random variables X1, X2, X3, . . . taking values in the inter-
val [0, 1]. Let us also construct simultaneously the sequence Y1,Y2,Y3, . . .,
where (Yk) are i.i.d. Uniform[0, 1] random variables, thus effectively ob-
taining a coupling of the X- and Y-sequences. We assume that the law
of Xk conditioned on Fk−1 is a.s. absolutely continuous with respect to the

8 With respect to µ ⊗ dv.
9 That is, we effectively condition on ξ, and show that the conditional law of Z does not

depend on the value of ξ.
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Lebesgue measure on [0, 1], where Fk−1 is the sigma-algebra generated by
X1, . . . , Xk−1.

This idea of using the method of soft local times to couple general
stochastic processes with independent sequences has already proved to be
useful in many situations; for this book, it will be useful as well, as we will
see in Chapter 6.

Our method for constructing a coupling of the X- and Y-sequences is
illustrated in Figure 5.3. Consider a Poisson point process in [0, 1] × R+

with rate 1. Then one can obtain a realization of the Y-sequence by simply
ordering the points according to their second coordinates, and then taking
Y1,Y2,Y3, . . . to be the first coordinates of these points. Now, to obtain a
realization of the X-sequence using the same Poisson point process, one
proceeds as follows.

• First, take the density g(·) of X1 and multiply it by the unique positive
number ξ1 so that there is exactly one point of the Poisson process lying
on the graph of ξ1g and nothing strictly below it; X1 is then the first
coordinate of that point.

• Using Lemma 5.1, we see that, if we remove the point chosen on the
previous step10 and then translate every other point (z, u) of the Poisson
process to (z, u− ξ1g(z)), then we obtain a Poisson process in [0, 1]×R+

which is independent of the pair (ξ1, X1).
• Thus, we are ready to use Lemma 5.1 again in order to construct X2.
• So, consider the conditional density g( · | F1) of X2 given F1 and find

the smallest positive number ξ2 in such a way that exactly one point lies
on the graph of ξ2g( · | F1) + ξ1g(·) and exactly one (the point we picked
first) below it; again, X2 is the first coordinate of the point that lies on
the graph.

• Continue with g( · | F2), and so on.

The fact that the X-sequence obtained in this way has the prescribed law is
readily justified by the subsequent application of Lemma 5.1. Now, let us
state the formal result (it corresponds to proposition 4.3 of [78]); here it is
only a bit more general since we formulate it for adapted processes.

To put it in a formal way, for a stochastic process (Zn, n ≥ 0) adapted to
a filtration (Fn, n ≥ 0) we define

ξ1 = inf
{
t ≥ 0 : there exists % ∈ Ξ such that tg(z%) ≥ v%

}
,

G1(z) = ξ1g(z | F0), for z ∈ Σ,

10 This point has coordinates (X1, ξ1g(X1)).
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X1X2 X3 = Y4X4 = Y3 X5

ξ1g(·) + ξ2g( · | X1)

ξ1g(·)

Σ

R+

Figure 5.3 Soft local times: the simultaneous construction of the
processes X and Y (here, Xk = Yk for k = 1, 2, 5); it is very
important to observe that the points of the two processes need not
necessarily appear in the same order with respect to the vertical
axis.

where g( · | F0) is the density of Z1 given F0, and

(z1, v1) is the unique pair in {(z%, v%)}%∈Ξ with G1(z1) = v1. (5.3)

Denote also R1 = {(z1, v1)}. Then, for n ≥ 2 we proceed inductively,

ξn = inf
{
t ≥ 0 : there exists (z%, v%) < Rn−1

such that Gn−1(z%) + tg(z% | Fn−1) ≥ v%
}
, (5.4)

Gn(z) = Gn−1(z) + ξng(z | Fn−1),

and

(zn, vn) is the unique pair (z%, v%) < Rn−1 with Gn(z%) = v%; (5.5)

also, set Rn = Rn−1 ∪ {(zn, vn)}. These random functions (Gn, n ≥ 1) deserve
a special name:

Definition 5.2. We call Gn the soft local time of the process, at time n, with
respect to the reference measure µ.

Then, the previous discussion implies that the following result holds:

Proposition 5.3. It holds that
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1

R+

Σ

Figure 5.4 Comparison of soft and usual local times: the usual
local time L3(·) has three peaks (of size 1) at points z1, z2, z3, and
equals 0 in all other points. The soft one looks much softer.

(i) (z1, . . . , zn) law
= (Z1, . . . ,Zn) and they are independent from ξ1, . . . , ξn,

(ii) the point process ∑
(z%,v%)<Rn

δ(z%,v%−Gn(z%))

is distributed as η and independent of Rn and ξ1, . . . , ξn,

for all n ≥ 1.

To justify the choice of the name “soft local time” for the previously
defined object, consider a stochastic process in a finite or countable state
space, and define the “usual” local time of the process by

Ln(z) =

n∑
k=1

1{Xk = z}. (5.6)

Now, just look at Figure 5.4.
Next, we establish a very important relation between these two different

local times: their expectations are equal.

Proposition 5.4. For all z ∈ Σ, it holds that

EGn(z) = ELn(z) =

n∑
k=1

P[Xk = z]. (5.7)

Notice that in continuous space we cannot expect the preceding result
to be true, since typically ELn(z) would be just 0 for any z. Nevertheless,
an analogous result holds in the general setting as well (cf. theorem 4.6
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G′n

Gm

Figure 5.5 The set of Y’s (with soft local time G′n(·)) contains all
the X’s (with soft local time Gm(·)) and three other points.

of [78]), but, to formulate it properly, one would need to define the so-
called expected local time density first (cf. (4.16) of [78]), which we prefer
not to do here.

Proof of Proposition 5.4. It is an easy calculation that uses conditioning
and induction. First, observe that g(z | Fn−1) = P[Xn = z | Fn−1], so we
have

EG1(z) = E(P[X1 = z | F0]) = P[X1 = z] = EL1(z).

Then, we proceed by induction: note thatGn−1(z) isFn−1-measurable, and ξn

is a mean-1 random variable which is independent ofFn−1. Recall also (5.4)
and write

EGn(z) = E
(
E(Gn(z) | Fn−1)

)
= EGn−1(z) + E

(
E(ξng(z | Fn−1) | Fn−1)

)
= EGn−1(z) + E

(
g(z | Fn−1)E(ξn | Fn−1)

)
= EGn−1(z) + E

(
P[Xn = z | Fn−1)

)
= EGn−1(z) + P[Xn = z].

This concludes the proof. �

As mentioned before, soft local times work really well for couplings of
stochastic processes: indeed, simply construct them in the way described
earlier using the same realization of the Poisson point process. Observe
that for this coupling of the processes (Xn) and (Yn), it holds that

P
[
{X1, . . . , Xm} ⊂ {Y1, . . . ,Yn}

]
≥ P

[
Gm(z) ≤ G′n(z) for all z ∈ Σ

]
, (5.8)

where G′ is the soft local time of Y; see Figure 5.5. Then, in principle, one
may use large deviations tools to estimate the right-hand side of (5.8). One
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has to pay attention to the following, though: it is easy to see that the ran-
dom variables (ξ1, . . . , ξm) are not independent of (ξ′1, . . . , ξ

′
n) (which enter

to G′n). This can be usually circumvented in the following way: we find a
deterministic function ϕ : Σ 7→ R, which should typically be “between” Gm

and G′n, and then write

P
[
Gm(z) ≤ G′n(z) for all z ∈ Σ

]
≥ P

[
Gm(z) ≤ ϕ(z) for all z ∈ Σ

]
+ P

[
ϕ(z) ≤ G′n(z) for all z ∈ Σ

]
− 1. (5.9)

Note that in the right-hand side of the preceding relation, we do not have
this “conflict of ξ’s” anymore. Let us also mention that in the previous large
deviation estimates, one has to deal with sequences of random functions
(not just real-valued random variables). When the state space Σ is finite,
this difficulty can be usually circumvented by considering the values of the
functions separately in each point of Σ and then using the union bound,
hoping that this last step will not cost too much. Otherwise, one has to
do the large deviations for random functions directly using some advanced
tools from the theory of empirical processes11; see e.g. section 6 of [29]
and lemma 2.9 of [22] for examples of how large deviations for soft local
times may be treated.

To underline the importance of finding couplings as before (and also the
exact couplings of Section 5.1.1), observe that there are many quantities of
interest that can be expressed in terms of local times (as defined in (5.6))
only (that is, they do not depend on the order). Such quantities are, for
example,

• hitting time of a site x: τ(x) = min{n : Ln(x) > 0};
• cover time: min{n : Ln(x) > 0 for all x ∈ Σ}, where Σ is the space where

the process lives;
• blanket time [35]: min{n ≥ 1 : Ln(x) ≥ δnπ(x)}, where π is the stationary

measure of the process and δ ∈ (0, 1) is a parameter;
• disconnection time [31, 92]: loosely speaking, it is the time n when the

set {x : Ln(x) > 0} becomes “big enough” to “disconnect” the space Σ in
some precise sense;

• the set of favorite (most visited) sites (e.g. [51, 100]): {x : Ln(x) ≥
Ln(y) for all y ∈ Σ};

• and so on.

Now, finally, let us go back to the example from the beginning of this

11 Note that they have to be more advanced than Bousquet’s inequality (see theorem 12.5
of [12]) since, due to these i.i.d. exponential ξ’s, the terms are not a.s. bounded.
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1
2ξ1

1
2 (ξ1 + ξ2 + ξ3)

1
2 (ξ1 + ξ2)

X1X2 X3

Figure 5.6 Making uniforms triangular. We first obtain a
particular instance of the Poisson process in [−1, 1] × R+ using
the X-sequence, and then use the same collection of points to
build the Y-sequence. It holds that σ(1) = 1, σ(2) = 3, σ(3) = 2,
σ(4) = 6, σ(5) = 4, σ(6) = 10, σ(7) = 5 (i.e., Y7 = X5, etc.).

section: recall that we had a realization of an i.i.d. sequence X1, X2, X3, . . .,
and wanted to find an infinite permutation σ such that Xσ(1), Xσ(2), Xσ(3), . . .

is also an i.i.d. sequence, however, sampled from another distribution (with
the same support). With Proposition 5.3 at hand, the solution is relatively
simple. Let ξ1, ξ2, ξ3, . . . be a sequence of i.i.d. exponential(1) random vari-
ables; this sequence will serve as an additional randomness. As an exam-
ple, let us consider the case when X is uniform on [−1, 1], and Y has the
“triangular” density f (y) = (1 − |y|)1{y ∈ [−1, 1]}. The first step is to re-
construct a Poisson process in [−1, 1] × R+, using X’s and ξ’s. This can
be done in the following way (see Figure 5.6): for all n ≥ 1, put a point
to

(
Xn,

1
2 (ξ1 + · · · + ξn)

)
. Then, using this Poisson process, we obtain the

sequence Y1,Y2,Y3, . . . of i.i.d. triangular random variables in the way de-
scribed previously; look at Figure 5.6, which speaks for itself. Clearly, one
sequence is a permutation of the other: they use the same points! We leave
as an exercise for the reader to check that, this time, essentially the same
solution works in the general case.
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5.1.1 Exact matchings with soft local times

So far, we have seen how the method of soft local times is useful for domi-
nating the range of one process with the range of another one (recall (5.9)).
This is indeed the main application of this method that one can find in
the literature. Still, a natural question that one may ask is: assume that the
processes X and Y are “close” in some sense. Is it possible to match their
ranges exactly at finite time (i.e., not as in the beginning of this chapter),
i.e., is it possible to couple these processes in such a way that (X1, . . . , Xn)
and (Y1, . . . ,Yn) are just permutations of each other with high probability12?

The problem, however, is that the “vanilla” soft local time method will
not work for finding exact matchings of this sort. The reason is that, while
the soft local times GX

n and GY
n are relatively close, with high probability

they will still be locally different, so that there will be points of the Poisson
process which are not included to the range of X but included to the range
of Y , and vise versa. However, it turns out to be possible to modify this
method to make it work for this purpose. In the following, we explain the
ideas of [29, 30]. We will formulate the results in greater generality, since
we do not intend to prove them here anyway.

Definition 5.5. Let (Σ, ρ) be a compact metric space, with B(Σ) represent-
ing its Borel σ-algebra. We say that (Σ, ρ) is of polynomial class, when
there exist some β ≥ 0 and ϕ ≥ 1 such that, for all r ∈ (0, 1], the number
of open balls of radius at most r needed to cover Σ is smaller than or equal
to ϕr−β.

As an example of metric space of polynomial class, consider first a finite
space Σ, endowed with the discrete metric

ρ(x, y) = 1{x , y}, for x, y ∈ Σ.

In this case, we can choose β = 0 and ϕ = |Σ|. As a second example,
let Σ be a compact k-dimensional Lipschitz submanifold of Rm with metric
induced by the Euclidean norm of Rm. In this case, we can take β = k, but
ϕ will in general depend on the precise structure of Σ. It is important to
observe that, for a finite Σ, it may not be the best idea to use the preceding
discrete metric; one may be better off with another one, e.g., the metric
inherited from the Euclidean space where Σ is immersed (see e.g. the proof
of lemma 2.9 of [22]).

Here, we consider a Markov chain X = (Xi)i≥1 on a general (not nec-
essarily countable) state space Σ. Such a process is characterized by its

12 As a motivating example, see Exercise 5.5.
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transition kernel P(x, dy) and initial distribution v, on (Σ,B(Σ)): for any
B ∈ B(Σ) and n ≥ 0,

P[Xn+1 ∈ B | Xn = x, Xn−1, . . . , X0] = P[Xn+1 ∈ B | Xn = x]

= P(x, B),

and

P[X0 ∈ B] = v(B).

Let us suppose that the chain has a unique invariant probability measure Π,
that is, ∫

Σ

P(x, B) Π(dx) = Π(B)

for all B ∈ B(Σ). Moreover, we assume that the initial distribution and
the transition kernel are absolutely continuous with respect to Π. Let us
denote respectively by ν(·) and p̃(x, ·) the Radon–Nikodym derivatives (i.e.,
densities) of v(·) and P(x, ·): for all A ∈ B(Σ)

v(A) =

∫
A
ν(y) Π(dy),

P(x, A) =

∫
A

p̃(x, y) Π(dy), for x ∈ Σ.

Let us also use assume that the density p̃(x, ·) is uniformly Hölder contin-
uous, that is, there exist constants κ > 0 and γ ∈ (0, 1] such that for all
x, z, z′ ∈ Σ,

|p̃(x, z) − p̃(x, z′)| ≤ κ(ρ(z, z′))γ. (5.10)

Next, let us suppose that there exists ε ∈ (0, 1
2 ] such that

sup
x,y∈Σ
| p̃(x, y) − 1| ≤ ε, (5.11)

and

sup
x∈Σ
|ν(x) − 1| ≤ ε. (5.12)

Observe that (5.12) is not very restrictive because, due to (5.11), the
chain will anyway come quite close to stationarity already on step 2.

Additionally, let us denote by Y = (Yi)i≥1 a sequence of i.i.d. random
variables with law Π.

Before stating the main result of this subsection, we recall the definition
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of the total variation distance between two probability measures µ̄ and µ̂ on
some measurable space (Ω,T ):

dTV(µ̄, µ̂) = sup
A∈T
|µ̄(A) − µ̂(A)|.

When dealing with random elements U and V , we will write (with a slight
abuse of notation) dTV(U,V) to denote the total variation distance between
the laws of U and V . Denoting by LZ

n := (LZ
n (x))x∈Σ the local time field of

the process Z = X or Y at time n, we are now ready to state the following:

Theorem 5.6. Suppose that (Σ, ρ) is of polynomial class with parameters
β, ϕ, that the transition density is uniformly Hölder continuous in the sense
of (5.10), and also that both the transition density and the initial distribu-
tion are close to stationarity in the sense of (5.11)–(5.12). Then there exists
a universal positive constant K such that, for all n ≥ 1, it holds that

dTV(LX
n , L

Y
n ) ≤ Kε

√
1 + ln(ϕ2β) +

β

γ
ln

(κ ∨ (2ε)
ε

)
. (5.13)

Notice that, in fact, the estimate (5.13) is only useful for small enough ε
(recall that the total variation distance never exceeds 1). Although not every
Markov chain comes close to the stationary distribution in just one step,
that can be sometimes circumvented by considering the process at times
k, 2k, 3k, . . . with a large k. Nevertheless, it is also relevant to check if we
can obtain a uniform control in n of dTV(LX

n , L
Y
n ) away from the “almost

stationarity” regime. We state the following:

Theorem 5.7. As before, assume that (Σ, ρ) is of polynomial class and that
the transition density is uniformly Hölder continuous. Assume also that

θ :=
(

sup
x,y∈Σ
|p̃(x, y) − 1|

)
∨

(
sup
x∈Σ
|ν(x) − 1|

)
< 1. (5.14)

Then, there exists K′ = K′(β, ϕ, κ, γ, θ) > 0, decreasing in θ, such that

dTV(LX
n , L

Y
n ) ≤ 1 − K′

for all n ≥ 1.

Such a result can be useful e.g. in the following context: if we are able
to prove that, for the i.i.d. sequence, something happens with probability
close to 1, then the same happens for the field of local times of the Markov
chain with at least uniformly positive probability. Observe that it is not
unusual that the fact that the probability of something is uniformly positive
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Σ

R+
GX

n GY
n

G′n =
∑n

i=1 ξ̃i

GX
n

V1V2 V3V4 V5 V ′3V ′1 V ′4V ′5 V ′2

Erase the points above the “dependent” part

Resample, using the maximal coupling

Use ξ̃1, . . . , ξ̃n
to construct ηY
until level G′n

Naı̈ve coupling
does not work well

Dependent

Independent

Figure 5.7 Resampling of the “independent parts”.

implies that it should be close to 1 then (because one frequently has general
results stating that this something should converge to 0 or 1).

Now, we briefly describe the main idea of the proof of the preceding
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results (and suggest the interested reader to look at [29, 30] for a complete
argument); this idea is also depicted on Figure 5.7 (we refer to [29] for
some notations used there; in that paper, G was used to denote soft local
times, but here this notation is reserved for Green’s function).

• As noted in the beginning of this subsection, the “direct” soft local time
coupling will likely not work (look at the two crosses in the top-right
corners of the first part of the picture).

• Since the Markov chain X is already close to the equilibrium, it will
“regenerate” quite often, and it is therefore possible to extract an “inde-
pendent part” from (X1, . . . , Xn) (the elements of this independent part
will be i.i.d. with law Π).

• Then, to generate the local times up to time n, we may do it first for the
“dependent part”, and then for the “independent” one.

• Note that, to obtain the i.i.d. sequence (Y1, . . . ,Yn), their soft local time
must be “flat”, as pictured on the right part of Figure 5.7. Now, here
comes the key idea: let us erase the points above the soft local time of
the dependent part, and then try to “resample” the two Poisson processes
in such a way that the projections (although not necessarily the points
themselves) coincide with high probability. This will amount to con-
structing couplings of binomial processes (local times of i.i.d. random
elements on some common space) with slightly different laws; propo-
sition 5.1 of [29] shows that this is indeed possible. If that coupling of
binomial processes is successful, then the local times of (X1, . . . , Xn) and
(Y1, . . . ,Yn) will coincide.

The author understands that the preceding does not even remotely qualify
to be a proof; he has a positive experience, though, of showing this argu-
ment to some colleagues and hear, “ah yes, sure!” as a response.

5.2 Poisson processes of objects

Of course, all people know what a Poisson process of points in Rd is. But
what if we need a Poisson process of more complicated objects, which
still live in Rd? What is the right way to define it? Naturally, we need the
picture to be invariant with respect to isometries.13 Also, it should be, well,
as independent as possible, whatever it may mean.

Observe that, if those objects are bounded (not necessarily uniformly),
one can use the following natural procedure: take a d-dimensional Poisson

13 Those are translations, rotations, reflections, and combinations of them.
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Figure 5.8 A Poisson process of finite objects.

Figure 5.9 A Poisson line process (observed in the dotted
domain) in R2.

point process of rate λ > 0, and “attach” the objects to the points inde-
pendently (as e.g. on Figure 5.8). A broad example of this is the Poisson
Boolean model, cf. e.g. [66]; there, these objects are balls/disks with ran-
dom radii.

However, the situation becomes much more complicated if we need to
build a Poisson process of infinite objects. For example, what about a two-
dimensional Poisson process of lines, which should look like the example
shown on Figure 5.9?

An idea that first comes to mind is simply to take a two-dimensional
Poisson point process, and draw independent lines in random uniform di-
rections through each point. One quickly realizes, however, that this way
we would rather see what is shown on Figure 5.10: there will be too many
lines, one would obtain a dense set on the plane instead of the nice picture
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Figure 5.10 Too many lines!

ε

n n + 10

α

Figure 5.11 Constructing a Poisson line process using the
reference line (here, α ∈ [−π/2, π/2] is the angle between the line
and the normal vector).

shown in Figure 5.9. Another idea can be the following: first, fix a straight
line on the plane (it can be the horizontal axis or just anything; it is the
thicker line on Figure 5.11), and then consider a one-dimensional Poisson
point process on this line. Then, through each of these points, draw a line
with uniformly distributed direction (that is, α on Figure 5.11 is uniform
in [−π/2, π/2]; for definiteness, think that the positive values of α are on
the left side with respect to the normal vector pointing up) independently,
thus obtaining the “process of lines” (not including the “reference” line)
in R2.

The preceding looks as a reasonable procedure, but, in fact, it is not.
Let us show that, as a result, we obtain a dense set again. Assume without
loss of generality that the reference line is the horizontal axis, and con-
sider a disk of radius ε > 0 situated somewhere above the origin (as on
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ε

h

0 (x, 0)

α

Figure 5.12 Calculating the expected number of lines that
intersect the small ball. It holds that α = arccos h

√
x2+h2

.

Figure 5.11). For all n ∈ Z, consider the events

Hn =
{
there is at least one line attached to a point in [n, n + 1),

which intersects the disk
}
.

The events (Hn, n ∈ Z) are independent by construction, and it not difficult
to see that P[Hn] � εn−1 (indeed, for each point of [n, n + 1), the “angular
size” of the disk as seen from that point is just of that order). Therefore,
the divergence of the harmonic series14 implies that a.s. this disk is crossed
infinitely many times, and from this it is straightforward to obtain that the
set of lines is dense.

Can this procedure be “repaired”? Well, examining the preceding argu-
ment, we see that the problem was that we gave “too much weight” to
the angles which are close to ±π/2. Therefore, choosing the direction uni-
formly does not work, and hence we need to choose it with some other
density ϕ(·) on [−π/2, π/2] (of course, it should be symmetric with respect
to 0, i.e., the direction of the normal).

What should be this ϕ? Consider a small disk of diameter ε situated at
distance h above the origin, as on Figure 5.12. Consider a point (x, 0) on
the reference line (horizontal axis), with x > 0. Then, clearly, to intersect
the disk, the direction of a straight line passing through x must be in [α −
δ
2 , α + δ

2 ], where α = arccos h
√

x2+h2
and (up to terms of smaller order) δ =

ε
√

x2+h2
. So, if λ is the rate of the Poisson point process on the reference line

and N(h, ε) is the mean number of lines intersecting the small ball, we have

EN(h, ε) = λε

+∞∫
−∞

ϕ
(
arccos h

√
x2+h2

)
√

x2 + h2
dx + o(ε). (5.15)

14 This again! We meet the harmonic series quite frequently in two dimensions. . .
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This does not look very nice, but notice that, if we just erase “ϕ” and
“arccos” from (5.15),15 the integral would become something more famil-
iar (recall the Cauchy density)

+∞∫
−∞

h
x2 + h2 dx =

+∞∫
−∞

1( x
h

)2
+ 1

d
( x
h

)
=

+∞∫
−∞

du
u2 + 1

= π,

so the parameter h disappears. And, actually, it is easy to get rid of ϕ
and arccos at once: just choose ϕ(α) = 1

2 cosα. So, we obtain from (5.15)
that EN(h, ε) = 1

2πλε + o(ε), which is a good sign that ϕ(α) = 1
2 cosα may

indeed work for defining the Poisson line process.
The preceding construction is obviously invariant with respect to trans-

lations in the direction of the reference line, and, apparently, in the other
directions too (there is no dependence on h for the expectations, but still
some formalities are missing), but what about the rotational invariance?
This can be proved directly,16 but, instead of doing this now, let us con-
sider another (more general17) approach to defining Poisson processes of
objects. The idea is to represent these objects as points in the parameter
space; i.e., each possible object is described by a (unique) set of param-
eters, chosen in some convenient (and clever!) way. Then, we just take a
Poisson point process in that parameter space, which is a process of objects
naturally.

So, how can one carry this out in our case? Remember that we already
constructed something translationally invariant, so let us try to find a pa-
rameter space where the rotational invariance would naturally appear. Note
that any straight line that does not pass through the origin can be uniquely
determined by two parameters: the distance r from the line to the origin,
and the angle θ between the horizontal axis and the shortest segment link-
ing the line to the origin. So, the idea is to take a realization of a Poisson
point process (with some constant rate) in the parameter space R+× [0, 2π),
and translate it to a set of lines in R2, as shown in Figure 5.13.

Now, what kind of process do we obtain? First, it is clearly invariant
under rotations. Secondly, it is not so obvious that it should be invariant
with respect to translations. Instead of trying to prove it directly, we prefer
to show that this construction is equivalent to the one with reference line
(and hence get the translational invariance for free). Indeed, assume again
that the reference line is the horizontal axis. Then (look at Figure 5.14) we

15 And the parentheses as well, although it not strictly necessary.
16 Please, try to do it!
17 In fact, it is the approach.
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Figure 5.13 Constructing a Poisson line process as a point
process in the parameter space.
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dr = cosα dx

dx

Figure 5.14 Equivalence of the two constructions.

have θ = α and dr = cosα dx, so the probability that there is a line of the
process crossing the reference line in the interval [x, x + dx] (with respect
to the first coordinate) and having the direction in the interval [α, α + dα]
is proportional to cosα dr dα, as required.

At this point, we prefer to end this discussion and recommend the beau-
tiful book [53] to an interested reader; in particular, that book contains a
lot of information about Poisson processes of lines and (hyper)planes.

Finally, here is the general message of this section: it may be possible
to construct something which can be naturally called a Poisson process of
objects, but the construction may be quite nontrivial. As for the Poisson line
process itself, it serves as a supporting example for the previous sentence



5.3 Exercises 137

and as a “get-some-intuition” example for the next chapter,18 but it is not
directly connected to anything else in the rest of this book. There is one
more reason, however, for its presence here: it is beautiful. As an additional
argument in favour of the last affirmation, let us consider the following
question: what is the distribution of the direction of a “typical” line of
the Poisson line process? Well, it should obviously be uniform (since the
process is invariant under rotations). Now, what is the distribution of the
direction of a “typical” line intersecting the reference line? This time, by
construction, it should obviously obey the cosine law. And here comes the
paradox: almost surely all lines of the Poisson line process intersect the
reference line, so we are talking about the same sets of lines! So, what is
“the direction of a typical line”, after all?

5.3 Exercises

Soft local times (Section 5.1)
Exercise 5.1. Look again at Figure 5.6. Can you find the value of σ(8)?

Exercise 5.2. Let (Xi)i≥1 be a Markov chain on a finite set Σ, with transition
probabilities p(x, x′), initial distribution π0, and stationary measure π. Let A
be a subset of Σ. Prove that for any n ≥ 1 and λ > 0 it holds that

Pπ0 [τA ≤ n]

≥ Pπ0

[
ξ0π0(x) +

n−1∑
j=1

ξ j p(X j, x) ≥ λπ(x),∀x ∈ Σ
]
− e−λπ(A), (5.16)

where ξi are i.i.d. Exp(1) random variables, also independent of the Markov
chain X.

Exercise 5.3. Find a nontrivial application of (5.16).

Exercise 5.4. Give a rigorous proof of Lemma 5.1 in case Σ is discrete
(i.e., finite or countably infinite set).

Exercise 5.5. Let (X j) j≥1 be a Markov chain on the state space Σ = {0, 1},
with the following transition probabilities:

p(k, k) = 1 − p(k, 1 − k) =
1
2

+ ε

for k = 0, 1, where ε ∈ (0, 1
2 ) is small. Clearly, by symmetry, ( 1

2 ,
1
2 ) is

18 In particular, the reader is invited to pay special attention to Exercises 5.12 and 5.13.
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Figure 5.15 Constructing a random chord.

the stationary distribution of this Markov chain. Next, let (Y j) j≥1 be a se-
quence of i.i.d. Bernoulli random variables with success probability 1

2 .
Prove that the distance in total variation between the laws of (X1, . . . , Xn)
and (Y1, . . . ,Yn) is of order ε, uniformly in n.

Poisson processes of objects (Section 5.2)
Exercise 5.6. Let us recall the Bertrand paradox: “what is the probability
that a random chord of a circle is longer than the side of the inscribed
equilateral triangle?”.

The answer, of course, depends on how exactly we decide to choose
the random chord. One may consider (at least) three apparently natural
methods; see Figure 5.15 (from left to right):

(i) choose two points uniformly and independently, and draw a chord
between them;

(ii) first choose a radius19 at random, then choose a random point on it (all
that uniformly), and then draw the chord perpendicular to the radius
through that point;

(iii) choose a random point inside the disk (note that, almost surely, that
point will not be the center), and then draw the unique chord perpen-
dicular to the corresponding radius.

I do not ask you to prove that the probability of the preceding event will
be 1

3 ,
1
2 , and 1

4 respectively for the three aforementioned methods, since it
is very easy. Instead, let me ask the following question: how do we find the
right way to choose a random chord (and therefore resolve the paradox)?
One reasonable idea is to consider a Poisson line process (since it is, in a
way, the canonical random collection of lines on the plane) and condition
on the fact that only one line intersects the circle, so that this intersection
generates the chord. To which of the three methods does it correspond?
19 i.e., a straight line segment linking the centre to a boundary point
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Exercise 5.7. Note that the uniform distribution on a finite set (or a subset
of Rd with finite Lebesgue measure) has the following characteristic prop-
erty: if we condition that the chosen point belongs to a fixed subset, then
this conditional distribution is uniform again (on that subset).

Now, consider a (smaller) circle which lies fully inside the original cir-
cle, and condition that the random chord (defined in the correct way in the
previous exercise) of the bigger circle intersects the smaller one, thus gen-
erating a chord in it as well. Verify that this induced random chord has the
correct distribution.

Exercise 5.8. The preceding method of defining a random chord works for
any convex domain. Do you think there is a right way of defining a random
chord for nonconvex (even nonconnected) domains?

Note that for such a domain one straight line can generate several chords
at once.

Exercise 5.9. Explain the paradox in the end of Section 5.2.

Exercise 5.10. Argue that the paradox has a lot to do with the motivating
example of Section 5.1; in fact, show how one can generate the Poisson
line process using the “strip” representation in two ways (with reference
line, and without).

Exercise 5.11 (Random billiards). A particle moves with constant speed
inside some (connected, but not necessarily simply connected) domain D.
When it hits the boundary, it is reflected in random direction according to
the cosine law20 (i.e., with density proportional to the cosine of the an-
gle with the normal vector), independently of the incoming direction, and
keeping the absolute value of its speed. Let Xt ∈ D be the location of the
process at time t, and Vt ∈ [0, 2π) be the corresponding direction; ξn ∈ ∂D,
n = 0, 1, 2, . . . are the points where the process hits the boundary, as shown
in Figure 5.16.

Prove that

• the stationary measure of the random walk ξn is uniform on ∂D;
• the stationary measure of the process (Xt,Vt) is the product of uniform

measures onD and [0, 2π).

Observe that this result holds for any (reasonable) domainD!
The d-dimensional version of this process appeared in [87] under the

20 Recall the construction of the Poisson line process via a reference line.
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ξ0

ξ1 ξ2

ξ3

(Xt,Vt)
D

Figure 5.16 Random billiard (starting on the boundary ofD).

name of “running shake-and-bake algorithm”, and was subsequently stud-
ied in [19, 20, 21]. For some physical motivation for the cosine reflection
law, see e.g. [26] and references therein.

Exercise 5.12. Sometimes, instead of defining a Poisson process of in-
finite objects “as a whole”, it is easier to define its image inside a finite
“window”. This is not the case for the Poisson line processes,21 but one
can still do it. Let A ⊂ R2 be a convex domain. Prove that the following
procedure defines a Poisson line process as seen in A: take a Poisson point
process on ∂A, and then, independently for each of its points, trace a ray
(pointing inside the domain) according to the cosine law.

Then, prove directly (i.e., forget about the Poisson line process in R2 for
now) that the preceding procedure is consistent: if B ⊂ A is convex too,
then the restriction of the process in A to B has the correct law (i.e., the
same as if we took a Poisson point process on ∂B with the same intensity,
traced rays from each of its points, and traced independent rays with the
cosine law); see Figure 5.17.

Exercise 5.13. Now, let us consider two nonintersecting domains A1, A2 ⊂

R2, and abbreviate r = max{diam(A1), diam(A2)}, s = dist(A1, A2). Con-
sider a two-dimensional Poisson line process with rate λ. It is quite clear
that the restrictions of this process on A1 and A2 are not independent; just
look at Figure 5.18. However, in the case s � r one still can decouple
them. Let H1 and H2 be two events supported on A1 and A2. This means

21 I mean, it is not easier.
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A

B

Figure 5.17 Poisson line process seen in a finite convex set.

A1
A2

Figure 5.18 Poisson line process seen in two disjoint sets; if a
straight line intersects A1 the way shown in the picture, it must
intersect A2.

that, informally speaking, the occurrence of the event Hk is determined by
the configuration seen on Ak, for k = 1, 2. Prove that, for some positive
constant C we have∣∣∣P[H1 ∩ H2] − P[H1]P[H2]

∣∣∣ ≤ Cλr
s
. (5.17)

Exercise 5.14. How would you define a Poisson line process in higher
dimensions? Also, what about the Poisson plane process in Rd, d ≥ 3, etc.?

Exercise 5.15. Find the expected value of the orthogonal projection of the
unit cube on a randomly oriented plane.
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Random interlacements

Here, we begin by introducing the “classical”1 random interlacement model
in high dimensions (that is, d ≥ 3) – it is a natural and well-studied ob-
ject, which is informally a Poissonian soup of SRW trajectories. Then, we
pass to the main subject of this chapter which is the random interlacement
model in two dimensions. It has to be defined differently, due to the fact
that, by Theorem 1.1, the trajectories of two-dimensional SRW are a.s.
space-filling. It turns out that the right way to define this model is to use
the trajectories of conditioned SRW of Chapter 4. We then discuss various
properties of two-dimensional random interlacements.

6.1 Introduction: random interlacements in higher dimensions

As a warm-up, let us solve Exercises 3.22 and 3.23: we want to prove that
for any finite A ⊂ B

PhmB[τA < ∞] =
cap(A)
cap(B)

, (6.1)

and for all y ∈ ∂A

PhmB[S τA = y | τA < ∞] = hmA(y). (6.2)

To do this, write for x < B

Px[τA < ∞, S τA = y]

(to enter A, have to pass through B)

=
∑
z∈∂B

Px[τA < ∞, S τA = y, S τB = z]

=
∑
z∈∂B

Px[τA < ∞, S τA = y, τB < ∞, S τB = z]

1 by now

142
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(by the strong Markov property)

=
∑
z∈∂B

Px[τB < ∞, S τB = z]Pz[τA < ∞, S τA = y].

Now, let us divide both sides by G(x) and send x to infinity. For the
left-hand side, we have by Proposition 3.4 and Theorem 3.8

Px[τA < ∞, S τA = y]
G(x)

=
Px[S τA = y | τA < ∞]

G(x)
Px[τA < ∞]

→ cap(A) hmA(y) as x→ ∞,

and, likewise, the right-hand side will become∑
z∈∂B

Px[τB < ∞, S τB = z]
G(x)

Pz[τA < ∞, S τA = y]

(as x→ ∞)

→
∑
z∈∂B

cap(B) hmB(z)Pz[τA < ∞, S τA = y]

= cap(B)PhmB[τA < ∞, S τA = y]

= cap(B)PhmB[τA < ∞]PhmB[S τA = y | τA < ∞],

which means that

hmA(y) =
cap(B)PhmB[τA < ∞]

cap(A)
× PhmB[S τA = y | τA < ∞]. (6.3)

Note the following elementary fact: if µ and ν are probability measures
such that µ = cν, then c = 1 (and therefore µ = ν). So, since (6.3) holds for
all y ∈ ∂A, this gives us (6.1) and (6.2) at once.

Let us now go back to the main subject of this section. Random inter-
lacements were introduced by Sznitman in [92], motivated by the problem
of disconnection of the discrete torus Zd

n := Zd/nZd by the trace of simple
random walk, in dimension 3 or higher. Detailed accounts can be found
in the survey [17] and in the recent books [40, 95]. Loosely speaking, the
model of random interlacements in Zd, d ≥ 3, is a stationary Poissonian
soup of (transient) doubly infinite simple random walk trajectories on the
integer lattice.

Let us make a stop here, and try to understand the previous sentence. We
want to figure out how a Poisson process of (bi-infinite) SRW’s trajectories
should look like. It may be not clear at this point how to approach this
question in the whole space at once, but let us try to fix a finite B ⊂ Zd and
think about how the part of that process which “touches” B should be.
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A

B

Figure 6.1 A Poisson process of SRW trajectories “restricted”
on B.

First, as mentioned in the previous chapter, that Poisson process of tra-
jectories should be thought of as a Poisson point process in another space
(a “space of trajectories”). Since the set of trajectories that intersect B is a
subset of that space, the number of them (i.e., the number of points in that
subset) should have Poisson distribution with some parameter λB. Since
these trajectories “come from the infinity”, they should choose the entrance
location to B according to hmB; also, as usually happens in the Poissonian
context, they should be independent between each other.

So, for now, we have a Poisson(λB) number of independent SRW’s tra-
jectories that enter B at random sites chosen according to hmB and then
continue walking; but how this parameter λB should depend on B? To un-
derstand this, let us consider a situation depicted on Figure 6.1: take some A
such that A ⊂ B, so the trajectories that intersect A constitute a subset of
those that intersect B. It is here that (6.1) and (6.2) come in handy: by (6.2),
the trajectories that enter A do so via hmA (as they should), and, by (6.1),
their number has Poisson distribution with parameter λB ×

cap(A)
cap(B) . Since, on

the other hand, that parameter should not depend on B at all (that is, λB must
be equal to u cap(B) for some constant u > 0), we arrive to the following
description of the random interlacement process with rate u on A ⊂ Zd:

• take Poisson(u cap(A)) particles and place them on ∂A independently,
according to hmA;
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0

λ

R × R+

Figure 6.2 A simultaneous construction of one-dimensional
Poisson processes: take the points with second coordinate at
most λ and project them to obtain a one-dimensional Poisson
process with rate λ.

• let them walk.

By the author’s experience, the preceding description is the one which is ef-
fectively used in most cases when reasoning about random interlacements.
Still, it is also important to know that it is possible to define the random
interlacement process in the whole Zd at once, as a Poisson point process
in the space of doubly-infinite SRW trajectories. We refer to theorem 1.1
of [92] and also the aforementioned books for the precise construction. The
author opted for not reproducing it here since, by his experience, it is at this
point that a few students generally disappear from the course and never
come back. (Nevertheless, we will briefly summarize a more general con-
struction of random interlacements on transient weighted graphs in the next
Section 6.2.) What is important to have in mind, though, is that it is possible
to construct the random interlacement process for all u ≥ 0 simultaneously.
The idea is exactly the same as in the basic case one-dimensional Poisson
processes: all such processes with constant rate2 can be constructed at once
as projections of a Poisson process with rate 1 in R × R+, as on Figure 6.2.
Here, the idea is the same: instead of just considering a Poisson point pro-
cess on a (properly defined) trajectory space W∗ for a fixed value of u > 0,
we rather consider a Poisson point process on W∗×R+. This way, the points
of the latter process will be of the form (w, s), where w is a trajectory and s
is a positive number (the “level” of the trajectory). To obtain the random

2 In fact, even with variable rate.
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interlacements on level u, simply take all points (w, s) from that process
with s ≤ u, and then “forget” their second coordinates. From the point of
view of a finite set A ⊂ Zd, as u increases, new trajectories will “pop up” at
rate cap(A) and get included to the picture.

We denote by Iu the set of all sites that belong to at least one trajectory
(on level u); the sites of Zd that are not touched by the trajectories constitute
the vacant set Vu = Zd \ Iu. Note that the preceding simultaneous (for all
u > 0) construction implies that Iu1 ⊂ Iu2 andVu2 ⊂ Vu1 for u1 < u2.

Now, the probability that all sites of a set A are vacant is the same as the
probability that a Poisson(u cap(A)) random variable equals 0, that is,

P[A ⊂ Vu] = exp
(
− u cap(A)

)
for all finite A ⊂ Zd. (6.4)

It is interesting to note that the law of the vacant set Vu is uniquely char-
acterized by the set of identities (6.4), see theorem 9.2.XII of [27].

As previously mentioned, one of the motivations for studying random
interlacements is their relationship with SRW on the torus Zd

n := Zd/nZd.
First, it was shown in [9] that the local picture left by the SRW in a small
subset of Zd

n up to time und is close in distribution to that of rate-u ran-
dom interlacements. Then, in [102] it was established that the same is true
for a macroscopic box in Zd

n, which was then used to show a sharp phase
transition for the diameter of the component of the vacant set on the torus
containing a given site.

From now on, we assume that the reader is familiar3 at least with the
definition and the basic facts about the Bernoulli (site) percolation model
on Zd.

We now recall some known properties of the interlacement and the va-
cant sets; the list below is of course incomplete. For the interlacement
set Iu, it holds that:

• P[Iu is connected for all u > 0] = 1, i.e., the interlacement set is con-
nected simultaneously for all u > 0 (theorem 1.5 of [16]).

• If we consider a graph whose vertices are the trajectories and there is
an edge between two vertices iff the corresponding trajectories intersect,
then the diameter of this graph equals dd/2e a.s. (that is, from each site
of Iu it is possible to walk to any other site of Iu, “changing” the un-
derlying trajectories at most dd/2e times), as shown in [80, 82]. Some
further results in this direction can be found in [56].

3 It is clearly a very reasonable assumption to make, but let us still mention e.g. the books
[11, 50].
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• The graph distance (a.k.a. chemical distance) on Iu is essentially equiv-
alent to Euclidean distance (except for some “local holes”), see theo-
rem 1.3 of [16].

• SRW on Iu essentially behaves as the usual SRW [81, 88].

• On the other hand, a random walk with drift on Iu in three dimensions
always has zero (even subpolynomial) speed (theorem 1.3 of [46]; this is
in sharp contrast with the random walk with drift on the infinite cluster
of Bernoulli percolation (somewhat surprisingly, this random walk is
ballistic for small values of the drift, and has zero speed for large values
of the drift, see [10]). It is conjectured, though, that a random walk with
drift on Iu in dimensions d ≥ 4 has similar behaviour to that of the
drifted random walk on Bernoulli percolation cluster.

While the interlacement set is always connected, this is not so for the
vacant set: for example, it is not difficult to convince oneself that it should
contain infinitely many “isolated islands”. The most important questions,
though, are related to the percolative properties of the vacant set: does it
contain an infinite cluster, what is the probability of existence of a long
path in this set, and so on. Some of the known results are:

• There is a critical value u∗ ∈ (0,∞) (which depends also on dimen-
sion) such that, for all u < u∗, Vu contains an infinite connected subset
a.s., and, for all u > u∗, all connected components of Vu are a.s. finite
(see [89]). It is not known (and constitutes a very difficult open problem)
what happens for u = u∗.

• If the infinite vacant cluster exists, then it is unique, as shown in [98].

• At least if u is small enough, the infinite vacant cluster is “well-behaved”
(i.e., grosso modo, has similar properties to those of the infinite cluster
of Bernoulli percolation), see [39, 41, 42, 83, 88, 99].

• There is u∗∗ ∈ [u∗,∞) such that, for any u > u∗∗, the probability that the
origin is connected to x withinVu decays exponentially (with a logarith-
mic correction for d = 3) in ‖x‖, see [78], Theorem 3.1. It is conjectured
that u∗ = u∗∗, but, again, so far it is unclear how to prove this. Observe
that this would be an analogue of Menshikov’s theorem [67] in Bernoulli
percolation.

Compared to the Bernoulli percolation model, the main difficulty in
studying the vacant set of random interlacements is that strong (polyno-
mial) correlations are present there. Indeed, note that, by (3.15)–(3.16)
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and (6.4), for all x, y ∈ Zd it holds that

P[x ∈ Vu] = exp
(
−

u
G(0)

)
, (6.5)

P
[
{x, y} ⊂ Vu] = exp

(
−

2u
G(0) + G(x − y)

)
. (6.6)

Let us now calculate the covariance and the correlation of 1{x ∈ Vu} and
1{y ∈ Vu}:

cov
(
1{x ∈ Vu}, 1{y ∈ Vu}

)
= exp

(
−

2u
G(0) + G(x − y)

)
− exp

(
−

2u
G(0)

)
(by the way, notice that cov(1{x ∈ Vu}, 1{y ∈ Vu}) > 0) for all x , y

= exp
(
−

2u
G(0)

)(
exp

(
2u

G(x − y)
G(0) + G(x − y)

)
− 1

)
(as x − y→ ∞)

=
2u

G2(0)
exp

(
−

2u
G(0)

)
×

γd

‖x − y‖d−2

(
1 + O(‖x − y‖−(2∧(d−2)))

)
. (6.7)

Therefore,

corr
(
1{x ∈ Vu}, 1{y ∈ Vu}

)
=

2ue−u/G(0)

G2(0)(1 − e−u/G(0))
×

γd

‖x − y‖d−2

(
1 + O(‖x − y‖−(2∧(d−2)))

)
. (6.8)

That is, when u is fixed, both the covariance and the correlation of 1{x ∈ Vu}

and 1{y ∈ Vu} have the same order of polynomial decay (with respect to
the distance between x and y) as Green’s function. It is also interesting to
notice that

ue−u/G(0)

(1 − e−u/G(0))
∼

ue−u/G(0), as u→ ∞,
G(0), as u→ 0.

That is, the correlation decreases in u as u → ∞ because, intuitively, there
are many trajectories that may contribute. The correlation “stabilizes” as
u → 0 because the dependence is “embedded” to just one trajectory that
may commute between x and y.

This was for the one-site set correlations, but when one considers two
nonintersecting (and, usually, distant) sets A1, A2 ⊂ Z

d, things start to com-
plicate even more. Assume that the diameters of these sets are smaller or
equal to r and that they are at distance s from each other. Suppose also that
we are given two functions f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 → [0, 1]
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that depend only on the configuration of the random interlacements inside
the sets A1 and A2 respectively. In (2.15) of [92] it was established that

Cov( f1, f2) ≤ cdu
cap(A1) cap(A2)

sd−2 ≤ c′du
(r2

s

)d−2
, (6.9)

see also lemma 2.1 of [6]. For this estimate to make sense, we need that
r2 � s, that is, the sets should be quite far away from each other relative to
their sizes. It is remarkable that, even with these restrictions, the preceding
inequality can be used to obtain highly non-trivial results. The estimate
in (6.9) is not optimal and can be improved to some extent, as was shown
in [28]. Still, it is an open problem to find the correct maximal order of
decay of the covariance in (6.9). Since the random interlacement model is
actually closely related to the so-called Gaussian Free Field (see [93, 94])

for which that maximal order of decay is known to be O
( √cap(A1) cap(A2)

sd−2

)
, as

shown in [77], it would be natural to conjecture that the same should hold
for random interlacements. Still, the decay of correlations would remain
polynomial and the estimate only can be useful when r � s.

As we just mentioned, even these weaker estimates can be very useful;
one still naturally looks for more, though. It turns out that one can obtain
estimates with much smaller error term if one is allowed to change the
level parameter u (this is called sprinkling). To explain what it means, we
first need to introduce the notion of monotone (increasing or decreasing)
event/function.

Definition 6.1. Let A ⊂ Zd; for configurations of zeros and ones {η : A →
{0, 1}} = {0, 1}A there is a natural partial order: η ≤ ζ whenever η(x) ≤ ζ(x)
for all x ∈ A. We then say that a function f : {0, 1}A → R is increasing if
f (η) ≥ f (ζ) for all η ≥ ζ; a function g is decreasing if (−g) is increasing.
We say that an event determined by a configuration is increasing/decreasing
if so is its indicator function.

If we denote by Pu and Eu the probability and the expectation with re-
spect to the level-u random interlacements (using the convention that the
state of x is 0 if it is vacant and 1 if it is occupied), from the “simulta-
neous” construction of random interlacements it then immediately follows
that Eu f and Pu[H] are increasing (respectively, decreasing) functions of u
for any increasing (respectively, decreasing) function f or event H.

It turns out that most interesting events (and functions) are monotone.
For example:

• the proportion of occupied (vacant) sites in A;
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• existence of path of occupied (vacant) sites in A that connects a fixed
site x0 ∈ A to ∂A;

• existence of a crossing (is some suitable sense) by occupied (vacant)
sites in A;

• and so on.

An important fact about monotone events is that, in the case of random in-
terlacements the so-called Harris-FKG inequality is still true (as it is for the
Bernoulli percolation model). Before formulating it, note that a monotone
function depending on A ⊂ Zd can be also seen as a monotone function
depending on A′ ⊂ Zd where A ⊂ A′ (i.e., it would not depend on the
configuration on A′ \ A, but we can still formally regard it as a function
{0, 1}A

′

→ R). The FKG inequality proved in [97] asserts that, given two
functions f1,2 : {0, 1}A → R which are both increasing or both decreasing,
it holds that

Eu f1 f2 ≥ E
u f1 E

u f2, (6.10)

that is, the increasing functions (events) are nonnegatively correlated. It
then follows that (6.10) also holds when the increasing functions f1,2 de-
pend on disjoint sets A1,2, since both functions can be seen as functions
on {0, 1}A1∪A2 ; so Cov( f1, f2) ≥ 0 for monotone (both increasing or both
decreasing) functions f1,2. The Harris-FKG inequality can be often useful;
however, it works only in one direction. In the other direction, we can aim
for inequalities of the form Eu f1 f2 ≤ E

u f1 E
u f2 + error term, which fol-

low from (6.9) and alikes. However, in any case, that error term has to be
at least polynomial (with respect to the distance between the sets), since,
as shown in (6.7), it is already polynomial for the one-site sets. In many
situations, this “slow” decay can complicate the things quite considerably.
Now, here comes the key idea (known as sprinkling): if, for some (small) δ,
we substitute Eu f1 E

u f2 with Eu+δ f1 E
u+δ f2 in the right-hand side, the error

term can be made considerably smaller! Indeed, the following result was
proved in [78] (Theorem 1.1):

Theorem 6.2. Let A1, A2 be two nonintersecting subsets of Zd, with at least
one of them being finite. Let s = dist(A1, A2) and r be the minimum of their
diameters. Then, for all u > 0 and ε ∈ (0, 1) we have

(i) for any increasing functions f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 →

[0, 1],

Eu f1 f2 ≤ E
(1+ε)u f1E

(1+ε)u f2 + c′(r + s)d exp(−c′′ε2usd−2); (6.11)
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(ii) for any decreasing functions f1 : {0, 1}A1 → [0, 1] and f2 : {0, 1}A2 →

[0, 1],

Eu f1 f2 ≤ E
(1−ε)u f1E

(1−ε)u f2 + c′(r + s)d exp(−c′′ε2usd−2) (6.12)

(here and in the next two theorems the positive constants c′, c′′ only depend
on dimension).

Observe that these inequalities are operational even when the two sets
are close (relative to the size of the smallest of them). They are conse-
quences of the next result (theorem 2.1 of [78]):

Theorem 6.3. Let A1, A2, s and r be as in Theorem 6.2. Then for all u > 0
and ε ∈ (0, 1) there exists a coupling between (Iu)u≥0 and two independent
random interlacement processes, (Iu

1)u≥0 and (Iu
2)u≥0 such that

P
[
I

u(1−ε)
k ∩ Ak ⊂ I

u ∩ Ak ⊂ I
u(1+ε)
k , k = 1, 2

]
≥ 1 − c′(r + s)d exp(−c′′ε2usd−2). (6.13)

In words, it shows us that there is a way to decouple the intersection of
the interlacement set Iu with two disjoint subsets A1 and A2 of Zd. Namely,
we couple the original interlacement process Iu with two independent in-
terlacements processes Iu

1 and Iu
2 in such a way that Iu restricted on Ak

is “close” to Iu
k , for k = 1, 2, with probability rapidly going to 1 as the

distance between the sets increases.
In fact, what was really proven in [78] (sadly, without explicitly formu-

lating it) is an even more general result, which would imply, for example,
a similar decoupling for local times of random interlacements (local time
at x ∈ Zd is the aggregate visit count of x by all the trajectories). To be able
to formulate that general result, first, recall the notion of excursions from
Chapter 4 (see Figure 4.2): If B = ∂B′ for some finite B′ such that A ⊂ B′,
an excursion between A and B is a finite piece of nearest-neighbour tra-
jectory which begins at a site of ∂A and ends on the first visit of B. For
such A, B and u > 0, let us denote by T u

A,B the set of excursions between A
and B generated by the random interlacement’s trajectories up to level u.
Also, we say that a (finite) set V separates A1 from A2, if any nearest-
neighbour path which goes from A1 to A2 has to pass through V .

Now, also for reference purposes, we state the result that was really
proved in [78]:

Theorem 6.4. Let A1, A2, s and r be as in Theorems 6.2–6.3. Then, there
exists a set V that separates A1 from A2 and such that for all u > 0 and
ε ∈ (0, 1) there exists a coupling between the set of excursions T u

A1∪A2,V
and
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x1

x2

A1

A2

r

r

s

V

Figure 6.3 The simplified setup for the proof of Theorem 6.4.

two independent families of sets of excursions (i.e., related to independent
random interlacement processes) (T u

A1,V
)u≥0 and (T u

A2,V
)u≥0, such that

P
[
(T (1−ε)u

A1,V
∪ T

(1−ε)u
A2,V

) ⊂ T u
A1∪A2,V ⊂ (T (1+ε)u

A1,V
∪ T

(1+ε)u
A2,V

)
]

≥ 1 − c′(r + s)d exp(−c′′ε2usd−2). (6.14)

One of the possible choices of the separating set V is

V = ∂{x ∈ Zd : dist(x, A1) ≤ s/2}.

The proof of the preceding results is essentially an application of the soft
local times technique. In the following, we sketch the proof of Theorem 6.4
in the simpler case when A1 and A2 are (discrete) balls of equal sizes; also,
we will assume that r ≥ s ≥ 1 (that is, A1,2 are not too far away from each
other). Let A1,2 = B(x1,2, r/2), and assume that s := ‖x1− x2‖−r > 3; in this
case, it is easy to see that diam(A1,2) = r +O(1) and dist(A1, A2) = s+O(1).
Let us define

V = ∂B
(
x1,

r
2 + s

2

)
∪ B

(
x2,

r
2 + s

2

)
(see Figure 6.3). Clearly, V separates A1 from A2.
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Next, the idea is the following: using the method of soft local times,
we simultaneously construct excursions between V and A (where A is one
of the sets A1, A2, A1 ∪ A2) on level u in the case of A1 ∪ A2 and on lev-
els u±ε in the case of A1 and A2. Notice the following important fact: given
the initial site of an excursion, its subsequent evolution is (conditionally)
independent from the past; due to this feature, we can avoid using (a bit
complicated) space of all excursions as the “base space” in the soft local
times method’s setup. That is, an equivalent way4 of performing the soft
local times construction of these excursions is the following. Let ∆ be the
“cemetery state”, corresponding to the situation when the random walk’s
trajectory goes to infinity without touching A anymore. First, we take a
Poisson point process on (∂A∪∆)×R+ (with simply the counting measure
on ∂A ∪ ∆ as the base measure), with marks attached to each point (see
Figure 6.4): each mark is a random excursion started there in the case the
chosen point is a site of ∂A (i.e., it is a SRW started at x ∈ ∂A and observed
till the first hitting of V), and it is just void (“null excursion”) in the case
when the chosen point happened to be ∆. We will successively obtain the
excursions corresponding to the Poisson(v cap(A)) trajectories by picking
up the corresponding marks. Let Z(0)

n ,Z(`)
n ∈ V ∪ {∆} be the “first and last

sites of the nth excursion”, in the sense that they are really its first and
last sites in the case when the excursion actually took place, and they are
both ∆ in the case the walk went to infinity without touching A anymore;
we formally define Z(0)

0 = Z(`)
0 = ∆. Being Fn the sigma-algebra generated

by the first n excursions, the densities g( · | Fn) are defined in the following
way:

• first, g( · | Fn−1,Z
(`)
n−1 = ∆) = hmA(·) (that is, if the previous trajectory

escaped to infinity, we start a new excursion from a site chosen according
to the harmonic measure);

• next, given that the previous excursion ended in z ∈ V , we have g(x |
Fn−1,Z

(`)
n−1 = z) = Pz[τA < ∞, S τA = x] for x ∈ ∂A and g(∆ | Fn−1,Z

(`)
n−1 =

∆) = Pz[τA = ∞].

When using this construction to obtain the excursions of T v
A,V , we need to

deal with soft local times with random5 index: indeed, the total number
of trajectories which give rise to those excursions has Poisson(v cap(A))
distribution. In the following, we will denote that soft local time by GA

v (·)
(since V does not vary, we keep it out of this notation).

4 We leave it as an exercise to show that it is indeed so.
5 With a compound Poisson distribution.
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∂A × R+

G1

V

Z(`)
1

Z(0)
1

z(1)

Z(0)
1

G2

Z(0)
2

Z(`)
2

z(2)

A

Z(`)
1

Figure 6.4 On the construction of random interlacements on the
set A; the points of ΣA are substituted by sites in ∂A × R+ with
marks representing the corresponding trajectories; the state ∆ is
not on the picture.
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For z ∈ ∂(A1 ∪ A2), define ι(z) = 1 when z ∈ ∂A1 and ι(z) = 2 in the
case z ∈ ∂A2. Then, as discussed in Section 5.1, we need to show that for
every u > 0 and ε ∈ (0, 1) there exists a coupling between T u

A1∪A2,V
and two

independent processes (T v
A1,V

)v≥0 and (T v
A2,V

)v≥0 such that

P
[
(T (1−ε)u

A1,V
∪ T

(1−ε)u
A2,V

) ⊂ T u
A1∪A2,V ⊂ (T (1+ε)u

A1,V
∪ T

(1+ε)u
A2,V

)
]

≥ P
[
G

Aι(z)

(1−ε)u(z) ≤ GA1∪A2
u (z) ≤ GAι(z)

(1+ε)u(z) for all z ∈ ∂(A1 ∪ A2)
]
. (6.15)

The main idea for constructing such a coupling is the usual one with soft
local times: use the same Poisson points to construct all processes we need.
In this concrete case, we just construct the up-to-level u excursions between
A1 ∪ A2 and V , and then construct separately the excursion processes be-
tween A1 and V and between A2 and V , using the same points with the same
marks (clearly, the last two processes are independent since they “live” on
nonintersecting sets). Now, the crucial observation is that, for k = 1, 2,

EGAk
v (z) = EGA1∪A2

v (z) for all v > 0 and z ∈ ∂Ak. (6.16)

To see that (6.16) indeed holds, denote first by Lv
A,V(z) the number of ran-

dom interlacement’s excursions between A and V up to level v that have z ∈
∂A as their first site. It is then clear that, for any z ∈ ∂Ak, Lv

Ak ,V
(z) =

Lv
A1∪A2,V

(z), k = 1, 2 (because, since V separates A1 from A2, those are
just the same excursions). Therefore, Proposition 5.4 (the one that says
that expected local time equals expected soft local time) implies EGAk

v (z) =

ELv
Ak ,V

(z) = ELv
A1∪A2,V

(z) = EGA1∪A2
v (z). So, let us denote (clearly, the ex-

pectations in (6.16) are linear in v) ϕ(z) = v−1EGA1∪A2
v (z) = v−1EGAk

v (z) for
k = 1, 2.

Now, it is straightforward to check that (1 − ε)(1 + ε
3 ) ≤ (1 − ε

3 ) and
(1 + ε

3 ) ≤ (1 + ε)(1 − ε
3 ) for all ε ∈ [0, 1]. Therefore, with the union bound,

(6.15) implies that (see Figure 6.5)

P
[
(T (1−ε)u

A1,V
∪ T

(1−ε)u
A2,V

) ⊂ T u
A1∪A2,V ⊂ (T (1+ε)u

A1,V
∪ T

(1+ε)u
A2,V

)
]

≥ 1 −
∑

(v,A)=((1±ε)u,A1),
((1±ε)u,A2),(u,A1∪A2)

P
[∣∣∣GA

v (z) − vϕ(z)
∣∣∣ ≥ ε

3 vϕ(z) for some z ∈ ∂A
]
. (6.17)

To deal with the right-hand side of (6.17), the plan is to first obtain an
upper bound on the corresponding probability for a fixed z ∈ ∂A. Recall
that, by definition, the number ΘA

v of trajectories on level v that touch A has
Poisson(v cap(A)) distribution. Define η0 := 0, ηk = min{ j > ηk−1 : Z(`)

j =
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∂A1 ∂A2

G
A1
(1−ε)u G

A2
(1−ε)u

G
A1
(1+ε)u G

A2
(1+ε)u

G
A1∪A2
uG

A1∪A2
u

(1 − ε)(1 + ε3 )uϕ

(1 − ε3 )uϕ

(1 + ε3 )uϕ

(1 + ε)(1 − ε3 )uϕ

Figure 6.5 “Separating” the soft local times of the excursion
processes.

∆} to be the indices of the “void excursions”, and let

FA
k (z) =

ηk∑
i=ηk−1+1

g(z | Fi−1)

be the contribution of the kth trajectory to the soft local time in z ∈ ∂A.
Then, the soft local time GA

v (z) is a sum of i.i.d. random variables:

GA
v (z) =

ΘA
v∑

k=1

FA
k (z). (6.18)

So, we need to obtain large-deviation estimates on that sum. For that we
need to know (or at least estimate) the first and second moments of these
random variables, and we need also some tail estimates on them.

Recall that A stands for one of the sets A1, A2, A1 ∪ A2. For z ∈ ∂A, let
us denote πA(z) = EFA

1 (z). We need the following fact:

Lemma 6.5. It holds that

(i) πA(z) � s−1r−(d−2);
(ii) E(FA

1 (z))2 . s−dr−(d−2).

Sketch of the proof. This is a particular case of lemma 6.2 of [78], which
is proved using also a general upper bound on second moments of soft local
times (theorem 4.8 of [78]). Here, we only informally explain why (i)–(ii)
should be true. For this, we need the following technical fact (stated below
as Exercise 6.2): if z ∈ ∂A and x ∈ Zd \ A is at distance of order s from
both A and z, then Px[S τA = z] is of order s−(d−1) (this is because, basically,
the number of natural “entrance point candidates” is of order sd−1).

To show the part (i), we recall Proposition 5.4, which asserts that the
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expectation of the soft local time is equal to the expectation of the “real”
local time. In our case, this amounts to estimating the expectation of the
number of excursions (generated by one trajectory) which enter A exactly
at z. Now, the probability that this trajectory ever hits B(z, s/3) is of order
sd−2

rd−2 (this can be obtained e.g. using Exercise 3.24). Then, if that happened,
the probability of entering through z will be at most s−(d−1); also, starting
from any site of V , the probability of ever visiting B(z, s/3) is bounded
away from 1. This gives an upper bound of order sd−2

rd−2 × s−(d−1) = s−1r−(d−2);
a lower bound of the same order may be obtained if one notices that a
probability of ever visiting a part of V which is at distance of order s from z
is still of order sd−2

rd−2 ; (6.65) then would imply the lower bound we need.
As for the part (ii), the intuition is the following (think of the case s � r):

• there is only a significant contribution to the soft local time when the
last site Z(`)

· of the previous excursion is at distance of order s from z;
• as before, the chance that the trajectory ever gets at distance of order s

from z is O( sd−2

rd−2 );
• if the preceding happened, then the contribution to the soft local time

will be of order s−(d−1), so, the second moment should be of order sd−2

rd−2 ×

(s−(d−1))2 = s−dr−(d−2).

�

Next, we need the following large deviation bound for FA
1 (z):

Lemma 6.6. For A = A1, A2, A1 ∪ A2 and V as previously defined, for any
h ≥ 2 we have

P[FA
1 (z) > hγs−(d−1)] ≤ c′

sd−2

rd−2 exp(−c′′h), (6.19)

for all z ∈ ∂A.

Sketch of the proof. This is a particular case of lemma 6.3 of [78], which
by its turn follows from a general tail estimate on the soft local time pro-
vided by theorem 4.9 of [78]. Here, we again only explain informally
why (6.19) should hold. In fact, the idea is really similar to the argument for
estimating the second moment that we have just seen. First, the trajectory
has to come to distance of order s from z; this gives rise to the factor sd−2

rd−2

in (6.19). Then, after each excursion, there is a uniformly positive chance
that the trajectory leaves that s-neighbourhood of z for good (and essen-
tially stop “contributing” to the soft local time); this explains the exponent
in (6.19). �
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The rest of the proof is a standard Chernoff bound type argument for
sums of i.i.d. random variables: the soft local times we are interested in
(recall (6.17)) are so by (6.18). From now on and till the end of the proof,
we adopt a rather loose attitude towards the use of constants: “c” will stand
for a generic positive constant (depending only on dimension) whose value
may change from line to line. We refer to the last two pages of [78] for
a cleaner treatment of this argument. For A = A1, A2, A1 ∪ A2 and x ∈
∂A, let ψx

A(λ) = EeλFA
1 (z) be the moment generating function of FA

1 (z). It
is elementary to obtain that et − 1 ≤ t + t2 for all t ∈ [0, 1]. Using this
observation, we write for λ = O(sd−1)

ψx
A(λ) − 1

= E(eλFA
1 (z) − 1)1{λFA

1 (z) ≤ 1} + E(eλFA
1 (z) − 1)1{λFA

1 (z) > 1}

≤ E
(
λFA

1 (z) + λ2(FA
1 (z))2) + EeλFA

1 (z)1{FA
1 (z) > λ−1}

≤ λπA(z) + cλ2s−dr−(d−2) + λ

∞∫
λ−1

eλyP[FA
1 (z) > y] dy

≤ λπA(z) + cλ2s−dr−(d−2) + cλsd−2r−(d−2)

∞∫
λ−1

exp(−csd−1y) dy

≤ λπA(z) + cλ2s−dr−(d−2) + cs−1r−(d−2)λ exp(−cλ−1sd−1)

≤ λπA(z) + cλ2s−dr−(d−2), (6.20)

where we used Lemma 6.5 (ii) and Lemma 6.6. Analogously, since e−t−1 ≤
−t + t2 for all t > 0, we obtain for λ ≥ 0

ψx
A(−λ) − 1 ≤ −λπA(z) + cλ2s−dr−(d−2) (6.21)

(here we do not need the large deviation bound of Lemma 6.6).
Observe that, if (Yk, k ≥ 1) are i.i.d. random variables with common

moment generating function ψ and Θ is an independent Poisson random
variable with parameter θ, then E exp

(
λ
∑Θ

k=1 Yk
)

= exp
(
θ(ψ(λ) − 1)

)
. So,

using (6.20) and Lemma 6.5 (ii), we write for any δ > 0, z ∈ Σ and x =

X0(z),

E
[
GA

v (z) ≥ (1 + δ)v cap(A)πA(z)
]

= E
[ ΘA

v∑
k=1

FA
k (z) ≥ (1 + δ)v cap(A)πA(z)

]
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≤
E exp

(
λ
∑ΘA

v
k=1 FA

k (z)
)

exp
(
λ(1 + δ)v cap(A)πA(z)

)
= exp

(
− λ(1 + δ)v cap(A)πA(z) + v cap(A)(ψ(λ) − 1)

)
≤ exp

(
−

(
λδv cap(A)πA(z) − cλ2vs−d))

≤ exp
(
−

(
cλδvs−1 − cλ2vs−d)),

and, analogously, with (6.21) instead of (6.20) one can obtain

E
[
GA

v (z) ≤ (1 − δ)v cap(A)πA(z)
]
≤ exp

(
−

(
cλδvs−1 − cλ2vs−d)).

We choose λ = cδsd−1 with small enough c and then use also the union
bound (clearly, the cardinality of ∂A is at most O(rd)) to obtain that

P
[
(1 − δ)v cap(A)πA(z) ≤ GA

v (z) ≤ (1 + δ)v cap(A)πA(z) for all z
]

≥ 1 − crd exp
(
− cδ2vsd−2). (6.22)

Using (6.22) with δ = ε
3 and u, (1 − ε)u, (1 + ε)u on the place of û together

with (6.17), we conclude the proof of Theorem 6.4 in this particular case.
�

The “classical” random interlacement model in d ≥ 3 remains a very
interesting and active research topic; in particular, there are further partial
advances on decoupling inequalities, both with and without sprinkling [3,
28]. However, let us remind ourselves that this book is supposed to be
mostly about two dimensions, and end this section here.

6.2 The two-dimensional case

At first glance, the title of this section seems to be meaningless, just be-
cause (as we remember from Chapter 2) even a single trajectory of two-
dimensional simple random walk a.s. visits all sites of Z2; so the vacant set
would be always empty and the local time will be infinite at all sites. Let
us not rush to conclusions, though, and think about the following. As men-
tioned in the previous section, “classical” random interlacements in dimen-
sions d ≥ 3 are related to the simple random walk on the discrete torus Zd

n:
the picture left by the SRW up to time und on a “small” window is well
approximated by random interlacements on level u. It is true, though, that
one can hardly expect something of this sort in two dimensions, at least for
a window of fixed size and fixed location. Indeed, consider a fixed A ⊂ Z2

n
(that is, the size of A is constant while n grows); since SRW on Z2

n inherits
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“local recurrence” property of two-dimensional SRW, if we know that one
site of A was visited by a given (fixed and large) time, then it is also likely
that all sites of A were visited. So, we will typically see either “A full” or
“A empty”, and anything more interesting than that is unlikely to happen.

Now, it is time for a digression: surprisingly enough, in some sense,
SRW on Z2

n is a more complicated model than SRW on Zd
n for d ≥ 3 –

there are quite a few questions that are considerably easier in higher di-
mensions. For example, it was only relatively recently proved in [32] that
the expected cover time of Z2

n is equal to 4
π
n2 ln2 n plus6 terms of smaller

order. A question which (to the best of the author’s knowledge) is still
not fully understood in two dimensions, is how last uncovered sites of the
torus look like (in higher dimensions, it is known that they are essentially
independent and uniformly distributed, see [7, 72]). For example: what can
we say about the last two uncovered sites on Z2

n? Should they be “almost
neighbours” with high probability, or at least with probability uniformly
bounded away from 0? More generally, what can be said about the proba-
bility distribution of the (graph) distance between them?

The author tried to look at this last question a few years ago, reason-
ing in the following way. As we just mentioned, in higher dimensions last
uncovered sites are (almost) independent. So, one can imagine that, if we
condition that a given site is vacant (uncovered) in the regime when only a
few sites should still remain vacant, the probability that a neighbour of that
site is vacant as well should be close to 0. It then looks like a reasonable
idea to try calculating this sort of probability also in two dimensions.

Let us do it, at least on a heuristic level.
Denote tα := 4α

π
n2 ln2 n for α > 0, so that tα is roughly the expected cover

time of the torus multiplied by α. Also, let U (n)
m ⊂ Z

2
n be the (random) set of

sites which remain uncovered by time m by the SRW which starts from a
site chosen uniformly at random. We single out one vertex of the torus and
call it 0; let us identify the torus with the (discrete) square on Z2 placed in
such a way that 0 is (roughly) at its center. Let us consider the excursions of
the random walk between ∂B

( n
3 ln n

)
and ∂B(n/3) up to time tα. It is possible

to show (using, for example, lemma 3.2 of [33]) that the number Eα of
these excursions is concentrated around 2α ln2 n

ln ln n , with deviation probabilities
of subpolynomial order. This is for unconditional probabilities, but, since
the probability of the event {0 ∈ U (n)

tα } is only polynomially small (actually,
it is n−2α+o(1)), the same holds for the deviation probabilities conditioned on

6 In fact, minus; see [1, 8].
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this event. So, let us just assume for now that the number of the excursions
is exactly 2α ln2 n

ln ln n and see where will it lead us.
Now, consider a (fixed) set A such that 0 ∈ A (we think of A “being

present simultaneously” on the torus and on the plane; of course, we as-
sume that it is fully inside the square of size n centred at 0). Then, (3.41)
and (3.63) imply that

• the probability that an excursion hits the origin is roughly ln ln n
ln(n/3) ;

• provided that cap(A) � ln n, the probability that an excursion hits the
set A is roughly ln ln n

ln(n/3)

(
1 +

π cap(A)
2 ln(n/3)

)
.

So, the conditional probability p∗ that an excursion does not hit A given
that it does not hit the origin is

p∗ ≈
1 − ln ln n

ln(n/3)

(
1 +

π cap(A)
2 ln(n/3)

)
1 − ln ln n

ln(n/3)

≈ 1 −
π ln ln n
2 ln2 n

cap(A),

and then we obtain

P[A ⊂ U (n)
tα | 0 ∈ U (n)

tα ] ≈ pEα
∗

≈
(
1 −

π ln ln n
2 ln2 n

cap(A)
) 2α ln2 n

ln ln n

≈ exp
(
− πα cap(A)

)
. (6.23)

The preceding argument is, of course, very heuristic (we comment more
on that after Theorem 6.11), but let us accept it for now, and look at the
expression (6.23). We have seen a very similar thing quite recently, namely,
in the formula (6.4) for the probability that a finite subset of Zd is vacant for
the (classical) random interlacement model. This suggests that there may
be some natural random interlacement model in two dimensions as well.
This is indeed the case: below, we will see that it is possible to construct it
in such a way that

P[A ⊂ Vα] = exp
(
− πα cap(A)

)
(6.24)

holds for all finite sets containing the origin7 (the factor π in the exponent
is just for convenience, as explained below). Naturally enough (recall that
the left-hand side of (6.23) is a conditional probability), to build the in-
terlacements we use trajectories of simple random walks conditioned on
never hitting the origin. Of course, the law of the vacant set is no longer

7 Note, however, that it is clearly not possible for (6.24) to hold for every finite A, since
the two-dimensional capacity of one-site sets equals 0.
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translationally invariant, but we show that it has the property of conditional
translation invariance, cf. Theorem 6.8 below.

Now, it is time to write some formalities.8 Here, we will use the gen-
eral construction of random interlacements on a transient weighted graph
introduced in [97]. In the following few lines we briefly summarize this
construction. Let W be the space of all doubly infinite nearest-neighbour
transient trajectories in Z2,

W =
{
% = (%k)k∈Z : %k ∼ %k+1 for all k;

the set {m ∈ Z : %m = y} is finite for all y ∈ Z2}.
We say that % and %′ are equivalent if they coincide after a time shift, i.e.,
% ∼ %′ when there exists k such that %m+k = %m for all m ∈ Z. Then,
let W∗ = W/ ∼ be the space of such trajectories modulo time shift, and
define χ∗ to be the canonical projection from W to W∗. For a finite A ⊂ Z2,
let WA be the set of trajectories in W that intersect A, and we write W∗

A for
the image of WA under χ∗. One then constructs the random interlacements
as Poisson point process on W∗ × R+ with the intensity measure ν ⊗ du,
where ν is described in the following way. It is the unique sigma-finite
measure on W∗ such that for every finite A

1W∗A · ν = χ∗ ◦ QA,

where the finite measure QA on WA with total mass ĉap(A) is determined
by the following equality:

QA
[
(%k)k≥1 ∈ F, %0 = x, (%−k)k≥1 ∈ H

]
= ĉap(A) ĥmA(x) · Px[Ŝ ∈ F] · Px[Ŝ ∈ H | τ̂+

A = ∞]. (6.25)

The existence and uniqueness of ν was shown in theorem 2.1 of [97].

Definition 6.7. For a configuration
∑
λ δ(w∗λ,uλ) of the Poisson process that

we have just introduced, the process of random interlacements at level α
(which will be referred to as RI(α)) is defined as the set of trajectories with
label less than or equal to πα, i.e.,∑

λ:uλ≤πα

δw∗λ .

Observe that this definition is somewhat unconventional (we used πα

instead of just α, as one would do in higher dimensions), but we will see
below that it is quite reasonable in two dimensions, since the formulas
become generally cleaner.

8 And leave absorbing these formalities as an exercise.
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It is important to have in mind the following constructive description
of random interlacements at level α observed on a finite set A ⊂ Z2 (this
is, in fact, implied by the preceding formal construction, note the terms
ĥmA(x)Px[Ŝ ∈ F] in (6.25)). Namely,

• take a Poisson(πα ĉap(A)) number of particles;
• place these particles on the boundary of A independently, with distribu-

tion ĥmA;
• let the particles perform independent Ŝ -random walks (since Ŝ is tran-

sient, each walk only leaves a finite trace on A).

We then immediately see that

P[A ⊂ Vα] = exp
(
− πα ĉap(A)

)
(6.26)

for all finite A ⊂ Z2 (indeed, A is vacant iff no trajectory hits it); Theo-
rem 4.12 then implies that

P[A ⊂ Vα] = exp
(
− πα cap(A)

)
for all finite subsets A of Z2 containing the origin.

It is also worth mentioning that the FKG inequality still holds for two-
dimensional random interlacements, cf. theorem 3.1 of [97].

The vacant set at level α,

Vα = Z2 \
⋃

λ:uλ≤πα

ω∗λ(Z),

is the set of lattice points not covered by the random interlacement. It con-
tains the origin by definition. In Figure 6.6 we present a simulation9 of the
vacant set for different values of the parameter α.

As mentioned before, the law of two-dimensional random interlace-
ments is not translationally invariant, although it is of course invariant with
respect to reflections/rotations of Z2 that preserve the origin. Let us de-
scribe some other basic properties of two-dimensional random interlace-
ments:

Theorem 6.8. (i) For any α > 0, x ∈ Z2, A ⊂ Z2, it holds that

P[A ⊂ Vα | x ∈ Vα] = P[−A + x ⊂ Vα | x ∈ Vα]. (6.27)

More generally, for all α > 0, x ∈ Z2 \ {0}, A ⊂ Z2, and any lattice
isometry M exchanging 0 and x, we have

P[A ⊂ Vα | x ∈ Vα] = P[MA ⊂ Vα | x ∈ Vα]. (6.28)
9 Many thanks to Darcy Camargo for doing it!
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α = 0.25 α = 0.5

α = 0.75 α = 1.0

α = 1.25 α = 1.5

Figure 6.6 A realization of the vacant set (dark) of RI(α) on a
square 101 × 101 (centred at the origin) for different values of α.
For α = 1.5 the only vacant site is the origin. Also, note that we
see the same neighbourhoods of the origin for α = 1 and
α = 1.25; this is not surprising since just a few new walks enter
the picture when the rate increases by a small amount.
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(ii) With γ′ from (3.36) we have

P[x ∈ Vα] = exp
(
− πα

a(x)
2

)
= exp

(
−
γ′πα

2

)
‖x‖−α

(
1 + O(‖x‖−2)

)
. (6.29)

(iii) Let A be a finite subset of Z2 such that 0 ∈ A and |A| ≥ 2, and denote
r = 1 + maxz∈A ‖z‖; let x ∈ Z2 be such that ‖x‖ ≥ 2r. Then, we have

P[A ⊂ Vα | x ∈ Vα] = exp
(
−
πα

4
cap(A)

1 + O
( r
‖x‖ ln r

)
1 − cap(A)

2a(x) + O
( r
‖x‖ ln ‖x‖

) ).
(6.30)

(iv) Let x, y , 0, x , y, and assume that, as s := ‖x‖ → ∞, ln ‖y‖ ∼ ln s
and ln ‖x − y‖ ∼ β ln s with some β ∈ [0, 1]. Then, we have

P
[
{x, y} ⊂ Vα] = s−

4α
4−β+o(1). (6.31)

(v) Assume that ln ‖x‖ ∼ ln s, ln r ∼ β ln s with β < 1. Then, as s→ ∞,

P
[
B(x, r) ⊂ Vα] = s−

2α
2−β+o(1). (6.32)

These results invite a few comments.

Remark 6.9. Regarding Theorem 6.8:

(a) The statement in (i) describes an invariance property given that a point is
vacant. We refer to it as the conditional stationarity of two-dimensional
random interlacements.

(b) We can interpret (iii) as follows: the conditional law of RI(α) given that
a distant10 site x is vacant, is similar – near the origin – to the uncon-
ditional law of RI(α/4). Combined with (i), the similarity holds near x
as well. Observe that the relation (4.21) leads to the following heuris-
tic explanation for Theorem 6.8 (iii) (in the case when A is fixed and
‖x‖ → ∞). Since the probability of hitting a distant site is about 1/2, by
conditioning that this distant site is vacant, we essentially throw away
three quarters of the trajectories that pass through a neighbourhood of
the origin: indeed, the double-infinite trajectory has to avoid this distant
site two times, before and after reaching that neighbourhood.

(c) By symmetry, the conclusion of (iv) remains the same in the situation
when ln ‖x‖, ln ‖x − y‖ ∼ ln s and ln ‖y‖ ∼ β ln s.

10 In fact, a very distant – the term cap(A)
2a(x) needs to be small.
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Proof of (i) and (ii) To prove (i), observe that

cap
(
{0, x} ∪ A

)
= cap

(
{0, x} ∪ (−A + x)

)
because of symmetry. For the second statement in (i), note that, for A′ =

{0, x} ∪ A, it holds that

cap
(
A′

)
= cap

(
MA′

)
= cap

(
{0, x} ∪ MA

)
.

Item (ii) follows from the fact that cap
(
{0, x}

)
= 1

2 a(x) (recall (3.65)) to-
gether with (3.36). �

We postpone the proof of other parts of Theorem 6.8, since it requires
some estimates for capacities of various kinds of sets. We now turn to esti-
mates on the cardinality of the vacant set.

Theorem 6.10. (i) We have, with γ′ from (3.36)

E|Vα ∩ B(r)| ∼


2π

2−α exp
(
−

γ′πα

2

)
r2−α, for α < 2,

2π exp
(
−

γ′πα

2

)
ln r, for α = 2,

const, for α > 2,

as r → ∞.
(ii) For α > 1 it holds that Vα is finite a.s. Moreover, P

[
Vα = {0}

]
> 0

and P
[
Vα = {0}

]
→ 1 as α→ ∞.

(iii) For α ∈ (0, 1], we have |Vα| = ∞ a.s. Moreover, for α ∈ (0, 1), it holds
that

P
[
Vα ∩

(
B(r) \ B(r/2)

)
= ∅

]
≤ r−2(1−

√
α)2+o(1). (6.33)

It is worth noting that the phase transition at α = 1 in (ii)–(iii) corre-
sponds to the cover time of the torus, as shown in Theorem 6.11 below.
For that reason, RI(1) is referred to as the critical two-dimensional random
interlacement model.11

Proof of (i) and (ii) (incomplete, in the latter case) Part (i) readily follows
from Theorem 6.8 (ii).

The proof of the part (ii) is easy in the case α > 2. Indeed, observe first
that E|Vα| < ∞ implies that Vα itself is a.s. finite. Also, Theorem 6.8 (ii)

11 Incidentally, it has a connection to the so-called Gelfond’s constant
eπ = (−1)−i ≈ 23.14069 . . . : the probability that a (fixed) neighbour of the origin is
vacant in the critical random interlacement is one divided by square root of Gelfond’s
constant.
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actually implies that E|Vα \ {0}| converges to 0 as α → ∞, which implies
that P

[
|Vα \ {0}| = 0

]
= P

[
Vα = {0}

]
→ 1 by Chebyshev’s inequality.

Now, let us prove that, in general, P
[
|Vα| < ∞

]
= 1 implies that P

[
Vα =

{0}
]
> 0. Indeed, ifVα is a.s. finite, then one can find a sufficiently large R

such that P
[
|Vα∩ (Z2 \B(R))| = 0

]
> 0. Since P[x < Vα] > 0 for any x , 0,

the claim that P
[
Vα = {0}

]
> 0 follows from the FKG inequality applied to

events {x < Vα}, x ∈ B(R) together with
{
|Vα ∩ (Z2 \ B(R))| = 0

}
(see also

Exercise 6.8). �

As before, we postpone the proof of part (iii) and the rest of part (ii)
of Theorem 6.10, except for the case α = 1. The proof that V1 is a.s.
infinite is quite involved and can be found in [22]. Let us only mention that
this result may seem somewhat surprising, for the following reason. Recall
that the case α = 1 corresponds to the leading term in the expression for
the cover time of the two-dimensional torus. Then, as already mentioned
(cf. [1, 8]), the cover time has a negative second-order correction, which
could be an evidence in favour of finiteness of V1 (informally, the “real”
all-covering regime should be “just below” α = 1). On the other hand, it
turns out that local fluctuations of excursion counts overcome that negative
correction, thus leading to the preceding result.

Let us now give a heuristic explanation about the unusual behaviour of
the model for α ∈ (1, 2): in this non-trivial interval, the vacant set is a.s.
finite but its expected size is infinite. The reason for that is the following:
the number of Ŝ -walks that hit B(r) has Poisson law with rate of order ln r.
Thus, decreasing this number by a constant factor (with respect to the ex-
pectation) has only a polynomial cost. On the other hand, by doing so, we
increase the probability that a site x ∈ B(r) is vacant for all x ∈ B(r) at
once, which increases the expected size ofVα ∩ B(r) by a polynomial fac-
tor. It turns out that this effect causes the actual number of uncovered sites
in B(r) to be typically of much smaller order then the expected number of
uncovered sites there.

In the remaining part of this section, we briefly discuss the relation-
ship of random interlacements with the SRW (Xn, n ≥ 0) on the two-
dimensional torus Z2

n. Denote by Υn : Z2 → Z2
n,

Υn(x) = (x1 mod n, x2 mod n) for x = (x1, x2) ∈ Z2

the natural projection modulo n. Then, if the initial position S 0 of a two-
dimensional SRW were chosen uniformly at random on any fixed n × n
square, we can write Xk = Υn(S k). Similarly, B(y, r) ⊂ Z2

n is defined by
B(y, r) = Υn

(
B(z, r)

)
, where z ∈ Z2 is such that Υnz = y. Let us also recall
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the notations tα = 4α
π

n2 ln2 n (note that, as previously mentioned, α = 1
corresponds to the leading-order term of the expected cover time of the
torus), and U (n)

m (which is the set of uncovered sites of Z2
n up to time m). In

the following theorem, we have that, given that 0 ∈ Z2
n is uncovered, the

law of the uncovered set around 0 at time tα is close to that of RI(α):

Theorem 6.11. Let α > 0 and A be a finite subset of Z2 such that 0 ∈ A.
Then, we have

lim
n→∞
P[ΥnA ⊂ U (n)

tα | 0 ∈ U (n)
tα ] = exp

(
− πα cap(A)

)
. (6.34)

We will not present a rigorous proof of this theorem; let us only mention
that it can be proved using a time-dependent version of Doob’s transform.
It is important to observe that turning the heuristics from the beginning of
this section into a proof is not an easy task. The reason for this is that,
although Eα is indeed concentrated around 2α ln2 n

ln ln n , it is not concentrated
enough: the probability that 0 is not hit during k excursions, where k varies
over the “typical” values of Eα, changes too much. Therefore, in the proof
of Theorem 6.11 a different route is needed.

We refer to [86] for a much more in-depth treatment of the relation-
ship between the SRW on the two-dimensional torus and random interlace-
ments. Also, in [2] a model similar to the SRW on the torus was studied
(there, the walk takes place on a bounded subset of Z2, and, upon leaving it,
the walk reenters through a random boundary edge on the next step), also
establishing connections with two-dimensional random interlacements.

6.3 Proofs for two-dimensional random interlacements

6.3.1 Excursions and soft local times

In this section we will develop some tools for dealing with excursions of
two-dimensional random walks and/or random interlacements, using the
method of soft local times of Section 5.1.

The results that we obtain here will be valid in several contexts: for
SRW S on Z2 or on a torus Z2

n, and for conditioned SRW Ŝ . To keep the
exposition general, let us denote the underlying process by X.

Assume that we have a finite collection of sets A j ⊂ A′j, j = 1, . . . , k0,
where A′1, . . . , A

′
k0

are disjoint and dist(A′i , A
′
j) > 1 for i , j. Denote also

A =
⋃

j A j and A′ =
⋃

j A′j; note that we then have ∂A =
⋃

j ∂A j and ∂A′ =⋃
j ∂A′j. Here and in the sequel we denote by (Ex( j)

i , i ≥ 1) the (complete)
excursions (recall Figure 4.2 in Section 4.2) of the process X between ∂A j
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and ∂A′j. Observe that these excursions will appear in some order in the
overall sequence of excursions between ∂A and ∂A′; for example, for k0 = 2
we may see Ex(2)

1 ,Ex(2)
2 ,Ex(1)

1 ,Ex(2)
3 , and so on.

Then, suppose that we are given a collection of probability measures
(ν j, j = 1, . . . , k0) with supp(ν j) = ∂A j (typically, ν j will be hmA j or ĥmA j ,
or close to either of it). Let us now assume that the excursions of the pro-
cess X were obtained using the soft local time method: we use a marked
Poisson point process {(zθ, uθ), θ ∈ Θ}with zθ ∈ ∂A and uθ > 0; the marks at
{(zθ, uθ)} are independent excursions starting at zθ. For j = 1, . . . , k0 let us
then denote by (Ẽx

( j)
)i, i ≥ 1 the corresponding12 independent excursions

with the initial sites chosen according to ν j and the subsequent evolution
according to X (recall that Ex’s and Ẽx’s are actually the same excursions,
only picked in a different order). For j = 1, . . . , k0 and b2 > b1 > 0 define
the random variables

Z j(b1, b2) = #
{
θ ∈ Ξ : zθ ∈ ∂A j, b1ν j(zθ) < uθ ≤ b2ν j(zθ)

}
. (6.35)

It should be observed that the analysis of the soft local times is consid-
erably simpler in this section than in the proof of Theorem 6.4 (of Sec-
tion 6.1). This is because here the (conditional) entrance measures to A j

are typically very close to each other (as in (6.36) below). That permits us
to make sure statements about the comparison of the soft local times for
different processes in case when the realization of the Poisson process in
∂A j×R+ is sufficiently well behaved, as e.g. in (6.37) below. The following
is a version of lemma 2.1 of [24]:

Lemma 6.12. Assume that the probability measures (ν j, j = 1, . . . , k0) are
such that for all y ∈ ∂A′, x ∈ ∂A j, j = 1, . . . , k0, and some v ∈ (0, 1), we
have

1 −
v
3
≤
Py[XτA = x | XτA ∈ A j]

ν j(x)
≤ 1 +

v
3
. (6.36)

Furthermore, for m0 ≥ 1 define the events

Um0
j =

{
for all m ≥ m0 we haveZ j(m, (1 + v)m) < 2vm

and (1 − v)m < Z j(0,m) < (1 + v)m
}
. (6.37)

Then, for all j = 1, . . . , k0 and all m0 ≥ 1 it holds that

(i) P[Um0
j ] ≥ 1 − c1 exp(−c2vm0), and

12 i.e., constructed with soft local times using the same realization of the Poisson process
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(ii) on the event Um0
j we have13 for all m ≥ m0{
Ẽx

( j)
1 , . . . , Ẽx

( j)
(1−v)m

}
⊂

{
Ex

( j)
1 , . . . ,Ex

( j)
(1+3v)m

}
,{

Ex
( j)
1 , . . . ,Ex

( j)
(1−v)m

}
⊂

{
Ẽx

( j)
1 , . . . , Ẽx

( j)
(1+3v)m

}
.

Proof Fix any j ∈ {1, . . . , k0} and observe that Z j(b1, b2) has Poisson
distribution with parameter b2 − b1. It is then straightforward to obtain (i)
using usual large deviation bounds.

To prove (ii), fix k ≥ 1 and let (recall that Gk(y) denotes the soft local
time at y at time k)

y(k)
j = arg min

y∈∂A j

Gk(y)
ν j(y)

(with the convention 0/0 = +∞). We then argue that for all k ≥ 1 we surely
have

Gk(y)
ν j(y)

≤ (1 + v)
Gk(y(k)

j )

ν j(y
(k)
j )

for all y ∈ ∂A j. (6.38)

Indeed, by (6.36) we have (denoting by ζk the last site of kth excursion,
which can also be∞ for random interlacements when the new trajectory is
started)

Gk(y)
ν j(y)

=
1

ν j(y)

k∑
i=1

ξiPζi−1 [XτA = y]

=

k∑
i=1

ξi
Pζi−1 [XτA = y | XτA ∈ A j]

ν j(y)
Pζi−1 [XτA ∈ A j]

≤
1 + v

3

1 − v
3

·

k∑
i=1

ξi

Pζi−1 [XτA = y(k)
j | ζi−1 ∈ A j]

ν j(y
(k)
j )

Pζi−1 [XτA ∈ A j]

≤ (1 + v)
Gk(y(k)

j )

ν j(y
(k)
j )

,

since (1 + v
3 )/(1 − v

3 ) ≤ 1 + v for v ∈ (0, 1).
Let us denote by σ( j)

s the position of sth excursion between ∂A j and ∂A′j
in the sequence of all excursions between ∂A and ∂A′. Now, let m ≥ m0,
and abbreviate ` = σ

( j)
(1−v)m. We then have G`(y

(`)
j )/ν j(y

(`)
j ) ≤ m (because

otherwise, recall (6.37), we would have more than (1 − v)m points of the

13 A quick note on indices: e.g. Ex( j)
s is meant to be Ex( j)

bsc in case s is not an integer.
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∂A j

R+

mh

(1 + v)mh

(1 − v)mh ≤ Z j(0,m) ≤ (1 + v)mh

Z j(m, (1 + v)m) < 2vm

y(k)
0

Gk

Figure 6.7 On the proof of Lemma 6.12. For simplicity, here we
assumed that ν j ≡ h for a positive constant h.

Poisson process below the graph of G`). So, by (6.38), G`(y)/ν j(y) ≤ (1 +

v)m for all y ∈ ∂A j (see Figure 6.7), which implies that{
Ex

( j)
1 , . . . ,Ex

( j)
(1−v)m

}
⊂

{
Ẽx

( j)
1 , . . . , Ẽx

( j)
(1+3v)m

}
.

Analogously, for `′ = σ
( j)
(1+3v)m we must have G`′(y

(`′)
0 )/ν j(y

(`′)
0 ) ≥ m (be-

cause otherwise G`′(·)/ν j(·) would lie strictly below (1+v)m, and we would
haveZ j(0, (1 + v)m) < (1 + 3v)m), so{

Ẽx
( j)
1 , . . . , Ẽx

( j)
(1−v)m

}
⊂

{
Ex

( j)
1 , . . . ,Ex

( j)
(1+3v)m

}
.

This concludes the proof of Lemma 6.12. �

Next, let us obtain the following consequence of Lemma 6.12:

Lemma 6.13. Let 1 ≤ r < R be such that r ≥ R
lnh R

for some fixed h > 0.
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Then for any ϕ ∈ (0, 1), there exists δ > 0 such that

sup
z∈∂B(R)
y∈∂B(r)

∣∣∣∣∣∣Pz
[
S τB(r) = y | τB(r) < τ

+

B(R){
]

hmB(r)(y)
− 1

∣∣∣∣∣∣ < δ (6.39)

then, as R→ ∞,

P
[
∃y ∈ B(r) such that y < Ẽxi for all i ≤ 2ϕ

ln2 R
ln R

r

]
→ 1, (6.40)

where Ẽx1, Ẽx2, Ẽx3, . . . are i.i.d. SRW excursions between ∂B(r) and ∂B(R)
with entrance measure hmB(r).

Proof Set n = 3R + 1 and k1 = 2ϕ ln2 R
ln R/r . Lemma 6.12 (with X being

the SRW) implies that one can choose a small enough δ > 0 in such a way
that one may couple the independent excursions with the excursion process
Ex1,Ex2,Ex3, . . . of SRW on Z2

n so that{
Ẽx1, . . . , Ẽxk1

}
⊂

{
Ex1, . . . ,Ex(1+δ′)k1

}
with probability converging to 1 with n, where δ′ > 0 is such that (1 +

δ′)ϕ < 1. Now, choose b such that (1 + δ′)ϕ < b < 1 and observe that
theorem 1.2 of [33] implies that a fixed ball with radius at least n

lnh n
will not

be completely covered up to time 4
π
bn2 ln2 n with probability converging

to 1. Now, we need to control the number of SRW’s excursions which take
place up to that time. This can be done using lemma 3.2 of [33]: it asserts
that there exist ε0 > 0, c > 0 such that if r < R ≤ n

2 and ε ≤ ε0 with
ε ≥ 6c1( 1

r + r
R ), we have for all x0 ∈ Z

2
n

Px0

[
jth excursion is completed before time (1 + ε)

2n2 ln R
r

π
j
]

≥ 1 − exp
(
−

cε2 ln R
r

ln n
r

j
)
.

This implies that14

P
[
B(r) is not completely covered by {Ex1, . . . ,Ex(1+δ′)k1}

]
→ 1

as n→ ∞, and this completes the proof of (6.40). �

14 Observe that solving 4
π

bn2 ln2 n = (1 + ε) 2n2 ln R/r
π

j for j gives j = 2b
1+ε

ln2 n
ln R/r , and that

ln2 n
ln2 R
→ 1.
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6.3.2 Hitting probabilities

First, we need an estimate for ĝ(y, y + v) in the case ‖v‖ � ‖y‖: as usual,
with (3.38) we write

ĝ(y, y + v) =
a(y) + a(y + v) − a(v)

a(y)a(y + v)

=
2a(y) − a(v) + O

( ‖v‖
‖y‖

)
a(y)

(
a(y) + O

( ‖v‖
‖y‖

))
=

2a(y) − a(v) + O
( ‖v‖
‖y‖

)
a2(y)

. (6.41)

Let us state a couple of estimates, for the probability of (not) hitting a
given set (which is, typically, far away from the origin), or, more specifi-
cally, a disk. The following is a cleaner version of lemma 3.7 of [25]:

Lemma 6.14. Assume that x < B(y, r) and ‖y‖ > 2r ≥ 1.

(i) We have

Px[τ̂B(y,r) < ∞] =
a(y)

(
a(y) + a(x) − a(x − y)

)
a(x)

(
2a(y) − a(r) + O

(
r−1 + r

‖y‖

)) . (6.42)

(ii) Consider now a finite nonempty set A ⊂ Z2\{0} such that y ∈ A, denote
r = 1 + maxz∈A ‖y − z‖ and assume that ‖y‖ > 2r. Then, for any x such
that ‖x − y‖ ≥ 5(r + 1) it holds that

Px
[
τ̂A < ∞

]
=

a(y)
(
a(y) + a(x) − a(x − y)

)
a(x)

(
2a(y) − cap(A) + O

( r
‖y‖ + r ln r

‖x−y‖

)) . (6.43)

Proof Apply the optional stopping theorem to the martingale ĝ(Ŝ n∧τ̂B(y,r) , y)
with the stopping time τ̂B(y,r) to obtain that

a(x) + a(y) − a(x − y)
a(x)a(y)

= ĝ(x, y)

= Px[τ̂B(y,r) < ∞]Ex
(
ĝ(Ŝ τ̂B(y,r) , y) | τ̂B(y,r) < ∞

)
(by (6.41))

=
2a(y) − a(r) + O

(
r−1 + r

‖y‖

)
a2(y)

Px[τ̂B(y,r) < ∞],

and (6.42) follows.
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To prove the part (ii), we reuse the preceding calculation (with A on the
place of B(y, r)), but we will need a finer estimate on the term Ex

(
ĝ(Ŝ τ̂A , y) |

τ̂A < ∞
)

in there. Recall (4.37): ĥmA is hmA biased by a; so, with (3.38) it
is straightforward to obtain that

ĥmA(z) = hmA(z)
(
1 + O

( r
‖y‖ ln ‖y‖

))
(6.44)

for all z ∈ A. Now, write

Ex
(
ĝ(Ŝ τ̂A , y) | τ̂A < ∞

)
=

∑
z∈A

ĝ(z, y)Px
[
Ŝ τ̂A = z | τ̂A < ∞

]
(by (6.41))

=
∑
z∈A

( 2
a(y)

−
a(y − z)

a2(y)
+ O

( r
‖y‖ ln2 ‖y‖

))
Px

[
Ŝ τ̂A = z | τ̂A < ∞

]
=

2
a(y)

+ O
( r
‖y‖ ln2 ‖y‖

)
−

1
a2(y)

∑
z∈A

a(y − z)Px
[
Ŝ τ̂A = z | τ̂A < ∞

]
(by Theorem 4.16)

=
2

a(y)
+ O

( r
‖y‖ ln2 ‖y‖

)
−

1
a2(y)

∑
z∈A

a(y − z) ĥmA(z)
(
1 + O

( r
‖x−y‖

))
(by (6.44))

=
2

a(y)
+ O

( r
‖y‖ ln2 ‖y‖

)
−

1
a2(y)

∑
z∈A

a(y − z) hmA(z)
(
1 + O

( r
‖x−y‖ + r

‖y‖ ln ‖y‖

))
(by Definition 3.18)

=
2

a(y)
+ O

( r
‖y‖ ln2 ‖y‖

)
−

1
a2(y)

(
cap(A) + O

( r ln r
‖x−y‖ + r ln r

‖y‖ ln ‖y‖

))
=

2a(y) − cap(A) + O
( r ln r
‖x−y‖ + r

‖y‖

)
a2(y)

,

and we then obtain (6.43) in an analogous way. �
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6.3.3 Harmonic measure and capacities

Before proceeding, recall the following immediate consequence of (4.31):
for any finite A ⊂ Z2 such that 0 ∈ A, we have

cap(A) = lim
‖x‖→∞

a(x)Px[τ̂A < ∞]. (6.45)

Next, we need estimates for the Ŝ -capacity of a “distant” set15 and, in
particular, of a ball which does not contain the origin. This is a cleaner
version of lemma 3.9 of [25].

Lemma 6.15. Assume that ‖y‖ > 2r ≥ 1.

(i) We have

cap
(
{0} ∪ B(y, r)

)
=

a2(y)
2a(y) − a(r) + O

(
r−1 + r

‖y‖

) . (6.46)

(ii) For a finite set A such that y ∈ A, denote r = 1 + maxz∈A ‖y − z‖ and
assume that ‖y‖ > 2r. Then

cap
(
{0} ∪ A

)
=

a2(y)
2a(y) − cap(A) + O

( r
‖y‖

) . (6.47)

Proof This immediately follows from Lemma 6.14 and (6.45) (observe
that a(x) − a(x − y)→ 0 as x→ ∞). �

We also need to compare the harmonic measure on a set (again, distant
from the origin) to the entrance measure of the Ŝ -walk started far away
from that set (this would be a partial analogue of Theorem 3.20 for the
conditioned walk).

Lemma 6.16. Assume that A is a finite subset of Z2 and y0 ∈ A and x < A
are such that ‖y0 − x‖ ≤ ‖y0‖/2 and dist(x, A) ≥ 18 diam(A) + 1. As-
sume additionally that (finite or infinite) A′ ⊂ Z2 is such that dist(A, A′) ≥
dist(x, A) + 1. Then, it holds that

Px[Ŝ τ̂A = y | τ̂A < τ̂A′] = ĥmA(y)
(
1 + O

(Ψ diam(A)
dist(x,A)

))
, (6.48)

where Ψ =
(
a(dist(x, A)) − cap(A)

)
∨ 1.

Proof The proof essentially mimics that of Theorem 3.20, so we give
only a sketch. As before, with r = diam(A) and s := ‖x‖, it is enough to

15 i.e., for the “usual” capacity of the union of that set and {0}
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prove (6.48) for A′ = B(y0, s){. Again, since on its way to A the walker has
to pass through ∂B(y0,

2
3 s), it would then be enough to prove that

Pz[Ŝ τ̂A = y | τ̂A < τ̂B(y0,s){] = ĥmA(y)
(
1 + O

(Ψr
s

))
(6.49)

for any z ∈ ∂B(y0,
2
3 s). With the help of Lemma 4.5 and (3.64) we obtain

that Pz[τ̂A < τ̂B(y0,s){] ≥ O(1/Ψ). So, we write

Pz
[
Ŝ τ̂A = y, τ̂A < τ̂B(y0,s){

]
= Pz

[
Ŝ τ̂A = y

]
− Pz

[
Ŝ τ̂A = y, τ̂B(y0,s){ < τ̂A

]
= Pz

[
Ŝ τ̂A = y

]
−

∑
z′∈B(y0,s){

Pz
[
Ŝ τ̂

B(y0 ,s){
= z′, τ̂B(y0,s){ < τ̂A

]
Pz′

[
Ŝ τ̂A = y

]
(by Theorem 4.16)

= ĥmA(y)
(
1 + O

( r
s

))
− Pz

[
τ̂B(y0,s){ < τ̂A

]
ĥmA(y)

(
1 + O

( r
s

))
= ĥmA(y)

(
Pz

[
τ̂A < τ̂B(y0,s){

]
+ O

( r
s

))
and then conclude the proof by dividing the last expression by Pz[τ̂A <

τ̂B(y0,s){]. �

6.3.4 Proofs for random interlacements

First of all, we finish the proof of Theorem 6.8.

Proof of Theorem 6.8, parts (iii)–(v). Let us recall the fundamental for-
mula (6.24) for the random interlacements and the relation (3.36). Then, the
statement (iv) follows from (3.86) and from (6.29) (see also Exercise 6.7),
while (v) is a consequence of Lemma 6.15 (i).

Finally, observe that, by symmetry (which gives us that cap(A ∪ {x}) =

cap({0} ∪ A′) with A′ = A − x, a translate of A), Theorem 6.8 (ii), and
Lemma 6.15 (ii) we have

P[A ⊂ Vα | x ∈ Vα]

= exp
(
− πα

(
cap(A ∪ {x}) − cap({0, x})

))
= exp

(
− πα

( a2(x)
2a(x) − cap(A) + O

( r
‖x‖

) − a(x)
2

))

= exp
(
− πα

(a2(x) − a2(x) + 1
2 a(x) cap(A) + O

( r ln ‖x‖
‖x‖

)
2a(x) − cap(A) + O

( r
‖x‖

) ))
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= exp
(
−
πα

4
cap(A)

1 + O
( r
‖x‖ ln r

)
1 − cap(A)

2a(x) + O
( r
‖x‖ ln x

) ),
thus proving the part (iii). �

Proof of Theorem 6.10 (iii) We start by observing that the first part of (iii)
follows from the bound (6.33) and Borel–Cantelli. So, let us concentrate
on proving (6.33). Recall the following elementary fact: let N be a Pois-
son random variable with parameter λ, and Y1,Y2,Y3, . . . be independent
(also of N) random variables with exponential distribution with parame-
ter p (that is, mean value p−1). Let Θ =

∑N
j=1 Y j be the corresponding

compound Poisson random variable, with EΘ = λp−1. Its moment gen-
erating function MΘ(h) = exp

( λh
p−h

)
is easily computed, and, after some

straightforward calculations, we then can write Chernoff’s bound for it: for
all b > 1

P
[
Θ ≥ bλp−1] ≤ exp

(
− λ(
√

b − 1)2). (6.50)

Now, assume that α < 1. Fix β ∈ (0, 1), which will be later taken close
to 1, and fix some set of non-intersecting disks B′1 = B(x1, rβ), . . . , B′kr

=

B(xkr , r
β) ⊂ B(r) \ B(r/2), with cardinality kr = 1

4 r2(1−β). Denote also B j :=
B
(
x j,

rβ

ln3 rβ
)
, j = 1, . . . , kr.

Before going to the heart of the matter we briefly sketch the strategy
of proof (also, one may find it helpful to look at Figure 6.8). We start by
showing that at least a half of these disks B j will receive at most b 2α ln2 r

3 ln ln rβ

excursions from ∂B j to ∂B′j, where b > 1 is a parameter (in fact, the pre-
ceding number of excursions is larger by factor b than the typical number
of excursions on level α). Moreover, using the method of soft local times
of Section 5.1, we couple such excursions from RI(α) with a slightly larger
number of independent Ŝ -excursions: with overwhelming probability, the
trace on

⋃
j B j of the latter excursion process contains the trace of the for-

mer, so the vacant set Vα restricted to disks B j is smaller than the set of
unvisited points by the independent process. Now, by independence, it will
be possible to estimate the probability of leaving that many balls partially
uncovered, and this will conclude the proof.

Let us observe that the number of Ŝ -walks in RI(α) intersecting a given
disk B j has Poisson law with parameter λ = (1 + o(1)) 2α

2−β ln r. Indeed, the
law is Poisson by construction, the parameter πα cap(B j ∪ {0}) is found
in (6.24) and then estimated using Lemma 6.15 (i).

Next, by Lemma 6.14 (i), the probability that the walk Ŝ started from
any y ∈ ∂B′j does not hit B j is (1 + o(1)) 3 ln ln rβ

(2−β) ln r . Therefore, after the first
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B(r) \ B(r/2)

B j

B′j

Figure 6.8 On the proof of Theorem 6.10 (iii). With high
probability, at least a positive proportion of the inner circles is not
completely covered.

visit to ∂B′j, each Ŝ -walk generates a number of excursions between ∂B j

and ∂B′j which is dominated by a geometric law (supported on {0, 1, 2, . . .})
with success parameter p′ = (1 + o(1)) 3 ln ln rβ

(2−β) ln r . Recall also that the integer
part of an exponential(u) random variable has a geometric16 distribution
with success probability (1 − e−u). So, with p = − ln(1 − p′), the total
number Ê( j)

α of excursions between ∂B j and ∂B′j in RI(α) can be dominated
by a compound Poisson law with exponential(p) terms in the sum with
expectation

λp−1 = (1 + o(1))
2α ln2 r
3 ln ln rβ

.

16 Again, the one supported on {0, 1, 2, . . .}.
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Then, using (6.50), we obtain for b > 1

P
[
Ê( j)
α ≥ b

2α ln2 r
3 ln ln rβ

]
≤ exp

(
− (1 + o(1))

(√
b − 1

)2 2α
2 − β

ln r
)

= r−(1+o(1))(
√

b−1)2 2α
2−β . (6.51)

Now, let Wb be the set

Wb =
{
j ≤ kr : Ê( j)

α < b
2α ln2 r
3 ln ln rβ

}
.

Combining (6.51) with Markov inequality, we obtain

kr

2
P
[
|{1, . . . , kr} \Wb| > kr/2

]
≤ E

∣∣∣{1, . . . , kr} \Wb

∣∣∣
≤ krr−(1+o(1))(

√
b−1)2 2α

2−β ,

so

P
[
|Wb| ≥ kr/2

]
≥ 1 − 2r−(1+o(1))(

√
b−1)2 2α

2−β . (6.52)

Assume that 1 < b < α−1 and β ∈ (0, 1) is close enough to 1, so that
bα
β2 < 1. We denote by Êx

( j)
1 , . . . , Êx

( j)

Ê( j)
α

the excursions of RI(α) between ∂B j

and ∂B′j. Also, let Ẽx
( j)
1 , Ẽx

( j)
2 , Ẽx

( j)
3 , . . . be a sequence of i.i.d. Ŝ -excursions

between ∂B j and ∂B′j, started with the law ĥmB j ; these sequences are also
assumed to be independent from each other.

Abbreviate m = b 2α ln2 r
3 ln ln rβ . Next, for j = 1, . . . , kr we consider the events

D j =
{{
Êx

( j)
1 , . . . , Êx

( j)

Ê( j)
α

}
⊂

{
Ẽx

( j)
1 , . . . , Ẽx

( j)
(1+δ)m

}}
.

Lemma 6.17. One can construct the excursions
(
Êx

( j)
k , k = 1, . . . , Ê( j)

α

)
,(

Ẽx
( j)
k , k = 1, 2, 3, . . .

)
, j = 1, . . . , kr, on a same probability space in such a

way that for a fixed C′ > 0

P
[
D{j

]
≤ exp

(
−C′

ln2 r
(ln ln r)2

)
, (6.53)

for all j = 1, . . . , kr.

Proof The inequality (6.53) follows from Lemma 6.12 (observe that, by
Lemma 6.16, the parameter v in Lemma 6.12 can be anything exceeding
O(1/ ln2 r), so we choose e.g. v = (ln ln r)−1). �
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We continue the proof of part (iii) of Theorem 6.10. Define

D =
⋂
j≤kr

D j;

using (6.53), by the union bound we obtain the subpolynomial estimate

P
[
D{

]
≤

1
4

r2(1−β) exp
(
−C′

ln2 r
(ln ln r)2

)
. (6.54)

Let δ > 0 be such that (1 + δ) bα
β2 < 1. Define the events

M j =
{
B j is completely covered by Ẽx

( j)
1 ∪ · · · ∪ Ẽx

( j)
(1+δ)m

}
.

Then, for all j ≤ kr it holds that

P[M j] ≤
1
5

(6.55)

for all large enough r. Indeed, if the Ẽx’s were independent SRW-excursions,
the preceding inequality (with any fixed constant in the right-hand side)
would be just consequence of Lemma 6.13. On the other hand, Lemma 4.4 (ii)
implies that the first (1 + δ)m Ŝ -excursions can be coupled with SRW-
excursions with high probability, so (6.55) holds for Ŝ -excursions as well.

Next, define the set

W̃ =
{
j ≤ kr : M{j occurs

}
.

Since the events (M j, j ≤ kr) are independent, by (6.55) we have (recall
that kr is of order r2(1−β))

P
[
|W̃ | ≥

3
5

kr

]
≥ 1 − exp

(
−Cr2(1−β)) (6.56)

for all r large enough.
Observe that, by construction, on the event D we haveVα ∩ B′j , ∅ for

all j ∈ W̃ ∩Wb. So, using (6.52), (6.56), and (6.54), we obtain

P
[
Vα ∩

(
B(r) \ B(r/2)

)
= ∅

]
≤ P

[
|Wb| <

kr

2

]
+ P

[
D{

]
+ P

[
|W̃ | <

3kr

5

]
≤ 2r−(1+o(1))(

√
b−1)2 2α

2−β + exp
(
−Cr2(1−β))

+
1
4

r2(1−β) exp
(
−C′

ln2 r
(ln ln r)2

)
.

Since b ∈ (1, α−1) can be arbitrarily close to α−1 and β ∈ (0, 1) can be
arbitrarily close to 1, this concludes the proof of (6.33). �
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Proof of Theorem 6.10 (ii) To complete the proofs of the results of Sec-
tion 6.2, it remains to show that |Vα| < ∞ a.s. for α > 1. First, we establish
the following: if r ≥ 2, then for any x ∈ ∂B(2r) and y ∈ B(r) \ B(r/2), it
holds that

Px
[
τ̂y < τ̂B(r ln r)

]
=

ln ln r
ln r

(
1 + o(1)

)
. (6.57)

Indeed, Lemma 4.20 implies that

Px
[
τ̂y < τ̂B(r ln r)

]
=

a(r ln r)
(
a(x) + a(y) − a(x − y)

)
− a(x)a(y)

(
1 + O

( 1
ln2 r

))
a(x)

(
2a(r ln r) − a(y)

(
1 + O

( 1
ln2 r

)) .

We then use (3.36) to obtain (after dividing by 4
π2 ) that the numerator in the

preceding expression is ln2 r + ln r ln ln r + O(ln r) − (ln2 r + O(ln r)) =

ln r ln ln r + O(ln r), while the denominator is ln2 r + O(ln r ln ln r); this
clearly implies (6.57).

Now, the goal is to prove that, for α > 1

P
[
∃y ∈ B(r) \ B(r/2) such that y ∈ Vα] ≤ r−

α
2 (1−α−1)2(1+o(1)). (6.58)

This would imply that the setVα is a.s. finite, since

{|Vα| = ∞} =
{
Vα ∩

(
B(2n) \ B(2n−1)

)
, ∅ for infinitely many n

}
, (6.59)

and the Borel–Cantelli lemma together with (6.58) imply that the probabil-
ity of the latter event equals 0.

Let Eα,r be the number of Ŝ -excursions of RI(α) between ∂B(r) and
∂B(r ln r). Analogously to (6.51) (but using Corollary 4.7 instead of Lemma
6.14 (i)), it is straightforward to show that, for b < 1,

P
[
Eα,r ≤ b

2α ln2 r
ln ln r

]
≤ r−2α(1−

√
b)2(1+o(1)). (6.60)

Now, (6.57) implies that for y ∈ B(r) \ B(r/2)

P
[
y is uncovered by first b

2α ln2 r
ln ln r

excursions
]

≤
(
1 −

ln ln r
ln r

(1 + o(1))
)b 2α ln2 r

ln ln r

= r−2bα(1+o(1)), (6.61)

so, using the union bound,

P
[
∃y ∈ B(r) \ B(r/2) : y ∈ Vα, Eα,r > b

2α ln2 r
ln ln r

]
≤ r−2(bα−1)(1+o(1)). (6.62)
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Using (6.60) and (6.62) with b = 1
4

(
1 + 1

α

)2 (indeed, with this b we have
bα−1 = α

4 (1+ 2
α

+ 1
α2 )−1 = α

4 (1− 1
α

)2 > 0) we conclude the proof of (6.58)
and of Theorem 6.10 (ii). �

6.4 Exercises

Exercise 6.1. Given x , y, find ε = ε(x, y) such that for all u > 0 it holds
that

P
[
{x, y} ⊂ Vu] = P

[
x ∈ V(1−ε)u]P[y ∈ V(1−ε)u]. (6.63)

What is the asymptotic behaviour of ε(x, y) as ‖x − y‖ → ∞?

Exercise 6.2. For d ≥ 2, let z ∈ ∂B(r), r ≥ 1; also, fix h ∈ [1, r].

(i) Assume that x ∈ Zd \ B(r) is such that ‖x − z‖ ≥ h. Prove that there
exists a positive constant c such that

Px[S τA = x] ≤ ch−(d−1). (6.64)

(ii) Next, assume that x ∈ Zd \ B(r) is such that ‖x − z‖ ≤ 2h and also
dist(x,B(r)) ≥ h. Prove that, for some c′ > 0

Px[S τA = x] ≥ c′h−(d−1). (6.65)

Exercise 6.3. Show (formally) that Theorem 6.4 implies Theorem 6.3 and
Theorem 6.3 implies Theorem 6.2. Can Theorem 6.4 be also used to deduce
a decoupling result for the field of local times of random interlacements?

Exercise 6.4. Show that using the soft local times method with a marked
Poisson point process on ∂A (recall Figure 6.4) is indeed an equivalent way
of constructing random interlacements’ excursions.

Exercise 6.5. For two-dimensional random interlacements, prove that the
vacant setVα does not percolate for any α > 0.

Exercise 6.6. Similarly to Remark 6.9 (b), one can also estimate the “local
rate” away from the origin. Consider the situation depicted on Figure 6.9
(where s is large), and assume that cap(A2) � ln s. Show that (6.30) then
reveals a “local rate” equal to 2

7α, that is, P[A2 ⊂ V
α | x ∈ Vα] = exp

(
−

2
7πα cap

(
{0} ∪ A2

)
(1 + o(1))

)
.

Exercise 6.7. Do the calculations in the proof of Theorem 6.8 (iv) (those
that involve using (3.86)).
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A1

A2

x

0

s2

s

α1 ≈
1
4α

α2 ≈
2
7α

Figure 6.9 How the “local rate” looks like if we condition on the
event that a “distant” site is vacant.

Exercise 6.8. For any ε > 0, prove that P
[
|Vα| < ∞

]
= 1 implies P

[
Vα+ε =

{0}
]
> 0 without invoking the FKG inequality (this therefore provides an-

other proof that P[Vα = {0}] > 0 for any α > 1).

Exercise 6.9. Can you prove the result of Lemma 6.13 in a more direct way
(i.e., without using known facts for the cover time of the torus by SRW)?

Exercise 6.10. Prove the claim of Remark 4.19 by proving that (analo-
gously to the proof of (6.33)), with any fixed δ > 0,

P
[
Dn ⊂ Ŝ [0,∞)

]
≤ n−2+δ

for all large enough n; the claim then would follow from the (first) Borel–
Cantelli lemma.

Exercise 6.11. Write a more detailed proof of (6.60).

Exercise 6.12. If it makes sense considering random interlacements in two
dimensions, then probably we can do so in dimension 1 as well? Think
about how this can be done.





Hints and solutions to selected exercises

Exercise 2.2.
Unfortunately, not. If S n is a d-dimensional SRW, then P0[S 2 = 0] = ( 1

2d ×
1

2d ) × (2d) = 1
2d . If we want the claim in the exercise to be true, this would

then mean that 1
2d = ( 1

2 )d or d = 2d−1, which holds only for d = 1, 2.

Exercise 2.3.
You may find it useful to read [34].

Exercise 2.6.
See the proof of Proposition 6.1 in [79].

Exercise 2.7.
Set π(0) = 1, and then prove by induction that

π(x) =
q0 · · · qx−1

p1 · · · px

for x > 0 (and analogously for x < 0).

Exercise 2.8.
Use the cycle criterion (Theorem 2.2) with e.g. the cycle (0, 0)→ (0, 1)→
(1, 1)→ (1, 0)→ (0, 0).

Exercise 2.9.
Hint: define a scalar product 〈 f , g〉 =

∑
x∈Σ π(x) f (x)g(x) and show that P is

self-adjoint.

Exercise 2.12.
We can rewrite (2.20) as

1
1

a+c + 1
b+d

≥
1

1
a + 1

b

+
1

1
c + 1

d

.
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a

b

c

d

a

b

c

d

Figure 6.10 For Exercise 2.12: think of a, b, c, d > 0 as
resistances, and note that the effective resistance (from left to
right) of the left circuit is greater than or equal to the effective
resistance of the right circuit.

Then, just look at Figure 6.10.

Exercise 2.15.
Fix an arbitrary x0 ∈ Σ, set A = {x0}, and

f (x) = Px[τx0 < ∞] for x ∈ Σ

(so, in particular, f (x0) = 1). Then (2.12) holds with equality for all x , x0,
and, by transience, one can find y ∈ Σ such that f (y) < 1 = f (x0).

Exercise 2.16.
Let p = p(n, n + 1) (for all n), and assume for definiteness that p > 1

2 .
Consider the function f (x) =

( 1−p
p

)x and the set A = (−∞, 0]; then use
Theorem 2.5.

Note also that, for proving that this random walk is transient, one may
also use theorem 2.5.15 of [70] (which we did not consider in this book)
together with a simpler function f (x) = x. There are many different Lya-
punov function tools that one may use!

Exercise 2.17.
Hint: use the Lyapunov function f (x) = (1 − δ)x for small enough δ > 0.

Exercise 2.18.
Quite analogously to (2.15)–(2.17), it is elementary to obtain for f (x) =

‖x‖−α

E( f (Xn+1) − f (Xn) | Xn = x)

= −α‖x‖−α−2
(1
2
−

(
1 +

α

2

)1
d

+ O
(
‖x‖−1))).

The inequality 1
2−

(
1+ α

2

) 1
d > 0 solves to α < d−2, so any fixed α ∈ (0, d−2)

will do the job.
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By the way, in your opinion, is it surprising that the “critical” value for α
is equal to d − 2? (To answer this question, it is maybe a good idea to read
Section 3.1.)

Exercise 2.20.
Hint: being Xn the two-dimensional walk, define first its covariance matrix
by M := E0

(
(X1)>X1

)
. Find a suitable linear transformation17 of the process

for which M will become the identity matrix. Then use the same Lyapunov
function that worked for the simple random walk.

Exercise 2.23 (i).
Fix an arbitrary x0 ∈ Σ, and set A = {x0}. Observe that, for x , x0,

Exτx0 =
∑
y∈Σ

p(x, y)Ey(1 + τx0 ),

and that ∑
y∈Σ

p(x0, y)Eyτx0 = Ex0τ
+
x0
< ∞,

so the function f (x) = Exτx0 satisfies (2.21)–(2.22) with ε = 1.

Exercise 2.24.
Hint for part (ii): apply theorem 2.6.2 of [70] to the process Xn = ln(Yn +2).

Exercise 2.25.
Hint: First, show that it is enough to prove that there exists large enough R
such that, regardless of the starting position, the process visits B(R) a.s..
Then, similarly to the proof of the recurrence of two-dimensional SRW,
use Theorem 2.4 with a suitable Lyapunov function (with the advantage
that here the process is really radially symmetric). In particular, will f (x) =

ln ‖x‖ work here?

Exercise 2.26.
Note that the calculation (2.15) is dimension-independent, and (2.16) re-
mains valid as well, with obvious changes. Then obtaining (2.23) is straight-
forward (use (2.15) with α = 1 and observe that the factor 1

4 in the next dis-
play after (2.15) will become 1

2d in the general case). As for (2.24), show
first that

Ex(‖S 1‖
2 − ‖x‖2) = 1 for all x ∈ Zd,

17 Why does it exist?
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and then use (2.23) together with the identity (b− a)2 = b2 − a2 − 2a(b− a)
with a = ‖x‖, b = ‖S 1‖.

Exercise 2.27.
Hint: try using the following Lyapunov functions: f (x) = x2 for (i), f (x) =

xα for some α > 0 for (ii), and f (x) = x−α for (iii). Note that α will depend
on ε in (ii) and (iii)!

Exercise 2.28.
Hint: use Exercise 2.26.

Exercise 3.3.
Hint: first, prove that the (multivariate) characteristic function of S n (start-
ing at the origin) equals Φn(θ). Then, think how to extract P0[S n = x] from
there.

Exercise 3.5.
See exercise 6.18 of [62].

Exercise 3.6.
Hint: use Exercise 2.28.

Exercise 3.7.
Hint: show that Yn = G(S n−y)+N(n−1)

y is a martingale (recall Exercise 3.2),
then use the optional stopping theorem.

Exercise 3.8.
Hint: first, use a reversibility argument to relate the probability in (3.73)
to restricted Green’s functions. To deal with these Green’s functions, first
prove that the walk escapes from y to ∂B(( 1

4 + δ)r) with probability of
order r−1; this can be done analogously to the argument right after (3.17)
(or with Lyapunov functions). Then use (3.72) (or Theorem 3.13 in two
dimensions).

Exercise 3.9.
For x < A, using the definition of G and the strong Markov property, let us
write,

G(x, A) =
∑
y∈A

Px[τA < ∞, S τA = y]G(y, A)
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≥
(∑

y∈A

Px[τA < ∞, S τA = y]
)
×min

y∈A
G(y, A)

= Px[τA < ∞] min
y∈A

G(y, A),

and, analogously,

G(x, A) ≤ Px[τA < ∞] max
y∈A

G(y, A),

so
G(x, A)

maxy∈A G(y, A)
≤ Px[τA < ∞] ≤

G(x, A)
miny∈A G(y, A)

. (6.66)

From the asymptotic expression (3.5) for Green’s function it is straightfor-
ward to obtain that

lim
x→∞

‖x‖
γd

G(x, A) = |A|,

so multiplying (6.66) by ‖x‖
γd

and using Proposition 3.4 we obtain the desired
result.

Exercise 3.10.
First of all, note that EsA ∈ KA by (3.11), so it is enough to prove that∑

x∈A h(x) ≤ cap(A) for any h ∈ KA. Let us abbreviate vA(x) = Px[τA <

∞], so that (in matrix notation) (3.11) becomes vA = G EsA. Now, for two
(nonnegative) functions f , g : Zd → R, define the usual scalar product by
( f , g) =

∑
x∈Zd f (x)g(x). We argue that, by symmetry, G is a self-adjoint

linear operator in the sense that (G f , g) = ( f ,Gg). Then, for any h ∈ KA,
write (being 1 the function with value 1 at all x)∑

x∈A

h(x) = (h, vA) = (h,G EsA) = (Gh,EsA) ≤ (1,EsA) = cap(A),

and we are done.

Exercise 3.13.
Use the second inequality in (3.14) to obtain that, when the series in (3.19)
converges, it holds that

∞∑
k=1

P0[τAk < ∞] < ∞;

then use Borel–Cantelli.



190 Hints and solutions to selected exercises

Exercise 3.14.
Analogously to the previous exercise, it is straightforward to obtain that, in
this case,

∞∑
k=1

P0[τAk < ∞] = ∞,

but obtaining the recurrence of A from this is not immediate (note that
the events {τAk < ∞}, k ≥ 1, need not be independent). One possible
workaround is the following:

(i) Divide the sum in (3.19) into four sums
∞∑
j=1

cap(A4 j+i)
2(d−2)(4 j+i) , i = 0, 1, 2, 3;

note that at least one of these sums must diverge. For definiteness,
assume that it is the first one (i.e., with i = 0).

(ii) For j ≥ 2, consider any y ∈ ∂B(24 j−2), and, using the first inequality
in (3.14) together with (3.5), show that Py[τA4 j ] ≥ c12−(d−2)(4 j) cap(A4 j).

(iii) Next, for any z ∈ ∂B(24 j+2) show that

Py[τA4 j ] ≤ c2
cap(A4 j)
24 j(d−2) ,

where c2 < c1. Note that A4 j is much closer to ∂B(24 j−2) than to
∂B(24 j+2) – consider drawing a picture to see it better!

(iv) Using (ii)–(iii), obtain that, for any y ∈ ∂B(24 j−2),

Py[τA4 j < τ∂B(24 j+2)] ≥ c3
cap(A4 j)
24 j(d−2) ,

i.e., on its way from ∂B(24 j−2) to ∂B(24 j+2), the walker will hit A4 j

with probability at least of order 2−4 j(d−2) cap(A4 j).
(v) Argue that the “if” part of Theorem 3.7 follows from (iv) in a straight-

forward way.

Exercise 3.16.
Of course, it is probably possible to construct many such examples; one
possibility (in three dimensions) is to consider a set of the form {bke1, k ≥
1}, where (bk) is a strictly increasing sequence of positive integer numbers.
Then, it is clear that the expected number of visits to this set is infinite if
and only if

∑∞
k=1 b−1

k = ∞. As shown in the paper [14], it is possible to
construct a transient set for which the preceding series sums to infinity.
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Exercise 3.20.
Proof 1: note that (3.75) is equivalent to

cap(A) =
|A|∑

y∈A hmA(y)G(y, A)
;

proceed as in the solution of Exercise 3.918 and then use basic properties
of the harmonic measure.

Proof 2: note that (3.75) is equivalent to∑
y∈A

EsA(y)G(y, A) = |A|,

and then obtain it directly from (3.11) by summing in y ∈ A.

Exercise 3.21.
Hint: recall the calculation after (3.17).

Exercises 3.22 and 3.23.
See the beginning of Section 6.1.

Exercise 3.24.
Let H be a finite subset of Zd such that (A ∪ B) ⊂ H. We have

PhmH [τB < ∞] ≥ PhmH [τA < ∞,∃m ≥ τA such that S m ∈ B]

(by (3.77))

= PhmH [τA < ∞]PhmA [τB < ∞].

On the other hand, (3.76) implies that PhmH [τA < ∞] =
cap(A)
cap(H) and PhmH [τB <

∞] =
cap(B)
cap(H) , so, inserting this to the preceding calculation, we obtain (3.78).

Exercise 3.25.
First, recall (3.24) — we now need to do a finer analysis of it. Let us
rewrite (3.24) in the following way:

Px[S τA = y | τA < ∞]

=
G(y, x) EsA(y)
Px[τA < ∞]

+

∑
z∈∂A Py[τ+

A < ∞, S τ+
A

= z](G(y, x) −G(z, x))

Px[τA < ∞]
. (6.67)

18 I mean, only as in the first line of the first display there.
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It is not difficult to check that, for distinct x, y, z (think about the situation
when x, y, z ∈ Zd are such that z is much closer to y than x is)

G(x, y) = G(x, z)
(
1 + O

( ‖y−z‖
‖x−y‖

))
. (6.68)

So, (3.14) implies that

Px[τA < ∞] = cap(A)G(y, x)
(
1 + O

( diam(A)
dist(x,A)

))
, (6.69)

which means that the first term in the right-hand side of (6.67) equals
hmA(y)

(
1 + O

( diam(A)
dist(x,A)

))
.

To deal with the second term, denote V = ∂B(y, 2 diam(A) + 1); by
e.g. (3.8), there exists c > 0 such that Pz[τA = ∞] ≥ c for all z ∈ V ,
and this permits us to obtain19 that

Py[τV < τ
+
A] ≤ c−1 EsA(y). (6.70)

We then use the optional stopping theorem with the martingale Mn =

G(y, x) −G(S n∧τx , x) and the stopping time τ = τ+
A ∧ τV to obtain that20

0 = EyM0

= EyMτ

(note that Py[τ+
A < τV ] = Py[τ+

A < ∞] − Py[τ+
A > τV , τ

+
A < ∞])

=
∑
z∈∂A

Py[τ+
A < ∞, S τ+

A
= z](G(y, x) −G(z, x))

− Py[τ+
A > τV , τ

+
A < ∞]

(
G(y, x) − Ey(G(S τV ) | τ+

A > τV , τ
+
A < ∞)

)
+ Py[τV < τ

+
A]

(
G(y, x) − Ey(G(S τ+

A
) | τV < τ

+
A)

)
. (6.71)

The first term in the right-hand side of (6.71) is what we need to estimate
for (6.67), and, by (6.68) and (6.70), the second and third terms are both
O
(

EsA(y)G(y, x) diam(A)
dist(x,A)

)
. Gathering the pieces, we obtain (3.79).

Exercise 3.26.
Start with almost (3.24):

Px[τA < ∞, S τA = y] = G(y, x) −
∑
z∈∂A

Py[τ+
A < ∞, S τ+

A
= z]G(z, x).

19 Please, elaborate.
20 Of course, we also assume that x is outside B(y, 2 diam(A) + 1).
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Then, consider the martingale G(S n∧τx , x) and use the optional stopping
theorem with the (possibly infinite21) stopping time τx ∧ τ

+
A to obtain that

G(y, x) = EyG(S τx∧τ
+
A
, x)

=
∑
z∈∂A

Py[τ+
A < τx, S τ+

A
= z]G(z, x) + Py[τx < τ

+
A]G(0).

So, using that

Py[τ+
A < τx, S τ+

A
= z]

= Py[τ+
A < ∞, S τ+

A
= z] − Py[τx < τ

+
A < ∞, S τ+

A
= z]

= Py[τ+
A < ∞, S τ+

A
= z] − Py[τx < τ

+
A]Px[τ+

A < ∞, S τ+
A

= z],

we obtain

Px[τA < ∞, S τA = y]

= Py[τx < τ
+
A]

(
G(0) −

∑
z∈∂A

Px[τ+
A < ∞, S τ+

A
= z]G(z, x)

)
. (6.72)

Here, the second term in the parentheses is clearly negative, and one can
use (3.5) and (3.8) to obtain its magnitude and therefore show (3.80). To
prove the second part, write

Py[τx < ∞, τ
+
A = ∞] = Py[τx < τ

+
A]Px[τA = ∞],

and then use (3.79) together with (3.4) and (3.8).

Exercise 3.28.
For (i)–(ii), see Figure 6.11 (the left part for (i) and the right part for (ii)).
Specifically, consider first a path starting from the origin and ending on the
first hitting of the diagonal (respectively, vertical) line that separates the
origin from e1 + e2 (respectively, x1 from x2). From the site y (respectively,
z) where it ends, it is equally probable to go to 0 and x1 (respectively, to x1

and x2). There are also paths that go from 0 to 0 (respectively, from 0 to x1)
which do not cross that line at all; this implies that the inequalities are
strict.

As for the part (iii), assume without restricting generality that x belongs
to the first quadrant. Then, for an even x, the fact that P0[S 2n = 0] >

P0[S 2n = x] follows from (i)–(ii) by induction (there is a chain of sites that
goes either from 0 or to e1+e2 to x with “steps” 2e1 and 2e2). As for the case

21 We leave as an exercise checking that, in this case, one can still apply the optional
stopping theorem; note that G(S∞, x) = 0 by transience.
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0

x0

0

x1 x2

y
z

Figure 6.11 For Exercise 3.28: on the left, x0 = e1 + e2, on the
right, x2 = x1 + 2e1.

of an odd x (where we need to prove that P0[S 2n = 0] > P0[S 2n+1 = x]),
use the fact that

P0[S 2n+1 = x] =
1
4

∑
y∼x

P0[S 2n = y]

and note that all y’s in the preceding sum are even.

Exercise 3.30.
Hint: prove that τΛ{ has exponentially small tails using an argument of the
sort “from any y ∈ Λ the walker can go out of Λ in at most n0 steps with
probability at least p0 > 0”, with some explicit n0 and p0.

Exercise 3.33.
Indeed,

Yn∧τ
Λ{

= a(S n∧τ
Λ{
− y) − N

(n∧τ
Λ{
−1)

y

is still a martingale, so a(x−y) = ExYn∧τ
Λ{

for all n. Now, Exa(S n∧τ
Λ{
−y)→

Exa(S τ
Λ{
−y) by the Dominated Convergence Theorem, and ExN

(n∧τ
Λ{
−1)

y →

ExN
(τ

Λ{
−1)

y by the Monotone Convergence Theorem.

Exercise 3.34.
The idea is to use Theorem 3.13 with Λ = B(R) \ {0}, and then send R to
infinity. Now, instead of just writing the arguments in a detailed way, let me
show how one proves such statements in practice. Lemma 3.12 implies that
Px[τ0 ≤ τB(R){] is approximately 1 − a(x)

a(R) , so, when R � ‖x‖, Theorem 3.13
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implies that

Exηx ≈ GΛ(x, x) ≈ a(x) ×
(
1 −

a(x)
a(R)

)
+ a(R) ×

a(x)
a(R)

≈ 2a(x).

For the second statement, write

E0ηx =
1
4

∑
y∈{±e1,2}

Eyηx

≈
1
4

∑
y∈{±e1,2}

GΛ(y, x)

≈
1
4

∑
y∈{±e1,2}

(
a(x) ×

(
1 −

1
a(R)

)
+ a(R) ×

1
a(R)

− a(x − y)
)

≈ a(x) + 1 −
1
4

∑
z∼x

a(z)

(since a is harmonic outside the origin)

= 1.

Inserting suitable O’s and formally passing to the limits as R→ ∞ is really
left as an exercise.

Exercise 3.35.
Indeed, conditioning on the location of the first entrance to B, we have

Px[S τA = y] =
∑
z∈B

Px[S τB = z]Pz[S τA = y].

Theorem 3.16 then implies that, as x → ∞, the left-hand side converges
to hmA(y), and the right-hand side converges to∑

z∈B

hmB(z)Pz[S τA = y] = PhmB[S τA = y],

as required.

Exercise 3.36.
Hint for part (iii): when the walker is on the vertical axis, from that moment
on it has equal chances of entering y or z first.
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∂B(R)

0

x0
z

y

Figure 6.12 On hitting a distant site y; note the symmetry of the
grey trajectories and the fact that escaping from y or z to ∂B(R)
(dashed trajectories) happens approximately with the same
probabilities.

Exercise 3.41.
One method that would probably work is to first approximate the SRW with
two-dimensional Brownian Motion (possibly using a KMT-like strong ap-
proximation theorem [44, 55, 104]), and then find a suitable Möbius trans-
form that sends the domain on Figure 3.8 to an annulus formed by concen-
tric circumferences (and then use the conformal invariance of Brownian
trajectories). The author has to confess that he did not do any concrete cal-
culations because he never needed such a result, but, nevertheless, it seems
that this program looks reasonably fine.

Exercise 4.6.
Hint: recall (3.49), the definition of qA.

Exercise 4.10.
This is an easy consequence of the fact that the transition probabilities
from x for the conditioned walk converge to those for the SRW as x→ ∞.

Exercise 4.11.
Let the Ŝ -walk start at x0 (which is close to the origin), and consider a
distant site y. Consider also the straight line such that 0 and y are symmetric
with respect to it (see Figure 6.12). As shown on the picture, it is likely that
the walk first hits that line at some site z with ‖z‖ � ‖y‖; so, it would be
enough to show that Pz[τ̂y < ∞] ≈ 1/2. Then, take R � ‖y‖; Lemma 3.12
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y0

x0

Figure 6.13 Going out of the annulus.

then implies that Py[τ∂B(R) < τ0] ≈ a(‖y‖)
a(R) ≈ Pz[τ∂B(R) < τ0]. On the other

hand, by symmetry, 1
2 = Pz[τy < τ0] ≈ Pz[τy < τ0, τ∂B(R) > τ{0,y}]. This

shows that

Pz[τy < τ∂B(R) < τ0] ≈
1
2
Pz[τ∂B(R) < τ0]

and this is what we need indeed (recall Lemma 4.4).
This explanation is due to Yuval Peres22.

Exercise 4.12.
Hint: look at Figure 6.13. Use the fact that the projection of the SRW on any
fixed direction is a martingale, and then use the optional stopping theorem.

Alternatively: just notice that ‖S n∧τy0
− y0‖ is a submartingale.

Exercise 4.14.
Assume without restricting generality that ‖x‖ ≥ ‖y‖ (recall that ĝ(x, y) =

ĝ(y, x)), and consider the following two cases.

Case 1: ‖y‖ > ‖x‖1/2. In this case a(x) and a(y) are of the same order, and,

22 On a conference, the author asked if anyone had a heuristic explanation of (4.21); Yuval
was able to come up with it rather quickly.
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since ‖x − y‖ ≤ 2‖x‖, due to (3.36), a(x − y) − a(x) is bounded above by a
positive constant; therefore, the expression a(x) + a(y)− a(x− y) will be of
order ln ‖x‖. This implies that ĝ(x, y) will be of order 1

ln ‖x‖ indeed.

Case 2: ‖y‖ ≤ ‖x‖1/2. Here, (3.38) implies that a(x) − a(x − y) = O( ‖x‖
1/2

‖x‖ ) =

O(‖x‖−1/2), so

ĝ(x, y) =
a(y) + O(‖x‖−1/2)

a(x)a(y)
=

1
a(x)

(
1 + O

( 1
‖x‖1/2 ln(1+‖y‖)

))
,

and this again implies (4.86).

Exercise 4.17.
For x < A, with the optional stopping theorem, write

ĝ(x, y0) = Exĝ(Ŝ τ̂A , y0)

= Px[τ̂A < ∞]
∑
z∈A

ĝ(z, y0)Px[Ŝ τ̂A = z | τ̂A < ∞],

then use (4.36), Theorem 4.16, and pass to the limit as x→ ∞.

Exercise 4.19.
Show that the process Yn = Ĝ(Ŝ n, y) + N̂(n−1)

y is a martingale and use the
optional stopping theorem with the stopping time τ̂Λ{ .

Exercise 4.21.

(i) Think about An = B(rne1, n), where rn → ∞ very quickly. Then, typi-
cally, if the conditioned walk ever visits rne1, it will cover the whole An

by “local recurrence” (recall that, when far away from the origin, the
walk Ŝ resembles very much the SRW by Lemma 4.5).

(ii) Think about

An = {r1e1, r2e1, . . . , rne1},

where (rn) is as in the item (i)23, and apply the reasoning similar to that
used in the proof of Theorem 4.11.

Exercise 4.22.
This is open, I think (though should not be very difficult).

23 The author thanks Hubert Lacoin for suggesting this example.
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Exercise 5.1.
Unfortunately, only with what one sees on Figure 5.6, it is not possible to
find it. Think, for instance, that there may be a point just slightly above the
top of the biggest triangle, which (I mean, the point) did not make it into
the picture.

Exercise 5.2.
Due to Proposition 5.3, we can find a coupling Q between the Markov
chain (Xi) and an i.i.d. collection (Yi) (with law π), in such a way that for
any λ > 0 and t ≥ 0,

E
[
{Y1, . . . ,YR} ⊂ {X1, . . . , Xt}

]
≥ Pπ0

[
ξ0π0(x) +

t−1∑
j=1

ξ j p(X j, x) ≥ λπ(x), for all x ∈ Σ
]
, (6.73)

where ξi are i.i.d. Exp(1) random variables, independent of R, a Poisson(λ)-
distributed random variable. Then, obtain from a simple calculation the fact
that P[{Y1, . . . ,YR} ∩ A = ∅] = e−λπ(A).

Exercise 5.3.
If you find one, please, let me know.

Exercise 5.6.
To the second one. See also [52] for a more complete discussion of this.

Exercise 5.10.
Think how one can generate the lines in the order corresponding

• to the distances from the origin to the lines;
• to the distances from the origin points of intersection with the horizontal

axis.

Exercise 5.15.
Answer: 3/2. It is the last problem of the famous Mathematical Trivium [4]
of Vladimir Arnold. Clearly, the problem reduces to finding the expected
area of a projection of a square (note that a.s. only three faces of the cube
contribute to the projection), and then one can calculate the answer doing
a bit of integration. There is another way to solve it, however, that does
not require any computations at all, and works for any three-dimensional
convex set, not only for the cube. One may reason in the following way:
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• imagine the surface of a convex set to be composed of many small pla-
quettes, and use the linearity of expectation to argue that the expected
area of the projection equals the surface area of the set times a constant
(that is, it does not depend on the surface’s shape itself!);

• to obtain this constant, consider a certain special convex set whose pro-
jections are the same in all directions (finding such a set is left as an
exercise).

Exercise 6.1.
With (6.5)–(6.6), it is straightforward to obtain that ε =

G(x−y)
G(0)+G(x−y) ; it is of

order ‖x − y‖−(d−2) as ‖x − y‖ → ∞.

Exercise 6.2.
See the proof of (6.2) and (6.4) in [78].

Exercise 6.8.
Hint: use the fact thatVα+ε has the same law asVα ∩ Ṽε, where Ṽε is an
independent (of the whole family (Vs, s > 0)) copy ofVε.

Exercise 6.12.
See [15].
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adapted process, 3
Bessel process, 77
binomial process, 131
capacity

for SRW in d ≥ 3, 37
for the conditioned SRW, 88
for two-dimensional SRW, 62
of d-dimensional ball, 40
of a disk, 63
of one- and two-point sets, 39, 63
of three-point sets, 70
relationship of two-dimensional

capacities, 88
Chapman–Kolmogorov equation, 5
conductance, 13
cosine reflection law, 135, 139
coupling, 34, 46–49, 104, 120, 121, 124,

125, 131, 151, 152, 179, 199
cover time, 125, 160
decoupling, 11, 27, 69, 140, 151, 152
Doob’s h-transform, 75
drift (with respect to a Lyapunov

function), 21
effective resistance, 14
electrical network, 13
empirical processes, 125
escape probability

for SRW in d ≥ 3, 37
for the conditioned SRW, 85

excursions, 80, 101, 103, 104, 107, 151,
153

filtration, 3
Foster’s criterion, 30
Foster-Lyapunov theorem, 30
Gambler’s Ruin Problem, 73
Green’s function

asymptotic behaviour, 36, 56, 65

exact expression, 65
for SRW in d ≥ 3, 35
for the conditioned SRW, 81, 87, 112
relation to the potential kernel, 55
restricted on a set, 54, 55, 113

Hölder continuity, 128
harmonic function, 33
harmonic measure

as entrance measure from infinity, 43,
58, 60, 97

consistency, 67, 69, 142, 143
for SRW in d ≥ 3, 42
for the conditioned SRW, 92, 97
for two-dimensional SRW, 57, 58, 60

harmonic series, 9, 11, 16, 134
hitting time, 3, 6
irreducibility, 5
Kochen–Stone theorem, 110
Lamperti problem, 32
last-visit decomposition, 38, 86
local time, 123, 125, 127, 129
Lyapunov function, 17, 18, 21
Lyapunov function criterion

for positive recurrence, 30
for recurrence, 17
for transience, 20

magic lemma, 117
Markov chain

aperiodic, 6
criterion for positive recurrence, 30
criterion for recurrence, 17
criterion for reversibility, 12
criterion for transience, 20
discrete-time, 5
invariant measure, 6
irreducible, 5
null recurrent, 6
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period, 6
positive recurrent, 6, 30
recurrent, 6, 7, 17
reversible, 11
time homogeneous, 5
transient, 6, 7, 20, 75
transition probabilities, 5

Markov property, 5
strong, 6

martingale, 3, 34–36, 53, 55, 57, 60, 74,
75, 78, 80, 84, 95, 99, 102, 113,
192–194, 197

convergence theorem
for submartingales, 4
for supermartingales, 4

optional stopping theorem, see
optional stopping theorem

submartingale, 3, 55, 197
supermartingale, 3, 19, 20, 32

mean drift, 32
metric space, 127
natural filtration, 3
optional stopping theorem, 4, 5, 36,

53–56, 60, 74, 76, 80, 83, 95, 99,
101, 188, 192, 193, 197, 198

Pólya’s theorem, 1, 27
Paley–Zygmund inequality, 28
passage time, see hitting time
Poisson point process, 116, 118
polynomial class, 127
potential kernel, 46

asymptotic behaviour, 52
exact expression, 69
relation to the restricted Green’s

function, 55
Radon measure, 117
random billiard, 139, 140
recurrence, 6, 17, 32, 41, 42
Reflection Principle, 49
resampling, 130, 131
resistance, 13
reversibility, 11, 78
soft local time, 121–124, 127, 131, 152
sprinkling, 149, 150
Stirling’s approximation, 10
stochastic process, 3
stopping time, 3
total variation distance, 129
transience, 6, 20, 32, 41, 42, 75
transition kernel, 128

weight (of a trajectory), 43, 44, 77, 93,
97, 103
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