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 

Abstract—We describe two applications of machine 

learning in the context of IP/Optical networks. The 

first one allows agile management of resources at a 

core IP/Optical network by using machine learning for 

short-term and long-term prediction of traffic flows 

and joint global optimization of IP and optical layers 

using colorless/directionless (CD) flexible ROADMs. 

Multilayer coordination allows for significant cost 

savings, flexible new services to meet dynamic 

capacity needs, and improved robustness by being 

able to proactively adapt to new traffic patterns and 

network conditions. The second application is 

important as we migrate our metro networks to Open 

ROADM networks, to allow physical routing without 

the need for detailed knowledge of optical parameters. 

We discuss a proof-of-concept study, where detailed 

performance data for wavelengths on a current 

flexible ROADM network is used for machine learning 

to predict the optical performance of each wavelength. 

Both applications can be efficiently implemented by 

using a SDN (Software Defined Network) controller. 

 
Index Terms — Machine Learning; Traffic Matrix 

Prediction; Multi-Layer Optimization; Routing; Open 

ROADMs; Optical Transport Network; SDN.     

I. INTRODUCTION 

here is great recent interest in applying machine learning 

techniques in the networking context.  See [1] for a recent 

survey. In this paper, we provide two initial applications of 

machine learning to more efficiently manage our IP/Optical 

networks in conjunction with a SDN controller.  

First Application – Predicting Network Traffic 

Matrix: The traffic management of a core IP/Optical 

backbone of a large Internet Service Provider (ISP) has to 

deal with dynamic traffic changes under various network 

conditions including scheduled and unscheduled outages, 

and makes efficient use of network resources while also 
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satisfying the loss and latency requirements of each class of 

traffic type it carries [2, 4]. It also needs to be flexible enough 

to provide new services demanding dynamic capacity [2, 17]. 

The IP layer of the network consists of IP links connected 

among IP devices such as router ports or white-box switch 

ports. The IP links are routed over a path in the optical layer 

using flexible ROADMs (Reconfigurable Optical Add/Drop 

Multiplexers), transponders at endpoints, and optical signal 

regenerators along the path when it is too long. Improving 

efficiency means reducing the totality of IP resources (IP 

ports) and optical resources (ROADMs, transponders and 

regenerators). If there are N traffic endpoints and K Quality 

of Service (QoS) classes, the totality of traffic flows can be 

specified by a traffic matrix of KN(N-1) elements and each 

such element represents the traffic from a specific source to 

a specific destination and belonging to a specific QoS class. 

The elements of the traffic matrix are usually highly 

correlated and their variability over time may be 

characterized by complex, nonlinear oscillations and seasonal 

periodicities at different time scales. We use machine 

learning for accurate short-term and long-term prediction of 

all elements of the traffic matrix and combine that with joint 

global optimization of IP and optical layers [3] using flexible 

Colorless/Directionless (CD) ROADMs [14]. This results in 

significant cost savings, flexible new services to meet 

dynamic capacity needs with better accuracy, and increased 

robustness by being able to proactively adapt to new traffic 

patterns and network conditions. The methodology can be 

efficiently implemented by using a combined Packet and 

Optical layer or Multi-Layer SDN (Software Defined 

Network) controller [4, 13]. 

Second Application – Predicting Optical Path 

Performance in a Multi-Vendor Network: Large ISPs 

typically operate single-vendor Layer 0 ROADM networks for 

optical transport. Before provisioning new wavelengths, the 

ISP should verify that the proposed physical routes meet 

optical performance standards. Usually, this evaluation is 

conducted using closed vendor-proprietary tools which 
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incorporate detailed analysis of the various vendor specific 

optical components. We started, initially in metro areas, an 

Open ROADM network architecture initiative [5-7] where 

the ROADMs and other optical plug-ins will be model-driven 

with open standard interfaces, thus allowing interoperability 

among different vendor equipment. The introduction of Open 

ROADM and the SDN controller technologies will allow ISPs 

to more effectively and uniformly leverage network 

performance data to set up optimal wavelength paths that 

meet optical performance standards. Because Open ROADM 

will integrate equipment from multiple vendors, single-

vendor performance evaluation tools will no longer be 

suitable for evaluating new wavelength paths. Instead, we 

propose a new machine learning model which will use 

network data to predict optical performance of new 

wavelengths in a multi-vendor environment. We describe a 

proof-of-concept study, where we collect detailed information 

for wavelengths on a current flexible ROADM network, and 

then use machine learning to predict the optical performance 

of each wavelength, specifically the bit error rate. The 

machine learning model is able to predict the bit error rate 

with a mean squared error value of less than 1.0. It can be 

incorporated into the Path Compute Engine (PCE) within the 

SDN Controller to verify that all new Open ROADM 

wavelengths meet optical performance standards. The model 

can also monitor the performance of existing wavelengths 

and proactively move and/or groom them to better paths as 

conditions evolve. It should be noted that as Open ROADM 

technology matures, the same methodology can be extended 

to core long-haul ROADM network.  

II. MACHINE LEARNING FOR TRAFFIC MATRIX 

PREDICTION AT A CORE IP/OPTICAL NETWORK 

A. Framework for Closed Loop Optimization using 

Machine Learning 

Figure 1 depicts the framework for self-optimizing an 

IP/Optical network in a closed loop manner where future 

traffic prediction from machine learning, real-time network 

and traffic measurements, and knowledge based feedback on 

traffic changes and failures will collectively drive a joint 

global optimization engine for both the packet and optical 

layers.  A multi-layer SDN controller collects long-term and 

short-term traffic and failure data to facilitate these three 

types of feedback, implements the global optimization 

algorithms, and pushes the required changes to the packet 

and/or optical layers of the network.  The framework 

significantly reduces the network cost, improves robustness 

and facilitates offering new services that require accurate 

short-term traffic projections. Optimization needs to be done 

in at least two different time scales.  In the short time scale 

(seconds, minutes and hours) the available network resources 

are fixed and we have to use them optimally.  In this setting, 

network changes (traffic matrix and network failures) can be 

detected and the network is re-configured (either at the 

packet or at the optical level) in a reactive mode based on 

real-time feedback. Short-term traffic prediction based on 

machine learning allows us to respond to these changes in a 

way that is much more resource-efficient and less disruptive 

to network operators. In the longer term (days, weeks and 

months), we need to do a network design exercise including 

simulation of many potential traffic change and failure 

scenarios to determine just the optimal level of resources to 

ensure that the network, with the agility of SDN control, can 

flexibly cope with all possible traffic change and failure 

scenarios.  Here long-term traffic prediction based on 

machine learning will play a key role. 

 

 
Fig. 1.  Closed Loop Optimization with Machine Learning and other 

Feedbacks. 

 

B. Routing of traffic over Packet/Optical Network 

Figure 2 illustrates an example of an integrated IP/Optical 

network and its interaction with the SDN controller.  Ei 

represents the IP edge routers, Bi represents IP core or 

backbone locations and Oi represents optical nodes 

(ROADMs).  A subset of the optical nodes is collocated with 

an IP core location. We show two core routers, A and B, per 

core location but in general the number can be variable.  All 

unicast traffic originates/terminates at the edge routers and 

each such router is connected to at least two core routers 

(same or different locations) using physically diverse paths.  

In addition, there may also be point-to-multipoint multicast 

traffic and all the endpoints of such traffic are also edge 

routers (it is of course possible for the same router to perform 

both edge and core functions). 

Fig. 2.  Example IP/Optical Network with Backbone (B) and Edge (E) 

locations. 

 

A subset of all possible pairs of IP routers is connected via 

IP links to form an IP network.  An IP link between two 

different core locations needs to be routed over the optical 

network. As an example, the IP router A in location B2 may 

be connected to the IP link B in location B4 over the sequence 

of optical nodes O2-O7-O6-O4. The SDN controller can 

control the edge routers, the core routers and the optical 
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nodes. The SDN controller is logically shown as a single 

centralized entity but it may be functionally separated into 

one controlling the IP network and one controlling the optical 

network.  Furthermore, for the purpose of reliability and 

disaster recovery, it makes sense to have one active SDN 

controller and one or more standby SDN controllers located 

geographically in different places.   

Figure 3 explains various levels of routing in the network. 

The IP links are routed over the ROADM layer and the MPLS 

TE tunnels carrying end-to-end traffic are routed over the IP 

layer. 

Fig. 3.  Various Levels of Routing. 

 

C. Flexibility of Resource Management with CD 

ROADMs and Digital Fiber Cross Connect (DFCC) 

devices 

Figure 4 shows an end-to-end routing of an IP link over the 

optical layer. R1 and R2 represents router ports in two 

different geographical locations. T1 is a ROADM transponder 

port connecting to R1 and T2 is a ROADM transponder port 

connecting to R2 (T1 and R1 are typically collocated and so 

are T2 and R2).  RE1 is a regenerator (needed only if the 

route-miles from T1 to T2 is beyond the optical reach distance 

from T1 to T2).  The connected combination of a router port 

and ROADM transponder in the same location is called a Tail 

and we have two tails in this illustration: Tail1 and Tail2. 

 

 

Fig. 4.  End-to-end Routing of IP Link over Optical Layer. 

 

 Traditionally, if any component along the path of the IP 

link fails (or there is a fiber-cut), the entire IP link fails and 

no non-failed component can be reused.  However, with SDN 

controller managing both the packet and the flexible CD 

ROADM networks [14], the three components, namely Tail1, 

Tail2 and RE1 are disaggregated, interoperable and the non-

failed components can be reused by the controller. 

Furthermore, if a Dynamic Fiber Cross-connect (DFCC) 

device [15] is used in connecting the two components of the 

Tail then it is also disaggregated and one of its components 

can be reused to form a new Tail which in turn can be used 

to create a new IP link.  The real-time SDN controller can 

leverage this resource disaggregation capability to provide 

numerous resource reuse/sharing opportunities to 

proactively overcome traffic fluctuations and network 

failures. 

D. Machine Learning-Based Future Traffic 

Prediction 

If there are N traffic endpoints and K QoS classes then 

there are 𝑇 = 𝐾𝑁(𝑁 − 1) elements in the traffic matrix.  As 

an example, if 𝐾 = 2 and 𝑁 = 50 then 𝑇 = 4900. We assume 

that each element of the traffic matrix is routed over the 

packet network as a TE (Traffic Engineering) tunnel.  In 

general, for routing flexibility, each TE tunnel may be split 

into multiple ones but we ignore it here for simplicity and 

illustration purpose.  Typically, the TE tunnel traffic at a 

large ISP network is characterized by complex, nonlinear 

oscillations and seasonal periodicities at different time 

scales, reflecting customer usage of the network. The traffic 

on the highest activity tunnels contains a strong daily 

oscillation, a less prominent weekly oscillation (reflecting 

different usage patterns on weekends), along with occasional, 

sharp jumps that correspond to the network dynamically 

shifting traffic between tunnels. An example of the total 

traffic and the traffic on a particular TE tunnel is shown in 

generic bandwidth units in Figure 5. Our goal is to develop a 

machine learning based, real-time prediction of the traffic 

load for each of the TE tunnels at future time horizons of 

minutes, hours, days and weeks, although we primarily 

concentrate on hours or higher time scales. 

We denote a given TE tunnel’s traffic by {𝑥0, 𝑥1, … , 𝑥𝑁}. For 

each TE tunnel, the goal is to form a statistical model that 

forecasts the traffic on that TE tunnel for a given forward 

time horizon 𝑎𝑇, such as the next hour or next 24 hours. We 

use a nonlinear autoregressive-like model of the form 𝑥𝑡 =

𝑓(𝑥𝑡−𝑎1
, 𝑥𝑡−𝑎2

, … , 𝑥𝑡−𝑎𝑇
) + 𝑏 + 𝑐𝑡 + 𝜖𝑡, where {𝑎1, … 𝑎𝑇} are pre-

specified time lags, 𝑏 + 𝑐𝑡 is a linear trend and 𝜖𝑡 is Gaussian 

white noise. We estimate the mapping 𝑓 by applying 

Gaussian process regression (GPR), a Bayesian nonlinear 

regression model where the number of parameters estimated 

grows with the amount of data. GPR, also known as Kriging, 

models 𝑓 as a realization of a Gaussian process with a 

covariance kernel function formed from the observed data. 

The posterior estimate 𝐸(𝑥𝑡|𝑓) under the model has an 

explicit formula in terms of the training data, and can be used 

to make out-of-sample predictions. GPR is used extensively 

in different fields and has been found to perform well in 

situations with limited data available, although the standard 

form of the algorithm can become computationally intensive 

as the data size grows. GPR can also be viewed a probabilistic 

formulation of kernel regression and provides Bayesian 

credible intervals (error bars) on any forecasts, which are 

helpful in interpreting the results. In comparison to a 

classical, linear autoregressive (AR) or moving average (MA) 

model, this type of model is better able to capture the 

asymmetry between the rising and falling parts of the daily 

oscillation, as seen in Figure 5. More details of GPR can be 

found in [11]. 

We apply GPR by first de-trending the time series with a 
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linear regression, and then regressing {𝑥𝑡−𝑎1
, 𝑥𝑡−𝑎2

, … , 𝑥𝑡−𝑎𝑇
} 

on 𝑥𝑡 for all 𝑡 such that both 𝑡 and 𝑡 − 𝑎𝑇 lie within the 

training period. In the machine learning literature, GPR is 

typically applied to time series in a different manner than 

this, by regressing 𝑡 on 𝑥𝑡 for all times 𝑡 in the training 

dataset. However, this approach requires more detailed prior 

knowledge of the data to specify a good kernel function (a key 

part of the GPR model), and also lacks a direction of time or 

notion of causality in the model. In practice, we found that it 

performed worse than the lagged approach described above. 

We also applied several other regression models that are 

standard in the machine learning literature, including 

penalized linear models, boosted decision trees and random 

forests (see [9] for details), but GPR was found to have better 

out-of-sample prediction accuracy than these other methods. 

This is likely explained by the fact that our training data size 

is limited but has a relatively high signal-to-noise ratio and 

the mapping 𝑓 is stationary over time, which is well suited 

for GPR. 

In practice, the choice of lags {𝑎1, … 𝑎𝑀}  has a large impact 

on the model’s accuracy. Specifying too few lags fails to 

capture longer term dependencies in the model, while having 

too many lags results in a large parameter space where 𝑓 

cannot be estimated efficiently. It is known that GPR 

generally becomes less accurate for data with a large number 

of features. To choose the lags, we apply a heuristic based on 

the partial autocorrelation 𝜌𝑡 of the data. The partial 

autocorrelation has been widely studied in classical time 

series analysis and is used in the Box-Jenkins methodology 

[8] to find the number of lags in a classical AR model. It is 

defined by 𝜌𝑡 = 𝑐𝑜𝑟𝑟(𝑥0, 𝑥𝑡  |{𝑥1, 𝑥2, … , 𝑥𝑡−1}), and represents 

the amount of extra correlation at time lag 𝑡 after accounting 

for the correlation at all smaller lags. An example of  𝜌𝑡 for 

the tunnel data is shown in Figure 6. We compute 𝜌𝑡 over the 

training period, and choose only those lags where 𝜌𝑡 >

𝑎𝑇
1/6

/15. The intuition behind this choice is that for small 𝑎𝑇 

(say, one hour ahead), the mapping 𝑓 is easy to estimate and 

we can learn a higher dimensional model with more lags, 

while for large 𝑎𝑇 (one week ahead), the mapping 𝑓 is much 

noisier, and we estimate a lower dimensional model to 

compensate for it. 

We use data collected from a large ISP network over 2017, 

with the data up to 11:00 PM, July 31 used for training the 

model, and the data from (12:00 AM, August 1) + (𝑎𝑇 hours) 

onward used for testing the model’s performance, where 𝑎𝑇 is 

the desired forecast horizon. The gap between the training 

and testing periods ensures that there is no overlap in the 

data used to train the model and the data used to test it. This 

is done for each tunnel separately, using its own past history, 

and for a range of different 𝑎𝑇 from 1 hour to 168 hours (one 

week). The choice of lags is determined separately for each 

tunnel and value of 𝑎𝑇. The tunnels with the highest activity 

have quite different characteristics than the ones with lower 

activity, and typically result in a different choice of lags. We 

use the scikit-learn implementation of GPR [10] with a 

squared-exponential kernel in GPR (a standard choice; see 

[11]), with a bandwidth parameter 𝜃 = 0.01 and a noise power 

var(𝜖𝑡) = 0.01.  For a given model, we measured the error 

using the relative median absolute error (MAE) on the test 

period of the data, as well as the relative MAE over only the 

period of peak activity in the network, 1:00 AM to 5:00 AM 

GMT, which is important for capacity planning purposes. The 

MAE is a more appropriate metric than the standard mean-

squared error since it is less sensitive to error contributions 

from short impulses or bad data points. We train the models 

for each TE tunnel from May to July and test them over 

August. The error metrics are 1.61% and 1.12% for the total 

traffic. For individual TE tunnels, they are 2-10% for the high 

activity ones and 5-30% for lower activity ones (where the 

traffic often consists of random impulses that are not 

predictable). An example of the forecasted total traffic for 

several different 𝑎𝑇 is shown in Figure 7, with the different 

models combined to form a forecasted trajectory over four 

days. 

Several extensions and improvements of this forecast 

model are possible. The model can be extended to account for 

the dependencies between multiple tunnels, where the 

current value depends not only on the same TE tunnel’s past 

values but also the past values of all other TE tunnels. Such 

a model would have a very large parameter space and would 

need additional penalization or model selection to work well 

in practice. Another generalization is an online version of this 

model, where the model is retrained and updated on every 

sample. We also train separate models at each forecast 

horizon, but these models are interlinked and it may be more 

efficient to train a joint model that accounts for dependencies 

between them. We did not pursue these extensions in this 

paper, since the model described here already gives a good fit 

and runs quickly enough for our purpose. 

Fig. 5.  The tunnel traffic across the entire network (top) and an 

individual TE tunnel (bottom) using generic bandwidth units. 

Fig. 6.  Partial autocorrelation of total network traffic over three 

months. The shaded region is a 95% confidence interval. 



326838 

 

5 

Fig. 7.  Comparison of the total traffic (blue) and a 4-day forecast 

formed by multiple models (red) trained over the previous three 

months with 𝒂𝑻 ∈ {𝟏, 𝟐, … 𝟗𝟔}. The relative MAE is 1.61% and the 

PMAE is 1.12%. Generic BW units used. 

 

E. Using Machine Learning and other Feedback to 

Optimize at Various Time Scales 

SDN controller implementation brings along real-time 

network data and the capability of data-driven analytics for 

proactive closed-loop network management. Further, 

machine learning techniques can be applied in different time 

scales depending on the network states and scenarios. 

Sub-Second Time Scale:  When an abrupt network 

failure occurs, the SDN controller typically cannot make any 

traffic routing changes fast enough except for relying on a 

Fast Reroute (FRR) mechanism to temporarily bypass a 

failed path to a pre-computed backup path [12] within an 

order of tens of milliseconds of detecting a failure. In a pre-

SDN environment, a back-up tunnel or FRR bypass path is 

typically reserved for every link bundle in the network. 

During static network planning and design phase, it is 

important to select a shortest possible FRR bypass path that 

has enough capacity.  In SDN environment, one can use 

machine learning based timely traffic prediction to 

periodically re-adjust and optimize these FRR bypass paths.  

Seconds-to-minutes Time Scale:  We have 

demonstrated recently [13] that SDN controller can retrieve 

real-time network data, make and execute optimal layer 3 TE 

tunnel changes over fixed IP links in a sub-minute interval. 

Real-time machine learning can make the changes 

proactively and is therefore less disruptive to customers. 

Minutes-to-hours Time Scale:  In addition to being able 

to reroute TE tunnels over fixed IP links, we can also use the 

flexibility of CD ROADMs and Dynamic Fiber Cross Connect 

(DFCC) to create new IP links, delete or reroute an existing 

IP link based on changing network and traffic conditions. 

Machine learning predictions allow us to do this in a 

proactive manner rather than in a reactive manner based on 

real-time feedback. 

Days, weeks and months Time Scale: The introduction 

of a multi-layer SDN controller fundamentally changes the 

network capacity augmentation process from relatively 

disjointed L0 and L3 capacity planning to an integrated 

multi-layer planning; and from a single long-term planning 

horizon to include a much shorter planning timescale. Here 

the main need is to ascertain how much extra resources are 

needed within days in addition to weeks and months of 

ordering interval.  The resources include router ports, 

ROADM transponders and Regenerators.  We need to 

simulate many failure scenarios in an integrated multi-layer 

fashion based on future traffic predictions with a timescale of 

days and weeks. Machine learning plays a critical role here 

by accurately predicting the entire Traffic Matrix in time 

scales of days and weeks. 

Optimization Methodology: For a fixed capacity of IP 

links, the most efficient routing of TE tunnels can usually be 

achieved by multi-commodity flow [16] which requires 

arbitrary splitting of TE tunnels.  Since we have a practical 

constraint on how TE tunnels can be split and different 

latency constraints for different traffic types, an alternative 

method is to use Constrained Shortest Path (CSPF) routing. 

Careful orchestration of the order of tunnel routing can 

achieve almost the same efficiency as multi-commodity flow 

but runs much faster.  We have also developed efficient 

heuristics to optimize over many different failure scenarios 

and joint global optimization of optical and IP layers using 

the flexibility of CD ROADMs and DFCC [3]. 

F. Comparison of traditional design and operation 

of IP/Optical Networks with that based on Machine 

Learning and Joint Multilayer Optimization 

Improved Efficiency:  Table I shows improved efficiency 

and cost reduction with machine learning based traffic 

prediction and joint multilayer optimization at a large ISP 

network.  All numbers shown are generic normalized values 

and are only to be used to compare among the different 

scenarios.   

 

Table I.  Normalized View of Efficiency Gains with Machine 

Learning and Optimization 

Scenario 

# of 100 

GE 

Tails  

# of 100 

GE 

Regens  

Cost 

 

1. No Machine Learning, IP Layer 

Optimization Only, fixed IP to 

Optical mapping 
1,000 100 1,040 

2. Addition of Machine Learning at 

long time-scale 910 90 
946 

(-9%) 

3. Addition of Joint Multilayer 

Optimization with a Fixed IP 

Layer Topology 
810 80 

842 

 (-19%) 

4. Addition of Dynamically 

Changing IP Layer Topology as 

traffic changes 
640 110 

684 

(-34%) 

 

We have two types of resources, Tails and Regens. The cost 

is given in units of 100 GE Tails and for the purpose of 

illustration, it is assumed that the cost of a 100 GE Regen is 

40% that of a 100 GE Tail. We see that if we just do 

Machine Learning (ML) providing more accurate traffic 

prediction over days and weeks of time-frame but no multi-

layer optimization, we have about 9% saving.  Next if we 

combine ML with joint multi-layer optimization where the 

mapping between IP links and optical resources may be 

readjusted but with the same set of IP links (i.e., fixed IP 

layer topology), we get about 19% saving.  Finally if we 

combine ML with full multi-layer global optimization 

(mapping of IP links to optical resources can change and IP 
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links themselves can change as network condition changes), 

we get about 34% saving.  

 

Less disruption to customer traffic with proactive 

Machine Learning Based Approach: We considered a 

tight and highly optimized network design of a large ISP 

network, simulated failures and traffic surges and made the 

following observations: 

• If the same static Fast Reroute (FRR) Backup path is 

used irrespective of traffic changes, one can find some 

traffic losses when a failure happens near the peak 

traffic period as the pre-defined FRR backup path may 

not have sufficient capacity. It was possible to avoid 

these losses by proactively changing the FRR backup 

paths based on traffic changes predicted by machine 

learning. Alternatively, if our goal is to always avoid 

traffic loss then the static FRR paths would be more 

expensive compared to dynamically changing FRR 

paths based on future traffic changes predicted by ML. 

• With ROADM network controller, one can add and/or 

re-arrange a wavelength much faster than traditional 

manual and static methods but it still takes about 2-3 

minutes to complete. Therefore, if one tries to change 

IP layer topology during a peak-traffic period based on 

reactive real-time-based traffic observation, one will 

experience some traffic loss.  Using machine learning 

prediction, this traffic loss could be avoided by making 

the IP layer topology changes about 20 minutes before 

the traffic surge. Again, if we want to avoid traffic loss 

but with static reactive method, we will need more 

resources, thereby increasing cost. 

Ability to offer more efficient Bandwidth 

Calendaring Service: Due to temporal variation and 

asymmetry of traffic matrix, there is usually significant 

amount of spare capacity left in the network that can be used 

for offering a flexible service with temporary capacity need 

such as a bandwidth calendaring service [2, 17]. As this type 

of service may be offered in a matter of hours and days that 

is much shorter than any capacity planning cycle, the 

knowledge of near-term traffic pattern through machine 

learning can significantly improve the feasibility and 

efficiency of offering such service. 

III. USING MACHINE LEARNING TO PREDICT OPEN 

ROADM OPTICAL PATH PERFORMANCE 

A. Problem Description 

Figure 8 shows a typical wavelength connection over a 

ROADM (Reconfigurable Optical Add/Drop Multiplexer) 

network. ROADMs support Layer 1 services, such as private 

lines, and provide transport for higher layer services. Each 

ROADM is connected to one or more other ROADMs with one 

or more pairs of fibers. A Layer 1 wavelength can be set up 

between two transponders. Each transponder is connected to 

a nearby ROADM, and the wavelength is then routed 

through the ROADM network. 

 

Fig. 8.  Portion of a Sample ROADM Network. 

 

Various factors can affect the quality of the optical signal. 

Imperfections in the fiber can add noise, and there will be 

signal distortions as the signal passes through equipment 

such as ROADMs and amplifiers and over distance. Thus, it 

is important to verify that a new wavelength will meet 

performance standards before putting it into service. Because 

Open ROADM networks can include equipment from 

multiple vendors, we cannot use a proprietary single-vendor 

tool to analyze new wavelength paths. Instead, we propose a 

machine learning model to predict optical performance.  

B. Model Features 

In order to construct a machine learning model, we compile 

all available data for every optical wavelength in an existing 

ROADM network. We then distill this data into a set of input 

features for each wavelength, or data sample. These features 

include fiber type, frequency, length of path, margin, 

measured fiber loss, measurement date, number of amplifiers 

in the path, number of pass-through ROADMs, ORL (Optical 

Return Loss), OSNR (Optical Signal to Noise Ratio), PMD 

(Polarization Mode Dispersion), and speed. 

As a measure of service quality, we wish to predict the Pre-

FEC (forward error correction) Bit Error Rate for each 

wavelength in each direction. Since the BER values span 

several orders of magnitude, we use log10(BER) as the 

quantity to be estimated. 

C. Machine Learning Analysis 

We apply a variety of machine learning algorithms and 

compare their performance, but the dataset is smaller than 

typical machine learning application, and the quality and 

quantity of the data turns out to be more of a limiting factor 

than the statistical methods we use. We focus on penalized 

and ensemble regressions, which are well suited for small-

scale data such as this. We do not consider more sophisticated 

models like deep neural networks, as they are likely to overfit 

due to the small sample size and diverse types of features in 

the data. We use scikit-learn [10], a free open-source Python 

library that contains industry-standard implementations of 

these and many other machine learning models. 

The machine learning methods we consider broadly fall 

into three categories: penalized linear regressions, nonlinear 

regressions and ensembles of regression trees. We denote the 

set of features by 𝑋 and the output values (log10(𝐵𝐸𝑅)) by 𝑦. 

In the first category, we consider ridge regression and 

LASSO. These are traditional models that are easy to 

interpret and serve as a baseline for the other methods. They 
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both estimate coefficients 𝛽 in a model of the type 

min
𝛽

‖𝑦 − 𝛽𝑋‖2
2 + 𝑎‖𝛽‖𝑝

𝑝
, with 𝑝 = 2 (ridge) or 𝑝 = 1 (LASSO). 

The latter encourages sparsity in 𝛽, as would be expected if 

most features have no impact on the BER, while the former 

reduces instability in estimating 𝛽 when the features are 

highly correlated. 

Among nonlinear regression models, we look at the 

performance of quadratic LASSO, Gaussian process 

regression and the multilayer perceptron. Quadratic LASSO 

is a simple variant of LASSO using features of the form 𝑥𝑖𝑥𝑗 

for every pair (𝑖, 𝑗), giving a total of 676 features. Gaussian 

progress regression was described in Section D, while the 

multilayer perceptron is a classical, fully-connected neural 

network. 

Among ensemble models, we apply gradient boosted 

regression trees and random forests. A regression tree is a 

piecewise linear regression that iteratively splits the data 

according to an error criterion and fits separate regressions 

to each portion of the split data. Both ensemble methods train 

several different regression trees over different subsets of the 

features, and take an average over all of the trees to obtain a 

final estimate. 

More details of all of these algorithms can be found in [9]. 

D. Model Performance 

For each machine learning model, we consider 50 random 

splits of the data, each with 2/3 of the data used for training 

the model and 1/3 used for testing the model. Various hyper-

parameters of each model (e.g., the penalty factor in ridge 

and LASSO regressions) are optimized by choosing random 

values on each split and taking the best one. To measure the 

performance of an algorithm, we compute the mean squared 

error (MSE) across all points, the MSE for only the points 

with high BERs above some threshold (which we denote 

HMSE), and the MSE across the points with the 10% worst 

errors (denoted WMSE), averaged over all 50 splits of the 

dataset. In practice, we want the model to have good ballpark 

estimates of BER (not necessarily very precise ones) and are 

especially interested in the measurements with higher BERs, 

so the HMSE and WMSE are more important than the MSE. 

Table II shows the performance of the different machine 

learning models according to these error criteria. 

 

Table II.  Performance of Different Machine Learning Models 

Model MSE HMSE WMSE 

Ridge regression 1.06 3.32 5.80 

LASSO regression 1.15 3.63 6.25 

LASSO with quadratic features 0.83 2.30 5.19 

Multilayer perceptron 0.94 2.91 6.12 

Gaussian process regression 0.90 1.87 5.90 

Gradient boosted regression trees 0.81 2.08 5.18 

Random forest regression trees 0.81 1.86 5.14 

 

In general, the ridge and LASSO regressions both perform 

well on MSE, but less so on the other two metrics. The 

quadratic features yield some improvement especially on 

HMSE, and the Gaussian process regression improves the 

results further. The random forest consistently achieves the 

best overall error rates, at the cost of a higher model 

complexity and less interpretability. We also found that 

standardizing each feature before applying the model, a 

common data preprocessing technique, does not improve the 

performance due to the diverse mix of continuous and 

discrete features. For the random forest, the predicted and 

actual BER across one of the training/testing splits is shown 

in Figure 9. 

 
Fig. 9.  Machine Learning Model Performance. 

 

E. Importance of Features 

In a random forest model, the importance of a given feature 

can be measured by randomly permuting values of the 

feature and measuring how much the regression error 

increases. This is used to form a score for each feature known 

as the Gini importance (see [9] for details). We apply this 

methodology here, with the importance scores averaged over 

all 50 models and splits of the data and normalized on a scale 

from 0 to 100, with 100 indicating the most important 

feature. 

Fig. 10.  Illustration of Relative Importance of Machine Learning 

Features. 

 

As seen in Figure 10, the top two features are significantly 

more important than the others, which have little effect on 

the BER. We train the random forest with only the top 10 

features (importance score over 2.00) and obtain MSEs of 

0.86/1.87/5.40, which are not far off from the errors in Section 

3.4. 

Figures 11 and 12 show the BER as a function of the speed, 
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miles and total loss, as well as the speed, OSNR, and slot 

number. These plots demonstrate the complex, nonlinear 

structure of the data and indicate why the random forest is 

able to outperform a simple linear regression model. 

Fig. 11.  Effect of Speed, Miles and Loss on BER. 

 

Fig. 12.  Effect of Speed, OSNR and Slot Number on BER. 

 

F. Application 

The model can be incorporated as a feature of the Path 

Compute Engine (PCE) within the SDN Controller to verify 

that all new Open ROADM wavelengths meet optical 

performance standards. The PCE can generate a proposed 

path for each new wavelength request, and then invoke the 

Machine Learning model to predict the optical performance 

of the proposed path. If the path meets optical performance 

standards, then the wavelength can be deployed into the 

Open ROADM network. Otherwise, the PCE can generate an 

alternative path and try again. Periodically, the SDN 

Controller can use the latest network data to retrain the 

Machine Learning model and then update the model 

parameters. 

G. Observations 

The proof of concept study demonstrates that it is possible 

to create a machine learning model to predict the optical 

performance of ROADM wavelengths, specifically pre-FEC 

bit error rate, with reasonably good accuracy without 

knowing many of the details of the optical line or fiber. In 

particular, the model is able to do this with fewer features 

and far less data than typical machine learning applications.  

The next step will be to extend the machine learning model 

to predict optical performance of wavelengths in the new 

Open ROADM network. This model can be implemented as a 

microservice as part of the Path Compute Engine within the 

SDN Controller. The Open ROADM version of the model may 

have slightly different features due to differences in the new 

network, but the general approach should be similar. While 

the data supporting this study comes from a single vendor 

network, other vendor equipment should provide similar data 

with similar interpretation and thus the methodology can be 

applied in a multi-vendor environment. In addition, as Open 

ROADMs are model-driven, performance data from other 

optical plug-ins can be included, if needed, to further enhance 

the model and predictability. 

In addition to planning paths for new wavelengths, the 

SDN Controller can also use the Machine Learning model to 

monitor the optical performance of existing wavelengths and 

move them to better paths as conditions evolve.  

IV. SUMMARY 

We have described two applications of machine learning 

for managing IP and Optical networks. The first application 

allows significant cost saving by combining machine-

learning-based long-term traffic prediction with global 

optimization of IP/Optical layers using CD ROADMs and 

DFCC devices. It also uses machine-learning-based short-

term traffic prediction to allow proactive network changes to 

reduce customer traffic disruptions and opens an opportunity 

to offer flexible services based on dynamic capacity needs. 

The second application enables the selection of improved 

metro ROADM paths based on the latest optical performance 

data. Both applications can be efficiently implemented using 

an SDN controller.  

These methodologies can be extended to different network 

settings depending on technology evolution, network data 

availability, and maturity of machine learning.  

ACKNOWLEDGMENT 

The authors would like to thank their colleagues, Martin 

Birk and Kathy Tse, for providing their expert knowledge in 

Open ROADM and Optical Transport Network as well as 

suggesting the optical path performance use case. They 

would also like to thank Kathy Meier-Hellstern for carefully 

reviewing the paper and providing many valuable comments. 

REFERENCES 

[1] Z. Fadlullah et al., “State-of-the-Art Deep Learning: Evolving 

Machine Intelligence Toward Tomorrow’s Intelligent Network 

Traffic Control Systems,” IEEE Commun. Surveys & Tutorials, 

2017. 

[2] J. Donovan and K. Prabhu, “Building the Network of the 

Future”, CRC Press, First Edition, ISBN 1138631523, 

September 2017. 

[3] G. Choudhury, M. Birk, B. Cortez, A. Goddard, N. Padi, K. 

Meier-Hellstern, J. Paggi, A. Raghuram, K. Tse, S. Tse and A. 

M
ile

s

Log_BER

To
ta

l L
o

ss

Log_BER

O
SN

R

Sl
o

t



326838 

 

9 

Wallace, “Software Defined Networks to greatly improve the 

efficiency and flexibility of Packet IP and Optical Networks”, 

ICNC 2017, January 26-29, 2017, Silicon Valley, CA, USA. 

[4] M. Birk, G. Choudhury, B. Cortez, A. Goddard, N. Padi, A. 

Raghuram, K. Tse, S. Tse, A. Wallace and K. Xi, “Evolving to an 

SDN-Enabled ISP Backbone: Key Technologies and 

Applications", in IEEE Communications Journal, October 2016.  

[5] Open ROADM MSA, http://openroadm.org 

[6] TransportPCE,https://wiki.opendaylight.org/view/TransportPC

E:Main 

[7] M. Birk, “AT&T’s Direction Towards a Whitebox ROADM”, 

Open Network Summit 2015, Session: SDN for Service Provider 

Networks: Transport SDN, June 17th 2015, Santa Clara, CA. 

[8] J. D. Hamilton, “Time Series Analysis”, Princeton University 

Press, Princeton, NJ, 1994 

[9] T. Hastie, R. Tibshirani, J. Friedman, “The Elements of 

Statistical Learning: Data Mining, Inference, and Prediction, 

Second Edition”, Springer, New York, NY, 2009 

[10] F. Pedregosa et al., "Scikit-learn: Machine Learning in Python,” 

The Journal of Machine Learning Research, 12:2825−2830, 

2011 

[11] C. E. Rasmussen, C. K. I. Williams, “Gaussian Processes for 

Machine Learning,” MIT Press, Cambridge, MA, 2005 

[12] P. Pan et al., “Fast Reroute Extensions to RSVP-TE for LSP 

Tunnels,” IETF RFC 4090, May, 2005. 

[13] S. Tse and G. Choudhury, “Real-Time Traffic Management in 

AT&T’s SDN-Enabled Core IP/Optical Network,” Invited 

presentation at OFC 2018, March 11-15, San Diego, CA, USA. 

[14] Y. Li et al., “Impact of ROADM colorless, directionless, and 

contentionless (CDC) features on optical network performance,” 

Invited paper, IEEE/OSA Journal of Optical Communications 

and Networking (Volume: 4, Issue: 11, Nov. 2012). 

[15] G. Zervas et al., “Multi-Granular Optical Cross-Connect: 

Design, Analysis and Demonstration,” IEEE Journal on 

Selected Areas in Communications, vol. 27, no. 3, April 2009. 

[16] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Introduction 

to Algorithms (3rd ed.)”. MIT Press and McGraw–Hill, 2009. 

[17] L. Gkatzikis et al. “Bandwidth calendaring: Dynamic services 

scheduling over Software Defined Networks,” IEEE ICC 2016. 

BIOGRAPHIES 

 

Gagan Choudhury (gchoudhury@att.com) is a lead inventive 

scientist at AT&T Labs, Middletown, New Jersey. He received a 

Ph.D. in electrical engineering from the State University of New 

York at Stony Brook in 1982. His research interests are in the 

optimization, analysis, and design of software defined networks and 

mobility networks. He is an IEEE Fellow (2009) and became an 

AT&T Fellow in 2009 for “outstanding contributions to performance 

analysis and robust design and their application to improving the 

performance, reliability and scalability of AT&T’s networks.” 

 

David Lynch (dflynch@att.com) is a lead inventive scientist at 

AT&T Labs, Middletown, New Jersey. He received an A.B. in 

mathematics and computer science from Susquehanna University 

and an M.S. and Ph.D. in operations research from Cornell 

University. Since joining AT&T in 1984, he has worked on a variety 

of network optimization applications, including private and public, 

voice and data, WAN and metro, and Layers 1 through 3. His 

research interests include development and implementation of 

telecommunications network optimization algorithms. 

 

Gaurav Thakur (gt6510@att.com) is a principal inventive scientist 

at AT&T Labs, Middletown, New Jersey. He received a B.S. in 

mathematics from the University of Maryland in 2007 and a Ph.D. 

in applied mathematics from Princeton University in 2011. His 

research interests are in statistical signal processing, machine 

learning and harmonic analysis, as well as applications of these 

techniques to other fields. 

 

Simon Tse (stse@att.com) is a director of inventive science at AT&T 

Labs, Middletown, New Jersey. He received a B.S. in engineering 

from Brown University, an M.S. and a Ph.D. from Harvard 

University in applied sciences, and an M.B.A. from the Wharton 

School of the University of Pennsylvania. He began his career in 1985 

with AT&T Bell Laboratories. He currently manages a group of 

technical professionals in network topology designs, network traffic 

management, and software defined network controllers for multi-

layer network resource and routing optimization. 


