Generating Equivalent Numerical Expressions

ESSENTIAL QUESTION

How can you generate equivalent numerical expressions and use them to solve real-world problems?

LESSON 10.1
Exponents
4 Tifk 6.7.A

LESSON 10.2
Prime Factorization
4 HEKS 6.7.A

LESSON 10.3
Order of Operations
${ }^{4}$ HEKS 6.7.A

G(0)
 digital

my.hrw.com

my.hrw.com
Go digital with your write-in student edition, accessible on any device.

Math On the Spot
Scan with your smart phone to jump directly to the online edition, video tutor, and more.

Animated Math
Interactively explore key concepts to see how math works.

Personal Math Trainer
Get immediate feedback and help as you work through practice sets.

Are

Complete these exercises to review skills you will need for this chapter.

Whole Number Operations

EXAMPLE $\quad 270 \times 83$

$$
\begin{array}{rll}
270 & \\
\times 83 \\
810 & \leftarrow 3 \times 270 \\
+21,600 & \leftarrow 80 \times 270 \\
\hline 22,410 & \leftarrow(3 \times 270)+(80 \times 270)
\end{array}
$$

Find the product.

1. 992×16
2. 578×27
3. 839×65
4. 367×23

Use Repeated Multiplication

EXAMPLE

$\underline{5 \times 5} \times 5 \times 5$	Multiply the first two factors.
,	
25×5	Multiply the result by the next factor.
$\begin{gathered} \downarrow \\ 125 \end{gathered}$	Multiply that result by the next factor.
$\begin{gathered} \downarrow \\ 625 \end{gathered}$	Continue until there are no more factors to multiply.

Find the product.

5. $7 \times 7 \times 7$
6. $3 \times 3 \times 3 \times 3$
7. $6 \times 6 \times 6 \times 6 \times 6$
8. $2 \times 2 \times 2 \times 2 \times 2 \times 2$

Division Facts
EXAMPLE $\quad 54 \div 9=\square \quad$ Think: 9 times what number equals 54 ?

$$
54 \div 9=6 \quad \text { So, } 54 \div 9=6
$$

Divide.

9. $20 \div 4$
10. $21 \div 7$
11. $42 \div 7$
12. $56 \div 8$

Reading Start-Up

Visualize Vocabulary

Use the \checkmark words to complete the graphic. You may put more than one word in each box.

Reviewing Factorization

Understand Vocabulary

Complete the sentences using the preview words.

1. A number that is formed by repeated multiplication by the same factor is a \qquad .
2. A rule for simplifying expressions is \qquad .
3. The \qquad is a number that is multiplied. The number that indicates how many times this number is used as a factor is the \qquad .

Active Reading

Three-Panel Flip Chart Before beginning the module, create a three-panel flip chart to help you organize what you learn. Label each flap with one of the lesson titles from this module. As you study each lesson, write important ideas like vocabulary, properties, and formulas under the appropriate flap.

Understanding the TEKS and the vocabulary terms in the TEKS will help you know exactly what you are expected to learn in this module.

teks 6.7.A

Generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization.

Key Vocabulary

exponent (exponente)
The number that indicates how many times the base is used as a factor.
order of operations (orden de las operaciones) A rule for evaluating expressions: first perform the operations in parentheses, then compute powers and roots, then perform all multiplication and division from left to right, and then perform all addition and subtraction from left to right.

What It Means to You

You will simplify numerical expressions using the order of operations.

UNPACKING EXAMPLE 6.7.A

Ellen is playing a video game in which she captures frogs. There were 3 frogs onscreen, but the number of frogs doubled every minute when she went to get a snack. She returned after 4 minutes and captured 7 frogs. Write an expression for the number of frogs remaining. Simplify the expression.
$3 \times 2 \quad$ number of frogs after 1 minute
$3 \times 2 \times 2 \quad$ number of frogs after 2 minutes
$3 \times 2 \times 2 \times 2 \quad$ number of frogs after 3 minutes
$3 \times 2 \times 2 \times 2 \times 2 \quad$ number of frogs after 4 minutes
Since 3 and 2 are prime numbers, $3 \times 2 \times 2 \times 2 \times 2$ is the prime factorization of the number of frogs remaining.
$3 \times 2 \times 2 \times 2 \times 2$ can be written with exponents as 3×2^{4}.
The expression $3 \times 2^{4}-7$ is the number of frogs remaining after Ellen captured the 7 frogs.

Use the order of operations to simplify $3 \times 2^{4}-7$.
$3 \times 2^{4}-7=3 \times 16-7$
$=48-7$
$=41$
41 frogs remain.

LESSON
 10.1 Exponents

EXPLORE ACTIVITY
 world
 TEES 6.7.A
 Identifying Repeated Multiplication

A real-world problem may involve repeatedly multiplying a factor by itself.
A scientist observed the hourly growth of bacteria and recorded his observations in a table.

Time (h)	Total bacteria
0	1
1	2
2	$2 \times 2=$
3	After 2 hours, there are $2 \cdot 2=$? bacteria.
4	$2 \times 2 \times 2=$

A Complete the table. What patterns) do you see in the Total bacteria column?
\qquad

B Complete each statement.
At 2 hours, the total is equal to the product of two 2 s .
At 3 hours, the total is equal to the product of \qquad 2s.

At 4 hours, the total is equal to the product of \qquad 2 s.

Reflect

1. Communicate Mathematical Ideas How is the time, in hours, related to the number of times 2 is used as a factor?

Using Exponents

A number that is formed by repeated multiplication by the same factor is called a power. You can use an exponent and a base to write a power. For example, 7^{3} means the product of three 7 s :

The base is the number that is multiplied.

The exponent tells how many times the base appears in the expression.

Power	How to read the power
6^{2}	6 squared, 6 to the power of 2,6 raised to the $2^{\text {nd }}$ power
7^{3}	7 cubed, 7 to the power of 3,7 raised to the $3^{\text {rd }}$ power
9^{4}	9 to the power of 4, 9 raised to $4^{\text {th }}$ power

EXAMPLE 1

Use an exponent to write each expression.
(A) $3 \times 3 \times 3 \times 3 \times 3$

Math Talk
Mathematical Processes
What is the value of a number raised to the power of 1?

Personal Math Trainer and Intervention

Find the base, or the number being multiplied. The base is 3 .
Find the exponent by counting the number of 3 s being multiplied.
The exponent is 5 .
$\underbrace{3 \times 3 \times 3 \times 3 \times 3}_{5 \text { factors of } 3}=3^{5}$
(B) $\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}$

Find the base, or the number being multiplied. The base is $\frac{4}{5}$.
Find the exponent by counting the number of times $\frac{4}{5}$ appears in the expression. The exponent is 4.
$\underbrace{\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}}=\left(\frac{4}{5}\right)^{4}$
4 factors of $\frac{4}{5}$

YOUR TURN
Use exponents to write each expression.
2. $4 \times 4 \times 4$ \qquad 3. 6
\qquad
4. $\frac{1}{8} \times \frac{1}{8}$ \qquad 5. $5 \times 5 \times 5 \times 5 \times 5 \times 5$ \qquad

Finding the Value of a Power

To find the value of a power, remember that the exponent indicates how many times to use the base as a factor.

Property of Zero as an Exponent

The value of any nonzero number raised to the power of 0 is 1 .
Example: $5^{0}=1$

EXAMPLE 2
 \rightarrow TEKS 6.7.A

My Notes

Find the value of each power.

A $(-10)^{4}$
Identify the base and the exponent.
The base is -10 , and the exponent is 4 .
Evaluate: $(-10)^{4}=-10 \times(-10) \times(-10) \times(-10)=10,000$
(B) 0.4^{3}

Identify the base and the exponent.
The base is 0.4 , and the exponent is 3 .
Evaluate: $0.4^{3}=0.4 \times 0.4 \times 0.4=0.064$
C $\left(\frac{3}{5}\right)^{0}$
Identify the base and the exponent.
The base is $\frac{3}{5}$, and the exponent is 0 .
Evaluate.
$\left(\frac{3}{5}\right)^{0}=1$
Any number raised to the power of O is 1.
Is the value of 2^{3} the same as the value of 3^{2} ?

Explain.
D -11^{2}
Identify the base and the exponent.
The base is 11 , and the exponent is 2 .
Evaluate.
$-11^{2}=-(11 \times 11)=-121$

The opposite of a positive number squared is a negative number.

YOUR TURN
Find the value of each power.
6. 3^{4} \qquad 7. $(-1)^{9}$ \qquad 8. $\left(\frac{2}{5}\right)^{3}$
9. -12^{2} \qquad

Persona Math Trainer Online Assessment and Intervention

Guided Practice

1. Complete the table. (Explore Activity)

Exponential form	Product	Simplified product
5^{1}	5	5
5^{2}	5×5	
5^{3}		125
	$5 \times 5 \times 5 \times 5$	
5^{5}		

Use an exponent to write each expression. (Example 1)
2. $6 \times 6 \times 6$ \qquad
__factors of 6
3. $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$
4. $\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$ \qquad 5. $\frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9}$

Find the value of each power. (Example 2)
6. 8^{3} \qquad 7. 7^{4}
8. 10^{3} \qquad
9. $\left(\frac{1}{4}\right)^{2}$ \qquad 10. $\left(\frac{1}{3}\right)^{3}$
11. $\left(\frac{6}{7}\right)^{2}$
12. 0.8^{2} \qquad 13. 0.5^{3} \qquad 14. 1.1^{2}
15. 8^{0} \qquad 16. 12^{1}
17. $\left(\frac{1}{2}\right)^{0}$
18. $(-2)^{3}$ \qquad 19. $\left(-\frac{2}{5}\right)^{2}$
20. -9^{2}

ESSENTIAL QUESTION CHECK-IN

21. How do you use an exponent to represent a number such as 16 ?
\qquad
\qquad
\qquad
\qquad

10.1 Independent Practice

Write the missing exponent.
22. $100=10$

26. $\frac{1}{169}=\left(\frac{1}{13}\right) \square$

Write the missing base.
30. $1,000=\square^{3}$
34. $\frac{1}{9}=(\square)^{2}$

23. $8=2$

27. $14=14$
24. $25=5$

28. $32=2$

25. $27=3$

29. $\frac{64}{81}=\left(\frac{8}{9}\right) \square$
38. Hadley's softball team has a phone tree in case a game is canceled. The coach calls 3 players. Then each of those players calls 3 players, and so on. How many players will be notified during the third round of calls?
39. Tim is reading a book. On Monday he reads 3 pages. On each day after that, he reads triple the number of pages as the previous day. How many pages does he read on Thursday?
\qquad
40. Which power can you write to represent the area of the square shown? Write the power as an expression with a base and an exponent, and then find the area of the square.
41. Antonia is saving for a video game. On the first day, she saves two dollars in her piggy bank. Each day after that, she doubles the number of dollars she saved on the previous day. How many dollars does she save on the sixth day?
42. A certain colony of bacteria triples in length every 10 minutes. Its length is now 1 millimeter. How long will it be in 40 minutes?
43. Write a power represented with a positive base and a positive exponent whose value is less than the base.
\qquad
44. Which power can you write to represent the volume of the cube shown? Write the power as an expression with a base and an exponent, and then find the volume of the cube.

FOCUS ON HIGHER ORDER THINKING
45. Communicate Mathematical Ideas What is the value of 1 raised to the power of any exponent? What is the value of 0 raised to the power of any nonzero exponent? Explain.
\qquad
\qquad
\qquad
\qquad
46. Look for a Pattern Find the values of the powers in the following pattern: $10^{1}, 10^{2}, 10^{3}, 10^{4} \ldots$. Describe the pattern, and use it to evaluate 10^{6} without using multiplication.
\qquad
\qquad
\qquad
\qquad
47. Critical Thinking Some numbers can be written as powers of different bases. For example, $81=9^{2}$ and $81=3^{4}$. Write the number 64 using three different bases.
48. Justify Reasoning Oman said that it is impossible to raise a number to the power of 2 and get a negative value. Do you agree with Oman? Why or why not?
\qquad
\qquad

LESSON
 10.2 Prime Factorization

 equations, and relationships6.7.A Generate equivalent numerical expressions using prime factorization.
Finding Factors of a Number

Whole numbers that are multiplied to find a product are called factors of that product. A number is divisible by its factors. For example, 4 and 2 are factors of 8 because $4 \cdot 2=8$, and 8 is divisible by 4 and by 2 .

Ana wants to build a rectangular garden with an area of 24 square feet. What are the possible whole number lengths and widths of the garden?

EXAMPLE 1

STEP 1 Recall that area = length \cdot width. For Ana's garden, $24 \mathrm{ft}^{2}=$ length \cdot width.

STEP 2 List the factors of 24 in pairs. List each pair only once.

$$
\begin{aligned}
24 & =1 \cdot 24 \\
24 & =2 \cdot 12 \\
24 & =3 \cdot 8 \\
24 & =4 \cdot 6
\end{aligned}
$$

You can also use a diagram to show the factor pairs.

The factors of 24 are $1,2,3,4,6,8,12,24$.
STEP 3 The possible lengths and widths are:

Length (ft)	24	12	8	6
Width (ft)	1	2	3	4

EXPLORE ACTIVITY 1

Finding the Prime Factorization of a Number

The prime factorization of a number is the number written as the product of its prime factors. For example, the prime factors of 12 are 3,2 , and 2.

The prime factorization of 12 is $2 \cdot 3 \cdot 2$ or $2^{2} \cdot 3$. \qquad Use exponents to show repeated factors.

Use a factor tree to find the prime factorization of 240.

A List the factor pairs of 240 .

B Choose any factor pair to begin the tree. If a number in this pair is prime, circle it. If a number in the pair can be written as a product of two factors, draw additional branches and write the factors.

C Continue adding branches until the factors at the ends of the branches are prime numbers.

D Write the prime factorization of 240 .

Then write the prime factorization using exponents.

Reflect

5. What If? What will the factor tree for 240 look like if you start the tree with a different factor pair? Check your prediction by creating another factor tree for 240 that starts with a different factor pair.
\qquad
\qquad
\qquad

EXPLORE ACTIVITY 2

Using a Ladder Diagram

A ladder diagram is another way to find the prime factorization of a number.

Use a ladder diagram to find the prime factorization of 132.

A Write 132 in the top "step" of the ladder. Choose a prime factor of 132 to write next to the step with 132 . Choose 2. Divide 132 by 2 and write the quotient 66 in the next step of the ladder.

B Now choose a prime factor of 66 . Write the prime factor next to the step with 66. Divide 66 by that prime factor and write the quotient in
 the next step of the ladder.

C Keep choosing prime factors, dividing, and adding to the ladder until you get a quotient of 1 .

D What are the prime factors of 132? How can you tell from the ladder diagram?
\qquad

E Write the prime factorization of 132 using exponents.
\qquad

Reflect

6. Complete a factor tree and a ladder diagram to find the prime factorization of 54.

7. Communicate Mathematical Ideas If one person uses a ladder diagram and another uses a factor tree to write a prime factorization, will they get the same result? Explain.

Guided Practice

Use a diagram to list the factor pairs of each number. (Example 1)

1. 18
2. 52
3. Karl needs to build a stage that has an area of 72 square feet. The length of the stage should be longer than the width. What are the possible whole number measurements for the length and width of the stage? (Example 1)

Complete the table with possible measurements of the stage.

Length (ft)	72					
Width (ft)		2				

Use a factor tree to find the prime factorization of each number.
(Explore Activity 1)
4. 402
402
5. 36
201 .

Use a ladder diagram to find the prime factorization of each number.
(Explore Activity 2)
6. 32
7. 27

ESSENTIAL QUESTION CHECK-IN

8. Tell how you know when you have found the prime factorization of a number.
\qquad
\qquad

10.2 Independent Practice

tikns 6.7.A

9. Multiple Representations Use the grid to draw three different rectangles so that each has an area of 12 square units and they all have different widths. What are the dimensions of the rectangles?
\qquad
\qquad
10. Brandon has 32 stamps. He wants to display the stamps in rows, with the
 same number of stamps in each row. How many different ways can he display the stamps? Explain.
\qquad
\qquad
\qquad
11. Communicate Mathematical Ideas How is finding the factors of a number different from finding the prime factorization of a number?
\qquad
\qquad
\qquad
\qquad

Find the prime factorization of each number.
12. 891 \qquad 13. 504 \qquad
14. 23 \qquad
16. The number 2 is chosen to begin a ladder diagram to find the prime factorization of 66 . What other numbers could have been used to start the ladder diagram for 66? How does starting with a different number change the diagram?
\qquad
\qquad
\qquad
17. Critical Thinking List five numbers that have 3,5 , and 7 as prime factors.
18. In a game, you draw a card with three consecutive numbers on it. You can choose one of the numbers and find the sum of its prime factors. Then
19. Explain the Error When asked to write the prime factorization of the number 27, a student wrote $9 \cdot 3$. Explain the error and write the correct answer.

Mo 9.5
 FOCUS ON HIGHER ORDER THINKING

20. Communicate Mathematical Ideas Explain why it is possible to draw more than two different rectangles with an area of 36 square units, but it is not possible to draw more than two different rectangles with an area of 15 square units. The sides of the rectangles are whole numbers.
\qquad
\qquad
\qquad
21. Critique Reasoning Alice wants to find all the prime factors of the number you get when you multiply $17 \cdot 11 \cdot 13 \cdot 7$. She thinks she has to use a calculator to perform all the multiplications and then find the prime factorization of the resulting number. Do you agree? Why or why not?
\qquad
\qquad
22. Look for a Pattern Ryan wrote the prime factorizations shown below. If he continues this pattern, what prime factorization will he show for the number one million? What prime factorization will he show for one billion?
$10=5 \cdot 2$
$100=5^{2} \cdot 2^{2}$
$1,000=5^{3} \cdot 2^{3}$

10.3 Order of Operations

EXPLORE ACTIVITY world theks 6.7.A

Exploring the Order of Operations

Order of Operations

1. Perform operations in parentheses.
2. Find the value of numbers with exponents.
3. Multiply or divide from left to right.
4. Add or subtract from left to right.

Amy and three friends launch a new website. Each friend emails the web address to three new friends. These new friends forward the web address to three more friends. If no one receives the e-mail more than once, how many people will receive the web address in the second wave of e-mails?

A
Use a diagram to model the situation for Amy. Each dot represents one e-mail. Complete the diagram to show the second wave.

B Complete the table to show how many e-mails are sent in each wave of Amy's diagram.

C Amy is just one of four friends initiating the first wave of e-mails. Write an expression for the total number of e-mails sent in the 2nd wave.

Wave	Number of emails	Power of 3
$1^{\text {st }}$		
$2^{\text {nd }}$		

number of people \times number of emails in 2 nd wave written as a power

D Identify the computation that should be done first to simplify the expression in \mathbf{C}. Then simplify the expression.

Multiply 4 and 3/Find the value of 3^{2}
The value of the expression is $4 \times$ \qquad $=$ \qquad .

Reflect

1. In \mathbf{C}, why does it makes sense to write the values as powers? What is the pattern for the number of e-mails in each wave for Amy?
\qquad
\qquad
\qquad
\qquad

() my.hrw.com

My Notes

Personal Math Trainer and Intervention

Simplifying Numerical Expressions

A numerical expression is an expression involving numbers and operations. You can use the order of operations to simplify numerical expressions.

EXAMPLE 1

Simplify each expression.

(A) $5+18 \div 3^{2}$

$$
\begin{aligned}
5+18 \div 3^{2} & =5+18 \div 9 & & \text { Evaluate } 3^{2} . \\
& =5+2 & & \text { Divide. } \\
& =7 & & \text { Add. }
\end{aligned}
$$

(B) $4 \times(9 \div 3)^{2}$

$$
4 \times(9 \div 3)^{2}=4 \times 3^{2} \quad \text { Perform operations inside parentheses. }
$$

$$
=4 \times 9 \quad \text { Evaluate } 3^{2}
$$

$$
=36 \quad \text { Multiply }
$$

C $8+\frac{(12-8)^{2}}{2}$

$$
\begin{aligned}
8+\frac{(12-8)^{2}}{2} & =8+\frac{4^{2}}{2} & & \text { Perform operations inside parentheses. } \\
& =8+\frac{16}{2} & & \text { Evaluate } 4^{2} . \\
& =8+8 & & \text { Divide. } \\
& =16 & & \text { Add. }
\end{aligned}
$$

Using the Order of Operations with Integers

You can use the order of operations to simplify expressions involving integers.

EXAMPLE 2

Simplify each expression using the order of operations.
(A) $-4(3-9)+(-2)^{2}$

$$
\begin{aligned}
-4(3-9)+(-2)^{2} & =-4(-6)+(-2)^{2} \\
& =-4(-6)+4 \\
& =24+4 \\
& =28
\end{aligned}
$$

Perform operations inside parentheses.

$$
=-4(-6)+4 \quad \text { Evaluate }(-2)^{2}
$$

$$
=24+4 \quad \text { Multiply }
$$

Add.
B $-21+\frac{(-3)^{2}}{3}$

$$
\begin{array}{rlrl}
-21+\frac{(-3)^{2}}{3} & =-21+\frac{9}{3} & & \text { Evaluate }(-3)^{2} \\
& =-21+3 \\
& =-18 & & \text { Divide. } \\
& & \text { Add. }
\end{array}
$$

C $6 \times(-2)^{3} \div 3+1$
$6 \times(-2)^{3} \div 3+1=6 \times(-8) \div 3+1 \quad$ Evaluate $(-2)^{3}$.
$=-48 \div 3+1 \quad$ Multiply.
$=-16+1 \quad$ Divide.
Add.

$$
=-15
$$

YOUR TURN

Simplify each expression using the order of operations.
4. $-7 \times(-4) \div 14-2^{2}$
5. $-5(-3+1)^{3}-3$

Guided Practice

1. In a video game, a guppy that escapes a net turns into three goldfish. Each goldfish can turn into two betta fish. Each betta fish can turn into two angelfish. Complete the diagram and write the number of fish at each stage. Write and evaluate an expression for the number of angelfish that can be formed from one guppy. (Explore Activity)

Complete to simplify each expression. (Examples 1 and 2)
2. $4+(10-7)^{2} \div 3=4+(\square)^{2} \div 3$
$=4+\ldots \div 3$
$=4+$
\qquad
3. $36 \div 2^{2}-4 \times 2=36 \div$ \qquad -4×2

$$
=ـ \quad-4 \times 2
$$

\qquad
$=$ \qquad
4. $2+\left(-24 \div 2^{3}\right)-9=2+(-24 \div$ \qquad)-9
5. $-4^{2} \times(-3 \times 2+8)=-4^{2} \times(\ldots+8)$ $=-4^{2} \times$ \qquad
$=$ \qquad \times \qquad
\qquad
$=$

ESSENTIAL QUESTION CHECK-IN
6. How do you use the order of operations to simplify expressions with exponents?
\qquad
\qquad

10.3 Independent Practice

TEKS 6.7.A

Simplify each expression using the order of operations.

7. $5 \times 2+3^{2}$ \qquad
8. $(11-8)^{2}-2 \times 6$ \qquad
9. $12+\frac{9^{2}}{3}$ \qquad
10. $15-7 \times 2+2^{3}$ \qquad
11. Explain the Error Jay simplified the expression $-3 \times(3+12 \div 3)-4$. For his first step, he added $3+12$ to get 15 . What was Jay's error? Find the correct answer.
\qquad
\qquad
12. Multistep A clothing store has the sign shown in the shop window. Pani sees the sign and wants to buy 3 shirts and 2 pairs of jeans. The cost of each shirt before the discount is $\$ 12$, and the cost of each pair of jeans is $\$ 19$ before the discount.
a. Write and simplify an expression to find the amount Pani pays if a $\$ 3$ discount is applied to her total.
\qquad
b. Pani says she should get a $\$ 3$ discount on the price of each shirt and a $\$ 3$ discount on the price of each pair of jeans. Write and simplify an expression to find the amount she would pay if this is true.
c. Analyze Relationships Why are the amounts Pani pays in \mathbf{a} and \mathbf{b} different?
\qquad
\qquad
d. If you were the shop owner, how would you change the sign? Explain.
\qquad
\qquad
\qquad
\qquad
13. Ellen is playing a video game in which she captures butterflies. There are 3 butterflies onscreen, but the number of butterflies doubles every minute. After 4 minutes, she was able to capture 7 of the butterflies.
a. Look for a Pattern Write an expression for the number of butterflies after 4 minutes. Use a power of 2 in your answer.
b. Write an expression for the number of butterflies remaining after Ellen captured the 7 butterflies. Simplify the expression.

\qquad
\qquad
14. Show how to write, evaluate and simplify an expression to represent and solve this problem: Jeff and his friend each text four classmates about a concert. Each classmate then texts four students from another school about the concert. If no one receives the message more than once, how many students from the other school receive a text about the concert?

H.
 focus on hicher order thinking

17. Geometry The figure shown is a rectangle. The green shape in the figure is a square. The blue and white shapes are rectangles, and the area of the blue rectangle is 24 square inches.
a. Write an expression for the area of the entire figure that includes an exponent. Then find the area.

b. Find the dimensions of the entire figure.
18. Analyze Relationships Roberto's teacher writes the following statement on the board: The cube of a number plus one more than the square of the number is equal to the opposite of the number. Show that the number is -1 .
19. Persevere in Problem Solving Use parentheses to make this statement true: $8 \times 4-2 \times 3+8 \div 2=25$

Ready to Go On?

10.1 Exponents

Find the value of each power.

1. 7^{3}
2. 9^{2}
3. $\left(\frac{7}{9}\right)^{2}$
4. $\left(\frac{1}{2}\right)^{6}$
5. $\left(\frac{2}{3}\right)^{3}$ \qquad 6. $(-3)^{5}$ \qquad 7. $(-2)^{4}$ \qquad 8. 1.4^{2}
\qquad
\qquad

10.2 Prime Factorization

Find the factors of each number.

9. 96 \qquad
10. 120 \qquad
Find the prime factorization of each number.
\qquad 12. 212 \qquad
11. 2,800 \qquad 14. 900 \qquad

10.3 Order of Operations

Simplify each expression using the order of operations.
15. $(21-3) \div 3^{2}$ \qquad
17. $17+15 \div 3-2^{4}$
16. $7^{2} \times(6 \div 3)$ \qquad
18. $(8+56) \div 4-3^{2}$ \qquad
19. The nature park has a pride of 7 adult lions and 4 cubs. The adults eat 6 pounds of meat each day and the cubs eat 3 pounds. Simplify $7 \times 6+4 \times 3$ to find the amount of meat consumed each day by the lions.

ESSENTIAL QUESTION

20. How do you use numerical expressions to solve real-world problems?

Selected Response

1. Which expression has a value that is less than the base of that expression?
(A) 2^{3}
(B) $\left(\frac{5}{6}\right)^{2}$
(C) 3^{2}
(D) 4^{4}
2. After the game the coach bought 9 chicken meals for $\$ 5$ each and 15 burger meals for $\$ 6$ each. What percent of the total amount the coach spent was used for the chicken meals?
(A) $33 \frac{1}{3} \%$
(B) 45%
(C) $66 \frac{2}{3} \%$
(D) 90%
3. Which operation should you perform first when you simplify $75-(8+45 \div 3) \times 7$?
(A) addition
(B) division
(C) multiplication
(D) subtraction
4. At Tanika's school, three people are chosen in the first round. Each of those people chooses 3 people in the second round, and so on. How many people are chosen in the sixth round?
(A) 18
(B) 216
(C) 243
(D) 729
5. Which expression shows the prime factorization of 100 ?
(A) $2^{2} \times 5^{2}$
(C) 10^{10}
(B) 10×10
(D) $2 \times 5 \times 10$
6. Which number has only two factors?
(A) 21
(C) 25
(B) 23
(D) 27
7. Which expression is equivalent to $3.6 \times 3.6 \times 3.6 \times 3.6$?
(A) 3.6×4
(C) $3^{4} \times 6^{4}$
(B) 36^{3}
(D) 3.6^{4}
8. Which expression gives the prime factorization of 80 ?
(A) $2^{4} \times 10$
(C) $2^{3} \times 5$
(B) $2 \times 5 \times 8$
(D) $2^{4} \times 5$

Gridded Response

9. Alison raised 10 to the 5 th power. Then she divided this value by 100 . What was the quotient?

					-		
\oplus	(0)	(0)	(0)	(0)		(0)	(0)
\bigcirc	(1)	(1)	(1)	(1)		(1)	(1)
	(2)	(2)	(2)	(2)		(2)	(2)
	(3)	(3)	(3)	(3)		(3)	(3)
	(4)	(4)	(4)	(4)		(4)	(4)
	(5)	(5)	(5)	(5)		(5)	(5)
	(6)	(6)	(6)	(6)		(6)	(6)
	(7)	(7)	(7)	(7)		(7)	(7)
	(8)	(8)	(8)	(8)		(8)	(8)
	(9)	(9)	(9)	(9)		(9)	(9)

