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Eötvös Loránd University

Doctoral School of Informatics

March 2022

DOI: 10.15476/ELTE.2022.070





Acknowledgements

I would like to thank my supervisor Ambrus Kaposi for his support and the re-

markably low-stress experience throughout my studies, and also for the research

collaboration which provided ample content for this thesis. Many thanks to Tamás

Kozsik for being a likewise supportive supervisor in my first year of studies, and
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CHAPTER 1

Introduction

This thesis develops the usage of certain type theories as specification languages

for algebraic theories and inductive types.

Type theories have emerged as popular metatheoretic settings for mechanized

mathematics. One reason is that the field of type theory is generally aware of the

issue of overheads in representation, and it is a common endeavor to search for

concise “synthetic” ways to talk about different areas of mathematics. In type

theory, it is a virtue to be able to directly say what we mean, and in a way such

that simple-minded computers are able to verify it.

Algebraic theories are certain mathematical structures which are especially

well-behaved, and which are ubiquitous in mathematics, such as groups or cate-

gories. In type theories, inductive types are certain freely generated (initial) models

of algebraic theories. Inductive types are a core feature in implementations of type

theories, widely used in mathematical formalization, but also as the primary way

to define the data structures which are used in programming.

This thesis observes that if we are to specify more complicated algebraic theo-

ries, dependent type theories provide the natural tool to manage complexities. The

expressive power of type theory which makes it suitable as a foundation for mech-

anized mathematics, also proves useful for the more specialized task of specifying

algebraic signatures.

There is a trade-off between the complexity of a mathematical language and

the ease of usage of the language. Minimal languages are convenient to reason

about and develop metatheory for, but they often require an excessive amount of

boilerplate to work in. However, it is a worthwhile effort to try to move towards

the Pareto frontier of this trade-off. We believe that the current thesis makes

1



2 1.1. OVERVIEW

progress in this respect.

Our signatures are useful in broader mathematical contexts, but we are also

concerned with potential implementation in proof assistants. Although it is un-

likely that our signatures can be deployed in practice exactly as they are, they

should be still helpful as formal bases of practical implementations.

1.1 Overview

In Chapter 2, we present a minimal example of a type theory of signatures. This

allows specifying single-sorted signatures without equations. The purpose of the

chapter is didactic. We develop just enough semantics to get notions of initiality

and induction for algebras. We also present a term algebra construction: this shows

that the initial algebra for each signature can be constructed from the syntax of

signatures itself.

In Chapter 3 we describe a metatheoretic setting which is often used in the

thesis. This is two-level type theory [ACKS19]. It allows us to develop general

semantics for signatures, while still working inside a convenient type theory. As

a demonstration, we generalize the semantics from Chapter 2 so that it is given

internally to arbitrary categories-with-families. As a special case, signatures can

be interpreted in arbitrary categories with finite products.

In Chapter 4 we describe finitary quotient inductive-inductive signatures.

These are close to generalized algebraic theories [Car86] in expressive power. In

particular, most type theories themselves can be specified with finitary quotient

inductive-inductive signatures. We significantly expand the semantics of signa-

tures, now for each signature we provide a category of algebras with certain extra

structure, which is equivalent to having finite limits. This allows us to prove for

each signature the equivalence of initiality and induction. Also, owing to two-level

type theory, signatures can be interpreted internally to any category with finite

limits. Additionally

• We present a term algebra construction.

• We show that morphisms of signatures are interpreted as right adjoint func-

tors in the semantics.

• We present how self-description of signatures can be exploited to minimize

metatheoretic assumptions.
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• For certain fragments of the theory of signatures, we describe ways to con-

struct initial algebras from simpler type formers.

In Chapter 5, we describe infinitary quotient inductive-inductive signatures.

These allow specification of infinitely branching trees (as initial algebras). We

adapt the semantics from the previous chapter. We also revisit term models, left

adjoints of signature morphisms and self-description of signatures. Self-description

in particular is significantly strengthened, since the full theories of signatures in

Chapters 4-5 can be now described using infinitary quotient inductive-inductive

signatures. We also describe how to build semantics of signatures internally to

the theory of signatures itself. For example, this means that for each signature,

algebra morphisms are also specified with a signature. The full semantics can be

internalized in the theory of signatures in this manner; this is useful for building

new signatures in a generic way.

In Chapter 6, we describe higher inductive-inductive signatures. These differ

from the previous signatures mostly in their intended semantics, whose context

is now homotopy type theory [Uni13], and which allows specified equalities to

be proof-relevant. The higher-dimensional generalization of types and equalities

makes semantics more complicated, so we only present enough semantics to specify

notions of initiality and induction for each signature. Additionally, we consider

two different notions of algebra morphisms: one preserves structure strictly (up to

definitional equality), while the other preserves structure up to paths.

1.2 How to Read This Thesis

We list several general references which could be helpful for readers.

• It is useful to have some user experience with a type-theory-based proof

assistant or programming language, such as Agda, Coq, Lean or Idris. In

the author’s view, mechanized formalization is the most effective way to

build intuition about working in type theories.

• We often use categories-with-families [CCD19,Hof97,Dyb95] throughout the

thesis.

• We use a modest amount of category theory, for which [Awo10] should be a

sufficient reference.



4 1.3. FORMALIZATION

• For Chapter 6, the Homotopy Type Theory book [Uni13] provides context

and motivation.

This thesis is mostly written in a linear fashion, as later chapters often revisit or

generalize earlier concepts. There are some breaks from linearity though, so we

summarize dependencies between chapters as follows:

• Chapter 3 depends on Chapter 2.

• All chapters after Chapter 3 depend on it.

• Chapter 5 depends on Chapter 4 as it revisits most constructions from there.

• Chapter 6 only depends on Chapter 3.

1.3 Formalization

Chapter 2 is fully formalized in Agda, and the semantics of weak signatures in

Chapter 6 is mostly formalized, with some omissions and shortcuts. The formal-

ization can be found in [Kov22b].

1.4 Notation and Conventions

Throughout this thesis, we always work in some sort of type theory, although the

exact flavor of the type theory will vary. We summarize here the notations and

conventions that will stay consistent. Our style of notation is a mostly a mix of the

homotopy type theory book [Uni13] and the syntax of the proof assistant Agda.

Σ-types

We write a dependent pair type as (a : A) × B, where B may refer to a. Pairing

is (t, u), and projections are proj1 and proj2. Iterated Σ-types can written as

(a : A) × (b : B) × C, for example. We often silently re-associate left-nested Σ-

types to the right, e.g. write (a : A)× (b : B)×C instead of (ab : (a : A)×B)×C.

Field projection notation: we reuse binder names in Σ-types as field projections.

For example, if we have t : (foo : A) × B, then foot projects the first component

from t. To make this a bit more convenient, we also allow to name the last

components, for example if t : (foo : A) × (bar : B), then we have foot : A, and
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bart : B[foo 7→ foot]. This notation is useful when we handle components of more

complicated algebraic structures.

Unit type

Whenever the unit type is available, we name it ⊤, and its inhabitant tt.

Π-types

Dependent function types are written as (a : A) → B, where B may depend on

the a variable. It is possible to group multiple binders with the same type, as

in (x y : A) → B. For non-dependent function types, we write plainly A → B.

Functions are defined as λx. t. We may group multiple binders, as in λx y z. t,

and optionally add type annotation to binders, as in λ (x : A). t.

We also use Agda-like implicit arguments: a function type {a : A} → B

signals that we usually omit the argument in function applications. For example,

if id : {A : Set} → A → A, we write id true : Bool. We can still make these

arguments explicit, by using bracketed application, as in id {Bool} true. Similarly,

we may use bracketed λ, as in λ {A : Set} (x : A). x, to bind implicit arguments.

Sometimes we also write pattern matching abstraction, as in λ (x, y). t for a

function with a Σ domain.

We may use implicit quantification as well: argument binders and types may

be entirely omitted when it is clear where they are quantified. This resembles

the implicit generalization in the Haskell or Idris programming languages. For

example, the A and B types are implicitly quantified below:

map : (A → B) → ListA → ListB

map :≡ ...

Identity types

We use – ≡ – and – = – to denote identity types. We always use – ≡ – as

a “strict” equality which satisfies uniqueness of identity proofs. Reflexivity of

identity is always written as refl. We use – = – as intensional identity in Chapter

2. In later chapters, – = – denotes the identity type in the inner layer of a two-level

type theory, and –≡ – denotes the outer identity type.
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Definitions

We give definitions using :≡, for example as in

id : {A : Set} → A → A

id a :≡ a

Note that we write the function argument on the left of :≡, instead of writing a λ

on the right. We may switch between the two styles. The type signature can be

omitted in a definition. We may also use pattern matching, like in foo (x, y) :≡ ....



CHAPTER 2

Simple Signatures

In this chapter, we take a look at a very simple notion of algebraic signature. The

motivation for doing so is to present the basic ideas of this thesis in the easiest

possible setting, with explicit definitions. The later chapters are greatly generalized

and expanded compared to the current one, and are not feasible (and probably

not that useful) to present in full formal detail. We also include a complete Agda

formalization of the contents of this chapter, in around 250 lines.

The mantra throughout this dissertation is the following: algebraic theories

are specified by typing contexts in certain theories of signatures. For each class of

algebraic theories, there is a corresponding theory of signatures, which is viewed

as a proper type theory and comes equipped with a model theory. Semantics

of signatures is given by interpreting them in certain models of the theory of

signatures. Semantics should at least provide a notion of induction principle for

each signature; in this chapter we provide a bit more than that, and we will do

substantially more in Chapters 4 and 5.

Metatheory

We work in an intensional type theory which supports Π, Σ, ⊤, intensional iden-

tity – = –, inductive families, and two universes Set and Set1 closed under the

mentioned type formers, with Set : Set1. Since the contents of this chapter are

formalized in Agda, and our notation is reminiscent of Agda too, we can think of

the metatheory as a subset of Agda.

7



8 2.1. THEORY OF SIGNATURES

2.1 Theory of Signatures

Generally, more expressive theories of signatures can describe larger classes of the-

ories. As we are aiming for minimalism right now, the current theory of signatures

is as follows:

Definition 1. The theory of signatures, or ToS for short, is a simple type

theory equipped with the following features:

• An empty base type ι.

• A first-order function type ι→ –; this is a function whose domain is fixed

to be ι. Moreover, first-order functions only have neutral terms: there is

application, but no λ-abstraction.

We can specify the full syntax using the following Agda-like inductive defini-

tions.

Ty : Set Var : Con → Ty → Set

ι : Ty vz : Var (Γ ▷ A)A

ι→ – : Ty → Ty vs : VarΓA → Var (Γ ▷ B)A

Con : Set Tm : Con → Ty → Set

• : Con var : VarΓA → TmΓA

– ▷ – : Con → Ty → Con app : TmΓ (ι → A) → TmΓ ι → TmΓA

Here, Con contexts are lists of types, and Var specifies well-typed De Bruijn indices,

where vz represents the zero index, and vs takes the successor of an index.

Notation 1. We use capital Greek letters starting from Γ to refer to contexts,

A, B, C to refer to types, and t, u, v to refer to terms. In examples, we may

use a nameful notation instead of De Bruijn indices. For example, we may write

x : Tm (• ▷ (x : ι) ▷ (y : ι)) ι instead of var (vs vz) : Tm (• ▷ ι ▷ ι) ι. Additionally, we

may write t u instead of app t u for t and u terms.

Definition 2. Parallel substitutions map variables to terms.

Sub : Con → Con → Set

SubΓ∆ ≡ {A : Ty} → Var∆A → TmΓA
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We use σ and δ to refer to substitutions. We also recursively define the action of

substitution on terms:

–[–] : Tm∆A → SubΓ∆ → TmΓA

(var x) [σ] :≡ σ x

(app t u)[σ] :≡ app (t[σ]) (u[σ])

The identity substitution id is defined simply as var. It is easy to see that t[id] = t

for all t. Substitution composition is as follows.

–◦– : Sub∆Ξ → SubΓ∆ → SubΓΞ

(σ ◦ δ)x :≡ (σ x)[δ]

Example 1. We may write signatures for natural numbers and binary trees re-

spectively as follows.

NatSig :≡ • ▷ (zero : ι) ▷ (suc : ι → ι)

TreeSig :≡ • ▷ (leaf : ι) ▷ (node : ι → ι → ι)

In short, the current ToS allows signatures which are

• Single-sorted : this means that we have a single type constructor, correspond-

ing to ι.

• Closed : signatures cannot refer to any externally existing type. For example,

we cannot write a signature for lists of natural numbers in a direct fashion,

since there is no way to refer to the type of natural numbers.

• Finitary : inductive types corresponding to signatures are always finitely

branching trees. For a counterexample, assuming N as the metatheoretical

type of natural numbers, node : (N → ι) → ι would specify an infinite

branching (if such type was allowed in the ToS).

Remark. We omit λ-expressions from the ToS for the sake of simplicity: this

causes terms to be always in normal form (neutral, to be precise), and thus we

can skip talking about conversion rules. Later, starting from Chapter 4 we include

proper βη-rules in theories of signatures.
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2.2 Semantics

For each signature, we need to know what it means for a type theory to support

the corresponding inductive type. For this, we need at least a notion of algebras,

which can be viewed as a bundle of all type and value constructors, and what

it means for an algebra to support an induction principle. Additionally, we may

want to know what it means to support a recursion principle, which can be viewed

as a non-dependent variant of induction. In the following, we define these notions

by induction on ToS syntax.

Remark. We use “algebra” and “model” synonymously throughout this thesis.

2.2.1 Algebras

First, we calculate types of algebras. This is simply a standard interpretation into

the Set universe. We define the following operations by induction; the –A name is

overloaded for Con, Ty and Tm.

–A : Ty → Set → Set

ιA X :≡ X

(ι → A)A X :≡ X → AA X

–A : Con → Set → Set

ΓAX :≡ {A : Ty} → VarΓA → AAX

–A : TmΓA → {X : Set} → ΓA X → AA X

(var x)A γ :≡ γ x

(app t u)A γ :≡ tA γ (uA γ)

–A : SubΓ∆ → {X : Set} → ΓA X → ∆AX

σA γ x :≡ (σ x)A γ

Here, types and contexts depend on some X : Set, which serves as the interpreta-

tion of ι. We define ΓA as a product: for each variable in the context, we get a

semantic type. This trick, along with the definition of Sub, makes formalization
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a bit more compact. Terms and substitutions are interpreted as natural maps.

Substitutions are interpreted by pointwise interpreting the contained terms.

Notation 2. We may write values of ΓA using notation for Σ-types. For example,

we may write (zero : X)× (suc : X → X) for the result of computing NatSigAX.

Definition 3. We define algebras as follows.

Alg : Con → Set1

AlgΓ :≡ (X : Set)× ΓA X

Example 2. Alg NatSig is computed to (X : Set)× (zero : X)× (suc : X → X).

2.2.2 Morphisms

Now, we compute notions of morphisms of algebras. In this case, morphisms are

functions between underlying sets which preserve all specified structure. The in-

terpretation for calculating morphisms is a logical relation interpretation [HRR14]

over the –A interpretation. The key part is the interpretation of types:

–M : (A : Ty){X0X1 : Set}(XM : X0 → X1) → AAX0 → AA X1 → Set

ιM XM α0 α1 :≡ XM α0 = α1

(ι → A)M XM α0 α1 :≡ (x : X0) → AM XM (α0 x) (α1 (X
M x))

We again assume an interpretation for the base type ι, as X0, X1 and XM :

X0 → X1. X
M is function between underlying sets of algebras, and AM computes

what it means that XM preserves an operation with type A. At the base type,

preservation is simply equality. At the first-order function type, preservation is a

quantified statement over X0. We define morphisms for Con pointwise:

–M : (Γ : Con){X0X1 : Set} → (X0 → X1) → ΓA X0 → ΓA X1 → Set

ΓM XM γ0 γ1 :≡ {A : Ty}(x : VarΓA) → AM XM (γ0 x) (γ1 x)

For terms and substitutions, we get preservation statements, which are sometimes

called fundamental lemmas in discussions of logical relations [HRR14].

–M : (t : TmΓA) → ΓM XM γ0 γ1 → AM XM (tA γ0) (t
A γ1)

(var x)M γM :≡ γM x

(app t u)MγM :≡ tM γM (uA γ0)
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–M : (σ : SubΓ∆) → ΓM XM γ0 γ1 → ∆M XM (σA γ0) (σ
A γ1)

σM γM x :≡ (σ x)M γM

The definition of (app t u)M is well-typed by the induction hypothesis uM γM :

XM (uA γ0) = uA γ1.

Definition 4. To get notions of algebra morphisms, we again pack up ΓM with

the interpretation of ι.

Mor : {Γ : Con} → AlgΓ → AlgΓ → Set

Mor {Γ} (X0, γ0) (X1, γ1) :≡ (XM : X0 → X1)× ΓM XM γ0 γ1

Example 3. We have the following computation:

Mor {NatSig} (X0, zero0 , suc0 ) (X1, zero1 , suc1 ) :≡

(XM : X0 → X1)

× (XM zero0 = zero1 )

× ((x : X0) → XM (suc0 x) = suc1 (X
M x))

Definition 5. We state initiality as a predicate on algebras:

Initial : {Γ : Con} → AlgΓ → Set

Initial {Γ} γ :≡ (γ′ : AlgΓ) → isContr (Mor γ γ′)

Here isContr refers to unique existence [Uni13, Section 3.11]. If we drop isContr

from the definition, we get the notion of weak initiality, which corresponds to the

recursion principle for Γ. Although we call this predicate Initial, in this chapter

we do not yet show that algebras form a category. We will show this in a more

general setting in Chapter 4.

Morphisms vs. logical relations. The –M interpretation can be viewed as a

special case of logical relations over the –A model: every morphism is a functional

logical relation, where the chosen relation between the underlying sets happens to

be a function. Consider now a more general relational interpretation for types:

–R : (A : Ty){X0X1 : Set}(XR : X0 → X1 → Set) → AA X0 → AAX1 → Set

ιR XR α0 α1 :≡ XR α0 α1

(ι → A)R XR α0 α1 :≡ (x0 : X0)(x1 : X1) → XR x0 x1 → AR XR (α0 x0) (α1 x1)
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Here, functions are related if they map related inputs to related outputs. If we

know that XM α0 α1 ≡ (f α0 = α1) for some f function, we get

(x0 : X0)(x1 : X1) → f x0 = x1 → AR XR (α0 x0) (α1 x1)

Now, we can simply substitute along the input equality proof in the above type,

to get the previous definition for (ι → A)M :

(x0 : X0) → AR XR (α0 x0) (α1 (f x0))

This substitution along the equation is called “singleton contraction” in the jargon

of homotopy type theory [Uni13]. The ability to perform contraction here is at the

heart of the strict positivity restriction for inductive signatures. Strict positivity in

our setting corresponds to only having first-order function types in signatures. If

we allowed function domains to be arbitrary types, in the definition of (A → B)M

we would only have a black-box AM XM : AA X0 → AA X1 → Set relation, which

is not known to be given as an equality.

In Chapter 4 we expand on this. As a preliminary summary: although higher-

order functions have relational interpretation, such relations do not generally com-

pose. What we eventually aim to have is a category of algebras and algebra mor-

phisms, where morphisms do compose. We need a directed model of the theory

of signatures, where every signature becomes a category of algebras. The way to

achieve this is to prohibit higher-order functions, thereby avoiding the polarity

issues that prevent a directed interpretation for general function types.

2.2.3 Displayed Algebras

At this point we do not yet have specification for induction principles. We use

the term displayed algebra to refer to “dependent” algebras, where every displayed

algebra component lies over corresponding components in the base algebra. For

the purpose of specifying induction, displayed algebras can be viewed as bundles

of induction motives and methods.

Displayed algebras over some γ : AlgΓ are equivalent to slices over γ in the

category of Γ-algebras; we will show this in Chapter 4. A slice f : ΓM γ′ γ maps

elements of γ′’s underlying set to elements in the base algebra. Why do we need

displayed algebras, then? The main reason is that if we are to eventually implement

inductive types in a programming language or proof assistant, we need to compute

induction principles exactly, not merely up to isomorphisms.
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For more illustration of using displayed algebras in a type-theoretic setting,

see [AL19]. We adapt the term “displayed algebra” from ibid. as a generalization

of displayed categories (and functors, natural transformations) to other algebraic

structures.

The displayed algebra interpretation is a logical predicate interpretation, de-

fined as follows.

–D : (A : Ty){X} → (X → Set) → AA X → Set

ιD XD α :≡ XD α

(ι → A)D XD α :≡ (x : X)(xD : XD x) → AD XD (αx)

–D : (Γ : Con){X} → (X → Set) → ΓA X → Set

ΓD XD γ :≡ {A : Ty}(x : VarΓA) → AD XD (γ x)

–D : (t : TmΓA) → ΓD XD γ → AD XD (tA γ)

(var x)D γD :≡ γD x

(app t u)D γD :≡ tD γD (uA γ) (uD γD)

–D : (σ : SubΓ∆) → ΓD XD γ → ∆D XD (σA γ)

σD γD x :≡ (σ x)D γD

Analogously to before, everything depends on a predicate interpretation XD :

X → Set for ι. For types, a predicate holds for a function if the function preserves

predicates. The interpretation of terms is again a fundamental lemma, and we

again have pointwise definitions for contexts and substitutions.

Definition 6 (displayed algebras).

DispAlg : {Γ : Con} → AlgΓ → Set1

DispAlg {Γ} (X, γ) :≡ (XD : X → Set)× ΓD XD γ

Example 4. We have the following computation.

DispAlg {NatSig} (X, zero, suc) ≡

(XD : X → Set)

× (zeroD : XD zero)

× (sucD : (n : X) → XD n → XD (suc n))
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2.2.4 Sections

Sections of displayed algebras are “dependent” analogues of algebra morphisms,

where the codomain is displayed over the domain.

–S : (A : Ty){X XD}(XS : (x : X) → XD x) → (α : AA X) → AD XD α → Set

ιS XS α αD :≡ XS α = αD

(ι → A)S XS α αD :≡ (x : X) → AS XS (αx) (αD (XS x))

ConS : (Γ : Con){X XD}(XS : (x : X) → XD x) → (γ : ΓA X) → ΓD XD γ → Set

ΓS XS γ0 γ1 :≡ {A : Ty}(x : VarΓA) → AS XS (γ0 x) (γ1 x)

–S : (t : TmΓA) → ΓS XS γ γD → AS XS (tA γ) (tD γD)

(var x)S γS :≡ γS x

(app t u)S γS :≡ tS γS (uA γ)

–S : (σ : SubΓ∆) → ΓS XS γ γD → ∆S XS (σA γ) (σA γD)

σS γS x = (σ x)S γS

Definition 7 (Displayed algebra sections (“sections” in short)).

Section : {Γ : Con} → (γ : AlgΓ) → DispAlg γ → Set

Section (X, γ) (XD γD) :≡ (XS : (x : X) → XD x)× ΓS XS γ γD

Example 5. We have the following computation.

Section {NatSig} (X, zero, suc) (XD, zeroD , sucD) ≡

(XS : (x : X) → XD x)

× (zeroS : XS zero = zeroD)

× (sucS : (n : X) → XS (suc n) = sucD n (XS n))

Definition 8 (Induction). We define a predicate which holds if an algebra sup-

ports induction.

Inductive : {Γ : Con} → AlgΓ → Set1

Inductive {Γ} γ :≡ (γD : DispAlg γ) → Section γ γD
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We can observe that Inductive {NatSig} (X, zero, suc) computes to the usual

induction principle for natural numbers, where β-rules are given as propositional

equalities. The input DispAlg is a bundle of the induction motive and the methods,

and the output Section contains the XS eliminator function together with its β-

rules.

2.3 Term Algebras

In this section we show that if a type theory supports the inductive types com-

prising the theory of signatures, it also supports every inductive type which is

described by the signatures.

Note that we specified Tm and Sub, but did not need either of them when

specifying signatures, or when computing induction principles. That signatures

do not depend on terms is a property specific to simple signatures; this will not be

the case in Chapter 4 when we move to more general signatures. However, terms

and substitutions are already required in the construction of term algebras.

The idea is that terms in contexts comprise initial algebras. For example,

TmNatSig ι is the set of natural numbers (up to isomorphism). Informally, this is

because the only way to construct terms is by applying the suc variable (given by

var vz) finitely many times to the zero variable (given by var (vs vz)).

Definition 9 (Term algebras). Fix an Ω : Con. We abbreviate TmΩ ι as T;

this will serve as the carrier set of the term algebra. We additionally define the

following.

–T : (A : Ty) → TmΩA → AA T

ιT t :≡ t

(ι → A)T t :≡ λu.AT (app t u)

–T : (Γ : Con) → SubΩΓ → ΓA T

ΓT ν {A}x :≡ AT (ν x)

–T : (t : TmΓA)(ν : SubΩΓ) → AT (t[ν]) = tA (ΓT ν)

(var x)T ν holds by refl

(app t u)T ν holds by tT ν and uT ν
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–T : (σ : SubΓ∆)(ν : SubΩΓ){A}(x : Var∆A)

→ ∆T (σ ◦ ν)x = σA (ΓT ν)x

σT ν x :≡ (σ x)T ν

Now we can define the term algebra for Ω itself:

TmAlgΩ : AlgΩ

TmAlgΩ :≡ ΩT Ω id

In the interpretation for contexts, it is important that Ω is fixed, and we do

induction on all Γ contexts such that there is a SubΩΓ. It would not work to try

to compute term algebras by direct induction on contexts because we need to refer

to the same T set in the interpretation of every type in a signature.

The interpretation of types embeds terms as A-algebras. At the base type

ι, this embedding is simply the identity function, since ιA T ≡ T ≡ TmΩ ι. At

function types we recursively proceed under a semantic λ. The interpretation of

contexts is pointwise.

The interpretations of terms and substitutions are coherence properties, which

relate the term algebra construction to term evaluation in the –A model. For

terms, if we pick ν ≡ id, we get AT t = tA TmAlgΩ. The left side embeds t in the

term model via –T , while the right hand side evaluates t in the term model.

One way to view the term algebra construction, is that we are working in a

slice model over the fixed Ω, and every ν : SubΩΓ can be viewed as an internal

Γ-algebra in this model. The term algebra construction demonstrates that every

such internal algebra yields an external element of ΓA.

2.3.1 Recursor Construction

We show that TmAlgΩ supports a recursion principle, i.e. it is weakly initial.

Definition 10 (Recursor construction). We assume (X, ω) : AlgΩ; recall that

X : Set and ω : ΩA X. We define R : T → X as R t :≡ tA ω. We additionally define

the following.

–R : (A : Ty)(t : TmΩA) → AM R (AT t) (tA ω)

ιR t :≡ (refl : tA ω = tA ω)

(ι → A)R t :≡ λu.AR (app t u)
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–R : (Γ : Con)(ν : SubΩΓ) → ΓM R (ΓT ν) (νA ω)

ΓR ν x :≡ AR (ν x)

We define the recursor for Ω as

RecΩ : (alg : AlgΩ) → Mor TmAlgΩ alg

RecΩ (X, ω) :≡ (R, ΩR Ω id)

In short, the way we get recursion is by evaluating terms in arbitrary (X, ω)

algebras using –A. The –R operation for types and contexts confirms that R

preserves structure appropriately, so that R indeed yields algebra morphisms.

We skip interpreting terms and substitutions by –R. It is necessary to do so

with more general signatures, but not in the current chapter.

2.3.2 Eliminator Construction

We take the idea of the previous section a bit further. We have seen that recursion

for term algebras is given by evaluation in the “standard” Set model. Now, we

show that induction for term algebras is obtained from the –D interpretation into

the logical predicate model over the Set model.

Definition 11 (Eliminator construction). We assume (XD, ωD) : DispAlg TmAlgΩ.

Recall thatXD : T → Set and ωD : ΩD XD (ΩT Ω id). Like before, we first interpret

the underlying set:

E : (t : T) → XD t

E t :≡ tD ωD

However, this definition is not immediately well-typed, since tD ωD has typeXD (tA (ΩT Ω id)),

so we have to show that tA (ΩT Ω id) = t. This equation says that nothing hap-

pens if we evaluate a term with type ι in the term model. We get it from the –T

interpretation of terms: tT id : t[id] = tA (ΩT Ω id), and we also know that t[id] = t.

We interpret types and contexts as well:

–E : (A : Ty)(t : TmΩA) → AS E (tA (ΩT Ω id)) (tD ωD)

ιE t : (tA (ΩT Ω id))D ωD = tD ωD

(ι → A)E t :≡ λu.AE (app t u)
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–E : (Γ : Con)(ν : SubΩΓ) → ΓS E (νA (ΩT Ω id)) (νD ωD)

ΓE ν x :≡ AE (ν x)

In ιE we use the same equation as in the definition of E. In (ι → A)E the definition

is well-typed because of the same equation, but instantiated for the abstracted

u term this time. All of this amounts to some additional path induction and

transport fiddling in the (intensional) Agda formalization. We get induction for Ω

as below.

IndΩ : (alg : DispAlg TmAlgΩ) → SectionTmAlgΩ alg

IndΩ (XD, ωD) :≡ (E, ΩE Ω id)

2.4 Comparison to Endofunctors as Signatures

A well-known alternative definition of algebraic signatures is to view certain co-

continuous endofunctors as such. For example, single-sorted signatures can be

defined to be endofunctors which preserve colimits of some ordinal-indexed chains.

For instance, if we have a κ-cocontinuous F : C → C, then algebras are given as

(X : |C|)× (C(F X, X)), called F-algebras, morphisms as commuting squares, and

Adámek’s theorem [AK79] establishes the existence of initial algebras.

An advantage of this approach is that we can describe different classes of sig-

natures by choosing different C categories:

• If C is Set, we get simple inductive theories.

• If C is SetI for some set I, we get indexed inductive signatures.

• If C is Set/I, we get inductive-recursive signatures.

Another advantage is that signatures are fairly semantic in nature: they make

sense even if we have no syntactic presentation at hand. That said, often we do

need syntactic signatures, for use in proof assistants, or just to have a convenient

notation for a class of cocontinuous functors.

An elegant way of carving out a large class of such functors is to consider

polynomials as signatures. For example, when working in Set, a signature is an

element of (S : Set) × (P : S → Set), and (S, P ) is interpreted as a functor as

X 7→ (s : S)× (P s → X). The initial algebra is the W-type specified by S shapes

and P positions. This yields infinitary inductive types as well.
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However, it is not known how to get inductive-inductive signatures by picking

the right C category and a functor. In an inductive-inductive signature, there

may be multiple sorts, which can be indexed over previously declared sorts. For

example, in the signature for categories we have Obj : Set and Mor : Obj → Obj →
Set, indexed twice over Obj. Some extensions are required to the idea of F -algebras:

• For inductive-inductive definitions with two sorts, Forsberg gives a specifica-

tion with two functors, and a considerably more complex notion of algebras,

involving dialgebras [NF13].1

• For an arbitrary number of sorts, Altenkirch et al. [ACD+18] use a “list” of

functors, specified mutually with categories of algebras: each functor has as

domain the semantic category of all previous sorts.

The functors-as-signatures approach gets significantly less convenient as we

consider more general specifications. The approach of this thesis is to skip the

middle ground between syntactic signatures and semantic categories of algebras:

we treat syntactic signatures as a key component, and give direct semantic in-

terpretation for them. Although we lose the semantic nature of signatures, our

approach scales extremely well, all the way up to infinitary quotient-inductive-

inductive types in Chapter 5, and to some extent to higher inductive-inductive

types as well in Chapter 6.

If we look back at –A : Con → Set → Set, we may note that ΓA yields a

functor, in fact the same functor (up to isomorphism) that we would get from an

endofunctor presentation. However, this is a coincidence in the single-sorted case.

We can view (X : |C|)× (C(F X, X)) as specifying the category of algebras as the

total category of a displayed category (by viewing the Σ-type here as taking total

categories; a Σ in Cat). In our approach, we aim to get the displayed categories

directly, without talking about functors.

1However, the dialgebra specification only covers restricted signatures, where B : A → Set

constructor types may refer to A : Set constructors, but no other dependency is allowed. There

is a more general and yet more complicated notion of signature in [NF13], which is not anymore

represented with functors.



CHAPTER 3

Semantics in Two-Level Type Theory

In this chapter we describe how two-level type theory is used as a metatheoretic

setting in the rest of this thesis. First, we provide motivation and overview. Sec-

ond, we describe models of type theories in general, and models of two-level type

theories as extensions. Third, we describe presheaf models of two-level type theo-

ries. Finally, we generalize the semantics and the term algebra construction from

Chapter 2 in two-level type theory, as a way to illustrate the applications.

3.1 Motivation

We note two shortcomings of the semantics presented in the previous chapter.

First, the semantics that we provided was not as general as it could be. We

used the internal Set universe to specify algebras, but algebras make sense in many

different categories. A crude way to generalize semantics is to simply say that our

formalization, which was carried out in the syntax (i.e. initial model) of some

intensional type theory, can be interpreted in any model of the type theory. But

this is wasteful: for simple inductive signatures, it is enough to assume a category

with finite products as semantic setting. We do not need all the extra baggage

that comes with a model of a type theory.

Second, we were not able to reason about definitional equalities, only propo-

sitional ones. We have a formalization of signatures and semantics in intensional

Agda, where the two notions differ1, but only propositional equality is subject to

internal reasoning. For instance, we would like to show that term algebras support

recursion with strict β-rules, and for this we need to reason about strict equality.

1As opposed to in extensional type theory, where they are the same.

21
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Notation 3. We use • for the terminal object in a C category, with ϵ : C(A, •)

for the unique morphism. For products, we use –⊗ – with (–,–) : C(A, B) →
C(A, C) → C(A, B⊗C) and p and q for first and second projections respectively.

Example 6. Assuming a category C with finite products, we specify natural num-

ber algebras and binary tree algebras as follows. Below, AlgNatSig and AlgTreeSig are

both sets in some metatheory, and the × in the definitions refer to the metatheo-

retic Σ.

AlgNatSig :≡ (X : |C|)× C(•, X)× C(X, X)

AlgTreeSig :≡ (X : |C|)× C(•, X)× C(X ⊗X, X)

How should we adjust Alg from the previous chapter to compute algebras in C,
and Mor to compute their morphisms? While it is possible to do this in a direct

fashion, working directly with objects and morphisms of C is rather unwieldy. C
is missing many convenience features of type theories.

• There are no variables or binders. We are forced to work in a point-free style

or chase diagrams; both become difficult to handle above a certain level of

complexity.

• There are no functions, universes or inductive types.

• Substitution (with weakening as a special case) has to be handled explicitly

and manually. Substitutions are certain morphisms, while “terms” are also

morphisms, and we have to use composition to substitute terms. In contrast,

if we are working internally in a type theory, terms and substitutions are

distinct, and we only have to explicitly deal with terms, and substitutions

are automated and implicit.

The above overlaps with motivations for working in internal languages [nc21]

of structured categories: they aid calculation and compact formalization by hiding

bureaucratic structural details.

A finite product category C does not have much of an internal language, it

is too bare-bones. But we can work instead in the internal language of Ĉ, the
category of presheaves over C. This allows faithful reasoning about C, while also

including all convenience features of extensional type theory.

Two-level type theories [ACKS19], or 2LTT in short, are type theories such

that they have “standard” interpretations in presheaf categories. A 2LTT has an
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inner layer, where types and terms arise by embedding C in Ĉ, and an outer layer,

where constructions are inherited from Ĉ. The exact details of the syntax may

vary depending on what structures C supports, and which type formers we assume

in the outer layer. Although it is possible to add assumptions to a 2LTT which

preclude standard presheaf semantics [ACKS19, Section 2.4.], we stick to basic

2LTT in this thesis. By using 2LTT, we are able to use a type-theoretic syntax

which differs only modestly from the style of definitions that we have seen so far.

From a programming perspective, basic 2LTT provides a convenient syntax for

writing metaprograms. This can be viewed as two-stage compilation: if we have a

2LTT program with an inner type, we can run it, and it returns another program,

which lives purely in the inner theory.

3.2 Models of Type Theories

Before explaining 2LTT-specific features, we review models of type theories in

general. Variants of 2LTT will be obtained by adding extra features on the top of

more conventional type theories.

It is also worth to take a more general look at models at this point, because

the notions presented in this subsection (categories with families, type formers)

will be reused several times in this thesis, when specifying theories of signatures.

3.2.1 The Algebraic View

We take an algebraic view of models and syntaxes of type theories throughout

this thesis. Models of type theories are algebraic structures: they are categories

with certain extra structure. The syntax of a type theory is understood to be its

initial model. In initial models, the underlying category is the category of typing

contexts and parallel substitutions, while the extra structure corresponds to type

and term formers, and equations quotient the syntax by definitional equality.

Type theories can be described with quotient inductive-inductive (QII) sig-

natures, and their initial models are quotient inductive-inductive types (QIITs).

Hence, 2LTT is also a QII theory. We will first talk about QIITs in Chapter 4.

Until then, we shall make do with an informal understanding of categorical seman-

tics for type theories, without using anything in particular from the metatheory of

QIITs. There is some circularity here, that we talk about QIITs in this thesis, but

we employ QIITs when talking about them. However, this is only an annoyance
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in exposition and not a fundamental issue: Sections 4.5 and 5.7 describe how to

eliminate circularity by a form of bootstrapping.

The algebraic view lets us dispense with all kinds of “raw” syntactic objects.

We only ever talk about well-typed and well-formed objects, moreover, every con-

struction must respect definitional equalities. For terms in the algebraic syntax,

definitional equality coincides with metatheoretic equality. This mirrors equality

of morphisms in 1-category theory, where we usually reuse metatheoretic equality

in the same way.

In the following we specify notions of models for type theories. We split this

in two parts: categories with families and type formers.

3.2.2 Categories With Families

Definition 12. A category with families (cwf) [Dyb95] is a way to specify

the basic structural rules for contexts, substitutions, types and terms. It yields a

dependently typed explicit substitution calculus. A cwf consists of the following.

• A category with a terminal object. We denote the set of objects as Con : Set

and use capital Greek letters starting from Γ to refer to objects. The set of

morphisms is Sub : Con → Con → Set, and we use σ, δ and so on to refer to

morphisms. We write id for the identity morphism and – ◦ – for composition.

The terminal object is • with unique morphism ϵ : SubΓ •. In initial models

(that is, syntaxes) of type theories, objects correspond to typing contexts,

morphisms to parallel substitutions and the terminal object to the empty

context; this informs the naming scheme.

• A family structure, containing Ty : Con → Set and Tm : (Γ : Con) → TyΓ →
Set. We use A, B, C to refer to types and t, u, v to refer to terms. Ty is a

presheaf over the category of contexts and Tm is a displayed presheaf over

Ty. This means that types and terms can be substituted:

–[–] : Ty∆ → SubΓ∆ → TyΓ

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

Substitution is functorial: we have A[id] ≡ A and A[σ ◦ δ] ≡ A[σ][δ], and

likewise for terms.

A family structure is additionally equipped with context comprehension which

consists of a context extension operation – ▷ – : (Γ : Con) → TyΓ → Con
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together with a natural isomorphism SubΓ (∆ ▷ A) ≃ ((σ : SubΓ∆) ×
TmΓ (A[σ])).

The following notions are derivable from the comprehension structure:

• By going right-to-left along the isomorphism, we recover substitution exten-

sion – , – : (σ : SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆ ▷ A). This means that

starting from ϵ or the identity substitution id, we can iterate – , – to build

substitutions as lists of terms.

• By going left-to-right, and starting from id : Sub (Γ ▷ A) (Γ ▷ A), we recover

the weakening substitution p : Sub (Γ ▷A) Γ and the zero variable q : Tm (Γ ▷

A) (A[p]).

• By weakening q, we recover a notion of variables as De Bruijn indices. In

general, the n-th De Bruijn index is defined as q[pn], where pn denotes n-fold

composition.

Comprehension can be characterized either by taking – , –, p and q as primitive,

or the natural isomorphism. The two are equivalent, and we may switch between

them, depending on which is more convenient.

There are other ways for presenting the basic categorical structure of models,

which are nonetheless equivalent to cwfs, including natural models [Awo18] and

categories with attributes [Car78]. We use the cwf presentation for its immediately

algebraic character and closeness to conventional explicit substitution syntax.

Notation 4. As De Bruijn indices are hard to read, we will mostly use nameful

notation for binders. For example, assuming Nat : {Γ : Con} → TyΓ and Id :

{Γ : Con}(A : TyΓ) → TmΓA → TmΓA → TyΓ, we may write • ▷ n : Nat ▷

p : Id Natnn for a typing context, instead of using numbered variables or cwf

combinators as in • ▷ Nat ▷ Id Nat q q.

Notation 5. In the following, we will denote family structures by (Ty,Tm) pairs

and overload context extension – ▷ – for different families.

Definition 13. The following derivable operations are commonly used.

• Single substitution can be derived from parallel substitution as follows. As-

sume t : Tm (Γ ▷ A)B, and u : TmΓA. t is a term which may depend on

the last variable in the context, which has A type. We can substitute that
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variable with the u term as t[id, u] : TmΓ (A[id, u]). Note that term sub-

stitution causes the type to be substituted as well. (id, u) : SubΓ (Γ ▷ A) is

well-typed because u : TmΓA hence also u : TmΓ (A[id]).

• We can lift substitutions over binders as follows. Assuming σ : SubΓ∆ and

A : Ty∆, we construct a lifting of σ which maps an additional A-variable to

itself: (σ ◦ p, q) : Sub (Γ ▷ A[σ]) (∆ ▷ A). Let us see why this is well-typed.

We have p : Sub (Γ▷A[σ]) Γ and σ : SubΓ∆, so σ ◦p : Sub (Γ▷A[σ])∆. Also,

q : Tm (Γ ▷ A[σ]) (A[σ][p]), hence q : Tm (Γ ▷ A[σ]) (A[σ ◦ p]), thus (σ ◦ p, q)
typechecks.

Notation 6. As a nameful notation for substitutions, we may write t[x 7→ u], for a

single substitution, or t[x 7→ u1, y 7→ u2] and so on.

In nameful notation we leave all weakening implicit, including substitution

lifting. Formally, if we have t : TmΓA, we can only mention t in Γ. If we need

to mention it in Γ ▷ B, we need to use t[p] instead. In the nameful notation,

t : Tm (Γ ▷ x : B)A may be used.2

3.2.3 Type formers

A family structure in a cwf may be closed under certain type formers, such as

functions, Σ-types, universes or inductive types. We give some examples here for

their specification. First, we look at common negative type formers; these are

the type formers which can be specified using isomorphisms. Then, we consider

positive type formers, and finally universes.

Negative types

Definition 14. A (Ty, Tm) family supports Π-types if it supports the following.

Π : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

Π[] : (ΠAB)[σ] ≡ Π(A[σ]) (B[σ ◦ p, q])

app : TmΓ (ΠAB) → Tm (Γ ▷ A)B

lam : Tm (Γ ▷ A)B → TmΓ (ΠAB)

Πβ : app (lam t) ≡ t

2Moreover, when working in the internal syntax of a theory, we just write Agda-like type-

theoretic notation, without noting contexts and substitutions in any way.
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Πη : lam (app t) ≡ t

lam[] : (lam t)[σ] ≡ lam (t[σ ◦ p, q])

Here, Π is the type formation rule. Π[] is the type substitution rule, expressing

that substituting Π proceeds structurally on constituent types. Note B[σ ◦ p, q],
where we lift σ over the additional binder.

The rest of the rules specify a natural isomorphism TmΓ (ΠAB) ≃ Tm (Γ ▷

A)B. We only need a substitution rule (i.e. a naturality rule) for one direction of

the isomorphism, since the naturality of the other map is derivable.

This way of specifying Π-types is very convenient if we have explicit substitu-

tions. The usual “pointful” specification is equivalent to this. For example, we

have the following derivation of pointful application:

app′ : TmΓ (ΠAB) → (u : TmΓA) → TmΓ (B[id, u])

app′ t u :≡ (app t)[id, u]

Remark on naturality. The above specification for Π can be written more

compactly if we assume that everything is natural with respect to substitution.

Π : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

(app, lam) : TmΓ (ΠAB) ≃ Tm (Γ ▷ A)B

This is a reasonable assumption; in the rest of the thesis we only ever define

structures on cwfs which are natural in this way.

Notation 7. From now on, when specifying type formers in family structures, we

assume that everything is natural, and thus omit substitution equations.

There are ways to make this idea more precise, and take it a step further by

working in languages where only natural constructions are possible. The term

higher-order abstract syntax (HOAS) is sometimes used for this style. It lets us

also omit contexts, so we would only need to write

Π : (A : Ty) → (TmA → Ty) → Ty

(app, lam) : Tm (ΠAB) ≃ ((a : TmA) → Tm (B a))

Recently several promising works emerged in this area [Uem19,SA21,BKS21]. Al-

though this technology is likely to be the preferred future direction in the metathe-

ory of type theories, this thesis does not make use of it. The field is rather fresh,
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with several different approaches and limited amount of pedagogical exposition,

and the new techniques would also raise the level of abstraction in this thesis, con-

tributing to making it less accessible. It is also not obvious how exactly HOAS-style

could be employed to aid formalization here, and it would require significant addi-

tional research. Often, a setup with multiple modalities (“multimodal” [GKNB20])

is required [BKS21] because we work with presheaves over different cwfs. It seems

that a synthetic notion of dependent modes would be also required to formalize

constructions in this thesis, since we often work with displayed presheaves over

displayed cwfs. This is however not yet developed in the literature.

Definition 15. A family structure supports constant families if we have the

following.

K : Con → {Γ : Con} → TyΓ

(appK, lamK) : TmΓ (K∆) ≃ SubΓ∆

Constant families express that every context can be viewed as a non-dependent

type in any context. Having constant families is equivalent to the democracy

property for a cwf [CD14, NF13]. Constant families are convenient when build-

ing models because they let us model non-dependent types as semantic contexts,

which are often simpler structures than semantic types. From a programming

perspective, constant families specify closed record types, where K∆ has ∆-many

fields.

If we have equalities of sets for the specification, i.e. TmΓ (K∆) ≡ SubΓ∆, we

have strict constant families.

Definition 16. A family structure supports Σ-types if we have

Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

(proj, (– , –)) : TmΓ (ΣAB) ≃ ((t : TmΓA)× TmΓ (B[id, t]))

We may write proj1 and proj2 for composing the metatheoretic first and second

projections with proj.

Definition 17. A family structure supports the unit type if we have ⊤ : TyΓ

such that TmΓ⊤ ≃ ⊤, where the ⊤ on the right is the metatheoretic unit type,

and we overload ⊤ for the internal unit type. From this, we get the internal

tt : TmΓ⊤, which is definitionally unique.
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Definition 18. A family structure supports extensional identity types if there

is Id : TmΓA → TmΓA → TyΓ such that (reflect, refl) : TmΓ (Id t u) ≃ (t ≡ u).

It is also possible to give a positive definition for identity types, in which

case we get intensional identity. Extensional identity corresponds to a categorical

equalizer of terms (a limit), while the Martin-Löf-style intensional identity is a

positive (inductive) type.

This choice between negative and positive specification generally exists for type

formers with a single term construction rule. For example, Σ can be defined as a

positive type, with an elimination rule that behaves like pattern matching. Positive

Σ is equivalent to negative Σ, although it only supports propositional η-rules. In

contrast, positive identity is usually not equivalent to negative identity.

refl : t ≡ u → TmΓ (Id t u) expresses reflexivity of identity: definitionally equal

terms are provably equal. reflect, which goes the other way around, is called

equality reflection: provably equal terms are identified in the metatheory.

Uniqueness of identity proofs (UIP) is often ascribed to the extensional identity

type (see e.g. [Hof95]). UIP means that TmΓ (Id t u) has at most a single inhab-

itant up to Id. However, UIP is not something which is inherent in the negative

specification, instead it is inherited from the metatheory. If Tm forms a homotopy

set in the metatheory, then internal equality proofs inherit uniqueness through the

defining isomorphism.

Positive types

We do not dwell much on positive types here, as elsewhere in this thesis we talk a

lot about specifying such types anyway. We provide here some background and a

small example.

The motivation is to specify initial internal algebras in a cwf. However, spec-

ifying the uniqueness of recursors using definitional equality is problematic, if we

are to have decidable and efficient conversion checking for a type theory. Consider

the specification of Bool together with its recursor.

Bool : TyΓ

true : TmΓBool

false : TmΓBool

BoolRec : (B : TyΓ) → TmΓB → TmΓB → TmΓBool → TmΓB
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trueβ : BoolRecB t f true ≡ t

falseβ : BoolRecB t f false ≡ f

BoolRec together with the β-rules specifies an internal Bool-algebra morphism. A

possible way to specify definitional uniqueness is as follows. Assuming B : TyΓ,

t : TmΓB, f : TmΓB and m : Tm (Γ ▷ b : Bool)B, such that m[b 7→ true] ≡ t and

m[b 7→ false] ≡ f , it follows that BoolRecB t f b : Tm (Γ ▷ b : Bool)B is equal to m.

Unfortunately, deciding conversion with this rule entails deciding pointwise

equality of arbitrary Bool functions, which can be done in exponential time in the

number of Bool arguments. More generally, Scherer presented a decision algorithm

for conversion checking with strong finite sums and products in simple type theory

[Sch17], which also takes exponential time. If we move to natural numbers with

definitionally unique recursion, conversion checking becomes undecidable, since it

would require deciding extensional equality of Nat functions.

The standard solution is to have dependent elimination principles instead: this

allows inductive reasoning, canonicity and effectively decidable definitional equal-

ity at the same time. For Bool, we would have

BoolInd : (B : Ty (Γ ▷ b : Bool)) → TmΓ (B[b 7→ true])

→ TmΓ (B[b 7→ false]) → (t : TmΓBool) → TmΓ (B[b 7→ t])

together with BoolIndB t f true ≡ t and BoolIndB t f false ≡ f .

Of course, if we assume extensional identity types, we have undecidable con-

version anyway, and definitionally unique recursion is equivalent to induction. But

decidable conversion is a pivotal part of type theory, which makes it possible to

relegate a deluge of boilerplate to computers, so decidable conversion should be

kept in mind.

Universes

Universes are types which classify types. There are several different flavors of

universes.

Definition 19. A Tarski-style universe consists of the following data:

U : TyΓ El : TmΓU → TyΓ

This is a weak classifier, since not all elements of TyΓ are necessarily repre-

sented as terms of the universe. Like families, Tarski universes can be closed under
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type formers. For instance, if U has Nat, we have the following:

Nat : TmΓU zero : TmΓ (El Nat) suc : TmΓ (El Nat) → TmΓ (El Nat)

NatElim : (P : Ty (Γ ▷ n : El Nat))

→ TmΓ (P [n 7→ zero])

→ Tm (Γ ▷ n : El Nat ▷ np : P [n 7→ n]) (P [n 7→ sucn])

→ (n : TmΓ (El Nat)) → TmΓ (P [n 7→ n])

If all type formers in U follow this scheme, U may be called a weakly Tarski

universe. If we assume that every type former in U is also duplicated in (Ty, Tm),

moreover El preserves all type formers, so that e.g. El Nat is definitionally equal to

the natural number type in Ty, then U is strongly Tarski.

It is often more convenient to have stronger classifiers as universes, so that all

types in a given family structure are represented.

Definition 20. Ignoring size issues for now, Coquand universes [Coq18] are

specified as follows:

U : TyΓ (El, c) : TmΓU ≃ TyΓ

c maps every type in Ty to a code in U. Now we can ignore El when specifying

type formers, as c can be always used to get a code in U for a type.

Unfortunately, the exact specification above yields an inconsistent “type-in-

type” system because U itself has a code in U. The standard solution is to have

multiple family structures (Tyi, Tmi), indexed by universe levels, and have Ui :

Tyi+1 Γ and Tmi+1 ΓUi ≃ Tyi Γ. For a general specification of consistent universe

hierarchies, see [Kov22a]. We omit universe indices in the following, and implicitly

assume “just enough” universes for particular purposes.

Definition 21. Russell universes are Coquand universes additionally satisfying

TmΓU ≡ TyΓ as an equality of sets, and also El t ≡ t. This justifies omitting El

and c from informal notation, implicitly casting between TmΓU and TyΓ.

Russell-style universes are commonly supported in set-theoretic models. They

are also often inherited from meta-type-theories which themselves have Russell-

universes. Major implementations of type theories (Coq, Lean, Agda, Idris) are

all such.
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3.3 Two-Level Type Theory

3.3.1 Models

We describe models of 2LTT in the following. This is not the only possible way

to present 2LTT; our approach differs from [ACKS19] in some ways. We will

summarize the differences at the end of this section.

Definition 22. A model of a two-level type theory is a model of type theory

such that

• It supports a Tarski-style universe Ty0 : TyΓ with decoding Tm0 : TmΓTy0 →
TyΓ.

• Ty0 may be closed under arbitrary type formers, however, it is only possible

to eliminate from Ty0 type formers to types in Ty0.

Types in Ty0 are called inner types, while other types are outer. Alternatively, we

may talk about object-level and meta-level types.

For example, if we have inner functions, we have the following:

Π0 : (A : TmΓTy0) → Tm (Γ ▷ Tm0A) → TmΓTy0

(app0, lam0) : TmΓ (Tm0 (Π0AB)) ≃ Tm (Γ ▷ Tm0A) (Tm0B)

If we have inner Booleans, we have the following (with β-rules omitted):

Bool0 : TmΓTy0

true0 : TmΓ (Tm0 Bool0)

false0 : TmΓ (Tm0 Bool0)

BoolInd0 : (B : Tm (Γ ▷ b : Tm0 Bool0)Ty0)

→ TmΓ (Tm0 (B[b 7→ true0]))

→ TmΓ (Tm0 (B[b 7→ false0]))

→ (t : TmΓ (Tm0 Bool0)) → TmΓ (Tm0 (B[b 7→ t]))

Intuitively, we can view outer types and terms as metatheoretical, while Ty0

represents the set of types in the object theory, and Tm0 witnesses that any object

type can be mapped to a metatheoretical set of object terms. The restriction on
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elimination is crucial. If we have a Boolean term in the object language, we can

use the object-level elimination principle to construct new object terms. But it

makes no sense to eliminate into the metatheory. In fact, an object-level Boolean

term is not necessarily true or false, it can also be just a variable or neutral term

in some context, or it can be an arbitrary non-canonical value in a given model.

We review some properties of 2LTT. An important point is the action of Tm0

on type formers. In general, Tm0 preserves the negative type formers but not

others.

For example, we have the isomorphism Tm0 (Π0AB) ≃ Π1 (Tm0A) (Tm0B),

where Π1 denotes outer functions. We move left-to-right by mapping t to lam1 (app1 t),

and the other way by mapping t to lam0 (app0 t). The preservation of Σ, ⊤, K and

extensional identity is analogous.

In contrast, we can map from outer positive types to inner ones, but not the

other way around. From b : TmΓBool1, we can use the outer Bool1 recursor to

return in Tm0 Bool0. In the other direction, only constant functions are definable

since the Bool0 recursor only targets types in Ty0.

It may be the case that there are universes in the inner layer. For example,

disregarding size issues (or just accepting an inconsistent inner theory), there may

be an U0 in Ty0 such that we have TmΓ (Tm0 U0) ≡ TmΓTy0. This amounts to

having a Russell-style inner universe with type-in-type. Assume that we have U1

as well, as a meta-level Russell universe. Then we can map from Tm0 U0 to U1, by

taking A to Tm0A, but we cannot map in the other direction.

3.3.2 Internal Syntax and Notation

In the rest of this thesis we will often work internally to a 2LTT, i.e. we use 2LTT

as metatheory. We adapt the metatheoretical notations used so far. We list used

features and conventions below.

• We keep previous notation for type formers. For instance, Π-types are writ-

ten as (x : A) → B or as A → B.

• We assume a Coquand-style universe in the outer layer, named Set. As be-

fore, we leave the sizing levels implicit; if we were fully precise, we would

write Seti for a hierarchy of outer universes. Despite having a Coquand uni-

verse, we shall omit encoding and decoding in the internal syntax, and instead
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work in Russell-style. In practical implementations, elaborating Russell-style

notation to Coquand-style is straightforward to do.

• If the same type formers are supported both in the inner and outer layers, we

may distinguish them by 0 and 1 subscripts, e.g. by having Bool0 and Bool1.

We omit some inferable subscripts, e.g. for Π and Σ-types. In these cases,

we usually know from the type parameters which type former is meant. For

example, Tm0 Bool0 → Bool1 can only refer to outer functions.

• We have the convention that – = – refers to the inner equality type, while

– ≡ – refers to the outer equality type. If the inner equality is extensional,

the choice between – = – and – ≡ – is immaterial, but in Section 3.5 and

Chapter 6 we do have intensional inner equality.

• By having Set, we are able to have Ty0 : Set and Tm0 : Ty0 → Set. So we do

not have to deal with proper meta-level types, and have a more uniform nota-

tion. Notation and specification for inner type formers changes accordingly.

For example, for inner Π-types we may write (x : A) → B if A : Ty0 and

B depends on x : Tm0A. This also enables a higher-order specification: if

B : Tm0A → Ty0, then (x : A) → B x : Ty0, and the specifying isomorphism

for Π can be written as Tm0 ((x : A) → B x) ≃ ((x : Tm0A) → Tm0 (B x)).

Notation 8. An explicit notation for inner function abstraction would look

like lam0 t for t : (x : Tm0A) → Tm0 (B x). This results in “double” abstrac-

tion, e.g. in lam0 (λx. suc0 (suc0 x)) : Tm0 (Nat0 → Nat0). Instead of this,

we write λ0 x. t as a notation, thus we write λ0 x. suc0 (suc0 x) for the above

example. We may also group multiple λ0 binders together the same way as

with λ.

• We may omit inferable Tm0 applications. For instance, Bool1 → Bool0 can

be “elaborated” to Bool1 → Tm0 Bool0 without ambiguity, since the function

codomain must be on the same level as the domain, and the only thing we

can do to make sense of this is to lift the codomain by Tm0. Sometimes

there is some ambiguity: (Bool0 → Bool0) → Bool1 can be elaborated both

to Tm0 (Bool0 → Bool0) → Bool1 and to (Tm0 Bool0 → Tm0 Bool0) → Bool1.

However, in this case the two output types are definitionally isomorphic

because of the Π-preservation by Tm0. Hence, the elaboration choice does

not make much difference, so we may still omit Tm0-s in situations like this.
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Example 7. Working in the internal syntax of 2LTT, the specification of Bool0

looks like the following (omitting β again):

Bool0 : Ty0

true0 : Bool0

false0 : Bool0

BoolInd0 : (B : Bool0 → Ty0) → B true0 → B false0 → (t : Bool0) → B t

If we elaborate the type of BoolInd0, we get the following:

BoolInd0 : (B : Tm0 Bool0 → Ty0) → Tm0 (B true0) → Tm0 (B false0)

→ (t : Tm0 Bool0) → Tm0 (B t)

Here, the type is forced to live in the outer level because of the dependency on

Ty0. Since Ty0 is an outer type, Bool0 → Ty0 must be lifted, which in turn requires

all other types to be lifted as well.

3.3.3 Alternative Presentation for 2LTT

We digress a bit on a different way to present 2LTT. In the primary 2LTT reference

[ACKS19], inner and outer layers are specified as follows. We have two different

family structures on the base cwf, (Ty0, Tm0) and (Ty1, Tm1), and a morphism

between them. A family morphism is natural transformation mapping types to

types and terms to terms, which is an isomorphism on terms. We might name the

component maps as follows:

⇑ : Ty0 Γ → Ty1 Γ

↑ : Tm0 ΓA → Tm1 Γ (⇑A)

↓ : Tm1 Γ (⇑A) → Tm0 ΓA

An advantage of this presentation is that we may close (Ty0, Tm0) under type

formers without any encoding overhead, for example by having Bool0 : Ty0 Γ,

true0 : Tm0 ΓBool0, etc., without the Tarski-style decoding. On the other hand,

we do not automatically get an outer universe of inner types. We can recover that

in two ways:

• We can assume an inner universe U0 : Ty0 Γ, which can be lifted to the outer

theory as ⇑U0. However, we may not want to make this assumption, in order

to keep the inner theory as simple as possible.
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• We can assume an outer universe which classifies elements of Ty0 Γ. This

amounts to reproducing the Ty0 type from our 2LTT presentation, as an

additional assumption. But in this case, we might as well skip the two

family structures and the ⇑ morphism.

In this thesis we make ubiquitous use of the outer universe of inner types, so we

choose that to be the primitive notion, instead of having two family structures.

Do we lose anything by this? For the purposes of this thesis, not really. How-

ever, if we want to implement 2LTT as a system for two-stage compilation, the ⇑
syntax appears to be closer to existing systems. Staging is about computing all

outer redexes but no inner ones, thereby outputting syntax which is purely in the

inner theory. This could be implemented as a stage-aware variant of normalization-

by-evaluation [Abe13,AÖV18,WB18]. We can give an intuitive staging interpre-

tation for the operators in the ⇑ syntax:

• ⇑A is the type of A-expressions. This corresponds to a code in MetaOcaml

[Kis14] and TExp a in typed Template Haskell [XPL+22].

• ↑ is quoting, which creates an expression from any inner term. This is .⟨–⟩.
in MetaOCaml and [||–||] in typed Template Haskell.

• ↓ is splicing, which inserts the result of a meta-level computation into an

object-level expression. This is ∼ (–) in MetaOCaml and $$(–) in typed

Template Haskell.

For example, in the ⇑ syntax, we might write a polymorphic identity function

which acts on inner types in two different ways:

id : (A : U0) → A → A id′ : (A :⇑U0) →⇑(↓ A) →⇑(↓ A)

id :≡ λ0Ax. x id′ :≡ λ1Ax. x

The first one lives in the inner family structure. The second one is the same thing,

but lifted to the outer theory. The choice between the two allows us to control

staging-time evaluation. If we write id Bool0 true0, that is an inner expression which

goes into the staging output as it is. On the other hand, ↓ (id′ (↑ Bool0) (↑ true0))

reduces to ↓ (↑ true0) which in turn reduces to true0. The same choice can be

expressed in our syntax as well:

id : Tm0 ((A : U0) → A → A) id′ : (A : Tm0 U0) → Tm0A → Tm0A

id :≡ λ0Ax. x id′ :≡ λAx. x
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It remains to be checked which style is preferable in a staging implementation.

In the ⇑ style, the quoting and splicing operations add noise to core syntax, but

they are also mostly inferable during elaboration, and they pack stage-changing

information into ↑ and ↓, thereby making it feasible to omit stage annotations in

other places in the core syntax. In the Ty0 style, we do not have quote/splice, but

we have to keep track of stages in all type/term formers. It would be interesting

to compare the two flavors in prototype implementations of staged systems.

3.4 Presheaf Semantics of 2LTT

We review the standard semantics of 2LTT which we use in the rest of the thesis.

This justifies the metaprogramming view, that 2LTT allows meta-level reasoning

about an inner theory.

We present it in two steps, by assuming progressively more structure in the

inner theory. First, we only assume a category. This already lets us present a

presheaf semantics for the outer layer. Then, we assume a cwf as the inner theory,

which lets us interpret Ty0 and Tm0 and also consider inner type formers.

3.4.1 Presheaf Model of the Outer Layer

In this subsection we present a presheaf model for the outer layer of 2LTT, that is,

the base category together with the terminal object, the (Ty, Tm) family and some

type formers. This presheaf semantics is well-known in the literature [Hof97]. We

give a specification which follows [Hub16] most closely.

In the following, we work outside 2LTT (since we are defining a model of 2LTT),

in a suitable metatheory; an extensional type theory with enough Set universes

suffices.

We assume a C category. We write i, j, k : |C| for objects and f, g, h : C(i, j)
for morphisms. We use a different notation than for cwfs before, in order to

disambiguate components in C from components in the presheaf model of 2LTT.

We use Ĉ to refer to the model which is being defined. We use the same component

names for Ĉ as in Section 3.2.
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Model of cwf

Definition 23. Γ : Con is a presheaf over C. Its components are as follows.

|Γ| : |C| → Set

–⟨–⟩ : |Γ| j → C(i, j) → |Γ| i

γ⟨id⟩ ≡ γ

γ⟨f ◦ g⟩ ≡ γ⟨f⟩⟨g⟩

We flip around the order of arguments in the action of Γ on morphisms. This is

more convenient because of the contravariance; we can observe this in the state-

ment of preservation laws already. The action on morphisms is sometimes called

restriction.

Definition 24. σ : SubΓ∆ is a natural transformation from Γ to ∆. It has action

|σ| : |Γ| i → |∆| i, such that |σ|(γ⟨f⟩) ≡ (|σ|γ).

Definition 25. A : TyΓ is a displayed presheaf over Γ. The “displayed” here is

used in exactly the same sense as in “displayed algebra” before. As we will see in

Chapter 4, presheaves can be specified with a signature, in which case a presheaf is

an algebra, and a displayed presheaf is a displayed algebra. The definition here is

equivalent to saying that A is a presheaf over the category of elements of Γ, but it

is more convenient to use in concrete definitions and calculations. The components

of A are as follows.

|A| : |Γ| i → Set

–⟨–⟩ : |A| γ → (f : C(i, j)) → |A| (γ⟨f⟩)

α⟨id⟩ ≡ α

α⟨f ◦ g⟩ ≡ α⟨f⟩⟨g⟩

Definition 26. t : TmΓA is a section of the displayed presheaf A. This is again

the same notion of section that we have seen before, instantiated for presheaves.

|t| : (γ : |Γ|) i → |A| γ

|t|(γ⟨f⟩) ≡ (|t|γ)⟨f⟩

Definition 27. Γ ▷ A : Con is the total presheaf of the displayed presheaf A. Its

action on objects and morphisms is the following.

|Γ ▷ A| :≡ (γ : |Γ|)× |Aγ|

(γ, α)⟨f⟩ :≡ (γ⟨f⟩, α⟨f⟩)
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The id and –◦– preservation laws follow immediately.

Definition 28. A[σ] : TyΓ is defined as follows, assuming A : Ty∆ and σ :

SubΓ∆.

|A[σ]| γ :≡ |A| (|σ| γ)

α⟨f⟩ :≡ α⟨f⟩

In the second component, we use –⟨–⟩ for A on the right hand side. The defini-

tion is well-typed since |A| (|σ| (γ⟨f⟩)) ≡ |A| ((|σ| γ)⟨f⟩) by the naturality of σ.

Functoriality follows from functoriality of A.

It is easy to check that the above definitions can be extended to a cwf.

• For the base category, we take the category of presheaves.

• The empty context • is the terminal presheaf, i.e. the constantly ⊤ functor.

• Type substitution is functorial, as it is defined as simple function composition

of actions on objects.

• Term substitution is defined as composition of a section and a natural trans-

formation; and also functorial for the same reason.

• Context comprehension structure follows from the Σ-based definition for con-

text extension.

Yoneda embedding

Before continuing with interpreting type formers in Ĉ, we review the Yoneda em-

bedding, as it is useful in subsequent definitions.

Definition 29. The Yoneda embedding, denoted y, is a functor from C to the

underlying category of Ĉ, defined as follows.

y : |C| → Con y : C(i, j) → Sub (y i) (y j)

y i :≡ C(– , i) |y f | g :≡ f ◦ g

Lemma 1 (Yoneda lemma). We have Sub (y i) Γ ≃ |Γ| i as an isomorphism of

sets, natural in i [ML98, Section III.2].
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Corollary. If we choose Γ to be yj, it follows that Sub (y i) (y j) ≃ C(i, j), i.e. that
y is bijective on morphisms; hence it is an embedding.

Notation 9. For γ : |Γ| i, we use γ⟨–⟩ : Sub (y i) Γ to denote transporting right-

to-left along the Yoneda lemma. In the other direction we do not really need a

notation, since from σ : Sub (y i) Γ we get |σ| id : |Γ| i.

Type formers

Definition 30. Constant families are displayed presheaves which do not depend

on their context.

K : Con → {Γ : Con} → TyΓ

|K∆| {i} γ :≡ |∆| i

δ⟨f⟩ :≡ δ⟨f⟩

With this definition, we have TmΓ (K∆) ≡ SubΓ∆ so we have strict constant

families.

Notation 10. It is useful to consider any set as a constant presheaf, so given A : Set

we may write A : Con for the constant presheaf as well.

Definition 31. From any A : Set, we get KA : TyΓ. This can be used to model

negative or positive closed type formers. For example, natural numbers are

modeled as KN, Booleans as KBool, the unit type as K⊤, and so on.

Definition 32. Coquand universes can be defined as follows. We write SetĈ
for the outer universe in the model, to distinguish it from the external Set. Since

the SetĈ is a non-dependent type, it is helpful to define it as a SetĈ : Con such

that SubΓ SetĈ ≃ TyΓ. The usual universe can be derived from this as KSetĈ.

Again, we ignore size issues; the fully formal definition would involve indexing

constructions in Ĉ by universe levels.

We can take a hint from the Yoneda lemma. We aim to define |SetĈ| i, but by
the Yoneda lemma it is isomorphic to Sub (yi) SetĈ. However, by specification this

should be isomorphic to Ty (y i), so we take this as definition:

SetĈ : Con

|SetĈ| i :≡ Ty (y i)

A⟨f⟩ :≡ A[yf ]
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In the A⟨f⟩ definition, we substitute A : Ty (y i) with yf : Sub (yj) (yi) to get

an element of Ty (yj). The required SubΓ SetĈ ≃ TyΓ is straightforward, so we

omit the definition.

We note that Russell universes are not supported in the outer layer, as SubΓ SetĈ
and TyΓ are not strictly the same, in particular they have a different number of

components as iterated Σ-types. Nevertheless, as we mentioned in Section 3.3.2,

we use Russell-style notation in the internal 2LTT syntax, and assume that en-

coding/decoding is inserted by elaboration.

Definition 33. Σ-types are defined pointwise. The definitions for pairing and

projections follow straightforwardly.

Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

|ΣAB| γ :≡ (α : |A| γ)× |B| (γ, α)

(α, β)⟨f⟩ :≡ (α⟨f⟩, β⟨f⟩)

Definition 34. We define Π-types in the following. This is a bit more compli-

cated, so first we look at the simpler case of presheaf exponentials. We source this

example from [MM12, Section I.]. The reader may refer to ibid. for an overview

of constructions in presheaf categories.

The exponential ∆Γ : Con is characterized by the isomorphism Sub (Ξ⊗Γ)∆ ≃
SubΞ (∆Γ), where we write ⊗ for the pointwise product of two presheaves. We

can again use the Yoneda lemma. We want to define |∆Γ| i, but this is isomorphic

to Sub (yi) (∆Γ), which should be isomorphic to Sub (yi⊗Γ)∆ by the specification

of exponentials. Hence:

|∆Γ| i :≡ Sub (yi⊗ Γ)∆

σ⟨f⟩ :≡ σ ◦ (yf ◦ p, q)

In the definition of presheaf restriction, we use p, q as projections and –,– as pairing

for ⊗. In short, (yf ◦ p, q) is the same as the morphism lifting from Definition 13:

it weakens yf : Sub (yj) (yi) to Sub (yj ⊗ Γ) (yi⊗ Γ).

The dependently typed case follows the same pattern, except that we use Tm

and –▷– instead of Sub and –⊗–. Additionally, the action on objects depends on
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γ : |Γ| i, and we make use of γ⟨–⟩ : Sub (yi) Γ (introduced in Notation 9).

Π : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

|ΠAB| {i} γ :≡ Tm (yi ▷ A[γ⟨–⟩]) (B[γ⟨–⟩ ◦ p, q])

t⟨f⟩ :≡ t[yf ◦ p, q]

Let us unfold the above definition a bit. Assuming t : |ΠAB| {i} γ, we have

|t| : {j : |C|} → ((f, α) : (f : C(j, i))× |A| (γ⟨f⟩)) → |B| (γ⟨f⟩, α)

This is a bit clearer if we remove the Σ-type by currying.

|t| : {j : |C|}(f : C(j, i))(α : |A| (γ⟨f⟩)) → |B| (γ⟨f⟩, α)

Restriction is functorial since it is defined as Tm substitution. The definitions

for lam and app are left to the reader.

Definition 35. Extensional identity is defined as pointwise equality of sections:

Id : TmΓA → TmΓA → TyΓ

|Id t u| γ :≡ |t| γ ≡ |u| γ

For the restriction operation, we have to show that |t| γ ≡ |u| γ implies |t| (γ⟨f⟩) ≡
|u| (γ⟨f⟩). This follows from congruence by –⟨f⟩ and naturality of t and u. The

defining (reflect, refl) : TmΓ (Id t u) ≃ (t ≡ u) isomorphism is evident from UIP

and function extensionality for the metatheoretic –≡ – relation.

3.4.2 Modeling the Inner Layer

We assume now that C is a cwf. We write types as a, b, c : TyC i and terms as

t, u, v : TmC i a. We reuse • for the terminal object and – ▷ – for context extension,

and likewise reuse notation for substitutions.

Definition 36 (Ty0, Tm0). First, note that TyC is a presheaf over C, and TmC is

a displayed presheaf over TyC; this follows from the requirement that they form a

family structure over C. Hence, in the presheaf model TyC is an element of Con

and TmC is an element of TyTyC. Also recall from Definition 30 that TmΓ (K∆) ≡
SubΓ∆. With this is mind, we give the following definitions:

Ty0 : TyΓ Tm0 : TmΓTy0 → TyΓ

Ty0 :≡ KTyC Tm0A :≡ TmC[A]

TmC[A] is well-typed since A : TmΓ (KTyC), thus A : SubΓTyC. In other words,

A is a natural transformation from Γ to the presheaf of inner types.
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Inner type formers

Can type formers in (TyC, TmC) be transferred to (Ty0, Tm0) in the presheaf model

of 2LTT? For example, if C supports Bool, we would like to model Bool0 in Ty0 as

well. The following explanation is adapted from Capriotti [Cap17, Section 2.3].

Generally, a type former in C transfers to Ĉ if it can be specified in the internal

language of Ĉ; if the type former “always has been” in Ĉ to begin with. To be

describable in Ĉ, a type former needs to be natural with respect to C morphisms.

This is also a core idea of HOAS: when working in Ĉ, everything is natural, and we

can omit boilerplate related to contexts and substitutions. For example, consider

the specification of inner Π-types in the internal syntax of 2LTT:

Π0 : (A : Ty0) → (Tm0A → Ty0) → Ty0

(app0, lam0) : Tm0 (Π0AB) ≃ ((a : Tm0A) → Tm0 (B a))

We can say that this defines what it means for C to support Π. We recover the

usual first-order specification of Π by interpreting the higher-order specification as

a context or a closed Σ-type in the standard presheaf model of 2LTT.

In summary, if by “type formers” we mean extra structure on (Ty0, Tm0) which

is definable in 2LTT, then by definition all such type formers transfer from C to

(Ty0, Tm0). This holds for every type former mentioned in this thesis.

3.4.3 Functions With Inner Domains

There is a useful semantic simplification in the standard presheaf model, in cases

where we have functions of the form Π (Tm0A)B. This greatly reduces encoding

overhead when interpreting inductive signatures in 2LTT; we look at examples in

Section 3.5. First we look at the simply-typed case with presheaf exponentials.

Lemma 2. y preserves finite products up to isomorphism, i.e. y• ≃ • and y(i⊗j) ≃
(yi⊗ yj).

Proof. y• is C(– , •) by definition, which is pointwise isomorphic to ⊤, hence iso-

morphic to • ≡ K⊤. y(i⊗ j) is C(– , i⊗ j), which is isomorphic to yi⊗ yj by the

specification of products.
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Lemma 3. We have the following isomorphism.

|Γyi| j ≡

Sub (yj ⊗ yi) Γ ≃ by product preservation

Sub (y(j ⊗ i)) Γ ≃ by Yoneda lemma

|Γ| (j ⊗ i)

It is possible to rephrase the above derivation for Π-types. For that, we would

need to define the action of y on types and terms, consider the preservation of

– ▷ – by y, and also specify a “dependent” Yoneda lemma for Tm. For the sake of

brevity, we omit this, and present the result directly:

|Π(Tm0A)B| {i} γ ≃ |B| {i ▷ |A| γ} (γ⟨p⟩, q)

In short, depending on an inner domain is the same as depending on an extended

context in C. We expand a bit on the typing of the right hand side. We have

γ : |Γ| i, moreover

|B| : {j : C} → |Γ ▷ Tm0A| j → Set

|B| : {j : C} → ((γ′ : |Γ| j)× TmC j (|A| γ′)) → Set

|B| {i ▷ |A| γ} : ((γ′ : |Γ| (i ▷ |A| γ))× TmC (i ▷ |A| γ) (|A| γ′)) → Set

γ⟨p⟩ : |Γ| (i ▷ |A| γ)

q : TmC (i ▷ |A| γ) ((|A| γ)[p])

q : TmC (i ▷ |A| γ) (|A| (γ⟨p⟩))

3.5 Simple Signatures in 2LTT

We revisit simple inductive signatures in this section, working internally to 2LTT.

We review the concepts introduced in Chapter 2 in the same order.

Notation 11. In this section we shall be fairly explicit about writing Tm0-s and

transporting along definitional isomorphisms. The simple setting makes it feasible

to be explicit; in later chapters we are more terse, as signatures and semantics get

more complicated.
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3.5.1 Theory of Signatures

Signatures are defined exactly in the same way as before: we have Con : Set, Ty :

Set, Sub : Con → Con → Set, Var : Con → Ty → Set and Tm : Con → Ty → Set.

However, now by Set we mean the outer universe of 2LTT. Thus signatures are

inductively defined in the outer layer.

3.5.2 Algebras

Again we compute algebras by induction on signatures, but now we use inner types

for carriers of algebras. We interpret types as follows:

–A : Ty → Ty0 → Set

ιA X :≡ Tm0X

(ι → A)A X :≡ Tm0X → AA X

Elsewhere, we change the type of the X parameters accordingly:

–A : Con → Ty0 → Set

–A : VarΓA → {X : Ty0} → ΓAX → AAX

–A : TmΓA → {X : Ty0} → ΓA X → AA X

–A : SubΓ∆ → {X : Ty0} → ΓA X → ∆AX

We also define AlgΓ as (X : Ty0)× ΓA X.

Example 8. Inside 2LTT we have the following:3

Alg NatSig ≡ (X : Ty0)× (zero : Tm0X)× (suc : Tm0X → Tm0X)

Then, we may assume any cwf C, and interpret the above closed type in the

presheaf model Ĉ, and evaluate the result at • and the unique element of the

terminal presheaf K⊤:

|Alg NatSig| {•} tt : Set

We compute the definitions now. We use the simplified semantics for suc :

Tm0X → Tm0X, since the function domain is an inner type.

|Alg NatSig| {•} tt ≡ (X : TyC •)× (zero : TmC •X)× (suc : TmC (• ▷ X)X)

3Up to isomorphism, since we previously defined ΓA as a function type instead of an iterated

product type.
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Using the same computation, we get the following for binary trees:

|Alg TreeSig| {•} tt ≡ (X : TyC •)× (leaf : TmC •X)× (node : TmC (• ▷ X ▷ X)X)

We can also get internal algebras in any C category with finite products because

we can build cwfs from all such C.

Definition 37. Assuming C with finite products, we build a cwf by setting Con :≡
|C|, TyΓ :≡ |C|, SubΓ∆ :≡ C(Γ, ∆), TmΓA :≡ C(Γ, A), Γ ▷ A :≡ Γ ⊗ A and

• :≡ •C. In short, we build a non-dependent (simply-typed) cwf.

Now we can effectively interpret signatures in finite product categories. For

example:

|Alg NatSig| {•} tt ≡ (X : |C|)× (zero : C(•, X))× (suc : C(• ⊗X, X))

This is almost the same as what we would write by hand for the specification of

natural number objects; the only difference is the extra • ⊗ – in suc.

3.5.3 Morphisms

We get an additional degree of freedom in the computation of morphisms: preser-

vation equations can be inner or outer. The former option is weak or propositional

preservation, while the latter is strict preservation. In the presheaf model of 2LTT,

outer equality is definitional equality of inner terms, while inner equality is propo-

sitional equality in the inner theory. Of course, if the inner theory has extensional

identity type, weak and strict equations in 2LTT are equivalent for inner types.

We compute weak preservation for types as follows.

–M : (A : Ty){X0X1 : Ty0}(XM : Tm0X0 → Tm0X1) → AAX0 → AA X1 → Set

ιM XM α0 α1 :≡ Tm0 (X
M α0 = α1)

(ι → A)M XM α0 α1 :≡ (x : Tm0X0) → AM XM (α0 x) (α1 (X
M x))

For strict preservation, we simply change Tm0 (X
M α0 = α1) to XM α0 ≡ α1. The

definition of morphisms is the same as before:

–M : (Γ : Con1){X0X1 : Ty0} → (Tm0X0 → Tm0X1) → ΓAX0 → ΓAX1 → Set

ΓM XM γ0 γ1 :≡ {A}(x : Var1 ΓA) → AM XM (γ0 x) (γ1 x)

Mor : {Γ : Con1} → AlgΓ → AlgΓ → Set

Mor {Γ} (X0, γ0) (X1, γ1) :≡ (XM : Tm0X0 → Tm0X1)× ΓM XM γ0 γ1
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We omit here the –M definitions for terms and substitutions.

3.5.4 Displayed Algebras

We present –D only for types below.

–D : (A : Ty){X} → (Tm0X → Ty0) → AA X → Set

ιD XD α :≡ Tm0 (X
D α)

(ι → A)D XD α :≡ (x : Tm0X)(xD : Tm0 (X
D x)) → AD XD (αx)

Note that in the presheaf model, inhabitants of Tm0X → Ty0 are inner types

depending on contexts extended with the interpretation of X.

Example 9. Assume a closed (X, zero, suc) Nat-algebra in 2LTT. We have the

following computation:

DispAlg {NatSig} (X, zero, suc) ≡

(XD : Tm0X → Ty0)

× (zeroD : Tm0 (X
D zero))

× (sucD : (n : Tm0X) → Tm0 (X
D n) → Tm0 (X

D (suc n)))

Let us look at the presheaf interpretation. We simplify functions with inner do-

mains everywhere. Also note that for suc : Tm0X → Tm0X, we get |suc| tt :

TmC (• ▷ n : |X| tt) (|X| tt) in the semantics, so a suc t application is translated as

a substitution (|suc| tt)[n 7→ |t| tt].

|DispAlg {NatSig} (X, zero, suc)| {•} tt ≡

(XD : TyC (• ▷ n : |X| tt))

× (zeroD : TmC • (XD[n 7→ |zero| tt]))

× (sucD : TmC (• ▷ n : |X| tt ▷ nD : XD[n 7→ |zero| tt]) (XD[n 7→ (|suc| tt)[n 7→ n]))

To explain (|suc| tt)[n 7→ n]): we have sucn in 2LTT, where n is an inner

variable, and in the presheaf model inner variables become actual variables in the

inner theory. Hence, we map the n which suc depends on to the concrete n in the

context.
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We can also interpret displayed algebras in finite product categories:

|DispAlg {NatSig} (X, zero, suc)| {•} tt ≡

(XD : |C|)

× (zeroD : C(•, XD))

× (sucD : C(• ⊗ |X| tt⊗XD, XD))

While displayed algebras in cwfs can be used as bundles of induction motives

and methods, in finite product categories they are argument bundles to primitive

recursion; this is sometimes also called a paramorphism [MFP91]. In an internal

syntax, the type of primitive recursion for natural numbers could be written more

compactly as:

primrec : (X : Set) → X → (Nat → X → X) → Nat → X

This is not the same thing as the usual recursion principle (corresponding to weak

initiality) because of the extra dependency on Nat in the method for successors.

3.5.5 Sections

Sections are analogous to morphisms. We again have a choice between weak and

strict preservation; below we have weak preservation.

–S : (A : Ty){X XD}(XS : (x : Tm0X) → Tm0 (X
D x))

→ (α : AAX) → AD XD α → Set

ιS XS α αD :≡ Tm0 (X
S α = αD)

(ι → A)S XS α αD :≡ (x : Tm0X) → AS XS (αx) (αD (XS x))

3.5.6 Term Algebras

For term algebras, we need to assume a bit more in the inner theory. For starters,

it has to support the theory of signatures. In order to avoid name clashes down

the line, we use SigTy0 to refer to signature types, and SigTm0 for terms. That is,
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we have

SigTy0 : Ty0

Con0 : Ty0

Var0 : Tm0 Con0 → Tm0 SigTy0 → Ty0

SigTm0 : Tm0 Con0 → Tm0 SigTy0 → Ty0

Sub0 : Tm0 Con0 → Tm0 Con0 → Ty0

together with all constructors and induction principles. We also assume inner

Π-types because we previously defined Sub using functions.

Remark. If we only want to construct term algebras, it is not necessary to

assume inner induction principles. In this section, our goal is to redo the construc-

tions of Chapter 2 without making essential changes, so we just assume everything

that was available there.

We still have ToS in the outer layer. To make the naming scheme consistent,

we shall write outer ToS types as SigTy1, SigTm1, Con1, Var1 and Sub1. We have

conversion functions from the outer ToS to the inner ToS:

Definition 38. We have the following lowering functions which preserve all struc-

ture.

↓ : SigTy1 → Tm0 SigTy0

↓ : Con1 → Tm0 Con0

↓ : Var1 ΓA → Tm0 (Var0 (↓Γ) (↓A))

↓ : SigTm1 ΓA → Tm0 (SigTm0 (↓Γ) (↓A))

↓ : Sub1 Γ∆ → Tm0 (Sub0 (↓Γ) (↓δ))

These are called “lifting” or “serialization” in the context of multi-stage program-

ming; see e.g. the Lift typeclass in Haskell [PWK19]. There, like here, the point is

to build object-language terms from meta-level (“compile-time”) values.

Lowering is straightforward to define for types, contexts, variables and terms,

but there is a bit of a complication for Sub. Unfolding the definitions, we need

to map from {A} → Var1∆A → SigTm1 ΓA to Tm0 ({A} → Var0 (↓ ∆)A →
SigTm0 (↓ Γ)A). It might appear problematic that we have types and variables

in negative position because we cannot map inner types/variables to outer ones.

Fortunately, Sub1 Γ∆ is isomorphic to a finite product type, and we can lower a

finite product component-wise.
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Concretely, we define lowering by induction on ∆, while making use of a case

splitting operation for Var0. We use an informal case operation below, which can

be defined using inner induction. Note that since Var0 •A is an empty type, case

splitting on it behaves like elimination for the empty type.

↓∆: Sub1 Γ∆ → Tm0 (Sub0 (↓Γ) (↓∆))

↓• σ :≡ λ {A} (x : Var0 •A). casex of ()

↓∆▷B σ :≡ λ {A} (x : Var1 (↓∆ ▷ ↓B)A). casex of

vz → ↓(σ vz)

vsx → ↓∆ (σ ◦ vs)x

In general, for finite A type, functions of the form A → Tm0B can be represented

as inner types up to isomorphism; they can be viewed as finite products of terms.

Remark. For infinite A this does not work anymore in our system. In [ACKS19],

the assumption that this still works with A ≡ Nat1 is an important axiom (“cofi-

brancy of Nat1”) which makes it possible to embed higher categorical structures

in 2LTT. From the metaprogramming perspective, cofibrancy of Nat1 implies that

the inner theory is infinitary, since we can form inner terms from infinite collec-

tions of inner terms. We do not assume this axiom in 2LTT, although we will

consider infinitary (object) type theories in Chapters 4 and 5.

We proceed to the definition of term algebras. We fix an Ω : Con1, and define

T : Ty0 as SigTm0 (↓Ω) ι.

–T : (A : SigTy1) → Tm0 (SigTm0 (↓Ω) (↓A)) → AA T

ιT t :≡ t

(ι → A)T t :≡ λu.AT (app t u)

–T : (Γ : Con1) → Sub1ΩΓ → ΓA T

ΓT ν {A}x :≡ AT (↓(ν x))

TmAlgΩ : AlgΩ

TmAlgΩ :≡ ΩT Ω id

We omit the –T interpretation for terms and substitutions for now, as they require

a bit more setup, and they are not needed just for term algebras.
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3.5.7 Recursor Construction

Recall from Section 2.3.1 that recursion is implemented using the –A interpretation

of terms. Since terms are now in the inner theory, we need to define an inner version

of the same interpretation. We need to compute types by inner induction, so we

additionally assume a Russell-style inner U0 universe. The Russell style means

that we may freely coerce between Tm0 U0 and Ty0. The following are defined the

same way as –A before.

–A : Tm0 (SigTy0 → U0 → U0)

–A : Tm0 (Con0 → U0 → U0)

–A : Tm0 (SigTm0 ΓA → {X : U0} → ΓA X → AA X)

–A : Tm0 (Sub0 Γ∆ → {X : U0} → ΓA X → ∆AX)

Since lowering preserves all structure, and –A is defined in the same way in both

the inner and outer theories, lowering is compatible with –A in the following way.

Lemma 4. Assume A : SigTy1, Γ : Con1, X : Ty0, γ : ΓA X and t : SigTm1 ΓA.

We have the following:

• (AA
→, A

A
←) : Tm0 ((↓A)AX) ≃ AA X

• (ΓA
→, Γ

A
←) : Tm0 ((↓Γ)A X) ≃ ΓA X

• tA γ ≡ AA
→ ((↓ t)A (ΓA

← γ))

Proof. By induction on Γ, A and t.

We construct recursors now, yielding strict algebra morphisms. We assume

(X, ω) : AlgΩ. Recall that ω : ΩA X, thus ΩA
← ω : Tm0 ((↓ Ω)A X). We define

R : Tm0 T → Tm0X as R t :≡ tA (ΩA
← ω).

–R : (A : SigTy1)(t : Tm0 (SigTm0 (↓Ω) (↓A))) → AM R (AT t) (AA
→ (tA (ΩA

← ω)))

ιR t : tA (ΩA
← ω) ≡ ιA→ (tA (ΩA

← ω))

(ι → A)R t :≡ λu.AR (app t u)

–R : (Γ : Con1)(ν : Sub1ΩΓ) → ΓM R (ΓT ν) (νA ω)

ΓR ν {A}x :≡ AR (↓(ν x))
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In the proof obligation for tA (ΩA
← ω) ≡ ιA→ (tA (ΩA

← ω)), ιA→ computes to the identity

function; note that ιA→ : Tm0X → Tm0X. Hence the equality becomes reflexive.

In ΓR ν {A}x :≡ AR (↓(ν x)), we have that

AR (↓(ν x)) : AM R (AT (↓(ν x))) (AA
→ (↓(ν x)A (ΩA

← ω)))

Hence by Lemma 4, we have

AR (↓(ν x)) : AM R (AT (↓(ν x))) ((ν x)A ω)

Hence, by the definition of –A for substitutions:

AR (↓(ν x)) : AM R (AT (↓(ν x))) (νA ω x)

Which is exactly what is required when we unfold the expected return type:

–R : (Γ : Con1)(ν : Sub1ΩΓ) → ΓM R (ΓT ν) (νA ω)

–R : (Γ : Con1)(ν : Sub1ΩΓ) → {A}(x : Var1 ΓA) → AM R (AT (↓(ν x))) (νA ω x)

The recursor is defined the same way as in Definition 10:

RecΩ : (alg : AlgΩ) → Mor TmAlgΩ alg

RecΩ (X, ω) :≡ (R, ΩR Ω id)

3.5.8 Eliminator Construction

For induction, we need to additionally define –D in the inner layer.

–D : Tm0 ((A : SigTy0){X} → (Tm0X → U0) → AAX → U0)

–D : Tm0 ((Γ : Con0){X} → (Tm0X → U0) → ΓAX → U0)

–D : Tm0 ((t : SigTm0 ΓA) → ΓD XD γ → AD XD (tA γ))

–D : Tm0 ((σ : Sub0 Γ∆) → ΓD XD γ → ∆D XD (σA γ))

Lemma 5. We have again compatibility of lowering with –D. Assuming (X, γ) :

AlgΓ, (XD, γD) : DispAlg (X, γ), t : SigTm1 ΓA, and α : AA X, we have

• (AD
→, A

D
←) : Tm0 ((↓A)D XD (AA

← α)) ≃ AD XD α

• (ΓD
→, Γ

D
←) : Tm0 ((↓Γ)D XD (ΓA

← γ)) ≃ ΓD XD γ

• tD γD ≡ AD
→ ((↓ t)D (ΓD

← γD))
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The equation for tD γD is well-typed because of the term equation in Lemma 4.

Proof. Again by induction on Γ, A and t.

We also need to extend –T with action on terms. Note that we return an inner

equality, since we can only compute such equality by induction on the inner term

input:

–T : (t : SigTm0 (↓Γ) (↓A))(ν : Sub1ΩΓ) → Tm0 (A
A
← (AT (t[↓ν])) = tA (ΓA

← ν))

We assume (XD, ωD) : DispAlg TmAlgΩ, and define elimination as follows:

E : (t : Tm0 T) → Tm0 (X
D t)

E t :≡ tD (ΩD
← ωD)

This definition is well-typed only up to tT id : Tm0 (t = tA (ΩA
← (ΩT Ω id))). Since

tT id is an inner equality, in a fully formal intensional presentation we would have

to write an explicit transport in the definition.

We shall skip the remainder of the eliminator construction; it goes the same

way as in Definition 11. Intuitively, this is possible since the inner theory has all

necessary features to reproduce the eliminator construction, and lowering preserves

all structure.

Since tT yields inner equations, this implies that the displayed algebra sections

returned by the eliminator are weak sections, i.e. they contain β-rules expressed in

inner equalities.

3.5.9 Strict Elimination

If we want to use term algebras in generic programming, having only weak β-

rules in elimination is inconvenient. We make a brief digression here, to define an

alternative eliminator which computes strictly. The idea is to specialize the notion

of displayed algebras to the term algebra, and likewise give a specialized definition

for the eliminator function. We fix Ω : Con1 and XD : Tm0 (SigTm0 (↓Ω) ι) → Ty0.

–D : (A : SigTy1) → Tm0 (SigTm0 (↓Ω) (↓A)) → Ty0

ιD XD α :≡ XD α

(ι → A)D XD α :≡ (u : SigTm0Ω ι) → XD u → AD XD (αu)
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ΩD : Set

ΩD :≡ {A : SigTy1}(x : Tm0 (Var0 (↓Ω) (↓A))) → Tm0 (A
D (var x))

Elim : {A : SigTy1} → ΩD → (t : Tm0 (SigTm0 (↓Ω) (↓A))) → Tm0 (A
D t)

ElimωD (var x) :≡ ωD x

ElimωD (app t u) :≡ ElimωD t u (ElimωD u)

Now, Elim {ι} has type ΩD → Tm0 ((t : SigTm0 (↓Ω) ι) → XD t). Since ΩD is a

finite product of inner types, it’s isomorphic to an inner type, so we can extract a

purely inner eliminator:

Elim : (XD : SigTm0 (↓Ω) ι → U0) → ΩD → (t : SigTm0 (↓Ω) ι) → XD t.

Here, ΩD specifies induction methods, and the eliminator is defined by inner induc-

tion on terms. Compare this to the previously constructed weak eliminator, where

we had to transport the result over tT id. The extra transport precluded strict

β-rules in that case, since transports do not definitionally compute on inductive

constructors in the inner theory.

However, the weak eliminator construction is overall more regular and scales

better to more complicated theories of signatures, as we will see in Sections 4.4

and 5.6. Also, in these Sections we will assume equality reflection everywhere so

weak and strict β-rules will coincide. Another advantage of the weak eliminator

construction is that it builds on definitions that are already available from the

semantics of signatures. In contrast, strict eliminators should be connected back

to the semantics in a separate step: we should show that strict elimination yields

a displayed algebra section, and that the two definitions of displayed algebras are

equivalent. We do not detail these here.



CHAPTER 4

Finitary Quotient Inductive-Inductive Signatures

In this chapter we bump the expressive power of signatures by a large margin,

and also substantially extend the semantics. However, we keep the basic approach

the same; indeed its advantages become apparent with the more sophisticated

signatures.

We use two different setups for semantics in this chapter.

• In Sections 4.1-4.2.7 we work in 2LTT, thereby getting a generalized se-

mantics for signatures. Here we keep details about universe levels to the

minimum.

• In Section 4.4, we work in an extensional type theory with cumulative uni-

verses. This is more suited for the term algebra construction, where (as we

will see) 2LTT does not bring any advantage, but we do need to be more

precise about universes.

4.1 Theory of Signatures

Signatures are once again given by contexts of a type theory, but now it is a

dependent type theory, given as a cwf with certain type formers, in the style of

Section 3.2.

Metatheory and terminology

We work in 2LTT with Ty0 and Tm0, and make the following assumptions:

• Ty0 is closed under ⊤, Σ and extensional identity – = –. The inner identity

reflects the outer one.

55
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• The outer identity – ≡ – is also extensional; it reflects strict equality in

some unspecified metatheory outside 2LTT. This justifies omitting transports

along –≡ – in our notation.

In the following we specify models of the theory of finitary quotient inductive-

inductive signatures. The names involved are a bit of a mouthful, so we abbreviate

“finitary quotient inductive-inductive” as FQII, and like before, we abbreviate

“theory of signatures” as ToS. In this chapter, by signature we mean an FQII

signature unless otherwise specified.

Additionally, we abbreviate “quotient inductive-inductive types” as QIIT, and

we may qualify it to FQIIT if it is finitary. A type in this sense is simply the initial

algebra for a given FQII signature. We shall use this naming in the rest of the

thesis; an inductive type is an initial algebra for a signature. Also, we use syntax

as a synonym for initial algebra.

Definition 39. A model of the theory of signatures consists of the following.

• A cwf with underlying sets Con, Sub, Ty and Tm, all returning in the outer

Set universe of 2LTT.

• A Tarski-style universe U with decoding El.

• An extensional identity type Id : TmΓA → TmΓA → TyΓ, specified by

(reflect, refl) : TmΓ (Id t u) ≃ (t ≡ u).

• An internal product type Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ,

specified by (app, lam) : TmΓ (Π aB) ≃ Tm (Γ ▷ El a)B.

• An external product type ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ,

specified by (appExt, lamExt) : TmΓ (ΠExt Ix B) ≃ ((i : Ix ) → TmΓ (B i)).

At this point we only have a notion of model for ToS, but as we will see in

Chapter 5, ToS is also an algebraic theory, more specifically an infinitary QII

one. It is infinitary because ΠExt and lamExt allow branching which is indexed over

elements of arbitrary Ix : Ty0 types.

Because of the algebraic character of ToS, there is a category of ToS models

where morphisms strictly preserve all structure, and the initial model corresponds

to the syntax. We will make this precise in Chapter 5. We also assume that the

ToS syntax exists.



CHAPTER 4. FINITARY QII SIGNATURES 57

Definition 40. An FQII signature is an element of Con in the syntax of ToS.

We review several example signatures in the following, using progressively more

ToS type formers. We also introduce progressively more compact notation for

signatures. As a rule of thumb, we shall use compact notation for larger and more

complex signatures, but we shall be more explicit when we specify models of ToS

later in this chapter.

Example 10. Simple inductive signatures can be evidently expressed using U and

Π. By adding a single U to the signature, we introduce the inductive sort, while

Π adds an inductive parameter to an entry.

NatSig :≡ • ▷ (N : U) ▷ (zero : ElN) ▷ (suc : Π(n : N)(ElN))

TreeSig :≡ • ▷ (T : U) ▷ (leaf : ElT ) ▷ (node : Π(t1 : T )(Π(t2 : T )(ElT )))

Observe that the domains in Π are terms with type U, while the codomains are

proper types.

Notation 12. We write non-dependent product types in ToS as follows.

• a ⇒ B for Π ( : a)B.

• Ix ⇒Ext B for ΠExt Ix (λ .B).

Using this notation, we may write suc : N ⇒ ElN and node : T ⇒ T ⇒ ElT .

Notation 13. The “categorical” application app with explicit substitutions is a bit

inconvenient. Instead, we simply write whitespace for Π and ΠExt application:

t u :≡ (app t)[id, u]

t u :≡ (appExt t)u

Example 11. We may have any number of sorts by adding more U to the signa-

tures. Moreover, sorts can be indexed over previous sorts. Hence, using only U, El

and Π, we can express any closed inductive-inductive type [NF13]. The following

fragment of the the signature for categories is such:

• ▷ (Obj : U) ▷ (Hom : Obj ⇒ Obj ⇒ U) ▷ (id : Π(i : Obj ) (El (Hom i i)))

These inductive-inductive signatures are more flexible than those in prior litera-

ture [NF13], since we allow type constructors (sorts) and point constructors to
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be arbitrarily mixed, as opposed to mandating that sorts are declared first. For

example:

• ▷ (A : U) ▷ (a : ElA) ▷ (B : A ⇒ U) ▷ (C : B a ⇒ U)

Here C is indexed over B a, where a is a point constructor of a, so a sort specifi-

cation mentions a point constructor.

Example 12. Id lets us add equations to signatures. With this, we can write

down the full signature for categories:

• ▷ (Obj : U)

▷ (Hom : Obj ⇒ Obj ⇒ U)

▷ (id : Π(i : Obj ) (El (Hom i i)))

▷ (comp : Π (i j k : Obj ) (Hom j k ⇒ Hom i j ⇒ El (Hom i k)))

▷ (idr : Π (i j : Obj )(f : Hom i j) (Id (comp i i j f (id i)) f))

▷ (idl : Π (i j : Obj )(f : Hom i j) (Id (comp i j j (id j) f) f))

▷ (assoc : Π (i j k l : Obj )(f : Hom j l)(g : Hom j k)(h : Hom i j)

(Id (comp i j l (comp j k l f g)h) (comp i k l f (comp i j k g h))

Now, this is already rather hard to read, even together with a compressed notation

for multiple Π binders.

Notation 14. For more complex signatures, we may entirely switch to an internal

notation, where we mostly reuse the conventions in the metatheories, including

implicit arguments and implicit quantification. We use (x : a) → B for internal

products, (x : A) →Ext B for external products, but we still write Id for the identity

type and make U and El explicit. In this notation, a signature is just a listing of

binders. The category signature becomes the following:

Obj : U

Hom : Obj → Obj → U

id : El (Hom i i)

–◦– : Hom j k → Hom i j → El (Hom i k)

idr : Id (f ◦ id) f

idl : Id (id ◦ f) f

assoc : Id (f ◦ (g ◦ h)) ((f ◦ g) ◦ h)
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Example 13. The external product type makes it possible to reference inner types

(in 2LTT) in signatures. Here “external” is meant relative to a given signature,

and refers to types and inhabitants which are not introduced inside a signature.

For example, we give a signature for lists by assuming A : Ty0 for the (external)

type of list elements:

List : U

nil : El List

cons : A →Ext List → El List

Hence, “parameters” are always assumptions made in the metatheory. We can

also index sorts by external values. Let us specify length-indexed vectors now; we

keep the A : Ty0 assumption, but also assume that Ty0 has natural numbers, with

Nat0 : Ty0, zero0 and suc0.

Vec : Nat0 →Ext U

nil : El (Vec zero0)

cons : (n : Nat0) →Ext A →Ext Vecn → El (Vec (suc0 n))

Example 14. We can also introduce sort equations using Id: this means equating

terms of U, i.e. inductively specified sets. This is useful for specifying certain

strict type formers. For example, a signature for cwfs can be extended with a

specification for strict constant families.

Con : U

Sub : Con → Con → U

Ty : Con → U

Tm : (Γ : Con) → TyΓ → U

...

K : Con → {Γ : Con} → El (TyΓ)

Kspec : Id (TmΓ (K∆)) (SubΓ∆)

The equation for Russell-style universes is likewise a sort equation:

Univ : El (TyΓ)

Russell : Id (TmΓUniv) (TyΓ)
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Example 15. As we mentioned in Definition 25, there is a signature for presheaves,

so let us look at that now. Assume a category C in the inner theory; this means

that objects and morphisms of C are in Ty0.

Obj : |C| →Ext U

Hom : C(i, j) →Ext Obj j → El (Obj i)

Homid : Id (Hom idx)x

Hom◦ : Id (Hom (f ◦ g)x) (Hom f (Hom g x))

We depart from the sugary naming scheme in Definition 25, and name the action

on objects Obj and the action on morphisms Hom. When we give semantics to this

signature in Section 4.2, we will get as algebras functors from Cop to the category

of inner types. That category has elements of Ty0 as objects and Tm0A → Tm0B

functions as morphisms.

Strict positivity

Only strictly positive signatures are expressible. Similarly to the case with simple

signatures, there is no way to abstract over internal products, since internal prod-

ucts are indexed over U-small types, and U has no type formers at all. With ΠExt,

we can abstract over functions, but only those which are external to a signature

and do not depend on internally specified constructions.

Limitation: nested induction

Nested induction means that external type functions may be applied to expressions

internal to the theory of signatures. This is not possible in any of the signatures in

this thesis. A common example is rose trees, assuming external List : Set → Set:

Tree : Set

node : List Tree → Tree

The List Tree expression is not representable in a signature; the List function is

external, while Tree would be an internal sort. This style of inductive definition re-

quires reasoning about the polarity of all external type functions: only the strictly

positive Set → Set functions should be allowed. With general type functions we

would also need to track polarity of multiple parameters, or even higher-order

polarity.
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Many use cases of nested induction can be removed by “including” the external

type constructor into the signature. In the case of rose trees, this means defining

lists and trees mutually:

List : U

Tree : U

nil : El List

cons : Tree → List → El List

node : List → El Tree

Of course, nested induction would be still desirable because of the code reuse that

it enables.

4.2 Semantics

4.2.1 Overview

For simple signatures, we only gave semantics in enough detail so that notions of

recursion and induction could be recovered. We aim to do more now. For each

signature, we would like to have

1. A category of algebras, with homomorphisms as morphisms.

2. A notion of induction, which requires a notion of dependent algebras.

3. A proof that for algebras, initiality is equivalent to supporting induction.

We do this by creating a model of ToS where contexts (signatures) are cate-

gories with certain extra structure and substitutions are structure-preserving func-

tors. Then, ToS signatures can be interpreted in this model, using the initiality of

ToS syntax (i.e. the recursor).

Our semantics has a type-theoretic flavor, which is inspired by the cubical

set model of Martin-Löf type theory by Bezem et al. [BCH14]. The idea is to

avoid strictness issues by starting from basic ingredients which are already strict

enough. Hence, instead of modeling ToS types as certain slices and substitution

by pullback, we model types as displayed categories with extra structure, which

naturally support strict reindexing/substitution.
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We make a similar choice in the interpretation of signatures themselves: we use

structured cwfs of algebras, where types correspond to displayed algebras. This

choice is in contrast to having finitely complete categories of algebras. Preliminar-

ily, the reason is that “native” displayed algebras and sections allow us to compute

induction principles strictly as one would write in a type theory. In fact, in this

chapter we recover exactly the same semantics for simple signatures that we al-

ready specified. In contrast, in finitely complete categories there is no primitive

notion of displayed objects, and we can only specify induction principles up to

equivalences.

This issue is perhaps not relevant from a purely categorical perspective, but we

are concerned with eventually implementing QIITs in proof assistants. If we do

not compute induction principles here in an exact way, we do not get them from

anywhere else.

4.2.2 Separate vs. Bundled Models

Previously, we defined –A, –M , –D and –S interpretations of signatures separately,

by doing induction anew for each one. Formally, this amounts to giving a plain

model of ToS in order to define –A, but then giving three displayed models of ToS

to specify the other interpretations because they sometimes need to refer to the

recursors or eliminators of other interpretations.

For example, –A : Con → Set while –D : (Γ : Con) → ΓA → Set, so displayed

algebras already refer to –A, which is part of the recursor for the corresponding

model.

However, this piecewise style can be avoided: we can give a single non-displayed

model which packs everything in a Σ-type, yielding just one interpretation function

for signatures. Let us call that function –M now:

–M : Con → (A : Set)

× (M : A → A → Set)

× (D : A → Set)

× (S : (a : A) → Da → Set)

Note that it is often not possible to merge multiple recursors/eliminators by pack-

ing models together. For example, addition on natural numbers is defined by

recursion, and so is multiplication; but since multiplication calls addition in an
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iterated fashion, it is not possible to define both operations by a single algebra.

Nevertheless, merging does work in our case. We will, in fact, get a formal vocabu-

lary for merging models (and manipulating them in other ways) from the semantics

of ToS itself.

In simple cases, and in Agda, the piecewise style is convenient, since we do not

have to deal with Σ-s. However, for larger models, important organizing principles

may become more apparent if we bundle things together.

In the following, we shall define a model M : ToS such that its Con component

is a bundle containing all A, M , D, S components, plus a number of additional

components. We present the components of M in the same order as in Definition

39. There is significant overlap in names and notations, so we use bold font to

disambiguate components ofM from components of other structures. For example,

we use σ : SubΓ∆ to denote a substitution in M, while there could be Sub-named

components in other structures under consideration.

4.2.3 Finite Limit Cwfs

We define Con : Set as the type of finite limit cwfs (flcwfs). Recall that this

specifies the objects of the underlying cwf of M. In the following we specify flcwfs

and describe some internal constructions.

Definition 41. We define flcwf : Set as an iterated Σ-type with the following

components:

1. A cwf with Con, Sub, Ty, Tm all returning in Set. Remark: this implies that

flcwf : Set is in a larger universe than all of these internal components. We

continue to elide universe sizing details.

2. Σ-types.

3. Extensional identity type Id with refl and reflect.

4. Strict constant families K.

Definition 42. We abbreviate the additional structure on cwfs consisting of Σ,

Id and K as fl-structure.

We recover previous concepts as follows. Assuming Γ signature, we get an flcwf

by interpreting Γ in M. In that flcwf we have
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• Con as the type of algebras.

• Sub as the type of algebra morphisms.

• Ty as the type of displayed algebras.

• Tm as the type of displayed algebra sections.

From this, notions of initiality and induction are apparent as well. Initiality is the

usual categorical notion. Also note that the unit type can be derived as K •.

Definition 43. Assuming Γ : Con in a cwf, we define the induction predicate

on objects:

Inductive : ConΓ → Set

InductiveΓ :≡ (A : TyΓ Γ) → TmΓ ΓA

In our semantics this will say that an algebra is inductive if every displayed algebra

over it has a section. We also know that induction and initiality are equivalent.

Theorem 1. We assume an flcwf Γ with weak constant families. An object

Γ : ConΓ supports induction if and only if it is initial. Moreover, induction and

initiality are both mere properties.

Proof. First, we show that induction implies initiality. We assume Γ : Con,

ind : InductiveΓ and ∆ : Con. We aim to show that there is a unique in-

habitant of SubΓ∆. We have ind (K∆) : TmΓ (K∆), hence appK (ind (K∆)) :

SubΓ∆. We only need to show that this is unique. Assume δ : SubΓ∆. Now,

ind (Id (lamK δ) (ind (K∆))) : TmΓ (Id (lamK δ) (ind (K∆))), and it follows by equal-

ity reflection that lamK δ ≡ ind (K∆), thus δ ≡ appK (ind (K∆)).

Second, the other direction. We assume that Γ is initial, and also A : TyΓ,

and aim to inhabit TmΓA. By initiality we get a unique σ : SubΓ (Γ ▷ A). Now,

q[σ] : TmΓ (A[p ◦ σ]), but since p ◦ σ : SubΓΓ, it must be equal to id by the

initiality of Γ. Hence, q[σ] : TmΓA.

Lastly: it is well-known that initiality is a mere property, so let us show the

same for induction. We assume ind, ind′ : InductiveΓ and A : TyΓ. We have

reflect (ind (Id (indA) (ind′A))) : indA ≡ ind′A. Since A is arbitrary, by function

extensionality we also have ind ≡ ind′.

Theorem 2. TmΓA in an flcwf is propositional when Γ is initial.
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Proof. Assuming t, u : TmΓA, we have reflect (ind (Id t u)) : t ≡ u.

Note that the above proofs do not rely on Σ-types in the flcwf, so why do we

include them in the semantics? One reason is the prior result by Clairmabault

and Dybjer [CD14], that a slightly different formulation of flcwfs is biequivalent to

finitely complete categories. More concretely, in ibid. there is a 2-category of cwfs

with Σ, Id and “democracy”, the last of which is equivalent to the weak formulation

of constant families. Then, it is shown that this 2-category is biequivalent to the

2-category of finitely complete categories. Thus, including Σ is a good deal, as

this allows us to connect our semantics back to finitely complete categories, which

are more common in categorical settings.

We recover finite limits in an flcwf as follows. The product of Γ and ∆ is

given by Γ ▷ K∆, and we get projection and pairing from context comprehension.

The equalizer of σ, δ : SubΓ∆ is given by Γ ▷ Idσ δ, which is well-typed because

morphisms can be viewed as terms, e.g. σ : TmΓ (K∆). The unique morphism

out of the equalizer is p : Sub (Γ ▷ Idσ δ) Γ.

Our Definition 41 for flcwfs is not exactly the same as in [CD14] because our

constant families are strict. However, this only strengthens our semantics in this

section, since weak constant families can be trivially recovered from strict ones.

We present some results from the existing literature in the following.

Definition 44 (Type categories, c.f. [CD14, Section 2.2]). We work in an flcwf

with weak constant families. For each Γ : Con, there is a category whose objects

are types A : TyΓ, and morphisms from A to B are terms t : Tm (Γ ▷ A) (B[p]).

Identity morphisms are given by q : Tm (Γ ▷ A) (A[p]), and composition t ◦ u by

t[p, u]. The assignment of type categories to contexts extends to a split indexed

category. For each σ : SubΓ∆, there is a functor from Ty∆ to TyΓ, which sends

A to A[σ] and t : Tm (Γ ▷ A) (B[p]) to t[σ ◦ p, q].

Notation 15.

• In any cwf, we use σ : Γ ≃ ∆ to indicate that σ : SubΓ∆ is an isomorphism

with inverse σ−1.

• A type isomorphism, written as t : A ≃ B is an isomorphism in a type

category, with inverse as t−1.

Theorem 3 (Equivalence of types and slices, c.f. [CD14, Section 2.2]). Assume

that we work in an flcwf Γ with weak K. For each Γ : Con, the type category TyΓ

is equivalent to the slice category Γ/Γ.
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Remark. In the flcwf of sets where types are A → Set families, the above

theorem yields the equivalence of A → Set and (B : Set) × (B → A). This is

sometimes called the “family-fibration” equivalence. It is also a notable motivating

example for univalence in type theory: it is not an isomorphism of sets, but only

an equivalence up to isomorphism of sets. So this is an example for an equivalence

which quite naturally arises even if we only care about sets, but one which is not

covered by set-level univalence, and additionally requires univalence for groupoids,

if we want to prove it as a propositional equality.

4.2.4 The Cwf of Finite Limit Cwfs

The next task is to define the cwf part of M. We already know that objects are

flcwfs.

Category

A morphism σ : SubΓ∆ is an algebra homomorphism, viewing flcwfs as alge-

braic structures. Hence, σ includes a functor between underlying categories, but

it also maps types to types and terms to terms, and strictly preserves all structure.

Notation 16. We may implicitly project out the underlying maps from σ. Hence,

we have the following four maps:

σ : ConΓ → Con∆

σ : SubΓ Γ∆ → Sub∆ (σ Γ) (σ∆)

σ : TyΓ Γ → Ty∆ (σ Γ)

σ : TmΓ ΓA → Tm∆ (σ Γ) (σA)

We list some of the preservation equations as examples of usage:

σ • ≡ •

σ (Γ ▷ A) ≡ σ Γ ▷ σA

σ (A[σ]) ≡ (σA)[σ σ]

σ (t[σ]) ≡ (σ t)[σ σ]

σ (ΣAB) ≡ Σ (σA) (σB)

σ (proj1 t) ≡ proj1 (σ t)

Above, we could have also included subscripts indicating the Γ or ∆ flcwf, as in

σ •Γ ≡ •∆; but these are quite easily inferable, so we omit them.
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Identity morphisms and composition are defined in the evident way using

identity functions and function composition in underlying maps, and they satisfy

the category laws.

The terminal object • : Con is given by having Con• :≡ ⊤, Sub• Γ∆ :≡ ⊤,

Ty• Γ :≡ ⊤ and Tm• ΓA :≡ ⊤, and all structure and equations are defined trivially.

Family structure

A type A : TyΓ is a displayed flcwf over Γ. As we have seen before, displayed

algebras can be computed as logical predicate interpretations of algebraic signa-

tures. Every A component lies over the corresponding Γ component. Also note

that a displayed flcwf includes a displayed category, for which some results have

been worked out in [AL19].

Notation 17. In situations where we need to refer to both “base” and displayed

things, we give underlined names to contexts, substitutions, types and terms in a

base flcwf. For example, we may have Γ : ConΓ living in Γ : Con, and Γ : ConA Γ

living in a displayed flcwf over Γ. We only use underlining on 2LTT variable names,

and overload flcwf component names for displayed counterparts. For example, a

Con component is named the same in a base flcwf and a displayed one.

Concretely, a displayed flcwf A over Γ has the following underlying sets, which

we call displayed contexts, substitutions, types and terms respectively.

ConA : ConΓ → Set

SubA : ConA Γ → ConA ∆ → SubΓ Γ∆ → Set

TyA : ConA Γ → TyΓ Γ → Set

TmA : (Γ : ConA Γ) → TyA ΓA → TmΓ ΓA → Set

We list several components of A below; note how every A operation lies over the

corresponding Γ operation. In our notation with implicit arguments, equations

in A can be written the same way as in Γ, but of course there is extra indexing

involved, and the displayed equations are well-typed because of their counterparts

in the base.

idA : SubA ΓΓ idΓ

– ◦A – : SubA ∆Ξσ → SubA Γ∆ δ → SubA ΓΞ (σ ◦Γ δ)

idlA : idA ◦A σ ≡ σ
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idrA : σ ◦A idA ≡ σ

•A : ConA •Γ

– ▷A – : (Γ : ConA Γ) → TyA ΓA → ConA Γ (Γ ▷Γ A)

–[–]A : TyA ∆A → SubA Γ∆σ → TyA Γ (A[σ]Γ)

–[–]A : TmA ∆A t → (σ : SubA Γ∆σ) → TmA Γ (A[σ]A) (t[σ]Γ)

IdA : TmA ΓA t → TmA ΓAu → TyA Γ (IdΓ t u)

KA : ConA ∆ → {Γ : ConA Γ} → TyA Γ (KΓ∆)

ΣA : (A : TyA ΓA) → TyA (Γ ▷A A)B → TyA Γ (ΣΓAB)

In the following we will often omit Γ and A subscripts on components; for example,

in the type ConA •, the • is clearly a base component in Γ.

A substituted type A[σ] : TyΓ is defined as follows, for A : Ty∆ and σ :

SubΓ∆. We simply compose underlying functions in σ with the underlying

predicates in A:

ConA[σ] Γ :≡ ConA (σ Γ)

SubA[σ] Γ∆σ :≡ SubA Γ∆ (σ σ)

TyA[σ] ΓA :≡ TyA Γ (σA)

TmA[σ] ΓA t :≡ TmA ΓA (σ t)

It should be clear that A[σ] thus defined still supports all displayed flcwf struc-

ture. For example, the displayed contexts in A[σ] are elements of ConA (σ Γ), but

since σ preserves all Γ-structure, we can also recover all displayed structure. For

example, if Γ is •, we have σ • ≡ •, and we can reuse •A : ConA • to define the

displayed empty context in A[σ], and we can proceed analogously for all other

structure in A[σ].

Additionally, type substitution is functorial, i.e. A[id] ≡ A and A[σ ◦ δ] ≡
A[σ][δ]. This holds because the underlying set families are defined by function

composition.

Remark. Types could be equivalently defined as slices, as objects in flcwf/Γ,

and type substitution could be given as pullback, but in that case we would run

into the well-known strictness issue, that type substitution is functorial only up

to isomorphism. This is not a critical issue, as there are standard solutions for

recovering strict substitutions from weak ones [KLV12, LW15, CD14]. But if we

ever need to look inside the definitions in the model, using displayed algebras yields

less encoding overhead than strictifying pullbacks.
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A term t : TmΓA is a displayed flcwf section, which again strictly preserves

all structure. We use the same notation for the action of t that we use for Sub.

We have the following underlying maps:

t : (Γ : ConΓ) → ConA Γ

t : (σ : SubΓ Γ∆) → SubA (tΓ) (t∆)σ

t : (A : TyΓ Γ) → TyA (tΓ)A

t : (t : TmΓ ΓA) → TmA (tΓ) (tA) t

A substituted term t[σ] for t : Tm∆A and σ : SubΓ∆ is again given by

component-wise function composition.

An extended context Γ▷A is the total flcwf of A. This is defined by combining

corresponding underlying sets with Σ-types:

ConΓ▷A :≡ (Γ : ConΓ)× ConA Γ

SubΓ▷A (Γ, Γ) (∆, ∆) :≡ (σ : SubΓ Γ∆)× SubA Γ∆σ

TyΓ▷A (Γ, Γ) :≡ (A : TyΓ Γ)× TyA ΓA

TmΓ▷A (Γ, Γ) (A, A) :≡ (t : TmΓ ΓA)× TmA ΓA t

All structure is defined pointwise, using Γ-structure for first projections and A-

structure for second projections. Γ ▷A may be viewed as a dependent generaliza-

tion of products of flcwfs.

Comprehension structure follows from the above definition: p is component-

wise first projection, q is second projection and substitution extension –, – is

pairing.

With this, we have a cwf of flcws. Remark: the theory of flcwfs is itself algebraic

and has a finitary QII signature. Hence, if we succeed building semantics for

finitary QII signatures, we get “for free” an flcwf of flcwfs. Of course, we cannot

rely on this when we are in the process of defining the M model in the first place.

Checking that the M model indeed works, is the somewhat tedious task that we

have to perform once, in order to get semantics for any other finitary QII theory.
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4.2.5 Type Formers

Strict constant families

This was not included in the ToS specification, but it is quite useful, so we shall

define it. K∆ : TyΓ is defined by ignoring Γ inhabitants in all underlying sets:

ConK∆ Γ :≡ Con∆

SubK∆ Γ∆σ :≡ Sub∆ Γ∆

TyK∆ ΓA :≡ Ty∆ Γ

TmK∆ ΓA t :≡ Tm∆ ΓA

All structure is inherited from ∆. There is also a type substitution rule, expressing

that for σ : SubΓΞ, we have (K{Ξ}∆)[σ] ≡ K{Γ}∆. This follows immedi-

ately from the above definition and the definition of type substitution, since the

base inhabitants are ignored the same way on both sides of the equation. We also

need to show TmΓ(K∆) ≡ SubΓ∆. This again follows directly from the K

definition. From K, we get

• The unit type, defined as K • : TyΓ.

• Categorical products of Γ and ∆, defined as Γ ▷K∆.

• The ability to define closed type formers as elements of Con.

Universe

Similarly to what we did in Definition 32, we define U as a context, and use K

later to get the universe as a type. U : Con is defined to be the flcwf where objects

are inner types, and morphisms are outer functions between them:

ConU :≡ Ty0

SubU Γ∆ :≡ Tm0 Γ → Tm0∆

TyU Γ :≡ Tm0 Γ → Ty0

TmU ΓA :≡ (γ : Tm0 Γ) → Tm0 (Aγ)

Substitution for types and terms is defined by function composition. The empty

context is defined as the inner unit type ⊤0, and context extension Γ▷UA is defined
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as (γ : Γ)× Aγ using inner Σ. We can also define ΣU and IdU using inner Σ and

identity.

For constant families, we do not need any additional assumption in the inner

theory, since it can be defined as KU {Γ}∆ :≡ ∆, and SubU Γ∆ ≡ TmU Γ (KU∆)

follows immediately.

For a : SubΓU, we have to define Ela : TyΓ. This is given as the displayed

flcwf of elements of a.

Background: from any functor F : C → Set we can construct the category of

elements
∫
F , where objects are in (i : |C|) × F i and morphisms between (i, x)

and (j, y) are in (f : C(i, j)) × (F f x ≡ y). If we take the second projections of

components in
∫
F , we get the displayed category of elements, which lies over C.

We may also call this a discrete displayed category, in analogy to discrete categories

whose morphisms are trivial.

We extend this to flcwfs in the definition of Ela. With this definition, Γ▷Ela

will yield the flcwf of elements of a.

ConEla Γ :≡ Tm0 (aΓ)

SubEla Γ∆σ :≡ aσ Γ ≡ ∆

TyEla ΓA :≡ Tm0 (aAΓ)

TmEla ΓA t :≡ a tΓ ≡ A

Let us check that we have all other structure as well.

• For contexts and types, the task is to exhibit elements of a lying over specific

base contexts and types.

• For terms and substitutions, the task is to exhibit equations which specify

the action of a.

• Equations between terms and substitutions are trivial because of UIP (we

need to show equations between equality proofs).

We summarize below the additional structure on top of the displayed category

part of Ela.

• For •Ela : ConEla •, the type can be simplified along the definition of ConEla

and structure-preservation by a to Tm0⊤0. Hence, •Ela :≡ tt0 is the unique
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definition. For ϵ : SubEla Γ •Ela ϵ, we have to show a ϵΓ ≡ tt0, which holds

by the uniqueness of tt0.

• For Γ ▷Ela A : ConEla (Γ ▷ A), the target type unfolds to Tm0 (a (Γ ▷ A)),

which in turn simplifies to Tm0 ((γ : aΓ)× aAγ). Since Γ : Tm0 (aΓ) and

A : Tm0 (aAΓ), we define Γ ▷Ela A as (Γ, A).

• For comprehension, we have to show the following, after simplifying types:

p : a p (Γ, A) ≡ Γ

q : a q (Γ, A) ≡ A

(σ, t) : a (σ, t) Γ ≡ (∆, A)

For p and q, equations follow from preservation by a. For pairing, the goal

further simplifies to (aσ Γ, a tΓ) ≡ (∆, A). Then, the first and second

components are equal by the σ and t hypotheses.

• Assuming A : TyEla∆A and σ : SubEla Γ∆σ, we aim to define A[σ]Ela :

TyEla Γ (A[σ]). Simplifying types, A : Tm0 (aA∆), σ : aσ Γ ≡ ∆ and the

target type is Tm0 (a (A[σ]) Γ), which is the same as Tm0 (aA (aσ Γ)), by

the preservation of –[–] by a. Hence, by the σ assumption, the target type

is Tm0 (aA∆), so we give the following definition:

A[σ]Ela :≡ A

This is clearly functorial; moreover, substitution rules for the other type

formers hold trivially.

• Term substitution is given by transitivity of equality.

• For IdEla t u : TyEla Γ (Id t u), the goal type is Tm0 (a (Id t u) Γ), hence Tm0 (a tΓ =

auΓ). This holds by t : a tΓ ≡ A and u : a tΓ ≡ A. Reflexivity and equality

reflection are trivial by UIP.

• For A : TyEla ΓA and B : TyEla (Γ ▷ A)B, we aim to define ΣEla AB :

TyEla Γ (ΣAB), hence

ΣEla AB : Tm0 (a (ΣAB) Γ)

ΣEla AB : Tm0 ((A : aAΓ)× aB (Γ, A))

ΣEla AB :≡ (A, B)
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Projections and pairing proceed analogously to what we did for comprehen-

sion.

• For KEla ∆ : TyEla Γ (K∆), the target type simplifies to Tm0 (a∆), hence we

have KEla∆ :≡ ∆. For the specifying sort equation of K, we have to show

SubEla Γ∆σ ≡ TmEla Γ (KEla ∆)σ

where σ : SubΓ∆ but at the same time σ : TmΓ (K∆) because of the K sort

equation in the base. Fortunately, both sides simplify to aσ Γ ≡ ∆.

We still have to check (Ela)[σ] ≡ El (a ◦ σ), the naturality rule for El. We only

have to check equality of underlying sets, Con and Ty formers, since terms and

substitutions are equal by UIP. For underlying sets, both sides compute to the

following:

ConΓ :≡ Tm0 (a (σ Γ))

SubΓ∆σ :≡ a (σ σ) Γ ≡ ∆

TyΓA :≡ Tm0 (a (σA) Γ)

TmΓA t :≡ a (σ t) Γ ≡ A

Since σ also strictly preserves all structure, and we simply replace a action by the

composite a◦σ action, it is straightforward to check that Con and Ty formers are

also the same on both sides.

At this point, we have U : Con and El : SubΓU. Let us rename them to U′

and El′ respectively, and define the usual “open” versions:

U : TyΓ El : TmΓU → TyΓ

U :≡ KU′ Ela :≡ El′ a

Identity

Assuming t, u : TmΓA, extensional identity Id t u is defined as component-wise

equality:

ConId tu Γ :≡ tΓ ≡ uΓ

SubId tu Γ∆σ :≡ tσ ≡ uσ

TyId tu ΓA :≡ tA ≡ uA

TmId tu ΓA t :≡ t t ≡ u t
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All other structure follows from structure-preservation of t and u. For the sim-

plest example, •Id tu : t • ≡ u • holds because t and u both preserve •. The rule

(Id t u)[σ] ≡ Id (t[σ]) (u[σ]) is straightforward to check: we only have to look at

the underlying sets, where e.g. both sides have ConΓ ≡ (t (σ Γ) ≡ u (σ Γ)). It is

also evident that TmΓ(Id t u) is equivalent to t ≡ u, that is, we have reflexivity

and equality reflection.

Internal product type

For a : TmΓU and B : Ty (Γ ▷ Ela), we aim to define ΠaB : TyΓ. This is a

dependent product of displayed flcwfs, indexed over a discrete domain. Discrete-

ness is critical: since morphisms in Ela are proof-irrelevant and invertible (because

they are equations), we avoid the variance issues that preclude general Π-types in

the cwf of categories [Joh02, Secion A1.5].

The direct definition would be to define underlying sets as products, indexed

over corresponding components in Ela:

ConΠaB Γ :≡ (γ : aΓ) → ConB (Γ, γ)

SubΠaB Γ∆σ :≡ {γ : aΓ}{δ : a∆}(σ : SubEla γ δ σ) → SubB (Γ γ) (∆ δ) (σ, σ)

TyΠaB ΓA :≡ {γ : aΓ}(α : aAγ) → TyB (Γ γ) (A, α)

TmΠaB ΓA t :≡ {γ : aΓ}{α : aAγ}(t : TmEla γ δ t) → TmB (Γ γ) (Aα) (t, t)

But just like in Definitions 4 and 6, we can contract the Sub and Tm definitions,

since SubEla γ δ σ ≡ (aσ γ ≡ δ) and TmEla γ α t ≡ (a t γ ≡ α).

ConΠaB Γ :≡ (γ : aΓ) → ConB (Γ, γ)

SubΠaB Γ∆σ :≡ (γ : aΓ) → SubB (Γ γ) (∆ (aσ γ)) (σ, refl)

TyΠaB ΓA :≡ {γ : aΓ}(α : aAγ) → TyB (Γ γ) (A, α)

TmΠaB ΓA t :≡ (γ : aΓ) → TmB (Γ γ) (A (a t γ)) (t, refl)

With the contracted definition, Sub and Tm are only indexed over displayed objects

and types, but not over displayed morphisms or terms anymore. So it is apparent

that we cannot have issues with indexing variance. All structure in ΠaB is

pointwise inherited from B. We list some examples below for definitions.

•ΠaB γ :≡ •B

(Γ ▷ΠaB A) (γ, α) :≡ (Γ γ ▷B Aα)
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idΠaB γ :≡ idB

(σ ◦ΠaB δ) γ :≡ σ γ ◦B δ γ

A[σ]ΠaB {γ}α :≡ (Aα)[σ γ]B

KΠaB ∆α :≡ KB (∆α)

For the specifying isomorphism (app, lam) : TmΓ(ΠaB) ≃ Tm (Γ ▷ Ela)B,

note that the difference in presentation is exactly component-wise currying and

uncurrying. For instance, in t : TmΓ(ΠaB), the underlying action on contexts

has the following type:

(Γ : ConΓ)(γ : aΓ) → ConB (Γ, γ)

While in t : Tm (Γ ▷ Ela)B, we have

((Γ, γ) : (Γ : ConΓ)× aΓ) → ConB (Γ, γ)

So app and lam are defined as component-wise uncurrying and currying respec-

tively. Naturality of Π and app again follows from the fact that flcwf morphisms

strictly preserve all structure, and substitution is component-wise function com-

position.

External product type

For Ix : Ty0 and B : Tm0 Ix → TyΓ, we define ΠExt Ix B : TyΓ as the Ix -indexed

product of a family of displayed flcwfs.

ConΠExt Ix B Γ :≡ (i : Tm0 Ix ) → ConB i Γ

SubΠExt Ix B Γ∆σ :≡ (i : Tm0 Ix ) → SubB i (Γ i) (∆ i)σ

TyΠExt Ix B ΓA :≡ (i : Tm0 Ix ) → TyB i (Γ i)A

TmΠExt Ix B ΓA t :≡ (i : Tm0 Ix ) → TmB i (Γ i) (A i) t

All structure is defined in the evident pointwise way. appExt and lamExt are defined

by component-wise flipping of function arguments. This concludes the definition

of the M model.

Example 16. We look at the computation of a semantic flcwf, in the simple case

of the flcwf of Nat-algebras. Recall that the signature is

NatSig :≡ • ▷ (N : U) ▷ (zero : ElN) ▷ (suc : N ⇒ ElN)
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We evaluate NatSig in M entry-wise. We start from •, the terminal flcwf where

algebras are elements of ⊤. Then, moving left to right, we take the total flcwf

of each type in the signature. From U, we get the product of ⊤ and the flcwf

of sets, which is equivalent to simply the flcwf of sets. Second, we extend this

with the semantic ElN , which is the displayed flcwf of points of sets, to get the

flcwf of pointed sets. Finally, by extension with N ⇒ ElN , we get the flcwf of

Nat-algebras.

Let us also look at some components of the resulting flcwf. Algebras, displayed

algebras, morphisms and sections have been already discussed before, so we look at

other components. We omit the leading⊤ components everywhere in the following.

• is the terminal Nat-algebra, i.e. • ≡ (⊤, tt, λ . tt). Context extension – ▷ – :

(Γ : Con) → TyΓ → Con constructs the total algebra of a displayed algebra.

(N, z, s) ▷ (ND, zD, sD) ≡

(((n : N)×ND n), (z, zD), (λ (n, nD). (s n, sD nnD)))

p and q respectively project first and second components from a total algebra. For

t, u : Tm (N, z, s) (ND, zD, sD), Id t u is the displayed Nat-algebra which expresses

equality of Nat-algebra sections. Let us review the definition of sections:

Tm (N, z, s) (ND, zD, sD) ≡

(NS : (n : N) → ND n)

× (zS : NS z ≡ zD)

× (sS : (n : N) → NS (s n) ≡ sD n (NS n))

We have that

Id (NS
0 , z

S
0 , s

S
0 ) (N

S
1 , z

S
1 , s

S
1 ) ≡

((λn.NS
0 n ≡ NS

1 n), ( : NS
0 z ≡ NS

1 z), (λn. ( : NS
0 (s n) ≡ NS

1 (s n))))

The underscores denote omitted equality proofs; they follow from the zS and sS

components. It should be apparent that TmΓ (Id t u) is isomorphic to t ≡ u;

this follows from function extensionality and decomposition of equalities of pairs.

Thus, equality reflection holds in the flcwf of Nat-algebras. Note that we do not

need to use equality reflection for – ≡ – to show this; it is simply a reshuffling of

components along funext.

K : Con → {∆ : Con} → Ty∆ yields a non-dependent displayed algebra:

K (N, z, s) {N ′, z′, s′} ≡ (λ .N, z, λ n . s n)
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With this definition, we indeed have that TmΓ (K∆) ≡ SubΓ∆.

Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ is the evident parameterized variant of

– ▷ –:

Σ (ND, zD, sD) (ND′
, zD

′
, sD

′
) :≡

((λn. (nD : ND n)×ND′
(n, nD)),

(zD, zD
′
),

(λn (nD, nD′
). (sD nnD, sD

′
(n, sD nnD)nD′

)))

4.2.6 Recovering AMDS Interpretations

We have defined the M model in a “bundled” fashion, but sometimes we will also

need to refer to pieces of it. In Figure 4.1 we have a summary of the model. On

the left, the rows are labeled with components of ToS, while on the top we have

components of flcwf. The individual rows can be further unfolded, as each of them

contains multiple components. Likewise the Σ, Id and K columns can be unfolded.

We get the whole model by filling every cell of the unfolded table with a definition.

Of course, many of these cells are equations between equations, hence trivial by

UIP.

This setup is very regular and convenient because we can extract a displayed

ToS model from any column, which may depend on columns to the left. The whole

model is the total model of all columns. For example, the Con column does not

depend on anything, so it is a plain model. The Ty column is displayed over Con.

The Tm column depends on Con and Ty, but it does not depend on Sub.

See also Appendix A for a tabular specification of the AMDS interpretations.

From each displayed model, we get an eliminator, i.e. a family of interpretation

functions. We note –A, –M , –D and –S in the table, but in principle we could

refer to the eliminators of other columns as well. The interpretation functions can

be defined in two ways:

• By separately taking the eliminators of each column, and referring to pre-

vious eliminators in each displayed model; e.g. referring to the eliminator

functions –A in the definition of the Ty column.

• By taking the recursor for the entire model, and projecting out components

from the result. E.g. we get –A by projecting out the first components of

the interpretations of ToS objects.
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cwf fl

Con Sub Ty Tm ... Σ Id K

cwf

–A –M –D –S

U

Id

Π

ΠExt

Figure 4.1: The flcwf model of the theory of signatures

However, the two versions coincide because of the initiality of ToS syntax.

4.2.7 Left Adjoints of Substitutions

In this section we show that if all signatures have initial algebras, then the semantic

interpretation of each ν : SubΩ∆ has a left adjoint functor. We have the following

setup.

• We write J–K for the interpretation into the flcwf model M.

• We close types in ToS under ⊤ and Σ, that is, we have ⊤ : TyΓ and Σ : (A :

TyΓ) → Ty (Γ▷A) → TyΓ. The flcwf semantics can be immediately extended

with these type formers: since flcwfs are given by an FQII signature, they

form an flcwf themselves and support ⊤ (as K •) and Σ. In the following we

will need to talk about signatures depending on signatures, and ⊤ and Σ are

more convenient for this purpose than telescopes.

Given ν : SubΩ∆ in the ToS syntax, we get JνK : JΩK → J∆K as a functor

between JΩK and J∆K categories of algebras. We seek to construct some L : J∆K →
JΩK such that L ⊣ JνK.

The basic idea is the following: the existence of left adjoints is equivalently

characterized by having an initial object in the comma category δ/JνK for each

δ : ∆A [ML98, Section IV]. Thus, it is enough to find some signature Ψ such that

JΨK is equivalent to δ/JνK, and by assumption we get an initial object. The objects

of δ/JνK consist of the following:

(ω : ΩA)× (η : ∆M δ (νA ω))
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Of the two components, ω : ΩA can be clearly represented as the Ω signature. The

η component is a bit more complicated. We need to represent a ∆-morphism, but

whose domain is an external algebra, and whose codomain is an algebra internal to

the ToS syntax. In other words, we need a notion of “heterogeneous” morphism,

where the domain lives in the usual flcwf semantics, but the codomain lives in the

syntactic slice model ToS/Ω.

Definition 45 (Heterogeneous morphisms). Fixing Ω : Con, we define –HM

by induction on the ToS.

–HM : (Γ : Con) → ΓA → SubΩΓ → TyΩ

–HM : (σ : SubΓ∆) → TmΩ (ΓHM γ0 γ1) → TmΩ (∆HM (σA γ0) (σ ◦ γ1))

–HM : (A : TyΓ) → AA γ0 → TmΩ (A[γ1]) → TmΩ (ΓHM γ0 γ1) → TyΩ

–HM : (t : TmΓA)(γHM : TmΩ (ΓHM γ0 γ1)) → TmΩ (AHM (tA γ0) (t[γ1]) γ
HM)

The interpretation on contexts sums up the difference between the “homogeneous”

–M and the current one. In the homogeneous interpretation, we have ΓM : ΓA →
ΓA → Set, in the heterogeneous one the codomain of the relation is syntactic, and

the return type as well. We use ⊤ and Σ in ToS to interpret contexts:

•HM γ0 γ1 :≡ ⊤

(Γ ▷ A)HM (γ0, α0) (γ1 α1) :≡ Σ (γHM : ΓHM γ0 γ1) (A
HM α0 α1 γ

HM)

We use a nameful notation for Σ-binding on the right hand side. In the cwf

interpretation we similarly reuse ToS type formers in a mechanical way, following

the definitions of the homogeneous –HM .

U is interpreted using external function types:

UHM : (a0 : Ty0)(a1 : TmΩU) → TmΩ (ΓHM γ0 γ1) → TyΩ

UHM a0 a1 γ
HM :≡ a0 →Ext El a1

Note that this does not work if a0 is syntactic and a1 is external, as we have no

function type in ToS with external codomain; so –HM would not work with an

external second parameter. ElHM uses the Id type in ToS:

(El a)HM : aA γ0 → TmΩ (El (a[γ1])) → TyΩ

(El a)HM α0 α1 γ
HM :≡ Id (aHM γHM α0)α1
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In Π we give the usual pointwise definition, using the external product type:

(Π aB)HM t0 t1 γ
HM :≡ (α : aA γ0) →Ext BHM (t0 α) (t1 (a

HM γHM α)) (γHM , refl)

In Id, we reuse the Id in ToS:

(Id t u)HM : tA γ0 ≡ uA γ0 → TmΩ (Id (t[γ1]) (u[γ1])) → TmΩ (ΓHM γ0 γ1) → TyΩ

(Id t u)HM p0 p1 γ
HM :≡ Id (tHM γHM) (uHM γHM)

External products are again external products.

(ΠExt IxB)HM t0 t1 γ
HM :≡ (i : Ix) →Ext (B i)HM (t0 i) (t1 i) γ

HM

The newly added ⊤ and Σ type formers are evident:

⊤HM tt tt γM :≡ ⊤

(ΣAB)HM (α0, β0) (α1, β1) :≡

Σ (αHM : AHM α0 α1 γ
M) (BHM β0 β1 (γ

HM , αHM))

Definition 46 (Representing signature). For ν : SubΩ∆ and δ : ∆A, we define

the signature which represents δ/JνK:

Sigδ/JνK :≡ Ω ▷∆HM δ ν

Now, we have that

(Sigδ/JνK)
A ≡ (ω : ΩA)× ((∆HM δ ν)A ω)

(Sigδ/JνK)
M (ω0, η0) (ω1, η1) ≡ (ωM : ΩM ω0 ω1)× ((∆HM δ ν)M η0 η1 ω

M)

It remains to show that JSigδ/JνKK is indeed equivalent to δ/JνK. It suffices to show

that sets of objects and morphisms are isomorphic. We need the following:

A≃ : (∆HM δ ν)A ω ≃ ∆M δ (νA ω)

M≃ : (∆HM δ ν)M η0 η1 ω
M ≃ (νM ωM ◦ A≃ η0 ≡ A≃ η1)

These can be shown by induction on ToS again; we omit describing this here.

Theorem 4. If every FQII signature has an initial algebra, then for every ν :

SubΩ∆, there exists a left adjoint of JνK : JΩK → J∆K.

Proof. For each δ : ∆A, the comma category δ/JνK can be specified with Sigδ/JνK

by Definition 46, hence it has an initial object. The left adjoint L : J∆K → JΩK
sends each δ : ∆A to the ω : ΩA component of the initial algebra of Sigδ/JνK.
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4.3 Discussion of Semantics

4.3.1 Flcwfs For Free

We give a quick summary for using the semantics of FQII signatures. As input we

pick a) a signature Γ b) a cwf C with Σ, ⊤ and extensional Id. Then, we interpret

the signature in M, thereby getting an flcwf in 2LTT. Then, we interpret that in

presheaves over C, and we get the flcwf whose objects are internal Γ-algebras in

C.
One use case is in building models of certain type theories. Usually, this starts

with constructing the base cwf. But if the objects can be specified using an FQII

signature, we get an flcwf for free. In some cases, we get exactly what is needed.

For example, the flcwf of presheaves can be used as it is in the presheaf models of

type theories.

In other cases, the flcwf that we get has to be extended in some ways. This

often happens if the objects in the model have an internal notion of “equivalence”

which has to be respected by types.

• In the setoid model, objects are setoids and types are displayed setoids with

additional fibrancy structure [ABKT19].

• The groupoid model [HS96] is analogous; again types are displayed groupoids

with fibrancy structure.

• Likewise, in the cubical set model [BCH14], types are displayed presheaves

together with fibrancy structure (Kan composition).

In all these cases, the semantic objects have FQII signatures. We can interpret

their flwcfs in Set and add fibrancy conditions. The cubical set model is presented

exactly in this way in [BCH14], using displayed algebras. The groupoid model

in [HS96] instead presents types as Γ → Gpd functors, i.e. uses an indexed style

instead of the displayed style.

In the indexed-style groupoid model, we get strictly functorial type substitu-

tion, just like in the displayed style. However, the displayed style appears to be

a more general way to get strict substitution, as it works for every FQII theory.

Again, although finitely complete categories can be always strictified to cwfs, if

we ever need to perform calculations with the internal definitions of a model, the

displayed style is much more direct.
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4.3.2 Variations of the Semantics

In Section 4.1, we required that the inner theory has Σ, ⊤ and extensional Id,

and then used the assumed type formers in the definition of U. Hence, when we

interpret the semantic flcwf of a signature in the presheaf model, we again need to

assume these type formers in the base cwf C.
However, we can drop Id from the requirements on the inner theory, and likewise

drop the identity type from flcwfs, and the model still works. In this case we have

a somewhat more general semantics. In particular, like in Section 3.5.2, we can

interpret signatures in finite product categories because ⊤ and Σ can be derived

from finite products in the constructed “simply typed” cwf. On the other hand,

we get less out of the semantics. For instance, we cannot show equivalence of

initiality and induction without Id.

If we want to trim down the assumptions on the inner theory to the minimum,

we can make do with simply an inner cwf with no type formers at all. This implies

that for each signature we can build a category of algebras, plus extra structure

which does not require Σ or ⊤ in the U definition. So we may have displayed

algebras, sections, and also functorial substitution for these, but we do not have

terminal algebras and total algebras.

We could also add more type formers to the semantics. For instance, we may

add an external product ΠExt (specified the same way as in signatures). Extending

flcwfs with ΠExt requires Π-types in the inner theory of 2LTT, hence in C as well.

The reason is that indexed products of algebras require functions in the underlying

sorts. More concretely, in the definition of U we have to interpret

ΠExt
U : (Ix : Ty0) → (Tm0 Ix → TyU Γ) → TyU Γ

hence

ΠExt
U : (Ix : Ty0) → (Tm0 Ix → Tm0 Γ → Ty0) → Tm0 Γ → Ty0

This works if we can return an inner Π type in the definition:

ΠExt
U Ix B γ :≡ (i : Ix ) → B i γ

In this case, the flcwf semantics can be completed. We omit checking the details

here. If we have both extensional Id and ΠExt, that yields small limits of algebras.

If we want to have “simply typed” semantics for this configuration, it is enough

to assume a cartesian closed base category C.
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4.3.3 Substitutions

Interpreting signatures is not the only potentially useful thing that we get out of

the semantics. Each σ : SubΓ∆ can be viewed as a free interpretation of the ∆

theory in Γ, and we get a strict flcwf morphism from the semantics.

Ornaments

One use case of Sub is to specify ornaments [Dag17], i.e. ways to decorate struc-

tures with additional information, or dually, to erase parts of some structure.

Ornaments differ from the usual forgetful maps because they forget structure in

negative position, i.e. in assumptions of construction rules.

Example 17. We assume A : Ty0. We define the substitution which forgets

elements of A-lists.

σ : Sub (• ▷ (Nat : U) ▷ (zero : ElNat) ▷ (suc : Nat))

(• ▷ (List : U) ▷ (nil : ElList) ▷ (cons : A →Ext List → List))

The map goes from numbers to lists because of the “contravariant” forgetfulness.

We define σ by listing its component definitions.

List :≡ Nat

nil :≡ zero

cons :≡ λext . λ n. sucn

Example 18. We assume Nat0 : Ty0 with zero0 and suc0, and define σ : SubNatSig FinSig,

where FinSig is as follows:

Fin : Nat0 →Ext U

zero : (n : Nat0) →Ext El (Fin (suc0 n))

suc : (n : Nat0) →Ext Finn → El (Fin (suc0 n))

σ is defined as

Fin :≡ λext .Nat

zero :≡ λext . zero

suc :≡ λext . λ n. sucn
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For a specific programming use case, if we have any recursive function defined

on an “erased” type, we can convert that to a recursive function which acts on

an “ornamented” type. For example, if we have some Nat-algebra Γ, the recursor

yields a morphism from the initial algebra to Γ. We can map Γ to a list-algebra or

a Fin-algebra, and then we can also use recursors for lists or Fin. Equivalently, we

can map the unique morphism to Γ directly to a morphism between ornamented

algebras.

Note though that a number of features and concepts from prior work on orna-

ments are not yet reproduced. For example, we do not yet have an analogue of

algebraic ornaments, which would allow us produce an ornamented signature as

an output of a generic operation, instead of assuming it to begin with. Exploring

ornaments with QII signatures could be part of future work.

Model constructions

In a broader context, ToS provides a synthetic language for specifying model con-

structions.

Example 19. For a simple example, we might want to show that constant families

are equivalent to democracy in cwfs. Democracy means that for each Γ : Con there

is a Γ : Ty • such that Γ ≃ (• ▷ Γ) [CCD17, Section 3.1].

We can define a σ : Sub cwfK cwfdem which interprets democracy using constant

families. It is the identity morphism on the cwf parts and interprets democracy as

Γ :≡ KΓ. The isomorphism Γ ≃ (• ▷ KΓ) follows from the specification of K. We

can also define a morphism σ−1 : Sub cwfK cwfdem, which interprets K∆ as ∆[ϵ]. It

is easy to check that σ−1 is indeed the inverse of σ. Thus we get an isomorphism

of flcwfs of models from the ToS semantics.

This construction is very simple, and would not be difficult to check without

the ToS semantics. But it is generally not obvious that a certain mapping from

models to models extends to an flcwf morphism, so it may be helpful to work inside

ToS.

Example 20. There is a simple way to show that if a type theory does not sup-

port η for Π, then function extensionality is not provable in the theory [BPT17].1

1It is also possible to show unprovability of function extensionality assuming η for functions,

but in significantly more complicated ways. To the author’s best knowledge, the set-based

polynomial model is the easiest solution [VG15].
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Assume some type theory with Σ, Π, Id and Bool, and abbreviate its signature as

TT. We define a σ : SubTTTT which has identity action everywhere except on

Π. There, we have

Π :≡ λAB.ΠAB × Bool

app :≡ λ t. app (proj1 t)

lam :≡ λ t. (lam t, true)

In short, we tag functions with a Bool value. This equips Π with “intensional”

information, contradicting extensionality. If we have two functions which are point-

wise equal, that only specifies that the function parts are equal, but does not say

anything about the Bool tags. Hence, if we take any model of TT, we get a new

model by the semantic action of σ, where function extensionality is false. Note

though that the η rule also fails in the new model, so we had to drop η from the

TT signature as well.

In [BPT17], this construction is presented for the special case where the starting

model is initial. While it is easy to generalize to arbitrary starting models, it is

less obvious to extend the construction to a functor of categories of models - which

we do get for free here.

Example 21. The gluing construction by Kaposi, Huber and Sattler [KHS19]

takes as input two models of some type theory together with a weak cwf-morphism

between them, and produces as output a displayed model over the first model. De-

pending on the choice of the inputs, the gluing construction can yield parametricity

translations and canonicity proofs as well.

Let us use TT : Ty • for the signature of the type theory, given as an iterated

large Σ-type. Then, the notion of weak cwf-morphism is also expressible in ToS

as morph : Ty (• ▷ (M0 : TT) ▷ (M1 : TT)), and the notion of displayed model

as well, as TTD : Ty (• ▷ (M : TT)).2 Thus, we can give a “type” for the gluing

construction, as follows:

Tm (• ▷ (M0 : TT) ▷ (M1 : TT) ▷ (f : morph[M0 7→ M0, M1 7→ M1]))

(TTD[M 7→ M0])

Moreover, the gluing construction itself can be given as an inhabitant of the above

type. This construction works in the ToS because it only reuses structure from

M1 to define the displayed model over M0.

2We will be also able to automatically derive TTD from TT, in Section 5.4.
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Limitations. In the finitary ToS syntax, when defining substitutions we can

only ever use assumed type constructors. If we assume Σ and ⊤ type formers in

the domain signature of a construction, we might be able to work around the lack

of Σ and ⊤ in U in the ToS itself. This does not always work though; for example,

take the substitution with type SubMonoidSig CatSig which maps a monoid to a

single-object category. Assuming M : U is the carrier set in MonoidSig, we would

need to have the following:

Obj :≡ ⊤

Hom :≡ λ .M

But we have Obj : U in CatSig, so we would need to have ⊤ : U. In Chapter 5, we

present a more expressive ToS which does include ⊤ : U.

4.3.4 Using Signatures in Implementations

We may ask whether the current ToS is suitable for implementations of type the-

ories. The answer is not wholly straightforward.

Note that we must choose a concrete surface syntax in an implementation,

and there are many design choices. The surface syntax would be almost certainly

nameful, and may or may not leave El-s implicit, since they are not difficult to

insert by bidirectional elaboration. Besides the elaboration of surface syntax, we

should have at least the computation of induction principles.

Equality reflection in the ToS is a complication. If we have “silent” transports

along equality reflection, that makes elaboration of surface signatures undecidable.

We might make transports explicit, which restores decidable checking, but that

requires the ToS to be deeply embedded in some ambient theory.3

Alternatively, we may just drop equality reflection from the ToS, and use trans-

port and UIP as primitives. This recovers decidable surface syntax, but now we

have to cover transport and UIP in the semantics, to be able to compute induction

principles. This is not too difficult; in Chapter 6 we do the same for path induction

J in the ToS. In that case, we even have a Haskell implementation of signature

elaboration and computation of induction principles [Kov20].

Hence, handling signatures and computing induction principles is not difficult.

Instead, the real gap between our ToS and practical implementations is that we

3Equality reflection is simply an equality constructor in the embedded syntax, and has no

bearing on decidability of type checking in the metalanguage.
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need to have computationally adequate treatment of quotients. In plain Martin-

Löf type theories, computation gets stuck on quotients. We need to use more

recent systems, such as a cubical type theories [VMA21,SAG20], or some flavor of

observational [AMS07] or setoid [ABKT19] type theory. In each of these systems,

the signatures and their semantics would need to be adapted, and we would need

to work out additional details. For example, we would need to produce extra

computation rules which explain the behavior of coercion or transport on QIIT

constructors.

4.4 Term Algebras

In this section we proceed with the construction of term algebras for FQII sig-

natures, together with their recursors and eliminators. We make two significant

modifications to the setup.

First, we drop the outer theory, and work exclusively inside an exten-

sional type theory. The reason is the following. The main purpose of 2LTT is to

generalize the semantics of signatures. In the previous section, we presented se-

mantics for signatures, where algebras are internal to arbitrary cwfs with Σ, ⊤ and

extensional Id. This is quite general; in particular we can interpret signatures in

any finitely complete category. We also described dropping assumptions in Section

4.3.2, thereby getting semantics in yet more general settings.

In contrast, we make a lot more assumptions in the inner theory when we

develop initial term algebras; we essentially have to replicate the outer features

verbatim. Thus, we gain nothing by using 2LTT, compared to working in a model

of an extensional TT.

What about the term model construction for simple signatures in Section 3.5.6,

why did we use 2LTT there? In that case, the inner theory was intensional, i.e.

lacked equality reflection. So there remained an interesting distinction between the

inner and outer layer, which allowed us to prove definitional β-rules for recursors.

In contrast, here we assume inner equality reflection, so we have no distinction

between propositional and definitional inner equality.

Second, we make universe levels explicit in the semantics and construc-

tions. So far, we have been consistently ignoring universe levels. Now, size ques-
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i ≤ j

Γ ⊢ Seti ≤ Setj

Γ, x : A ⊢ B ≤ B′

Γ ⊢ (x : A) → B ≤ (x : A) → B′

Γ ⊢ A ≤ A′ Γ, x : A ⊢ B ≤ B′

Γ ⊢ (x : A)×B ≤ (x : A′)×B′ Γ ⊢ A ≤ A

Γ ⊢ A ≤ B Γ ⊢ B ≤ C

Γ ⊢ A ≤ C

Γ ⊢ A ≤ A′ Γ ⊢ t : A

Γ ⊢ t : A′

Figure 4.2: Rules for cumulative subtyping

tions are less obvious, and quite relevant to a) ensuring the consistency of as-

sumed induction principles b) laying groundwork for bootstrapped semantics and

self-describing signatures in Section 4.5.

Universe levels are a fairly bureaucratic detail in type theories. In the following

we try to be as informal as possible, while still representing the essential sizing

aspects. In the following, we describe the new universe setup, and adapt the

previously described signatures and semantics to it.

4.4.1 Universes & Metatheory

We have N-indexed Russell-style Seti universes, which are cumulative, meaning

that any type in Seti is also an element of Seti+1. We use a surface syntax which

is similar to Coq, where cumulativity is implicit. This contrasts the formal (“alge-

braic”) specification of cumulativity [Ste19,Kov22a], which involves rather heavy

explicit annotation.

Also following Coq, we have implicit cumulative subtyping [TS18]. In our case,

this means that cumulativity distributes through basic type formers. We have a

– ≤ – subtyping relation on types, specified in Figure 4.2. This is subtyping for

surface syntax ; it is expected that surface syntax can be elaborated to coercions

in a formal syntax with algebraic cumulativity.

Note that we have an invariant rule for function domain types. This is to

match Coq and [TS18], and also because we will not need a contravariant rule in

any case.

We assume that Π and Σ types return in least upper bounds of levels. For
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instance, assuming A : Seti and B : A → Setj, we have (x : A) → B : Seti⊔ j.

4.4.2 Signatures & Semantics

First, we parameterize the notion of ToS-model with levels.

Definition 47. For levels i and j, ToSi,j : Seti+1⊔ j+1 is the type of ToS models,

defined as before, but where Con, Sub, Ty and Tm all return in Seti, and ΠExt

abstracts over Setj.

We have that ToSi,j ≤ ToSi+1,j. This follows from the rules in Figure 4.2. All

underlying sets return in Seti, which can be bumped to Seti+1. Th j level does

not change, which is as expected, since Setj appears in a negative position in the

type of ΠExt, and has to be invariant.

Assumption. We assume that for all j, there exists synj : ToSj+1,j which

supports induction. Note the level bump in the first index; this is to avoid incon-

sistency from type-in-type:

Ty : Con → Setj+1

ΠExt : (A : Setj) → (A → TyΓ) → TyΓ

With Ty returning in Setj, Π
Ext would “contain” a Setj, but at the same time

return in a type in Setj, and by induction we would be able to derive a Russell-like

paradox. Likewise, all other underlying sets must be bumped to Setj+1 because of

their mutual nature: contexts, terms and substitutions all “contain” types through

some of their constructors.

Definition 48 (Signatures). We define Sigj : Setj+1 as the type of signatures

where ΠExt may abstract over Setj, so we have Sigj :≡ Consynj .

Definition 49 (Flwcf model). For levels i and j, we have Mi,j : ToS(i+1⊔ j)+1,j

as the model where contexts are flcwfs, and objects in the flcwf are algebras. The

model is defined in essentially the same way as in Section 4.2. The algebras have

underlying sets in Seti and (semantic) external products are indexed over types in

Setj. Hence, every algebra in Mi,j is in Seti+1⊔ j.

Example 22. We may define NatSig as an element of Sig0. Then, by interpreting

the signature in Mi,0, we get NatSigA ≡ (N : Seti) × (N → N) × N , hence

NatSigA : Seti+1⊔ 0.
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Notation 18. For a signature Γ : Sigj and level i, we may write ΓA
i for the type

of Γ-algebras with underlying sets in Seti, which is computed by interpreting Γ in

Mi,j. We may use similar notation for –M , –D and –S.

Cumulativity of algebras. In the following, we shall assume that for Γ : Sigj

and i ≤ i′, we have ΓA
i ≤ ΓA

i′ . For any concrete signature Γ, this is clearly the

case, but –≤ – is not subject to propositional reasoning, so we cannot prove this

by internal induction on signatures. We can prove by induction on signatures that

there exists a lifting, a LiftΓA
i : Seti+1⊔ j which is isomorphic to ΓA

i . Instead, we

take liberties, and work as if we had actual cumulative subtyping. This seems

acceptable, since by using implicit cumulativity, we are already taking the same

liberty everywhere, by omitting formal lifts and isomorphisms.

4.4.3 Term Algebra Construction

We fix Ω : Sigj for some j level. We define –T by induction on synj. In the

following we write –A for –A
j+1, i.e. the algebra interpretation where underlying

sets are in Setj+1. Formally, we need a displayed model over synj, but we instead

present the resulting eliminator, which is perhaps easier to read. The underlying

functions have the following types.

–T : (Γ : Con) (ν : SubΩΓ) → ΓA

–T : (σ : SubΓ∆)(ν : SubΩΓ) → ∆T (σ ◦ ν) ≡ σA (ΓT ν)

–T : (A : TyΓ) (ν : SubΩΓ) → TmΩ (A[ν]) → AA (ΓT ν)

–T : (t : TmΓA) (ν : SubΩΓ) → AT ν (t[ν]) ≡ tA (ΓT ν)

We review the idea of term algebras. In any model of ToS, we might think of

a Sub •Γ as a Γ-algebra internal to the model. In the –T interpretation we can

assume Ω ≡ •; this means that from any internal Γ-algebra we can extract an

“external” Γ-algebra. This is possible because every sort a : TmΓU in ToS induces

an external type of terms as TmΓ (El a).

We can view the generalization from • to arbitrary Ω as switching from working

in the syntactic model synj, to working in the slice model synj/Ω, where contexts

are given as Ω extended with zero or more entries. And in synj/Ω, we have an

Ω-algebra quite trivially, by taking the identity morphism id : SubΩΩ.4 Hence,

4Writing – synj/Ω for the interpretation of syntax in the slice model, Subsynj/Ω • (Ωsynj/Ω) is

isomorphic to, but not strictly the same as Subsynj ΩΩ.
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term algebras arise by first taking the trivial internal algebra id in synj/Ω, then

converting it to an external algebra as ΩT id : ΩA.

Remark. We could have presented –T and slice models separately. We instead

chose to merge them into the current –T , since we do not use slice models else-

where, and we can skip their definition this way. Slice models would require the

specification of telescopes, used to extend the base context, but this entails a fair

amount of bureaucratic detail.

We explain the –T specification in the following. Term and substitution equa-

tions are given by UIP. We omit cases for substitutions and terms.

For contexts, we simply recurse on the entries. We use a pattern matching

notation for SubΩ (Γ ▷ A), since any ν with this type is uniquely determined by

its first and second projections p ◦ ν and q[ν].

•T ν :≡ tt

(Γ ▷ A)T (ν, t) :≡ (ΓT ν, AT ν t)

Type substitution with σ : SubΓ∆ is as follows. This is well-typed by σT ν :

∆T (σ ◦ ν) ≡ σA (ΓT ν).

(A[σ])T ν t :≡ AT (σ ◦ ν) t

Universe

For the universe, note that UA
j+1 γ ≡ Setj+1. As we mentioned before, this is the

key part when we map from internal sorts to external sets. The levels line up,

since in synj we have Tm returning in Setj+1.

UT : (ν : SubΩΓ) → TmΩU → Setj+1

UT ν a :≡ TmΩ (El a)

For El, we have to define

(El a)T : (ν : SubΩΓ) → TmΩ (El (a[ν])) → aA (ΓT ν)

but since aT ν : TmΩ (El (a[ν])) ≡ aA (ΓT ν), we have

(El a)T : (ν : SubΩΓ) → TmΩ (El (a[ν])) → TmΩ (El (a[ν]))

(El a)T ν t :≡ t

The aT ν equation is worth noting. If we have ν ≡ id, the equation is aT id :

TmΩ (El a) ≡ aA (ΩT id), that is, if we evaluate a signature sort in the term model

ΩT id, we get a type of inner terms.
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Identity

We have to show that provably equal terms are evaluated to the same value in the

term model.

(Id t u)T : (ν : SubΩΓ) → TmΩ (Id (t[ν]) (u[ν])) → tA (ΓT ν) ≡ uA (ΓT ν)

We know by equality reflection that t[ν] ≡ u[ν], and we also get

tT ν : AT ν (t[ν]) ≡ tA (ΓT ν)

uT ν : AT ν (u[ν]) ≡ uA (ΓT ν)

from which the target equality follows. Equality reflection for inner Id is crucial

here. It is the reason why –T works for quotient signatures ; equality reflection

is in fact the “quotient” rule which identifies provably equal terms. For a simple

example, terms with type

Tm (• ▷ (I : U) ▷ (left : El I) ▷ (right : El I) ▷ (seg : Id l r)) (El I)

are quotiented by seg , which is a provable equation in the context.

Internal product type

Here we have to convert an inner term with Π type to an outer function.

(Π aB)T : (ν : SubΩΓ) → TmΩ (Π (a[ν]) (B[ν ◦ p, q]))

→ (α : aA (ΓT ν)) → BA (ΓT ν, α)

(Π aB)T ν t :≡ λα.BT (ν, α) (t α)

This is well-typed by aT ν : TmΩ (El (a[ν])) ≡ aA (ΓT ν), which allows us to con-

sider α to be an inner term in λα.BT (ν, α) (t α).

External product type

In this case we just recurse through the specifying isomorphism:

(ΠExtAB)T : (ν : SubΩΓ) → TmΩ (ΠExtA (λα. (B α)[ν]))

→ (α : A) → (B α)A (ΓT ν)

(ΠExtAB)T ν t :≡ λα. (B α)T (ν, α)

This concludes the definition of –T .
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Definition 50. For an Ω : Consynj signature, the corresponding term algebra is

given as ΩT id : ΩA
j+1.

Remark. If we start with a signature in synj, then the underlying sets in the

term algebra are all in Setj+1. Hence, the term algebra for NatSig : Sig0 has an

underlying set in Set1. This is perhaps inconvenient, since normally we would have

natural numbers in Set0. However, we argue that this is no issue because we are free

to specify Set0 as we like. In particular, we can say that Set0 is an empty universe,

closed under no type formers at all (or explicitly isomorphic to ⊥) in which case

Sig0 stands for closed signatures (since ΠExt cannot be constructed), and it is

expected that any closed inductive type would be placed in Set1. Alternatively,

we could name the bottom-most universe Setempty or Set−1, and start counting

non-empty universes from Set0.

4.4.4 Recursor Construction

We continue with the construction of recursors. This is not necessary, strictly

speaking, since recursion is derivable from elimination, so it would suffice to only

construct eliminators. We still present recursors, for the sake of matching the

presentation in Chapter 2.

The goal is to construct a morphism from a term algebra to any other ω : ΩA

algebra. However, we have to handle universe levels as well. We want to be able to

eliminate from the term algebra, which was constructed at the lowest possible level,

to any other universe. So far we have not introduced a “heterogeneous” notion of

morphism, between algebras at different levels. We get this from cumulativity.

• We assume Ω : Sigj, for which we already have the term algebra ΩT id : ΩA
j+1.

• We assume some k ≥ j + 1, and an ω : ΩA
k , the target of recursion.

• We implicitly lift ΩT id from level j + 1 to level k by cumulativity, and

construct a “homogeneous” morphism from the lifted term algebra to ω.

This allows us to eliminate from ΩT id to any level. If we want to eliminate to

k ≥ j + 1, we can lift the term algebra, and use a constructed recursor. On the

other hand, if we want to eliminate to k < j + 1, we can instead lift the target

ω : ΩA
k algebra to j + 1, and again use a constructed recursor.
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In general, for any ω : ΩA
i and ω′ : ΩA

j , the notion of heterogeneous morphism

between them arises by lifting both algebras to i ⊔ j, and taking homogeneous

morphisms between these.

Example 23. The NatSig : Sig0 signature gives rise to NatSigT id : NatSigA1 . This

consists of Nat : Set1 together with zero and suc. Assuming a recursion principle

as described above, and Bool : Set0, we may define an isZero : Nat → Bool function

by “downwards” elimination. We have that (Bool, true, λ . false) : NatSigA0 , so

by cumulativity we also have (Bool, true, λ . false) : NatSigA1 , hence by recursion

we get the desired morphism from NatSigT id to this model, which contains the

Nat → Bool function. We can also eliminate “upwards” by lifting NatSigT id to

any NatSigAi for i > 1.

We define –R by induction on synj. From this, we will obtain the recursor as

ΩR id.

–R : (Γ : Con) (ν : SubΩΓ) → ΓM (νA (ΩT id)) (νA ω)

–R : (σ : SubΓ∆)(ν : SubΩΓ) → ∆R (σ ◦ ν) ≡ σM (ΓR ν)

–R : (A : TyΓ) (ν : SubΩΓ)(t : TmΩ (A[ν])) → AM (tA (ΩT id)) (tA ω) (ΓR ν)

–R : (t : TmΓA) (ν : SubΩΓ) → AR ν (t[ν]) ≡ tM (ΓR ν)

Let us refresh some details about the involved operations. The reader may also

refer to Appendix A for definitions of the AMDS interpretations.

• For ν : SubΩΓ, we get νA : ΩA → ΓA. In the semantics, ν is a functor,

and νA is its action on objects. Analogously, for a term t : TmΩA, we have

tA : (γ : ΩA) → AA γ, also an action on objects.

• ΓM is the set of Γ-morphisms. A : TyΓ is a displayed flcwf in the semantics.

AM yields sets of displayed morphisms, corresponding to the semantic Sub

component. So we have

AM : AA γ0 → AA γ1 → ΓM γ0 γ1 → Setk

• tM and σM yield actions on morphisms. For t : TmΓA and σ : SubΓ∆, we

have

tM : (γM : ΓM γ0 γ1) → AM (tA γ0) (t
A γ1) γ

M

σM : (γM : ΓM γ0 γ1) → ∆M (σA γ0) (σ
A γ1)
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Again, we follow the “sliced” pattern that we have seen in the term model

construction. Another way to view this, is that getting term algebras or recursors

by direct induction on signatures is futile, since in the construction we have to

refer to the whole Ω signature, but when we recurse inside Ω we necessarily get

smaller signatures.

Hence, the sliced induction can be viewed as induction on arbitrary Γ signatures

which are smaller than Ω, in the sense that there is a SubΩΓ. Of course, SubΩΓ

includes “being smaller”, but it is more general.

We look at the interpretation of type formers. Again, term and substitution

equations are given by UIP, and we omit term and substitution formers. For

contexts, we again simply recurse:

•R ν :≡ tt

(Γ ▷ A)R(ν, t) :≡ (ΓR ν, AR ν t)

Type substitution with σ : SubΓ∆ also follows the same pattern. The following

is well-typed by σR ν : ∆R (σ ◦ ν) ≡ σM (ΓR ν).

(A[σ])R ν t :≡ AR (σ ◦ ν) t

Universe

We need to define

UR : (ν : SubΩΓ)(a : TmΩU) → UM (aA (ΩT id)) (aA ω) (ΓR ν)

Morphisms in the semantics of U are simply functions. Moreover, we have aT id :

TmΩ (El a) ≡ aA (ΩT id).

UR : (ν : SubΩΓ)(a : TmΩU) → TmΩ (El a) → aA ω

UR ν a t :≡ tA ω

Thus, we evaluate t in the ω algebra, the same way as we did in Chapter 2.

For El, we need to show

(El a)R : (ν : SubΩΓ)(t : TmΓ (El (a[ν]))) → aM (ΓR ν) (tA (ΩT id)) ≡ tA ω

We have aR ν : UR ν (a[ν]) ≡ aM (ΓR ν). Hence, UR ν (a[ν]) t ≡ aM (ΓR ν) t, and

by computing UR we have tA ω ≡ aM (ΓR ν) t. The target equation then follows

by tT id : tA (ΩT id) ≡ t.
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Identity

We need to show:

(Id t u)R : (ν : SubΩΓ)(e : TmΓ (Id (t[ν]) (u[ν]))) → tM (ΓR ν) ≡ uM (ΓR ν)

This follows from equality reflection on e, together with

tR ν : AR ν (t[ν]) ≡ tM (ΓR ν)

uR ν : AR ν (u[ν]) ≡ uM (ΓR ν)

Internal product type

We get the following target type after unfolding (Π aB)M :

(Π aB)R : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))

→ (α : aA (νA (ΩT id))) → BM (tA (ΩT id)α) (tA ω (aM (ΓR ν)α)) (ΓR ν, refl)

We have

νT id : ΓT ν ≡ νA (ΩT id)

aT ν : aA (ΓT id) ≡ TmΩ (El (a[ν]))

Hence, aA (νA (ΩT id)) ≡ TmΩ (El (a[ν])). We also have aR ν : (λα. αA ω) ≡
aM (ΓR ν), therefore αA ω ≡ aM (ΓR ν). With this in mind, the goal type can

be rewritten as

(Π aB)R : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))

→ (α : TmΩ (El (a[ν]))) → BM (tA (ΩT id)α) (tA ω (αA ω)) (ΓR ν, refl)

We have the following typing now:

BR (ν, α) (t α) : BM ((t α)A (ΩT id)) ((t α)A ω) (ΓT ν, refl)

By the action of –A on internal application, we have

BR (ν, α) (t α) : BM (tA (ΩT id) (αA (ΩT id))) (tA ω (αA ω)) (ΓT ν, refl)

But since αT id : αA (ΩT id) ≡ α, this is exactly the target type. Therefore the

definition is:

(Π aB)R ν t :≡ λα.BR (ν, α) (t α)
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External product type

We again simply recurse through the indexing:

(ΠExtAB)R : (ν : SubΩΓ)(t : TmΩ (ΠExtA (λα. (B α)[ν])))

→ (α : A) → (B α)M (tA (ΩT id)α) (tA ω α) (ΓR ν)

(ΠExtAB)R ν t :≡ λα. (B α)R ν (t α)

This concludes the definition of –R.

Definition 51 (Recursors). Assuming Ω : Sigj, a k level such that k ≥ j + 1

and ω : ΩA
k , we have ΩR id : ΩM (ΩT id)ω as the recursor for the term algebra.

4.4.5 Eliminator Construction

We assume Ω : Sigj and ωD : ΩD
k (ΩT id), where k ≥ j +1. Again we implicitly lift

the term algebra from level j + 1 to k. Here, ωD is a displayed algebra over the

term algebra. We seek to construct an inhabitant of ΩS (ΩT id)ωD. We define –E

by induction.

Constructing eliminators is on the whole quite similar to the recursor construc-

tion. The switch from morphisms to sections is mechanical. We shall only look at

U, El and Π here.

–E : (Γ : Con) (ν : SubΩΓ) → ΓS (νA (ΩT id)) (νD ωD)

–E : (σ : SubΓ∆)(ν : SubΩΓ) → ∆E (σ ◦ ν) ≡ σS (ΓE ν)

–E : (A : TyΓ) (ν : SubΩΓ)(t : TmΩ (A[ν])) → AS (tA (ΩT id)) (tD ωD) (ΓE ν)

–E : (t : TmΓA) (ν : SubΩΓ) → AE ν (t[ν]) ≡ tS (ΓE ν)

For the universe, we have the following.

UE : (ν : SubΩΓ)(a : TmΩU) → (α : aA (ΩT id)) → aD ωD α

By aT id : aA (ΩT id) ≡ TmΩ (El a), we can give the following definition:

UE : (ν : SubΩΓ)(a : TmΩU) → (α : TmΩ (El a)) → aD ωD α

UE ν aα :≡ αD ωD
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In other words, we evaluate α in the ωD displayed algebra. Let us check that this

is well-typed:

αD : {ω : ΩA}(ωD : ΩD ω) → aD ωD (αA ω)

αD ωD : aD ωD (αA (ΩT id)

αT id : αA (ΩT id) ≡ α

Thus αD ωD : aD ωD α. Recall that αD can be viewed as the logical predicate

interpretation of α, which expresses that αA preserves –D predicates.

For El, we need to show

(El a)S : (ν : SubΩΓ)(t : TmΓ (El (a[ν]))) → aS (ΓE ν) (tA (ΩT id)) ≡ tD ωD

This follows from tT id : tA (ΩT id) ≡ t and aE ν : (λ t. tD ωD) ≡ aS (ΓE ν).

The internal product interpretation is defined similarly as before:

(Π aB)E : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))

→ (α : TmΩ (El (a[ν]))) → BS (tA (ΩT id)α) (tD ωD (αD ωD)) (ΓE ν, refl)

(Π aB)E ν t :≡ λα.BE (ν, α) (t α)

We make use of νT id, uT id, aE ν and aT ν to type-check the definition.

Interpretations for contexts and other type formers are also essentially the same

as with recursors.

Definition 52 (Eliminators). Assuming Ω : Sigj, a k level such that k ≥ j + 1

and ωD : ΩD
k (ΩT id), we have ΩE id : ΩS (ΩT id)ωD as the eliminator.

Theorem 5. ΩT id is initial when lifted to any k ≥ j + 1 level.

Proof. ΩT id : ΩA
k supports elimination by Definition 52, and elimination is equiv-

alent to initiality by Theorem 1.

4.5 Levitation and Bootstrapping for Closed Sig-

natures

When we previously introduced the ToS, we only specified the notion of model,

and simply assumed that there is an evident notion of model morphism and also a
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notion of induction. For the theory of closed signatures, we can do better because

ToS is itself a closed FQII theory. This is levitation [CDMM10], i.e. the situation

where a ToS contains a signature for itself. Levitation is useful for bootstrapping:

it shall be sufficient to specify only the notion of model for ToS, and notions

of ToS-morphisms, initiality and induction can be computed from that. This

bootstrapping process eliminates the need for either

• Assuming that the syntax of ToS already exists as a QIIT. Here, the assumed

syntax is necessarily ad-hoc, since we are still in the process of building

metatheory for QII theories.

• Bootstrapping the ToS syntax as “raw” syntax, using simple inductive types,

typing/conversion relations and quotients. This is very tedious and should

be avoided if possible. See Section 4.6 for a discussion of this approach,

although used for slightly different purposes.

In this section we describe levitation for closed signatures. The theory of closed

signatures does not have ΠExt, but is otherwise the same as before. As we have

seen, the inclusion of ΠExt yields a ToS which is itself infinitary, which breaks

levitation. Moving to a theory of infinitary signatures will restore levitation; we

revisit this is Section 5.7.

4.5.1 Models & Signatures

Since we do not have ΠExt, we only need a single universe level for indexing models.

Definition 53. For some i level, we have ToSi : Seti+1 as the type of models of

ToS, where all underlying sets return in Seti.

Definition 54 (Flcwf model). For i, we have Mi : ToSi+2 as the model where

contexts are flcwfs of algebras, and algebras have underlying sets in Seti. To see

how i + 2 checks out: if algebras contain Seti-s, the category of algebras has a

Seti+1 for a set of objects, and Mi itself includes a category of these categories.

So far, this can be defined while only using the notion of model for ToS. What

about signatures though? Previously we had that signatures are contexts in ToS

syntax, and to talk about syntax, we need to know at least the notion of ToS model

morphism.

Actually, if we only want to be able to write down signatures and interpret them

in the semantics, we do not need a ToS syntax. A functional encoding suffices.
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Definition 55. A bootstrap signature is a function which for every ToS model

yields a context in that model. The type of bootstrap signatures is:

BootSig :≡ (i : Level) → (M : ToSi) → ConM

Note that this is a universe-polymorphic type. This is not an issue; universe

polymorphism is a sensible feature in type theories, or alternatively we may assume

that quantification over levels takes place in some outer theory.

We do not get induction on bootstrap signatures, nor do we automatically get

any naturality or parametricity property.

Example 24. For NatSig, we define the expected signature, but we specify it in

an arbitrary M model instead of the syntax.

NatSig : BootSig

NatSig :≡ λ(i : Level)(M : ToSi).

(•M ▷M (N : UM) ▷M (zero : ElM N) ▷M (suc : N ⇒M ElM N))

We might as well use the same notations for signatures as in Section 4.1, as

every signature from before can be unambiguously rewritten as a bootstrap signa-

ture.

With this, we can interpret each signature in an arbitrary ToS model, by ap-

plying a signature to a model. BootSigj can be viewed as a precursor to a Böhm-

Berarducci encoding [BB85] for the theory of signatures, but we only need contexts

encoded in this way, and not other ToS components. In functional programming,

this style of encoding is sometimes called “finally tagless” [CKS07].

If we only want to build the 2LTT-based semantics of signatures, we are done

with bootstrapping right now. In the 2LTT semantics, we never needed induction

on ToS, we only needed to be able to write down signatures and interpret them

in models - which we can do. Going forward, we only need to assume an inner

(Ty0, Tm0) layer with appropriate type formers, and define the flcwf model the

same way as before.

On the other hand, if we want to consider term models, we do need a notion

of induction on ToS.

Definition 56 (Signature for ToS). We define ToSSig : BootSig as the bootstrap

signature for the theory of signatures. We present an excerpt from ToSSig below

using internal notation; it should be clear that every component can be reproduced.
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We use SigU and SigEl to disambiguate components inside the signature from ToS

components.

Con : U

Sub : Con → Con → U

Ty : Con → U

Tm : (Γ : Con) → TyΓ → U

...

SigU : {Γ : Con} → El (TyΓ)

SigEl : {Γ : Con} → TmΓ SigU → El (TyΓ)

Π : {Γ : Con}(a : TmΓ) → Ty (Γ ▷ SigEl a) → El (TyΓ)

...

For each i, the interpretation of ToSSig in Mi yields an flcwf Γ such that

ConΓ ≡ ToSi, that is, objects are models of ToS at level i. This yields a model

theory for ToS, which includes the notion of induction at level i.

We also know by the definition of ToSi that we have cumulativity, i.e. ToSi ≤
ToSi+1.

5 Hence, we can make the following definition:

Definition 57. M : ToS0 supports elimination into any universe if it supports

elimination when lifted by cumulativity to any ToSi.

This notion of (large) elimination is sufficient for the term algebra and elimina-

tor constructions in Section 4.4. Thus, we were able to derive all required concepts

just from the notion of model of ToS.

4.6 Reductions to Basic Type Formers

From the construction of term algebras and eliminators, we get a reduction of all

QIITs to a single infinitary QIIT, namely the syntax of ToS. We spell this out:

Theorem 6. If an extensional type theory supports syntax for ToSj+1,j, it supports

initial algebras for each signature in Sigj.

5For concrete bootstrap signatures we may conclude cumulativity of algebras, but we cannot

conclude this universally for all bootstrap signatures, since we cannot do induction on them, and

we do not even assume that they are parametric in levels.



102 4.6. REDUCTIONS TO BASIC TYPE FORMERS

Ideally, we would like to reduce QIITs to some collection of basic type formers.

The ToS syntax is far from being a basic type former, it is rather large and com-

plicated. Therefore, the remaining job is to construct the ToS syntax from simpler

types.

We do not attempt here to construct the entire ToS syntax as specified. Lums-

daine and Shulman [LS, Section 9] showed that infinitary QIITs are not con-

structible from inductive types and simple quotienting with relations. Recently,

Fiore, Pitts and Steenkamp showed that a class of infinitary quotient inductive

types, called QWI-types, can be reduced to inductive types, quotients and the

axiom of weakly initial sets of covers (WISC) [FPS21]. The setting additionally

assumes extensional equality and propositional extensionality for an impredicative

universe of propositions. The infinitary ToS syntax is not immediately a QWI-type

because it is inductive-inductive. Nevertheless, it is a reasonable conjecture that

infinitary QIITs are also constructible from the WISC principle. We leave this to

future work.

In this section we show constructions of certain fragments of the full ToS syn-

tax. We first give a general description of QIIT constructions, then describe two

specific constructions, for a) finitary inductive-inductive signatures b) closed QII

signatures.

4.6.1 Finitary QIIT Constructions

The general recipe of constructing finitary QIITs from basic type formers is the

following. This is more or less adapted from Streicher [Str93] and Brunerie et

al. [Bru19].

1. We define the raw syntax, using at most inductive families, but no induction-

induction. These definitions include all value constructors of the goal QIIT,

but there is no indexing involved, constructors only store the raw inductive

data. For example, the raw syntax of closed ToS would include the following:

Con : Set • : Con

Sub : Set –▷– : Con → Ty → Ty

Ty : Set id : Con → Sub

Tm : Set –◦– : Con → Con → Con → Sub → Sub → Sub

...



CHAPTER 4. FINITARY QII SIGNATURES 103

This can be given by a simple mutual inductive definition, which can be

represented as an indexed inductive family. Indexed families can be reduced

to indexed W-types [KvR20], which can be reduced in turn to W-types and

the identity type.

2. We define typing and conversion relations on the raw syntax. For dependent

type theories, the two are usually mutual: typing includes the rule which

coerces terms along type conversion, and conversion is usually defined only

on well-typed terms. However, it is still possible to define everything using

only indexed inductive families.

3. The underlying sets are given as follows: we take raw syntactic objects which

are merely well-formed (i.e. proofs of well-formedness are propositionally

truncated, or defined in a universe of irrelevant propositions to begin with),

and quotient them by conversion.

4. We show that these underlying sets support all constructors of the target

QIIT: value constructors are defined using raw constructors, while equality

constructors follow from conversion rules and quotienting.

5. We construct a unique morphism from the above term model to an arbitrary

model of the QII theory. This usually requires several steps. One approach is

to first define by induction on raw syntax a family of partial functions into the

assumed model, then separately show that these functions are total on well-

typed input. The separation is necessary because the induction principle

for the raw syntax is too weak: it cannot express the inductive-inductive

indexing dependencies which would be required to construct the morphism

in one go. For instance, if we have the QIIT syntax for ToS, and we have some

displayed model A over the syntax, the eliminator contains the following:

ConS : (Γ : Con) → ConA Γ

SubS : (Γ∆ : Con)(σ : SubΓ∆) → SubA (ConS Γ) (ConS ∆)σ

But with the raw syntax, we can only eliminate using a displayed model of

the raw syntax, and the eliminator contains the following:

ConS : (Γ : Con) → ConA Γ

SubS : (σ : Sub) → SubA σ
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Lastly, we show that the constructed morphism is unique. This is done by

induction on raw syntax, and is generally possible in just one elimination.

Note that the above recipe permits a large number of design variations. Some

examples:

• We may omit fields from raw syntax which are fully determined by type

indices. This may make subsequent work easier or harder depending on

particulars.

• We may start from a well-scoped raw syntax, if there is a notion of scoping

in the goal QIIT. In general, we may start from some kind of partially raw

syntax, which is well-typed to some extent. This extent is bounded by what is

expressible only using indexed inductive families but not induction-induction.

• We may move along a spectrum of “paranoia” in the specification of well-

typing [Win20, Section 9.2]. A paranoid typing rule assumes the well-

formedness of everything involved, for example assumes the well-formedness

of a context Γ before it assumes well-formedness of a type in Γ. In contrast,

an “economic” specification tries to make the minimum necessary assump-

tions, relying on admissibility properties. It is possible that well-formedness

of Γ is derivable from the well-formedness of a type in Γ, so the assumption

can be dropped.

However, if we omit too much, then some other admissibility properties may

break! Design decisions along the paranoia spectrum are often all tangled up

like this; hence the name “paranoid”, which probably stems from the anxiety

of breaking things by making too many shortcuts.

• Instead of using partial maps from raw syntax to the the assumed model

in step 5, we may define relations between well-formed raw syntax and the

given model, and later show that these relations are functional. This seems

to be a technically easier approach. The reason is that we do not have decid-

able definedness of the partial maps, which makes them more complicated.

A decidably defined partial function has type A → MaybeB. For any a : A

we can look at whether the function is defined on it. A more general par-

tial function has type A → ((P : Prop) × (P → B)). If we forget about

the Prop-ness of P for the time being, we can equivalently have a relation

A → B → Set instead. This is a more “indexed” definition compared to
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the “fibered” presentation with P : Prop, and indexed presentations in type

theory usually enjoy more definitional computation rules - this is also the rea-

son why displayed algebras are better-behaved computationally than fibered

algebras.

It should be apparent that constructing QIITs is tedious, and especially so for

large QIITs like type theories. Hence, it is best if we do it just once, for a theory

of signatures from which every other QIIT can be constructed.

Connection to the initiality conjecture

The initiality conjecture was made by Voevodsky [Voe17], and it is essentially the

conjecture that the above construction (“initiality construction”) can be carried

out in sufficient formal detail for “usual” type theories.

There has been much debate about the merits of initiality constructions. See

[Con19] for a hub of such discussions. On one hand, some people believed that

the initiality construction is essential for reconciling the usage of raw syntax and

categorical notions of models. On the other hand, some people dismissed the

initiality construction as a pointless exercise, considering the categorical syntax to

be the actual syntax, and raw syntax as merely notation for that. The author of

this thesis is of a somewhat different opinion than either of the above.

First, as a moral justification for the usage of raw syntax, the initiality con-

struction is indeed mostly pointless. That is because elaboration comprises the

true justification for that. Elaboration is the effective algorithm which converts

raw syntax to “core syntax”, i.e. typed categorical syntax. Given a piece of raw

syntax, even if we have done the initiality construction, we have no effective way

of learning which core syntactic object it corresponds to! The elaboration litera-

ture is mainly about practical justifications for using certain raw syntaxes, and it

comes with established ways to talk about strength and correctness of elaboration

algorithms.

Second, there is a different motivation for the initiality construction: founda-

tional minimalism, the reduction of a complicated QIIT to basic type formers.

Elaboration merely assumes that a categorical core syntax already exists, as the

target of elaboration, but it is orthogonal to the construction of the core syntax.

If we have elaboration, we may still want to show a reduction of the core syntax,

but now we are free to perform this construction in whatever way is the easiest.

We do not have to construct the QIIT out of a raw syntax which is intentionally
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close to the raw syntax that we use in practice! In the author’s opinion, a great

deal of confusion arises from the conflation of the two different motivations for the

initiality construction.

As to which way of construction is easiest: the author does not know of any

truly easy way, but this thesis shows that we only have to do it once, for a theory

of signatures, and then we can construct all other QIITs from that in a generic

way. In particular, almost all type theories in the wild are finitary closed QII

theories (with the notable exceptions of our ToS-es), so if we can construct closed

signatures, we can construct initial models of almost all type theories.

What about generic ways to formalize elaboration algorithms? This seems to

be a lot more difficult. To the author’s knowledge there has not been notable

research in this area. Decidability of conversion is already very hard to analyze

in a generic way, and the simplest possible bidirectional elaboration algorithms

rely on decidable conversion. To formalize practically realistic elaboration (i.e.

elaboration which includes unification) is yet more difficult.

4.6.2 Reduction of Finitary Inductive-Inductive Types

This section is based on the author’s joint work with Kaposi and Lafont [KKL19].

The core idea is the following: a certain fragment of ToS can be constructed in a

far simpler way than what we described in Section 4.6.1, with fewer assumptions

in the ambient theory. We call this fragment the theory of finitary inductive-

inductive signatures. This theory has the following type formers (on the top of

the base cwf):

• The U universe with El.

• Inductive function type Π, but without lam, and thus without βη-rules.

• External function type ΠExt, but again without lamExt.

This ToS is tuned so that

1. No quotients are required in its construction.

2. The generic term model construction still goes through for every signature

in the ToS.
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We explain in the following. First, the equational theory of ToS only specifies

substitution, but it contains no computation rules for type formers. Thus, ToS is

a theory of neutral terms and substitutions. This allows us to define a raw syntax

which only includes normal forms, and to define substitution as recursive functions

acting on normal forms. This trivializes the conversion relation: conversion is

simply propositional equality of raw terms. Thus, there is no need to quotient by

conversion. Note that our raw syntax is infinitary because we have to represent the

branching in ΠExt. This is fine though: we only run into the issue of the missing

choice principle (presumably, the WISC principle) if we try to mix quotients and

infinite branching. Without quotients, infinite branching is not an issue.

Second, we do not include an identity type in ToS. This blocks the other way

for quotients to enter the picture. With identity types, the generic term model

construction relies on equality reflection in ToS. But when we construct ToS syntax,

the only way to show equality reflection is to quotient raw syntax by internally

provable equalities.

Third, it remains to check that the generic term model construction works

with the pared-down ToS. We only need to check that the omission of lam and

lamExt does not mess things up. Looking at Sections 4.4.3 and 4.4.5, we see that it

does not: the interpretations of Π and ΠExt only require applications in ToS, not

abstractions.

Remark. Although we have not yet talked about infinitary signatures, we can

give a short summary why the current construction fails to work for their ToS. The

generic term algebra construction in Section 5.6.1 for infinitary signatures relies on

there being both lam and app for “infinitary” function types, with βη-rules. This

makes the equational theory of ToS non-trivial, so quotients are necessary in the

construction of the syntax. However, this requires mixing quotients and infinite

branching, which we cannot yet handle.

We summarize the construction of the ToS syntax below. We refer the reader

to [KKL19] for details.

1. We define raw syntax by mutual induction. Substitutions are in normal form:

they are just lists of raw terms. Variables are also normalized as de Bruijn

indices. We define the action of substitution by recursion on raw syntax.

In [KKL19], raw syntax is not well-scoped, and substitution is partial, but

it would be also possible to start from well-scoped raw syntax.
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2. We inductively define well-formedness relations for contexts, substitutions,

types and terms, and show by induction on raw syntax that well-formedness

is propositional, i.e. proof-irrelevant. Alternatively, we could have defined

well-formedness by recursion on raw syntax.

3. We construct a term model of ToS from well-formed raw syntax. All equa-

tions in the model are provable from the properties of recursive substitution

on raw terms.

4. We pick a ToS model, and inductively define a family of relations between

the term model and the given model, which define the function graphs of the

model morphism that we aim to define. Then we show in order:

(a) Right-uniqueness of the relation, by induction on well-formedness deriva-

tions.

(b) Stability of the relation under substitution.

(c) Left-totality of the relation, by induction on well-formedness deriva-

tions.

We then define the actual model morphism using the functionality of the

relation.

5. For the uniqueness of the constructed morphism, we exploit right-uniqueness

of the relation: it is enough to show that any other model morphism maps

syntactic input to related semantic output.

This construction is formalized in Agda; see [KKL19]. It uses indexed inductive

families, UIP, function extensionality, and equality reflection in the form of Agda

rewrite rules, although the latter could be in principle omitted from the formal-

ization. Thus, it follows that any model of ETT with inductive families supports

finitary inductive-inductive types.

4.6.3 Reduction of Closed QIITs

For closed QIITs, there is unfortunately no direct formalization which constructs

the ToS. There is one though which is close enough, by Menno de Boer and Guil-

laume Brunerie [BdB20]; see also De Boer’s thesis [dB20]. This constructs a type

theory with the following features:
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• A contextual category for base (instead of a cwf).

• Countable predicative universes.

• N, Σ, Π, ⊤, ⊥, –+– and intensional Id.

The construction follows the 1-5 steps that we described previously in Section

4.6.1. It makes the following assumptions:

• A universe of strict propositions Prop. Every type in this universe enjoys

definitional proof-irrelevance. This Prop is used to define partial functions

and well-formedness relations.

• Function extensionality.

• Propositional extensionality for Prop.

• Quotients by relations valued in Prop.

• Indexed inductive families returning in Set or in Prop.

UIP is not assumed, instead the irrelevant equality in Prop is used everywhere.

Although it is only possible to eliminate from such equalities to Prop, this issue

is sidestepped by using an essentially algebraic specification of models, which is

fibered using Prop equations.

It is very plausible that this construction can be adapted to our theory of

closed QII signatures. De Boer and Brunerie construct a complicated open finitary

QIIT, while ours is a fairly similar closed QIIT, with fewer and more restricted

type formers. The openness comes from the use of contextual categories, which

involve indexing by external natural numbers. Contextuality does not make much

difference in the construction though, since raw syntax is always contextual by the

inductive nature of raw contexts.

Hence, it is safe to say that any model of an extensional type theory which

supports the assumptions of De Boer and Brunerie, also supports all closed QIITs.

4.7 Related Work

This chapter is based on the following publications, all coauthored by the current

thesis’ author.
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1. “Constructing Quotient Inductive-Inductive Types” [KKA19].

2. “Large and Infinitary Quotient Inductive-Inductive Types” [KK20b].

3. “For Finitary Induction-Induction, Induction is Enough” [KKL19].

We summarize the differences and enhancements in this chapter, in comparison to

the above (1)-(3) sources.

The theory of signatures is similar to that in (1), except (1) does not include

eliminators for Π and ΠExt, and it has Id : TmΓ (El a) → TmΓ (El a) → TyΓ, i.e.

it cannot equate terms with arbitrary types.

The usage of 2LTT is novel compared to (1)-(3). In (1), the semantics had a

cwf with Id and K for each signature; this was extended with Σ in (2) to get the

notion of flcwf that we also use in this chapter.

The construction of left adjoints of substitutions is novel.

The current term algebra construction is the same as in (1), but universe levels

were not treated rigorously in (1); instead we adapt the more precise universe

treatment from (2). Notions of bootstrapping and levitation are also “backported”

from (2) to closed finitary signatures.

(3) is summarized in the current chapter without any notable change.

ToS-style presentations

Carette and O’Connor [CO12] presented algebraic signatures as contexts in type

theories. Altenkirch and Kaposi [AK16] observed that induction methods and

motives can be computed as logical predicate translations on typing contexts.

Generalized algebraic theories

FQII signatures and Cartmell’s generalized algebraic theories [Car86] are close in

expressive power, but they do not appear to be equivalent.

GATs may contain an infinite number of rules, while FQII signatures are finitely

long. On the other hand, FQII signatures have ΠExt and GATs do not. It appears

that infinite signatures are stronger than ΠExt: it is possible to recover ΠExt by

adding a rule for every value of the external index, but it is not possible to recover

infinite signatures with ΠExt. The reason is that in ΠExt : (Ix : Ty0) → (Ix →
TyΓ) → TyΓ, the Γ context is fixed, so it is not possible to represent a family

of signature entries where each entry may refer to the previous entry within the
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same family. For example, the following (pseudo)-GAT has no corresponding FQII

signature:

A0 : U

A1 : A0 → U

A2 : (a0 : A0) → A1 a1 → U

A3 : (a0 : A0)(a1 : A1 a0) → A2 a0 a1 → U

...

Could we somehow include these? The most convenient way would be to define

signatures coinductively. However, that would cause a mismatch, that described

theories are inductive, while the ToS itself is coinductive, which rules out levitation

and bootstrapping. It is potential future work to investigate such coinductive

signatures.

This leads us to the main difference in formalization between GATs and FQII

signatures: the theory of GATs itself is not presented as a GAT, instead it has a

low-level presentation with raw syntax and well-formedness relations. As a result,

the immediate metatheory of GATs is roughly as tedious as we can expect from

raw syntaxes.

This is a motivation for formally getting away from GATs, by showing their

equivalence to contextual categories. Contextual categories are algebraic and more

convenient to handle than GATs. In [Car78] one leg of this equivalence is the con-

struction of a classifying contextual category for each GAT, which is essentially a

term model construction from quotiented raw syntax. A downside of this setup

is that classifying contextual categories cannot be easily written out by hand like

GATs. Thus, GATs necessarily remain the practical way for specifying the classi-

fying categories.

In contrast, the theory of FQII signatures is itself algebraic, possesses a nice

model theory (as an infinitary QII theory), and it is only mildly more complex than

the theory of contextual categories. Since the immediate theory of signatures is

already quite nice, we do not feel as much pressure to look for nicer presentations.

Nevertheless, compact alternative presentations would be still interesting to

research.

• We could look for for an analogue of the GAT-contextual-category correspon-

dence for our signatures. This would send each signature to its classifying

category.
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• We could also look for an analogue of the Gabriel-Ulmer duality [GU06].

This would send each signature to its category of models in Set. In the

other direction, we would need a way to restrict categories to those which

are categories of algebras.

Essentially algebraic theories

Essentially algebraic theories (EATs) [Fre72] are categories with finite limits. This

is a more semantic notion of an algebraic signature, much like how contextual

categories are a more semantic presentation of “syntactic” GATs. For EATs Γ

and ∆, the Γ-algebras internal to ∆ are simply the finite limit preserving functors

from Γ to ∆, while algebra morphisms are natural transformations.

We have more syntactic notions of essentially algebraic signatures as well. For

example, the signatures of Adámek and Rosicky [AAR+94, Section 3.D] or the

Partial Horn theories of Palmgren and Vickers [PV07] are such. These signatures

are also specified using raw syntax, but they are significantly easier to formalize

than GATs, as the syntax of signatures admits fewer dependencies. However, the

lack of dependency also causes a significant encoding overhead on comparison to

GATs or FQII signatures. For a classic example, the theory of transitive directed

graphs is given with an FQII signature as

V : U

E : V → V → U

– ◦ – : (i j k : V) → E i j → E j k → El (E i k)

The same in a pseudo-EA notation could be:

V : Set

E : Set

src : E → V

tgt : E → V

– ◦ – : (f g : E) → tgt f = src g → (h : E)× (srch = src f)× (tgth = tgt g)

In short, the FQII notation is “indexed”, while the EA is “fibered”. Also recall

Theorem 3. While this example is not wildly different in the two cases, if we move

to more complex theories, such as type theories, the encoding overhead of EA

signatures is much greater. In informal mathematics, this is still not an issue, but
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in mechanized mathematics, it is. Type dependencies are a formal complication,

but in proof assistants they enable more compact definitions. They also often force

indices to be particular values, which enables inference and unification to fill in

more details in surface syntaxes.

Sketches (see e.g. [Bar85, Section 4]) are another way to specify EATs. They

lie somewhere between the syntactic/logical styles of specification, and just taking

EATs to be finitely complete categories. They support an elegant metatheory,

but they involve an encoding overhead which is likely unworkable in mechanized

settings.

All in all, there is a rich literature on EATs, sketches and related topics, and

it would be interesting to try to connect our signatures to any of these, or try

to reproduce the numerous related results in categorical universal algebra. This

remains future work for now.

Prior work on (quotient) inductive types

The current work grew out of a line of research in the field of type theory. This

involved working out more and more expressive classes of inductive types.

Martin-Löf’s W-types [ML84] are an early example for a scheme for inductive

types. In fact, it is better viewed as a single parameterized inductive type, which

allows construction of a remarkable range of inductive types [Hug21], although

with some encoding overheads.

Inductive families [Dyb94] allow indexing the inductive sort with external types.

This directly supports only single-sorted signatures, but some form of mutual

induction can be easily modeled through the indexing. Inductive families have

become a core feature in all major implementations of type theories, such as Coq,

Idris, Lean or Agda.

Inductive-recursive types [DS99] allow mutual definition of an inductive sort

and a function which acts on the sort. These types are absent from this thesis, they

are not representable with any of our theories of signatures. Induction-recursion

is notable for tremendously boosting the proof-theoretic strength of a type theory;

a primary motivation for it was to explore the limits of predicative constructive

mathematics. It is useful for modeling a wide variety of universe features internally

to a type theory [Kov22a].

Induction-induction was described in [AMFS11] and in [NF13]. This notion

allowed two inductive sorts, where the second one may be indexed over the first.
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As we mentioned previously, this notion is more restricted than what was covered

in this chapter.

[ACD+18] investigated QIITs. The notion of signature here is more of a seman-

tic nature than ours. Signatures are defined simultaneously with their categories

of algebras. A signature is a inductive list of functors: at each signature entry, we

extend the category of algebras with a functor whose domain is the current cate-

gory of algebras. This can be viewed as a generalization of F-algebras as a form of

specification. However, there is no strict positivity restriction in signatures, hence

no attempt at constructing initial algebras either.

We will look at work related to infinitary QITs in Section 5.8 and at work

related to higher inductive types in Section 6.3.2.



CHAPTER 5

Infinitary Quotient Inductive-Inductive

Signatures

In this chapter we present another theory of signatures, for infinitary quotient

inductive-inductive signatures. As we will see, the reason for considering the fini-

tary and infinitary cases separately is that they support different semantics.

First, we specify signatures and define semantics in 2LTT. Then, like in the

previous chapter, we switch to a extensional TT setting and look at term algebras

and related constructions.

5.1 Theory of Signatures

Metatheory. We work in 2LTT. We assume the following type formers in the

inner theory: ⊤, Σ, extensional identity – = – and Π. Note that Π is an extra

assumption compared to what we had in the finitary case.

Definition 58. A model of the theory of signatures consists of the following.

• A cwf with underlying sets Con, Sub, Ty and Tm, all returning in the outer

Set universe of 2LTT.

• ATarski-style universe U with decoding El. U is closed under the following

type formers:

– The unit type ⊤.

– Σ-types Σ : (a : TmΓU) → Tm (Γ ▷ El a)U → TmΓU, with specifying

isomorphism

(proj, –,–) : TmΓ (El (Σ a b)) ≃ (t : TmΓ (El a))× TmΓ (El (b[id, t]))

115
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– Extensional identity Id : TmΓ (El a) → TmΓ (El a) → TmΓU, speci-

fied by (reflect, refl) : TmΓ (El (Id t u)) ≃ (t ≡ u).

– Small external product type Πext : (Ix : Ty0) → (Ix → TmΓU) →
TmΓU, specified by (appext, lamext) : TmΓ (Πext Ix b) ≃ ((i : Ix ) →
TmΓ (El (b i))).

• Internal product type Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ, specified

by (app, lam) : TmΓ (Π aB) ≃ Tm (Γ ▷ El a)B.

• External product type ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ, specified

by (appExt, lamExt) : TmΓ (ΠExt Ix B) ≃ ((i : Ix ) → TmΓ (B i)).

Once again we assume that an initial model for ToS exists, and a signature is

a context in the initial model.

Notation 19. We employ the same notations for signatures as in Section 4.1. In

addition to that, we have the usual internal notation for ⊤ and Σ, and we write

(x : A) →ext B for Πext and λext for lamext.

Let us do a comparison to the finitary case. First, the new signatures do not

support sort equations, since there is no identity type for arbitrary terms, only for

terms with types in U. Second, the universe is not empty anymore, it supports ⊤,

Σ and the small external product type Πext, which can be viewed as an analogue

of ΠExt inside U. We look at example signatures.

Example 25. Infinitary constructors can be given with Πext. A classic example

is W-types. Assuming S : Ty0 and P : S → Ty0, we have the following signature

for P -branching well-founded trees:

W : U

sup : (s : S) →Ext (P s →ext W ) → ElW

Note that since P s →ext W is in U, it can appear on the left side of →. If P s is

an infinite type, sup branches with an infinite number of inductive subtrees. Of

course, finitary branching can be also expressed with Πext, but that use case was

already possible with finitary signatures, by iterating → finite times.

Example 26. Equations can appear as assumptions now. The simplest example
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is set-truncation for some A : Ty0:

|A|0 : U

embed : A →Ext El |A|0
trunc : (x y : |A|0)(p q : Idx y) → El (Id p q)

However, this ends up being redundant in our semantics, since we assume UIP,

and every semantic underlying type will be a set. Does this mean that recur-

sive equations are useless? We do not think so. In the specification of cubical

type theories, there are boundary conditions which can be given as Id assump-

tions [CCHM17,AHW16,AHH18]. Also, it seems that these conditions cannot be

easily contracted away. For an example of contraction, the signature

• ▷ (A : U) ▷ (c1 : ElA) ▷ (c2 : (x : A) → Idx c1 → ElA)

can be rewritten to the equivalent

• ▷ (A : U) ▷ (c1 : ElA) ▷ (c2 : ElA)

signature. However, we cannot mechanically eliminate the Id from the following

signature.

A : U

B : A → U

b1 : A → El B

b2 : A → El B

...

a : (x y : A) → Id (b1 x) (b2 y) → El A

Whether we can reformulate a without the Id condition depends on what kind of

equational theory we specify for B in the omitted parts of the signature.

However, recursive equations can be always encoded by internalizing exten-

sional equality in signatures. For example:

A : U

EqA : A → A → U

refl : El (EqA a a)

reflect : EqA a0 a1 → El (Id a0 a1)

UIP : (p q : EqA a0 a1) → El (Id p q)
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Still, we keep recursive equalities around, since they are more ergonomic than the

above encoding, and they pose no extra difficulty in the semantics. The current

formulation of the Id type will be more useful in Chapter 6, where higher equalities

can be proof-relevant.

Example 27. All theories of signatures that we discussed so far, have (infinitary)

signatures.

For finitary signatures, the ToS is itself infinitary because of ΠExt. We assume

an universe U0 in Ty0. In the signature, we have

Con : U

Ty : Con → U

ΠExt : {Γ : Con} → (A : U0) →Ext (A →ext TyΓ) → El (TyΓ)

In the signature for infinitary ToS, we have

Univ : {Γ : Con} → TyΓ

Πext : {Γ : Con} → (A : U0) →Ext (A →ext TmΓUniv) → TmΓUniv

Remark. When we will take the semantics of the above signature, we will not

exactly get back the theory of signatures that we are using right now. We have

ToS in 2LTT now, but the semantics is in the inner theory. What we can do

though, is to assume that the inner theory is also a 2LTT. Then we might assume

that the inner theory of that is again a 2LTT, and so on. This is a possible (and

quite natural) generalization of 2LTT to n-level type theory. In this setting, one

round of self-description requires a bumping of levels in the sense of n-level TT.

In this thesis we do not explore this, instead we use a more conventional universe

hierarchy in an extensional TT, to investigate self-description.

Example 28. We have seen in Example 15 that Ty0-valued presheaves have fini-

tary signatures. With infinitary signatures, we can also cover monads on Ty0. We

assume a universe U0 : Ty0.

M : U0 → U

map : (A → B) →Ext MA → El (MB)

mapid : El (Id (map idm)m)

map◦ : El (Id (map (f ◦ g)m) (map f (map g m)))
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return : A →Ext El (MA)

bind : M A → (A →ext MB) → El (MB)

returnr : El (Id (bindm return)m)

returnl : El (Id (bind (return a) f) (f a))

assoc : El (Id (bind (bindmf) g) (bindm (λ a. bind (f a) g)))

We rely on →ext to specify binding. The join-based specification would not

work, since M (MA) is not valid in signatures. The above signature can be helpful

for deriving some of the metatheory of Dijkstra monads [MAA+19, Section 5].

In the 2LTT-based semantics, we will get M : U0 → Ty0, which is not quite an

endofunctor. In the ETT-based semantics in Section 5.6 we will be able to pick

universe levels more precisely, so we can specify algebras where M : Seti → Seti.

However, we will not get free monads from the term algebra construction, because

the universe levels do not match up as needed. Recall from Section 4.4.3 that the

level of sets of terms is j+1 when j is the level of external indices in a signatures.

Hence, if the parameter types to M are in Setj, then external indices are in Setj+1,

so we get M : Setj → Setj+2 in the term algebra for monads.

Example 29. It is worth to note that every set-truncated higher inductive type

from the Homotopy Type Theory book [Uni13] is covered. This includes

• The cumulative hierarchy of sets [Uni13, Section 10.5].

• Cauchy real numbers [Uni13, Section 11.3].

• Surreal numbers [Uni13, Section 11.6].

5.2 Semantics

5.2.1 Overview

As we mentioned, we need a different semantics for infinitary signatures. First,

we look at why the previous semantics fails. We try to model signatures again as

flcwfs, and morphisms as strict flcwf-morphisms. The simplest point of failure is

the interpretation of the unit type ⊤ : TmΓU.

In the semantics, this is the same as defining ⊤ : SubΓTy0, where Ty0 is

the flcwf of inner types. The only sensible definition here is the functor which is
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constantly ⊤0. But this does not strictly preserve context comprehension or the

finite limit type formers. If we have

⊤ : ConΓ → Ty0

⊤Γ :≡ ⊤0

then we have ⊤ (Γ▷ΓA) ≡ ⊤0, but ⊤Γ▷Ty0 ⊤A ≡ ⊤0×⊤0. Thus, ⊤0 ̸≡ ⊤0×⊤0,

but of course ⊤0 ≃ ⊤0 ×⊤0.

Let us look at Πext : (A : Ty0) → (A → TmΓU) → TmΓU as well, since that

is a more interesting new feature than the unit type. The only viable definition is

to take the A-indexed product of SubΓTy0 morphisms, so we map objects of Γ

to function types:

ConΠext Ab Γ :≡ (α : A) → Conbα Γ

But now we have

(Πext Ab) •Γ ≡ (α : A) → Conbα •Γ ≡ A → ⊤0

Also, •U ≡ ⊤0. Hence, (Π
ext Ab) •Γ ̸≡ ⊤0, although (Πext Ab) •Γ ≃ ⊤0.

Intuitively, if U has no type formers, the terms in U are neutral, i.e. variables

applied to zero or more neutral terms. But variables in the semantics simply

project out components from iterated Σ-types. For example, the action of q :

Tm (Γ ▷ A) (A[p]) on objects, types, morphisms and terms is given by taking

second projections. Since all structure in Γ ▷ A is given by pairing things, q

strictly preserves all structure, and the same goes for all variables.

Substitutions and terms in the finitary ToS are only allowed to freely reshuffle

structure. We can forget, duplicate, or permute signature entries, or build neutral

expressions from assumptions. In contrast, the infinitary ToS allows us to take

small limits of assumptions, using ⊤, Σ, Id and Πext to build new inhabitants of

U. We summarize the process of getting the new semantics:

1. Strict structure-preservation for type formers in U generally fails, but they

still preserve structure up to isomorphism.

2. Hence, we switch from strict flcwf-morphisms to weak ones, which preserve

•, comprehension and fl-structure weakly.

3. However, in the finitary case we often relied on transporting along preserva-

tion equations. We need to recover transports along isomorphism.
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4. Hence, we extend semantic types from displayed flcwfs to isofibrations, which

support the required transports.

5. However, this rules out sort equations because they are not stable under

isomorphisms. For example, for sets A, B, C such that A ≃ B and A ≃ C,

it is not necessarily the case that B ≡ C.

Univalent semantics

The isofibrant semantics will turn out to be significantly more technical than the

strict semantics. Instead of working with isofibrations in an extensional setting,

could we work with univalent structures in homotopy type theory? In other words,

work with univalent categories of algebras, and univalent displayed categories over

them [AL19]. A major benefit of the univalent setting is that we would get a struc-

ture identity principle [Acz11] out of the semantics, which says that for algebras,

isomorphism is the same as equality.

However, it appears that univalent cwfs are overall yet more technical to han-

dle than isofibrations. In an univalent cwf, objects and types are generally h-

groupoids, so we would have groupoids of algebras instead of sets of algebras.

This implies that type equalities are between groupoids, so they need to be co-

herent, if we want them to be well-behaved. Hence, Ty is not an 1-presheaf over

contexts, but rather a (2, 1)-presheaf.

Alternatively, we could simplify the task by only constructing univalent cate-

gories of algebras, and skipping the family structure (and fl-structure). This would

be the minimum amount of effort that would yield the structure identity principle.

Both of these would be interesting to check in future work. As a third alter-

native, instead of stopping at set-truncated algebras in HoTT, we might as well

consider types at arbitrary h-levels, and construct (ω, 1)-categories of algebras.

This comprises a semantics of higher inductive-inductive signatures. We do not

present a full higher-categorical semantics in this thesis; we only present a fragment

of it in Chapter 6.

5.2.2 Model of the Theory of Signatures

In the following we present a model of ToS. We call it M, and like before, we use

bold font to refer to components of M.
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Contexts

Γ : Con is again an flcwf, but with a minor change: K is not strict anymore, so we

have (appK, lamK) : TmΓ (K∆) ≃ SubΓ∆. As we will see shortly, A[σ] does not

support strict displayed K anymore, hence the change.

Substitutions

σ : SubΓ∆ is a weak flcwf-morphism, that is, a functor between underlying

categories, which also maps types to types and terms to terms, and satisfies the

following mere properties:

1. σ (A[σ]) ≡ (σA) [σ σ]

2. σ (t[σ]) ≡ (σ t) [σ σ]

3. The unique map ϵ : Sub (σ •) • has a retraction.

4. Each (σ p, σ q) : Sub (σ (Γ ▷ A)) (σ Γ ▷ σA) has an inverse.

In short, σ preserves substitution strictly and preserves empty context and

context extension up to isomorphism. We notate the evident isomorphisms as

σ• : σ • ≃ • and σ▷ : σ (Γ ▷ A) ≃ σ Γ ▷ σA. Our notion of weak morphism is

the same as in [BCM+20], when restricted to cwfs.

Theorem 7. Every σ : SubΓ∆ preserves fl-structure up to type isomorphism.

That is, we have

σΣ : σ (ΣAB) ≃ Σ (σA) ((σB)[σ−1▷ ])

σId : σ (Id t u) ≃ Id (σ t) (σ u)

σK : σ (K∆) ≃ K (σ∆)

These are all natural in the following sense: for σ : SubΓ Γ∆, if we have σΣ as a

type isomorphism in σ∆, if we reindex it by σ, we get σΣ as a type isomorphism

in σ Γ. The same holds for σId and σK.

Moreover, σ preserves all term and substitution formers in the fl-structure.

For example, σ (proj1 t) ≡ proj1 (σΣ[id,σ t]).

Proof. For σΣ, we construct the following context isomorphism:

(σ Γ ▷ σ (ΣAB)) ≃ (σ Γ ▷ σA ▷ (σB)[σ−1▷ ])

≃ (σ Γ ▷ Σ (σA) ((σB)[σ−1▷ ]))
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This isomorphism is the identity on σ Γ, hence we can extract the desired σΣ :

σ (ΣAB) ≃ Σ (σA) ((σB)[σ−1▷ ]) from it.

For σId, both component morphisms can be constructed by refl and equality

reflection, and the morphisms are inverses by UIP. We omit here the verification of

naturality and that σ preserves term and substitution formers in the fl-structure.

For σK, note the following:

(• ▷ σ (K∆)) ≃ (σ • ▷ σ (K∆)) ≃ σ (• ▷ K∆)

≃ σ∆ ≃ (• ▷ K (σ∆))

This yields a type isomorphism σ (K∆) ≃ K (σ∆) in the empty context, and we

can use the functorial action of ϵ : SubΓ • to weaken it to any Γ context.

Identity and composition

id : SubΓΓ is defined in the obvious way, with identities for underlying functions

and for preservation morphisms.

For σ ◦ δ, the underlying functions are given by function composition, and the

preservation morphisms are given as follows:

(σ ◦ δ)−1• :≡ σ δ−1• ◦ δ−1•
(σ ◦ δ)−1▷ :≡ σ δ−1▷ ◦ δ−1▷

It is easy to verify the left and right identity laws and associativity for – ◦ –.

Lemma 6. The derived preservation isomorphisms for the fl-structure can be

decomposed analogously; all derived isomorphisms in id are identities, and we

have

(σ ◦ δ)Σ ≡ σ δΣ ◦ δΣ
(σ ◦ δ)Id ≡ σ δId ◦ δId
(σ ◦ δ)K ≡ σ δK ◦ δK

On the right sides, – ◦ – refers to composition of type morphisms.

Proof. In the case of Id, the equations hold immediately by UIP. For Σ and K, we

prove by flcwf computation and straightforward unfolding of definitions.
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Empty context

The empty context • : Con is the same as before, i.e. the terminal flcwf. Since

the unique ϵ : SubΓ • morphism strictly preserves all structure, it also a weak

morphism.

Types

We define TyΓ : Set as the type of split flcwf-isofibrations over Γ. This consists

of a displayed flcwf together with split iso-cleaving structure. For the displayed

flcwf part, we reuse previous notation from Section 4.2.4. For the iso-cleaving, we

make some auxiliary definitions first.

Definition 59 (Displayed type categories). For each Γ : ConA Γ, there is a dis-

played category over the type category TyΓ Γ, whose objects over A : TyΓ Γ are

elements of TyA ΓA, and displayed morphisms over t : TmΓ (Γ ▷ A) (B[p]) are el-

ements of TmA (Γ ▷ A) (B[p]) t. The identity morphism is given by qA, and the

composition of t and u is t[pA, u]. Analogously to Definition 44, this extends to a

displayed split indexed category.

Definition 60 (Displayed isomorphisms). A displayed context isomorphism over

σ : Γ ≃ ∆, notated σ : Γ ≃σ ∆, is an invertible displayed morphism σ : SubA Γ∆σ,

with inverse σ−1 : SubA ∆Γσ−1. A displayed type isomorphism over t : A ≃ B,

notated t : A ≃t B, is an isomorphism in a displayed type category.

Definition 61. A vertical morphism lies over an identity morphism. We use this

definition for context morphisms (substitutions) and type morphisms as well.

Definition 62 (Split iso-cleaving for contexts). This lifts a base context isomor-

phism to a displayed one. It consists of

coe : Γ ≃ ∆ → ConA Γ → ConA ∆

coh : (σ : Γ ≃ ∆)(Γ : ConA Γ) → Γ ≃σ coeσ Γ

coeid : coe idΓ ≡ Γ

coe◦ : coe (σ ◦ δ) Γ ≡ coeσ (coe δ Γ)

cohid : coh idΓ ≡ id

coh◦ : coh (σ ◦ δ) Γ ≡ cohσ (coe δ Γ) ◦ coh δ Γ

Here, coe and coh abbreviate “coercion” and “coherence” respectively.
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Definition 63 (Split iso-cleaving for types). This consists of

coe : A ≃ B → TyA ΓA → TyA ΓB

coh : (t : A ≃ B)(A : TyA ΓA) → A ≃t coe t A

coeid : coe idA ≡ A

coe◦ : coe (t ◦ u)A ≡ coe t (coeuA)

cohid : coh idA ≡ id

coh◦ : coh (t ◦ u)A ≡ coh t (coeuA) ◦ cohuA

Additionally, for σ : SubA Γ∆σ, we have

coe[] : coe (t[σ ◦ p, q]) (A[σ]) ≡ (coe t A)[σ]

coh[] : coh (t[σ ◦ p, q]) (A[σ]) ≡ (coh t A)[σ]

Definition 64. A split flcwf isofibration is a displayed flCwF equipped with split

iso-cleaving for contexts and types.

Remark. It is not possible to model types as fibrations or opfibrations because

we have no restriction on the variance of ToS types. For example, the type which

extends a pointed set signature to a natural number signature, is neither a fibration

nor an opfibration.

Type substitution

We aim to define –[–] : Ty∆ → SubΓ∆ → TyΓ, such that A[id] ≡ A and

A[σ ◦ δ] ≡ A[σ][δ]. As before, the underlying sets are given by simple composi-

tion:

ConA[σ] Γ :≡ ConA (σ Γ)

SubA[σ] Γ∆σ :≡ SubA Γ∆ (σ σ)

TyA[σ] ΓA :≡ TyA Γ (σA)

TmA[σ] ΓA t :≡ TmA ΓA (σ t)

The difference from the finitary case is that instead of preservation equations,

we have isomorphisms, coercions and coherence. However, we can recover essen-

tially the same reasoning as before because all the previous transports still work.
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Context and type formers are given by coercing A structures along preservation

isomorphisms by σ. For example:

•A[σ] :≡ coeσ−1• •A

Γ ▷A[σ] A :≡ coeσ−1▷ (Γ ▷A A)

IdA[σ] t u :≡ coeσ−1Id (IdA t u)

KA[σ] ∆ :≡ coeσ−1K (KA ∆)

Term and substitution formers are given by composing coh-lifted isomorphisms

with term and substitution formers from A. For example:

ϵA[σ] :≡ cohσ−1• •A ◦ ϵA
pA[σ] :≡ pA ◦ (cohσ−1▷ (Γ ▷ A))−1

(σ,A[σ] t) :≡ cohσ−1▷ (∆ ▷ A) ◦ (σ,A t)

As we mentioned, only weak K is supported in A[σ]. For strict K we would have

to show:

SubA Γ∆ (σ σ) ≡ TmA Γ (coeσ−1K (KA ∆)) (σ σ)

By strict K in A, it would be enough to show

TmA Γ (KA ∆) (σ σ) ≡ TmA Γ (coeσ−1K (KA ∆)) (σ σ)

But there is no reason why these sets should be equal, so we instead produce an

isomorphism.

Equations for term and type substitution follow from naturality of preservation

isomorphisms in σ, coe[], coh[] and substitution equations in A.

Iso-cleaving is given by iso-cleaving in A and the action of σ on isomorphisms,

so that we have coeA[σ] σ Γ :≡ coeA (σ σ) Γ and cohA[σ] σ Γ :≡ cohA (σ σ) Γ.

Functoriality of type substitution, i.e. A[id] ≡ A and A[σ ◦ δ] ≡ A[σ][δ],

follows from Lemma 6 and split cleaving given by coeid, coe◦, cohid and coh◦ laws

in A.

Terms

TmΓA : Set is defined as the type of weak flCwF sections of A. The underlying

functions of t : TmΓA are as follows:

t : (Γ : ConΓ) → ConA Γ
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t : (σ : SubΓ Γ∆) → SubA (tΓ) (t∆)σ

t : (A : TyΓ) → TyA (tΓ)A

t : (t : TmΓ ΓA) → TmA (tΓ) (tA) t

Such that

1. t (A[σ]) ≡ (tA) [tσ]

2. t (t[σ]) ≡ (t t) [tσ]

3. The unique ϵA : Sub (t •) • id has a vertical retraction.

4. Each (t p, t q) : Sub (t (Γ ▷ A)) (tΓ ▷ tA) id has a vertical inverse.

Similarly to what we had in Sub, we denote the evident preservation isomor-

phisms as t• : t • ≃id • and t▷ : t (Γ ▷ A) ≃id tΓ ▷ tA. In short, weak sections

are dependently typed analogues of weak morphisms, with dependent underly-

ing functions and displayed preservation isomorphisms. We also have the derived

fl-preservation isomorphisms.

Theorem 8. A weak section t : TmΓA preserves fl-structure up to vertical type

isomorphisms, that is, the following are derivable:

tΣ : t (ΣAB) ≃id Σ (tA) ((tB)[t−1▷ ])

tId : t (Id t u) ≃id Id (t t) (tu)

tK : t (K∆) ≃id K (t∆)

Also, the above isomorphisms are natural in the sense of Theorem 7, and t pre-

serves term and substitution formers in the fl-structure.

Proof. The construction of isomorphisms is the same as in Theorem 7. Indeed,

every construction there has a displayed counterpart which we can use here.

We note though that the move from Theorem 7 to here is not simply a logical

predicate translation because we are only lifting the codomain of a weak morphism

to a displayed version, and we leave the domain non-displayed. We leave to future

work the investigation of such asymmetrical logical predicate translations.
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Term substitution

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ(A[σ]) is given similarly to – ◦ –

in Section 5.2.2. Underlying functions are given by function composition, and

preservation morphisms are also similar:

(t[σ])−1• :≡ t σ−1• ◦ t−1•
(t[σ])−1▷ :≡ t σ−1▷ ◦ t−1▷

We also have the same decomposition of derived isomorphisms as in Lemma 6. We

do not have to show functoriality of term substitution here, since that is derivable

in any cwf, see e.g. [KKA19].

Comprehension

Γ ▷ A : Con is defined as the total flcwf of A, in exactly the same way as in the

finitary case, since the additional iso-cleaving structure plays no role in the result.

p : Sub (Γ ▷ A)Γ and q : Tm (Γ ▷ A) (A[p]) are likewise unchanged; they are

strict morphisms, so also automatically weak morphisms. Substitution extension

(σ, t) is given by pointwise combining σ and t, e.g. Con(σ,t) Γ :≡ (σ Γ, tΓ).

Strict constant families

We have the same definition for K∆ : TyΓ as in the finitary case, although we

need to define iso-cleaving in addition. Fortunately, coercions and coherences are

all trivial because K∆ does not actually depend on Γ.

coeK∆ σ Γ :≡ Γ

coeK∆ t A :≡ A

Universe

U : TyΓ is exactly the same as before. We define it as the type which is constantly

the flcwf of inner types, so it inherits the trivial iso-cleaving from K.

Ela : TyΓ is again the displayed flcwf of the elements of a : TmΓU. The

underlying sets are unchanged:

ConEla Γ :≡ Tm0 (aΓ)

SubEla Γ∆σ :≡ aσ Γ ≡ ∆
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TyEla ΓA :≡ Tm0 (aAΓ)

TmEla ΓA t :≡ a tΓ ≡ A

We need to adjust definitions to show that Ela supports all required structure.

Previously, all context and type formers were inherited from U, since a strictly

preserved them. Now, a preserves structure up to (definitional) isomorphism of

inner types. Hence, the adjustments are quite mechanical; they are like wrapping

all definitions in “unary record constructors” given by preservation isomorphisms.

For example:

•Ela :≡ a−1• tt

(Γ ▷Ela A) :≡ a−1▷ (Γ, A)

We likewise use preservation isomorphisms to define K, Id and Σ. Context co-

ercion is coeσ Γ :≡ aσ Γ. Type coercion, for A : aAΓ is given as coe t A :≡
a t (a−1▷ (Γ, A)).

Unit type

⊤ : TmΓU is the constantly ⊤0 morphism, i.e. it maps objects to ⊤0 and types

to λ .⊤0, and maps morphisms and terms to the identity function. It clearly

preserves • and –▷– up to isomorphism.

Sigma type

For a : TmΓU and b : Tm (Γ ▷ Ela)U, we define Σab : TmΓU as the

component-wise Σ of a and b. For the action on Γ : ConΓ, we have:

(Σab) Γ : Ty0

(Σab) Γ :≡ (α : aΓ)× b (Γ, α)

For the action on σ : SubΓ∆, we have:

(Σab)σ : (α : aΓ)× b (Γ, α) → (α : a∆)× b (∆, α)

(Σab)σ :≡ λ (α, β). (aσ α, b (σ, refl) β)

Above, the second field should have type b (∆, aσ α), while β : b (Γ, α). Therefore

we need a morphism in Γ ▷ Ela from (Γ, α) to (∆, aσ α), which is defined as
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(σ, refl), where refl : aσ α ≡ aσ α. The action on A : TyΓ is

(Σab)A : (α : aΓ)× b (Γ, α) → Ty0

(Σab)A :≡ λ (α, β). (α′ : aAα)× b (A, α′) β

Here we are somewhat running out of notation: we use α′ to refer to a type over

α : aΓ in the displayed cwf of elements Ela. The action on terms is analogous:

(Σab) t : ((α, β) : (α : aΓ)× b (Γ, α)) → (α′ : aAα)× b (A, α′) β

(Σab) t :≡ λ (α, β). (a t α, b (t, refl) β)

For the preservation of •, we need to show (Σab) • ≃ ⊤0. Unfolding the definition,

we get ((α : a •)× b (•, α)) ≃ ⊤0. This holds since a • ≃ ⊤0, so a • is contractible,

thus (•, α) ≡ •Γ▷Ela, and we also know b • ≃ ⊤0. For the preservation – ▷ –, we

need

(Σab) (Γ ▷ A) ≃ (γ : (Σab) Γ)× (Σab)Aγ

Unfolding definitions and reassociating Σ on the right side:

(α : a (Γ ▷ A))× b ((Γ ▷ A), α)

≃

(α : aΓ)× (β : b (Γ, α))× (α′ : aAα)× b (A, α′) β

Since a▷ : a (Γ ▷ A)) ≃ (α : aΓ)× (β : b (Γ, α)), we can rewrite the left side using

pattern matching notation as

(a−1▷ (γ, α) : a (Γ ▷ A))× b ((Γ ▷ A), (γ, α))

Now, since ((Γ▷A), (γ, α)) ≡ (Γ, γ)▷Γ▷Ela (A, α), we know that b ((Γ▷A), (γ, α))

is also isomorphic to the evident Σ type, and the preservation isomorphism follows.

Projections and pairing for Σab are defined in the obvious way by component-

wise projection and pairing.

Identity

For t and u in TmΓ (Ela), we define Id t u : TmΓU as expressing pointwise

equality of weak sections. We rely on the assumption that Ty0 has identity type.

(Id t u) Γ :≡ (tΓ = uΓ)

(Id t u)A :≡ λ e. (tA = uA)
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Above, tA = uA is well-typed because of e : tΓ = uΓ. For substitutions, we

have to complete a square of equalities:

(Id t u) (σ : SubΓ∆) : (tΓ = uΓ) → (t∆ = u∆)

This can be given by tσ : aσ (tΓ) = t∆ and uσ : aσ (uΓ) = u∆. The action

on terms is analogous.

The •-preservation (t • = u •) ≃ ⊤0 follows from a • ≃ ⊤0. For ▷-preservation,

we need to show

(t (Γ ▷ A) = u (Γ ▷ A)) ≃ ((e : tΓ = uΓ)× (tA = uA))

This follows from ▷-preservation by a. Equality reflection and refl : Id t t are also

evident.

Small external product type

For Ix : Ty0 and b : Ix → TmΓU, we aim to define Πext Ix b : TmΓU. The

underlying functions are:

(Πext Ix b) Γ := (i : Ix ) → b iΓ

(Πext Ix b)σ := λ f i. b i σ (f i)

(Πext Ix b)A := λΓ. (i : Ix ) → b i A (Γ i)

(Πext Ix b) t := λ f i. b i t (f i)

We rely on Π in the inner theory. The preservation isomorphisms are pointwise

inherited from b. One direction of the isomorphisms is defined as follows. Note

that •U ≡ ⊤ and ▷U is Σ.

(Πext Ix b)−1• : ⊤ → (Πext Ix b) •

(Πext Ix b)−1• :≡ λ i. (b i)−1• tt

(Πext Ix b)−1▷ : (Γ : (Πext Ix b) Γ)× ((Πext Ix b)AΓ)

→ (Πext Ix b) (Γ ▷ A)

(Πext Ix b)−1▷ :≡ λ (Γ, A) i. (b i)−1▷ (Γ i, A i)
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Internal product type

For a : TmΓU and B : Ty (Γ ▷ Ela), we aim to define ΠaB : TyΓ. The

underlying sets are unchanged.

ConΠaB Γ :≡ (γ : aΓ) → ConB (Γ, γ)

SubΠaB Γ∆σ :≡ (γ : aΓ) → SubB (Γ γ) (∆ (aσ γ)) (σ, refl)

TyΠaB ΓA :≡ {γ : aΓ}(α : aAγ) → TyB (Γ γ) (A, α)

TmΠaB ΓA t :≡ (γ : aΓ) → TmB (Γ γ) (A (a t γ)) (t, refl)

Likewise, all structure is defined pointwise using B structure. Similarly to the El

case, we have to sometimes fall through the defining isomorphisms for a structure.

For comparison, in the finitary case we had the following definition:

(Γ ▷ΠaB A) (γ, α) :≡ (Γ γ ▷B Aα)

Here, (γ, α) : a (Γ ▷ A), so also (γ, α) : (γ : aΓ) × aAγ, so the Σ pattern-

matching notation is justified in the definition. In the current infinitary case, we

have (a▷, a
−1
▷ ) : a (Γ ▷ A) ≃ ((γ : aΓ) × aAγ) instead. But we can use the

intuition that set isomorphisms are like unary record types, so we can still give a

pattern-matching definition:

(Γ ▷ΠaB A) (a−1▷ (γ, α)) :≡ (Γ γ ▷B Aα)

For the definitions of other type and term formers, we likewise insert the isomor-

phisms appropriately. It remains to define iso-cleaving Π. Coercion is given by

mapping indices backwards in Ela and coercing outputs forwards in B.

coeσ Γ :≡ λ γ. coeB (σ, refl) (Γ (a (σ−1) γ))

coe t A :≡ λ γ a. coeB (t, refl) (A (a (t−1) (a−1▷ (γ, a))))

Likewise, coh-s are given by backwards-forwards coh-s. As before, app and lam

are defined as currying and uncurrying the underlying functions.

External product type

For Ix : Setj and B : Ix → TyΓ, we define ΠExt Ix B : TyΓ as the Ix -indexed

direct product of B. Since the indexing is given by a metatheoretic function,

every component is given in the evident pointwise way, including iso-cleaving.

This concludes the definition of the M model.
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5.3 Left Adjoints of Substitutions

In the following we adapt Section 4.2.7 to infinitary signatures.

• We again write J–K for the interpretation into the flcwf model M.

• We also add ⊤ : TyΓ and Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ to the ToS.

Again we do not elaborate much on their semantics; ⊤ is given as K • in the

model and Σ is given by component-wise Σ.

We again fix Ω : Con and define heterogeneous morphisms. The types of elimina-

tors stay exactly the same:

–HM : (Γ : Con) → ΓA → SubΩΓ → TyΩ

–HM : (σ : SubΓ∆) → TmΩ (ΓHM γ0 γ1) → TmΩ (∆HM (σA γ0) (σ ◦ γ1))

–HM : (A : TyΓ) → AA γ0 → TmΩ (A[γ1]) → TmΩ (ΓHM γ0 γ1) → TyΩ

–HM : (t : TmΓA)(γHM : TmΩ (ΓHM γ0 γ1)) → TmΩ (AHM (tA γ0) (t[γ1]) γ
HM)

We only need to show that the new type formers in U, namely ⊤, Σ, Id and Πext,

can be also covered in the definition of –HM . The new type formers turn out to

work exactly as mechanically as the previous ones. We have the following:

⊤HM γHM : TmΩ (⊤ →Ext El⊤)

⊤HM γHM :≡ λExt . tt

(Σ a b)HM γHM :

TmΩ (((α : aA γ0)× (bA (γ0, α))) →Ext El (Σ (α : a[γ1]) (b[γ1, α])))

(Σ a b)HM γHM :≡ λExt (α, β). (aHM γHM α, bHM (γHM , refl) β)

(Πext Ix b)HM γHM : TmΩ (((i : Ix) → (b i)A γ0) →Ext El ((i : Ix) →ext (b i)[γ1]))

(Πext Ix b)HM γHM :≡ λExt f. λext i. (f i)HM γHM

For Id, we again have to complete a square.

(Id t u) γHM : TmΩ ((tA γ0 = uA γ0) →Ext El (Id (t[γ1]) (u[γ1])))

This follows from tHM γHM and uHM γHM , the same way as in the flcwf semantics

before.
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Theorem 9. If every infinitary QII signature has an initial algebra, then for every

ν : SubΩ∆, there exists a left adjoint of JνK : JΩK → J∆K.

Proof. For each δ : ∆A, the comma category δ/JνK can be specified (up to isomor-

phism) by the signature Ω ▷∆HM δ ν, thus it has an initial object. Hence JνK has

a left adjoint.

5.4 Signature-Based Semantics of Signatures

We have seen that the –HM interpretation yields a notion of algebra morphism

that is specified inside ToS. What else can we represent in ToS? For example,

can we internalize –D, –M and –S? In this section we show that the full flcwf

semantics can be expressed internally to the ToS syntax.

This means that for each Γ : Con, we get ΓA : Ty • as the notion of algebras,

ΓM : Ty (• ▷ (γ0 : ΓA) ▷ (γ1 : ΓA)) as the notion of morphisms, id : Tm (• ▷ (γ :

ΓA)) (ΓM [γ0 7→ γ, γ1 7→ γ]) for the identity morphisms, and likewise we get the

whole flcwf of algebras in such an internal manner.

As we will shortly see, capturing the full flcwf semantics is possible with the

infinitary ToS, but not with the finitary ToS because it lacks the necessary type

formers in U.

It would be needlessly tedious and repetitive to redo the flcwf semantics while

explicitly working with ToS components. Instead, we repurpose 2LTT for this use

case. Recall that 2LTT allows to get semantics internally to any cwf with Π, Σ,

⊤ and Id. In the current section we aim to get semantics internally to the ToS

syntax. In short, this means that we work in a 2LTT where the inner theory is

the theory of signatures. The picture is a bit more nuanced though.

First, since ToS lives inside 2LTT, and we want to get presheaves over ToS in

the presheaf model, the metatheoretic setting of the presheaf model must be also

a 2LTT. This might get a bit confusing, so let us expand:

• The syntax of 2LTT internalizes the ToS syntax as an assumed type former.

• The presheaf model of 2LTT lives inside yet another 2LTT, let us call it

2LTT*, which embeds both the 2LTT syntax and the ToS syntax separately.

• In the presheaf model, the base cwf is the cwf of the ToS syntax in 2LTT*.
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• The Ty0 type former in 2LTT is interpreted in the presheaf model using the

Ty0 type former in 2LTT*.

• We add Tysig : Set and Tmsig : Tysig → Set to 2LTT. Tysig is interpreted as the

presheaf of ToS types, and Tmsig is interpreted using the displayed presheaf

of ToS terms, following Definition 36.

• We close Tysig under type formers which represent all type formers in ToS.

Like in the previous section, we assume that ToS types are closed under ⊤
and Σ, so we have ⊤, Σ, inductive Π, ΠExt and U in Tysig. The U in Tysig

has El : Tmsig U → Tysig, and it is closed under ⊤, Σ, Πext and Id. In the

presheaf model, all structure in Tysig is interpreted using ToS type formers

in the evident way.

Notation 20. We shall omit Tmsig in the following, similarly to how we previously

omitted Tm0. We keep omitting Tm0 in the new setup as well. However, we will

still mark El : U → Tysig explicitly.

For reference, we list type formers in Tysig below.

U : Tysig

El : U → Tysig

⊤ : U

Σ : (a : U) → (El a → U) → U

Id : El a → El a → U

Πext : (Ix : Ty0) → (Ix → U) → U

Π : (a : U) → (El a → Tysig) → Tysig

ΠExt : (Ix : Ty0) → (Ix → Tysig) → Tysig

Σ : (A : Tysig) → (A → Tysig) → Tysig

⊤ : Tysig

Notation 21. We will use the – →Ext – and – →ext – notations in the follow-

ing for Πext and ΠExt, but additionally we use – →int – for internal products, to

disambiguate them from outer functions in 2LTT.

We revisit now the flcwf semantics in the new setting. The goal is to produce

output by the signature-based semantics, such that if we use the original –A in-

terpretation on that, we get results that are equivalent to what we get from the
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direct semantics. For the simplest example, for Γ : Con, we get ΓA
sig : Ty • from the

signature-based semantics, then we get (ΓA
sig)

A tt : Set, which should be equivalent

to ΓA : Set.

In this section, we only describe the signature-based semantics, and we do not

formally check the round-trip property. The round-tripping seems very plausible

though, since as we will see, the signature-based semantics is exactly the same as

the direct semantics, modulo the change of universes and type formers.

We look at key parts of the model. In each case, we generally only check that

we have sufficient type formers. We again write components of the model in bold

font.

Base cwf

Contexts in the model are still flcwfs, but now Con, Sub, Ty and Tm in flcwfs all

return in Tysig. Hence, assuming Γ : Con, we have

ConΓ : Tysig

SubΓ : ConΓ → ConΓ → Tysig

TyΓ : ConΓ → Tysig

TmΓ : (Γ : ConΓ) → TyΓ Γ → Tysig

We specify all equations using outer equality (since the Id types in Tysig are exten-

sional, this makes no difference). Similarly, components of A : TyΓ return in Tysig.

Substitutions and terms in the model are unchanged, they are weak morphisms

and sections respectively. For • : Con, we use ⊤ : Tysig to define the components.

Likewise, we use the Σ type in Tysig to define – ▷ –.

If we write Tmsig explicitly, we have e.g. SubΓ : Tmsig ConΓ → Tmsig ConΓ →
Tysig. Thus, we may use the simplified interpretation of functions with inner do-

mains, from Section 3.4.3, and if we interpret the type of SubΓ at the empty context

in the presheaf model, we get Ty (• ▷ |ConΓ| tt ▷ |ConΓ| tt).

Universe

U : TyΓ is defined as U : Con, and we take the constant displayed flcwf of the

definition. Now, we have U : Con as the flcwf of types in U : Tysig.

ConU :≡ U



CHAPTER 5. INFINITARY QII SIGNATURES 137

SubU Γ∆ :≡ Γ →int El∆

TyU Γ :≡ Γ →int U

TmU ΓA :≡ (γ : Γ) →int El (Aγ)

•U, – ▷U – and IdU are defined using the type formers in U. As before, KU is

defined simply as a constant function. In Ela : TyΓ, we use the Id type in Tysig

in morphisms and sections:

ConEla Γ :≡ El (aΓ)

SubEla Γ∆σ :≡ Id (aσ Γ)∆

TyEla ΓA :≡ El (aAΓ)

TmEla ΓA t :≡ Id (a t,Γ)A

Type formers in U

For ⊤, Σ and Id in U, we use ⊤, Σ and Id in U : Tysig in a straightforward way.

For Πext Ix b, we have the following:

Con(Πext Ix b) Γ :≡ (i : Ix) →ext (b i) Γ

Let us look at morphisms:

Sub(Πext Ix b) σ : ((i : Ix) →ext (b i) Γ) →int El ((i : Ix) →ext (b i)∆)

Sub(Πext Ix b) σ :≡ λind t. λext i. (b i)σ (t i)

Here, we map an infinitary function to another one, which checks out just fine,

since →int allows such mapping. We have just enough higher-order functions to

complete this definition. The rest of Πext Ix b follows evidently.

Π, ΠExt, ⊤, Σ

In ΠaB, we use inductive functions in components:

Con(ΠaB) Γ :≡ (γ : aΓ) →int ConB (Γ, γ)

Sub(ΠaB) Γ∆σ :≡ (γ : aΓ) →int SubB (Γ γ) (∆ (aσ γ)) (σ, refl)

...

In ΠExt, we use →Ext. In ⊤ and Σ, we use ⊤ and Σ in Tysig. This concludes the

definition of the signature-based semantics.
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Definition 65 (Signature-based AMDS interpretation). For some Γ : Con,

we define the following by interpreting Γ in the signature-based flcwf model, then

interpreting the result in the presheaf model of 2LTT.

ΓA
sig : Ty •

ΓM
sig : Ty (• ▷ (γ0 : Γ

A
sig) ▷ (γ1 : Γ

A
sig))

ΓD
sig : Ty (• ▷ (γ : ΓA

sig))

ΓS
sig : Ty (• ▷ (γ : ΓA

sig) ▷ (γ
D : ΓD

sig))

Backporting to finitary signatures

It is apparent from the previous section that the signature-based full flcwf model

requires at least ⊤, Σ and Id in U: in the definition of U in the model these are

needed to define the family structure and the finite limit structure.

Hence, if we want to only support structure in Tysig corresponding to a theory

of finitary signatures, we need to drop all semantic components which rely on the

missing type formers. We have seen this kind of trimmed semantics in Section

4.3.2. In particular, we still get a category of algebras for each signature, since

that can be modeled without ⊤, Σ and Id.

Application: colimits

The signature-based semantics is often helpful when we want to construct new

signatures from old ones. We give an example application, in the construction of

colimits.

We would like to use left adjoints of substitutions to build colimits in cate-

gories of algebras. For this, it is enough to build indexed coproducts and binary

coequalizers.

For some Γ : Con, we get ΓA
tos : Ty •. For convenience we shall work with

ΓA
tos in the following, instead of Γ. First, we construct Ix-indexed coproducts in

the category of Γ-algebras, by taking the left adjoint of the following diagonal

substitution:

diag : Sub (• ▷ (γ : ΓA
tos)) (• ▷ (f : (Ix →Ext ΓA

tos)))

diag :≡ (f 7→ λext i. γ)
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For coequalizers,we again take the left adjoint of a diagonal substitution, but here

we need to rely on internal morphisms in the signature:

diag : Sub (• ▷ (γ : ΓA
tos))

(• ▷ (γ0 : Γ
A
tos) ▷ (γ1 : Γ

A
tos)

▷ (f : ΓM
tos[γ0 7→ γ0, γ1 7→ γ1])

▷ (g : ΓM
tos[γ0 7→ γ0, γ1 7→ γ1]))

diag :≡ (γ0 7→ γ, γ1 7→ γ, f 7→ idtos[γ 7→ γ], g 7→ idtos[γ 7→ γ])

Above, we use idtos : Tm (• ▷ (γ : ΓA
tos)) (Γ

M
tos [γ0 7→ γ, γ1 7→ γ]), which also comes

from the signature-based semantics.

Of course, if we want to be fully precise, we need to show that what we get

is equivalent to coproducts and coequalizers in the external sense. For this, we

would need the round-trip property of the signature-based semantics.

5.5 Discussion of Semantics

Iso-fibrancy as a weak structure identity principle

The flcwfs of algebras that we get from the infinitary semantics are exactly the

same as in the finitary case. However, semantic types are a bit more interesting.

The iso-fibrancy of types can be understood as a weaker version of the structure

identity principle in homotopy type theory.

The structure identity principle says that isomorphism of algebras is equivalent

to equality of algebras. This is the same as saying that categories of algebras are

univalent [AKS15]. Assuming a signature Γ and algebras γ ≃ γ′, we have γ = γ′.

This equality is respected by every construction in HoTT, which implies that for

any HoTT type family F : ΓA → Type, we have a function F γ → F γ′.

We get a similar but weaker statement from the infinitary semantics: for σ :

γ ≃ γ′ and some ToS type A : TyΓ, we have a function coeσ : AA γ → AA γ′.

We also have cohσ α : α ≃σ coeσ α for some α : AA γ. So we can transport over

isomorphisms, but not all metatheoretic families can be transported, only those

which arise as ToS types.

Of course, we can transport over multiple types, or telescopes of types too,

by iterated transport. For instance, given A : TyΓ, B : Ty (Γ ▷ A), α : AA γ

and β : BA (γ, α), we can transport α first, then transport β by (σ, cohσ α).
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Alternatively, if have large Σ types in ToS, as Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ,

that makes iterated transport superfluous.

Variations of semantics

First, unlike in the finitary case, we have no opportunity to minimize assumptions

on the inner theory. Already when we compute algebras, we need inner Π for

infinitary functions, inner ⊤ for ⊤, inner Σ for Σ and inner – = – for Id. Note

though that we still get semantics in any LCCC (locally cartesian closed category),

since we can build a cwf with the required type formers from any LCCC [CD14].

Second: can we add the “large” equality type, which includes sort equations,

back to infinitary signatures? We dropped sort equations in this chapter because

they are clearly not isofibrant. We can add them back into the mix though, at

the price of dropping components from the semantics of signatures. The reason

for having isofibrant types is that type formers in U preserve • and – ▷ – only up

to isomorphism. If we drop all semantic components which depend on • and –▷–,

we can drop isofibrancy too from the model, and everything works. In this case,

we still get a category of algebras, plus a notion of induction, but we cannot show

that initiality is equivalent to induction, as the proof of Theorem 1 depends on

–▷–.

Model Constructions

In this chapter we gain some expressive power in defining model constructions

using substitutions or terms. For starters, the construction of categories from

monoids works now:

Example 30. Let us have MonoidSig as the signature for monoids, with M : U as

the carrier set, – ·– : M → M → ElM as multiplication and ϵ : ElM as identity the

element. We define σ : SubMonoidSig CatSig to contain Obj :≡ ⊤, Hom :≡ λ .M,

id :≡ ϵ and –◦– :≡ – ·–.

Many constructions in the literature which have been dubbed syntactic models

[BPT17] or syntactic translations can be defined now in the ToS, for the following

reasons.

• Syntactic translations usually do not rely on models being actually syntactic:

they do not use induction on target theory syntax. A rare counterexample
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is our construction of recursors and eliminators for term models. These

are perhaps syntactic in the sense that they prominently involve the syntax

of some type theory, and they construct recursor/eliminator functions by

induction on terms.

• Syntactic translations rarely if ever involve higher-order constructions. Such

would be interpreting Con with (Con → Con) → Con, for a contrived exam-

ple.

The gluing construction in Example 21 is already a fairly general example that

only requires the finitary ToS to define. That construction is more in an “indexed”

style, but now we can also do constructions in a more “fibered” style.

Example 31. We may consider a unary parametricity translation in the style of

Bernardy, Jansson, and Paterson [BJP10], which makes use of the small Σ-type in

the theory of signature. We assume TT : Ty • as the signature for the theory, and

TTD : Ty (• ▷ (M : TT)) as the signature for displayed models. The translation

can be typed as Tm (• ▷ (M : TT))TTD: we assume a model of the theory, and

build a displayed model over the same theory. Informally, when M is initial, we

get a translation which doubles each context:

JΓ ▷ (a : A)K ≡ JΓK ▷ (a : A) ▷ (aD : JAK a)

Formally, however, this is not well-typed because A lives in Γ, not in JΓK. Hence,
in the definition of contexts in the displayed model, we also include a substitution

which projects out the “base” parts of contexts. This can be used to weaken types

in base contexts to total contexts.

Con : ConM → U

ConΓ :≡ Σ (Γ′ : ConM) (proj : SubM Γ′ Γ)

This requires the small Σ-type in ToS. It is possible to rephrase the construction

without type formers in U; again, Example 21 has unary parametricity as a special

case. However, the fibered version has the advantage that contexts are translated

to contexts, types to types, and terms to terms, which makes it more convenient if

we actually want to implement it as a program translation. In contrast, the gluing

definition of unary parametricity maps contexts to types.
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5.6 Term Algebras

We adapt now the previous term algebra construction to the infinitary case. We

again switch to the ETT setup with cumulative universes. We assume Section 4.4.1

without any change. Also, we adapt 4.4.2 to infinitary signatures and semantics.

All definitions are the same, the only change is that the Mi,j model is now the

isofibrant flcwf model, and we have the infinitary ToS.

5.6.1 Term Algebra Construction

The term algebra construction changes significantly. The reason is the following.

In the finitary case, the key property was that “small types evaluated in the term

model are sets of terms”. Formally, we had for a : TmΩU that aA (ΩT id) ≡
TmΩ (El a). This is now weakened to an isomorphism, i.e. aA (ΩT id) ≃ TmΩ (El a).

This is again necessary because of the closure of U under type formers. For

example, ⊤A (ΩT id) ≡ ⊤, and TmΩ (El⊤) is merely isomorphic to ⊤. We assume

Ω : Sigj for some j level, and define –T by induction on synj.

–T : (Γ : Con) (ν : SubΩΓ) → ΓA

–T : (σ : SubΓ∆)(ν : SubΩΓ) → ∆T (σ ◦ ν) ≃ σA (ΓT ν)

–T : (A : TyΓ) (ν : SubΩΓ) → TmΩ (A[ν]) → AA (ΓT ν)

–T : (t : TmΓA) (ν : SubΩΓ) → AT ν (t[ν]) ≃id t
A (ΓT ν)

In short, interpretations of substitutions and terms are weakened to isomorphisms.

By ≃id we mean a displayed isomorphism of objects in the semantic A type (which

is an flcwf isofibration); recall Definition 60. The isomorphism is “vertical” since

it lies over id.

The interpretation of the cwf is the same as before, but like in the isofibrant se-

mantics, we have to use explicit coe instead of silently transporting over equalities.

In the interpretations of substitutions and terms, we have to explicitly compose

isomorphisms and sometimes lift them using coh. We give some examples. The

interpretation of context formers is the same as before:

•T ν :≡ tt

(Γ ▷ A)T (ν, t) :≡ (ΓT ν, AT ν t)
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Type substitution with σ : SubΓ∆ is interpreted as coercion:

(A[σ])T : (ν : SubΩΓ)(t : TmΩ (A[σ][ν]) → AA (σA (ΓT ν))

(A[σ])T ν t :≡ coe (σT ν) (AT (σ ◦ ν) t)

Composition of σ : Sub∆Ξ and δ : SubΓ∆ is the following:

(σ ◦ δ)T : (ν : SubΩΓ) → ∆T (σ ◦ δ ◦ ν) ≃ σA (δA (ΓT ν))

(σ ◦ δ)T ν :≡ σM (δT ν) ◦ σT (δ ◦ ν)

Above, we have

δT ν : ΞT (δ ◦ ν) ≃ δA (ΓT ν)

σM (δT ν) : σA (ΞT (δ ◦ ν)) ≃ σA (δA (ΓT ν))

σT (δ ◦ ν) : ∆T (σ ◦ δ ◦ ν) ≃ σA (ΞT (δ ◦ ν))

Hence, the type of the composition in the definition checks out. We make use of

the fact that σM sends an isomorphism in Γ to an isomorphism in ∆.

Substitution extension is a somewhat more complicated case. We want to

interpret the extension of σ : SubΓ∆ with t : TmΓ (A[σ]):

(σ, t)T : (ν : SubΩΓ) → (∆ ▷ A)T ((σ, t) ◦ ν) ≃ (σ, t)A (ΓT ν)

The goal is an isomorphism in the semantic Γ ▷ A category, i.e. the total category

of A. Every isomorphism in Γ ▷A arises as packing together a Γ isomorphism and

a displayed A isomorphism over it. We can compute the type further:

(σ, t)T : (ν : SubΩΓ) → (∆T (σ ◦ ν), AT (σ ◦ ν) (t[ν])) ≃ (σA (ΓT ν), tA (ΓT ν))

We can exhibit σT ν : ∆T (σ ◦ ν) ≃ σA (ΓT ν) as the base component of the goal

isomorphism. Now we need a displayed isomorphism over it. Following the pattern,

we may try tT ν:

tT ν : (A[σ])T ν (t[ν]) ≃id t
A (ΓT ν)

Computing the type:

tT ν : coe (σT ν) (AT (σ ◦ ν) (t[ν])) ≃id t
A (ΓT ν)

So this is not quite what is needed; we want a displayed iso over σT ν, but we have

something over id. We can fix this using coh:

coh (σT ν) (AT (σ ◦ ν) (t[ν])) : AT (σ ◦ ν) (t[ν]) ≃σT ν coe (σT ν) (AT (σ ◦ ν) (t[ν]))
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The composition of tT ν and the above now checks out:

(σ, t)T ν :≡ (σT ν, tT ν ◦ coh (σT ν) (AT (σ ◦ ν) (t[ν])))

We omit the rest of the cwf interpretation. It should be apparent that explicit

coe and coh-handling is fairly technical. We note though that in a proof assistant,

the finitary and infinitary term model constructions would be of similar difficulty,

because there we cannot rely on equality reflection and implicit transports to

magically tidy up the formalization. In fact, even in the finitary case it would be

a good idea to structure the formalization around coercions and coherences.

The high-level explanation for why the weakened constructions continue to

work, is the same as what we gave in the section on iso-fibrant semantics: we do

nothing which would violate stability under isomorphisms; additionally, because

our isofibrations are split, coercion and coherence compute strictly on identities

and compositions, which ensures that conversion equations in the syntax are re-

spected. For example, functoriality of type substitution relies on coe computation

on identity and composition.

Universe

The universe is interpreted as follows.

UT : (ν : SubΩΓ) → TmΩU → Setj+1

UT ν a :≡ TmΩ (El a)

(El a)T : (ν : SubΩΓ)(t : TmΩ (El (a[ν]))) → aA (ΓT ν)

(El a)T ν t :≡ (aT ν) t

In the interpretation of El, note that

aT ν : TmΩ (El (a[ν])) ≃id a
A (Γ ν)

But this is an isomorphism in the semantic U, which is the category of sets in

Setj+1. So coercion along aT ν is simply function application, and we are justified

in writing (aT ν) t.

For each type former in U, we have to exhibit an isomorphism of sets in the

interpretation.
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⊤, Σ

We need

⊤T : (ν : SubΩΓ) → UT ν (⊤[ν]) ≃id ⊤A (ΓT ν)

The result type computes to TmΩ (El⊤) ≃ ⊤, which is evident. For Σ, we have

to show

TmΩ (El (Σ (a[ν]) (b[ν ◦ p, q]))) ≃ ((α : aA (ΓT ν))× bA (ΓT ν, α))

This follows from the induction hypotheses aT and bT , which establish the first

and second components of the desired isomorphism.

Identity

For the identity type, we need

TmΩ (El (Id (t[ν]) (u[ν])) ≃ (tA (ΓT ν) ≡ uA (ΓT ν))

This follows from tT ν, uT ν and the specifying isomorphism of Id.

Small external products

This function type follows the same pattern. We define the isomorphism below

using induction hypotheses and the specifying isomorphism of Πext.

TmΩ (El (Πext Ix (λ i. (b i)[ν]))) ≃ ((i : Ix ) → (b i)A (Γ ν))

Internal products

Inductive functions are interpreted using transport along aT ν : TmΩ (El (a[ν])) ≃
aA (ΓT ν):

(Π aB)T : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))

→ (α : aA (ΓT ν)) → BA (ΓT ν, α)

(Π aB)T ν t :≡ λα.B (ν, (aT ν)−1 α) (t ((aT ν)−1 α))

External products are interpreted the same way as in the finitary case.
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5.6.2 Eliminator Construction

We only present the eliminator construction in the following, since (unique) recur-

sors are derivable from this.

Compared to the finitary case, the eliminator construction does not change

as much as the term algebra construction. The reason is that although we have

weakened strict algebra equality to isomorphism, in the current construction we

only have to show equalities of substitutions and terms, which we do not need to

weaken (and they cannot be sensibly weakened anyway).

We assume j and k such that j +1 ≤ k, and also Ω : Sigj and ωD : ΩD
k (ΩT id).

Hence, ωD is a displayed Ω-algebra over the term algebra, and we aim to construct

its section. Note that we lift ΩT id : ΩA
j+1 to level k by cumulativity. We define –E

by induction on synj.

–E : (Γ : Con) (ν : SubΩΓ) → ΓS (νA (ΩT id)) (νD ωD)

–E : (σ : SubΓ∆)(ν : SubΩΓ) → ∆E (σ ◦ ν) ≡ σS (ΓE ν)

–E : (A : TyΓ) (ν : SubΩΓ)(t : TmΩ (A[ν])) → AS (tA (ΩT id)) (tD ωD) (ΓE ν)

–E : (t : TmΓA) (ν : SubΩΓ) → AE ν (t[ν]) ≡ tS (ΓE ν)

This is so far exactly the same as in Section 4.4.5. The subsequent changes arise

from the need to transport along –T in definitions.

Universe

For the universe, we need

UE : (ν : SubΩΓ)(a : TmΩU) → (α : aA (ΩT id)) → aD ωD α

Since we only have aT id : aA (ΩT id) ≃ TmΩ (El a), the definition becomes

UE ν a t :≡ (aT id t)D ωD

That this is well-typed, follows from

((aT id) t)T id : t ≡ ((aT id) t)A (ΩT id)

((aT id) t)D ωD : aD ωD (((aT id) t)A (ΩT id))

For El, we need to show

(El a)E : (ν : SubΩΓ)(t : TmΩ (El (a[ν]))) → aS (ΓE ν) (tA (ΩT id)) ≡ tD ωD
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We have

tT id : (a[ν])T id t ≡ tA (ΩT id)

Moreover

aE ν : UE ν (a[ν]) ≡ aS (ΓE ν)

Hence

aE ν : (λ t. ((a[ν])T id t)D ωD) ≡ aS (ΓE ν)

Applying both sides to ((a[ν])T id)−1 t, we have

((a[ν])T id (((a[ν])T id)−1 t))D ωD ≡ aS (ΓE ν) (((a[ν])T id)−1 t)

This simplifies to

tD ωD ≡ aS (ΓE ν) (((a[ν])T id)−1 t)

By (aT id t)T id : t ≡ (aT id t)A (ΩT id) this becomes:

tD ωD ≡ aS (ΓE ν) (((a[ν])T id)−1 ((aT id t)A (ΩT id)))

Thus we have the required

tD ωD ≡ aS (ΓE ν) (ΩT id)

⊤, Σ

For ⊤, we need

⊤E : (ν : SubΩΓ) → UE ν⊤ ≡ ⊤S (ΓE ν)

But this is clearly trivial, since ⊤S (ΓE ν) : ⊤ → ⊤. Considering Σ:

(Σ a b)E : (ν : SubΩΓ) → UE ν (Σ (a[ν]) (b[ν ◦ p, q])) ≡ (Σ a b)S (ΓE ν)

This case is a bit tedious. The sides above are functions, so appealing to function

extensionality we apply both sides to (α, β), where α : aA (νA (ΩT id)) and β :

bA (νA (ΩT id), α). We also unfold some definitions:

(((Σ (a[ν]) (b[ν ◦ p, q]))T id)−1 (α, β))D ωD ≡ (aS (ΓE ν)α, bS (ΓE ν, refl) β)

Unfolding the left side of this equation, we have

((((a[ν])T id)−1 α)D ωD, (((b[ν ◦ p, q])T (id, ((a[ν])T id)−1 α))−1 β)D ωD)
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Let us abbreviate ((a[ν])T id)−1 α : TmΩ (El (a[ν])) as α′:

(α′D ωD, (((b[ν ◦ p, q])T (id, α′))−1 β)D ωD)

Hence, we need to show component-wise equality of pairs. The equality of first

components follow from the following:

aE ν : UE ν (a[ν]) ≡ aS (ΓE ν)

Unfolding definitions and applying both sides to α, we get the equality of first

components:

α′D ωD ≡ aS (ΓE ν)α

Analogously, the equality of second components follows from

bE (ν, α′) : (((b[ν, α′])T id)−1 β)D ωD ≡ bS (ΓE ν, refl) β

The right hand side is what we need, the left hand side though does not immedi-

ately match up. Hence, it remains to show that

(((b[ν, α′])T id)−1 β)D ωD ≡ (((b[ν ◦ p, q])T (id, α′))−1 β)D ωD

Thus, it suffices to show

(b[ν, α′])T id ≡ (b[ν ◦ p, q])T (id, α′)

This equation follows from a somewhat laborious unfolding of all involved defini-

tions. In particular, we use that for some a : TmΓU, we have

(a[σ])T ν ≡ aM (σT ν) ◦ aT (σ ◦ ν)

which follows from the definition of –T .

Internal products

In Π we likewise transport along the domain isomorphism.

(Π aB)E : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))

→ (α : TmΩ (El (a[ν]))) → BS (tA (ΩT id)α) (tD ωD (αD ωD)) (ΓE ν, refl)

(Π aB)E ν t :≡ λα.BE (ν, (a[ν])T idα) (t ((a[ν])T idα))

This is well-typed by the following:

aE ν : ((a[ν])T idα)D ωD ≡ aS (ΓE ν)α

((a[ν])T idα)T id : α ≡ ((a[ν])T idα)A (ΩT id)
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Id, Πext, ΠExt

Id is trivial by UIP, and for Πext and ΠExt we again do a straightforward recursion

under the indexing function.

This concludes the definition of –E. We again show the initiality of term alge-

bras.

Definition 66 (Eliminators). Assuming Ω : Sigj, a k level such that k ≥ j + 1

and ωD : ΩD
k (ΩT id), we have ΩE id : ΩS (ΩT id)ωD as the eliminator.

Theorem 10. ΩT id : ΩA
j+1 is initial when lifted to any k ≥ j + 1 level.

Proof. ΩT id supports elimination by Definition 66, and elimination is equivalent

to initiality by Theorem 1.

5.7 Levitation and Bootstrapping

In this section we adapt the bootstrapping procedure from Section 4.5 to infinitary

signatures.

Bootstrapping for 2LTT semantics

If we only want to write down signatures and get their 2LTT-based semantics, a

simplified bootstrapping suffices, which is essentially the same as in Section 4.5.

We write ToSi : Seti+1 for the type of models where underlying sets are in Seti and

external indexing is over Ty0. We also have Mi : ToSi+2 for the flcwf models where

underlying sets in algebras are in Seti and external indexing is over types in Ty0.

Definition 67. The type of bootstrap signatures is defined as follows:

BootSig :≡ (i : Level) → (M : ToSi) → ConM

These bootstrap signatures only allow external indexing by types in Ty0. We can

write bootstrap signatures and interpret them in Mi, by applying them to Mi.

Bootstrapping for term algebras

Now we reuse the ETT setting from Section 4.4.2. We have ToSi,j : Seti+1⊔ j+1 for

the type of models where underlying sets are in Seti and Πext and ΠExt abstract over
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Setj. We also have Mi,j : ToS(i+1⊔ j)+1,j as the flcwf models, again with underlying

sets of algebras in Seti and external indexing types in Setj.

Definition 68. The type of bootstrap signatures at level j is defined as follows.

These may contain external indexing by types in Setj.

BootSigj :≡ (i j : Level) → (M : ToSi,j) → ConM

Definition 69 (Signature for ToS). We define ToSSigj : BootSigj+1 as the

bootstrap signature for ToS, where the described signatures may be indexed by

types in Setj. Like in Section 4.5, we use an internal notation. We present an

excerpt.

Con : U

Sub : Con → Con → U

Ty : Con → U

Tm : (Γ : Con) → TyΓ → U

...

SigU : {Γ : Con} → El (TyΓ)

SigEl : {Γ : Con} → TmΓ SigU → El (TyΓ)

Πext : {Γ : Con}(A : Setj) →Ext (A →ext TmΓ SigU) → El (TmΓ SigU)

...

Now the interpretation of ToSSigj in Mi,j+1 yields the flcwf where objects are

elements of ToSi,j. Note the level bump: ToSSigj is in BootSigj+1, so we expend

one level at each round of self-description. We get the notion of ToS-induction

from Mi,j+1, and we have ToSi,j ≤ ToSi+1,j (by definition of ToS and the rules

of subtyping), which allows us to specify what it means for a model to support

elimination into any universe. Thus we recover all concepts that are used in the

term algebra and eliminator constructions.

5.8 Related Work

This chapter is based on the publication “Large and Infinitary Quotient Inductive-

Inductive Types” [KK20b]. We make the following changes:

• We use 2LTT for the flcwf semantics, while the paper only used the cumu-

lative ETT setting.
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• We add the construction of left adjoints and the signature-based semantics

in Sections 5.3-5.4.

• We add small ⊤ and Σ to the ToS, and also their large counterparts in

Sections 5.3-5.4.

Recall that we show that arbitrary substitutions have left adjoints. Moeneclaey

[Moe21] describes sufficient conditions to have right adjoints as well: given t :

Tm (• ▷ ΓA
sig) Γ

D
sig, we have the context • ▷ ΓA

tos ▷ ΓS
tos[id, t], and then the forgetful

substitution from this context to •▷ΓA
tos has a right adjoint. The construction that

we gave in Example 31 was given with such a t term as well.

Fiore, Pitts and Steenkamp investigated infinitary QITs in [FPS20] and [FPS21].

They introduced two signatures for QW and QWI types, which generalize W-types

and indexed W-types respectively. In the latter work, they show that these types

can be constructed using the WISC axiom (weakly initial sets of covers).

Essentially algebraic theories generalize to the infinitary cases in a straightfor-

ward way [AAR+94].

Specific examples of infinitary QIITs where introduced in [Uni13], as QIITs

for Cauchy real numbers, surreal numbers, and cumulative set hierarchies. In

[ADK17], a partiality monad is specified as an infinitary QIITs.
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Higher Inductive-Inductive Signatures

So far we only considered semantics of signatures where equality constructors are

interpreted as proof-irrelevant equalities, i.e. those satisfying UIP. This inspires the

naming of quotient inductive-inductive signatures. In contrast, higher inductive-

inductive signatures are characterized by having possibly proof-relevant and iter-

ated equalities in algebras. The natural setting of HIITs is homotopy type theory

(HoTT) [Uni13], where higher equalities can be manipulated and constructed in

non-trivial ways. We might think of HIITs as generalizations of QIITs, or alter-

natively, view QIITs as set-truncated HIITs.

The theory of HII signatures is fairly similar to the theory of infinitary QII

signatures. The main difference is that the internal Id type does not support

equality reflection, nor UIP. In fact, infinitary QII signatures already allow iterated

Id, and most HIITs that occur in the literature can be already expressed using

QII signatures. In contrast, the semantics of signatures changes markedly: the

semantic inner theory is now intensional, and Id is interpreted as intensional inner

equality. This may not seem that dramatic, but note that so far we have made

very heavy use of UIP and inner equality reflection in the semantics, and now these

are not available.

The more general semantics introduces significant complications. As a result,

in the following we shall restrict ourselves to the AMDS fragment of the semantics.

This is sufficient to compute what we mean by induction and initiality (which has

been called “homotopy initiality” in the context of HoTT [Soj15]).

Why do not we go further? The main reason is that the natural semantics is

actually in (ω, 1)-categories: we want (ω, 1)-categories of algebras. This requires

a different approach and toolset. In particular, in [KK20a, Section 9] we gave an

152
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example that a naive attempt to extend the AMDS semantics of signatures with

the notion of identity morphisms already fails. The author of this thesis is not

versed enough in higher category theory, so we leave the exposition of the full

semantics to future work.

We do note that a higher semantics has been developed by Capriotti and Sat-

tler. See [CS20] for an abstract; the bulk of the work remains unpublished as of

now. In short, Capriotti and Sattler define the ToS in 2LTT, and also use 2LTT

to give a model where signatures are higher categories, specified as complete Segal

types. They show that categories of algebras have finite limits and that initial-

ity is equivalent to induction. Additionally, the setup yields a structure identity

principle for each signature. However, reductions to simpler type formers are not

discussed, nor possible term algebra constructions. Both of these appear to be far

more difficult than in the quotient setting, and to the author’s knowledge there

are no concrete proposals how to approach them.

The necessity of 2LTT

2LTT is firmly necessary in the specification of HIITs, and the ToS must live in

the outer layer. The reason is that there is no known way to sensibly internal-

ize the metatheory of type theories purely inside HoTT. This is the problem of

“HoTT eating itself” [Shu14]. It is also closely related to the problem of rep-

resenting semisimplicial types in HoTT. If we can construct semisimplicial types

in an embedded type theory, and interpret that into non-truncated HoTT types,

that would indeed solve the problem. But so far it has not been solved, or proven

impossible to solve. A key original motivation for 2LTT was precisely to allow

construction of semisimplicial types [ACKS19].

We give a short summary of the problem; see [KK20a, Section 4] for more

discussion. The goal is to have a notion of model of a dependent type theory in

HoTT, such that we have a standard model where contexts are HoTT types.

We may define the notion of model naively using types and equalities, by having

Con : U, Ty : Con → U, etc. and idl : σ ◦ id = σ. However, this does not yield

a well-behaved notion of syntax. If we define the syntax as HIIT for the above

notion (i.e. the initial model), nothing forces the underlying types to be sets; the

HIIT definition freely adds a large number of non-trivial higher paths. Since the

underlying types are not sets, this syntax does not have decidable equality, by

Hedberg’s theorem [Hed98]. This is regardless of what type formers we include.
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Alternatively, we may define the notion of model as having homotopy sets for

underlying types. The corresponding HIIT will be in fact a QIIT, where every

inductive sort is set-truncated. While this is better-behaved as syntax, we do not

get a standard model. Contexts in a model cannot be arbitrary types because in

HoTT, types (of a universe) do not form a h-set. In fact, not even h-sets form a

h-set; they form a h-groupoid. So we do not get any reasonable notion of standard

interpretation.

2LTT solves this issue in the following way: the embedded syntax is an outer

QIIT, and equations in the syntax are given as strict (outer) equalities. The

standard inner type model is now possible because in that model all equations

hold strictly, up to inner definitional equality. However, this implies that we can

only define strict models; this leads to the following consideration.

Strict vs. weak signatures

We have an important choice in the semantics: homomorphisms (and sections) can

preserve structure strictly, i.e. up to outer equality, or weakly, up to inner equality.

This choice has an impact on the supported ToS features.

• With strict preservation, the semantics does not support an elimination rule

for Id. The problem is that Id is necessarily modeled as inner equality, but

we cannot eliminate from that to outer types, and strict equality is an outer

type.

• With weak preservation, we do have elimination for Id. However, the se-

mantics does not support strict βη rules in Id, Σ, Πext and Π. In short, the

problem is that (El a)M and (El a)S are defined as inner equality types, so

we need to use inner path induction in the semantics of eliminators. This

implies that βη-rules also hold only up to inner paths, but not definitionally.

Thus, in the “weak” case, we may have βη only up to internal Id.

It makes sense to develop both semantics. Weak morphisms and sections are

useful because they can be defined purely in the inner theory (or in HoTT). Strict

morphisms and sections are useful if we want to specify type formers, since type

theories usually assume strict β-rules for recursors and eliminators. In this chapter,

we specify theories of signatures and semantics for both cases.
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Metatheory

We work in 2LTT. We assume that Ty0 is closed under Π, Σ, ⊤ and intensional

identity – = –. We assume the “based” path induction principle [Uni13, Sec-

tion 1.12.1]. Assuming A : Ty0, x : A and P : (y : A) → x = y → Ty0, we

have

JP : P x refl → {y : A}(p : x = y) → P y p

JPβ : JP pr refl ≡ pr

The following operations are defined in the standard way [Uni13, Section 2].

• Path inversion –−1 : x = y → y = x.

• Path composition – �– : x = y → y = z → x = z.

• Assuming P : A → Ty0, we have transport trP : x = y → P x → P y.

• Path lifting ap : (f : A → B) → x = y → f x = f y.

• Dependent path lifting apd : (f : (x : A) → B x) → (p : x = y) →
trB p (f x) = f y.

6.1 Strict Signatures

Definition 70. A model of strict ToS is the same as a model of the theory of

infinitary QII signatures, with the following change: the Id type former in U only

supports refl, but no elimination rule or reflection rule.

We assume that the syntax of ToS exists, and a signature is a context in the

syntax. We could use bootstrap signatures as well, without loss of generality, as

we will not use actual induction on signatures in the following, and we will also

not discuss fine-grained sizing or cumulativity of algebras.

Example 32. The circle is one of the simplest higher inductive types [Uni13,

Section 6.4]. The signature is the following.

S1 : U

base : El S1

loop : El (Id base base)

Note that the circle signature is expressible as a QII signature, but in the QII

semantics the loop entry is made trivial by UIP.
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Non-examples

From the HoTT book, all higher-inductive types are supported, except

• The torus [Uni13, Section 6.6], since the specification contains Id composi-

tion, which requires Id elimination.

• The “hubs-and-spokes” HITs [Uni13, Section 6.7]. This involves abstracting

over some external x : S1 (a point of the circle), then referring to a ToS term

which is computed by elimination on x. This is also not permitted in our

setup because signature terms live in the outer theory of 2LTT, and external

parameters are in Ty0.

If instead signatures and external parameters lived in the same theory (like

in our ETT setup for term algebra constructions of QIITs), this elimination

would be possible. For HIITs, we cannot do that, since the inner theory

cannot reasonably internalize the ToS.

6.1.1 Semantics

For each signature Γ, we wish to compute

ΓA : Set

ΓM : ΓA → ΓA → Set

ΓD : ΓA → Set

ΓS : (γ : ΓA) → ΓD γ → Set

corresponding respectively to algebras, morphisms, displayed algebras and sec-

tions. Note that all of these return in Set. Morphisms and sections in particular

are forced to return in Set because they may contain strict equalities.

The AMDS interpretations can be found in Appendix B in a tabular manner,

together with a listing of ToS components. We discuss these in the following.

In algebras and displayed algebras there is no complication; all equations

hold in these (displayed) models strictly, and we do not use equations from induc-

tion hypotheses anywhere.

In morphisms, note that all term formers returning in El specify a strict

equation. We write refl in their definition for brevity, which is technically correct

(by equality reflection), but the definitions may involve using the strict equalities
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from induction hypotheses. ⊤M γM : tt0 ≡ tt0 is trivial, but

(proj1 t)
M γM : aM γM ((proj1 t)

A γ0) ≡ (proj1 t)
A γ1

requires us to use

tM γM : (aM γM ((proj1 t)
A γ0), b

M (γM , refl) ((proj2 t)
A γ1)) ≡ tA γ1

Likewise we use tM γM in the equation for (proj2 t)
M .

Also note that the definition for (Id t u)M γM relies on tM and uM for well-

typing. The goal is

(Id t u)M γM : (Id t u)A γ0 → (Id t u)A γ1

(Id t u)M γM : tA γ0 = uA γ0 → tA γ0 = uA γ1

Assuming p : tA γ0 = uA γ0, we have ap (a
M γM) p : aM γM (tA γ0) = aM γM (uA γ0),

so we rewrite the sides along tM γM : aM γM (tA γ0) ≡ tA γ1 and uM γM . The ap

application must stay explicit in the definition, since inner equalities can be proof-

relevant.

We also demonstrate the failure of Id elimination. It is enough to show that Id

inversion fails. This would entail the following in the ToS:

–−1 : TmΓ (El (Id t u)) → TmΓ (El (Idu t))

In the –M interpretation, we would need to show

(p−1)M γM : ap (aM γM) ((p−1)A γ0) ≡ ((p−1)A γ1)

(p−1)M γM : ap (aM γM)
(
(pA γ0)

−1) ≡ (pA γ1)
−1

We have pM γM : ap (aM γM) (pA γ0) ≡ pA γ1, so we would need to show

ap (aM γM)
(
(pA γ0)

−1) ≡ (ap (aM γM) (pA γ0))
−1

This is not provable in 2LTT; it is false as a universal statement in the initial

model (syntax) of the inner theory. It holds in the empty context, where both

sides are necessarily equal to refl by canonicity, but not in arbitrary contexts. It

does hold as an inner equality, by induction on pA γ0.

Sections are a mostly mechanical generalization of morphisms, where the

codomain depends on the domain. Note that the (Id t u)D definition is a path-

over-path, and accordingly we have apd instead of ap in (Id t u)S.
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Definition 71. For some Γ signature, notions of initiality and induction are as

follows.

Initial (γ : ΓA) :≡ (γ′ : ΓA) → isContr (ΓM γ γ′)

Inductive (γ : ΓA) :≡ (γD : ΓD γ) → ΓS γ γD

This is the same as Definition 43, except we do not have an flcwf of algebras, so

do not have properties that are evident in an flcwf, such as Theorems 1 and 2.

Example 33. For the circle signature S1Sig, we have the following (disregarding

the leading ⊤ components):

S1SigA ≡ (S1 : Ty0)× (base : S1)× (loop : base = base)

S1SigD (S1, loop, base) ≡

(S1D : S1 → Ty0)

× (baseD : S1D base)

× (loopD : trS1D loop baseD = baseD)

S1SigS (S1, loop, base) (S1D, loopD , baseD) ≡

(S 1S : (s : S1) → S1D s)

× (baseS : S 1S base ≡ baseD)

× (loopS : apd S 1S loop ≡ loopD)

The computed induction principles are close to what we find in [Uni13]. The

difference is that β-rules for path constructors are strict, while in ibid. they are up

to propositional equality. One reason for choosing weak β-rules for paths is that we

have ap and apd applications on the left sides of such rules, and it is unconventional

to definitionally specify the behavior of operations which are derived from J. In

cubical type theories, path β-rules are specified in a more primitive way, so strict

computation is more organic.

Currently, we have semantics in intensional inner theories, but it would be

possible to do the same in cubical inner theories. Intensional TT is clearly much

simpler, and has a wider variety of known models. On the other hand, cubical type

theories support strictly computing transports, so it is possible that they would

support stricter ToS β-rules in the case of the “weak” semantics. We leave this to

possible future work.
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6.2 Weak Signatures

Metatheory

On top of what we had so far in this chapter, we assume strong function exten-

sionality in the inner theory: this means that for each f, g : (a : A) → B a, the

following function is an equivalence.

happly : (f = g) → ((a : A) → f a = g a)

happly p a :≡ ap (λ f. f a) p

funext is obtained as the inverse of happly. This definition, unlike the simple

assumption of funext, is well-behaved in intensional settings [Uni13, Section 2.9].

Moreover, we assume two universes U0 and U1, such that U0 ≤ U1 ≤ Ty0. We

use this to develop semantics which is entirely in the inner theory: if algebra sorts

are in U0, we need an U1 on top of that to accommodate types of algebras.

Definition 72. A model of weak ToS consists of a base cwf (with Con, Sub,

Ty and Tm returning in Set) extended with certain type formers. We omit all

substitution rules in the following. As before, substitution rules are given with

strict equality. We list type formers below.

• A “large” identity type ID : TmΓA → TmΓA → TyΓ, with the following

rules:

refl : TmΓ (ID t t)

J : {t : TmΓA}(P : Ty (Γ ▷ (u : A) ▷ (p : ID t u)))

→ TmΓ (P [u 7→ t, p 7→ refl])

→ {u : TmΓA}(p : TmΓ (ID t u)) → TmΓ (P [u 7→ u, p 7→ p])

Jβ : J b pr refl ≡ pr

Notation 22. We may use a name binding notation in the induction motive

for J. For example, assuming A : TyΓ, B : Ty (Γ ▷ A), p : TmΓ (ID t u) and

pt : TmΓ (B[id, t]), we may define transport along p as

J (x p.B[id, x]) pt p : TmΓ (B[id, u])

where x p. binds the term and path dependencies of the induction motive.
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• A universe U with decoding El.

• U is closed under a “small” identity type Id : TmΓ (El a) → TmΓ (El a) →
TmΓU, with elimination principle J targeting any type (not just types in

U!). The β-rule is specified with ID.

refl : TmΓ (El (Id t t))

J : {t : TmΓ (El a)}(P : Ty (Γ ▷ (u : El a) ▷ (p : El (Id t u))))

→ TmΓ (P [u 7→ t, p 7→ refl])

→ {u : TmΓ (El a)}(p : TmΓ (El (Id t u))) → TmΓ (P [u 7→ u, p 7→ p])

Jβ : TmΓ (ID (J b pr refl) pr)

• U is also closed under ⊤, Σ, and Πext. All of these are specified with equiva-

lences up to ID. These are equivalences in the sense of HoTT [Uni13, Chap-

ter 4]. There are several equivalent formulations of equivalence; we pick

the bi-invertible definitions here. For ⊤, it is enough to have a simplified

specification as ⊤η : TmΓ (ID t tt). Σ is specified as follows.

–,– : (t : TmΓ (El a))× TmΓ (El (b[id, t])) → TmΓ (El (Σ a b))

proj : TmΓ (El (Σ a b)) → (t : TmΓ (El a))× TmΓ (El (b[id, t]))

proj′ : TmΓ (El (Σ a b)) → (t : TmΓ (El a))× TmΓ (El (b[id, t]))

β1 : TmΓ (ID (proj1 (t, u)) t)

β2 : TmΓ (ID ((J (x . (El b)[id, x]) (proj2 (t, u)) β1)u))

η : TmΓ (ID (proj′1 t, proj
′
2 t) t)

We write proji and proj′i for composing metatheoretic projections with ToS

projections. The additional proj′ component is required to get a bi-invertible

equivalence. Also note that β2 is only well-typed up to β1, so we need to use

a transport in the specification.

Πext : (Ix : U0) → (Ix → TmΓU) → TmΓU is specified below.

appext : TmΓ (El (Πext Ix b)) → ((i : Ix ) → TmΓ (El (b i)))

lamext : ((i : Ix ) → TmΓ (El (b i))) → TmΓ (El (Πext Ix b))

lamext′ : ((i : Ix ) → TmΓ (El (b i))) → TmΓ (El (Πext Ix b))

β : TmΓ (ID (appext (lamext t) i) (t i))
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η : TmΓ (ID (lamext′ (appext t)) t)

Why have equivalences in the specification of models, would it be enough

to have isomorphisms? We choose equivalences because they yield better-

behaved models, and they do not make it any harder to construct models,

since we can always construct the required equivalences from isomorphisms

[Uni13, Chapter 4].

• Internal product type Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ, with the

specifying equivalence given up to ID, analogously as for Σ and Πext:

(app, lam, lam′) : TmΓ (Π aB) ≃ Tm (Γ ▷ El a)B

• External product type ΠExt : (Ix : U0) → (Ix → TyΓ) → TyΓ, specified as a

strict Set isomorphism:

(appExt, lamExt) : TmΓ (ΠExt Ix B) ≃ ((i : Ix ) → TmΓ (B i))

To give a short summary of changes compared to strict signatures:

1. Types are closed under an extra ID type former which has a strict β-rule.

2. We can eliminate from Id to proper types, but with a weak β-rule.

3. Σ and Πext support eliminators, but with weak β-rules.

Example 34. The torus is now expressible thanks to path elimination in signa-

tures. We define – �– as path composition for Id in the evident way.

T2 : U

b : El T2

p : El (Id b b)

q : El (Id b b)

t : El (Id (p � q) (q � p))

We could also use ID instead of Id and get equivalent semantics.
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Example 35. The ID type lets us express “sort equivalences”. For example, a

signature for integers can be compactly written as follows [AS20]:

Int : U

zero : El Int

p : ID Int Int

We get the suc constructor by coercing along p, and predecessors by coercing

backwards.

Recall that in Chapter 5 we dropped sort equations because of their non-

fibrancy in the semantics. In contrast, there is no issue with sort equations here.

Sort equations simply become inner paths between types in the semantics; if we

assume univalence in the inner theory, such paths are equivalent to type equiv-

alences. Hence, sort equations in HIITs can be viewed as shorthands for sort

equivalences. Without sort equations, it is still possible to write equivalences in

signatures, using any of the standard definitions [Uni13, Chapter 4].

6.2.1 Semantics

We do not repeat the tables for the strict ToS semantics in Appendix B, as much

of it remains essentially the same in the weak case. We consider the components

of the model in order, highlighting relevant changes and points of interest.

Notation 23. We may omit induction motives in tr and J in the following, as they

will often get excessively verbose. So we may write tr p px : P y for p : x = y and

px : P x, and use J pr p similarly.

Cwf

A notable change here is that the entirety of the semantics is now in the inner

theory. This means that the interpretation functions of contexts and types all

return in U1, e.g. Γ
A : U1 and ΓM : ΓA → ΓA → U1. Accordingly, we use type

formers in U1 to interpret structure in the base cwf, e.g. ⊤A :≡ ⊤, where the ⊤
on the right is in U1. The only change though is the move from Set to U1, all

definitions are essentially the same.
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ID

The new ID type former is interpreted as pointwise equality of semantic terms. We

assume t, u : TmΓA.

(ID t u)A γ :≡ tA γ = uA γ

(ID t u)M p0 p1 γ
M :≡ tr p1 (tr p0 (t

M γM)) = uM γM

(ID t u)D p γD :≡ tr(λx.AD x γD) p (t
D γD) = uD γD

(ID t u)S p pD γS :≡ tr pD (J (tS γS) p) = uS γS

Above, we dropped induction motives in tr and J in –M and –S. For illustration,

the more explicit definitions are:

(ID t u)M p0 p1 γ
M :≡

tr(λx.AM x (tA γ1) γM ) p1 (tr(λx.AM (tA γ1)x γM ) p0 (t
M γM)) = uM γM

(ID t u)S p pD γS :≡

tr(λx.AS x (uA γ) γS) p
D

(J(λ y p.AS y (tr
(λx.AD xγD)

p (tD γD))) (t
S γS) p) = uS γS

From now on, we shall generally avoid this amount of detail in motives.

refl is interpreted as pointwise refl-s:

reflA :≡ refl

reflM :≡ refl

reflD :≡ refl

reflS :≡ refl

Let us look at J for ID now. It is helpful to temporarily consider a bundled

AMDS model instead of the four interpretation maps. Then, we have the following

equivalence up to – = –:

TmAMDS Γ (IDAMDS t u) ≃ (t = u)

This follows from function extensionality and the characterization of equivalence

for inner Σ [Uni13, Section 2.7]. Thus, semantic ID is the same as equality of

semantic terms. It follows that everything in the inner theory respects ID, so we

can certainly define the semantic J for ID.
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The actual definition of J involves doing induction on all paths that are available

as induction hypotheses.

(JP pr p)A γ :≡ J (prA γ) (pA γ)

(JP pr p)M γM :≡ J (J (J (prM γM) (pA γ1)) (p
A γ0)) (p

M γM)

(JP pr p)D γD :≡ J (J (prD γD) (pA γ)) (pD γD)

(JP pr p)S γS :≡ J (J (J (prS γS) (pA γ)) (pD γD)) (pS γS)

The strict β-rule for J is supported, as the above definition computes everywhere

when p is refl.

Universe

We have the following changes. First, the interpretations of U now return in U0:

UA γ :≡ U0

UD a γD :≡ a → U0

Second, in El, morphisms and sections are given by inner equality:

(El a)M α0 α1 γ
M :≡ aM γM α0 = α1

(El a)M ααD γD :≡ aS γS α = αD

Id

In this identity type, –A and –D are pointwise equality as usual, and –M and –S

complete squares of equalities. We assume t, u : TmΓ (El a).

(Id t u)A γ :≡ tA γ = uA γ

(Id t u)M γM :≡ λ (p : tA γ0 = uA γ0). (t
M γM)−1 � ap (aM γM) p � uM γM

(Id t u)D γD :≡ λ (p : tA γ = uA γ). tr(aD γD) (t
D γD) = uD γD

(Id t u)S γS :≡ λ (p : tA γ = uA γ). ap (tr(aD γD) p) (t
S γS)−1 � apd (aS γS) p � uS γS

We have reflA :≡ refl and reflD :≡ refl. For reflM γM , the goal type is

(tM γM)−1 � tM γM = refl

which is one of the groupoid laws for paths [Uni13, Section 2.1]. We have a more

dependent variant as goal type for reflS γS:

ap (λx. x) (tS γS)−1 � tS γS = refl
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This again follows from groupoid laws and the functoriality of ap.

It is still the case that TmAMDS Γ (ElAMDS (IdAMDS t u)) ≃ (t = u) up to – = –.

Although (Id t u)M and (Id t u)S do not express equality of t and u, we do get the

component-wise equalities if we apply El. We have that

(El (Id t u))M p0 p1 γ
M ≡ ((tM γM)−1 � ap (aM γM) p0 � u

M γM = p1)

We can rearrange the definition to make it more apparent that this is an equality

of tM γM and uM γM , which is well-typed up to p0 and p1.

ap (aM γM) p0 � u
M γM = tM γM � p1

Thus, we can again expect that J is definable for Id. However, the actual definitions

get highly technical in the –M and –S cases, as we have to repeatedly transport

along higher paths to make certain eliminations well-typed. We refer the reader

to the Agda formalization [Kov22b] for these definitions. In the –A and –D cases,

the definitions are simple enough:

(JP pr p)A γ :≡ J (prA γ) (pA γ)

(JP pr p)D γD :≡ J (J (prD γD) (pA γ)) (pD γD)

Regarding the β-rule, note that reflM and reflS are not defined as refl, but rather

by induction on tM γM and tS γS. Therefore, if we apply J to refl, the –M and –S

components do not strictly compute.

⊤

⊤ is unchanged. ttM and ttS could possibly change (since El has changed, and

tt : TmΓ (El⊤)), but they are still definable with refl-s.

Σ

Pairing and the projections change in Σ; now their –M and –S cases return proof-

relevant inner equalities. In pairing, we do path induction on hypotheses:

(t, u)M γM :≡ J (J refl (tM γM)) (uM γM)

(t, u)S γS :≡ J (J refl (tS γS)) (uS γS)

In proj1, we use ap proj1 on path hypotheses:

(proj1 t)
M γM :≡ ap proj1 (t

M γM)

(proj1 t)
S γS :≡ ap proj1 (t

S γS)
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In proj2, the definitions could be given using apd proj2, but the result type does not

immediately line up, so we can just do direct path induction.

(proj2 t)
M γM :≡ J refl (tM γM)

(proj2 t)
S γS :≡ J refl (tS γS)

proj′1 and proj′2 (required by the bi-invertible specification) are defined the same

way. We do not have strict βη-rules. For example:

(proj1 (t, u))
M γM ≡ ap proj1 (J (J refl (t

M γM)) (uM γM)) ̸≡ tM γM

We still get (proj1 (t, u))
M γM = tM γM by path induction on tM γM and uM γM ,

and similarly in other cases, so Σ in the ToS does support the specifying equiva-

lence.

Πext

Again, the –M and –S cases change in term formers. Application is given by

happly:

(appext t i)M γM :≡ happly (tM γM) i

(appext t i)S γS :≡ happly (tS γS) i

Abstraction is by funext:

(lamext t)M γM :≡ funext (λ i. (t i)M γM)

(lamext t)S γS :≡ funext (λ i. (t i)S γS)

Thus, weak βη-rules for Πext follow from strong function extensionality.

Π

We need to use explicit path induction in appM and appS:

(app t)M (γM , αM) :≡ J (tM γM α0)α
M where αM : aM γM α0 = α1

(app t)S (γS, αS) :≡ J (tS γS α)αS where αS : aS γS α = αD

In contrast, lam does not change. βη-rules are given by replaying the path induc-

tions on appM and appS.
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ΠExt

The interpretation of ΠExt is unchanged. This concludes the AMDS semantics of

weak signatures.

6.3 Discussion & Related Work

6.3.1 Evaluation

The main advantage of the signatures in the current chapter is their generality.

We cover almost every higher inductive definition in the literature, and do so in a

direct manner, with minimal encoding overhead.

It is also possible to mechanically check validity of signatures and compute

AMDS interpretations. The current author has written a Haskell program which

takes as input a weak HII signature, and outputs ADS interpretations as well-

formed Agda source code [Kov20]. The syntax is a bit more restricted than what

we have in this chapter, and the program does not compute morphisms; but it is

clear that the deficiencies would be straightforward to patch up.

On the other hand, we note that our semantics is in a minimal intensional the-

ory, a fragment of the “book” version of homotopy type theory. This setting sup-

ports neither computational univalence nor computational higher inductive types.

If our goal is to add computationally adequate HIITs to a theory (and eventually

to its implementation), the current chapter is not immediately applicable. As we

mentioned in Section 4.3.4, in a cubical setting we would need to reformulate both

signatures and semantics. However, the current work should be still helpful as a

guideline, and a provide a point of comparison and validation.

6.3.2 Related Work

This chapter is based on “A Syntax for Higher Inductive-Inductive Types” [KK18]

and “Signatures and Induction Principles for Higher Inductive-Inductive Types”

[KK20a], both by Ambrus Kaposi and the current author. The latter is an ex-

tended journal version of the former. In this chapter, we extend and refine these

sources in the following ways.

• We use 2LTT. In the papers, we instead used a custom syntactic translation:

the theory of signatures was an ad hoc mixture of the inner and outer theory,
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and the AMDS interpretations were syntactic translations targeting the inner

theory. The setup turns out to be mostly the same as here; but 2LTT brings

a lot of clarity and convenience.

• We add the strict/weak signature distinction. The papers only considered

weak signatures and semantics.

• We improve on the specification of signatures. The papers had a small Id

type with elimination only to U, not to arbitrary types. The journal version

also had a second identity type, but only for sort equations, i.e. it expressed

only equality of inhabitants of U.

The small and large identity types in this chapter are more expressive; the

weaker definitions in the paper were just oversights.

The papers also omitted eliminators of type formers in weak signatures, and

thus their βη rules, and they did not have ⊤ or Σ. However, this was done

mostly for the sake of brevity, as these extra features are not really used in

any HIIT signature in the literature. It makes more sense to include the

extras here, to match infinitary QII signatures as much as possible.

The homotopy type theory book [Uni13] introduced numerous higher inductive

types and developed their use cases, but it did not give a theory of signatures, nor

discussed semantics.

Sojakova [Soj15] specified a class of HITs called W-suspensions (building on W-

types), and proved the equivalence of induction and homotopy initiality, working

internally to an intensional type theory.

Lumsdaine and Shulman gave a general specification of models of type theories

supporting higher inductive types [LS]. They gave a more semantic specification

of algebras, as algebras of a cell monad, and characterized the class of models

which support initial algebras. They did not cover indexed families or induction-

induction.

Dybjer and Moeneclaey [DM18] gave signatures for class of finitary HITs with

up to 2-dimensional path constructors, and built semantics in groupoids.

Coquand, Huber and Mörtberg [CHM18] specified syntax for a cubical type the-

ory which supports several HITs (sphere, torus, suspensions, truncations, pushouts)

and built semantics in cubical sets.
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Cavallo and Harper [CH19] specify HITs which support indexed families and

arbitrary higher paths, although not induction-induction. They provide semantics

in a PER (partial equivalence relation) realizability setting.

Cubical Agda [VMA21] is the principal proof assistant which natively supports

computational univalence and HITs. Its implementation of pattern matching,

mutual inductive definitions, termination checking and strict positivity checking

yields of a large class of higher inductive-inductive types. However, there is no com-

pact theory of signatures (valid specifications fall out from positivity/termination

checking) nor a categorical semantics.



APPENDIX A

AMDS interpretation of FQII signatures

This appendix supplements Chapter 4. It contains the AMDS interpretation for

finitary QII signatures. We omit substitution and βη-rules. We also omit the Tm0

decoding operation of two-level type theory.

170
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Components of ToS (without substitution and βη-rules)

Con : Set

Sub : Con → Con → Set

Ty : Con → Set

Tm : (Γ : Con) → TyΓ → Set

• : Con

ϵ : SubΓ •

id : SubΓΓ

–◦– : Sub∆Ξ → SubΓ∆ → SubΓΞ

–[–] : Ty∆ → SubΓ∆ → TyΓ

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

p : Sub (Γ ▷ A) Γ

q : Tm (Γ ▷ A) (A[p])

(–,–) : (σ : SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆ ▷ A)

U : TyΓ

El : TmΓU → TyΓ

Id : TmΓA → TmΓA → TyΓ

refl : TmΓ (Id t t)

reflect : TmΓ (Id t u) → t ≡ u

Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ

app : TmΓ (Π aB) → Tm (Γ ▷ El a)B

lam : Tm (Γ ▷ El a)B → TmΓ (Π aB)

ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ

appExt : TmΓ (ΠExt Ix B) → (i : Ix ) → TmΓ (B i)

lamExt : ((i : Ix ) → TmΓ (B i)) → TmΓ (ΠExt Ix B)
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Algebras

–A : Con → Set

–A : SubΓ∆ → ΓA → ∆A

–A : TyΓ → ΓA → Set

–A : TmΓA → (γ : ΓA) → AA γ

•A :≡ ⊤

ϵA γ :≡ tt

idA γ :≡ γ

(σ ◦ δ)A γ :≡ σA (δA γ)

(Γ ▷ A)A :≡ (γ : ΓA)× AA γ

(A[σ])A γ :≡ AA (σA γ)

(t[σ])A γ :≡ tA (σA γ)

pA (γ, α) :≡ γ

qA (γ, α) :≡ α

(σ, t)A γ :≡ (σA γ, tA γ)

UA γ :≡ Ty0

(El a)A γ :≡ aA γ

(Id t u)A γ :≡ tA γ ≡ uA γ

reflA γ :≡ refl : tA γ ≡ tA γ

(reflect p)A :≡ funext (λ γ. pA γ)

(Π aB)A γ :≡ (α : aA γ) → BA (γ, α)

(app t)A (γ, α) :≡ tA γ α

(lam t)A γ :≡ λα. tA (γ, α)

(ΠExt Ix B)A γ :≡ (i : Ix ) → (B i)A γ

(appExt t i)A γ :≡ tA γ i

(lamExt t)A γ :≡ λ i. (t i)A γ
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Morphisms

–M : (Γ : Con) → ΓA → ΓA → Set

–M : (σ : SubΓ∆) → ΓM γ0 γ1 → ∆M (σA γ0) (σ
A γ1)

–M : (A : TyΓ) → AA γ0 → AA γ1 → ΓM γ0 γ1 → Set

–M : (t : TmΓA) → (γM : ΓM γ0 γ1) → AM (tA γ0) (t
A γ1) γ

M

•M γ0 γ1 :≡ ⊤

ϵM γM :≡ tt

idM γM :≡ γM

(σ ◦ δ)M γM :≡ σM (δM γM)

(Γ ▷ A)M (γ0, α0) (γ1, α1) :≡ (γM : ΓM γ0 γ1)× AM α0 α1 γ
M

(A[σ])M α0 α1 γ
M :≡ AM α0 α1 (σ

M γM)

(t[σ])M γM :≡ tM (σM γM)

pM (γM , αM) :≡ γM

qM (γM , αM) :≡ αM

(σ, t)M γM :≡ (σM γM , tM γM)

UM a0 a1 γ
M :≡ a0 → a1

(El a)M α0 α1 γ
M :≡ aM γM α0 ≡ α1

(Id t u)M p0 p1 γ
M :≡ tM γM ≡ uM γM

reflM γM :≡ refl : tM γM ≡ tM γM

(reflect p)M :≡ funext (λ γM . pM γM)

(Π aB)M t0 t1 γ
M :≡ (α : aA γ0) → BM (t0 α) (t1 (a

M γM α)) (γM , refl)

(app t)M (γM , αM) :≡ tM γM α0 where αM : aM γM α0 ≡ α1

(lam t)M γM :≡ λα. tM (γM , refl) where refl : aM γM α ≡ aM γM α

(ΠExt Ix B)M t0 t1 γ
M :≡ (i : Ix ) → (B i)M (t0 i) (t1 i) γ

M

(appExt t i)M γM :≡ tM γM i

(lamExt t)M γM :≡ (t i)M γM
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Displayed algebras

–D : (Γ : Con) → ΓA → Set

–D : (σ : SubΓ∆) → ΓD γ → ∆D (σA γ)

–D : (A : TyΓ) → AA γ → ΓD γ → Set

–D : (t : TmΓA) → (γD : ΓD γ) → AD (tA γ) γD

•D γ :≡ ⊤

ϵD γD :≡ tt

idD γD :≡ γD

(σ ◦ δ)D γD :≡ σD (δD γD)

(Γ ▷ A)D (γ, α) :≡ (γD : ΓD γ)× AD α γD

(A[σ])D α γD :≡ AD α (σD γD)

(t[σ])D γD :≡ tD (σD γD)

pD (γD, αD) :≡ γD

qD (γD, αD) :≡ αD

(σ, t)D γD :≡ (σD γD, tD γD)

UD a γD :≡ a → Ty0

(El a)D t γD :≡ aD γD t

(Id t u)D γD :≡ tD γD ≡ uD γD

reflD γD :≡ refl : tD γD ≡ tD γD

(reflect p)D :≡ funext (λ γD. pD γD)

(Π aB)D t γD :≡ {α : aA γ}(αD : aD γD α) → BD (t α) (γD, αD)

(app t)D (γD, αD) :≡ tD γD αD

(lam t)D γD :≡ λ {α}αD. tD (γD, αD)

(ΠExt Ix B)D t γD :≡ (i : Ix ) → (B i)D (t i) γD

(appExt t i)D γD :≡ tD γD i

(lamExt t)D γ :≡ λ i. (t i)D γD
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Sections

–S : (Γ : Con) → (γ : ΓA) → ΓA γ → Set

–S : (σ : SubΓ∆) → ΓS γ γD → ∆S (σA γ) (σD γD)

–S : (A : TyΓ) → AA γ → AD γD → ΓS γ γD → Set

–S : (t : TmΓA) → (γS : ΓS γ γD) → AS (tA γ) (tD γD) γS

•S γ γD :≡ ⊤

ϵS γS :≡ tt

idS γS :≡ γS

(σ ◦ δ)S γS :≡ σS (δS γS)

(Γ ▷ A)S (γ, α) (γD, αD) :≡ (γS : ΓS γ γD)× AS ααD γS

(A[σ])S ααD γS :≡ AS ααD (σS γS)

(t[σ])S γS :≡ tS (σS γS)

pS (γS, αS) :≡ γS

qS (γS, αS) :≡ αS

(σ, t)S γS :≡ (σS γS, tS γS)

US a aD γS :≡ (α : a) → aD α

(El a)S ααD γS :≡ aS γS α ≡ αD

(Id t u)S p pD γS :≡ tS γS ≡ uS γS

reflS γS :≡ refl : tS γS ≡ tS γS

(reflect p)S :≡ funext (λ γS. pS γS)

(Π aB)S t tD γS :≡ (α : aA γ) → BS (t α) (tD (aS γS α)) (γS, refl)

(app t)S (γS, αS) :≡ tS γS α where αS : aS γS α ≡ αD

(lam t)S γS :≡ λα. tS (γS, refl) where refl : aS γS α ≡ aS γS α

(ΠExt Ix B)S t tD γS :≡ (i : Ix ) → (B i)S (t i) (tD i) γS

(appExt t i)S γS :≡ tS γS i

(lamExt t)S γS :≡ (t i)S γS



APPENDIX B

AMDS interpretation of strict HII signatures

This appendix supplements Chapter 6. It contains the AMDS interpretation for

strict HII signatures. We omit substitution and βη-rules. We also omit the Tm0

decoding operation of two-level type theory.
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Components of ToS (without equations)

Con : Set

Sub : Con → Con → Set

Ty : Con → Set

Tm : (Γ : Con) → TyΓ → Set

• : Con

ϵ : SubΓ •

id : SubΓΓ

–◦– : Sub∆Ξ → SubΓ∆ → SubΓΞ

–[–] : Ty∆ → SubΓ∆ → TyΓ

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

p : Sub (Γ ▷ A) Γ

q : Tm (Γ ▷ A) (A[p])

(–,–) : (σ : SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆ ▷ A)

U : TyΓ

El : TmΓU → TyΓ

⊤ : TmΓU

tt : TmΓ (El⊤)

Σ : (a : TmΓU) → Tm (Γ ▷ El a)U → TmΓU

proj1 : TmΓ (El (Σ a b)) → TmΓ (El a)

proj2 : (t : TmΓ (El (Σ a b))) → TmΓ (El (b[id, proj1 t]))

(–,–) : (t : TmΓ (El a)) → TmΓ (El (b[id, t])) → TmΓ (El (Σ a b))

Id : TmΓ (El a) → TmΓ (El a) → TmΓU

refl : TmΓ (El (Id t t))

Πext : (Ix : Ty0) → (Ix → TmΓU) → TmΓU

appext : TmΓ (El (Πext Ix b)) → (i : Ix ) → TmΓ (El (b i))

lamext : ((i : Ix ) → TmΓ (El (b i))) → TmΓ (El (Πext Ix b))

Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ

app : TmΓ (Π aB) → Tm (Γ ▷ El a)B

lam : Tm (Γ ▷ El a)B → TmΓ (Π aB)

ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ

appExt : TmΓ (ΠExt Ix B) → (i : Ix ) → TmΓ (B i)

lamExt : ((i : Ix ) → TmΓ (B i)) → TmΓ (ΠExt Ix B)
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Algebras

–A : Con → Set

–A : SubΓ∆ → ΓA → ∆A

–A : TyΓ → ΓA → Set

–A : TmΓA → (γ : ΓA) → AA γ

•A :≡ ⊤

ϵA γ :≡ tt

idA γ :≡ γ

(σ ◦ δ)A γ :≡ σA (δA γ)

(Γ ▷ A)A :≡ (γ : ΓA)× AA γ

(A[σ])A γ :≡ AA (σA γ)

(t[σ])A γ :≡ tA (σA γ)

pA (γ, α) :≡ γ

qA (γ, α) :≡ α

(σ, t)A γ :≡ (σA γ, tA γ)

UA γ :≡ Ty0

(El a)A γ :≡ aA γ

⊤A γ :≡ ⊤0

ttA γ :≡ tt0

(Σ a b)A γ :≡ (α : aA γ)×0 b
A (γ, α)

(proj1 t)
A γ :≡ proj1 (t

A γ)

(proj2 t)
A γ :≡ proj2 (t

A γ)

(t, u)A γ :≡ (tA γ, uA γ)

(Id t u)A γ :≡ tA γ = uA γ

reflA γ :≡ refl : tA γ = tA γ

(Πext Ix b)A γ :≡ (i : Ix ) → (b i)A γ

(appext t i)A γ :≡ tA γ i

(lamext t)A γ :≡ λ i. (t i)A γ

(Π aB)A γ :≡ (α : aA γ) → BA (γ, α)

(app t)A (γ, α) :≡ tA γ α

(lam t)A γ :≡ λα. tA (γ, α)

(ΠExt Ix B)A γ :≡ (i : Ix ) → (B i)A γ

(appExt t i)A γ :≡ tA γ i

(lamExt t)A γ :≡ λ i. (t i)A γ
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Morphisms

–M : (Γ : Con) → ΓA → ΓA → Set

–M : (σ : SubΓ∆) → ΓM γ0 γ1 → ∆M (σA γ0) (σ
A γ1)

–M : (A : TyΓ) → AA γ0 → AA γ1 → ΓM γ0 γ1 → Set

–M : (t : TmΓA) → (γM : ΓM γ0 γ1) → AM (tA γ0) (t
A γ1) γ

M

•M γ0 γ1 :≡ ⊤

ϵM γM :≡ tt

idM γM :≡ γM

(σ ◦ δ)M γM :≡ σM (δM γM)

(Γ ▷ A)M (γ0, α0) (γ1, α1) :≡ (γM : ΓM γ0 γ1)× AM α0 α1 γ
M

(A[σ])M α0 α1 γ
M :≡ AM α0 α1 (σ

M γM)

(t[σ])M γM :≡ tM (σM γM)

pM (γM , αM) :≡ γM

qM (γM , αM) :≡ αM

(σ, t)M γM :≡ (σM γM , tM γM)

UM a0 a1 γ
M :≡ a0 → a1

(El a)M α0 α1 γ
M :≡ aM γM α0 ≡ α1

⊤M γM :≡ λ . tt0

ttM γM :≡ refl

(Σ a b)M γM :≡ λ (α, β). (aM γM α, bM (γM , refl) β)

(proj1 t)
M γM :≡ refl

(proj2 t)
M γM :≡ refl

(t, u)M γM :≡ refl

(Id t u)M γM :≡ λ (p : tA γ0 = uA γ0). ap (a
M γM) p

reflM γM :≡ refl

(Πext Ix b)M γM :≡ λ t i. (b i)M γM (t i)

(appext t i)M γM :≡ refl

(lamext t)M γM :≡ refl

(Π aB)M t0 t1 γ
M :≡ (α : aA γ0) → BM (t0 α) (t1 (a

M γM α)) (γM , refl)

(app t)M (γM , αM) :≡ tM γM α0 where αM : aM γM α0 ≡ α1

(lam t)M γM :≡ λα. tM (γM , refl) where refl : aM γM α ≡ aM γM α

(ΠExt Ix B)M t0 t1 γ
M :≡ (i : Ix ) → (B i)M (t0 i) (t1 i) γ

M

(appExt t i)M γM :≡ tM γM i

(lamExt t)M γM :≡ (t i)M γM
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Displayed algebras

–D : (Γ : Con) → ΓA → Set

–D : (σ : SubΓ∆) → ΓD γ → ∆D (σA γ)

–D : (A : TyΓ) → AA γ → ΓD γ → Set

–D : (t : TmΓA) → (γD : ΓD γ) → AD (tA γ) γD

•D γ :≡ ⊤

ϵD γD :≡ tt

idD γD :≡ γD

(σ ◦ δ)D γD :≡ σD (δD γD)

(Γ ▷ A)D (γ, α) :≡ (γD : ΓD γ)× AD α γD

(A[σ])D α γD :≡ AD α (σD γD)

(t[σ])D γD :≡ tD (σD γD)

pD (γD, αD) :≡ γD

qD (γD, αD) :≡ αD

(σ, t)D γD :≡ (σD γD, tD γD)

UD a γD :≡ a → Ty0

(El a)D t γD :≡ aD γD t

⊤D γD :≡ λ .⊤0

ttD γD :≡ tt0

(Σ a b)D γD :≡ λ (α, β). (αD : aD γD α)×0 b
D (γD, αD) β

(proj1 t)
D γD :≡ proj1 (t

D γD)

(proj2 t)
D γD :≡ proj2 (t

D γD)

(t, u)D γD :≡ (tD γD, uD γD)

(Id t u)D γD :≡ λ (p : tA γ = uA γ). tr(aD γD) p (t
D γD) = uD γD

reflD γD :≡ refl : tD γD = tD γD

(Πext Ix b)D γD :≡ λ t. (i : Ix ) → (b i)D γD (t i)

(appext t i)D γD :≡ tD γD i

(lamext t)D γD :≡ λ i. (t i)D γD

(Π aB)D t γD :≡ {α : aA γ}(αD : aD γD α) → BD (t α) (γD, αD)

(app t)D (γD, αD) :≡ tD γD αD

(lam t)D γD :≡ λ {α}αD. tD (γD, αD)

(ΠExt Ix B)D t γD :≡ (i : Ix ) → (B i)D (t i) γD

(appExt t i)D γD :≡ tD γD i

(lamExt t)D γ :≡ λ i. (t i)D γD
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Sections

–S : (Γ : Con) → (γ : ΓA) → ΓA γ → Set

–S : (σ : SubΓ∆) → ΓS γ γD → ∆S (σA γ) (σD γD)

–S : (A : TyΓ) → (α : AA γ) → AD α γD → ΓS γ γD → Set

–S : (t : TmΓA) → (γS : ΓS γ γD) → AS (tA γ) (tD γD) γS

•S γ γD :≡ ⊤

ϵS γS :≡ tt

idS γS :≡ γS

(σ ◦ δ)S γS :≡ σS (δS γS)

(Γ ▷ A)S (γ, α) (γD, αD) :≡ (γS : ΓS γ γD)× AS ααD γS

(A[σ])S ααD γS :≡ AS ααD (σS γS)

(t[σ])S γS :≡ tS (σS γS)

pS (γS, αS) :≡ γS

qS (γS, αS) :≡ αS

(σ, t)S γS :≡ (σS γS, tS γS)

US a aD γS :≡ (α : a) → aD α

(El a)S ααD γS :≡ aS γS α ≡ αD

⊤S γS :≡ λ . tt0

ttS γS :≡ refl

(Σ a b)S γS :≡ λ (α, β). (aS γS α, bS (γS, refl) β)

(proj1 t)
S γS :≡ refl

(proj2 t)
S γS :≡ refl

(t, u)S γS :≡ refl

(Id t u)S γS :≡ λ (p : tA γ = uA γ). apd (aS γS) p

reflS γS :≡ refl

(Πext Ix b)S γS :≡ λ t i. (b i)S γS (t i)

(appext t i)S γS :≡ refl

(lamext t)S γS :≡ refl

(Π aB)S t tD γS :≡ (α : aA γ) → BS (t α) (tD (aS γS α)) (γS, refl)

(app t)S (γS, αS) :≡ tS γS α where αS : aS γS α ≡ αD

(lam t)S γS :≡ λα. tS (γS, refl) where refl : aS γS α ≡ aS γS α

(ΠExt Ix B)S t tD γS :≡ (i : Ix ) → (B i)S (t i) (tD i) γS

(appExt t i)S γS :≡ tS γS i

(lamExt t)S γS :≡ (t i)S γS
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Algebra and Coalgebra in Computer Science - 4th International Con-

ference, CALCO 2011, Winchester, UK, August 30 - September 2,

2011. Proceedings, volume 6859 of Lecture Notes in Computer Science,

pages 70–84. Springer, 2011. doi:10.1007/978-3-642-22944-2\_6.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Obser-

vational equality, now! In Proceedings of the 2007 workshop on Pro-

gramming languages meets program verification, pages 57–68. ACM,

2007.
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Summary

This thesis develops the usage of certain type theories as specification languages

for algebraic theories and inductive types. We observe that the expressive power

of dependent type theories proves useful in the specification of more complicated

algebraic theories. In the thesis, we describe three type theories where each typing

context can be viewed as an algebraic signature, specifying sorts, operations and

equations. These signatures are useful in broader mathematical contexts, but we

are also concerned with potential implementation in proof assistants.

In Chapter 3, we describe a way to use two-level type theory [ACKS19] as

a metalanguage for developing semantics of algebraic signatures. This makes it

possible to work in a concise internal notation of a type theory, and at the same

time build semantics internally to arbitrary structured categories. For example,

the signature for natural number objects can be interpreted in any category with

finite products.

In Chapter 4, we describe finitary quotient inductive-inductive (FQII) signa-

tures. Most type theories themselves can be specified with FQII signatures. We

build a structured category of algebras for each signature, where equivalence of

initiality and induction can be shown. We additionally present term algebra con-

structions, constructions of left adjoint functors of signature morphisms, and we

describe a way to use self-describing signatures to minimize necessary metatheo-

retic assumptions.

In Chapter 5, we describe infinitary quotient inductive-inductive signatures.

These allow specification of infinitely branching trees as initial algebras. We adapt

the semantics from the previous chapter. We also revisit term models, left adjoints

of signature morphisms and self-description of signatures. We also describe how

to build semantics of signatures internally to the theory of signatures itself, which

yields numerous ways to build new signatures from existing ones.

In Chapter 6, we describe higher inductive-inductive signatures. These differ

from previous semantics mostly in that their intended semantics is in homotopy

type theory [Uni13], and allows higher-dimensional equalities. In this more general

setting we only consider enough semantics to compute notions of initiality and

induction for each signature.
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Summary in Hungarian - Magyar összefoglaló

A tézis fő célja az, hogy kidolgozza bizonyos t́ıpuselméletek használatát algebrai

elméletek és indukt́ıv t́ıpusok léırásához. Meglátásunk szerint a függő t́ıpuselméletek

kifejezőereje nagyban előseǵıti a tömör és általános specifikációkat. A tézisben

három t́ıpuselméletet ı́runk le, amelyekben a t́ıpuskörnyezeteket értelmezzük al-

gebrai szignatúraként, ami felsorolja egy algebrai elmélet szortjait, műveleteit és

egyenleteit. A eredményeink felhasználhatók általánosabb matematikai kontextus-

ban, viszont az is célunk, hogy előseǵıtsük az esetleges pratikus implementációt

tételbizonýıtó-rendszerekben.

A harmadik fejezetben kifejtjük, hogy a kétszintű t́ıpuselmélet [ACKS19]

hogyan használható metanyelvként az algebrai szignatúrák szemantikájához. Ez

lehetővé teszi, hogy a szemantikát általánosan adjuk meg, internálisan tetszőleges

strukturált kategóriákban, és ugyanakkor tömör t́ıpuselméleti nyelvben dolgoz-

zunk. Például a természetes szám objektumok szignatúrája értelmezhető tetszőleges

olyan kategóriában, ami rendelkezik véges szorzatokkal.

A negyedik fejezetben léırjuk a véges aritású kvóciens indukt́ıv-indukt́ıv

(FQII) szignatúrák elméletét. A legtöbb t́ıpuselmélet maga is léırható FQII szig-

natúrával. Minden szignatúrához megadjuk az algebrák egy strukturált kategóriáját,

ahol az inicialitás és az indukció ekvivalenciája belátható. Továbbá, bemutatunk

term algebra konstrukciókat, bal adjungált funktorok konstrukcióját szignatúra-

morfizmusokhoz, és bemutatjuk, hogy az önmaguk elméletét specifikáló szignatúrák

seǵıtségével hogyan minimalizálhatók a szükséges metaelméleti feltételezések.

Az ötödik fejezetben léırjuk a végtelen aritású kvóciens indukt́ıv-indukt́ıv

szignatúrák elméletét, amivel végtelenül elágazó fa struktúrákat is le tudjunk

ı́rni az iniciális algebrákban. Adaptáljuk a korábbi term algebra konstrukciót,

a bal adjungált funktorok konstrukcióját és az önmaguk elméletét specifikáló szig-

natúrák használatát. Továbbá, megadjuk a szignatúrák szemantikáját internálisan

a szignatúrák elméletének a szintaxisában, amelynek seǵıtségével sokféleképpen

éṕıthetünk új szignatúrákat.

A hatodik fejezetben léırjuk a magasabb indukt́ıv-indukt́ıv szignatúrákat.

Ezek elsősorban a szemantikában különbözek a korábbi szignatúráktól: a metanyelv

most a homotópia t́ıpuselmélet [Uni13], és lehetőség van magasabb dimenziós

egyenlőségek megadására. Itt csak annyi szemantikát adunk meg, amiből az ini-

cialitás és indukció fogalmai kiszámolhatók minden szignatúrához.
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