TYPE THEORY AND FORMAL PROOF

An Introduction

ROB NEDERPELT

Eindhoven University of Technology, The Netherlands

HERMAN GEUVERS

Radboud University Nijmegen, and Eindhoven University of Technology, The Netherlands

Contents

	Foreword, by Henk Barendregt		page xiii
	$Preface \\ Acknowledgements$		xv
			xxvii
	Gree	$k \ alphabet$	xxviii
1	Untyped lambda calculus		1
	1.1	Input-output behaviour of functions	1
	1.2	The essence of functions	2
	1.3	Lambda-terms	4
	1.4	Free and bound variables	8
	1.5	Alpha conversion	9
	1.6	Substitution	11
	1.7	Lambda-terms modulo α -equivalence	14
	1.8	Beta reduction	16
	1.9	Normal forms and confluence	19
	1.10	Fixed Point Theorem	24
	1.11	Conclusions	26
	1.12	Further reading	27
	Exercises		29
2	Simply typed lambda calculus		33
	2.1	Adding types	33
	2.2	Simple types	34
	2.3	Church-typing and Curry-typing	36
	2.4	Derivation rules for Church's $\lambda \rightarrow$	39
	2.5	Different formats for a derivation in $\lambda \rightarrow$	44
	2.6	Kinds of problems to be solved in type theory	46
	2.7	Well-typedness in $\lambda \rightarrow$	47
	2.8	Type Checking in $\lambda \rightarrow$	50
	2.9	Term Finding in $\lambda \rightarrow$	51

Contents

	2.10	General properties of $\lambda \rightarrow$	53
	2.11	Reduction and $\lambda \rightarrow$	59
	2.12	Consequences	63
	2.13	Conclusions	64
	2.14	Further reading	65
	Exer	cises	66
3	Seco	ond order typed lambda calculus	69
	3.1	Type-abstraction and type-application	69
	3.2	л-types	71
	3.3	Second order abstraction and application rules	72
	3.4	The system $\lambda 2$	73
	3.5	Example of a derivation in $\lambda 2$	76
	3.6	Properties of $\lambda 2$	78
	3.7	Conclusions	80
	3.8	Further reading	80
	Exer	cises	82
4	Typ	es dependent on types	85
	4.1	Type constructors	85
	4.2	Sort-rule and var-rule in $\lambda \underline{\omega}$	88
	4.3	The weakening rule in $\lambda \omega$	90
	4.4	The formation rule in $\lambda \underline{\omega}$	93
	4.5	Application and abstraction rules in $\lambda \underline{\omega}$	94
	4.6	Shortened derivations	95
	4.7	The conversion rule	97
	4.8	Properties of $\lambda \underline{\omega}$	99
	4.9	Conclusions	100
	4.10	Further reading	100
	Exer	cises	101
5	Typ	es dependent on terms	103
	5.1	The missing extension	103
	5.2	Derivation rules of λP	105
	5.3	An example derivation in λP	107
	5.4	Minimal predicate logic in λP	109
	5.5	Example of a logical derivation in λP	115
	5.6	Conclusions	118
	5.7	Further reading	119
	Exer	cises	121
6	The	Calculus of Constructions	123
	6.1	The system λC	123
	6.2	The λ -cube	125

viii

	Contents		ix
	6.3	Properties of λC	128
	6.4	Conclusions	132
	6.5	Further reading	133
	Exer	cises	134
7	The	encoding of logical notions in λC	137
	7.1	Absurdity and negation in type theory	137
	7.2	Conjunction and disjunction in type theory	139
	7.3	An example of propositional logic in λC	144
	7.4	Classical logic in λC	146
	7.5	Predicate logic in λC	150
	7.6	An example of predicate logic in λC	154
	7.7	Conclusions	157
	7.8	Further reading	159
	Exer	cises	162
8	Definitions		165
	8.1	The nature of definitions	165
	8.2	Inductive and recursive definitions	167
	8.3	The format of definitions	168
	8.4	Instantiations of definitions	170
	8.5	A formal format for definitions	172
	8.6	Definitions depending on assumptions	174
	8.7	Giving names to proofs	175
	8.8	A general proof and a specialised version	178
	8.9	Mathematical statements as formal definitions	180
	8.10	Conclusions	182
	8.11	Further reading	183
	Exer	cises	185
9	Exte	ension of $\lambda \mathbf{C}$ with definitions	189
	9.1	Extension of λC to the system λD_0	189
	9.2	Judgements extended with definitions	190
	9.3	The rule for adding a definition	192
	9.4	The rule for instantiating a definition	193
	9.5	Definition unfolding and δ -conversion	197
	9.6	Examples of δ -conversion	200
	9.7	The conversion rule extended with $\stackrel{\Delta}{\rightarrow}$	202
	9.8	The derivation rules for λD_0	203
	9.9	A closer look at the derivation rules of λD_0	204
	9.10	Conclusions	206
	9.11	Further reading	207
	Exer	cises	208

10	Rules and properties of λD	211
	10.1 Descriptive versus primitive definitions	211
	10.2 Axioms and axiomatic notions	212
	10.3 Rules for primitive definitions	214
	10.4 Properties of λD	215
	10.5 Normalisation and confluence in λD	219
	10.6 Conclusions	221
	10.7 Further reading	221
	Exercises	223
11	Flag-style natural deduction in λD	225
	11.1 Formal derivations in λD	225
	11.2 Comparing formal and flag-style λD	228
	11.3 Conventions about flag-style proofs in λD	229
	11.4 Introduction and elimination rules	232
	11.5 Rules for constructive propositional logic	234
	11.6 Examples of logical derivations in λD	237
	11.7 Suppressing unaltered parameter lists	239
	11.8 Rules for classical propositional logic	240
	11.9 Alternative natural deduction rules for \vee	243
	11.10 Rules for constructive predicate logic	246
	11.11 Rules for classical predicate logic	249
	11.12 Conclusions	252
	11.13 Further reading	253
	Exercises	254
12	Mathematics in λD : a first attempt	257
14	12.1 An example to start with	257
	12.2 Equality	259
	12.2 Equality 12.3 The congruence property of equality	262 262
	12.4 Orders	262 264
	12.4 Orders 12.5 A proof about orders	204 266
	12.6 Unique existence	200 268
	12.7 The descriptor ι	208 271
	12.7 The descriptor <i>i</i> 12.8 Conclusions	271 274
	12.9 Further reading	274 275
	Exercises	275
13	Sets and subsets	279
	13.1 Dealing with subsets in λD	279
	13.2 Basic set-theoretic notions	282
	13.3 Special subsets	287
	13.4 Relations	288

Contents

х

		Contents	xi
	13.5 Maps		291
	13.6 Represent	tation of mathematical notions	295
	13.7 Conclusio	ns	296
	13.8 Further re	eading	297
	Exercises		302
14	Numbers and	arithmetic in $\lambda \mathbf{D}$	305
	14.1 The Pean	o axioms for natural numbers	305
	14.2 Introduci	ng integers the axiomatic way	308
	14.3 Basic pro	perties of the 'new' \mathbb{N}	313
	14.4 Integer ad	ldition	316
	14.5 An examp	ple of a basic computation in λD	320
	14.6 Arithmet	ical laws for addition	322
	14.7 Closure u	nder addition for natural and negative numbers	324
	14.8 Integer su	ibtraction	327
	14.9 The oppo	site of an integer	330
	14.10 Inequality	γ relations on \mathbb{Z}	332
	14.11 Multiplica	ation of integers	335
14.12 Divisibility		y	338
	14.13 Irrelevance	e of proof	340
	14.14 Conclusio	ns	341
	14.15 Further re	eading	343
	Exercises		344
15	An elaborated	d example	349
	15.1 Formalisin	ng a proof of Bézout's Lemma	349
	15.2 Preparato	ory work	352
	15.3 Part I of	the proof of Bézout's Lemma	354
	15.4 Part II of	the proof	357
	15.5 Part III o	f the proof	360
	15.6 The holes	in the proof of Bézout's Lemma	363
	15.7 The Minim	mum Theorem for \mathbb{Z}	364
	15.8 The Divis	ion Theorem	369
	15.9 Conclusio	ns	371
	15.10 Further re	eading	373
	Exercises		376
16	Further persp	oectives	379
	16.1 Useful app	plications of λD	379
	16.2 Proof assi	stants based on type theory	380
	16.3 Future of	the field	384
	16.4 Conclusio	ns	386
	16.5 Further re	eading	387

Appendix A Logic in λD	391		
A.1 Constructive propositional logic	391		
A.2 Classical propositional logic	393		
A.3 Constructive predicate logic	395		
A.4 Classical predicate logic	396		
Appendix B Arithmetical axioms, definitions and lemmas	397		
Appendix C Two complete example proofs in λD	403		
C.1 Closure under addition in \mathbb{N}	403		
C.2 The Minimum Theorem	405		
Appendix D Derivation rules for λD	409		
References	411		
Index of names	419		
Index of definitions	421		
Index of symbols			
Index of subjects			