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Abstract

Type theory (with dependent types) was introduced by Per Martin-Löf with

the intention of providing a foundation for constructive mathematics. A part

of constructive mathematics is type theory itself, hence we should be able to

say what type theory is using the formal language of type theory. In addition,

metatheoretic properties of type theory such as normalisation should be provable

in type theory.

The usual way of defining type theory formally is by starting with an inductive

definition of precontexts, pretypes and preterms and as a second step defining a

ternary typing relation over these three components. Well-typed terms are those

preterms for which there exists a precontext and pretype such that the relation

holds. However, if we use the rich metalanguage of type theory to talk about type

theory, we can define well-typed terms directly as an inductive family indexed over

contexts and types. We believe that this latter approach is closer to the spirit of

type theory where objects come intrinsically with their types.

Internalising a type theory with dependent types is challenging because of

the mutual definitions of types, terms, substitution of terms and the conversion

relation. We use induction induction to express this mutual dependency. Fur-

thermore, to reduce the type-theoretic boilerplate needed for reasoning in the

syntax, we encode the conversion relation as the equality type of the syntax. We

use equality constructors thus we define the syntax as a quotient inductive type

(a special case of higher inductive types from homotopy type theory). We define

the syntax of a basic type theory with dependent function space, a base type and

a family over the base type as a quotient inductive inductive type.

The definition of the syntax comes with a notion of model and an eliminator:

whenever one is able to define a model, the eliminator provides a function from

the syntax to the model.

We show that this method of representing type theory is practically feasible
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by defining a number of models: the standard model, the logical predicate in-

terpretation for parametricity (as a syntactic translation) and the proof-relevant

presheaf logical predicate interpretation. By extending the latter with a quote

function back into the syntax, we prove normalisation for type theory. This can

be seen as a proof of normalisation by evaluation.

Internalising the syntax of type theory is not only of theoretical interest.

It opens the possibility of type-theoretic metaprogramming in a type-safe way.

This could be used for generic programming in type theory and to implement

extensions of type theory which are justified by models such as guarded type

theory or homotopy type theory.
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Gábor Páli, Andrew Polonsky, Marcelo Sousa, Wouter Swierstra, Andrea Vezzosi

and the many others whom I forgot to mention.

Outside the FP lab, I would like to thank the Nottingham people Thomas
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Chapter 1

Introduction

Type theory [58] was introduced by Per Martin-Löf with the intention of providing

a foundation for constructive mathematics [69]. A part of constructive mathe-

matics is type theory itself, hence we should be able to say what type theory is

using the formal language of type theory. In addition, metatheoretic properties

of type theory such as normalisation should be provable in type theory.1

One important di↵erence between type theory and set theory is that in type

theory every object comes with its type. In set theory everything is given as a set,

e.g. natural numbers are just sets and we can construct the disjoint union of two

natural numbers, which no one would do because of the intuitive understanding

of types. In type theory this intuitive understanding is explicit and such non-

sensical constructions are not possible. As Reynolds [89] says:

“Type structure is a syntactic discipline for enforcing levels of ab-

straction.”

When defining type theory inside type theory, we would like to follow this

spirit and define the syntax of type theory in a typed way. The main judgement

in type theory expresses that a term t has type A in context �:

� ` t : A

We would like to internalise this as an element of a family of types Tm which is

1Note that Gödel’s incompleteness theorem applies here: normalisation implies consistency,
and we can’t prove consistency of a theory in itself: the outer type theory needs more strength
(in our case, this means that it has more universes).

1
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indexed by the context and the type:

t : Tm�A

This way we only define well typed terms. This is in contrast with the usual way

of first defining a set of preterms, and then separately defining the ternary typing

relation – ` – : – over contexts, preterms and types.

In this thesis, we pursue the typed approach and define the syntax of a basic

type theory in type theory, define some models including the logical predicate

interpretation for parametricity and prove normalisation using a model construc-

tion.

The novelty of our approach is the treatment of the conversion relation: in-

stead of defining conversion as a separate relation, we define the syntax as a

quotient inductive type (QIT) with equality constructors for conversion rules.

QITs are special cases of higher inductive types which come from homotopy type

theory [88]. This makes the usage of the internal syntax feasible in practice.

1.1 Background

Martin-Löf’s type theory [58] is a formal language intended as a foundation for

constructive mathematics based on the Brouwer-Heyting-Kolmogorov interpreta-

tion of logic [98]. Unlike traditional foundations where the logic and the theory

are separated, propositions and types (sorts) are identified here. Propositions are

types, proofs are elements of the type corresponding to the proposition. Impli-

cation and universal quantification are (dependent) function space, conjunction

and existential quantification are ⌃ types.

Type theory includes two forms of equalities. One is the conversion relation

(judgemental equality, definitional equality) which is a kind of judgement in type

theory. When viewing type theory as a programming language [71], terms rep-

resent programs and the conversion relation tells us how to run these programs.

We can convert one program into another if they are related by the conversion

relation. After possibly many such conversion steps, we reach a special form of

the program called normal form which is the result of running the program. This

process is called normalisation. The other equality is the identity type which is

a type former that can appear in propositions (types).

The 1972 and 1973 versions of Martin-Löf’s type theory [69, 72] are called
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intensional theories. In these, the conversion relation is decidable and expresses

the obvious equalities: equalities that don’t need a proof, such as equality by

definition. In intensional type theory, the identity type can be viewed as the

kind of equality that needs a proof. The 1984 version of type theory [70] is

called extensional. In this theory, the two kinds of equalities are identified by the

equality reflection rule, conversion becomes undecidable.

Most programming languages (proof assistants) implementing type theory use

the intensional variant because of the decidable conversion relation which makes

typechecking decidable. Examples of such languages are Coq [73], Agda [80, 97],

Idris [30] and Lean [45]. However there are advantages of extensional type theory:

it validates the extensional concepts of functional extensionality and quotient

types. In addition, its notation is very concise. The price of the conciseness

is the lack of information in the syntax which makes conversion undecidable.

NuPRL [41] is a proof assistant based on extensional type theory.

Over the years, models [8, 57] and extensions [19] of intensional type theory

have been proposed which justify some of the above mentioned extensional con-

cepts. More recently, a new version of intensional type theory, homotopy type

theory (HoTT) has emerged [88] based on an interpretation of type theory in ab-

stract homotopy theory. HoTT is incompatible with the equality reflection rule

however it is more extensional than extensional type theory itself (if by extension-

ality we mean that indistinguishable objects are identical): the univalence axiom

in HoTT not only validates functional extensionality but also makes isomorphic

types equal. In addition, higher inductive types in HoTT generalise quotient

types. Higher inductive types are inductively generated types which may have

equality constructors. An example is the interval type: it has two point construc-

tors and an equality constructor which says that the two points are equal. The

computational content of the new axioms in HoTT is a topic of active research.

A constructive model construction [28] and a syntax for a type theory which

validates them [40] has been recently given.

Inductive types such as natural numbers are already present in the first for-

mulation of type theory. A general formulation of inductive types called W-types

is given in [70]. This covers most usual inductive definitions such as booleans,

lists, binary trees. The more general inductive families have been introduced

by [49]. These can express types such as lists indexed by their lengths. Moti-

vated by defining the internal syntax of type theory, inductive inductive types
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were introduced [79]. These can handle the mutual definition of a type together

with a family indexed over this type.

To reach our goal of representing the well-typed syntax of type theory inside

type theory, we need some extensional concepts in our metatheory. We will use

functional extensionality and a special case of higher inductive types combined

with inductive inductive types which we call quotient inductive inductive types.

1.2 Related work

In this section, we first summarize the di↵erent approaches to internalisation of

type theory. Then we explain how the theory of parametricity was extended to

dependent types. Finally, we recall the history of normalisation by evaluation

and the work on extending it to dependent types.

1.2.1 Internalising type theory

Internalising the syntax of type theory allows reflection and thus generic pro-

gramming and reasoning about the metatheory in a convenient way.

One way to do this is to make use of the fact that the metatheory is similar to

the object theory, e.g. binders of the object theory can be modelled by binders of

the metatheory. This way ↵-renaming and substitution come from the metathe-

ory for free. This approach is called higher order abstract syntax (HOAS) and

can be seen as a form of shallow embedding. A generic framework for repre-

senting syntax using HOAS is called Logical Framework (LF) [54]. Examples of

implementations of LF are Twelf [83] and Beluga [84]. Palsberg and coauthors

define self-representations of System U [31] and System F! [32] using HOAS. In

the latter work they also define a self-interpreter.

The work of Devriese and Piessens [46] provides a very good motivation for this

thesis by presenting a typed framework for dependently typed metaprogramming.

It di↵ers from our work by representing typing in an extrinsic way i.e. having a

type of preterms and a separate typing relation.

McBride [75] presents a deep embedding where the object theoretic judge-

mental equality is represented by the meta theoretic equality. Our work di↵ers

from this because we would like to interpret equality in an arbitrary way and

not be restricted by the equality of the meta theory. Thus, we need a concrete

representation of equality in our internal syntax.
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The work of Chapman [37] is the closest predecessor to our work. He repre-

sents the typed syntax of simple type theory and proves normalisation using a

big-step semantics [10]. He extends this method to dependent type theory [38]

however he does not prove normalisation. In this latter work he encodes judge-

mental equality as an inductive relation defined separately for contexts, types,

substitutions and terms thereby introducing a large inductive inductive definition.

While this is a remarkable achievement, it is hard to work with in practice as it

su↵ers from the boilerplate introduced by the explicit equality relations. One

needs to work with setoids and families of setoids instead of types, sometimes

called the “setoid hell”.

The work of Danielsson [43] is also very close to our work. He represents

the typed syntax of a dependent type theory using an inductive recursive type

i.e. with implicit substitutions. A normalisation function is also defined however

without a soundness proof. The usage of implicit substitution seems to give its

definition a rather ad-hoc character.

A nice application of type-theoretic metaprogramming is developed by Jaber

and coworkers [60] where a mechanism is presented which safely extends Coq

with new principles. This relies on presenting a proof-irrelevant presheaf model

and then proving constants in the presheaf interpretation. Our approach is in

some sense complementary in that we provide a safe translation from well typed

syntax into a model, but also more general because we are not limited to any

particular class of models.

Our definition of the internal syntax of Type Theory is very much inspired by

categories with families (CwFs) [48,58]. Indeed, one can summarize our work by

saying that we construct an initial CwF using QITs.

The style of the presentation can also be described as a generalized algebraic

theory (the notion comes from Cartmell [36]) which has been recently used by

Coquand to give very concise presentations of Type Theory [28]. Our work shows

that it should be possible to internalize this style of presentation in type theory

itself.

Higher inductive types are described in chapter 6 of the book on Homotopy

Type Theory [88]. Our metatheory is not homotopy type theory, we only use a

special case of higher inductive types called quotient inductive types. However we

describe some di�culties which arise when we have univalence in the metatheory

at the end of section 3.6.
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1.2.2 Parametricity for dependent types

Logical relations were introduced into computer science by Tait [96] for proving

strong normalisation of simple type theory. The idea is to define a family of

relations by induction on types and showing that every term former respects the

relation corresponding to their type. Plotkin, Friedman and Statman used logical

relations to characterize the definable terms in simple type theory [51,86,87,93].

The term logical relation was coined by Plotkin.

Reynolds used (binary) logical relations to characterise the idea of abstrac-

tion in the context of System F: a definition is abstract if it respects logical

relations [89]. He called the fundamental theorem of the logical relation (which

says that every term respects its corresponding logical relation) parametricity

(or abstraction theorem). He also proved an identity extension lemma which says

that if we interpret every type variable using the identity relation, then the logical

relation for every type will be the identity relation as well. A simple consequence

of parametricity is that a function of type ⇧(A : U).A ! A must be the identity

function as there is no way to inspect the type A and such a function needs to

work for every possible type A uniformly.

Wadler popularised Reynold’s idea later by calling instances of the abstraction

theorem “theorems for free” [99] in the context of functional programming in

languages based on System F. A summary of Reynold’s program for parametricity

is given in Reddy’s paper [55].

Reynolds presents parametricity using a model construction where the model

satisfies the parametricity theorem. Plotkin and Abadi [85] presents a logic in

which one can reason about parametricity of System F terms. Bernardy at al [25]

observe that the language of type theory is expressive enough to express its own

parametricity theorems, hence they define logical relations as a syntactic transla-

tion from a pure type system to itself. However they don’t give a counterpart of

the identity extension lemma. Atkey et al [21] give a presheaf model of dependent

type theory which satisfies parametricity and the identity extension lemma. They

also show that the existence of (indexed) inductive types follows from parametric-

ity and the identity extension lemma. Keller and Lasson [62] apply Bernardy’s

syntactic translation to the calculus of constructions and show how to extend the

Coq proof assistant with automatic derivation of parametricity theorems.

Bernardy and Moulin defined a type theory with internal parametricity [26,

27, 77]. In these theories, it is possible to prove internally that e.g. the only
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function of type ⇧(A : U).A ! A is the identity. It seems that internalising

parametricity requires syntax for higher dimensional cubical relations. These arise

as a binary relation can be viewed as a type of lines, iterating the parametricity

construction on a binary relation creates a type of squares which can be seen

as a two-dimensional relation, one more iteration gives types of 3-dimensional

cubes etc. This makes these theories fairly complex systems. A simplification

inspired by cubical type theory [40] can be achieved by introducing an interval

pretype into the syntax [24, 78]. This theory also has a presheaf model showing

the connection to the models of Atkey [21] and Coquand [28].

In chapter 4, we show how to formalise the logical predicate interpretation of

dependent types [25] using our presentation of the syntax of type theory, inter-

nally.

In section 4.3 we use logical predicates to derive the eliminator for a closed

quotient inductive inductive type (a combination of higher inductive types and

inductive inductive types, see section 2.4). Related to this is the work of Ghani

et al on generic fibrational induction [52]. Their work is semantic in nature

and they derive the induction rule for an inductive type defined by a functor.

They don’t derive the existence of inductive types from parametricity as done

e.g. by Atkey [21]. They don’t mention logical relations explicitly however they

use similar ideas in a categorical setting, e.g. a morphism between predicates is

a function which preserves the predicates. Our work is incomplete in that we

don’t prove correctness of our approach and we only treat closed types however

it scales to inductive inductive and higher inductive types. Another di↵erence is

that our method is given as a syntactic translation.

1.2.3 Normalisation by evaluation

Traditional normalisation proofs work by showing that the small step reduction

relation is confluent and strongly normalising. An example is [53] where this

approach is applied to simple type theory, System F and System T. [7] is using

similar methods to prove decidability of conversion for a dependent type theory.

Martin-Löf’s first formulation of type theory [69] includes a proof of normal-

isation for well-typed terms using a semantic argument in a constructive meta-

language. This was the first example of normalisation by evaluation (NBE) for

type theory.

Independently, Berger and Schwichtenberg [23] implemented a normalisation
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algorithm for simple type theory which uses evaluation in the host language

(Scheme) to normalise terms in the object language; they define a quote function

which turns an evaluated program into a normal form. They coined the term

normalisation by evaluation.

A categorical reconstruction of the proof [23] was given in [13]. Here well-

typed terms are evaluated in a presheaf model and correctness of normalisation

is proved using a logical relation (which can be viewed as a variant of categorical

glueing). The same authors extended their proof to System F [14, 15] and to

strong coproducts [11]. Our work can be seen as a continuation of this line of

research.

The term normalisation by evaluation is also more generally used to describe

semantic based normalisation functions. E.g. Danvy is using semantic normal-

isation for partial evaluation [44]. Normalisation by evaluation using untyped

realizers has been applied to dependent types by Abel et al [4–6].

Danielsson [43] formalized big-step normalisation for dependent types without

a proof of soundness or completeness.

1.3 How to read this thesis

The thesis is structured in the following way.

Chapter 2 introduces the metatheory and notation that we use throughout

this thesis. The notation we use is very close to that of the proof assistant Agda

[80, 97]. We work in intensional type theory with quotient inductive inductive

types (QIITs), a strict equality type (that is, with uniqueness of identity proofs,

UIP) and functional extensionality. Although we work in an intensional type

theory (and the formalisation is performed in this theory), for ease of notation,

we use extensional type theory to write down equational reasoning. Knowing that

proofs in extensional type theory can be translated to intensional type theory with

UIP and functional extensionality [56,81], we can view this notational convenience

as acceptable. We show the di↵erence between the two kinds of reasoning through

a few examples in section 3.3.

In chapter 3, we define the internal syntax of type theory and define the stan-

dard model. We start by introducing an informal syntax for type theory and

show what steps we need to take to arrive at a formal syntax. After the formal

definition of the syntax, we show how to reason with it e.g. we show how to derive
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the substitution laws for terms and the polymorphic identity function. We show

how to define functions from the syntax using the eliminator and also give some

examples. We note that the arguments of the eliminator constitute a well-known

notion of model of type theory called categories with families [48]. An example

of such a model that we give is the standard model (metacircular interpreta-

tion) where every object theoretic construct is interpreted by its metatheoretic

counterpart.

In chapter 4 we show how to define logical predicates and relations for the

informal type theory given in the previous chapter, and then we show how to

define the logical predicate interpretation for our formal theory using the elimi-

nator of the syntax. This interpretation is a syntactic translation, it targets the

syntax itself. As a practical usage of this interpretation, we sketch an algorithm

for deriving the type of the eliminator for a closed QIIT defined as a context. We

used this algorithm to derive the eliminator for our definition of the syntax.

Chapter 5 proves normalisation for our type theory. Normalisation is specified

as an isomorphism between terms and normal forms, the correctness of normal-

isation (soundness and completeness) follows from this. We prove normalisation

using the technique of normalisation by evaluation which involves a model con-

struction and then a quote function from the model to normal forms. The model

that we use is a proof-relevant presheaf logical predicate. We show how consis-

tency follows from normalisation.

Chapters 4 and 5 don’t depend on each other and can be read independently.

In chapter 4, we use “arguments of the eliminator” notation for defining a function

from the syntax, while in chapter 5 we use recursive notation (except section 5.4

on the presheaf model which uses “arguments of the eliminator” notation as well).

Chapter 6 summarizes the thesis and sketches future directions of research.

In this thesis, we make use of three di↵erent type theories: the metatheory,

an informal and a formal object theory. We use di↵erent notations to distinguish

between them.

• Our metatheory (chapter 2) is close to the notation of Agda, e.g. we write

(x : A) ! B for a function type.

• We use an informal object theory (section 3.1, figure 3.1) for the illustration

of the di↵erences between the informal and formal theories. Function types

are written as ⇧(x : A).B.
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• Our formal theory (section 3.2) uses De Bruijn variables and explicit sub-

stitutions, function types are written as ⇧AB.

It is recommended that the reader of this thesis has a basic understanding

of type theory. A nice introduction to the basic concepts is chapter 1 in [88].

For chapter 5, category theoretic intuition is helpful as we use a few categorical

concepts for organisation. However, we define all of these rigorously.

1.4 List of contributions and publications

The main contributions of this thesis are the following.

• We define a workable syntax of type theory in type theory using intrinsic

typing. We present a basic type theory with ⇧ and an uninterpreted base

type and an uninterpreted family over the base type (chapter 3).

• We demonstrate the usability of this internal syntax by proving basic prop-

erties: disjointness of context and type constructors (sections 3.4.1) and

injectivity of ⇧ (section 3.5.1).

• We define the standard model (section 3.6). In this model, every object

theoretic construct is modelled by its metatheoretic counterpart.

• We formalise the internal logical predicate interpretation of type theory

(chapter 4). This allows the derivation of parametricity theorems for terms

of type theory using the same theory.

• We prove normalisation for our basic type theory using the technique of

normalisation by evaluation (chapter 5). Using normalisation, we prove

consistency of our theory.

• We describe an algorithm for deriving the type of the eliminator for a closed

QIIT specified as a context of type formation rules and constructors (section

4.3).

• Most of the constructions in this thesis were formalised in the proof assistant

Agda (see section 1.5).

The material of chapters 3 and 4 first appeared in the paper [18] and the

contents of chapter 5 first appeared in [16]. Other publications of the author
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written during his PhD which are not immediately related to this thesis are [35]

and [17].

1.5 Formalisation

Most of the contents of this thesis were formalised using the proof assistant Agda

[80,97]. The formalisation is available online [61] and is supplied with a “readme”

file describing where to find each part of the thesis.

We list the status of the formalisation for each chapter as of writing this thesis.

• Most examples in chapter 2 are formalised. The codes for di↵erent kinds of

inductive types and their decoding are formalised.

• Chapter 3 on the syntax and the standard model is fully formalised.

• In chapter 4 on parametricity, section 4.2 is formalised.

• In chapter 5 on NBE.

– Sections 5.4, 5.6, 5.8, 5.10 and 5.11 are formalised.

– The computational parts of sections 5.7 and 5.9 are formalised, most

of the naturality proofs are omitted.

We discuss the tools that we use for the formalisation (e.g. how we implement

quotient inductive inductive types) in chapter 2 in the corresponding sections.
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Chapter 2

Metatheory and notation

The metatheory we use in this thesis is intensional Martin-Löf type theory with a

hierarchy of universes, ⇧ types, a strict equality type, inductive inductive types,

and quotient inductive types added using axioms. We will describe these features

and the notation through examples in the following sections.

Formalisation of most parts of this thesis was performed in Agda. Agda is a

functional programming language and a proof assistant implementing Martin-Löf

type theory [80, 97]. It has a concise notation for writing down terms in type

theory and it checks whether they are derivable (type-checking). It supports

modularity by allowing definitions (assigning a name to a term) and collecting

these definitions into modules which can be parameterised by a telescope (a part

of a context). One can also postulate an element of any given type, this is the

same as adding an extra parameter to the current module.

We will use a notation throughout this thesis which is close to Agda’s.

2.1 Definitions, universes, ⇧ and ⌃

The technical content of this thesis can be viewed as a list of definitions in type

theory surrounded by explanations. We use the sign := for definitions and = for

judgemental (definitional) equality. We don’t use a separate notation for proofs,

they are just type-theoretic definitions and we can refer to them by their name.

Later definitions can refer to previous ones.

We overload names, e.g. the action on objects and morphisms of a functor

will be denoted by the same symbol.

13
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We write (x : A) ! B or 8x.B for dependent function space, �x.t for abstrac-

tion and f u for application. Multiple arguments can be collected together, e.g.

(x y : A)(z : B) ! C, �x y z . t.

We use the following two notations for defining the name d to be �x.t of type

(x : A) ! B. The left one uses Coq-style notation, the right one uses Agda style.

d (x : A) : B := t d : (x : A) ! B

d x := t

We use the symbol – as a placeholder for arguments, e.g. – + – is a notation

for �x y.x+ y.

We sometimes omit arguments of functions when they are determined by other

arguments or the return type. For example the full type of function composition

is (AB C : Set) ! (B ! C) ! (A ! B) ! (A ! C), but the first three

arguments are determined by the types of the last two arguments. In this case

we write {AB C : Set} ! (B ! C) ! (A ! B) ! (A ! C) or even (B !
C) ! (A ! B) ! (A ! C). We call the arguments given in curly braces implicit

arguments. When we call this function, we can omit the implicit arguments or

specify them in lower index.

When defining two functions mutually, we first declare them by giving their

names and types, then give the definitions one after the other. These definitions

can be reduced to a single function definition which provides the result of both

functions. We give the example of deciding whether a natural number is even or

odd.

isEven :N ! Bool

isOdd : N ! Bool

isEven zero := true

isEven (sucn) := isOddn

isOdd zero := false

isOdd (sucn) := isEvenn

We can rewrite this definition into one that gives the result of both functions as
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a pair and is not using pattern matching but the recursor (see next section).

isEvenOdd : N ! Bool⇥ Bool

isEvenOdd := RecN (Bool⇥ Bool) (true, false) (�p.(proj2 p, proj1 p))

isEven (n : N) : Bool := proj1 (isEvenOddn)

isOdd (n : N) : Bool := proj2 (isEvenOddn)

We denote the universe of types by Set. We will refrain from writing the

universe level, but we assume Set = Set0 : Set1 : Set2 : .... We work in a strict

type theory (see section 2.2.2), hence the naming is appropriate in the sense that

sets are types with trivial higher equality structure.

We write ⌃(x : A).B for dependent sum types using proj1 and proj2 for the

projections.

Following Agda’s notation, we use iterated ⌃ types with named projections

called records. To define such a type, we use the record keyword and list the

fields of the record afterwards. The field names become projection functions.

The following type can be seen as a variation of ⌃(x : A).B x with the projection

functions a = proj1 and b = proj2.

record R : Set

a : A

b : B a

Given r : R we have a r : A and b r : B (a r). The other way of putting a and b

into scope given an r : R is by saying open R r.

Sometimes it is convenient to collect definitions which belong together into one

collection called a module. Modules can have parameters which make the concise

definition of multiple functions with the same parameters easy. For example the

following module M has a parameter of the previous record type R and after

opening the record, one can use the fields in all the definitions.

moduleM (r : R)

open R r

f : A := a

g : B f := b
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We write A+B for the sum type of A and B and we denote the injections by

inj1 and inj2 and eliminator by [f, g] : A+B ! C for f : A ! C and g : B ! C.

We denote the empty type by ? (with eliminator Elim? : ? ! A for any A)

and the type only having a single constructor tt by >.

2.2 Inductive types

Our metatheory has inductive types: this means that we have an open universe

in which any number of inductive types can be defined.

Elements of inductive types are freely generated by their constructors and the

only elements belonging to such a type are those created by constructors. This is

expressed by the fact that an inductive type comes with an eliminator which lets

one define a function from the inductive type by only providing a case for each

constructor.

An inductive type is defined by first declaring its sort and then listing the

constructors and their types. The constructors need to obey the condition of strict

positivity: recursive occurrences can only appear in strictly positive positions

[3]. A simple example of an inductive type is natural numbers with sort Set

and constructors zero and suc. We use the data keyword to indicate inductive

definitions.

dataN : Set

zero : N
suc : N ! N

We can define a function from N to another type using the eliminator of N.
The structure of the eliminator is determined by the constructors. There are two

kinds of eliminators for an inductive type: the non dependent one (also called

the recursor) lets us define a function of type N ! A for some type A. The

dependent eliminator lets us define a dependent function of type (n : N) ! An

where A : N ! Set. Note that the recursor is a special case of the eliminator. The

type of both are given below. We give names to the arguments of the eliminator

in a systematic way: we add an M index to the names of the corresponding type

and constructors.
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RecN : (NM : Set)

(zeroM : NM)(sucM : NM ! NM)

! N ! NM

ElimN : (NM : N ! Set)

(zeroM : NM zero)(sucM : (n : N) ! NM
n ! NM (sucn))

(n : N) ! NM
n

Following the nomenclature of [76], NM is called the motive of the eliminator. In

the dependent case it can be viewed as a predicate on N: with this view in mind

the eliminator coincides with the usual induction principle for natural numbers.

zero
M and suc

M are called the methods of the eliminator, there is one method

corresponding to each constructor. The natural number that we eliminate is

called the target. The motive and the methods of the recursor together form an

algebra of the corresponding signature functor [29].

Moreover, we have the following equalities which express that when applying

the eliminator on a constructor as a target we use the corresponding method.

RecN NM
zero

M
suc

M zero = zero
M

RecN NM
zero

M
suc

M (sucn) = suc
M (RecNNM

zero
M
suc

M
n)

ElimNNM
zero

M
suc

M zero = zero
M

ElimNNM
zero

M
suc

M (sucn) = suc
M
n (ElimNNM

zero
M
suc

M
n)

In practice, defining natural numbers by giving a data definition means that

after the definition we can use N, zero, suc, RecN, ElimN and the computation

rules for RecN and ElimN hold.

Agda does not directly supply eliminators for inductive types but it provides

pattern matching as a generic mechanism to define functions from inductive types.

As eliminators only allow the definition of terminating functions, Agda augments

pattern matching with termination checking making sure that all the recursive

calls are made at structurally smaller arguments. The eliminator can be imple-

mented by pattern matching as written above. In a strict theory like ours, the

other direction is true as well: pattern matching can be translated to elimina-

tors [74].
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Whenever we use pattern matching in this thesis, we only do it for sake of

readability and it can always be translated to eliminators. For example, the

pattern matching style definition of addition is

zero + n := n

sucm+ n := suc (m+ n)

while using the eliminator it is given as

– + – := RecN (N ! N) (�n.n) (�f n.suc (f n)).

We mentioned that strict positivity is a requirement for the constructors of an

inductive type. Induction rules for certain non strictly positive types would make

the theory inconsistent. We can make this strict posivitity requirement precise

by saying that those inductive definitions are allowed which are given by certain

codes. For simple inductive types like natural numbers, a code is given by a set

S and a P : S ! Set where S and P are built using dependent function space,

>,?,Bool and ⌃. We define a decoding function J–K which for each code gives

the following function.

J–K :
�
⌃(S : Set).S ! Set

�
! Set ! Set

J(S, P )KX := ⌃(s : S).P s ! X

A code (S, P ) determines the following inductive type with one constructor.

dataWS P : Set

con : J(S, P )KWS P ! WS P

S is called the set of shapes (the set of constructors) and P s is called the set

of positions for the shape s. Positions determine the number of inductive oc-

currences. S and P together all called a container [2, 3]. Decoding a container

gives a strictly positive functor and the initial algebra of such a functor is called

a W-type, hence the name WS P .

For example, natural numbers can be encoded by S := Bool (there are

two constructors), P false := ? (the zero constructor doesn’t have any induc-

tive arguments) and P true := > (the suc constructor has one inductive argu-
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ment). With this definition of natural numbers, the constructors are given by

zero := con false Elim? and sucn := con true (� .n).1

2.2.1 Inductive families

We also use the more general inductive types called inductive families [49] or

indexed inductive types. These are families of types indexed by another type.

The prototypical example is vectors, i.e. N-indexed lists where the index stores

the vector’s length.

data Vec (A : Set) : N ! Set

[] : VecA zero

– :: – : A ! {n : N} ! VecAn ! VecA (sucn)

Here the type A is a parameter of the type (this can be viewed as a variable in

the context for the type) while N is an index of the type: di↵erent constructors

can construct elements of the type at di↵erent indices. The [] constuctors creates

vector of length zero, while the – :: – constructor takes a vector of length n and

turns it into a vector of length sucn. The type of the eliminator for Vec is the

following.

ElimVec : (A : Set)
�
VecM : (n : N) ! VecAn ! Set

�

�
[]M : VecM zero []

�

�
–::M – : (x : A){n : N}{xs : VecAn} ! VecM nxs

! VecM (sucn) (x :: xs)
�

{n : N}(xs : VecAn) ! VecM xs

As in the case of inductive types, we can specify inductive families using

codes. Given an indexing set I, the codes are given by a set of shapes and a set of

positions for each shape together with functions providing the output and input

indices. We collect these into the record CI .

1We remark that functional extensionality (see section 2.2.2) is needed to define the induction
principle using the induction principle of WS P (see the discussion in section 2.1 of [19]).
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record CI : Set1

S : Set

P : S ! Set

out : S ! I

in : (s : S) ! P s ! I

The output index is what the constructor of a given shape outputs, while the

input index is the index of an inductive argument occurring at a given position.

We have two decoding functions, one which calculates the type of arguments for

the constructor and one which gives the index of an argument.

J–K : CI ! (I ! Set) ! Set

JcKX := ⌃(s : S c).P c s ! X (in c s p)

index : JcKX ! I

index {c} (s, ) := out c s

Using these an indexed W-type is given by the following definition.

dataW(I:Set) (c:CI) : I ! Set

con : (w : JcKWI c) ! WI c (indexw)

For the type of vectors, the indexing type is N and the code is given as follows.

S := ⌃(b : Bool).if b then> elseA⇥ N
P (true, tt) := ?

P (false, (a, n)) := >

out (true, tt) := zero

out (false, (a, n)) := sucn

in (true, tt) c := Elim? c

in (false, (a, n)) tt := n

The shape is a boolean and in the case when it is false, an A and a natural
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number. The true case corresponds to the [] constructor, and the false case to

the :: constructor which has an A and an N non-inductive argument. There are

no inductive arguments in the [] case, hence the positions in this case are given

by the empty set. In the :: case we have one inductive argument encoded by

>. out expresses that the index of the [] constructor is zero and the index of

the :: constructor is one more than its natural number argument. There are no

positions in the [] case, hence we don’t need to give any indices for those (we use

Elim? to express this) and the index of the single inductive argument of :: is n.

The above codes for inductive families are called indexed containers [12]. Here

we presented a slightly di↵erent, but equivalent formulation. Indexed W-types

can be translated into ordinary W-types [12].

2.2.2 The identity type

A notable example of indexed types is the identity type which we present in

the Paulin-Mohring formulation [82]. It is also called propositional equality to

distinguish from the conversion relation which is called judgemental or definitional

equality.

data – ⌘ – {A : Set}(a : A) : A ! Set

refl : a ⌘ a

It has two parameters, the implicit parameter A : Set and an element a of A and

it has one index of type A. If this index is b, it expresses that a and b are equal.

The single constructor is called reflexivity saying that a is equal to itself. The

eliminator is called J and is given as follows.

J : {A : Set}{a : A}

(Q : (x : A) ! a ⌘ x ! Set)

(r : Qa refl)

(x : A)(q : a ⌘ x) ! Qx q

It expresses that if we have an object of a type and a family over equalities from

that object then it is enough to give an element of the family at refl, and we get

an element of the family at every other equality as well.

Although this elimination rule seems to say that if we want to prove something
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depending on an equality, we only need to prove it for refl, we cannot prove that

every inhabitant of the equality type a ⌘ a is refl [59]. For this, we need the

additional axiom K [95] which says the following.

K : (X : Set)(x : X)(p : x ⌘ x) ! p ⌘ refl

The default way of Agda’s pattern matching mechanism satisfies this axiom in

addition to J. We will also assume this axiom throughout the thesis.

Using J, we can prove the following important properties of equality.

–�1 : a ⌘ b ! b ⌘ a

– ⇧ – : a ⌘ b ! b ⌘ c ! a ⌘ c

coe : (A ⌘ B) ! A ! B

ap : (f : A ! B) ! a ⌘ a
0 ! f a ⌘ f a

0

–⇤– : a ⌘ a
0 ! P a ! P a

0

Symmetry (–�1) and transitivity (– ⇧ –) together with the constructor refl make

equality of any type an equivalence relation. We can coerce between equal types

and we denote this by coe. Equality is a congruence which is expressed by ap

(“apply on path”). This means that every function f respects equality.

We will use standard lemmas about ap and ⇧ e.g.

apap : ap g (ap f p) ⌘ ap (g � f) p

ap⇧ : ap f (p ⇧ q) ⌘ ap f p ⇧ ap f q

Transport (substitutivity of equality) is written –⇤–. If we have an element u

of a type family P at some a, and we know that a equals a0 then we can transport

u along the equality to get an element of the type family at a0. If the equality is

denoted p, then we write the transported element p⇤u. Transport can be proved

combining coe and ap.

Sometimes we want to express the equality between elements of di↵erent types

knowing that the types are equal. In this case given u : P a, u0 : P a
0 and a proof

q : a ⌘ a
0, we write u ⌘q

u
0 to abbreviate q⇤u ⌘ u

0.

We will use equational reasoning which is just repeated usage of transitivity

and ap. The following example is just a fancy way of writing r :
�
f (f a) ⌘ f c

�
:=
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ap (f � g) p ⇧ ap f q where p : a ⌘ b and q : g b ⌘ c.

r : f (g a)

(p)

⌘ f (g b)

(q)

⌘ f c

Writing down the transports all the time can be cumbersome and makes the

notation hard to read. This is the burden one has to take when working in

intensional type theory. In extensional type theory, one can replace an object

with a propositionally equal one using the equality reflection rule which makes

the notation lighter. E.g. knowing that A ⌘ A
0 and a

0 : A0 then f a
0 is well typed

even if f has type A ! B. In this thesis, for readability, we omit writing down

the transports (with the exception of section 3.3 where we give examples in both

notation). That is, we will work informally in extensional type theory. However,

we know that everything that we prove this way can be justified in intensional

type theory extended with the axioms K and functional extensionality [56,81]. In

the Agda formalisation we work in this latter theory.

With the type of codes given in section 2.2.1, the identity type is defined as

follows. The indexing type is A⇥ A.

S := A

P a := ?

out a := (a, a)

in a c := Elim? c

2.2.3 Induction recursion

Induction recursion is a further generalisation of inductive types. We describe it

not only because we make use of it but also because it is a good warm-up for

comprehending the codes for induction induction.

Induction recursion allows the definition of an inductive type simultaneously

with a function defined by recursion over that type. An example is an internal
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universe of codes for types V and a decoding function Elem : V ! Set.

data V : Set Elem : V ! Set

zero : V Elem zero := ?

pi : (a : V) ! (Elem a ! V) ! V Elem (pi a b) := (x : Elem a) ! Elem (b x)

Note that the constructor pi refers to the function Elem which is defined by

recursion on the type being defined.

The inductive recursive definitions which make sense can be given by a type

of codes together with a decoding function. The type of codes is the following.

data IRD : Set1

nil : D ! IRD

nonind : (A : Set) ! (A ! IRD) ! IRD

ind : (A : Set) !
�
(A ! D) ! IRD

�
! IRD

The code nil d represents a trivial constructor and d is the result of the recur-

sive function at this trivial constructor. nonindAf represents a non inductive

argument of type A and f gives the rest of the arguments. indAF represents

inductive arguments A ! U and F gives the result of the recursive function on

them.

There are two decoding functions, one for the constructor and one for the

function defined by recursion.

J–Kcon : IRD ! (U : Set) ! (U ! D) ! Set

Jnil dKcon U T := >

JnonindAfKcon U T := ⌃(a : A).Jf aKcon U T

JindAF Kcon U T := ⌃(g : A ! U).JF (T � g)Kcon U T

J–Kfun : (� : IRD)(U : Set)(T : U ! D) ! J�Kcon U T ! D

Jnil dKfun U T tt := d

JnonindAfKfun U T (a, x) := Jf aKfun U T x

JindAF Kfun U T (g, x) := JF (T � g)Kfun U T x
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Now, given a type D and a code � : IRD, the inductive recursive definition of a

type A� and a function T� is given as follows.

data A� : Set T� : A� ! D

con : J�Kcon A� T� ! A� T� (con� w) := J�Kfun A� T� w

The example with V and Elem are given by the following code.

c : IRSet := nonindBool
⇣
�y.if y then nil? else ind>

�
�a ! ind (a tt) (�b.nil ((x : a tt) ! b x))

�⌘

Applying J–Kcon on this code we get the following.

JcKcon V Elem

=⌃(y : Bool)

.Jif y then nil? else ind> (�a.ind (a tt) (�b.nil ((x : a tt) ! b x)))Kcon V Elem

If the y component is true then this computes to > which corresponds to the

constructor zero which does not have any arguments. If it is false, it computes to

⌃(a : > ! V ).⌃
�
b : Elem (a tt) ! V

�
.>

which corresponds to the (a : V) and (Elem a ! V) arguments of the constructor

pi.

Applying J–Kfun on the code and the two di↵erent kinds of arguments of the

constructor implements the function Elem.

JcKfun V Elem (true, tt) = Jnil?Kfun V Elem tt = ?

JcKfun V Elem (false, a, b, tt) = (x : Elem (a tt)) ! Elem (b x)

A set theoretic model of the inductive recursive definitions given by the above

codes is given in [50].

Small induction recursion is the special case of induction recursion when D is

a small type. Such definitions can translated into inductive families [68]. In this

thesis, we will only make use of small induction recursion.
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2.3 Inductive inductive types

We denote mutually defined inductive types by first declaring the types and then

separately listing the constructors for each. An example is the mutual definition

of the predicates Odd and Even on natural numbers.

data Even : N ! Set

dataOdd : N ! Set

data Even

zeroEven : Even zero

sucOdd : (n : N) ! Oddn ! Even (sucn)

dataOdd

sucEven : (n : N) ! Evenn ! Odd (sucn)

Even numbers are defined by the base case zero and saying that the successor of

an odd number is even, while an odd number must be the successor of an even

number.

Such definitions can be reduced to a single inductive type with an additional

index of type Bool which says which original type was meant.

data Even? : N ! Bool ! Set

zeroEven : Even? zero true

sucOdd : (n : N) ! Even?n false ! Even? (sucn) true

sucEven : (n : N) ! Even?n true ! Even? (sucn) false

Even (n : N) : Set := Even?n true

Odd (n : N) : Set := Even?n false

However there are certain mutual inductive definitions for which this method

does not work. An example is the simultaneous definition of a type and a family

of types indexed over the first type. These are called inductive inductive types

(IITs) and we will need them to define the syntax of type theory with dependent

types. Indeed, the typed syntax of type theory was the motivation for introducing

the notion of inductive inductive types [79] and the main example is the following
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fragment from the definition of the syntax.

data Con : Set

data Ty : Con ! Set

data Con

· : Con

– , – : (� : Con) ! Ty�! Con

data Ty

U : Ty�

⇧ : (A : Ty�) ! Ty (�, A) ! Ty�

Here Ty represents types and it is indexed by Con representing contexts. In

contrast to the Even-Odd example, the order of declaring the types matter: Con

needs to be in scope when declaring Ty. Then the constructors for each type are

listed and later constructors can refer to earlier constructors as in the case of ⇧

which refers to – , – in its second argument. This example of IIT is made of two

types but there is no limit in the number of constituent types.

Another example of an IIT is the type of sorted lists. This could be expressed

without IITs, but the following definition seems to be a natural one. We define

the type SortedList and the relation – SortedList – on natural numbers and sorted

lists mutually.

data SortedList : Set

data – SortedList – : N ! SortedList ! Set

data SortedList

nil : SortedList

cons : (x : N)(xs : SortedList) ! x SortedList xs ! SortedList

data – SortedList –

nil : x SortedList nil

cons : y  x ! (p : x SortedList xs) ! y SortedList cons x xs p

The cons constructor needs a natural number which is less than or equal to all

the elements in the sorted list. nil expresses that any number is less than or

equal to all the elements in an empty list. The cons constructor expresses that
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a y which is less than or equal to the first element x of a sorted list is less than

or equal to all elements of that list.

The eliminator for an IIT needs as many motives as the number of constituent

types and a method for each constructor. For our first example we will have two

eliminators which depend on each other mutually, one for Con and one for Ty.

As they share the arguments, we collect these into a record.

The record MRecConTy contains the motives and methods for the recursor.

recordMRecConTy : Set1

ConM : Set

TyM : ConM ! Set

·M : ConM

– ,M– : (�M : ConM) ! TyM �M ! ConM

UM : TyM �M

⇧M : (AM : TyM �M) ! TyM (�M
,
M
A

M) ! TyM �M

The types of the methods reflect the types of the constructors but they refer to

the motives and the previous methods by putting the M indices everywhere.

The recursor is given in a module parameterised by the above record and

all fields of the record are made visible by opening it. We declare the recursors

RecCon and RecTy and then list their computation rules. This can also be viewed

as a definition of the recursor by pattern matching (and indeed this is how we

reproduce the recursor in Agda).

module RecConTy (m : MRecConTy)

openMRecConTym

RecCon : Con ! ConM

RecTy : Ty� ! TyM (RecCon�)

RecCon · = ·M

RecCon (�, A) = (RecCon�),M(RecTyA)

RecTy U = UM

RecTy (⇧AB) = ⇧M (RecTyA) (RecTyB)

The record MElimConTy contains the motives and methods for the eliminator.
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The motives are families over Con and Ty and the methods are elements of these

families at the corresponding constructor. An algorithm for computing the types

of the motives and methods is given in section 4.3.

recordMElimConTy : Set1

ConM : Con ! Set

TyM : ConM �! Ty�! Set

·M : ConM ·

– ,M– : (�M : ConM �) ! TyM �M
A ! ConM (�, A)

UM : TyM �M U

⇧M : (AM : TyM �M
A) ! TyM (�M

,
M
A

M)B ! TyM �M (⇧AB)

If we write down the implicit quantifications, the type of ⇧M is the following.

{� : Con}{�M : ConM �}{A : Ty�}(AM : TyM �M
A){B : Ty (�, A)}

! TyM (�M
,
M
A

M)B ! TyM �M (⇧AB)

The eliminators have dependent types and the computation rules are the same

as for the recursor.

module ElimConTy (m : MElimConTy)

openMElimConTym

ElimCon : (� : Con) ! ConM �

ElimTy : (A : Ty�) ! TyM (ElimCon�)A

ElimCon · = ·M

ElimCon (�, A) = (ElimCon�),M(ElimTyA)

ElimTy U = UM

ElimTy (⇧AB) = ⇧M (ElimTyA) (ElimTyB)

We describe the recursor of SortedList. First we collect the arguments into the

record MRecSortedList.
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recordMRecSortedList : Set1

SortedListM : Set

– M
SortedList – : N ! SortedListM ! Set

nilM : SortedListM

consM : (x : N)(xsM : SortedListM) ! x M
SortedList xs

M ! SortedListM

nilM : x M
SortedList nil

M

consM : y  x ! (pM : x M
SortedList xs

M) ! y M
SortedList cons

M
x xs

M
p
M

The recursor is given by the following functions and computation rules.

record RecSortedList(m : MRecSortedList) : Set1

openMRecSortedListm

RecSortedList : SortedList ! SortedListM

RecSortedList : x SortedList xs ! x M
SortedList RecSortedList xs

RecSortedList nil = nilM

RecSortedList (cons x xs p) = consM x (RecSortedList) (RecSortedList p)

RecSortedList nil = nilM

RecSortedList (cons w p) = consM w (RecSortedList p)

2.3.1 Codes for inductive inductive types

The constructors of inductive inductive types need to obey strict positivity con-

ditions. Just as in the case of simple inductive types, inductive families and

induction recursion, the inductive inductive types which are allowed can be given

using codes together with decoding functions [79]. The specification of codes for

an inductive inductive type which is built up by a type A and a family B : A ! Set

is given as follows. The codes for A and B are given by CA and CB. We denote

the decoding functions by J–KA and J–KB. CB depends on the code for A. The

decoding functions need a set A and a family B over A. Furthermore, the de-

coding function for B needs the constructor of A. The reason for this is that the

constructor of B can reference the constructor of A, as in the case of ⇧ and cons
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above. The function index calculates the index of B given an argument of the

constructor.

CA : Set

J–KA : CA ! (A : Set) ! (A ! Set) ! Set

CB : CA ! Set

J–KB : {� : CA} ! CB � ! (A : Set)(B : A ! Set)(conA : J�KA AB ! A) ! Set

index : J�KB AB conA ! A

The codes � : CA and � : CB � encode the following inductive type.

data A� � : Set

data B� � : A� � ! Set

conA : J�AKA A� � B� � ! A� �

conB : (w : J�KB A� � B� � conA) ! B� � (indexw)

Now we will describe how the above codes and decoding functions are defined.

We follow the construction in section 3.2.3 of [79].

As in the case of codes for induction recursion, the codes CA are given as an

inductive type and we have separate constructors for non-inductive and inductive

arguments and for the base case. Also, we add another argument Aref to the type

which collects together the inductive arguments that one can refer to in later

arguments of the constructor. Hence, the codes are given by the inductive type

C0
A and CA := C0

A ?.

data C0
A (Aref : Set) : Set1

nil : C0
A Aref

nonind : (K : Set) ! (K ! C0
A Aref ) ! C0

A Aref

indA : (K : Set) ! C0
A (Aref +K) ! C0

A Aref

indB : (K : Set)(hindex : K ! Aref ) ! C0
A Aref ! C0

A Aref

We have the code nil for the trivial constructor, nonind for a non-inductive ar-

gument on which the rest of the constructors can depend, indA for an inductive

argument of type A which extends the set Aref , and finally indB for an inductive

argument of type B which does not extend Aref but we need the Aref -index of
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this argument. This is given by hindex.

For example, the code for the constructor – , – in the Con-Ty example can be

given as follows.

c– ,– : C0
A ? := indA > (indB > (� ! inj2 tt) nil)

The code for · is the simplest possible one.

c· : C
0
A ? := nil

The decoding function for A is defined using the following more general de-

coding function: J–KA � AB := J–K0A {?} � AB Elim?. The extra argument repA

provides the representation of the elements of Aref in A.

J–K0A : {Aref : Set}(� : C0
A Aref )(A : Set)(B : A ! Set)(repA : Aref ! A) ! Set

JnilK0A := >

JnonindK �K0A AB repA := ⌃(k : K).J� kK0A AB repA

JindA K �K0A AB repA := ⌃(j : K ! A).J�K0A AB [repA, j]

JindB K hindex �K0A AB repA :=
�
(k : K) ! B (repA (hindex k))

�
⇥
�
J�K0A AB repA

�

Now we can compute

Jc– ,– KA ConTy

=⌃(� : > ! Con).JindB > (� tt.inj2 tt) nilK0A ConTy [Elim?,�]

=⌃(� : > ! Con).(( : >) ! Ty (� tt))⇥>,

which represents the arguments (� : Con) and Ty� of – , –. Decoding c· gives >.

The argument of the constructor of B can refer to the constructors of A (see ⇧

in the Con-Ty example), hence we need to represent the usages of the constructor

of A in the codes of type B. The constructor of A can refer to terms of type B,

so we need to refer to these as well. This is why we define a type of codes TA for

terms of type A together with a decoding function J–KTA and similarly for B.

TA and TB are given as an inductive recursive definition. Similarly to Aref , we

use a set Bref for the referrable inductive arguments of B. The three constructors

of TA encode the referrable terms in Aref , the A-index of a term in Bref , and a

usage of the constructor of A, respectively. We can only encode terms of type B
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when they are referred to in Bref , hence the definition of TB.

data TA(Aref Bref : Set)(� : CA) : Set TB : TA Aref Bref � ! Set

aref : Aref ! TA Aref Bref � TB (aref a) := ?

bref : Bref ! TA Aref Bref � TB (bref b) := >

arg : J�KA (TA Aref Bref �)TB ! TA Aref Bref � TB (arg x) := ?

We define the decoding functions mutually. They take as arguments not only the

types A, the family B : A ! Set and the constructor of A, but also functions

representing the referenced arguments. repA is like before, repindex gives the

A-index and repB creates the object in the family at the index given by repindex.

J–KTA : (a : TA Aref Bref�)(A : Set)(B : A ! Set)(repA : Aref ! A)

(repindex : Bref ! A)(repB : (b : Bref ) ! B (repindex b))

(conA : J�KA AB ! A) ! A

J– , –KTB : (a : TA Aref Bref�)(b : TB a)(A : Set)(B : A ! Set)(repA : Aref ! A)

(repindex : Bref ! A)(repB : (b : Bref ) ! B (repindex b))

(conA : J�KA AB ! A) ! B
�
JaKTA AB repA repindex repB conA

�

Jaref aKTA repA := repA a

Jbref bKTA repind := repind b

Jarg xKTA repind conA := conA

�
J�KAfunc (J–KTA ...) (J–KTB ...) x

�

Jaref a, wKTB := Elim?w

Jbref b, ttKTB repB := repB b

Jarg a, wKTB := Elim?w

The arg case of J–KTA uses functoriality of J–KA, see the formalisation for details.

With the help of these we give the definition of the codes for B, the decoding

function and the indexing function. As in the case of CA, we define generalised

versions indexed by a set of references. The codes for B give either a constructor

with no arguments (in this case we have to specify the index of the constructor

which is a term of type A), a non inductive argument, an inductive argument of

type A (in this case we extend Aref ) or an inductive argument of type B (in this
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case hindex says what the index of the argument is and we extend Bref ).

data C0
B(Aref Bref : Set)(� : CA) : Set1

nil : TA Aref Bref � ! C0
B Aref Bref �

nonind : (K : Set) ! (K ! C0
B Aref Bref �) ! C0

B Aref Bref �

indA : (K : Set) ! C0
B (Aref +K)Bref � ! C0

B Aref Bref �

indB : (K : Set)(hindex : K ! TA Aref Bref �) ! C0
B Aref (Bref +K) �

! C0
B Aref Bref �

The decoding of C0
B follows the above explanation about the codes.

J–K0B : (� : C0
B Aref Bref �)(A : Set)(B : A ! Set)

(repA : Aref ! A)(repindex : Bref ! A)(repB : (b : Bref ) ! B (repindex b))

(conA : J�KA AB ! A) ! Set

Jnil K0B := >

JnonindK �K0B AB repA repindex repB conA

:= ⌃(k : K).J� kK0B AB repA repindex repB conA

JindAK �K0B AB repA repindex repB conA

:= ⌃
�
j : (k : K) ! A

�
.J�K0B AB [repA, j] repindex repB conA

JindBK hindex �K0B AB repA repindex repB conA

:= ⌃
�
j : (k : K) ! B (Jhindex kKTA AB repA repindex repB conA)

�

.J�K0B AB repA [repindex,�k.Jhindex kKTA ...] [repB, j] conA

The index of a constructor is calculated from the code in the nil case using the

interpretation of terms of type A. The other cases look up the result recursively.

index0 : (� : C0
B Aref Bref �) ! J�K0B AB repA repindex repB conA ! A

index0 (nil a) tt := JaKTA AB repA repindex repB conA

index0 (nonindK �) (k, y) := index0 (� k) y

index0 (indAK �) (j, y) := index0 � y

index0 (indBK hindex �) (j, y) := index0 � y

The final versions of the codes for B, the decoding and indexing functions are
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using the special cases of the above when Aref and Bref are both the empty type.

CB (� : CA) : Set := C0
B ?? �

J�KB AB conA : Set := J�K0B AB Elim? Elim? Elim? conA

index (b : J�KB AB conA) : A := index0 � b

Now we show how to encode the constructors of Ty in the Con-Ty example.

cU : CB c– ,– := indA >
�
nil (aref (inj2 tt))

�

c⇧ : CB c– ,– := indA >
⇣
indB >

�
� .aref (inj2 tt)

�

�
indB > (� .arg ((� .bref (inj2 tt)), ((� .tt), tt)))

(nil (aref (inj2 tt)))
�⌘

The constructor U only has one inductive argument of A (indA) and returns that

as an index (aref). The constructor ⇧ has an inductive argument � of A which we

will later refer to as aref (inj2 tt). Then it takes an inductive argument A of type B

at index � as expressed by indB > (� .aref (inj2 tt)). The final inductive argument

is again of type B, but at the index �, A where the usage of – , – is encoded by

arg, the argument � is given by bref (this is the A-index of the argument of type

B) and the argument of type B is given by � .tt (there is only one element in

Bref at this point).

When decoding cU, we get that JcUKB ConTy con– ,– = ⌃(� : > ! Con).>
and

Jc⇧KB ConTy con– ,– = ⌃(� : > ! Con)

.⌃(A : > ! Ty (� tt))

.⌃(B : > ! Ty (con– ,– (� .� tt, (� .A tt, tt)))).>

When applying the index function to elements of these types, one gets the expected

results:

index {cU} (�, tt) = � tt

index {c⇧} (�, A,B, tt) = � tt

The above presented codes for inductive inductive types can express the Con-
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Ty example and need some generalisation to express the sorted list example (it

doesn’t allow the index of type N in the second type). In chapter 3 we will

use more constituent types than two, i.e. a tower of inductive definitions like

A : Set, B : A ! Set, C : (a : A) ! BA ! Set, ... The extensions of the above

code system to these cases are described in section 6.2 of [79]. A categorical

characterisation and a set-theoretic semantics of inductive inductive types is given

in [20,79]. From a computational point of view IITs are not problematic and they

are supported by Agda.

2.4 Quotient inductive types

Higher inductive types come from homotopy type theory (chapter 6 of [88]). They

are a generalisation of inductive types: in addition to usual (point) constructors

they allow the definition of equality constructors. A simple example is the higher

inductive type of the interval.

data I : Set

left : I

right : I

segment : left ⌘ right

This type has two usual constructors left and right and it has an equality con-

structor segment which adds an element to the identity type of I stating that

left and right are equal. To eliminate from this type one needs three methods,

two corresponding to the constructors left and right, and one corresponding to

segment. The method corresponding to segment ensures that the objects to which

left and right are mapped to are equal. We list the recursor and the eliminator

below. Note that in the case of the dependent eliminator this equality lives over

the constructor segment.

RecI : (IM : Set) ElimI : (IM : I ! Set)

(leftM right
M : IM) (leftM : IM left)(rightM : IM right)

(segment
M : leftM ⌘ right

M) (segment
M : leftM ⌘segment

right
M)

! I ! I
M (i : I) ! I

M
i
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The computation rules for the point constructors are the usual ones, we list them

for the recursor.

RecI IM left
M
right

M
segment

M left = left
M

RecI IM left
M
right

M
segment

M right = right
M

The computation rule for segment expressed as a propositional equality states the

following.

ap (RecI IM left
M
right

M
segment

M) segment ⌘ segment
M

However, as we work in a strict metatheory (K is true), this equality is always

true, hence there is no need to state it separately.

We call quotient inductive types (QITs) the higher inductive types in a strict

theory (like ours). A consequence of K is that equalities between equalities are

always trivial, this is why we don’t use the term “higher”. Alternatively, if

we worked in homotopy type theory, quotient inductive types would mean set-

truncated higher inductive types.

Functional extensionality is the fact that pointwise equal functions are equal:

funext : {fg : (x : A) ! B x} !
�
(x : A) ! f x ⌘ g x

�
! f ⌘ g.

We use this axiom throughout this thesis. It also follows from the existence of

the interval quotient inductive type I. For details, see the formalisation.

QITs are not the same as quotient types [57, 65]. The latter can be seen as

special cases of the former. For quotient types, one needs to define the type and

the equivalence relation in separate steps; QITs give the opportunity to do these

two things at the same time. Sometimes this

. In [88], there are two examples of such usage of : the constructable hierarchy

of sets in an encoding of set theory and the definition of the real numbers as

Cauchy-sequences. These definitions would have been possible using quotient

types however it seems that they would have required some form of axiom of

choice to be useful.

We give another example which points out the di↵erence between quotient

types and quotient inductive types.

Given a type and a binary relation over it, we can define the quotiented type
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by the following rules.2

data –/– (A : Set)(R : A ! A ! Set) : Set

[–] :A ! A/R

[–]⌘ :Raa
0 ! [a] ⌘ [a0]

Rec–/– : (A : Set)(R : A ! A ! Set)

(QM : Set)

([–]M : A ! Q
M)

([–]⌘M : Raa
0 ! [a]M ⌘ [a0]M)

! A/R ! Q
M

RecA/R Q
M [–]M [–]⌘M [a] = [a]M

The recursor expresses that we can eliminate from the quotient into a type Q
M

by providing a function [–]M from A to Q
M . However there is a limitation: this

function needs to respect the relation R (this fact is witnessed by the method

[–]⌘M).

For our example, first we will define binary trees quotiented by a relation

which expresses that the order of subtrees does not matter.

data T2 : Set data R : T2 ! T2 ! Set

leaf : T2 leafR : R leaf leaf

node : T2 ! T2 ! T2 nodeR : R t t
0 ! R s s

0 ! R (node t s) (node t0 s0)

permR : R (node t t0) (node t0 t)

T2 is the type of binary trees with no information at the nodes. R is an induc-

tively defined binary relation on T2. It has two congruence constructors for the

two corresponding constructors of T2 and a constructor permR expressing that

exchanging two subtrees results in a related tree. Now we can define T2 := T2/R

and we lift the constructors leaf and node to T2 as follows.

2A quotient type is just a quotient inductive type with the given constructors.
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leaf : T2 := [leaf]

node : T2 ! T2 ! T2 := RecT2/R (T2 ! T2)
�
� (t : T2).RecT2/RT2

�
�(t0 : T2).[node t t

0]
�

(�p.[nodeR reflR p]⌘)
�

H

In the above definition, reflR proves that R is reflexive and can be defined easily.

The argument H needs to say that the previous argument respects the relation

and up to functional extensionality and congruence it is given by �p.[nodeR p reflR]⌘.

Note that node works as expected: by the computation rule for quotients, we have

that node [t] [t0] = [node t t0].

Now we would like to do the same construction for infinitely branching trees

which are given by the following datatype and relation.

data T : Set dataQ :T ! T ! Set

leaf : T leafQ :Q leaf leaf

node : (N ! T) ! T nodeQ :
�
8n.Q (f n) (g n)

�
! Q (node f) (node g)

permQ : (f : N ! T)(h : N ! N) ! isIsoh

! Q (node f)
�
node (f � h)

�

The branches are indexed by natural numbers and the permutation constructor

says that we can precompose the function giving the subtrees with any function

on natural numbers which is an isomorphism (isIso) and get a related tree.

We can lift leaf to the quotient T/Q just as in the binary case, however there

seems to be no way doing this for the node constructor. In the binary case we had

to nest the recursor for quotients twice and in the infinite case we would need to

do this infinitely many times, but it is not clear how to express such an infinite

definition in type theory.

However we can define T in one step as a quotient inductive type and the

problem disappears. We also don’t need the congruence constructors for the

relation anymore, as they can be proven by congruence of equality.
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data T : Set

leaf : T

node : (N ! T) ! T

perm : (f : N ! T)(h : N ! N) ! isIsoh ! node f ⌘ node (f � h)

For completeness, we write down the eliminator for this QIT.

recordMElimT : Set1

T
M

:T ! Set

leafM :T
M
leaf

nodeM : {f : N ! T}(fM : (n : N) ! T
M
(f n)) ! T

M
(node f)

permM : {f : N ! T}(fM : (n : N) ! T
M
(f n))(h : N ! N)

(p : isIsoh) ! nodeM f
M ⌘perm f h p nodeM (fM � h)

module ElimT (m : MElimT)

openMElimTm

ElimT : (t : T ) ! T
M
t

ElimT leaf = leafM

ElimT (node f) = nodeM
�
�n.ElimT (f n)

�

Quotient inductive types are a convenient way to define generalised algebraic

theories [36]. The motive and the methods for the recursor collected together into

a record form an algebra for the theory defined by the QIT. This algebra can be

viewed as a model of the theory where soundness is ensured by the methods for

the equality constructors. The syntax can be viewed as the initial (term) model

and initiality is given by the recursor and its computation rules.

QITs are special cases of HITs which is a very active research area. Higher

inductive types are proposed in chapter 6 of the book on homotopy type theory

[88] but only examples are given without a general definition. There are a few

proposals for describing what HITs are, but none of them cover the most general

case. Sojakova describes a special case called W-suspensions and proves that
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these have an initiality property in a certain category [92]. Henning et al [22]

define a syntactic scheme for HITs with only 1-constructors. Codes for certain

mutual and higher inductive types are given by Capriotti [34]. Some HITs can be

reduced to HITs without recursive higher constructors [64]. If this is the case in

general, it might lead to a simpler description of HITs. Lumsdaine and Shulman

study the semantics of HITs [67].

In chapter 3 we will use the combination of inductive inductive types and

quotient inductive types that we call quotient inductive inductive types (QIITs).

The syntactic description of QIITs is ongoing research, see the upcoming thesis

of Gabe Dijkstra [47]. Here we give an informal description of what a QIIT is.

A QIIT is given first as a list of sorts, and then a list of constructors. The sorts

can depend on each other, e.g. A : Set, B : A ! Set, C : (a : A) ! B a ! Set.

The codomain of each sort has to be Set. Note that the dependencies between

sorts can be quite intricate, e.g. B might have sort ((A ! A) ! A) ! Set or

(a : A) ! a ⌘ a ! Set. The codomain of constructors need to be one of the

sorts or an equality between elements in a sort. For example, we can have a : A

or p : (x : A) ! x ⌘ a. Constructors can refer to previously defined constructors,

for example we might have b : B a. Constructors need to obey strict positivity,

e.g. a0 : (A ! A) ! A is not allowed because A has a negative occurrence

in the type of the first and only argument of the constructor. The constructor

b : (A ! A) ! B a however is allowed as the negative occurrence is for A and

not B which is the target of the constructor. Constructors can refer to equalities

as well and probably these also need to obey the strict positivity condition, for

example, a constructor p0 : ((a ⌘ a) ! A) ! A is questionable.

In section 4.3 we will describe a general method for deriving the eliminator of

a closed QIIT. There we simply define QIITs as contexts, for example a context

A : Set, B : A ! Set, a : A, b : B a describes a QIIT with two sorts and two

constructors. The variable names are the names for the sorts and constructors.

This description makes sure that later sorts and constructors can only refer to

previous ones, but strict positivity is not enforced. The motives and methods for

an eliminator can be however extracted for such a context in general.

We hope that, after giving a definition of QIITs, they can be justified using a

setoid model [8].

Adding QIITs (and functional extensionality, which is also a consequence of

the existence of the interval QIT, see formalisation) to the theory poses a canon-
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icity problem, i.e. can all closed terms of type N be reduced to numerals. Obser-

vational type theory [19] is a strict type theory tackling this problem and cubical

type theory [40] is a non strict type theory giving computational explanation of

homotopy type theory. These theories don’t yet have reliable implementations

and their metatheory is not yet developed, this is why we have chosen the more

conservative way of working in a strict theory with axioms.

QIITs can be added to Agda by postulating all the constructors and adding the

computation rules as rewrite rules [39]. This avoids the problems with previous

approaches such as [66] using inductive types and only postulating the equality

constructors.



Chapter 3

Syntax and standard semantics of

type theory

In this chapter we explain how we arrive at our definition of syntax starting from

an informal presentation of a basic type theory, then we define the syntax and

its elimination principle. Our syntax includes dependent function space, a base

type and a family of types over the base type. We show how to reason using

this syntax and show how to use the elimination principle to define functions

from the syntax to another type. More specifically, we prove disjointness of the

empty context and extended contexts, we prove injectivity of the type constructor

⇧, and define the standard interpretation of type theory in which every object

theoretic construct is modelled by its metatheoretic counterpart.

3.1 From informal to formal syntax

Type theory is a formal system for deriving judgements: it consists of a collection

of derivation rules each of which has one judgement as a conclusion. Figure 3.1

lists the derivation rules of a basic type theory with universes à la Russel and ⇧

types. The notation used here is close to how one informally writes type theory

on a whiteboard.

We have three kinds of judgements: (1) � is a valid context, denoted � `,
(2) term t has type A in context �, denoted � ` t : A, and (3) two terms are

convertible, denoted � ` t ⇠ u : A.

The derivation rules come in groups: there are a few core rules, and then for

43
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(1) Contexts:

· ` C-empty � ` � ` A : U
�, x : A ` C-ext

(2) Terms:

� ` A : U
�, x : A ` x : A

var � ` t : A � ` B : U
�, x : B ` t : A wk

� `
� ` U : U U-I

� ` A : U �, x : A ` B : U
� ` ⇧(x : A).B : U

⇧-F
�, x : A ` t : B

� ` �x.t : ⇧(x : A).B
⇧-I

� ` f : ⇧(x : A).B � ` a : A

� ` f a : B[x := a]
⇧-E

� ` A ⇠ B : U � ` t : A
� ` t : B

t-coe

(3) Conversion for terms:

� ` t : A
� ` t ⇠ t : A

t-eq-refl � ` u ⇠ v : A
� ` v ⇠ u : A

t-eq-sym

� ` u ⇠ v : A � ` v ⇠ w : A
� ` u ⇠ w : A

t-eq-trans

� ` A ⇠ B : U � ` u ⇠ v : A
� ` u ⇠ v : B

t-eq-coe

� ` A ⇠ A
0 : U �, x : A ` B ⇠ B

0 : U
� ` ⇧(x : A).B ⇠ ⇧(x : A0).B0 : U

⇧-F-cong

�, x : A ` t ⇠ t
0 : B

� ` �x.t ⇠ �x.t
0 : ⇧(x : A).B

⇧-I-cong

� ` f ⇠ f
0 : ⇧(x : A).B � ` a ⇠ a

0 : A

� ` f a ⇠ f
0
a
0 : B[x := a]

⇧-E-cong

�, x : A ` t : B
� ` (�x.t) a ⇠ t[x := a] : B[x := a]

⇧-�
� ` f : ⇧(x : A).B

� ` f ⇠ (�x.f x) : ⇧(x : A).B
⇧-⌘

Figure 3.1: Informal derivation rules for a basic type theory grouped by the
kind of judgement. Rules for ↵-conversion, universe indices and the definition of
substitution are omitted.
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Example A: the polymorphic identity function.

· ` C-empty

· ` U : U U-I

·, A : U ` A : U
var

·, A : U, x : A ` x : A
var

·, A : U ` �x.x : ⇧(x : A).A
⇧-I

· ` �A.�x.x : ⇧(A : U).⇧(x : A).A
⇧-I

Example B: predicate space on a type variable.

· ` C-empty

· ` U : U U-I

·, A : U ` A : U
var

· ` C-empty · ` C-empty

· ` U : U U-I

·, A : U ` C-ext

· ` C-empty

· ` U : U U-I

·, A : U ` A : U
var

·, A : U, x : A ` C-ext

·, A : U, x : A ` U : U U-I

·, A : U ` ⇧(x : A).U : U
⇧-F

Example C: deriving the natural number 2 in a context representing natural
numbers. We abbreviate the following derivation by p.

· ` C-empty

· ` U : U U-I

·, N : U ` N : U
var

· ` C-empty

· ` U : U U-I

·, N : U ` N : U
var

·, N : U, z : N ` N : U wk

We abbreviate the following derivation by q.

p

p p

·, N : U, z : N, x : N ` N : U wk

·, N : U, z : N ` ⇧(x : N).N : U
⇧-F

We abbreviate the context ·, N : U, z : N, s : (x : N), N by �.

q

� ` s : ⇧(x : N).N
var

q

� ` s : ⇧(x : N).N
var

· ` C-empty

· ` U : U U-F

·, N : U ` N : U
var

·, N : U, z : N ` z : N
var

q

� ` z : N wk

� ` s z : N ⇧-E

� ` s (s z) : N
⇧-E

Figure 3.2: Example derivation trees using the rules of figure 3.1.
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each type former there is a separate group of rules. In our basic type theory

we have two type formers, U and ⇧. The rules belonging to the group of U

and ⇧ have names starting with U and ⇧, respectively. The rules for each type

former follow the same structure: type formation rule (denoted -F), introduction

rule (-I), elimination rule (-E), computation rule (-�) and uniqueness rule (-

⌘). The conversion rules state that conversion is an equivalence relation, and

we have coercion rules (convertible objects are interchangeable) and congruence

rules (every construction respects the conversion relation).

We haven’t listed the rules which say that terms are identified up to ↵-

conversion and that name capture is avoided by appropriate renaming. We also

refrained from writing down the definition of substitution. We also assume that

we have a hierarchy of universes, i.e. Ui : Ui+1, but informally we refrain from

writing the indices.

We say that a judgement can be derived in type theory when there is a deriva-

tion tree ending with that judgement. We give an example of a few derivation

trees in figure 3.2.

Traditionally, the syntax of type theory is formalised starting with an infinite

set of variable names and an alphabet which includes this set and symbols such as

�, ⇧ etc. Then one defines the inductive sets of preterms, pretypes, precontexts.

Finally, a ternary typing relation is defined as a subset of the cartesian product of

precontexts, pretypes and preterms. We can view our presentation in figure 3.1

as an inductive definition of such a relation (leaving the low-level details such as

the definition of preterms implicit). Well typed terms are given by the preterms

for which there is a pretype and a precontext such that this relation holds. For

examples of such presentations, see section 2.3 in [58] or chapter 4 in [94]. We view

this approach as a low-level one, because whenever we would like to talk about

terms or derivations we always need to go back and deal with lists of symbols.

When using type theory as a metalanguage we are able to define terms at a

higher level, even formally. We will define the type of terms as a family of types

indexed over contexts and types.

Tm : (� : Con) ! Ty�! Set

This way we don’t have preterms but only well typed terms which contain all the

information for reproducing the derivation tree. Terms and derivations are iden-

tified: e.g. the rule ⇧-I and � will be identified and given the name lam. Similarly
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we will only formalise well-scoped types and valid contexts. This approach is

sometimes called intrinsically typed syntax. An advantage of intrinsically typed

syntax is that we don’t need coherence theorems between operations defined on

the syntax and typing: e.g. type preservation comes for free because everything

is well-typed; similarly, we don’t need the substitution lemma as substitution is

not defined on preterms but is defined on well typed terms using a typing rule.

Rules ⇧-E and ⇧-� mention substitutions. In the traditional presentation

separating preterms and well-typed terms, substitution is defined by recursion on

preterms and it can be proven that substitution respects the typing relation. In

an intrinsically typed syntax, it is also possible to define substitution recursively.

This results in an inductive inductive recursive definition (the notion of induction

induction recursion is studied in section 6.1 of Forsberg’s thesis [79]). An example

of such a definition of type theory is Danielsson’s work [43]. An alternative to

defining substitution recursively is to build substitutions into the syntax. This is

called explicit substitution calculus and was originally introduced to bridge the

gap between �-calculus and its implementations [1]. In this approach substitution

is a separate term former (constructor) which builds a new term from a term

and a substitution. In fact, Danielsson [43] uses a mixed approach: he defines

substitutions on types implicitly (recursively) and substitution on terms explicitly.

He says that originally he wanted to define a fully implicit syntax, but when

defining implicit substitutions, one needs to prove substitution lemmas mutually

with the syntax and it is hard to show that for such a complicated definition,

every function terminates.

We take the conceptually cleaner approach of fully explicit substitutions. We

use parallel substitutions, that is, a substitution is a lists of terms. Its domain

is the context in which all the terms are defined and its codomain is the context

which is built up from the types of the terms. This also provides a natural way

to deal with variable names and ↵-conversion. We use De Bruijn indices [33]

encoded by projection substitutions: there will be a projection ⇡1 which forgets

the last component of a substitution, and a projection ⇡2 which projects out the

last term from a substitution.

As terms are indexed over types, we need to declare them separately, first

types and then terms. Hence, we can’t just say that a type is an element of the

universe as in the informal presentation of figure 3.1. We need to have universes

à la Tarski instead of à la Russel.
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The notation of figure 3.1 is very concise in that, for example, the rule ⇧-I

does not say that � ` A : U and �, x : A ` B : U (and indeed, this assumption

is not necessary – it is admissible). In our syntax however we work in type

theory, hence we need to list every argument with its type. However, we can still

achieve the same conciseness in the formal presentation by adding these additional

assumptions as implicit arguments to the syntax. For example, we write the type

of the constructor lam as follows.

lam : Tm (�, A)B ! Tm� (⇧AB)

Spelling out the implicit arguments, this means the following.

lam : {� : Con}{A : Ty�}{B : Ty (�, A)} ! Tm (�, A)B ! Tm� (⇧AB)

This way our syntax matches the usual informal notation of type theory. Without

implicit arguments we would have to write lam�AB t instead of lam t.

Formalising the type theory of figure 3.1 following the above considerations

would result in an inductive inductive type with the following eight constituent

types for contexts, types, substitutions (Tms for lists of terms), terms and con-

version for all of them in the same order.

data Con : Set

data Ty : Con ! Set

data Tms : Con ! Con ! Set

data Tm : (� : Con) ! Ty�! Set

data – ⇠Con – : Con ! Con ! Set

data – ⇠Ty – : Ty�! Ty�! Set

data – ⇠Tms – : Tms��! Tms��! Set

data – ⇠Tm – : Tm�A ! Tm�A ! Set

We cannot avoid defining conversion at the same time as the first four types

because of the rule t-coe which becomes a constructor of Tm mentioning the

conversion relation. In contrast, for simple type theory there is no such rule and

the conversion relation can be given in a separate step after defining the syntax.

However, defining type theory with these eight constituent types results in lots
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of boilerplate because of the conversion rules. Most of these rules are so obvious

that introductions to type theory do not even list them explicitly (e.g. [58], [88]).

Basically, one needs to work with setoids instead of types and then families of

setoids indexed over setoids. (A setoid is a type together with an equivalence

relation which we view as the equality of that type [8], e.g. we only define functions

between setoids which respect the corresponding relations.) The amount of type

theoretic boilerplate makes using such a definition infeasible in practice. An

example is Chapman’s work [38] which managed to give a complete presentation

using such an approach.

If we look at the conversion rules, we observe that there is another relation

in type theory for which reflexivity, symmetry, transitivity, coercion and the

congruence rules hold: equality (section 2.2.2). The question naturally arises

whether we can use equality as a tool for abstracting over these properties. Note

that we also need to account for the interesting conversion rules, namely ⇧-� and

⇧-⌘. Quotient inductive types provide a solution precisely for this: they allow

the addition of equality constructors for the interesting cases and all the other

rules become automatically true by the corresponding rules for equality.

In addition, the syntax given as a QIIT is a more abstract definition than the

one with explicit conversion relations. The quotienting enforces that we cannot

distinguish between convertible syntactic objects.

3.2 The syntax

We define the syntax of type theory as a quotient inductive inductive type con-

sisting of four di↵erent types: contexts, types, substitutions and terms.

data Con : Set

data Ty : Con ! Set

data Tms : Con ! Con ! Set

data Tm : (� : Con) ! Ty�! Set

Contexts are given by a type. Types are indexed over contexts. As we have

dependent types, a type is only valid in a given context. Substitutions are indexed

over two contexts. One can think of Tms�� as a sequence of terms in context

� which inhabit all types in �, hence the name Tms. Terms are indexed over a
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context and a type in that context.

We will give the constructors for the four constituent types in separate groups.

First we spell out the core substitution calculus, and then we add rules for di↵erent

type formers separately.

3.2.1 The core type theory

The constructors of the substitution calculus are given below. The substitution

calculus does not include any type formers such as ⇧. We will extend the QIIT

of the syntax with those later.

data Con

· : Con

– , – : (� : Con) ! Ty�! Con

data Ty

–[–] : Ty⇥! Tms�⇥! Ty�

data Tms

– � – : Tms⇥�! Tms�⇥! Tms��

id : Tms��

✏ : Tms� ·

– , – : (� : Tms��) ! Tm�A[�] ! Tms� (�, A)

⇡1 : Tms� (�, A) ! Tms��

data Tm

–[–] : Tm⇥A ! (� : Tms�⇥) ! Tm�A[�]

⇡2 : (� : Tms� (�, A)) ! Tm�A[⇡1 �]

data Ty

[][] : A[�][⌫] ⌘ A[� � ⌫]

[id] : A[id] ⌘ A

data Tms

�� : (� � ⌫) � � ⌘ � � (⌫ � �)

id� : id � � ⌘ �

�id : � � id ⌘ �

✏⌘ : {� : Tms� ·} ! � ⌘ ✏
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⇡1� : ⇡1 (�, t) ⌘ �

⇡⌘ : (⇡1 �, ⇡2 �) ⌘ �

, � : (⌫, t) � � ⌘ (⌫ � �), ([][]⇤t[�])

data Tm

⇡2� : ⇡2 (�, t) ⌘⇡1� t

We explain the above definition in detail now.

There are two ways to construct a context: the empty context · and context

extension – , – which adds a type in the context which we extend.

We are able to substitute types and terms and substitutions themselves (the

latter is called composition). That is, given a type A : Ty⇥, term t : Tm⇥A and

a substitution ⌫ : Tms⇥�, all interpreted in context ⇥, we can interpret them in

� by a substitution � : Tms�⇥ which interprets all of ⇥ in �. This is expressed

by A[�] : Ty�, t[�] : Tm�A[�] and ⌫ � � : Tms��. Substitution is associative

which is expressed by [][] for types and �� for substitutions. The similar rule for

terms can be derived, see section 3.3.

We have the identity substitution id which is identity when we substitute

types ([id]) and substitutions (id�, �id). Types can be only substituted from one

side, this is why we only have one identity law for them. Again, the similar rule

for terms can be derived.

The constructor ✏ provides the empty substitution and ✏⌘ witnesses that every

substitution into the empty context is equal to it.

The substitution extension operator –, – is adding a term at the end of a

substitution: given a � providing all types in �, we need a term of type A[�]

to construct a substitution into �, A. We have the two projections ⇡1 and ⇡2

which forget and project out the last term, respectively. They work as expected:

projection after – , – gives the expected results (rules ⇡1� and ⇡2�). We have

the other direction as well: if we project out the first and second components

and then join them by substitution extension, we get the original substitution

(⇡⌘). Finally, we have the law , � which tells us what happens if we substitute an

extended substitution: the substitution just goes under the – , – in a pointwise

fashion.

Note that in the definition of , � the term t[�] has type A[⌫][�] but (⌫ � �), –
requires a term of type A[⌫ � �]. This is why we need to transport t[�] along the

equality [][]. Similarly when expressing the type of ⇡2� we have a term of type
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on the left hand side A[⇡1 (�, t)] and a term of type A[�] on the right hand side.

These types are equal by ⇡1�, hence ⇡2� is an equality over ⇡1�.

We can summarize the syntax as follows.

• Contexts and substitutions form a category with a terminal object.

• Types form a family of types over contexts, terms form a family over con-

texts and types and they are functorial.

• We have a substitution extension operation given by the following natural

isomorphism.

⇡1�, ⇡2� – , – #
� : Tms�� Tm�A[�]

Tms� (�, A)
" ⇡1, ⇡2 ⇡⌘

Naturality is expressed by , �. If one direction of an isomorphism is natural,

so is the other, this is why we only state this direction. We prove the other

direction (given by ⇡1� and ⇡2[]) later.

Using our categorically inspired syntax we can derive more traditional syn-

tactic constructions such as variables expressed as typed De Bruijn indices [33].

For this we first define the weakening substitution.

wk : Tms (�, A)� := ⇡1 id

When we project out the last element from the context, we need to weaken the

type because now we are in an extended context. The successor constructor for

De Bruijn variables is just substitution by weakening.

vz : Tm (�, A) (A[wk]) := ⇡2 id

vs (x : Tm�A) : Tm (�, B) (A[wk]) := x[wk]

3.2.2 A base type and family

We add a base type U and a family El over this type. El is the only place in our

basic syntax where terms leak into types. U and El are the dependently typed

analogs of the base type ◆ in simple type theory: they are the simplest type

formers which make the theory nontrivial.
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We add the type formation rules and the substitution rules. We write the

symbol + after Ty to show that these are additional constructors to the ones

given in the previous section.

data Ty+

U : Ty�

El : Tm�U ! Ty�

U[] : U[�] ⌘ U

El[] : (El Â)[�] ⌘ El (U[]⇤Â[�])

The type constructor U is not a↵ected by substitutions and substituting El pushes

the substitution � through to the term of type U which gains type U[�], this is

why we need to transport along U[].

3.2.3 Dependent function space

First we define lifting of a substitution: the operation " takes a substitution �

from � to � and returns an extended substitution from �, A[�] to �, A which

does not touch the last element in the context. It works by weakening � and

extending the substitution by the referring to the last element in the context.

(� : Tms��) " A : Tms (�, A[�]) (�, A) := (� � wk), ([][]⇤vz)

Now we define function space by the type formation rule, abstraction, application,

the � computation rule, the ⌘ uniqueness rule and substitution rules for type

formation and lambda.

data Ty+

⇧ : (A : Ty�) ! Ty (�, A) ! Ty�

⇧[] : (⇧AB)[�] ⌘ ⇧ (A[�]) (B[� " A])

data Tm+

lam : Tm (�, A)B ! Tm� (⇧AB)

app : Tm� (⇧AB) ! Tm (�, A)B

⇧� : app (lam t) ⌘ t

⇧⌘ : lam (app t) ⌘ t

lam[] : (lam t)[�] ⌘⇧[] lam (t[� " A])
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This definition can be summarized as a natural isomorphism where naturality is

given by lam[].

⇧� lam #
Tm (�, A)B

Tm� (⇧AB)
" app ⇧⌘

We use the categorical app operator, but the standard one (–$–) can also be

derived.

h(u : Tm�A)i : Tms� (�, A) := id, [id]�1⇤u

(t : Tm� (⇧AB))$(u : Tm�A) : B[hui] := (app t)[hui]

The substitution hui is identity on the first part of the context and provides u

for the last type.

The substitution law for app can be derived using lam[] and the � and ⌘ rules.

app[] : (app t)[� " A]

(⇧��1)

⌘ app
⇣
lam
�
(app t)[� " A]

�⌘

(lam[]�1)

⌘ app
�
⇧[]⇤lam (app t)[�]

�

(⇧⌘)

⌘ app (t[�])

3.3 Reasoning in the syntax

In this section we show how to prove theorems using the syntax through a couple

of examples, including those of figure 3.2. We also show how we used hetero-

geneous equality in the formalisation to make reasoning easier. Apart from this

section, when writing equality reasoning this thesis uses extensional type theory

for readability.

First we prove the substitution laws for ⇡1 and ⇡2. The one for ⇡1 is given by
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the following equational reasoning.

⇡1� : ⇡1 ⌫ � �

(⇡1�
�1)

⌘ ⇡1

�
⇡1 ⌫ � �, (⇡2 ⌫)[�]

�

(, ��1)

⌘ ⇡1

�
(⇡1 ⌫, ⇡2 ⌫) � �

�

(⇡⌘)

⌘ ⇡1 (⌫ � �)

We need ⇡1� even to state the substitution law for ⇡2.

⇡2[] : (⇡2 ⌫)[�] ⌘[][]⇧ap (A[ – ])⇡1� ⇡2 (⌫ � �)

The left hand side has type Tm� (A[⇡1 ⌫][�]) and the right hand side has type

Tm� (A[⇡1 (⌫ � �)]). Hence we need to transport the left hand side through the

equality [][] ⇧ ap (A[–]) ⇡1�.

To ease working with such equalities we introduce heterogeneous equality

[19]. We will only use heterogeneous equality in this section to illustrate how we

formalised the constructions in this thesis (which use the notation of extensional

type theory).

A heterogeneous equality between two elements of two di↵erent types is a pair

of an equality between the two types and an equality of the elements up to this

equality.

(a : A) ' (b : B) := ⌃(p : A ⌘ B).a ⌘p
b

An equivalent form of this is relation is called John Major equality [74]. The

relation ' is reflexive, symmetric and transitive so equational reasoning can be

done in the usual way. We make use of heterogeneous versions of congruence, the

simplest one can be stated as follows.

ap : (f : (x : A) ! B x) ! a ⌘ a
0 ! f a ' f a

0
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We can prove that ⇡2 is a congruence using this version of ap:

ap⇡2 (p : � ⌘ �
0) : ⇡2 � ' ⇡2 �

0 := ap ⇡2 p

Sometimes however we need a more flexible version of this congruence when

not even � and �
0 have the same type. We can prove this using the eliminator

for equality six times (once for each homogeneous equality and twice for each

heterogeneous equality).

ap⇡0
2 : � ⌘ �0 ! � ⌘ �0

! {A : Ty�}{A0 : Ty�0} ! A ' A
0

! {� : Tms� (�, A)}{�0 : Tms�0 (�0
, A

0)} ! � ' �
0

! ⇡2 � ' ⇡2 �
0

Another example is the following congruence rule for substitution extension.

ap, : � ⌘ �
0 ! t ' t

0 ! (�, t) ' (�0
, t

0)

In the formal development, we define such congruence rules for each constructor,

as needed. In our notation for heterogeneous equational reasoning, we omit the

outermost congruence rules for readability just as we did in the homogeneous

case.

The advantage of heterogeneous equality is that we can forget about trans-

ports during reasoning.

untr : {u : P a}(p : a ⌘ b) ! u ' p⇤u

Also, we can convert back and forth with the usual homogeneous equality (from'
uses the axiom K defined in section 2.2.2).

from⌘ : (p : a ⌘ b) ! u ⌘p
v ! u ' v

from' : {u v : A} ! u ' v ! u ⌘ v

We can use from⌘ to get a heterogeneous version of ⇡2�.

⇡2� : ⇡2 (�, t) ' t := from⌘ ⇡1� ⇡2�
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Using this we prove the heterogeneous version of ⇡2[] by heterogeneous equational

reasoning.

⇡2[] : (⇡2 ⌫)[�]

(untr [][])

' [][]⇤(⇡2 ⌫)[�]

(⇡2�
�1)

' ⇡2

�
⇡1 ⌫ � �, [][]⇤(⇡2 ⌫)[�]

�

(, ��1)

' ⇡2

�
(⇡1 ⌫, ⇡2 ⌫) � �

�

(⇡⌘)

' ⇡2 (⌫ � �)

We derive the functor laws for terms following [90]. The identity law can be

proved using the naturality law , � of substitution extension. First we write the

proof using extensional type theory to show the idea.

[id] : t[id]

(⇡2�
�1)

⌘ ⇡2 (id � id, t[id])

(, ��1)

⌘ ⇡2

�
(id, t) � id

�

(�id)

⌘ ⇡2 (id, t)

(⇡2�)

⌘ t

The intensional proof using heterogeneous equational reasoning is more involved

as the transports need to be mentioned explicitly when we use the substitution

extension operator – , –.
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[id] : t[id]

(⇡2�
�1)

' ⇡2 (id, t[id]) ✓
ap, (id��1)

⇣
ap (–[id])

�
untr ([id]�1)

� ⇧ untr [][]
⌘◆

' ⇡2

⇣
id � id, [][]⇤

�
([id]�1⇤t)[id]

�⌘

(, ��1)

' ⇡2

�
(id, [id]�1⇤t) � id

�

(�id)

' ⇡2 (id, [id]�1⇤t)

(⇡2�)

' [id]�1⇤t

(untr ([id]�1)
�1
)

' t

We only write down the proof for composition using extensional type theory.

[][] : t[�][⌫]

(⇡2�
�1)

⌘ ⇡2

�
(id � �) � ⌫, t[�][⌫]

�

(, ��1)

⌘ ⇡2

�
(id � �, t[�]) � ⌫

�

(, ��1)

⌘ ⇡2

⇣�
(id, t) � �

�
� ⌫
⌘

(��)

⌘ ⇡2

�
(id, t) � (� � ⌫)

�

(, �)

⌘ ⇡2

�
id � (� � ⌫), t[� � ⌫]

�

(⇡2�)

⌘ t[� � ⌫]
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With all this machinery at hand we can reproduce the example derivation

trees in figure 3.2.

Example A is the polymorphic identity function. We view the base type U

as a universe for this example. The first argument of the function is a code for

a type and we need to use El to turn it into a type. Here we also need to use

transports at multiple places.

lam
�
lam (El[]⇤vz)

�
: Tm ·

 
⇧U

✓
⇧
⇣
El (U[]⇤vz)

⌘⇣
El
�
U[]⇤(U[]⇤vz)[wk]

�⌘◆
!

Example B is predicate space where the indexing type of the predicate is a

variable in the context. We derive a type, not a term of type U because our

universe U is empty.

⇧
�
El (U[]⇤vz)

�
U : Ty (·,U)

In this example Agda’s mechanism for implicit arguments figures out that the

codomain of the function will be in the context ·,U,El (U[]⇤vz) so we don’t need

to write down this context derivation by hand.

To implement example C, we first define the non dependent function space

with its usual application and substitution law.

(A : Ty�) ) (B : Ty�) : Ty� := ⇧A (B[wk])

(t : Tm� (A ) B))$(u : Tm�A) : Tm�B

:= �
[][]⇧apA[ – ] (⇡1�⇧ap⇡1 id�⇧⇡1�)⇧[id]

�
⇤
(app t)[hui]

)[] : (A ) B)[�] ⌘ A[�] ) B[�]

:= ⇧[] ⇧ ap
�
⇧ (A[�])

� �
[][] ⇧ ap (B[–]) (⇡1 � ⇧ ap ⇡1 id � ⇧ ⇡1�) ⇧ [][]�1�

First define the projection p in figure 3.2 and denote it by N . This is just the

type computed using El from the second De Bruijn index.

N : Ty
�
·,U,El (U[]⇤vz)

�
:= El (([][]⇧U[])⇤vs vz)

The context � is defined as follows.

� : Con := ·,U,El (U[]⇤vz), N ) N
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The projection z is defined as the second De Bruijn index in context � and we

need to use transport.

z : Tm� (N [wk]) := ([][]⇧El[]⇧ap El (from' r)⇧El[]�1)⇤vs vz

The proof of r is given as follows.

r : U[]⇤(U[]⇤vz)[wk � wk]

(untr U[]�1)

' (U[]⇤vz)[wk � wk]
�
ap (–[wk � wk]) (untr U[]�1)

�

' vz[wk � wk]

([][]�1)

' (vs vz)[wk]
⇣
ap (–[wk])

�
untr ([][] ⇧ U[])

�⌘

' (([][]⇧U[])⇤vs vz)[wk]
(untr U[])

' U[]⇤(([][]⇧U[])⇤vs vz)[wk]

By proving the equality

s : N [wk] ⌘ El
�
([][]⇧[][]⇧U[])⇤vs (vs vz)

�
,

we can define sz and finally ssz which was our final goal.

sz : Tm�
⇣
El
�
([][]⇧[][]⇧U[])⇤vs (vs vz)

�⌘
:=
�
()[]⇧ap (�z.N [wk])z) s)⇤vz

�
$ z

ssz : Tm�
⇣
El
�
([][]⇧[][]⇧U[])⇤vs (vs vz)

�⌘
:=
�
()[]⇧ap (�z.z)z) s)⇤vz

�
$ sz

3.4 The recursor

The recursor is determined by the constructors of the syntax. We collect the

arguments of the recursor into a record called Model given below. We call an

element of this record a model of type theory, that is, a sound semantics. Ev-
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ery syntactic construct has a semantic counterpart in this record including the

equations, the latter ensure soundness.

First we list the fields for the substitution calculus. These have the same type

as the type formation rules and constructors but with M indices to distinguish

from the constructor names.

recordModel : Set1

ConM : Set

TyM : ConM ! Set

TmsM : ConM ! ConM ! Set

TmM : (�M : ConM) ! TyM �M ! Set

·M : ConM

– ,M – : (�M : ConM) ! TyM �M ! ConM

–[–]M : TyM⇥M ! TmsM �M ⇥M ! TyM �M

– �M – : TmsM⇥M �M ! TmsM �M ⇥M ! TmsM �M �M

idM : TmsM �M �M

✏
M : TmsM �M ·M

– ,M – : (�M : TmsM �M �M) ! TmM �M
A

M [�M ]M ! TmsM �M (�M
,
M
A

M)

⇡1
M : TmsM �M (�M

,
M
A

M) ! TmsM �M �M

–[–]M : TmM⇥M
A

M ! (�M : TmsM �M ⇥M) ! TmM �M
A

M [�M ]M

⇡2
M : (�M : TmsM �M (�M

,
M
A

M)) ! TmM �M
A

M [⇡1
M
�
M ]M

[][]M : AM [�M ]M[⌫M ]M ⌘ A
M [�M �M ⌫

M ]M

[id]M : AM [idM]M ⌘ A
M

��M : (�M �M ⌫
M) �M �

M ⌘ �
M �M (⌫M �M �

M)

id�M : idM �M �
M ⌘ �

M

�idM : �M �M idM ⌘ �
M

✏⌘
M : {�M : TmsM �M ·M} ! �

M ⌘ ✏
M

⇡1�
M : ⇡1

M (�M
,
M
t
M) ⌘ �

M

⇡⌘
M : (⇡1

M
�
M
,
M
⇡2

M
�
M) ⌘ �

M

, �M : (⌫M
,
M
t
M) �M �

M ⌘ (⌫M �M �
M),M ([][]M⇤t

M [�M ]M)

⇡2�
M : ⇡2

M (�M
,
M
t
M) ⌘⇡1�M

t
M
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The fields for the base type and base family are given below.

recordModel+

UM : TyM �M

ElM : TmM �M UM ! TyM �M

U[]M : UM[�M ]M ⌘ UM

El[]M : (ElM Â
M)[�M ]M ⌘ ElM (U[]M⇤Â

M [�M ]M)

To define the fields for the function space first we need the semantic counterpart

of the lifting function.

(�M : TmsM �M �M) "M A
M : TmsM (�M

,
M
A

M [�M ]M) (�M
,
M
A

M)

:= (�M �M ⇡
M
1 idM),M ([][]M⇤⇡

M
2 idM)

Now the fields for the function space are given as follows.

recordModel+

⇧M : (AM : TyM �M) ! TyM (�M
,
M
A

M) ! TyM �M

⇧[]M : (⇧M
A

M
B

M)[�M ]M ⌘ ⇧M (AM [�M ]M) (BM [�M "M A
M ]M)

lamM : TmM (�M
,
M
A

M)BM ! TmM �M (⇧M
A

M
B

M)

appM : TmM �M (⇧M
A

M
B

M) ! TmM (�M
,
M
A

M)BM

⇧�M : appM (lamM
t
M) ⌘ t

M

⇧⌘M : lamM (appM t
M) ⌘ t

M

lam[]M : (lamM
t
M)[�M ]M ⌘⇧[]M lamM (tM [�M "M A

M ])

The recursor is parameterised by a model and it satisfies the equations given

below.

module Rec (m : Model)

openModelm

RecCon :Con ! ConM

RecTy :Ty� ! TyM (RecCon�)

RecTms :Tms��! TmsM (RecCon�) (RecCon�)

RecTm :Tm�A ! TmM (RecCon�) (RecTyA)
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RecCon · = ·M

RecCon (�, A) = (RecCon�,M RecTyA)

RecTy (A[�]) = RecTyA[RecTms�]M

RecTms (� � ⌫) = RecTms� �M RecTms ⌫

RecTms id = idM

RecTms ✏ = ✏
M

RecTms (�, t) = (RecTms�,M RecTm t)

RecTms (⇡1 �) = ⇡
M
1 (RecTms�)

RecTm (t[�]) = (RecTm t)[RecTms�]M

RecTm (⇡2 �) = ⇡
M
2 (RecTms�)

RecTy U = UM

RecTy (El Â) = ElM (RecTm Â)

RecTy (⇧AB) = ⇧M (RecTyA) (RecTyB)

RecTm (lam t) = lamM (RecTm t)

RecTm (app t) = appM (RecTm t)

It is possible to define the category of models by taking objects to be elements

of Model while a morphism between two models is given by 4 mutually defined

functions which have the same types as the 4 Rec... functions of the recursor (but

go from one model to another, not from the syntax to another one) which satisfy

the same equations that the recursor satisfies but it is enough to satisfy them

propositionally. With this view in mind the recursor states that the syntax (the

term model, see below) is the (weakly) initial model. In section 4.3 we give a

method for deriving these equations from the syntax.

Our definition of model of type theory is equivalent to categories with families

by Dybjer (CwF), a standard notion of model of type theory. His requirements

in Definition 1 of [48] are met by the following observations. Here we omit the
M indices for readability, but we are talking about an arbitrary model, not the

syntax.

• We have a category C. The objects are given by Con, the morphisms by

Tms, and we have the categorical operations – � –, id and laws (��, id�, �id).

• We have a functor T : Cop ! Fam. The object part is given by Ty and

Tm, the morphism part by the –[–] operations and we have the functor
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laws [][], [id]. The functor laws for the Tm part are derivable, see previous

section.

• C has a terminal object · and terminality is given by ✏, ✏⌘.

• We express the comprehension operation as a natural isomorphism.

Dybjer’s notion of comprehension requires – , – operations for context and

substitution extensions which have the same types as ours together with

p : Tms (�, A)� and q : Tm (�, A)A[p] operators such that p � (�, t) ⌘ �

and q[�, t] ⌘ t. In addition, he has a uniqueness condition which states that

given a ⌫ s.t. p � ⌫ ⌘ � and q[⌫] ⌘ t, we have that ⌫ ⌘ (�, t).

We can show that the two notions are isomorphic by defining two maps and

showing that their compositions are identities.

Both maps are identity on the – , – operations. Starting from our notion,

we can define p := ⇡1 id and q := ⇡2 id and we need to check the uniqueness

condition. Given ⌫ s.t. ⇡1 id � ⌫ ⌘ � and (⇡2id)[⌫] ⌘ t we have ⌫ ⌘
(⇡1 ⌫, ⇡2 ⌫) ⌘ (⇡1 id � ⌫, (⇡2 id)[⌫]) ⌘ (�, t). Starting from Dybjer’s notion,

we define ⇡1 � := p � � and ⇡2 � := q[�]. We check the equations:

⇡1� : ⇡1 (�, t) = p � (�, t) ⌘ �

⇡2� : ⇡2 (�, t) = q[�, t] ⌘ t

⇡⌘ : (⇡1 �, ⇡2 �) = (p � �, q[�]) ⌘ �

by uniqueness as we have p � � ⌘ p � � and q[�] ⌘ q[�]

, � : (⌫, t) � � ⌘ (⌫ � �, t[�])

by uniqueness as we have p �
�
(⌫, t) � �

�
⌘
�
p � (⌫, t)

�
� � ⌘ ⌫ � �

and q[(⌫, t) � �] ⌘ q[(⌫, t)][�] ⌘ t[�]

For checking that compositions are identities it is enough to check the pro-

jections because the equations will be equal by K. We have ⇡1 � 7! ⇡1 id�� ⌘
⇡1 � by ⇡1� and id� and ⇡2 � 7! (⇡2 id)[�] ⌘ ⇡2 � by ⇡2[] and id�. In the

other direction we have p 7! p � id ⌘ p and q 7! q[id] ⌘ q by the identity

laws.

The simplest model that we can define is the term model which interprets

every syntactic construct by itself. We only list the first few fields of the record
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Model.

ConM := Con

TyM := Ty

TmsM := Tms

TmM := Tm

·M := ·

– ,M – := – , –

–[–]M := –[–]

...

3.4.1 Disjointness of context and type constructors

As a simple example of using the recursor, we define another special recursor

which only works for contexts. RecCon0 can be used for defining a function from

Con which only depends on the length of the context but not the types in the

context.

RecCon0(Con
M : Set)(·M : Con

M)(– ,M – : Con
M ! Con

M) : Con ! Con
M

:= Rec.RecCon ( ConM := Con
M

, TyM := � .>

, TmsM := � .>

, TmM := � .>

, ·M := ·M

, – ,M – := – ,M –

, –[–]M := � .tt

, ...

, [id] := refl

, ...)

For this we need an interpretation ·M of the empty context and the interpretation

– ,M – of context extension (which does not depend on the type that the context

was extended with). To define RecCon0 we specify a model where contexts are

mapped to Con
M and types, substitutions and terms are just mapped to the
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one-element type >. Hence, the methods for these will be just the element tt

of this type and all the equalities will be reflexivities. Then we use RecCon on

this model to implement RecCon0. E.g. the length of a context � is calculated by

RecCon0 N zero suc�.

Another usage of RecCon0 is proving the disjointness of · and �, A for any �

and A. We eliminate into Set (we use large elimination) and we map · to > and

an extended context to ?. Now given a proof that · ⌘ �, A we can transport an

element of type> (the interpretation of ·) along this proof to? (the interpretation

of �, A).

disj· (�,A) (p : · ⌘ �, A) : ? := coe
⇣
ap
�
RecCon0 Set? (� x.>)

�
p

⌘
tt

We use another model to show the disjointness of the type constructors ⇧

and U. The idea is that we interpret types as elements of Set, ⇧ is interpreted

as > and U is interpreted as ?. Now, given an equality between ⇧AB and U,

we can transport an element of RecTy (⇧AB) = > to RecTy U = ?. The only

complication is that the semantic versions of the equalities ⇧[] and U[] need to

be satisfied: this can be achieved by taking the interpretation of –[–] for types

to be the identity function which simply ignores the substitution.

The motives of this model and the methods for types are given as follows.

ConM := > X[ ]M := X

TyM := Set UM := ?

TmsM := > ElM := >

TmM := > ⇧M := >

The methods for contexts, substitutions and terms just return tt. All the equality

methods are refl. Denoting this model by M , disjointness of ⇧ and U is given by

the following function.

disj(⇧AB)U (p : ⇧AB ⌘ U) : ? := coe
�
ap (RecTyM) p

�
tt
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3.5 The elimination principle

The elimination principle allows the definition of a “dependent model” where the

semantic constructs can depend on the elements of the syntax. For example,

contexts are not just modelled by a type, but a type depending on a particular

context. An example of such a model is the logical predicate interpretation in

the next chapter. The recursor can be defined as a special case of the eliminator.

We list the motives and methods for the eliminator for the core substitution

calculus. We derived these fields from the constructors using the method in

section 4.3.

recordDModel : Set1

ConM : Con ! Set

TyM : ConM �! Ty�! Set

TmsM : ConM �! ConM�! Tms��! Set

TmM : (�M : ConM �) ! TyM �M
A ! Tm�A ! Set

·M : ConM ·

– ,M – : (�M : ConM �) ! TyM �M
A ! ConM (�, A)

–[–]M : TyM⇥M
A ! TmsM �M ⇥M

� ! TyM �M (A[�])

– �M – : TmsM⇥M �M
� ! TmsM �M ⇥M

⌫ ! TmsM �M �M (� � ⌫)

idM : TmsM �M �M id

✏
M : TmsM �M ·M ✏

– ,M – : (�M : TmsM �M �M
�) ! TmM �M

A
M [�M ]M t

! TmsM �M (�M
,
M
A

M) (�, t)

⇡1
M : TmsM �M (�M

,
M
A

M) � ! TmsM �M �M (⇡1 �)

–[–]M : TmM⇥M
A

M
t ! (�M : TmsM �M ⇥M

�)

! TmM �M
A

M [�M ]M (t[�])

⇡2
M : (�M : TmsM �M (�M

,
M
A

M) �)

! TmM �M
A

M [⇡1
M
�
M ]M (⇡2 �)

[][]M : AM [�M ]M[⌫M ]M ⌘[][]
A

M [�M �M ⌫
M ]M

[id]M : AM [idM]M ⌘[id]
A

M

��M : (�M �M ⌫
M) �M �

M ⌘��
�
M �M (⌫M �M �

M)
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id�M : idM �M �
M ⌘id�

�
M

�idM : �M �M idM ⌘�id
�
M

✏⌘
M : {�M : TmsM �M ·M �} ! �

M ⌘✏⌘
✏
M

⇡1�
M : ⇡1

M (�M
,
M
t
M) ⌘⇡1� �

M

⇡⌘
M : (⇡1

M
�
M
,
M
⇡2

M
�
M) ⌘⇡⌘

�
M

, �M : (⌫M
,
M
t
M) �M �

M ⌘,� (⌫M �M �
M),M ([][]M⇤t

M [�M ]M)

⇡2�
M : ⇡2

M (�M
,
M
t
M) ⌘ap(TmM �M AM [ – ]M –)⇡1�M ⇡2� t

M

The motives are indexed by the types constituting the QIIT. The methods for

point constructors are elements of the motives at the corresponding constructors.

The equalities are equalities between the corresponding semantic components

over the syntactic equalities. The situation is more subtle in the case of the

last equation where the original syntactic equality depends on another syntactic

equality. The equality in the syntax is ⇡2� : ⇡2 (�, t) ⌘⇡1� t. The types of

the two sides are ⇡2 (�, t) : Tm�A[⇡1 (�, t)] and t : Tm�A[�] and they can be

shown equal by ap (Tm�A[–]) ⇡1�. In the semantics we have ⇡2
M (�M

,
M
t
M) :

TmM �M
A

M [⇡M
1 (�M

,
M
t
M)] (⇡2 (�, t)) and t

M : TmM �M
A

M [�M ]M t. To show

that these types are equal we use the congruence property of TmM �M
A

M [–]M –.

Firstly we show equality of ⇡M
1 (�M

,
M
t
M) and �

M by ⇡1�
M. Then we show the

equality of ⇡2 (�, t) and t by ⇡2�.

We state the type of the eliminators. The computation rules are the same as

those for the recursor. We don’t list the motives and methods for the dependent

function space, U and El, they can be derived using the method in section 4.3.

module Elim (m : Model)

openModelm

ElimCon : (� : Con) ! ConM �

ElimTy : (A : Ty�) ! TyM (ElimCon�)A

ElimTms : (� : Tms��) ! TmsM (ElimCon�) (ElimCon�) �

ElimTm : (t : Tm�A) ! TmM (ElimCon�) (ElimTyA) t
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3.5.1 Normalisation of types and injectivity of ⇧

In this section we show how to prove injectivity of the type constructor ⇧ using

the eliminator. For this, we will first define normal types (types which are either

U, El or ⇧, but not substituted types), then define normalisation of types using

the eliminator and then finally show injectivity.

Normal types are given by the following indexed inductive type1 which is

defined mutually with the embedding back into types. We need this mutual

definition because we have to go back to types when using context extension

in the second argument of the normal type constructor ⇧. Note that we use

overloaded constructor names.

dataNTy : (� : Con) ! Set

p–q : NTy�! Ty�

dataNTy

U : NTy�

El : Tm�U ! NTy�

⇧ : (A : NTy�) ! NTy (�, pAq) ! NTy�

p⇧ABq := ⇧ pAq pBq
pUq := U

pEl Âq := El Â

Substitution of normal types can be defined by ignoring the substitution for U,

pushing it down to the term for El and pushing it down recursively for ⇧. We

need a mutual definition with a lemma saying that the embedding is compatible

with substitution. As NTy doesn’t have equality constructors, we use pattern

matching notation when defining these functions.

–[–] : NTy⇥! Tms�⇥! NTy�

p[]q : (A : NTy⇥)(� : Tms�⇥) ! pAq[�] ⌘ pA[�]q
(⇧AB)[�] := ⇧ (A[�]) (B[(p[]qA�)⇤� " A])

U[�] := U

(El Â)[�] := El (Â[�])

1It is given as an inductive recursive definition which can be translated into an indexed
inductive type, see section 2.2.
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p[]q (⇧AB) � := ⇧[] ⇧ ap⇧
�
p[]qA �

� �
p[]qB (� " A)

�

p[]qU � := U[]

p[]q (El Â) � := El[]

When defining substitution of ⇧, we need to use p[]q to transport the lifted sub-

stitution � " A to the expected type. The lemma is proved using the substitution

laws of the syntax and recursion in the case of ⇧. ap⇧ denotes the congruence

rule for ⇧, its type is (pA : A ⌘ A
0) ! B ⌘pA B

0 ! ⇧AB ⌘ ⇧A
0
B

0.

By induction on normal types, we prove the following two lemmas as well.

[id] : (A : NTy�) ! A[id] ⌘ A

[][] : (A : NTy�).8� ⌫.A[�][⌫] ⌘ A[� � ⌫]

Now we can define the model of normal types using the following motives for

the eliminator.

ConM := >

TyM {�} A := ⌃(A0 : NTy�).A ⌘ pA0q
TmsM := >

TmM := >

That is, the eliminator will map a type to a normal type and a proof that the

embedding of the normal type is equal to the original type. Contexts, substitu-

tions and terms are mapped to the trivial type. Hence, the methods for contexts,

substitutions and terms will be all trivial and the equality methods for them can

be proven by refl.

The methods for types are given as follows.

–[–]M A (A0
, pA) � tt :=

�
A

0[�], pA ⇧ p[]qA0
�
�

UM := (U, refl)

ElM Â tt := (El Â, refl)

⇧M
A (A0

, pA) B (B0
, pB) :=

�
⇧A

0 (pA⇤ B
0), ap⇧ pA pB

�

–[–]M receives a type A as an implicit argument, a normal type A0 and a proof pA

that they are equal, a substitution � as an implicit argument, and the semantic
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version of the substitution which does not carry information. We use the above

defined –[–] for substituting A
0 and we need the concatenation of the equalities

pA and p[]q to provide the equality pA0[�]q ⌘ pA[�]q. Mapping U and El Â to

normal types is trivial, while in the case of ⇧AB we use the recursive results

A
0 and B

0 to construct ⇧AB and similarly, we use pA and pB to construct the

equality.

When proving the equality methods [id]M, [][]M,U[]M,El[]M and ⇧[]M, it is

enough to show that the first components of the pairs (the normal types) are

equal, the pA proofs will be equal by K. The equality methods [id]M and [][]M

are given by the above lemmas [id] and [][]. The semantic counterparts of the

substitution laws U[] and El[] are trivial, while ⇧[]M is given by straightforward

induction.

Using the eliminator, we define normalisation of types as follows.

norm (A : Ty�) : NTy� := proj1 (ElimTyA)

We can also show completeness and stability of normalisation. (See section 5.1

for the nomenclature of the properties of normalisation.)

compl (A : Ty�) : A ⌘ pnormAq := proj2 (ElimTyA)

stab (A0 : NTy�) : A0 ⌘ norm pAq

Stability is proven by a straightforward induction on normal types.

Injectivity of ⇧NTy is proven as follows: given a type A, first we define a family

PA over normal types which maps function types to equality between A and the

domain and every other type to ? (this choice does not matter). Note that in

the case of Ty we wouldn’t be able to define the same family because it does not

respect the equality ⇧[]. As a second step, we use J and this family to prove

injectivity.

PA : NTy�! Set

PA (⇧A1 B1) := A ⌘ A1

PA X := ?

inj⇧NTy : ⇧NTy
AB ⌘ ⇧NTy

A
0
B

0 ! A ⌘ A
0

:= J(NTy�) (⇧NTy AB)

�
�(X : NTy�) (q : ⇧NTy

AB ⌘ X).PA X
�
refl
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PA (⇧AB) = (A ⌘ A), hence reflexivity is enough to provide the single method

of the eliminator J.

We put together these pieces to prove injectivity of ⇧Ty in the diagram in

figure 3.3. We start with a proof p : ⇧Ty
AB ⌘ ⇧Ty

A
0
B

0, then use completeness

to get a proof q : pnorm (⇧Ty
AB)q ⌘ pnorm (⇧Ty

A
0
B

0)q. Applying norm to both

sides and using stability we get r : norm (⇧Ty
AB) ⌘ norm (⇧Ty

A
0
B

0). The type

of r reduces to ⇧NTy (normA) (normB) ⌘ ⇧NTy (normA
0) (normB

0) and now we

can apply the injectivity of normal ⇧ to get that normA ⌘ normA
0. As a last

step we apply p–q to both sides of this equality and use completeness on A and

A
0 to obtain A ⌘ A

0.

⇧Ty
AB ⇧Ty

A
0
B

0
p

pnorm (⇧Ty
AB)q pnorm (⇧Ty

A
0
B

0)q

compl (⇧AB) compl (⇧A
0
B

0)

q

norm pnorm (⇧Ty
AB)q norm pnorm (⇧Ty

A
0
B

0)q
ap norm q

norm (⇧Ty
AB) norm (⇧Ty

A
0
B

0)

stab
�
norm (⇧Ty

AB)
�

stab
�
norm (⇧Ty

A
0
B

0)
�

⇧NTy (normA) (normB) ⇧NTy (normA
0) (normB

0)
r

normA normA
0

inj⇧NTy
r

pnormAq pnormA
0q

ap p–q
�
inj⇧NTy

r
�

A A
0

complA complA0

inj⇧Ty
p

Figure 3.3: Proof of injectivity of ⇧Ty. The dashed lines are given by the fillers
of the squares. The double lines are definitional equalities.
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3.6 The standard model

In the standard model every syntactic construct is interpreted by its semantic

counterpart — this is also sometimes called the metacircular interpretation. That

means we interpret contexts as types, types as dependent types indexed over the

interpretation of their context, terms as dependent functions and substitutions as

functions. The interpretation of ⇧ is metatheoretic dependent function space, the

interpretation of lam is metatheoretic lambda etc. The model is parameterised by

the interpretation JUK : Set of the base type and the interpretation JElK : JUK !
Set of the base family. The interpretation of the equalities are all refl because the

two sides are actually convertible in the metatheory. We use pattern matching

notation for readability e.g. we write TyM J�K := t instead of TyM := �J�K.t. Note
also that we use the double square brackets as part of the variable names, there

is no function J–K.

ConM := Set

TyM J�K := J�K ! Set

TmsM J�K J�K := J�K ! J�K
TmM J�K JAK := (↵ : J�K) ! JAK↵
·M := >

J�K,M JAK := ⌃(↵ : J�K).JAK↵
JAK[J�K]M ↵ := JAK (J�K↵)
J�K �M J⌫K ↵ := J�K (J⌫K↵)
idM ↵ := ↵

✏
M := tt

J�K,M JtK ↵ := (J�K↵, JtK↵)
⇡1

M J�K ↵ := proj1 (J�K↵)
JtK[J�K]M ↵ := JtK (J�K↵)
⇡2

M J�K ↵ := proj2 (J�K↵)
[][]M ↵ := refl

...

UM := JUK
ElM JÂK ↵ := JElK (JÂK↵)
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U[]M := refl

El[]M := refl

⇧M JAK JBK ↵ := (x : JAK↵) ! JBK (↵, x)
⇧[]M := refl

lamM JtK ↵ := �x.JtK (↵, x)
appM JtK ↵ := JtK (proj1 ↵) (proj2 ↵)
⇧�M := refl

⇧⌘M := refl

lam[]M := refl

A consequence of the standard model is consistency, that is in our case we can

show that there is no closed term of type U. We use the standard model where

JUK is set to be the empty type ? (the other parameter JElK can be anything).

cons (t : Tm · U) : ? := RecTm t tt

Another proof of consistency using normalisation is given in section 5.11.

It should also be clear that to construct the standard model we need a stronger

metatheory than the object theory we are considering. In our case this is given

by the presence of an additional universe (here we have to eliminate over Set1).

If we work in homotopy type theory (HoTT), that is, if we don’t have K in our

metatheory, our definition of the syntax gives a rather strange theory. Because

we have not identified any of the equality constructors we introduced this leads to

a very non-standard type theory. That is, we may consider two types which have

the same syntactic structure but which at some point use two di↵erent derivations

to derive the same equality but these cannot be shown to be equal. However, this

can be easily remedied by truncating our syntax to be a set, i.e. by introducing

additional constructors:

setTy : (AB : Ty�) (p q : A ⌘ B) ! p ⌘ q

setTms : (� ⌫ : Tms��)(p q : � ⌘ ⌫) ! p ⌘ q

setTm : (t u : Tm�A) (p q : t ⌘ u) ! p ⌘ q

These force our syntax to be a set in the sense of HoTT, i.e. a type for which

uniqueness of identity proofs holds. We don’t need to do this for Con because
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it can be shown to be a set from the assumption that Ty� is a set for every

�. However, we now run into a di↵erent problem: because the eliminator now

requires methods corresponding to setTy, setTms, setTm, we can only eliminate

into a type which is itself a set. This means that we cannot even define the

standard model because we have to eliminate into Set1, the type of all small

types, which is not a set in the sense of HoTT due to univalence (there may be

more that one equality proofs between two types). One way around this is to

replace Set1 by the following inductive-recursive universe, which can be shown to

be a set.

data UU : Set

EL : UU ! Set

data UU
0⇧0 : (Â : UU) ! (EL Â ! UU) ! UU
0⌃0 : (Â : UU) ! (EL Â ! UU) ! UU
0>0 : UU

EL (0⇧0
Â B̂) := (x : EL Â) ! EL (B̂ x)

EL (0⌃0
Â B̂) := ⌃(x : EL Â).EL (B̂ x)

EL 0>0 := >

Nicolai Kraus raised the question whether it may be possible to give the in-

terpretation of a strict model like the standard model with the truncation even

though we do not eliminate into a set. This is motivated by his work on gen-

eral eliminations for the truncation operator [63]. Following this idea it may be

possible to eliminate into Set1 via an intermediate definition which states all the

necessary coherence equations.
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Chapter 4

Parametricity

In this chapter we introduce unary and binary parametricity informally, then

present the formalisation of the unary case. This is a real-world example of

using the syntax we defined in the previous chapter. We express parametricity

as a syntactic translation following Bernardy et al [25] so we define a mapping

from the syntax to the syntax. We don’t prove the identity extension lemma (it

is also not covered in [25]). This interpretation could be useful in connection

with metaprogramming: using a quoting mechanism it could provide a way of

automatically deriving parametricity theorems (free theorems [99]) for functions

defined in a dependently typed programming language.

4.1 Introduction

4.1.1 Unary parametricity

We introduce unary parametricity through the following example using the theory

of figure 3.1 extended with an identity type – ⌘ –.

A : U, x : A ` t : A

The above t can be viewed as a program of type A which imports a library

through an abstract interface: the interface provides a type A and an element of

that type x. Our intuition tells us that as we don’t know anything else about

the type A, the only way to construct t is to say that t := x. This can be made

precise by unary parametricity: for this t, unary parametricity says that if there is

77
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a predicate on A and x satisfies this predicate, then t also satisfies the predicate.

Now, let’s define a predicate A
M : A ! U by A

M
y := (y ⌘ x). We observe that

x satisfies this predicate as AM
x = (x ⌘ x) and we have refl : x ⌘ x. Hence, we

get that t satisfies the predicate which is AM
t = (t ⌘ x).

We can formulate this method in general by an operation –P which works on

contexts, types and terms and has the following typing rules (the second rule will

become an instance of the third one). The third rule is called parametricity or

abstraction theorem.

� `
�P `

� ` A : U
�P ` A

P : A ! U
� ` t : A

�P ` t
P : AP

t
(4.1)

The context �P is � extended by witnesses that everything in � respects the

logical predicate, AP is the logical predicate at the type A, tP is the proof of

parametricity: in the extended context t respects the predicate A
P.

We define –P inductively on the structure of contexts and terms as follows (we

use the theory of figure 3.1, hence we have variable names, implicit substitutions

and universes à la Russel).

·P = ·

(�, x : A)P = �P
, x : A, xM : AP

x

UP = �A.A ! U

(⇧(x : A).B)P = �f.⇧(x : A, xM : AP
x).BP (f x)

x
P = x

M

(�x.t)P = �x x
M
.t
P

(f a)P = f
P
a a

P

Contexts are extended pointwise with witnesses of the predicate by adding M

indices to the variable names (–M is just a way to form new variable names).

The predicate for U is predicate space. This makes the second rule of 4.1 an

instance of the third one as UP
A = A ! U. Also, note that the definition of

UP typechecks: we need UP : UP U and unfolding the definitions on both sides of

the colon we get �A.A ! U : U ! U. The logical predicate holds for a function

f : ⇧(x : A).B if it preserves the predicate i.e. if it maps elements for which A
P

holds to elements for which B
P holds. Note that BP is interpreted in a context

(�, x : A)P, this is why we need to give the names x and x
M to the variables in the
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domain of the function. The witness of the predicate for a variable can just be

projected out from the context, and we can interpret abstraction and application

in a straightforward way.

For the definition of –P to make sense, we need to check whether the left

and right hand sides have convertible types and that our definitions respect the

conversion rules. We show that this is the case for the formal version in the next

section.

Now we show how to derive the above example using the general rules of

parametricity defined above.

A : U, x : A ` t : A

(A : U, x : A)P ` t
P : AP

t
parametricity

A : U, x : A ` t
P [AM := �y.(y ⌘ x), xM := refl] : t ⌘ x

4.1.2 Binary parametricity

Another example of using parametricity is given by the following term. This

example is given in the theory of figure 3.1 extended by natural numbers, booleans

and identity.

A : U, z : A, s : A ! A ` t : A

Again, t can be viewed as a program parameterised by a type A, an element z of

A and a function s : A ! A. The context (the things that t depends on) can be

interpreted by the following two substitutions for example.

⇢0 = (A := N, z := zero,s := suc)

⇢1 = (A := Bool,z := true,s := not)

That is, we provide the parameters of t in the first case by natural numbers with

the Peano constructors for z and s and in the second case we have booleans with

true for z and negation for successor. We would like to prove that whatever t is, it

is not possible to have t[⇢0] = suc (suc zero) and t[⇢1] = false. Binary parametricity

for t says that if we have a relation between N and Bool s.t. z[⇢0] is related to z[⇢1]

and s[⇢0] and s[⇢1] preserve related elements, then t[⇢0] will be related to t[⇢1]. We

define the relation A
R : N ! Bool ! Set to be AR

x b := if b then Evenx elseOdd x.

(Even and Odd are predicates on natural numbers expressing that the number is
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even and odd, respectively. For the definitions, see section 2.3.) We can show

that zero and true are related because zero is even. We can also show that that

the successor of an even number is odd and the successor of an odd number is

even which makes s[⇢0] and s[⇢1] preserve related elements (that is, given n : N
and b : Bool, if AR

n b, then also A
R (s[⇢0]n) (s[⇢1] b)). Now parametricity tells us

that t[⇢0] and t[⇢1] need to be related by A
R, hence it can’t happen that t[⇢0] is

2 and t[⇢1] is false.

We need a binary version of –P in order to formulate this kind of reasoning in

general. We define the operation –R, i.e. given a type A, AR is a binary relation.

The main technical di↵erence is that we need to define projection substitutions

(0 and 1) because �R will contain two copies of � that we have to be able to

project out. The second rule below expresses that 0� and 1� are lists of terms,

one for each type in �, and the all of these terms make sense in the context �R.

As in the unary case, the third rule will become the instance of the fourth one.

� `
�R `

� `
�R ` 0�, 1� : �

� ` A : U
�R ` A

R : A[0�] ! A[1�] ! U
� ` t : A

�R ` t
R : AR (t[0�]) (t[1�])

On contexts and terms, –R is defined as follows.

·R = ·

(�, x : A)R = �P
, x

0 : A[0], x1 : A[1], xM : AR
x
0
x
1

UR = �A
0
A

1
.A

0 ! A
1 ! U

(⇧(x : A).B)R = �f
0
f
1
.⇧(x0 : A[0], x1 : A[1], xM : AR

x
0
x
1)

.B
R (f 0

x
0) (f 1

x
1)

x
R = x

M

(�x.t)R = �x
0
x
1
x
M
.t
R

(f a)R = f
R (a[0]) (a[1]) aR

–0, –1 and –M are again just new ways of forming variable names. The substi-

tutions 0 and 1 project out the corresponding elements from the context i.e. i· is

the empty substitution and i�.x:A = (i�, x := x
i) for i 2 0, 1.

Now we use –R to derive the second example. We start by defining the sub-

stitution � from the empty context into (A : U, z : A, s : A ! A)R. Note that we
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use the definition of Even and Odd from section 2.3.

� = (A0 := N, A
1 := Bool,AM := �x

0
x
1
.if x1 then Evenx0 elseOdd x0

,

x
0 := zero,x1 := true, xM := zeroEven,

s
0 := suc, s1 := not, s

M := lemmaSuc)

lemmaSuc needs to show that suc and not preserve the relation A
M . We prove it

by case distinction on the boolean argument x1.

lemmaSuc : ⇧(x0 : N, x1 : Bool, xM : if x1 then Evenx0 elseOdd x0)

.if not x1 then Even (suc x0) elseOdd (suc x0)

lemmaSuc x
0 true (xM : Evenx0) : Odd (suc x0) := sucEvenx0

x
M

lemmaSuc x
0 false (xM : Odd x0) : Even (suc x0) := sucOdd x0

x
M

In the case when x
1 is true, the type of xM computes to saying that x0 is even

and our goal computes to saying that suc x0 is odd and this can be given by the

constructor sucEven of the datatype Odd. We have the opposite situation in the

other case.

We can now put together the pieces and obtain the following.

A : U, z : A, s : A ! A ` t : A

(A : U, z : A, s : A ! A)R ` t
R : AR

t[0] t[1]
binary parametricity

· ` t
R[�] : if t[⇢1] then Even t[⇢0] elseOdd t[⇢0]

4.2 The logical predicate interpretation

formalised

We formalise the unary logical predicate interpretation of the type theory given

in chapter 3. That is, we will give an element of the record type DModel defined

in section 3.5. Note that we do not use function extensionality anywhere when

defining this interpretation.
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4.2.1 Motives

First we define the motives of the eliminator following the above typing rules for

–P as intuition.

Contexts will be mapped to the lifted (–P-d) context and a projection substi-

tution which goes from the lifted context to the original one. Because we don’t

have variable names as in the informal presentation, we need the projection Pr

whenever we would like to refer to a variable in the lifted context which was

present in the original one.

ConM (� : Con) : Set := record |– | : Con

Pr : Tms |– |�

That is, given the interpretation of a context �M : ConM �, we will get the lifted

context |�M | and a substitution Pr�M : Tms |�M|�.
In the informal presentation of –P above the predicate for a type was a function

from the type to the universe. We simulate such a function by a type (instead of

an element of U) in the lifted context extended by the original type. The original

type needs to be substituted by Pr because now we are in the larger context.

TyM �M
A := Ty (|�M |, A[Pr�M ])

The interpretation of a substitution is a substitution between the lifted con-

texts together with a naturality property.

TmsM �M �M
� : Set := record |– | : Tms |�M | |�M |

PrNat : Pr�M � |– | ⌘ � � Pr�M

The following diagram depicts the naturality condition given by PrNat (�M :

TmsM �M �M
�).

|�M |

|�M |

�

�

Pr�M

Pr�M

|�M | �

Terms are interpreted as witnesses of the predicate at their types in the lifted
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context. As the predicate needs an additional element A[Pr�M ], we provide this

by the term t[Pr�M ].

TmM �M
A

M
t := Tm |�M |

�
A

M [ht[Pr�M ]i]
�

This concludes the definition of the motives.

4.2.2 Methods for the substitution calculus

The empty context is interpreted as the empty context and the projection is the

empty substitution. An extended context �, A is interpreted as the interpretation

of the � extended by A (which needs to be substituted by the projection) and

further extended by A
M which expresses that the logical relation holds for the

A in the context. The projection is given by applying " on the projection for �

(this way we get the element of type A) and then weakening as we want to forget

about the last element having type A
M .

·M := (|– | := ·, Pr := ✏)

�M
,
M
A

M :=
�
|– | := |�M |, A[Pr�M ], AM

, Pr := (Pr�M " A) � wk
�

To define –[–]M for types, given a predicate A
M : Ty (|⇥M |, A[Pr⇥M ]) and

a natural substitution �
M : TmsM �M⇥M

� we need to substitute the predicate

so that we get an element of Ty
�
|�M |, A[�][Pr�M ]

�
. We can apply " on the

substitution |�M | thereby obtaining

|�M | " A[Pr⇥M ] : Tms
�
|�M|, A[Pr⇥M ][|�M |]

� �
|⇥M |, A[Pr⇥M ]

�
.

However the domain of this "-d substitution and the context that we need don’t

match. We can remedy this using the naturality condition in �
M with the help

of which we can prove

[][] ⇧ ap (A[–]) (PrNat �M) ⇧ [][]�1 : A[Pr⇥M ][|�M |] ⌘ A[�][Pr�M ].

Transporting along this equality we can define the interpretation of a substituted

type as follows.

A
M [�M ]M := A

M
⇥
([][]⇧ap (A[ – ]) (PrNat�M )⇧[][]�1)⇤|�

M | " A[Pr⇥M ]
⇤
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For defining the remaining methods in DModel, we will use the notation of

extensional type theory. In practice this means that we check that everything

is well-typed up to some transports but we don’t write down the transports, see

section 2.2.2. The formalisation however is all done in intensional type theory.

The composition of two lifted substitutions is just given by – � –, and the

naturality condition is given by using the naturality conditions of the two substi-

tutions.

�
M �M ⌫

M :=
�
|– | :=|�M | � |⌫M |

,PrNat :=Pr�M � (|�M | � |⌫M |)

(���1)

⌘ (Pr�M � |�M |) � |⌫M |

(PrNat �M)

⌘ (� � Pr⇥M) � |⌫M |

(��)

⌘ � � (Pr⇥M � |⌫M |)

(PrNat ⌫M)

⌘ � � (⌫ � Pr�M)

(���1)

⌘ (� � ⌫) � Pr�M
�

Lifting of identity is the identity substitution.

idM :=
�
|– | :=id

,PrNat :=Pr�M � id

(�id)

⌘ Pr�M

(id��1)

⌘ id � Pr�M
�

Lifting of the empty substitution is the empty substitution.
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✏
M :=

�
|– | :=✏

,PrNat :=✏ � ✏

(✏⌘)

⌘ ✏

(✏⌘�1)

⌘ ✏ � Pr�M
�

We prove a lemma about ".

"�, : (� " A) � (⌫, t) ⌘ (� � ⌫, t)

"�, :=(� " A) � (⌫, t)

= (� � ⇡1 id, ⇡2 id) � (⌫, t)

(, �)

⌘
�
(� � ⇡1 id) � (⌫, t), (⇡2 id)[⌫, t]

�

(��, ⇡1�, id�, ⇡1�)

⌘
�
� � ⌫, (⇡2 id)[⌫, t]

�

(⇡2[], id�, ⇡2�)

⌘ (� � ⌫, t)

The lifting of a substitution extended by a term is the lifting of the substitution,

then the term itself (substituted by the projection) and the lifted term. Naturality

can be proven using the lemma "�, and naturality of the substitution.

�
M
,
M
t
M :=

⇣
|– | :=(|�M |, t[Pr�M ], tM)

,PrNat :=Pr (�M
,
M
A

M) � (�M
, t[Pr�M ], tM)

=
�
(Pr�M " A) � wk

�
� (�M

, t[Pr�M ], tM)

(��, ⇡1�, ⇡1�)

⌘ (Pr�M " A) � (�M
, t[Pr�M ])

("�,)

⌘ (Pr�M � �M
, t[Pr�M ])

(PrNat �M)
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⌘ (� � Pr�M
, t[Pr�M ])

(, ��1)

⌘ (�, t) � Pr�M
⌘

Lifting of a projection substitution is projection twice as the lifted substitution

has double size of the original one. To apply PrNat �M we need to build the

projection Pr (�M
,
M
A

M) which is the codomain of |�M |.

⇡
M
1 �

M :=
⇣
|– | :=⇡1 (⇡1 |�M |)

,PrNat :=Pr�M �
�
⇡1 (⇡1 |�M |)

�

(⇡1�, id�, ��)

⌘ Pr�M � wk � wk � |�M |

(⇡1�
�1)

⌘ ⇡1

�
Pr�M � wk � wk � |�M |, vz[wk][|�M |]

�

(, ��1)

⌘ ⇡1

�
(Pr�M � wk � wk, vz[wk]) � |�M |

�

(, ��1)

⌘ ⇡1

�
Pr (�M

,
M
A

M) � |�M |
�

(PrNat �M)

⌘ ⇡1 (� � Pr�M)

(⇡1��1)

⌘ ⇡1 � � Pr�M
⌘

The methods for terms are simple but to typecheck them we need naturality

of |�M | in both cases.

t
M [�M ]M := t

M [|�M |]

⇡
M
2 �

M := ⇡2 |�M |

We state two lemmas about the operator ", the proofs are tedious but straight-
forward.

�" : (� � ⌫) " A ⌘ (� " A) � (⌫ " A[�])

id" : id " A ⌘ id
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We omit some details from the proofs for the equalities, we only show the main

steps. For [][]M the main idea is using naturality and lemma �". We omit the

argument of Pr and PrNat for readability.

[][]M :=A
M [�M ]M[⌫M ]M

= A
M
⇥
|�M | " A[Pr]

⇤⇥
|⌫M | " A[�][Pr]

⇤

([][])

⌘ A
M
⇥
(|�M | " A[Pr]) � (|⌫M | " A[�][Pr])

⇤

(PrNat�1)

⌘ A
M
⇥
(|�M | " A[Pr]) � (|⌫M | " A[Pr � |�M |])

⇤

(�"�1)

⌘ A
M
⇥
(|�M | � |⌫M |) " A[Pr]

⇤

The proof of [id]M is based on [id] and id".

[id]M : A
M [idM ]

=A
M [id " A[Pr]]

(id")

⌘A
M [id]

([id])

⌘A
M

To prove that two elements of TmsM �M �M
� are equal it is enough to prove

that the fields |– | are equal because the other fields will be equal by K. The

first few methods are straightforward, we just use the syntactic construct for the

semantics.

��M : (|�M | � |⌫M |) � |�M | ⌘ |�M | � (|⌫M | � |�M |) := ��

id�M : id � |�M | ⌘ |�M | := id�

�idM : |�M | � id ⌘ |�M | := �id

✏⌘
M : {�M : TmsM �M ·M �} ! |�M| ⌘ ✏ := ✏⌘

⇡1�
M : ⇡1

�
⇡1 (|�M |, t[Pr�M ], tM)

�
⌘ |�M | := ap ⇡1 ⇡1� ⇧ ⇡1�

The case of ⇡⌘M is more tricky as we need naturality to transform the expression
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into a shape where we can apply ⇡⌘.

⇡⌘
M :

�
⇡1 (⇡1 |�M |), (⇡2 �)[Pr�

M ], ⇡2 |�M |
�

(⇡2[])

⌘
�
⇡1 (⇡1 |�M |), ⇡2 (� � Pr�M), ⇡2 |�M |

�

(PrNat �M)

⌘
�
⇡1 (⇡1 |�M |), ⇡2 (Pr (�

M
,
M
A

M) � |�M |), ⇡2 |�M |
�

(, �, ⇡2�)

⌘
�
⇡1 (⇡1 |�M |), ⇡2 (⇡1 |�M |), ⇡2 |�M |

�

(⇡⌘)

⌘
�
⇡1 |�M |, ⇡2 |�M |

�

(⇡⌘)

⌘ |�M |

We have a similar situation for , �M, we need to apply , � twice and then use

naturality.

, �M : |⌫M
,
M
t
M | �M �

M

= (|⌫M |, t[Pr], tM) � |�M |

(, �)

⌘ (|⌫M |, t[Pr]) � |�M |, tM [|�M |]

(, �)

⌘ |⌫M | � |�M |, t[Pr][|�M |], tM [|�M |]

([][],PrNat)

⌘ |⌫M | � |�M |, t[�][Pr], tM [|�M |]

= (⌫M �M �
M),M t

M [�M ]M

Lastly, we have to verify the single term equality rule ⇡1�
M which is just the

usage of ⇡2�.

⇡2�
M : ⇡2 (|�M |, t[Pr], tM) ⌘ t

M := ⇡2�

We summarize the methods below for reference omitting the equality methods,
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the naturality conditions and the arguments to Pr, PrNat, ".

| ·M | = ·

|�M
,
M
A

M | = |�M |, A[Pr], AM

A
M [�M ]M = A

M [|�M | "]

|�M �M ⌫
M | = |�M | � |⌫M |

|idM| = id

|✏M| = ✏

|(�M
,
M
t
M)| = |�M |, t[Pr], tM

|⇡M
1 �

M | = ⇡1 (⇡1 |�M |)

t
M [�M ]M = t

M [|�M |]

⇡
M
2 �

M = ⇡2 |�M |

Having defined all the motives and methods we can now define the –P op-

eration by the ElimCon, ElimTy, ElimTms, ElimTm functions for contexts, types,

substitutions and terms, respectively.

4.2.3 Methods for the base type and base family

As in the case of the standard model (section 3.6), we parameterise the logical

predicate model with the interpretations of the base type and family. Because

the base type is valid in any context and the family only needs the base type to

be in the context, the parameters will be the following.

Ū : Ty (·,U)

Ēl : Ty (·,U,El vz, Ū[wk])

We define the methods UM and ElM as follows.

UM : Ty (|�M |,U) := Ū[✏, vz]

ElM {Â : Tm�U}
�
Â

M : Tm |�M | (Ū[hÂ[Pr�M ]i])
�
: Ty (|�M |,El Â[Pr�M ])

:= Ēl
⇥
✏, Â[Pr�M ][wk], vz, ÂM [wk]

⇤

The type Ū only depends on the last element of the context, so we can ignore

the part |�M | by using the empty substitution ✏. Ēl needs more components:
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the U and Ū components are given by the Â and Â
M arguments and the El vz

component is given by the last element in the context.

In addition, we need to verify the substitution laws. Note that U[]M does

not say that UM is invariant to substitutions, but that it is invariant for "-d
substitutions (which don’t touch the last element in the context, and indeed,

that is the only element on which Ū depends on).

U[]M : UM[�M ]M

= Û[✏, vz][|�M | "]

(substitution calculus)

⌘ Û[✏ � (|�M | "), vz]

(✏⌘)

⌘ Û[✏, vz]

=UM

El[]M : (ElM Â
M)[�M ]M

= Ēl
⇥
✏, Â[Pr][wk], vz, ÂM [wk]

⇤⇥
|�M | "

⇤

(substitution calculus and ✏⌘)

⌘ Ēl
⇥
✏, Â[Pr � |�|M ][wk], vz, ÂM [|�M |][wk]

⇤

(PrNat �M)

⌘ Ēl
⇥
✏, Â[� � Pr][wk], vz, ÂM [|�M |][wk]

⇤

=ElM (ÂM [�M ]M)

4.2.4 Methods for the function space

The predicate holds for a function if the function maps inputs for which the

predicate holds to outputs for which a predicate holds. Following this we get the

interpretation of function space.

⇧M
�
A

M : Ty (|�M |, A[Pr�M ])
�

�
B

M : Ty (|�M |, A[Pr�M ], AM
, B[(Pr�M " A) � wk)])

�

: Ty
�
|�M |, (⇧AB)[Pr�M ]

�

:= ⇧
�
A[Pr�M ][wk]

�
⇣
⇧
�
A

M
⇥
wk " A[Pr]

⇤� �
B

M [wk " A[Pr] " A
M
, vs (vs vz)$vs vz]

�⌘
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As we are in a context extended by a function type, we need to weaken the element

of A. A
M needs the context �M

, A[Pr�M ]. We can go from �M
, (⇧AB)[Pr�M ]

to �M by wk and then by " we get a substitution

wk " A[Pr�M ] : Tms
�
�M

, (⇧AB)[Pr�M ], A[Pr�M ][wk]
� �
�M

, A[Pr�M ]
�
.

Similarly, we can interpret BM by applying " on wk twice and then providing the

element of B by applying the function (De Bruijn index 2) to the element of type

A (De Bruijn index 1).

The next method is the substitution law for ⇧M. We verify it by the following

equational reasoning. For readability, we omit the second argument for the oper-

ator " and write numerals for De Bruijn indices. Most of the proof is reasoning

with laws of the substitution calculus (abbreviated s.c.). We use the following

properties: � "" ⌘ (��wk2, 1, 0), � """ ⌘ (��wk3, 2, 1, 0) and |�M "M | ⌘ |�M | ""
("M was defined with the eliminator: it is the semantic counterpart of ").

⇧[]M : (⇧M
A

M
B

M)[�M ]M

=
⇣
⇧ (A[Pr � wk])

�
⇧ (AM [wk "]) (BM [wk "", 2$1])

�⌘
[|�M | "]

(⇧[])

⌘
⇣
⇧ (A[Pr � wk][|�M | "])

�
⇧ (AM [wk "][|�M | ""])

(BM [wk "", 2$1][|�M | """])
�⌘

(s.c.)

⌘
⇣
⇧ (A[Pr � |�M |][wk])

�
⇧ (AM [|�M | � wk2, 0])

(BM [|�M | � wk3, 1, 0, 2$1])
�⌘

(PrNat)

⌘
⇣
⇧ (A[� � Pr][wk])

�
⇧ (AM [|�M | � wk2, 0])

(BM [|�M | � wk3, 1, 0, 2$1])
�⌘

(s.c.)

⌘⇧ (A[�][Pr � wk])
�
⇧ (AM [|�M | "][wk "])

(BM [|�M | � wk3, 2, 1, 0][wk "", 2$1])
�

=⇧M(AM [|�M | "]) (BM [(|�M | � wk2, 1, 0) "])

=⇧M(AM [�M ]M) (BM [�M "M]M)
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Abstraction and application are quite simple and they follow the informal

presentation closely. We just use the constructor twice as the lifted functions

take two arguments.

lamM
t
M := lam (lam t

M)

appM t
M := app (app tM)

The � and ⌘ laws are just repeated applications of � and ⌘.

⇧�M : app
⇣
app

�
lam (lam t

M)
�⌘

⌘ t
M := ap app⇧� ⇧ ⇧�

⇧⌘M : lam
⇣
lam

�
app (app tM)

�⌘
⌘ t

M := ap lam⇧⌘ ⇧ ⇧⌘

Finally, we have to verify the naturality law for abstraction which is again just

the repeated usage of lam[].

lam[]M : (lamM
t
M)[�M ]M

= lam (lam t
M)[|�M |]

(lam[] twice)

⌘ lam
�
lam (tM [|�M | ""])

�

= lamM (tM [�M "M]M)
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4.3 Deriving the eliminator of a closed QIIT

In this section we show an example of the usefulness of logical predicates. Another

example is given in chapter 5 where we prove normalisation with the help of a

di↵erent version of logical predicates.

We will describe a syntactic method for deriving the eliminator from the type

formation rules and constructors of a closed QIIT. The construction is restricted

to closed types and does not involve syntactic checks like strict positivity. It

only derives the type of the eliminator but does not validate the existence of

an element of that type. That is we do not derive the existence of inductive

types from parametricity as done e.g. in [21] (assuming impredicativity). Our

motivation was that we needed a method to derive the eliminator for the syntax

of type theory, which works for quotient inductive inductive types.

The contents of this section are not formalised, we will use the informal type

theory of figure 3.1 extended with ⌃ and identity types. We will use the operations

–R and –P that we defined in section 4.1.

First we show how to extend the unary lifting operation –P to ⌃ and identity

types. The binary version –R can be defined analogously.

–P on ⌃ types is defined pointwise.

(⌃(x : A).B)P (w : ⌃(x : A).B) : U

= ⌃(xM : AP (proj1 w)).B
P[x 7! proj1 w] (proj2 w)

(a, b)P = (aP, bP)

(proj1 w)
P = proj1 w

P

(proj2 w)
P = proj2 w

P

We use the Paulin-Mohring formulation of identity as given in section 2.2.2.

–P on identity is given as follows.

(a ⌘ b)P (q : a ⌘ b) : U = a
P ⌘q

b
P

reflP : aP ⌘refl
a
P = refl

The lifting of an equality is defined as an equality of liftings (it depends on the

original equality as the two sides have di↵erent types, AP
a and A

P
b, respectively).

The lifting of reflexivity is reflexivity. We need to do more work to lift the
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eliminator J.

JP (A : U)(AM : A ! U)(a : A)(aM : AM
a)

(Q : ⇧(x : A).a ⌘ x ! U)

(QM : ⇧(x : A, xM : AM
x, q : a ⌘ x, q

M : aM ⌘q
x
M).Q x q ! U)

(r : Qa refl)(rM : QM
a a

M refl refl r)

(x : A)(xM : AM
x)(q : a ⌘ x)(qM : aM ⌘q

x
M)

: Q
M
x x

M
q q

M (JAaQr x q)

:= J (⌃(y : A).AM
y)

(a, aM)
⇣
�c s.Q

M (proj1 c) (proj2 c) (proj⌘1 s) (proj⌘2 s)
�
JAaQr (proj1 c) (proj⌘1 s)

�⌘

r
M

(x, xM)

(q,⌘ q
M)

To define JP, we use J on the ⌃ type ⌃(y : A).AM
y. We used the following

helper functions for constructing equalities. They can be seen as constructors

and projections for the equality of ⌃ types (which can be thus viewed as a ⌃ of

equalities).

– ,⌘– : ⇧(p : a ⌘ a
0).b ⌘p

b
0 ! (a, b) ⌘ (a0, b0)

proj⌘1 : (a, b) ⌘ (a0, b0) ! a ⌘ a
0

proj⌘2 : ⇧(p : (a, b) ⌘ (a0, b0)).b ⌘proj⌘q p b
0

In fact, when defining JP we were cheating a bit: the type we get is not

Q
M
x x

M
q q

M (JAaQr x q)

but

Q
M
x x

M
�
proj⌘1 (q,⌘q

M)
� �

proj⌘2 (q,⌘q
M)
� ⇣

JAaQr x
�
proj⌘1 (q,⌘q

M)
�⌘

,
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hence we need to transport it through the following � rules.

⌃�⌘1 : proj⌘1 (p,⌘q) ⌘ p

⌃�⌘2 : proj⌘2 (p,⌘q) ⌘⌃�⌘1 q

The type formation rules and the constructors of a closed QIIT can be given

as a context. By closed we mean that they do not refer to other types (except

U and ⇧). E.g. in section 2.2, N is closed while Vec is not because it is indexed

over natural numbers.

As examples we show how N, the Con-Ty fragment of the syntax of type theory

(section 2.3) and the interval I (section 2.4) can be given as contexts.

N : U, zero : N, suc : N ! N
Con : U,Ty : Con ! U, · : Con, – , – : ⇧(� : Con).Ty�! Con

, u : ⇧(� : Con).Ty�, ⇡ : ⇧(� : Con, A : Ty�).Ty (�, A) ! Ty�

I : U, left : I, right : I, segment : left ⌘ right

A substitution into such a context can be seen as an algebra of the corresponding

algebraic structure. An algebra of natural numbers is given e.g. by a set, an

element of this set and a function from this set to itself.

Unary logical predicates can be used to derive the motives and methods for

the eliminator from the algebra. Given an algebra �, �P contains twice as many

elements as �: it contains a copy of � and additional elements. These additional

elements are the motives and methods for the eliminator. We list these for the

above examples.

NM : N ! U, zeroM : NM zero, sucM : ⇧(n : N, nM : NM
n).NM (sucn)

ConM : Con ! U,TyM : ⇧(� : Con,�M : ConM �).Ty�! U, ·M : ConM ·

, – ,M – : ⇧(� : Con,�M : ConM �, A : Ty�).TyM ��M
A ! ConM �

, uM : ⇧(� : Con,�M : ConM �).TyM ��M (u�)

, ⇡
M : ⇧

�
� : Con,�M : ConM �, A : Ty�, AM : TyM ��M

A

,B : Ty (�, A), BM : TyM (�, A) (�M
,
M
A

M)B
�

.TyM ��M (⇡ �AB)

IM : I ! U, leftM : IM left, rightM : IM right

, segmentM : leftM ⌘segment rightM
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We used this method to define the fields of the record DModel in section 3.5.

A notion of morphism between algebras can be derived using binary logical

relations. If the context representing the algebra is denoted �, we can use the

operation –R to get the context �R with three times as many elements. �R

contains two copies of � and witnesses that the two copies are logically related.

The witness for the elements of U are relations. In the case of the above examples

we have the following relations.

NM : N0 ! N1 ! U

ConM : Con0 ! Con1 ! U

TyM : ⇧(�0 : Con0,�1 : Con1,�M : ConM �0 �1).Ty0 �0 ! Ty1 �1 ! U

IM : I0 ! I1 ! U

Note that in the Con-Ty example we have two relations, one for Con and one for

Ty. The latter is indexed over a witness of the previous one.

If we replace these relations in the corresponding �Rs by graphs of a function,

the resulting context becomes the context of two copies of� and a homomorphism

between them. In our examples the functions would have the following types.

fN : N0 ! N1

fCon : Con
0 ! Con1

fTy : (�0 : Con0) ! Ty0 �0 ! Ty1 (fCon Ty
0)

fI : I0 ! I1

The N example becomes the following.

N0
,N1 : U, fN : N0 ! N1

, zero0 : N0
, zero1 : N1

, zeroM : fN zero
0 ⌘ zero1

, suc0 : N0 ! N0
, suc1 : N1 ! N1

, sucM : ⇧(n0 : N0
, n

1 : N1
, n

M : fN n
0 ⌘ n

1).fN (suc
0
n
0) ⌘ (suc1 n1)

Using a singleton contraction for sucM (that is, replacing n
1 by fN n

0 and re-

moving the equation n
M) we get the usual notion of homomorphism between the

corresponding algebras.
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N0
,N1 : U, fN : N0 ! N1zero0 : N0

, zeroM : (fN zero
0 ⌘ zero1)

, suc0 : N0 ! N0
, suc1 : N1 ! N1

, sucM : ⇧(n0 : N0).fN (suc
0
n
0) ⌘ (suc1 (fN n

0))

The homomorphism for the Con-Ty example that we obtain using –R, replacing

the relations by graphs of the function and using singleton contractions is the

following. We omit the 0 and 1 parts.

·M : fCon ·0 ⌘ ·1

, – ,M – : ⇧(�0 : Con0, A0 : Ty�0).fCon (�
0
,
0
A

0) ⌘ (fCon �
0
,
1
fTy �

0
A

0)

, uM : ⇧(�0 : Con0).fTy �
0 (u0 �0) ⌘ u1 (fCon �

0)

, ⇡
M : ⇧(�0 : Con0, A0 : Ty0 �0

, B
0 : Ty0 (�0

,
0
A

0)

.fTy �
0 (⇡0 �0

A
0
B

0) ⌘ ⇡
1 (fCon �

0) (fTy �
0
A

0) (fTy (�
0
,
0
A

0)B0)

The homomorphism derived for the interval example includes an equality stating

that the two equality proofs are equal. It is given over other two equalities to

make it typecheck (in the unary case, one equality was enough). In our setting

with K the equality segmentM is not very interesting.

leftM : fI left
0 ⌘ left1

, rightM : fI right
0 ⌘ right1

, segmentM : leftM ⌘segment0,segment1 rightM

Note that deriving the notion of homomorphism of algebras is the way we

obtain the computation rules for the recursor: these computation rules state that

the datatype (an element of the algebra) is the initial algebra in the category

of algebras, so the 0 component is the inductive datatype definition and the 1

component is the algebra comprising the motives and methods of the recursor.
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Chapter 5

Normalisation by evaluation

In this chapter we prove normalisation for the theory defined in chapter 3. When

we view terms in type theory as functional programs, normalisation is the method

of running these programs. When we view terms as proofs, normalisation can be

seen as proof theoretic cut elimination.

First we specify what we mean by normalisation (section 5.1), then in section

5.2 we sketch the normalisation by evaluation (NBE) proof for simple type theory

following [13] and show how our proof relates to it. After defining some categor-

ical preliminaries in section 5.3, as a warmup, we define the presheaf model for

type theory in section 5.4. Our normalisation proof does not depend on this

construction, we only add it for intuition and as a reference. Then, after giving

a high level overview in section 5.5, we spell out the normalisation proof for the

dependent case.

5.1 Specifying normalisation

Normalisation can be given the following specification.

The type of normal forms is denoted Nf �A and there is an embedding from it

to terms p–q : Nf �A ! Tm�A. Normal forms are defined as a usual inductive

type (without equality constructors), hence decidability of their equality should

be straightforward. They are defined mutually with neutral terms (terms in which

an eliminator is applied to a variable). A neutral term (n) is a variable applied

to zero or more normal forms. A normal form (v) is either a neutral term or an

99
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abstraction of a normal form. Informally, we define them as follows.

n ::= x |n v

v ::= n |�x.v

Normalisation is given by a function norm which takes a term and returns a

normal form. It needs to be an isomorphism:

completeness norm #
Tm�A
Nf �A " p–q stability

If we normalise a term, we obtain a term which is convertible to it: t ⌘ pnorm tq.
This is called completeness. The other direction is called stability: n ⌘ norm pnq.
It expresses that there is no redundancy in the type of normal forms. This

property makes it possible to establish properties of the syntax by induction on

normal forms.

Soundness, that is, if t ⌘ t
0 then norm t ⌘ norm t

0 is given by congruence of

equality (the ap function). The elimination rule for the QIIT of the syntax ensures

that every function defined from the syntax respects the equality constructors.

5.2 NBE from simple to dependent types

NBE is one way to implement this specification. It works by a complete model

construction (figure 5.1). We define a model of the syntax and hence we get a

function from the syntax to the model given by the eliminator. Then we define

a quote function which is a map from the model back into the syntax, but it

targets normal forms (which can be viewed as a subset of the syntax via the p–q
operator). In this section, we informally recall the proof of NBE for simple types

and then we describe the di�culties which arise when extending it to dependent

types.

5.2.1 NBE for simple types

In this section, we summarize the approach of NBE for simple types by [13]. Here

the model we choose is the presheaf model over the category of renamings REN

where the base type is interpreted as normal forms of the base type.

Presheaf models are proof-relevant versions of Kripke models (possible world
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Syntax Model

Normal
forms

eliminator

quote

Figure 5.1: Normalisation by evaluation

semantics) for intuitionistic logic: they are parameterised over a category in-

stead of a poset (the normalisation proof using presheaf models can be seen as

the proof-relevant version of the completeness proof for intuitionistic logic using

Kripke models [9]). A type A is interpreted as a set JAK for every object  

of the category with maps from the interpretation at one object to the other if

there is a corresponding morphism in the category. This is called a presheaf (for

this high-level description we omit mentioning the laws that these maps need to

satisfy; in section 5.7, we will make these notions precise). Contexts are inter-

preted as presheaves as well, and a term t : Tm�A is interpreted as a function

for each object  from the interpretation of the context at that object J�K to

the interpretation of the type at that object JAK (this is called a natural trans-

formation). The interpretation of a function type at a given object is a function

from the interpretation of the domain to the codomain at any other object from

which there is a morphism to the original object (an implication needs to be true

in any future world). The set of morphisms from ⌦ to  are denoted Hom(⌦, ).

JA ! BK = 8⌦.(� : Hom(⌦, )) ! JAK⌦! JBK⌦

The interpretation of the base type is a parameter of the presheaf model, it

can be set to any presheaf. We will make the notions of presheaves, natural

transformations etc. precise in section 5.7, for now we rely on the above intuitive

understanding.

We fix the category to be REN (see section 5.9.4 on the possible choices for this

category). This category has contexts as objects and renamings (lists of variables)

as morphisms. For example, (informally written) from x : A, y : B, z : C we have

a morphism (i 7! x, j 7! y, k 7! x) to the context i : A, j : B, k : A. We
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also fix the interpretation of the base type to J◆K := Nf  ◆, that is, the base

type is interpreted as normal forms. This defines the presheaf model (for the full

construction, see section 5.4), and gives an interpretation function from the syntax

to the model. E.g. a term t : Tm�A will be mapped to a natural transformation

JtK : J�K !̇ JAK.
After defining the presheaf model, we define another embedding of the syntax

into presheaves (independent of the previous presheaf model), which we denote

by TM. It can be seen as a variant of Yoneda embedding. A type A can be

embedded into the presheaf TMA by setting TMA = Tm A i.e. a type at a

given context is interpreted as the set of terms of that type in that context (note

that we only have simple types, that is, closed types). Analogously, we can embed

a type A into the presheaves of neutral terms NEA and normal forms NFA.

Now we define the function quote which goes from the presheaf model to

normal forms, c.f. figure 5.1. The quote function for a type A is denoted qA

and is a natural transformation JAK !̇NFA. We define it by induction on the

type A. For the base type, it is the identity, as base types are interpreted as

normal forms in our presheaf model. For function types, we define1 it as an

abstraction (as we would like a normal form of a function type), then we call

quote on the type B at the context extended by A and then we need to produce

a semantic value JBK ( , A). We do this by calling f : it is able to produce a

value at JBK⌦ for any ⌦ from which there is a morphism to  . We choose this

morphism to be the weakening renaming which forgets about the last variable.

The next argument of f is a semantic value JAK ( , A). We can easily produce a

term of type Tm ( , A)A using the zero De Bruijn index, but we need a semantic

version of this. It seems that the only way to produce such a value is to define

another function mutually with quote which goes in the other direction, however

its domain is not normal forms, but neutral terms. We call this function unquote

and denote it uA : NEA !̇ JAK for a type A. The of qA!B is JA ! BK !̇NFA!B,

below we show the unfolded version.

qA!B 

�
f : 8⌦.(� : ⌦!  ) ! JAK⌦! JBK⌦

�
: Nf  (A ! B)

:= lam
⇣
qB,( ,A)

�
f ,A wk (uA ( ,A) zero)

�⌘

: Nf ( , A)B : JBK ( , A) :  , A !  : JAK ( , A)

1The definition of quote for function types is related to the fact that Yoneda preserves
exponentials.
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Unquote is also defined by induction on the type and is identity at the base

type and can be defined for the function type as follows. We need to define a

semantic function which works for any JAK⌦ given a � : ⌦ !  morphism. We

use unquote of B and application for neutral terms. Application needs a neutral

function at context ⌦, which we get by renaming the original neutral term with

�. To get the normal argument, we quote the semantic element at type A.

uA!B (n : Ne (A ! B)) (� : ⌦!  )(a : JAK⌦) : JBK⌦

:= uB⌦
�
app (n[�]) (qA⌦ a)

�

: JBK⌦ : Ne⌦B : Ne⌦ (A ! B) : Nf ⌦A

The types of quote and unquote are summarized by the following diagram of

presheaves.

NEA JAK NFA

uA qA

To normalise a term, we also need to define unquote for neutral substitutions

(lists of neutral terms). Then we get normalisation by calling unquote on the

identity neutral substitution, then interpreting the term at this semantic element

and finally quoting.

normA (t : Tm�A) : Nf �A := qA�
�
JtK (u� id)

�

Completeness can be proven using a logical relation R between TM and the

presheaf model [13]. The logical relation is equality at the base type. We extend

quote and unquote to produce witnesses and require a witness of this logical

relation, respectively. This is depicted by the commutative diagram in figure 5.2.

The commutativity of the right hand triangle gives completeness: starting with a

term, a semantic value and a witness that these are related (if the semantic value

is the presheaf interpretation of the term then the fundamental theorem of the

logical relation says that they are related), we get a normal form, and then if we

embed it back into terms, we get a term equal to the one we started with.

Stability can be proven by mutual induction on terms and normal forms.
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NEA ⌃ (TMA ⇥ JAK)RA NFA

TMA

u0A q0A

p–q p–qproj

Figure 5.2: The types of quote and unquote for a type A in NBE for simple types.
We use primed notations for the unquote and quote functions to denote that they
include the completeness proof. This is a diagram in the category of presheaves.

5.2.2 Extending NBE to dependent types

When we have dependent types, types depend on contexts, hence they are inter-

preted as families of presheaves in the presheaf model.

J�K : REN ! Set

JA : Ty�K : ( : REN) ! J�K ! Set

We can declare quote for contexts the same way as for simple types, but the type

of quote for types has to be more subtle. One candidate is the following where it

depends on quote for contexts.

q� : ( : REN) ! J�K ! Tms �

q�`A : ( : REN)(↵ : J�K ) ! JAK ↵ ! Nf  
�
A[q�, ↵]

�

The type of unquote needs to depend on quote for contexts.

u�`A : ( : REN)(↵ : J�K ) ! Ne 
�
A[q�, ↵]

�
! JAK ↵

When we try to define quote and unquote following this specification, we observe

that we need some new equations to typecheck our definition. E.g. quote for

function types needs that quote after unquote is the identity up to embedding:

p–q � qA � uA ⌘ p–q. This is however the consequence of the logical relation

between the syntax and the presheaf model: we can read it o↵ figure 5.2 by the

commutativity of the diagram: if we embed a neutral term into terms, it is the

same as unquoting, then quoting, then embedding.

So let’s define quote and unquote mutually with their correctness proofs. It is

not very surprising that when moving to dependent types the well-typedness of



5.2. NBE FROM SIMPLE TO DEPENDENT TYPES 105

normalisation depends on completeness. We illustrate the di↵erence by spelling

out the type of quote and unquote for contexts using diagrams. Instead of using

the following diagram

NE� J�K NF�,
u� q�

we try to define quote and unquote as described by the following diagram.

NE� ⌃ (Tms – �⇥ J�K)R� NF�

TM�

u� q�

p–q p–qproj

The type of quote and unquote for types now don’t include quote for contexts

anymore and become the following (including the commutativity of the triangles

above).

q�`A : ( : REN)(⇢ : Tms �)(↵ : J�K )(p : R� ⇢↵)

(t : Tm A[⇢])(v : JAK ↵) ! RA p t v ! ⌃(n : NFA ⇢).t ⌘ pnq
u�`A  ⇢↵ p : (n : Ne A[⇢]) ! ⌃(v : JAK ↵).RA p pnq v

Now when we try to define unquote for function types, we need a semantic func-

tion as output which needs to work on arbitrary semantic inputs.

proj2

⇣
u�`⇧AB  ⇢↵ p

�
n : Ne (⇧AB)[⇢]

�⌘

: 8⌦.(� : ⌦!  )
�
x : JAK⌦ (J�K � ↵)

�
! JBK⌦ (J�K � ↵, x)

We would like to start defining it by calling unquote on B which needs a proof

that x is related to some term. However we only have an arbitrary semantic x,

there is no reason for it to be related to some term. It seems that the presheaf

model is too big for our purposes.

Our solution is to restrict the presheaf model so that it only contains related

semantic elements. We do this by merging the presheaf model and the logical

relation into a single proof-relevant logical predicate. We denote the logical pred-

icate at a context � by P�. We define normalisation following the diagram in

figure 5.3.
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NE� ⌃TM� P� NF�

TM�

u� q�

p–q p–qproj

Figure 5.3: The type of quote and unquote for a context � in our proof.

In the presheaf model, the interpretation of the base type was normal forms

at the base type and the logical relation at the base type was equality of the

term and the normal form. In our case, the logical predicate at the base type

will say that there exists a normal form which is equal to the term (this is why it

needs to be proof-relevant). This solves the problem mentioned before: now the

semantics of a term will be the same term together with a witness of the predicate

at that term. Functions in the logical predicate interpretation only need to work

on inputs for which the predicate holds.

5.3 Categorical preliminaries

A category C is given by a type of objects |C| and given I, J : |C|, a type C(I, J)
which we call the type of morphisms between I and J . A category is equipped

with an operation for composing morphisms – � – : C(J,K) ! C(I, J) ! C(I,K)

and an identity morphism at each object idI : C(I, I). In addition we have the

associativity law (f � g) � h ⌘ f � (g � h) and the identity laws id � f ⌘ f and

f � id ⌘ f . Formally, we collect these definitions into a record.

record Cat

|– | : Set

–(– , –) : |– | ! |– | ! Set

– � – : –(J,K) ! –(I, J) ! –(I,K)

id : –(I, I)

�� : (f � g) � h ⌘ f � (g � h)

id� : id � f ⌘ f

�id : f � id ⌘ f
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Just as the definition of category, the following definitions can be formalised

using records.

A contravariant presheaf over a category C is denoted � : PSh C. It is given

by the following data: given I : |C|, a set � I, and given f : C(J, I) a function

� f : � I ! � J . Moreover, we have idP� : � id↵ ⌘ ↵ and compP� : � (f � g)↵ ⌘
� g (� f ↵) for ↵ : � I, f : C(J, I), g : C(K, J).

A natural transformation between presheaves � and � is denoted � : � !̇�.

It is given by a function � : {I : |C|} ! � I ! � I together with the condition

natn � : � f (�I ↵) ⌘ �J (� f ↵) for ↵ : � I, f : C(J, I).
Given � : PSh C, a family of presheaves over � is denoted A : FamPSh�. It

can be seen as a “presheaf” depending on another presheaf. It is given by a set

for each element of the presheaf, that is, for any ↵ : � I we have a set AI ↵.

Moreover, we can use the morphisms in C to transport elements of this set: given

f : C(J, I), we can go from A at I to A at J . Because the sets also depend on ↵,

we also need to transport ↵, hence the type of the transport function we have for

A is AI ↵ ! AJ (� f ↵). We denote it by Af . In addition, we have the functor

laws idFA : A id v ⌘idP
v and compFA : A (f � g) v ⌘compP

Ag (Af v) for ↵ : � I,

v : A↵, f : C(J, I), g : C(K, J).

A family of natural transformations between two families of presheaves A,B :

FamPSh� is given is denoted � : A
N! B. It is given by a function

� : {I : |C|}{↵ : � I} ! AI ↵ ! BI ↵

together with the condition B f (�I ↵ a) ⌘ �J (� f ↵) (Af a) for a : AI ↵, ↵ : � I,

f : C(J, I).
A section2 from a presheaf � to a family of presheaves A over � is denoted

t : �
s! A. It is given by a function t : {I : |C|} ! (↵ : � I) ! AI ↵ together with

the naturality condition natS t↵ f : Af (t↵) ⌘ t (� f ↵) for f : C(J, I).
Given � : PSh C and A : FamPSh� we can define ⌃�A : PSh C by (⌃�A) I :=

⌃(↵ : � I).AI ↵ and (⌃�A) f (↵, a) := (� f ↵, A f a).

Given � : � !̇� and A : FamPSh�, we define A[�] : FamPSh� by A[�]I ↵ :=

AI (�I ↵) and A[�] f ↵ := natn�⇤(Af ↵) for ↵ : � I and f : C(J, I).
The weakening natural transformation wk : ⌃�A !̇� is defined by wkI (↵, a) :=

↵.

2t : �
s! A is called a section because it can be viewed as a section of the first projection

from ⌃�A to � but we define it without using the projection.
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Lifting of a section t : �
s! A by a family of presheaves B : FamPSh�

is a natural transformation t " B : ⌃�B !̇⌃ (⌃�A)B[wk]. It is defined as

t " BI (↵, b) := (↵, tI ↵, b).

5.4 Warmup: presheaf model

As a warmup to the normalisation proof, we define the presheaf model of our

type theory given in section 3.2. No later technical constructions depend on this

section, but it is helpful for later intuition.

The presheaf model is parameterised over a category C, a presheaf JUK and

a family of presheaves over JUK denoted JElK. We use the recursor to define the

model, the motives are the following.

ConM := PSh C

TyM J�K := FamPSh J�K
TmsM J�K J�K := J�K !̇ J�K
TmM J�K JAK := J�K s! JAK

Note that here J–K is not a function, it is just part of the variable names. The

interpretation of a context is a contravariant presheaf over C. The interpretation
of a type over � is a family of presheaves over the interpretation of �. The

interpretation of a substitution Tms�� is a natural transformation from the

interpretations of � to the interpretation of �. The interpretation of a term

Tm�A is a section from the interpretation of � to that of A.

The methods for the recursor interpret the constructors for contexts, types,

substitutions and terms including the equality constructors.

We start with the context constructors. These are presheaves, we only spell

out the action on objects.

·M I := >

J�K �M JAK I := ⌃(↵ : J�K I).JAK↵

The empty context is the constant unit presheaf, context extension is pointwise.

We list the interpretations of type formers only showing the action on objects.

JAK[J⇢K]M ↵ := JAK (J⇢K↵)
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UM
I ↵ := JUK I

ElM JÂK↵ := JElK (JÂK↵)
⇧M JAK JBK↵ := ExpPSh JAK JBK

Substituted types are interpreted using the interpretation of the substitution on

the environment. U and El are interpreted using the parameters of the presheaf

model. Note that UM does not depend on the environment. The interpretation of

⇧ is the dependent presheaf exponential which consists of a function map together

with a compatibility condition.

record ExpPSh (JAK : FamPSh J�K) (JBK : FamPSh J�, AK) : Set
map : 8{J}(f : C(J, I))(x : JAKJ (J�K f ↵)) ! JBKJ (J�K f ↵, x)

comp : 8{f g x}.JBK g (map f x) ⌘compP�1

map (g � f) (compP�1⇤JAK g x)

The function maps for any morphism (any future world with the Kripke analogy)

the interpretation of A at the environment transported along this morphism to

the interpretation of B. To state the compatibility condition, on the right hand

side we start with JAK g x : JAK (J�K g (J�K f ↵)), but to apply map, we need to

transport this along compP�1 to get an element of type JAK (J�K (g � f)↵). Now
we can apply map (g � f) to it.

The interpretations of substitution constructors are listed below omitting the

naturality proofs.

idM ↵ := ↵

(J⇢K �M J�K)↵ := J⇢K (J�K↵)
✏
M
↵ := tt

(J⇢K,MJtK)↵ := (J⇢K↵, JtK↵)
⇡1

M J⇢K↵ := proj1 (J⇢K↵)

Identity becomes identity, composition composition, the empty substitution is

interpreted as the element of the unit type, comprehension is pointwise, the first

projection becomes first projection.

The interpretations of term formers are listed below omitting the naturality
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proofs and the compatibility condition for lamM.

JtK[J⇢K]M ↵ := JtK (J⇢K↵)
⇡2

M JtK↵ := proj2 (J⇢K↵)
map

�
lamM JtK (↵ : J�K I)

�
:= �f x.JtK(J�K f ↵, x)

appM JtK↵ := map
�
JtK (proj1 ↵)

�
id (proj2 ↵)

We don’t list the interpretations of the equality constructors. Interestingly,

up to function extensionality and coercions, all equality proofs are reflexivity.

5.5 Overall structure of the proof

In this section, we give a high level sketch of the normalisation proof.

In section 5.6 we define the category of renamings REN: objects are contexts

and morphisms are renamings (lists of variables).

In section 5.7 we define the proof-relevant presheaf logical predicate interpre-

tation of the syntax (sometimes this is called Kripke logical predicate interpreta-

tion). The interpretation has REN as the base category and two parameters for

the interpretations of U and El. This interpretation can be seen as a dependent

version of the presheaf model of type theory [58]. For example, a context in the

presheaf model is interpreted as a presheaf. Now it is a family of presheaves

which depends on a substitution into that context. The interpretations of base

types can depend on the actual elements of the base types. The interpretation of

substitutions and terms are sometimes called the fundamental theorems.

Note that this logical predicate interpretation is di↵erent from the one given

in chapter 4: the target of that interpretation was the object theory, while here

it is the metatheory. In addition, this interpretation is parameterised over a

category (which we fix to be REN). The exact relationship can be probably given

using the notion of categorical glueing. We sketch the idea here. Models of type

theory can be given as categories with additional structure (e.g. categories with

families, see section 3.4). Given two models C and D and a morphism f between

them, glueing generates a new model G. In this model objects (contexts) are

given as triples of a � : |C|, � : |D| and a morphism D(�, f �). We don’t spell

out the rest of the construction, we refer to [42, 91]. In the case of the internal

logical predicate interpretation of chapter 4, C and D are both CON (the category
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of contexts and substitutions) and the morphism is the identity functor. Thus

in the glued representation we have two contexts (corresponding to � and �P)

and a morphism CON(�P
,�) corresponding to the projection Pr. In the case of

the presheaf logical predicate interpretation, C is CON, D is the presheaf model

over REN and the morphism is the Yoneda embedding TM given in section 5.7.1.

Now in the glued model, the triples constituting a context � are equivalent to

families of presheaves over TM� (which is how we will define the logical predicate

interpretation of a context �).

In section 5.8 we define neutral terms and normal forms together with their

renamings and embeddings into the syntax (p–q). With the help of these, we

define the interpretations of U and El which are given as parameters of the presheaf

logical predicate. The interpretation of U at a term of type U will be a neutral

term of type U which is equal to the term. Now we can interpret any term of the

syntax in the logical predicate interpretation. We will denote the interpretation

of a term t by Pt.

In section 5.9 we mutually define the natural transformations quote and un-

quote. We define them by induction on contexts and types so that they have

types for contexts as shown in figure 5.3. Quote takes a term and a witness of

the logical predicate at that term into a normal term and a proof that the normal

term is equal to it. Unquote takes a neutral term into a witness of the predicate

at the neutral term.

In section 5.10, we put together the pieces by defining the normalisation func-

tion and showing that it is complete and stable. Normalisation and completeness

are given by interpreting the term at the identity semantic element and then

quoting. Stability is proved by mutual induction on neutral terms and normal

forms.

In section 5.11 we make use of normalisation by proving that our type theory

is consistent, i.e. there is no term of the base type in the empty context.

5.6 The category of renamings

In this section we define the category REN. Objects in this category are contexts,

morphisms are renamings (Vars): lists of De Bruijn variables.

We define Var as the type of typed De Bruijn indices indexed by syntactic
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types.

data Var : ( : Con) ! Ty ! Set

vz : Var ( , A) (A[wk])

vs : Var A ! Var ( , B) (A[wk])

The constructor vz projects out the last element of the context, vs extends the

context, and the type A : Ty needs to be weakened in both cases because we

need to interpret it in  extended by another type. The weakening wk was defined

as ⇡1 id in section 3.2.1.

We define renamings Vars as lists of variables together with their embeddings

into substitutions p–q.

p–q : Vars⌦ ! Tms⌦ 

data Vars : Con ! Con ! Set

✏ : Vars ·

– , – : (� : Vars⌦ ) ! Var⌦A[p�q] ! Vars⌦ ( , A)

p–q : Var A ! Tm A

pvzq := vz

pvs xq := vs pxq
p✏q := ✏

p�, xq := p�q, pxq

Embedding of variables into terms uses the De Bruijn constructors given in sec-

tion 3.2.1, the overloading of constructor names is justified by this embedding.

Embedding of renamings is performed pointwise.

We will use the names  ,⌦,⌅ for objects of REN, x, y for variables, �, � for

renamings.

As a first step in defining the categorical structure, we define renaming a

variable by induction on the variable. Note that it is not immediate that a

renaming into a context �, A (as in the case of vz and vs x below) must be of the

form �, y and can’t be ✏. We need disjointness of · and �, A (section 3.4.1) to

show this; for readability however, we will omit these details below.
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–[–] : Var A ! (� : Vars⌦ ) ! Var⌦A[p�q]
vz[�, y] := y

(vs x)[�, y] := x[�]

We prove the following compatibility law by induction on x.

p[]q : pxq[p�q] ⌘ px[�]q

Now we are able to define composition of renamings mutually with compatibility.

– � – : Vars⌅ ! Vars⌦⌅! Vars⌦ 

p�q : p�q � p�q ⌘ p� � �q
✏ � � := ✏

(�, x) � � := � � �, p�q⇤x[�]

To define the identity renaming, we first need weakening of renamings. This is

defined mutually with a law which says that it is compatible with the weakening

substitution. The definitions are by induction on the renaming. Weakening

basically adds one to all De Bruijn indices in the list of variables.

wkV : Vars⌦ ! Vars (⌦, A) 

pwkVq : {� : Vars⌦ } ! p�q � ⇡1id ⌘ pwkV �q
wkV ✏ := ✏

wkV (�, x) := wkV �, pwkVq⇤vs x

Now the identity renaming can be given mutually with its compatibility law. In

the case of extended contexts, we use weakening of the identity for the first part

of the context and then we add the zero De Bruijn index.

id : Vars  

pidq : pidq ⌘ id

id· := ✏

id�,A := wkV id, pidq⇤vz
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We also define the weakening renaming which corresponds to the weaken-

ing substitution. Also, analogously with " for substitutions, we define lifting of

renamings.

wk : Vars ( , A) := wkV id

(� : Vars⌦ ) " A : Vars (⌦, A[p�q]) ( , A) := � � wk, vz

We can now prove the following laws in the following order by induction on

� or x completing the categorical structure.

wkV� : wkV � � (�, x) ⌘ � � �

id� : id � � ⌘ �

vs[] : vs (x[�]) ⌘ x[wkV �]

[id] : x[id] ⌘ x

�id : � � id ⌘ �

[][] : x[�][�] ⌘ x[� � �]

�� : (◆ � �) � � ⌘ ◆ � (� � �)

Note that what we are doing here is replicating all the laws of the syntax for a

subset of the syntax. This subset is a full subcategory of the category of contexts

and substitutions. The morphisms in this category (Vars) are given by a simple

inductive type (without equality constructors).

5.7 The presheaf logical predicate

interpretation

In this section, we define the proof-relevant presheaf logical predicate interpreta-

tion of the type theory given in chapter 3. The di↵erence from the –P operation

defined in chapter 4 is that the target of this interpretation is the metatheory

(not the object theory) and we define a Kripke version of the logical predicate:

we define it over the base category REN.
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5.7.1 Motives

First we define the Yoneda embedding of the syntax denoted TM. It has the

following definitions for contexts, types, substitutions and terms.

� : Con TM� : PShREN TM� := Tms � TM� � ⇢ := ⇢ � p�q
A : Ty� TMA : FamPShTM� TMA ⇢ := Tm A[⇢] TMA � t := t[p�q]
� : Tms�� TM� : TM� !̇TM� TM� ⇢ := � � ⇢

t : Tm�A TMt : TM�
s! TMA TMt ⇢ := t[⇢]

TM� is a presheaf over REN. The functor laws hold as ⇢�pidq ⌘ ⇢ and (⇢�p�q)�
p�q ⌘ ⇢ � p� � �q. TMA is a family of presheaves over TM�, and similarly we

have t[pidq] ⌘ t and t[p�q][p�q] ⌘ t[p� � �q]. TM� is a natural transformation,

naturality is given by associativity: (� �⇢)�p�q ⌘ � � (⇢�p�q). TMt is a section,

it’s naturality law can be verified as t[⇢][p�q] ⌘ t[⇢ � p�q].

Intuitively TM embeds a context into the sets of substitutions into that con-

text, a type into the sets of terms into that context, and substitutions and terms

are embedded into maps between the corresponding sets.

TM is not the presheaf interpretation (section 5.4), it can be seen as a (weak)

morphism in the category of models of type theory from the syntax to the presheaf

model which is di↵erent from the presheaf interpretation (we don’t give these

notions a precise meaning in this thesis).

it is just the syntax in a di↵erent structure so that it matches the motives of

the presheaf model.

The motives for the presheaf logical predicate interpretation are given as fam-

ilies over the Yoneda embedding TM. In contrast with the previous chapter, in

this chapter we use a recursive notation for defining the motives and methods.

� : Con P� : FamPShTM�

A : Ty� PA : FamPSh
�
⌃ (⌃TM� TMA)P�[wk]

�

� : Tms�� P� : ⌃TM� P�
s! P�[TM�][wk]

t : Tm�A Pt : ⌃TM� P�
s! PA[TMt " P�]

For reference, the “arguments for the eliminator” notation for the motives looks
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as follows.

ConM� := FamPShTM�

TyM �M
A := FamPSh

�
⌃ (⌃TM� TMA)�

M [wk]
�

TmsM �M �M
� := ⌃TM� �

M s! �M [TM�][wk]

TmM �M
A

M
t := ⌃TM� �

M s! A
M [TMt " �M ]

We unfold these definitions a bit below.

In the logical predicate interpretation, a context � is mapped to a family of

presheaves over TM�. That is, for every substitution ⇢ : TM� we have a type

P� ⇢ expressing that the logical predicate holds for ⇢. Moreover, we have the

renaming P� � : P� ⇢ ! P� (TM� � ⇢) for a � : REN(⌦, ).

PA is the logical predicate at a type A. It depends on a substitution (for which

the predicate needs to hold as well) and a term. PA (⇢, s,↵) expresses that the

logical predicate holds for term s : Tm A[⇢].

A : Ty�  : |REN| ⇢ : TM� s : TMA ⇢ ↵ : P� ⇢

PA (⇢, s,↵) : Set

It is also stable under renamings.

PA � : PA (⇢, s,↵) ! PA (TM� � ⇢,TMA � s,P� � ↵)

A substitution � is mapped to P� which expresses the fundamental theorem

of the logical predicate at �: for any other substitution ⇢ for which the predicate

holds, we can compose it with � and the predicate will hold for the composition.

� : Tms��  : |REN| ⇢ : TM� ↵ : P� ⇢

P� (⇢,↵) : P� (� � ⇢)

The fundamental theorem is also natural.

P� � (P� (⇢,↵)) ⌘ P� (TM� � ⇢,P� � ↵)

A term t is mapped to the fundamental theorem at the term: given a substi-
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tution ⇢ for which the predicate holds, it also holds for t[⇢] in a natural way.

t : Tm�A  : |RENop| ⇢ : TM� ↵ : P� ⇢

Pt (⇢,↵) : PA (⇢, t[⇢],↵)

PA �
�
Pt (⇢,↵)

�
⌘ Pt (TM� � ⇢,P� � ↵)

5.7.2 Methods for the substitution calculus

The logical predicate trivially holds at the empty context and it holds at an

extended context for ⇢ if it holds at the smaller context for ⇡1 ⇢ and if it holds at

the type which extends the context for ⇡2 ⇢. The second part obviously depends

on the first. The action on morphisms for context extension is pointwise.

P· (⇢ : TM· ) := >

P· � := tt

P�,A (⇢ : TM�,A ) := ⌃(↵ : P� (⇡1 ⇢)).PA (⇡1 ⇢, ⇡2 ⇢,↵)

P�,A (� : REN(⌦, )) (↵, a) := (P� � ↵,PA � a)

The functor laws hold by

P�,A id (↵, a) = (P� id↵,PA id a) ⌘ (↵, a)

and

P�,A �
�
P�,A � (↵, a)

�
=
�
P� � (P� � ↵),P� � (PA � a

�
)

⌘ (P� (� � �)↵,PA (� � �) a) = P�,A (� � �) (↵, a).

The logical predicate at a substituted type is the logical predicate at the type

and we need to use the fundamental theorem at the substitution to lift the witness

of the predicate for the substitution. Renaming a substituted type is the same

as renaming in the original type (hence the functor laws hold immediately by the

inductive hypothesis). This is well-typed because of naturality of TM� and P� as

shown below.

PA[�] (⇢, s,↵) := PA

�
TM� ⇢, s,P� (⇢,↵)

�
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PA[�] � a := PA � a : PA

�
TM� � (TM� ⇢),TMA � s,P� � (P� (⇢,↵))

�
| {z }

⌘PA

�
TM� (TM⇥ � ⇢),TMA � s,P� (TM⇥ � ⇢,P⇥ � ↵)

�

The methods for the substitution constructors map the object theoretic con-

structs to their metatheoretic counterparts: identity becomes identity, composi-

tion becomes composition, the empty substitution becomes the element of the

unit type, comprehension becomes pairing, first projection becomes first projec-

tion.

Pid (⇢,↵) := ↵

P��⌫ (⇢,↵) := P�

�
TM⌫ ⇢,P⌫ (⇢,↵)

�

P✏ (⇢,↵) := tt

P�,t (⇢,↵) := P� (⇢,↵),Pt (⇢,↵)

P⇡1 � (⇢,↵) := proj1
�
P� (⇢,↵)

�

We check naturality for each case (see the description after the motives for the

general naturality rule). The usages of ⌘ are using the induction hypotheses, the

usages of = are just definitional equalities. Note that in one case we used the

naturality of TM⌫ .

P� �
�
Pid (⇢,↵)

�
= P� � ↵ = Pid (TM� � ⇢,P� � ↵)

P� �
�
P��⌫ (⇢,↵)

�

=P� �
�
P� (TM⌫ ⇢,P⌫ (⇢,↵))

�

⌘P�

�
TM⇥ � (TM⌫ ⇢),P⇥ � (P⌫ (⇢,↵))

�

⌘P�

�
TM⌫ (TM� � ⇢), (P⌫ (TM� � ⇢,P� � ↵))

�

=P��⌫ (TM� � ⇢,P� � ↵)

P· �
�
P✏ (⇢,↵)

�
= tt = P✏ (TM� � ⇢,P� � ↵)

P�,A �
�
P�,t (⇢,↵)

�

=P� �
�
P� (⇢,↵)

�
,PA �

�
Pt (⇢,↵)

�

⌘P� (TM� � ⇢,P� � ↵),Pt (TM� � ⇢,P� � ↵)

=P�,t (TM� � ⇢,P� � ↵)

P� �
�
P⇡1 � (⇢,↵)

�

=P� �
�
proj1 (P� (⇢,↵))

�
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= proj1
�
P�,A � (P� (⇢,↵))

�

⌘ proj1
�
P� (TM� � ⇢,P� � ↵)

�

=P⇡1 � (TM� � ⇢,P� � ↵)

The fundamental theorem for substituted terms and the second projection are

again just composition and second projection.

Pt[�] (⇢,↵) := Pt (TM� ⇢,P� (⇢,↵))

P⇡2 � (⇢,↵) := proj2
�
P� (⇢,↵)

�

We check the naturality laws.

PA[�] � (Pt[�] (⇢,↵))

=PA �
�
Pt (TM� ⇢,P� (⇢,↵))

�

⌘Pt

�
TM⇥ � (TM� ⇢),P⇥ � (P� (⇢,↵))

�

⌘Pt

�
TM� (TM� � ⇢),P� (TM� � ⇢,P� � ↵)

�

=Pt[�] (TM� � ⇢,P� � ↵)

PA �
�
P⇡2 � (⇢,↵)

�

=PA �
�
proj2 (P� (⇢,↵))

�

=proj2
�
P�,A � (P� (⇢,↵))

�

⌘proj2
�
P� (TM� � ⇢,P� � ↵)

�

=P⇡2 � (TM� � ⇢,P� � ↵)

We finished defining the methods for point constructors of the substitution

calculus, now we need to check the equality methods.

Note that types are interpreted as families of presheaves. Two families of

presheaves are equal if their action on objects and morphisms are equal, because

the equalities will be equal by K. Hence we only check equality for the actions

on objects and morphisms.

The object part of the law [][] is validated by associativity of composition of

substitutions.
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PA[�][⌫] (⇢, s,↵)

=PA[�]

�
TM⌫ ⇢, s,P⌫ (⇢,↵)

�

=PA

�
TM� (TM⌫ ⇢), s,P� (TM⌫ ⇢,P⌫ (⇢,↵))

�

(��)

⌘PA

�
TM��⌫ ⇢, s,P� (TM⌫ ⇢,P⌫ (⇢,↵))

�

=PA

�
TM��⌫ ⇢, s,P��⌫ (⇢,↵)

�

=PA[��⌫] (⇢, s,↵)

The object part of [id] is validated by the identity law of substitutions.

PA[id] (⇢, s,↵)

=PA

�
TMid ⇢, s,Pid (⇢,↵)

�

=PA

�
TMid ⇢, s,↵

�

(id�)

⌘PA (⇢, s,↵)

The morphism parts are immediate.

PA[�][⌫] � a = PA � a = PA[��⌫] � a

PA[id] � a = PA � a

Note that substitutions are interpreted as sections. Two sections are equal if

their function parts are equal, as the naturality conditions will be equal by K.

We validate the laws for Tms below. Apart from the two steps where we use ��
and id� everything is definitional (as we have definitional ⌘ for > and ⌃ in our

metatheory).

��M : P(��⌫)�� (⇢,↵)

=P��⌫ (TM� ⇢,P� (⇢,↵))

=P�

�
TM⌫ (TM� ⇢),P⌫ (TM� ⇢,P� (⇢,↵))

�

(��)

⌘P�

�
TM⌫�� ⇢,P⌫ (TM� ⇢,P� (⇢,↵))

�
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=P�

�
TM⌫�� ⇢,P⌫�� (⇢,↵)

�

=P��(⌫��) (⇢,↵)

id�M : Pid�� (⇢,↵)

=Pid (TM� ⇢,P� (⇢,↵)
�

=P� (⇢,↵)

�idM : P��id (⇢,↵)

=P� (TMid ⇢,Pid (⇢,↵)
�

=P� (TMid ⇢,↵)
�

(id�)

⌘P� (⇢,↵)
�

✏⌘
M {� : Tms� ·} : P� (⇢,↵) = tt : P· ⇢|{z}

=>

(metatheoretic ⌘ for >)

⇡1�
M : P⇡1 (�,t) (⇢,↵)

= proj1
�
P�,t (⇢,↵)

�

= proj1
�
P� (⇢,↵),Pt (⇢,↵)

�

=P� (⇢,↵)

⇡⌘
M : P⇡1 �,⇡2 � (⇢,↵)

=P⇡1 � (⇢,↵),P⇡2 � (⇢,↵)

= proj1
�
P� (⇢,↵)

�
, proj2

�
P� (⇢,↵)

�

(metatheoretic ⌘ for ⌃)

=P� (⇢,↵)

, �M : P(⌫,t)�� (⇢,↵)

=P⌫,t

�
TM� ⇢,P� (⇢,↵)

�

=P⌫

�
TM� ⇢,P� (⇢,↵)

�
,Pt

�
TM� ⇢,P� (⇢,↵)

�

=P⌫�� (⇢,↵),Pt[�] (⇢,↵)

=P⌫��,t[�] (⇢,↵)

Finally we verify the single equality rule for terms, here again, it is enough

to verify that the function parts are equal and the naturality conditions will be

equal by K.
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⇡2�
M : P⇡2 (�,t) (⇢,↵)

=proj2
�
P�,t (⇢,↵)

�

=proj2
�
P� (⇢,↵),Pt (⇢,↵)

�

=Pt (⇢,↵)

We state the following equalities which will be useful in the next sections,

their proofs are trivial.

Pwk (⇢,↵) ⌘ proj1 ↵

Pvz (⇢,↵) ⌘ proj2 ↵

P" :P�"A (⇢,↵) ⌘ P� (⇡1 ⇢, proj1 ↵), proj2 ↵

Phti (⇢,↵) ⌘ ↵,Pt (⇢,↵)

5.7.3 Methods for the base type and base family

We extend the Yoneda embedding TM with two special constructs, one for the

base type U and one for the base family El. These express that the base type is

closed, hence a presheaf is enough to define its Yoneda embedding, we don’t need

a family of presheaves.

TMU : PShREN TMU := Tm U TMU
� Â := U[]⇤Â[p�q]

TMEl : FamPShTMU TMEl
 Â := Tm (El Â) TMEl

� a := El[]⇤a[p�q]

The functor laws follow from [][] and [id].

We parameterise the logical predicate interpretation by the predicate at the

base type U and base family El. These are denoted by Ū and Ēl and have the

following types.

Ū : FamPShTMU

Ēl : FamPSh
�
⌃ (⌃TMU TMEl) Ū[wk]

�

The logical predicate at the base type and family says what we have given as
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parameters. Renaming also comes from these parameters.

PU (⇢, s,↵) := Ū (U[]⇤s) PU � a := Ū � a

PEl Â (⇢, s,↵) := Ēl
�
(El[]⇤TMÂ ⇢), s,PÂ (⇢,↵)

�
PEl Â � a := Ēl � a

The functor laws follow from the functor laws of the parameters.

We first verify the object parts of equality laws.

U[]M : PU[�] (⇢, s,↵)

=PU

�
TM� ⇢, s,P� (⇢,↵)

�

= Ū s

=PU (⇢, s,↵)

El[]M : P(El Â)[�] (⇢, s,↵)

=PEl Â

�
TM� ⇢, s,P� (⇢,↵)

�

= Ēl
�
TMÂ (TM� ⇢), s,PÂ (TM� ⇢,P� (⇢,↵))

�

([][] for terms)

⌘ Ēl
�
TMÂ[�] ⇢, s,PÂ (TM� ⇢,P� (⇢,↵))

�

= Ēl
�
TMÂ[�] ⇢, s,PÂ[�] (⇢,↵)

�

=PEl (Â[�]) (⇢, s,↵)

The morphism parts are given below.

U[]M :PU[�] � a = PU � a

El[]M :P(El Â)[�] � a = PEl Â � a = Ēl � a = PEl (Â[�]) � a

We have completed the methods for the base type and family by adding two

parameters to the logical predicate interpretation: Ū and Ēl.

5.7.4 Methods for the function space

The logical predicate holds for a function s when we have that if the predicate

holds for an argument u (at A, witnessed by v), so it holds for s$u at B. In

addition, we have a Kripke style generalisation: this should be true for TM⇧AB � s

for any morphism � in a natural way. Renaming a witness of the logical predicate
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at the function type is postcomposing the Kripke morphism by it.

P⇧AB 

�
(⇢ : TM� ), (s : TM⇧AB ⇢), (↵ : P� ⇢)

�

:= ⌃
⇣
map :

�
� : REN(⌦, )

��
u : TMA (TM� � ⇢)

�

�
v : PA ⌦ (TM� � ⇢, u,P� � ↵)

�

! PB ⌦

�
(TM� � ⇢, u), (TM⇧AB � s)$u, (P� � ↵, v)

�⌘

.8�, u, v, �.PB � (map � u v) ⌘ map (� � �) (TMA � u) (PA � v)

P⇧AB �
0 (map, nat) := ��.map (�0 � �),��.nat (�0 � �)

From the action on morphisms we calculate the following law which we will use

later.

map� : map (P⇧AB �
0
a) � = map a (�0 � �)

The functor laws follow from the categorical laws of REN.

P⇧AB id (map, nat)

= ��.map (id � �),��.nat (id � �)

⌘��.map �,��.nat �

= (map, nat)

P⇧AB (�0 � �) (map, nat)

=��.map
�
(�0 � �) � �

�
,��.nat

�
(�0 � �) � �

�

⌘��.map
�
�
0 � (� � �)

�
,��.nat

�
�
0 � (� � �)

�

=P⇧AB �
�
��.map (�0 � �),��.nat (�0 � �))

=P⇧AB �
�
P⇧AB �

0 (map, nat)
�

The object part of the interpretation of ⇧[] can be verified as follows.

P(⇧AB)[�] (⇢, s,↵)

=P⇧AB

�
TM� ⇢, s,P� (⇢,↵)

�

=⌃
⇣
map :

�
� : REN(⌦, )

��
u : TMA (TM⇥ � (TM� ⇢))

�

�
v : PA (TM⇥ � (TM� ⇢), u,P⇥ � (P� (⇢,↵)))

�
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! PB

�
(TM⇥ � (TM� ⇢), u), (TM⇧AB � s)$u

, (P⇥ � (P� (⇢,↵)), v)
�⌘

.8�, u, v, �.PB � (map � u v) ⌘ map (� � �) (TMA � u) (PA � v)

(naturality of TM� and P�)

⌘⌃
⇣
map :

�
� : REN(⌦, )

��
u : TMA (TM� (TM� � ⇢))

�

�
v : PA (TM� (TM� � ⇢), u,P� (TM� � ⇢,P� � ↵))

�

! PB

�
(TM� (TM� � ⇢), u), (TM⇧AB � s)$u

, (P� (TM� � ⇢,P� � ↵), v)
�⌘

.8�, u, v, �.PB � (map � u v) ⌘ map (� � �) (TMA � u) (PA � v)

(substitution calculus and P�)

⌘⌃
⇣
map :

�
� : REN(⌦, )

��
u : TMA[�] (TM� � ⇢)

�

�
v : PA (TM� (TM� � ⇢), u,P� (TM� � ⇢,P� � ↵))

�

! PB

�
TM�" (TM� � ⇢, u), (TM⇧A[�]B[�"] � s)$u

,P�" ((TM� � ⇢, u), (P� � ↵, v))
�⌘

.8�, u, v, �.PB � (map � u v) ⌘ map (� � �) (TMA[�] � u) (PA � v)

=⌃
⇣
map :

�
� : REN(⌦, )

��
u : TMA[�] (TM� � ⇢)

�

�
v : PA[�] (TM� � ⇢, u,P� � ↵)

�

! PB[�"]
�
(TM� � ⇢, u), (TM⇧A[�]B[�"] � s)$u, (P� � ↵, v)

�⌘

.8�, u, v, �.PB[�"] � (map � u v) ⌘ map (� � �) (TMA[�] � u) (PA[�] � v)

=P⇧A[�]B[�"] (⇢, s,↵)

We verify the morphism part of ⇧[] below.

P(⇧AB)[�] �
0 (map, nat)

=P⇧AB �
0 (map, nat)

=��.map (�0 � �),��.nat (�0 � �)

=P⇧A[�]B[�"] �
0 (map, nat)

Now we prove the fundamental theorem for lam and app (i.e. provide the

corresponding methods). For lam, the map function is using the fundamental
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theorem for t which is in the context extended by the domain type A : Ty�,

so we need to supply an extended substitution and a witness of the predicate.

Moreover, we need to rename the substitution ⇢ and the witness of the predicate

↵ to account for the Kripke property. The naturality is given by the naturality

of the term itself.

Plam t (⇢,↵) :=
⇣
�� u v.Pt

�
(TM� � ⇢, u), (P� � ↵, v)

�

,�� u v �.natS Pt

�
(TM� � ⇢, u), (P� � ↵, v)

�
�

⌘

Application uses the map part of the logical predicate and the identity renaming.

Papp t (⇢,↵) := map
�
Pt (⇡1 ⇢, proj1 ↵)

�
id (⇡2 ⇢) (proj2 ↵)

We verify naturality of the interpretation of lam.

P⇧AB �
0 �Plam t (⇢,↵)

�

=P⇧AB �
0
⇣
�� u v.Pt

�
(TM� � ⇢, u), (P� � ↵, v)

�

,�� u v �.natS Pt

�
(TM� � ⇢, u), (P� � ↵, v)

�
�

⌘

= �� u v.Pt

�
(TM� (�

0 � �) ⇢, u), (P� (�0 � �)↵, v)
�

,�� u v �.natS Pt

�
(TM� (�

0 � �) ⇢, u), (P� (�0 � �)↵, v)
�
�

(functoriality of TM� and P�)

⌘ �� u v.Pt

�
(TM� � (TM� �

0
⇢), u), (P� � (P� �

0
↵), v)

�

,�� u v �.natS Pt

�
(TM� � (TM� �

0
⇢), u), (P� � (P� �

0
↵), v)

�
�

=Plam t (TM� �
0
⇢,P� �

0
↵)

Verifying the naturality of the interpretation of app t is more interesting: we need

to use naturality of Pt and naturality of the mapping function in Pt at a given

semantic element.

PB �
�
Papp t (⇢,↵)

�

=PB �
�
map

�
Pt (⇡1 ⇢, proj1 ↵)

�
id (⇡2 ⇢) (proj2 ↵)

�

(naturality of Pt (⇡1 ⇢, proj1 ↵))

⌘map
�
Pt (⇡1 ⇢, proj1 ↵)

�
�

�
TMA � (⇡2 ⇢)

� �
PA � (proj2 ↵)

�

(�id)
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⌘map
�
Pt (⇡1 ⇢, proj1 ↵)

�
(� � id)

�
TMA � (⇡2 ⇢)

� �
PA � (proj2 ↵)

�

(map�)

⌘map
�
P⇧AB � (Pt (⇡1 ⇢, proj1 ↵))

�
id
�
TMA � (⇡2 ⇢)

� �
PA � (proj2 ↵)

�

(naturality of Pt)

⌘map
⇣
Pt

�
TM� � (⇡1 ⇢),P� � (proj1 ↵)

�⌘
id
�
TMA � (⇡2 ⇢)

�

�
PA � (proj2 ↵)

�

(substitution calculus)

⌘map
⇣
Pt

�
⇡1 (TM�,A � ⇢),P� � (proj1 ↵)

�⌘
id
�
⇡2 (TM�,A � ⇢)

�

�
PA � (proj2 ↵)

�

=map
⇣
Pt

�
⇡1 (TM�,A � ⇢), proj1 (P�,A � ↵)

�⌘
id
�
⇡2 (TM�,A � ⇢)

�

�
proj2 (P�,A � ↵)

�

=Papp t (TM�,A � ⇢,P�,A � ↵)

Now we need to check the interpretations of the three equalities ⇧�, ⇧⌘ and

lam[].

Papp (lam t) (⇢,↵)

=map
�
Plam t (⇡1 ⇢, proj1 ↵)

�
id (⇡2 ⇢) (proj2 ↵)

=Pt

⇣�
TM� id (⇡1 ⇢), ⇡2 ⇢

�
,
�
P� id (proj1 ↵), proj2 ↵

�⌘

(identity law for TM� and P�)

⌘Pt

�
(⇡1 ⇢, ⇡2 ⇢), (proj1 ↵, proj2 ↵)

�

(⌘ law for substitutions and metatheoretic ⌃)

⌘Pt (⇢,↵)

For ⇧⌘ we only compare the map components as the naturality components are

equal by K.

map
�
Plam (app t) (⇢,↵)

�

=�� u v.Papp t

�
(TM� � ⇢, u), (P� � ↵, v)

�

=�� u v.map
�
Pt (⇡1 (TM� � ⇢, u),P� � ↵)

�
id
�
⇡2 (TM� � ⇢, u)

�
v

(substitution calculus)
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⌘�� u v.map
�
Pt (TM� � ⇢,P� � ↵)

�
idu v

(naturality of Pt)

⌘�� u v.map
�
P⇧AB � (Pt (⇢,↵))

�
idu v

(map�)

⌘�� u v.map
�
Pt (⇢,↵)

�
(� � id) u v

(�id)

⌘�� u v.map
�
Pt (⇢,↵)

�
� u v

=map
�
Pt (⇢,↵)

�

Finally, we have to verify lam[]. As before, we only verify the map components.

map
�
P(lam t)[�] (⇢,↵)

�

=map
⇣
Plam t

�
TM� ⇢,P� (⇢,↵)

�⌘

=�� u v.Pt

⇣�
TM� � (TM� ⇢), u

�
,
�
P� � (P� (⇢,↵)), v

�⌘

(naturality of TM� and P�)

⌘�� u v.Pt

⇣�
TM� (TM� � ⇢), u

�
,
�
P� (TM� � ⇢,P� � ↵), v

�⌘

(substitution calculus and P")

⌘�� u v.Pt

⇣
TM�" (TM� � ⇢, u),P�"

�
(TM� � ⇢, u), (P� � ↵, v)

�⌘

=�� u v.Pt[�"]
�
(TM� � ⇢, u), (P� � ↵, v)

�

=map
�
Plam t[�"] (⇢,↵)

�

This concludes the definition of the logical predicate interpretation.

5.8 Normal forms

In this section we define the Yoneda embedding for normal terms analogously to

TM. For a type � ` A we will denote it by NFA : FamPShTM�. We also define

another family NF⌘
A : FamPSh (⌃TM� TMA) which expresses that there exists a

normal form in NFA that is equal to the term in TMA.

As a first step, we define ⌘-long �-normal forms mutually with neutral terms

and the embedding p–q back to terms. These are the normal forms for the syntax

with the substitution calculus, base type, base family and function space. Note
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that neutral terms and normal forms are indexed by types, not normal types.

Variables are the ones defined in section 5.6.

dataNe : (� : Con) ! Ty�! Set

dataNf : (� : Con) ! Ty�! Set

p–q : Nf �A ! Tm�A

dataNe

var : Var�A ! Ne�A

app : Ne� (⇧AB) ! (v : Nf �A) ! Ne� (B[hpvqi])
dataNf

neuU : Ne�U ! Nf �U

neuEl : Ne� (El Â) ! Nf � (El Â)

lam : Nf (�, A)B ! Nf � (⇧AB)

p–q : Ne�A ! Tm�A

Neutral terms are terms where a variable is in a key position which precludes the

application of the rule ⇧�. ⌘-long normal forms mean that only neutral terms of

the base types are normal forms. This is required in order to have no redundancy

in normal forms. E.g. we don’t want to embed a neutral term n : Ne� (⇧AU) into

normal forms, only its ⌘-expanded variant: first we do appn (var vz) : Ne (�, A)U

and now we can embed it into normal forms by lam
�
appn (var vz)

�
: Nf � (⇧AU).

The embeddings into terms are defined in the obvious way.

pvar xq := pxq
papp v nq := pvq$pnq
pneuUnq := pnq
pneuElnq := pnq
plam vq := lam pvq

We define lists of neutral terms and normal forms. X is a parameter of the

list, it can stand for both Ne and Nf.

data –s (X : (� : Con) ! Ty�! Set) : Con ! Con ! Set

p–q : Xs��! Tms��
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dataXs

✏ : Xs� ·

– , – : (⌧ : Xs��) ! X �A[p⌧q] ! Xs� (�, A)

The embeddings into substitutions are defined pointwise.

p✏q := ✏

p⌧, nq := p⌧q, pnq

We also need renamings of (lists of) normal forms and neutral terms together

with lemmas relating their embeddings to terms. Again, X can stand for both

Ne and Nf.

–[–] : X �A ! (� : Vars �) ! X  A[p�q] p[]q : pnq[p�q] ⌘ pn[�]q
– � – : Xs��! Vars �! Xs � p�q : p⌧q � p�q ⌘ p⌧ � �q

These functions are all defined by induction on the first argument. Note that in

the case of lam we need to lift the renaming so that it leaves the last component

of the context untouched.

(var x)[�] := var (x[�])

(app v n)[�] := app (v[�]) (n[�])

(neuUn)[�] := neuU (n[�])

(neuEln)[�] := neuEl (n[�])

(lam v)[�] := lam (v[� � wk, vz])

✏ � � := ✏

(⌧, n) � � := (⌧ � �, p�q⇤n[�])

In addition, we prove the functor laws for both (lists of) neutral terms and normal

forms by induction on n (and ⌧ , respectively).

n[id] ⌘ n ⌧ � id ⌘ ⌧

n[�][�] ⌘ n[� � �] (⌧ � �) � � ⌘ ⌧ � (� � �)

Now we can define the presheaf X� and families of presheaves XA for any



5.8. NORMAL FORMS 131

A : Ty� where X is either NE or NF. The definitions follow those of TM.

� : Con X� : PShREN X� := Xs � X� � ⌧ := ⌧ � �

A : Ty� XA : FamPShTM� XA ⇢ := X  A[⇢] XA � n := n[�]

Functoriality is given by the above mentioned functor laws.

We define the natural transformation which embeds neutral substitutions into

substitutions and the family of natural transformations which embeds neutral

terms into terms.

p–q : NE� !̇TM� p–q : NEA
N!TMA

They are simply defined by p–q for (lists of) neutral terms and naturality is given

by p�q and p[]q.

We define a family of presheaves over TM� expressing that substitutions have

a normal form which is equal to them.

NF⌘
(�:Con) : FamPShTM�

NF⌘
� (⇢ : TM� ) := ⌃(⇢0 : NF� ).⇢ ⌘ p⇢0q

NF⌘
� (� : Vars⌦ ) (⇢0, p) : NF⌘

� (TM� � ⇢)| {z }
=⌃(⇢0:NF� ⌦).⇢�p�q⌘p⇢0q

:= NF� � ⇢
0
, ap (TM� p�q) p ⇧ p�q

The functor laws are satisfied by

NF⌘
� id (⇢0, p) = (⇢0 � id), ap (– � pidq) p ⇧ p�q ⌘ (⇢0, p)

and

NF⌘
� (� � �) (⇢0, p)

= ⇢
0 � (� � �), ap (– � p� � �q) p ⇧ p�q

(��, p�q,K)
⌘⇢

0 � (� � �), ap
�
(– � p�q) � p�q

�
p ⇧ ap (– � p�q) p�q ⇧ p�q

(apap)

⌘⇢
0 � (� � �), ap (– � p�q)

�
ap (– � p�q) p

� ⇧ ap (– � p�q) p�q ⇧ p�q
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(��, ap⇧)
⌘ (⇢0 � �) � �, ap (– � p�q)

�
ap (– � p�q) p ⇧ p�q

� ⇧ p�q
=NF⌘

� �
�
NF⌘

� � (⇢0, p)
�

Analogously, we define NF⌘ for terms.

NF⌘
(A:Ty�) : FamPSh (⌃TM� TMA)

NF⌘
A (⇢ : TM� , s : TMA ⇢) := ⌃(s0 : NFA ⇢).s ⌘ ps0q

NF⌘
A (� : Vars⌦ ) (s0, p) : NF⌘

A (TM� � ⇢,TMA � s)| {z }
=⌃(s0:NFA (TM� � ⇢)).s[p�q]⌘ps0q

:= NFA � s
0
, ap (TMA p�q) p ⇧ p[]q

The functor laws can be proven the same way as above.

NF⌘
A id (s0, p) = (s0[id]), ap (–[pidq]) p ⇧ p[]q ⌘ (s0, p)

NF⌘
A (� � �) (s0, p)

= s
0[� � �], ap (–[p� � �q]) p ⇧ p[]q

([][], p[]q, apap, ap⇧,K)
⌘ s

0[�][�], ap (–[�])
�
ap (–[�]) p ⇧ p[]q

� ⇧ p[]q
=NF⌘

A �
�
NF⌘

A � (s0, p)
�

We set the parameters of the logical predicate at the base type and family by

defining Ū and Ēl. We will use NF⌘ to define them. The predicate at the base

type for a term says that there exists a normal form at the base type which is

equal to this term.

Ū : FamPShTMU

Ū (Â : Tm U) := NF⌘
U (id, [id]⇤Â)

Ū (� : Vars⌦ )
�
↵ : NF⌘

U (id, Â)
�
: NF⌘

U (id, Â[p�q]) := U[]⇤NF
⌘
� ↵

Functoriality follows from that of NF⌘
U.

Ēl : FamPSh
⇣
⌃
�
⌃ (TMU TMEl)

�
Ū[wk]

⌘

Ēl (Â, t : Tm (El Â), p) := NF⌘
El Â (id, [id]⇤t)
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Ēl (� : Vars⌦ )
�
↵ : NF⌘

El Â (id, t)
�
: NF⌘

El Â (id, t[p�q]) := El[]⇤NF
⌘
� ↵

Functoriality follows from that of NF⌘
El Â.

Now we can interpret any term in the logical predicate interpretation over

REN with base type interpretations Ū and Ēl. We denote the interpretation of t

by Pt.

Note that we can embed renamings into neutral substitutions pointwise.

5.9 Quote and unquote

5.9.1 Motives

By the logical predicate interpretation parameterised by Ū and Ēl we have the

following two things:

• a term at the base type or base family is equal to a normal form,

• this property is preserved by the other type formers (functions and substi-

tuted types).

We make use of this fact to lift the first property to any type. We do this by

defining a quote function by induction on the type. Quote takes a term which

preserves the predicate and maps it to a normal form that it is equal to it. Because

of the nature of function space, we need an unquote function in the other direction

as well, mapping neutral terms to the witness of the predicate.

More precisely, we define the quote function q and unquote u by induction on

the structure of contexts and types. For this, we need to define a model of type

theory in which only the motives for contexts and types are interesting.

The motives for a context � and a type A : Ty� are given below and are

also depicted in figure 5.4. To express the commutativity of the diagrams we use

sections and the NF⌘ families of presheaves. We only write ⌃ once for iterated

usage.

u� : NE�
s! P�[p–q]

q� : ⌃TM� P�
s! NF⌘

�[wk]

uA : ⌃TM� NEA P�[wk]
s! PA[id, p–q, id]

qA : ⌃TM� TMA P�[wk]PA
s! NF⌘

A[wk][wk]
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NE� ⌃TM� P� NF�

TM�

u� q�

p–q p–q
proj

⌃TM� NEA P�[wk] ⌃TM� TMA P�[wk]PA ⌃TM� NFA P�[wk]

⌃TM� TMA P�[wk]

uA qA

p–q p–q
proj

Figure 5.4: The type of quote and unquote for a context � and a type � ` A.
We only write one ⌃ for iterated ⌃s.

In the type of uA we define the natural transformation id, p–q, id in the obvious

way, it just embeds the second components (neutral terms) into terms.

Unquote for a context takes a neutral substitution and returns a proof that the

logical predicate holds for it. Quote takes a substitution for which the predicate

holds and returns a normal substitution together with a proof of convertibility.

The type of unquote and quote for types is more involved as they depend on a

substitution for which the predicate needs to hold.

The motives for substitutions and terms are just the constant > functions,

hence all their methods are trivial.

5.9.2 Methods for the substitution calculus

Unqoute and quote for the empty context return the element of the unit type and

the empty substitution. Naturality is trivial in both cases.

u· (⌧ : NE· ) : > := tt

q·
�
(� : TM· ), (↵ : >)

�
: ⌃(⇢0 : NF· ).⇢ ⌘ p⇢0q := (✏, ✏⌘)

For extended contexts, unquote and quote just call the corresponding func-

tions for each type pointwise. As the unqoute for a type depends on the witness

of the predicate for the context, we need to use u� ⌧ again.
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u�,A

�
(⌧, n) : NE�,A 

�
: ⌃
�
↵ : P� (⇡1 p⌧, nq)

�
.PA (⇡1 p⌧, nq, ⇡2 p⌧, nq,↵)

:= u� ⌧, uA (p⌧q, n, u� ⌧)

To define quote pointwise, we need to split the substitution ⇢ into two by using ⇡1

and ⇡2. Then we split the results again using let bindings because we need to put

the normal forms and the equalities back pointwise again. ap, is the congruence

law for substitution extension (see section 3.3).

q�,A

�
(⇢ : TM� ), (↵, a) : P�,A ⇢

�
: ⌃(⇢0 : NF�,A ).⇢ ⌘ p⇢0q
:= let (⌧, p) := q� (⇡1 ⇢,↵)

(n, q) := qA (⇡1 ⇢, ⇡2 ⇢,↵, a)

in (⌧, n), (ap, p q)

Naturality is proven pointwise.

P�,A �
�
u�,A (⌧, n)

�

=P� � (u� ⌧),PA �
�
uA (p⌧q, n, u� ⌧)

�

(naturality of u� and uA)

⌘ u� (NE� � ⌧), uA
�
TM� � p⌧q,NEA � n, u� (NE� � ⌧)

�

(naturality of the embedding into terms p–q)
⌘ u� (NE� � ⌧), uA

�
pNE� � ⌧q,NEA � n, u� (NE� � ⌧)

�

= u�,A

�
NE�,A � (⌧, n)

�

To prove naturality for quote, it is enough to prove the NF part of NF⌘ as the

equalities will be equal by K.

NF�,A �

⇣
proj1

�
q�,A (⇢, (↵, a))

�⌘

= NF� �

⇣
proj1

�
q� (⇡1 ⇢,↵)

�⌘

,NFA �

⇣
proj1

�
qA (⇡1 ⇢, ⇡2 ⇢,↵, a)

�⌘

(naturality of q� and qA)

⌘ proj1
�
q� (TM� � (⇡1 ⇢),P� � ↵)

�



136 CHAPTER 5. NORMALISATION BY EVALUATION

, proj1
�
qA (TM� � (⇡1 ⇢),TMA � (⇡2 ⇢),P� � ↵,PA � a)

�

(⇡1�, ⇡2[])

⌘ proj1
�
q� (⇡1 (TM�A � ⇢),P� � ↵)

�

, proj1
�
qA (⇡1 (TM�,A � ⇢), ⇡2 (TM�,A � ⇢),P� � ↵,PA � a)

�

= proj1

⇣
q�,A

�
TM�A � ⇢,P�,A � (↵, a)

�⌘

Substituted types are quoted and unquoted at the substituted inputs.

uA[�] (⇢, n,↵) : PA

�
TM� ⇢, pnq,P� (⇢,↵)

�
:= uA

�
TM� ⇢, n,P� (⇢,↵)

�

qA[�] (⇢, s,↵, a) : ⌃(s
0 : NFA[�] ⇢).s ⌘ ps0q := qA

�
TM� ⇢, s,P� (⇢,↵), a

�

Naturality for A[�] follows from naturality of A and TM� and P�.

PA[�] �
�
uA[�] (⇢, n,↵)

�

=PA �

⇣
uA
�
TM� ⇢, n,P� (⇢,↵)

�⌘

(naturality of uA)

⌘ uA
�
TM⇥ � (TM� ⇢),NEA � n,P⇥ � (P� (⇢,↵))

�

(naturality of TM� and P�)

⌘ uA
�
TM� (TM� � ⇢),NEA[�] � n,P� (TM� � ⇢,P� � ↵)

�

= uA[�] (TM� � ⇢,NEA[�] � n,P� � ↵)

NFA[�] �

⇣
proj1

�
qA[�] (⇢, s,↵, a)

�⌘

=NFA �

⇣
proj1

�
qA
�
TM� ⇢, s,P� (⇢,↵), a

��⌘

(naturality of qA)

⌘ proj1

⇣
qA
�
TM⇥ � (TM� ⇢),TMA � s,P⇥ � (P� (⇢,↵)),PA � a

�⌘

(naturality of TM� and P�)

⌘ proj1

⇣
qA
�
TM� (TM� � ⇢),TMA[�] � s,P� (TM� ⇢,P� � ↵),PA � a

�⌘

= proj1
�
qA[�] (TM� � ⇢,TMA[�] � s,P� � ↵,PA[�] � a)

�

We need to verify that the two equalities [][] and [id] hold in the interpretation.

It is enough to check that the function parts of the natural transformations are
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equal.

The rule [][] is validated by associativity of substitution composition.

uA[�][⌫] (⇢, n,↵)

= uA
�
TM� (TM⌫ ⇢), n,P� (TM⌫ ⇢,P⌫ (⇢,↵))

�

(��)

⌘ uA
�
TM��⌫ ⇢, n,P� (TM⌫ ⇢,P⌫ (⇢,↵))

�

= uA[��⌫] (⇢, n,↵)

qA[�][⌫] (⇢, s,↵, a)

= qA
�
TM� (TM⌫ ⇢), s,P� (TM⌫ ⇢,P⌫ (⇢,↵)), a

�

(��)

⌘ qA (TM��⌫ ⇢, s,P� (TM⌫ ⇢,P⌫ (⇢,↵)), a)

= qA[��⌫] (⇢, s,↵, a)

The rule [id] is validated by the left identity law for substitutions.

uA[id] (⇢, n,↵)

= uA (TMid ⇢, n,↵)

(id�)

⌘ uA (⇢, n,↵)

qA[id] (⇢, s,↵, a)

= qA (TMid ⇢, s,↵, a)

(id�)

⌘ qA (⇢, s,↵, a)

5.9.3 Methods for the base type and base family

Quote at the base type and base family are trivial, since in these cases the logical

predicate says exactly the same as NF⌘. For unquote, we just return the neutral

term embedded into normal forms and the proof of equality is reflexivity.
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The definitions at the base type are given as follows.

uU
�
(⇢ : TM� ), (n : Ne U[⇢]),↵

�
: ⌃(n0 : NFU id).pnq ⌘ pn0q
:= neuU (U[]⇤n), refl

qU
⇣
⇢, t,↵,

�
a : NF⌘

U (id, t)
�⌘

: NF⌘
U (⇢, t) := U[]⇤a

Naturality is trivial. It is enough to check the equality of the first components as

the second components are equalities.

proj1

⇣
PU �

�
uU (⇢, n,↵)

�⌘
= n[�] = proj1

�
uU (TM� � ⇢,NEU � n,P� � ↵)

�

NFU �

⇣
proj1

�
qU (⇢, t,↵, a)

�⌘
= (proj1 a)[�]

= proj1
�
qU (TM� � ⇢,TMU � t,P� � ↵,PU � a)

�

Unqoute and quote at the base family are defined as follows.

uEl Â
�
(⇢ : TM� ), (n : Ne (El Â[⇢])),↵

�
: ⌃(n0 : NFEl Â id).pnq ⌘ pn0q
:= neuEl (El[]⇤n), refl

qEl Â

⇣
⇢, t,↵,

�
a : NF⌘

El Â (id, t)
�⌘

: NF⌘
El Â (⇢, t)

:= El[]⇤a

Naturality is trivial, the proof is the same as in the case of U.

As a last step in defining the methods for the base type and family, we verify

the semantic counterparts of the laws U[] and El[].

uU[�] (⇢, n,↵) = uU
�
TM� ⇢, n,P� (⇢,↵)

�
= (n, refl) = uU (⇢, n,↵)

qU[�] (⇢, t,↵, a) = qU
�
TM� ⇢, t,P� (⇢,↵), a

�
= a = uU (⇢, t,↵, a)

u(El Â)[�] (⇢, n,↵) = uEl Â
�
TM� ⇢, n,P� (⇢,↵)

�
= (n, refl)

= uEl (Â[�]) (⇢, n,↵)

q(El Â)[�] (⇢, t,↵, a) = qEl Â
�
TM� ⇢, t,P� (⇢,↵), a

�
= a

= uEl (Â[�]) (⇢, t,↵, a)
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5.9.4 Methods for the function space

Unquoting a function says that a neutral function n maps inputs for which the

predicate holds into outputs for which the predicate holds. We show this by

first quoting the input thus getting a normal form, and then we can apply the

normal form (denoted m) to the neutral function obtaining a neutral term at the

codomain type. After unquoting this result we obtain the witness of the predicate

at the result type and this is what we wanted. We write down the expanded types.

u⇧AB

�
(⇢ : TM� ), (n : NE⇧AB ⇢),↵

�

: ⌃
⇣
map :

�
� : REN(⌦, )

��
u : TMA (TM� � ⇢)

�

�
v : PA ⌦ (TM� � ⇢, u,P� � ↵)

�

! PB ⌦

�
(TM� � ⇢, u), (TM⇧AB � pnq)$u, (P� � ↵, v)

�⌘

.8�, u, v, �.PB � (map � u v) ⌘ map (� � �) (TMA � u) (PA � v)

:= �� u v.let (m, p) := qA (TM� � ⇢, u,P� � ↵, v)

: ⌃
�
m : NFA (TM� � ⇢)

�
.u ⌘ pmq

in uB
�
(TM� � ⇢, u), (p⇤app (NE⇧AB � n)m), (P� � ↵, v)

�

,�� u v �.r

The naturality part of the function is given by the following equational reasoning

denoted r. It combines the naturality of quote and unquote for the smaller types

A and B.

r :=PB �

⇣
uB
�
(TM� � ⇢, u)

, app (NE⇧AB � n) (proj1 (qA (TM� � ⇢, u,P� � ↵, v)))

, (P� � ↵, v)
�⌘

(naturality of uB)

⌘ uB
⇣
TM�,A � (TM� � ⇢, u)

,NEB �
�
app (NE⇧AB � n) (proj1 (qA (TM� � ⇢, u,P� � ↵, v)))

�

,P�,A �
�
P� � ↵, v

�⌘

= uB
⇣
TM�,A � (TM� � ⇢, u)

, app
�
NE⇧AB � (NE⇧AB � n)

�
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�
NFA � (proj1 (qA (TM� � ⇢, u,P� � ↵, v)))

�

,P�,A �
�
P� � ↵, v

�⌘

(, � and naturality of qA)

⌘ uB
⇣�

TM� � (TM� � ⇢),TMA � u
�

, app
�
NE⇧AB � (NE⇧AB � n)

�

�
proj1 (qA (TM� � (TM� � ⇢),TMA � u,P� � (P� � ↵),PA � v))

�

,
�
P� � (P� � ↵),PA � v

�⌘

(functor laws for TM�, NE⇧AB and P�)

⌘ uB
⇣�

TM� (� � �) ⇢,TMA � u
�

, app
�
NE⇧AB (� � �)n

�

�
proj1 (qA (TM� (� � �) ⇢,TMA � u,P� (� � �)↵,PA � v))

�

,
�
P� (� � �)↵,PA � v

�⌘

Quoting a function has as input a term t which preserves the predicate and we

would like to get a normal form t
0 which is equal to t. First we unquote the last

variable in the extended context �, A thereby getting a witness a of the predicate

at A. Then we quote app t at B supplying a as a witness that the predicate holds

at this extended context. f tells us that the predicate holds for the result.

q⇧AB (⇢, t,↵, f) : ⌃(t0 : NF⇧AB ⇢).t ⌘ pt0q
:= let a := uA (TM� wk ⇢, var vz,P� wk↵)

(t0, p) := qB
�
⇢ ", app t, (P� wk↵, a),map f wk vz a

�

in (lam t
0
,⇧⌘�1 ⇧ ap lam p)

p says that app t ⌘ pt0q, hence we can construct the equality that we need by

first using ⇧⌘�1 i.e. t ⌘ lam (app t) and then ap lam p which says lam (app t) ⌘
lam pt0q = plam t

0q.

The definition of quote for the function space is the place which forces us to

define unquote as we need a way to show that variables witness the predicate,

and this is given by unquote. Also, this is where we need the Kripke function

space: we need to use the semantic function f in a future world (the extended

context) and this can be achieved using wk which takes us to this future world.
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The choice of using REN as the base category becomes clear here: we need a wide

subcategory of the category of contexts and substitutions which at least includes

wk and REN is a convenient choice (the category of weakenings could be another

choice).

Now we check that the above definitions are natural. We don’t check equality

of equalities. Naturality of unquote at ⇧ follows from the functor laws for TM�,

NE⇧AB and P�.

P⇧AB �
0
⇣
map

�
u⇧AB (⇢, n,↵)

�⌘

=�� u v.uB
⇣
(TM� (�

0 � �) ⇢, u)

, app
�
NE⇧AB (�0 � �)n

�

�
proj1 (qA (TM� (�

0 � �) ⇢, u,P� (�0 � �)↵, v))
�

,
�
P� (�

0 � �)↵, v
�⌘

(functoriality of TM�, NE⇧AB and P�)

⌘�� u v.uB
⇣
(TM� � (TM� �

0
⇢), u)

, app
�
NE⇧AB � (NE⇧AB �

0
n)
�

�
proj1 (qA (TM� � (TM� �

0
⇢), u,P� � (P� �

0
↵), v))

�

,
�
P� � (P� �

0
↵), v

�⌘

=map
�
u⇧AB (TM� �

0
⇢,NE⇧AB �

0
n,P� �

0
↵)
�

Naturality of quote for ⇧AB depends on naturality of quote for B and unquote

for A and also the naturality of f .

NF⇧AB �

⇣
proj1

�
q⇧AB (⇢, t,↵, f)

�⌘

=NF⇧AB �

✓
lam

⇣
let a := uA (TM� wk ⇢, var vz,P� wk↵)

in proj1
�
qB (⇢ ", app t, (P� wk↵, a),map f wk vz a)

�⌘◆

= lam
⇣
let a := uA (TM� wk ⇢, var vz,P� wk↵)

in NFB (� ")
�
proj1

�
qB (⇢ ", app t, (P� wk↵, a),map f wk vz a)

��⌘

(naturality of qB)

⌘ lam
⇣
let a := uA (TM� wk ⇢, var vz,P� wk↵)
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in proj1
�
qB (TM�,A (� ") (⇢ "),TMB (� ") (app t)

,P�,A (� ") (P� wk↵, a),PB (� ") (map f wk vz a))
�⌘

(substitution calculus, app[], nat f)

⌘ lam
⇣
let a := PA (� ")

�
uA (TM� wk ⇢, var vz,P� wk↵)

�

in proj1
�
qB ((TM� � ⇢) ", app (TM⇧AB � t)

, (P� wk (P� � ↵), a),map f (� � wk) vz a)
�⌘

(naturality of uA, substitution calculus and definition of the action on

morphisms for P⇧AB)

⌘ lam
⇣
let a := uA

�
TM� wk (TM� � ⇢), var vz,P� wk (P� � ↵)

�

in proj1
�
qB ((TM� � ⇢) ", app (TM⇧AB � t)

, (P� wk (P� � ↵), a),map (P⇧AB � f)wk vz a)
�⌘

= proj1
�
q⇧AB (TM� � ⇢,TM⇧AB � t,P� � ↵,P⇧AB � f)

�

The next step is verifying that quote and unquote preserve the equality ⇧[].

This is straightforward in both cases.

map
�
u(⇧AB)[�] (⇢, n,↵)

�

=map
⇣
u⇧AB

�
TM� ⇢, n,P� (⇢,↵)

�⌘

=�� u v.uB
⇣�

TM� � (TM� ⇢), u
�

, app (NE⇧AB � n)
�
proj1 (qA (TM� � (TM� ⇢), u,P� � (P� (⇢,↵)), v))

�

,
�
P� � (P� (⇢,↵)), v

�⌘

(substitution calculus, P", and naturality of TM� and P�)

⌘�� u v.uB
⇣
TM�" (TM⇥ � ⇢, u)

, app (NE⇧AB � n)
�
proj1 (qA (TM� (TM⇥ � ⇢), u,P� (TM⇥ � ⇢,P⇥ � ↵), v))

�

,P�"
�
(TM⇥ � ⇢, u),P⇥ � ↵

�
, v

⌘

=�� u v.uB[�"]

⇣�
TM⇥ � ⇢, u

�

, app (NE⇧AB � n)
�
proj1 (qA[�] (TM⇥ � ⇢, u,P⇥ � ↵, v))

�
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,
�
P⇥ � ↵, v

�⌘

=map
�
u⇧A[�]B[�"] (⇢, n,↵)

�

proj1
�
q(⇧AB)[�] (⇢, t,↵, f)

�

= proj1

⇣
q⇧AB

�
TM� ⇢, t,P� (⇢,↵), f

�⌘

= lam
⇣
let a := uA

�
TM� wk (TM� ⇢), var vz,P� wk (P� (⇢,↵))

�

in proj1
�
qB ((TM� ⇢) ", app t, (P� wk (P� (⇢,↵)), a),map f wk vz a)

�⌘

(substitution calculus, P", and naturality of TM� and P�)

⌘ lam
⇣
let a := uA

�
TM� (TM⇥ wk ⇢), var vz,P� (TM⇥ wk ⇢,P⇥ wk↵)

�

in proj1
�
qB (TM�" (⇢ "), app t,P�"(⇢ ", (P⇥ wk↵, a)),map f wk vz a)

�⌘

= lam
⇣
let a := uA[�] (TM⇥ wk ⇢, var vz,P⇥ wk↵)

in proj1
�
qB[�"] (⇢ ", app t, (P⇥ wk↵, a),map f wk vz a)

�⌘

= proj1
�
q⇧A[�]B[�"] (⇢, t,↵, f)

�

This concludes the definition of quote and unquote as the methods for sub-

stitutions and terms are trivial.

5.10 Normalisation

Using the definition of the logical predicate and quote we can define normalisation

and show completeness as follows.

normA (t : Tm�A) : Nf �A := proj1

⇣
qA
�
id, [id]�1⇤t, u� id,Pt (id, u� id)

�⌘

complA (t : Tm�A) : t ⌘ pnormA tq := proj2

⇣
qA
�
id, [id]�1⇤t, u� id,Pt (id, u� id)

�⌘

We use quote to produce an element of NF⌘
A: as arguments we supply the

identity substitution, the term itself (which needs to be transported along [id]

to get a type which is substituted by identity), the unquoted identity (neutral)

substitution and the fundamental theorem of the logical predicate at the term t.

This needs a starting point i.e. a substitution for which the logical relation holds,

and again, this is given by the identity substitution and unquoting it.
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We prove stability by mutual induction on neutral terms and normal forms.

n : Ne�A
stabn : Ppnq (id, u� id) ⌘ uA (id, n, u� id)

v : Nf �A
stabv : normA pvq ⌘ v

For neutral terms, we have the following cases.

stabvar vz : Ppvar vzq (id, u�,A id)

=Pvz (id, u�,A id)

= uA (pwkV idq, var vz, u� id)
⌘ uA

�
TMwk id, var vz,Pwk (id, u�,A id)

�

= uA[wk] (id, var vz, u�,A id)

stabvar (vsx) : Ppvar (vsx)q (id, u�,B id)

=Ppxq[wk] (id, u�,B id)

=Ppxq
�
TMwk id, u� (wkV id)

�

⌘Ppxq
�
TM� wk id, u� (NE� wk id)

�

(naturality of u� and Pptq)

⌘PA wk
�
Ppxq (id, u� id)

�

(stabvar x)

⌘PA wk
�
uA (id, var x, u� id)

�

(naturality of u� and uA)

⌘ uA
�
TM� wk id,NE� wk (var x), u� (NE� wk id)

�

⌘ uA
�
TMwk id,NE� wk (var x), u� (wkV id)

�

= uA[wk]

�
id, var (vs x), u�,B id

�

stabappn v : Ppappn vq (id, u� id)

=P(app pnq)[hpvqi] (id, u� id)

=Papp pnq
�
(id, pvq), (u� id,Ppvq (id, u� id))

�

=map
�
Ppnq (id, u� id)

�
id pvq

�
Ppvq (id, u� id)

�

(stabn)

⌘map
�
u⇧AB (id, n, u� id)

�
id pvq

�
Ppvq (id, u� id)

�

= uB
⇣
(id, pvq), appn

�
proj1 (qA (id, pvq, u� id,Ppvq (id, u� id)))

�

,
�
u� id,Ppvq (id, u� id)

�⌘
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(stabv)

⌘ uB
⇣
(id, pvq), appn v,

�
u� id,Ppvq (id, u� id)

�⌘

= uB[hpvqi] (id, appn v, u� id)

In the case of the zero De Bruijn index, the proof is just reasoning in the sub-

stitution calculus, for the successor case we need to use naturality of unquote

and stability at the structurally smaller case. In the case of application, we use

stability at the neutral function and at the normal argument.

For normal forms, we proceed as follows.

stabneuUn : normU pneuUnq

= proj1

⇣
qU
�
id, pnq, u� id,Ppnq (id, u� id)

�⌘

= proj1
�
Ppnq (id, u� id)

�

(stabn)

⌘ proj1
�
uU (id, n, u� id)

�

= neuUn

stabneuEln : normEl Â pneuElnq
= proj1

�
Ppnq (id, u� id)

�

(stabn)

⌘ proj1
�
uEl Â (id, n, u� id)

�

= neuEln

stablam v : norm⇧AB plam vq

= proj1

⇣
q⇧AB

�
id, lam pvq, u� id,Plam pvq (id, u� id)

�⌘

⌘ lam
⇣
let a := uA

�
wk, var vz,P� wk (u� id)

�

in proj1
�
qB
�
id, app (lam pvq), (P� wk (u� id), a)

,map (Plam pvq (id, u� id))wk vz a
��⌘

(⇧�, naturality of u�)

⌘ lam
⇣
let a := uA (wk, var vz, u� wk)

in proj1
�
qB
�
id, pvq, (u� wk, a)

,Ppvq ((wk, vz), (u� wk, a))
��⌘
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(definition of u�,A and substitution calculus)

⌘ lam
⇣
proj1

�
uB (id, pvq, u�,A id,Ppvq (id, u�,A id))

�⌘

(stabv)

⌘ lam v

In the case of an element of the base type and base family we just use the induction

hypotheses for the neutral term. In the case of abstraction, we use stability at

the body of the lambda abstraction, but we need some work to transform the

definition into a form where we can apply this induction hypothesis.

We fullfilled the requirements for the specification of normalisation by provid-

ing the following isomorphism between terms and normal forms.

complA normA #
Tm�A
Nf �A " p–q stab

5.11 Consistency

Using normalisation, we can prove properties of our type theory by reasoning

only about normal forms. E.g. if we prove a property P : Tm�A ! Set for every

normal form, i.e.

p : (v : Nf �A) ! P pvq,

we also get that it is true for every term:

�t.(complA t)�1⇤
�
p (normA t)

�
: (t : Tm�A) ! P t.

We use this method to prove consistency of our type theory, that is there is

no element of the type Tm · U. Another proof of consistency used the standard

model (section 3.6).

We do mutual induction on variables, neutral terms and normal forms. We

show that in the empty context there are no variables and neutral terms at all.

For normal forms, we derive ? from witnesses that the context is empty and the

type is U.
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consVar : Var�A ! · ⌘ �! ?

consNe : Ne�A ! · ⌘ �! ?

consNf : Nf �A ! · ⌘ �! A ⌘ U ! ?

consVar
�
vz : Var (�, A) (A[wk])

�
p := disj·�,A p

consVar
�
vs x : Var (�, B) (A[wk])

�
p := disj·�,B p

consNe (var x) p := consVar x p

consNe (appn v) p := consNe
n p

consNf (neuUn) p q := consNe
n p

consNf (neuEln) p q := consNe n p

consNf (lam v) p (q : ⇧AB ⌘ U) := disj(⇧AB)U q

For variables, we use disjointness of · and �, A, for neutral terms, we use the

induction hypotheses, and for normal abstractions we use disjointness of ⇧ and

U. The disjointness properties were proved in section 3.4.1.
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Chapter 6

Conclusions and further work

In this thesis we observe that the syntax of type theory can be defined in a typed

way as a quotient inductive inductive type (QIIT). We use four types to build up

the syntax: the type of contexts, types, substitutions and terms. The conversion

relations for each type are represented as the equalities (identity types) of these

types, respectively. The equivalence relation, congruence and coercion rules in

the conversion relation are given by those for the identity type, while the � and

⌘ conversion rules are added as equality constructors.

We show that reasoning in this representation of the syntax is possible by

defining some functions (the polymorphic identity function, the predicate space

etc.) and deriving some laws in the syntax such as the identity substitution law

for terms.

To define functions out of the syntax one needs to provide the motives and

methods for the eliminator of the syntax. Collecting the motives and methods of

the non dependent eliminator together, we observe that they form a well-known

notion of model of type theory called categories with families [48]. To define a

dependent function from the syntax one needs to provide the motives and methods

for the dependent eliminator which together form a “dependent model”.

As a simple usage of the non dependent eliminator (recursor) we define models

which justify disjointness of context constructors and type constructors. Using

the dependent eliminator we can prove injectivity of type constructors.

We define the standard model where every object theoretic construct is mapped

to its meta theoretic counterpart. For example, object theoretic function space

is mapped to meta theoretic function space. In this interpretation, the seman-

tic counterpart for all equality constructors are reflexivity which shows that the

149
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interpretation is strict.

Parametricity is a way to characterise abstraction properties. For example, it

provides means to show that a function of type ⇧(A : U).A ! A is the identity

function; the intuitive explanation is that the type A cannot be inspected, the

function needs to work uniformly for all As. This is formalised by the idea that

terms respect logical relations (and also unary logical relations, called logical

predicates). To express the parametricity property of type theory, the language

of type theory itself is enough: we can define the logical predicate interpretation as

a syntactic translation. This is what we did in chapter 4 for our basic type theory.

The logical predicate interpretation shows that our syntax is workable in practice.

A possible application of this translation would be the automatic derivation of

parametricity properties when reasoning in type theory. Another application is

deriving the eliminator for a closed QIIT as logical predicates formalise the idea

of a dependent family over (families of) types which is exactly what the motives

of a dependent eliminator are. The methods for the eliminator and the equalities

that the eliminator needs to satisfy can also be derived using logical relations.

Normalisation is a very important property of type theory. Its consequences

are that the theory is consistent and that the conversion relation is decidable.

These are important metatheoretic properties of a type theory. Furthermore,

normalisation is the way of running programs written in type theory, hence it

is essential for using type theory as a programming language. Normalisation is

specified by a function which maps a term into a normal form which is equal to

the original term. Normal forms are the subset of terms where no application is

applied directly to a lambda. We prove normalisation using a model construction

together with a quote function from the model back into the syntax. In fact, this

function outputs normal forms instead of terms. By concatenating the eliminator

and the quote function, we get normalisation. The (dependent) model we use

is the presheaf logical predicate interpretation. This is similar to the logical

predicate interpretation defined in chapter 4, however it targets the metatheory,

not the syntax and is parameterised by a category. It can be seen as a dependent

variant of the presheaf model of type theory [58].

Of course, this thesis is by far not the last word on internalising type theory

in type theory.

As far as the definition of the syntax is concerned, we would like to extend

it with ⌃ types, inductive types, universes and coinductive types. Furthermore,
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QIITs should be internalised to make the internalisation full, that is, to have

every meta theoretic construct in our object theory (obviously, we would have

fewer universes in the object theory than in the metatheory). To express QIITs

(or the more general HIITs), we might need a cubical type theory [40].

We used extensional type theory as a convenient notation in this thesis instead

of intensional type theory with axioms. This choice was justified by the fact

that the latter theory is conservative over the former [56, 81]. We would like to

investigate the option of using a cubical theory for formalisation which has a more

concise notation than our formal metatheory.

As demonstrated by section 3.3, our formal syntax is still hard to use in

practice. One could help this by defining an inductive recursive version of the

syntax and maps back and forth where substitution is defined recursively. With

this at hand we would not need to use explicit substitutions whenever we define

terms and the notation would be closer to the informal syntax. Furthermore, we

would also like to develop an untyped version of the syntax with preterms together

with a typechecking algorithm which outputs terms in our well-typed syntax. The

typechecking algorithm would need the proof of decidability of normal forms,

which is also left as future work.

The di�culty in proving the decidability of equality of normal forms comes

from normal forms being indexed by (non-normal) contexts and types. To check

whether two application neutral terms

app
�
n : Ne� (⇧AB)

�
(v : Nf �A) : Ne� (B[hvi])

and

app
�
n
0 : Ne� (⇧A

0
B

0)
�
(v0 : Nf �A0) : Ne� (B0[hv0i])

are equal (knowing that B[hvi] ⌘ B
0[hv0i]), we first need to check whether the

types A, A0 and B, B0 are equal, then we need to check equality of the neutral

functions n and n
0 and finally the normal arguments v and v

0. But types again

include terms, so it seems that we can only decide equality of normal forms if

they only contain normal types and normal contexts.

We used the internal logical predicate interpretation to derive the eliminator

for a QIIT (section 4.3), however we did not show that this algorithm is correct.

Correctness could be proven for certain well studied cases of inductive types such
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as W-types. We would need to show that for W-types our method gives the

expected eliminator. We would also like to extend this method to open types

(e.g. parameterised types such as that of lists or vectors) and coinductive types.

We defined a presheaf logical predicate interpretation by fixing the base cate-

gory to the category of renamings and also fixing the Yoneda embedding TM over

which the logical predicate has been defined. TM can be seen as a weak morphism

of models from the syntax the presheaf model. This means that certain equations

are only satisfied up to isomorphism (e.g. we don’t have TM�,A ⌘ ⌃TM� TMA,

but we do have TM�,A
⇠= ⌃TM� TMA). We would like to investigate whether

the presheaf logical predicate interpretation can be generalised to arbitrary weak

presheaf models. More generally, we would like to understand the high level pic-

ture and the relationship between normalisation and categorical glueing as hinted

in section 5.5.

The metatheory of quotient inductive types (not to mention quotient inductive

inductive types) is not worked out yet. We believe that the setoid model [8] could

be used to justify these. In addition, work on the more general higher inductive

types would also validate these constructions.

Having an internal syntax of type theory opens up the exciting possibility of

developing template type theory. We may define an interpretation of type theory

by defining an algebra for the syntax and the interpretation of new constants in

this algebra. We can then interpret code using these new principles by interpret-

ing it in the given algebra. The new code can use all the conveniences of the host

system such as implicit arguments and definable syntactic extensions. There are

a number of exciting applications of this approach such as using presheaf models

to justify guarded type theory [60]. Another example is to model the local state

monad (Haskell’s STM monad) in another presheaf category to be able to pro-

gram with and reason about local state and other resources. In the extreme such

a template type theory may allow us to start with a fairly small core because

everything else can be programmed as templates. This may include the compu-

tational explanation of homotopy type theory by the cubical model — we may

not have to build in univalence into our type theory.
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[72] Per Martin-Löf. An intuitionistic theory of types. In Twenty-five years of

constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,

pages 127–172. Oxford Univ. Press, New York, 1998.

[73] The Coq development team. The Coq proof assistant reference manual. Log-

iCal Project, 2004. Version 8.0.

[74] Conor McBride. Dependently typed functional programs and their proofs.

PhD thesis, University of Edinburgh, 1999.

[75] Conor McBride. Outrageous but meaningful coincidences: dependent type-

safe syntax and evaluation. In Bruno C. d. S. Oliveira and Marcin Zalewski,

editors, Proceedings of the ACM SIGPLAN Workshop on Generic Program-

ming, pages 1–12. ACM, 2010.

[76] Conor McBride and James McKinna. Functional pearl: I am not a number

— I am a free variable. In Proceedings of the 2004 ACM SIGPLAN Workshop

on Haskell, Haskell ’04, pages 1–9, New York, NY, USA, 2004. ACM.

[77] Guilhem Moulin. Pure type systems with an internalized parametricity the-

orem. Chalmers University of Technology, 2013. Licentiate thesis.

[78] Guilhem Moulin. Internalizing Parametricity. Chalmers University of Tech-

nology, 2016. PhD thesis.

[79] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis,

Swansea University, 2013.

[80] Ulf Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Chalmers University of Technology, 2007.

[81] Nicolas Oury. Extensionality in the calculus of constructions, pages 278–293.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[82] Christine Paulin-Mohring. Inductive definitions in the system Coq — rules

and properties. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda



BIBLIOGRAPHY 161

Calculi and Applications, International Conference on Typed Lambda Calculi

and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993,

Proceedings, volume 664 of Lecture Notes in Computer Science, pages 328–

345. Springer, 1993.

[83] Frank Pfenning and Carsten Schürmann. System description: Twelf —
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[90] Steven Schäfer, Gert Smolka, and Tobias Tebbi. Completeness and decid-

ability of de Bruijn substitution algebra in Coq. In Proceedings of the 2015

Conference on Certified Programs and Proofs, CPP 2015, Mumbai, India,

January 15-17, 2015, pages 67–73. ACM, 2015.



162 BIBLIOGRAPHY

[91] Michael Shulman. Univalence for inverse diagrams and homotopy canonic-

ity. Mathematical Structures in Computer Science, 25:1203–1277, 6 2015.

arXiv:1203.3253.

[92] Kristina Sojakova. Higher inductive types as homotopy-initial algebras. SIG-

PLAN Not., 50(1):31–42, January 2015.

[93] Richard Statman. Completeness, invariance and lambda-definability. J.

Symb. Log., 47(1):17–26, 1982.

[94] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness,

and Independence Results. Birkhauser Boston Inc., Cambridge, MA, USA,

1991.

[95] Thomas Streicher. Investigations into intensional type theory. habilitation

thesis, 1993.

[96] William W. Tait. Intensional interpretations of functionals of finite type i.

J. Symbolic Logic, 32(2):198–212, 06 1967.

[97] The Agda development team. Agda wiki, 2016.

[98] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Intro-

duction. Studies in logic and the foundations of mathematics. North-Holland,

1988.

[99] Philip Wadler. Theorems for free! In Functional Programming Languages

and Computer Architecture, pages 347–359. ACM Press, 1989.


