Types of Chemical Reactions ## 2. Sample answers: | Type of Chemical
Reaction | Reactants | Products | Descriptions
(include general equations) | | |--------------------------------------|---|--|---|--| | Synthesis
(page 156) | 2 or more elements (or simple compounds) | 1 compound
(larger
compound) | A + B → AB • reverse of decomposition • most are exothermic | | | Decomposition (page 158) | 1 compound
(larger compound) | 2 or more elements (or simple compounds) | AB → A + B • reverse of synthesis • most are endothermic | | | Single replacement (page 160) | element and compound | element and compound | Element is metal: A + BX \longrightarrow AX + B
Element is non-metal: AX + Y \longrightarrow AY + X | | | Double
replacement
(page 163) | 2 compounds | 2 compounds | AX + BY → AY + BX • common product: insoluble solid (precipitate) | | | Combustion
(pages 165 and
167) | element and
oxygen or
hydrocarbon and
oxygen | carbon dioxide
and water | Element: $A + O_2 \longrightarrow AO_x$
Hydrocarbon: $C_xH_y + O_2 \longrightarrow CO_2 + H_2O$
• rapid exothermic reaction | | | Neutralization
(page 171) | acid and base | salt and water | ${\rm HA} + {\rm BOH} \longrightarrow {\rm BA} + {\rm H_2O}$ • salt is formed from the cation of the base and anion of the acid | | # **Classifying Chemical Reactions** - **1.** a) synthesis; 2, 1, 2 - b) single replacement; already balanced - c) neutralization; 1, 2, 1, 2 - d) double replacement; already balanced - e) decomposition; 2, 2, 1 - **f**) combustion; 1, 2, 1, 2 - g) single replacement; 4, 1, 2, 2 - **h**) combustion; 1, 8, 5, 6 - i) synthesis; already balanced - **j**) double replacement; 2, 3, 1, 6 - **k)** neutralization; 1, 2, 1, 2 - l) decomposition; 2, 2, 1 - **2. a)** iodine monochloride \longrightarrow iodine + chlorine; decomposition; $2ICl(g) + energy \longrightarrow I_2(g) + Cl_2(g)$ - **b**) bromine + sodium iodide \longrightarrow iodine + sodium bromide; single replacement; $Br_2(\ell) + 2NaI(s) \longrightarrow I_2(s) + 2NaBr(aq)$ - c) sodium azide \longrightarrow sodium + nitrogen; decomposition; $2\text{NaN}_3(s) \longrightarrow 2\text{Na}(s) + 3\text{N}_2(g)$ - **d**) naphthalene + oxygen \longrightarrow carbon dioxide + water + energy; combustion; $C_{10}H_8(s) + 12O_2(g) \longrightarrow 10CO_2(g) + 4H_2O(\ell) + energy$ - e) phosphoric acid + barium hydroxide \longrightarrow barium phosphate + water; neutralization; $2H_3PO_4(aq) + 3Ba(OH)_2(aq) \longrightarrow Ba_3(PO_4)_2(s) + 6H_2O(\ell)$ - f) iron(III) nitrate + magnesium sulfide \longrightarrow iron(III) sulfide + magnesium nitrate; double replacement; $2\text{Fe}(\text{NO}_3)_3(\text{aq}) + 3\text{MgS}(\text{aq}) \longrightarrow$ $\text{Fe}_2\text{S}_3(\text{s}) + 3\text{Mg}(\text{NO}_3)_2(\text{aq})$ - g) tin(IV) hydroxide + hydrogen bromide \longrightarrow water + tin(IV) bromide; neutralization; $Sn(OH)_4(aq) + 4HBr(aq) \longrightarrow 4H_2O(\mathcal{E}) + SnBr_4(aq)$ - **h)** sodium carbonate + aluminum chloride \longrightarrow aluminum carbonate + sodium chloride; double replacement; $3\text{Na}_2\text{CO}_3(\text{aq}) + 2\text{AlCl}_3(\text{aq}) \longrightarrow \text{Al}_2(\text{CO}_3)_3(\text{s}) + 6\text{NaCl}(\text{aq})$ - i) dinitrogen monoxide \longrightarrow nitrogen + oxygen; decomposition; $2N_2O(g) \longrightarrow 2N_2(g) + O_2(g)$ - **j**) iron + iodine \longrightarrow iron(II) iodide; synthesis; Fe(s) + $I_2(g) \longrightarrow FeI_2(g)$ - **k**) glucose + oxygen \longrightarrow carbon dioxide + water + energy; combustion; $C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(\ell) + energy$ - l) chromium + tin(IV) chloride \longrightarrow tin + chromium(III) chloride; single replacement; $4Cr(s) + 3SnCl_4(aq) \longrightarrow 3Sn(s) + 4CrCl_3(aq)$ # **Predicting Products** - 1. a) $2C_2H_2 + 5O_2 \longrightarrow 4CO_2 + 2H_2O$; combustion - **b)** $Cl_2 + 2KI \longrightarrow 2KCl + I_2$; single replacement - c) $4Al + 3O_2 \longrightarrow 2Al_2O_3$; synthesis - **d**) $2AgNO_3 + Li_2CrO_4 \longrightarrow Ag_2CrO_4 + 2LiNO_3$; double replacement - e) $2HgO \longrightarrow 2Hg + O_2$; decomposition - f) $2HNO_3 + Ba(OH)_2 \longrightarrow Ba(NO_3)_2 + 2H_2O$; neutralization - g) $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$; single replacement - **h**) $2Ca + O_2 \longrightarrow 2CaO$; synthesis - i) NaOH + CH₃COOH \longrightarrow NaCH₃COO + H₂O; neutralization - j) $45O_2 + 2C_{15}H_{30} \longrightarrow 30CO_2 + 30H_2O$; combustion - k) $Rb_2SO_4 + 2KF \longrightarrow K_2SO_4 + 2RbF$; double replacement - 1) $8ZnS \longrightarrow 8Zn + S_8$; decomposition - **2. a)** hydrogen carbonate \longrightarrow carbon dioxide + water; decomposition; $H_2CO_3(aq) \longrightarrow CO_2(g) + H_2O(\ell)$ - **b)** fluorine + potassium chloride \longrightarrow chlorine + potassium fluoride; single replacement; $F_2(g) + 2KCl(aq) \longrightarrow Cl_2(g) + 2KF(s)$ - c) lead(II) chlorate + potassium iodide \longrightarrow lead(II) iodide + potassium chlorate; double replacement; Pb(ClO₃)₂(aq) + 2KI(aq) \longrightarrow PbI₂(s) + 2KClO₃(aq) - **d**) sodium + iodine \longrightarrow sodium iodide; synthesis; $2Na(s) + I_2(g) \longrightarrow 2NaI$ - e) benzene + oxygen \longrightarrow carbon dioxide + water (+ energy); combustion; $2C_6H_6(\ell) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(\ell)$ (+ energy) - f) ammonium hydroxide + hydrogen chloride \longrightarrow ammonium chloride + water; neutralization; $NH_4OH(aq) + HCl(aq) \longrightarrow NH_4Cl(aq) + H_2O(\ell)$ - g) cobalt(II) bromide (+ energy) \longrightarrow cobalt + bromine; decomposition; CoBr₂(s) (+ energy) \longrightarrow Co(s) + Br₂(g) - h) aluminum + iron(III) oxide (+ energy) \longrightarrow aluminum oxide + iron; single replacement; $2Al(s) + Fe_2O_3(s)$ (+ energy) $\longrightarrow Al_2O_3(s) + 2Fe(s)$ - i) hydrogen + oxygen \longrightarrow water; synthesis; $2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$ - j) lithium sulfate + barium chloride → barium sulfate + lithium chloride; double replacement; Li₂SO₄(aq) + BaCl₂(aq) → BaSO₄(s) + 2LiCl(aq) - **k**) aluminum hydroxide + gastric juice \longrightarrow aluminum chloride + water; neutralization; Al(OH)₃(s) + 3HCl(aq) \longrightarrow AlCl₃(aq) + 3H₂O(ℓ) - l) propane + oxygen \longrightarrow carbon dioxide + water; combustion; $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(\ell)$ ## Acids, Bases, and Salts 1. - **2. a)** salt - b) acid - c) base - d) acid - e) salt - f) none - **g**) none - h) base - i) acid - j) salt - k) none - l) acid - m) base - n) none - **3.** They are substances that consist of atoms of non-metal elements joined together by covalent bonds. They are either molecules or covalent compounds. - **4. a**) hydrochloric acid, HCl(aq) - **d**) carbonic acid, H₂CO₃(aq) **b)** sulfuric acid, H₂SO₄(aq) e) NaOH(aq) - c) sodium chloride, NaCl - **5.** Bicarbonate is a base that reacts and neutralizes the hydrochloric acid in our stomach. - **6.** Student answers may vary. Some examples: Test 1: Litmus paper test. Result: If the solution is acidic, red litmus paper will remain red and blue litmus paper will turn red. Test 2: Metal (magnesium) test. Result: If the solution is acidic, the small magnesium strip will react with the solution, and H₂ gas bubbles should form. Test 3: Reaction with base (baking soda). Result: If the solution is acidic, it will neutralize and react with baking soda to produce carbon dioxide gas (bubbles). ### pH Scale - 1. stomach acid, pH = 1 - **2.** oven cleaner, pH = 13 - 3. pure water, pH = 7 - **4.** grapes (pH = 3), tomato (pH = 4), water (pH = 7), egg (pH = 8), baking soda (pH = 9), bleach (pH = 13). The lower the pH, the more acidic it is. The higher the pH, the less acidic (more basic) it is. - **5.** a) banana (pH = 5) and milk (pH = 6); banana is more acidic - **b**) Banana has a higher concentration of hydrogen ions and a lower concentration of hydroxide ions than milk. - **6. a)** Solution B is more acidic by 10^2 (or 100) times. - **b)** Concentration of hydrogen ions in Solution A is 100 times less than that of Solution B. - 7. a) bleach - **b**) pH = 12 (3 units higher than the pH value of baking soda, pH = 9) - 8. a) grapes - **b)** pH = 3 (3 units lower than the pH value of milk, pH = 6) - **9. a)** Student sketches of pH scale should be similar to pH scale on workbook page 110 and Figure 2.40 on page 170 of the student textbook. - **b**) Sea water, pH = 8 Liquid drain cleaner, pH = 14 Soft drink, pH = 3 Blood, pH = 7.3 Soap, pH = 10 Human saliva, pH = 6 Black coffee, pH = 5 Apples, pH = 3 Normal rain, pH = 5.6 Orange juice, pH = 3 Battery acid, pH = 0 ## pH Indicators - **1.** a) red - b) orange - c) yellow - d) colourless - e) blue - f) red - 2. a) carbonic acid, H₂CO₃(aq) - **b)** Student answers may vary. Answers may include: similar pH value of 2 (low pH), taste sour, good conductors of electric current, good electrolytes, turn litmus red, have more hydrogen ions than hydroxide ions, ionic compounds. - c) Red. Soft drink is comparable to the acidity of lemon juice (pH 2). Solutions with pH values less than 4.8 cause methyl red to turn red. - **3.** Examples of natural acid-base indicators that students might cite include grape juice, red cabbage juice, rose petals, hibiscus, and herbal tea. #### 2.4 Assessment **9.** B | 1. C | 10. D | 19. A | |-------------|--------------|--------------| | 2. E | 11. A | 20. C | | 3. F | 12. F | 21. D | | 4. B | 13. D | 22. A | | 5. D | 14. B | 23. B | | 6. A | 15. C | 24. B | | 7. E | 16. C | 25. C | | 8. C | 17. A | 26. C | | | | | **18.** D 27. A NEL