Types of Chemical Reactions

2. Sample answers:

Type of Chemical Reaction	Reactants	Products	Descriptions (include general equations)	
Synthesis (page 156)	2 or more elements (or simple compounds)	1 compound (larger compound)	A + B → AB • reverse of decomposition • most are exothermic	
Decomposition (page 158)	1 compound (larger compound)	2 or more elements (or simple compounds)	AB → A + B • reverse of synthesis • most are endothermic	
Single replacement (page 160)	element and compound	element and compound	Element is metal: A + BX \longrightarrow AX + B Element is non-metal: AX + Y \longrightarrow AY + X	
Double replacement (page 163)	2 compounds	2 compounds	AX + BY → AY + BX • common product: insoluble solid (precipitate)	
Combustion (pages 165 and 167)	element and oxygen or hydrocarbon and oxygen	carbon dioxide and water	Element: $A + O_2 \longrightarrow AO_x$ Hydrocarbon: $C_xH_y + O_2 \longrightarrow CO_2 + H_2O$ • rapid exothermic reaction	
Neutralization (page 171)	acid and base	salt and water	${\rm HA} + {\rm BOH} \longrightarrow {\rm BA} + {\rm H_2O}$ • salt is formed from the cation of the base and anion of the acid	

Classifying Chemical Reactions

- **1.** a) synthesis; 2, 1, 2
 - b) single replacement; already balanced
 - c) neutralization; 1, 2, 1, 2
 - d) double replacement; already balanced
 - e) decomposition; 2, 2, 1
 - **f**) combustion; 1, 2, 1, 2
 - g) single replacement; 4, 1, 2, 2
 - **h**) combustion; 1, 8, 5, 6
 - i) synthesis; already balanced
 - **j**) double replacement; 2, 3, 1, 6
 - **k)** neutralization; 1, 2, 1, 2
 - l) decomposition; 2, 2, 1

- **2. a)** iodine monochloride \longrightarrow iodine + chlorine; decomposition; $2ICl(g) + energy \longrightarrow I_2(g) + Cl_2(g)$
 - **b**) bromine + sodium iodide \longrightarrow iodine + sodium bromide; single replacement; $Br_2(\ell) + 2NaI(s) \longrightarrow I_2(s) + 2NaBr(aq)$
 - c) sodium azide \longrightarrow sodium + nitrogen; decomposition; $2\text{NaN}_3(s) \longrightarrow 2\text{Na}(s) + 3\text{N}_2(g)$
 - **d**) naphthalene + oxygen \longrightarrow carbon dioxide + water + energy; combustion; $C_{10}H_8(s) + 12O_2(g) \longrightarrow 10CO_2(g) + 4H_2O(\ell) + energy$
 - e) phosphoric acid + barium hydroxide \longrightarrow barium phosphate + water; neutralization; $2H_3PO_4(aq) + 3Ba(OH)_2(aq) \longrightarrow Ba_3(PO_4)_2(s) + 6H_2O(\ell)$
 - f) iron(III) nitrate + magnesium sulfide \longrightarrow iron(III) sulfide + magnesium nitrate; double replacement; $2\text{Fe}(\text{NO}_3)_3(\text{aq}) + 3\text{MgS}(\text{aq}) \longrightarrow$ $\text{Fe}_2\text{S}_3(\text{s}) + 3\text{Mg}(\text{NO}_3)_2(\text{aq})$
 - g) tin(IV) hydroxide + hydrogen bromide \longrightarrow water + tin(IV) bromide; neutralization; $Sn(OH)_4(aq) + 4HBr(aq) \longrightarrow 4H_2O(\mathcal{E}) + SnBr_4(aq)$
 - **h)** sodium carbonate + aluminum chloride \longrightarrow aluminum carbonate + sodium chloride; double replacement; $3\text{Na}_2\text{CO}_3(\text{aq}) + 2\text{AlCl}_3(\text{aq}) \longrightarrow \text{Al}_2(\text{CO}_3)_3(\text{s}) + 6\text{NaCl}(\text{aq})$
 - i) dinitrogen monoxide \longrightarrow nitrogen + oxygen; decomposition; $2N_2O(g) \longrightarrow 2N_2(g) + O_2(g)$
 - **j**) iron + iodine \longrightarrow iron(II) iodide; synthesis; Fe(s) + $I_2(g) \longrightarrow FeI_2(g)$
 - **k**) glucose + oxygen \longrightarrow carbon dioxide + water + energy; combustion; $C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(\ell) + energy$
 - l) chromium + tin(IV) chloride \longrightarrow tin + chromium(III) chloride; single replacement; $4Cr(s) + 3SnCl_4(aq) \longrightarrow 3Sn(s) + 4CrCl_3(aq)$

Predicting Products

- 1. a) $2C_2H_2 + 5O_2 \longrightarrow 4CO_2 + 2H_2O$; combustion
 - **b)** $Cl_2 + 2KI \longrightarrow 2KCl + I_2$; single replacement
 - c) $4Al + 3O_2 \longrightarrow 2Al_2O_3$; synthesis
 - **d**) $2AgNO_3 + Li_2CrO_4 \longrightarrow Ag_2CrO_4 + 2LiNO_3$; double replacement
 - e) $2HgO \longrightarrow 2Hg + O_2$; decomposition
 - f) $2HNO_3 + Ba(OH)_2 \longrightarrow Ba(NO_3)_2 + 2H_2O$; neutralization

- g) $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$; single replacement
- **h**) $2Ca + O_2 \longrightarrow 2CaO$; synthesis
- i) NaOH + CH₃COOH \longrightarrow NaCH₃COO + H₂O; neutralization
- j) $45O_2 + 2C_{15}H_{30} \longrightarrow 30CO_2 + 30H_2O$; combustion
- k) $Rb_2SO_4 + 2KF \longrightarrow K_2SO_4 + 2RbF$; double replacement
- 1) $8ZnS \longrightarrow 8Zn + S_8$; decomposition
- **2. a)** hydrogen carbonate \longrightarrow carbon dioxide + water; decomposition; $H_2CO_3(aq) \longrightarrow CO_2(g) + H_2O(\ell)$
 - **b)** fluorine + potassium chloride \longrightarrow chlorine + potassium fluoride; single replacement; $F_2(g) + 2KCl(aq) \longrightarrow Cl_2(g) + 2KF(s)$
 - c) lead(II) chlorate + potassium iodide \longrightarrow lead(II) iodide + potassium chlorate; double replacement; Pb(ClO₃)₂(aq) + 2KI(aq) \longrightarrow PbI₂(s) + 2KClO₃(aq)
 - **d**) sodium + iodine \longrightarrow sodium iodide; synthesis; $2Na(s) + I_2(g) \longrightarrow 2NaI$
 - e) benzene + oxygen \longrightarrow carbon dioxide + water (+ energy); combustion; $2C_6H_6(\ell) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(\ell)$ (+ energy)
 - f) ammonium hydroxide + hydrogen chloride \longrightarrow ammonium chloride + water; neutralization; $NH_4OH(aq) + HCl(aq) \longrightarrow NH_4Cl(aq) + H_2O(\ell)$
 - g) cobalt(II) bromide (+ energy) \longrightarrow cobalt + bromine; decomposition; CoBr₂(s) (+ energy) \longrightarrow Co(s) + Br₂(g)
 - h) aluminum + iron(III) oxide (+ energy) \longrightarrow aluminum oxide + iron; single replacement; $2Al(s) + Fe_2O_3(s)$ (+ energy) $\longrightarrow Al_2O_3(s) + 2Fe(s)$
 - i) hydrogen + oxygen \longrightarrow water; synthesis; $2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$
 - j) lithium sulfate + barium chloride → barium sulfate + lithium chloride; double replacement; Li₂SO₄(aq) + BaCl₂(aq) → BaSO₄(s) + 2LiCl(aq)
 - **k**) aluminum hydroxide + gastric juice \longrightarrow aluminum chloride + water; neutralization; Al(OH)₃(s) + 3HCl(aq) \longrightarrow AlCl₃(aq) + 3H₂O(ℓ)
 - l) propane + oxygen \longrightarrow carbon dioxide + water; combustion; $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(\ell)$

Acids, Bases, and Salts

1.

- **2. a)** salt
 - b) acid
 - c) base
 - d) acid
 - e) salt
 - f) none
 - **g**) none

- h) base
- i) acid
- j) salt
- k) none
- l) acid
- m) base
- n) none
- **3.** They are substances that consist of atoms of non-metal elements joined together by covalent bonds. They are either molecules or covalent compounds.
- **4. a**) hydrochloric acid, HCl(aq)
- **d**) carbonic acid, H₂CO₃(aq)

b) sulfuric acid, H₂SO₄(aq)

e) NaOH(aq)

- c) sodium chloride, NaCl
- **5.** Bicarbonate is a base that reacts and neutralizes the hydrochloric acid in our stomach.
- **6.** Student answers may vary. Some examples:

Test 1: Litmus paper test.

Result: If the solution is acidic, red litmus paper will remain red and blue litmus paper will turn red.

Test 2: Metal (magnesium) test.

Result: If the solution is acidic, the small magnesium strip will react with the solution, and H₂ gas bubbles should form.

Test 3: Reaction with base (baking soda).

Result: If the solution is acidic, it will neutralize and react with baking soda to produce carbon dioxide gas (bubbles).

pH Scale

- 1. stomach acid, pH = 1
- **2.** oven cleaner, pH = 13
- 3. pure water, pH = 7
- **4.** grapes (pH = 3), tomato (pH = 4), water (pH = 7), egg (pH = 8), baking soda (pH = 9), bleach (pH = 13). The lower the pH, the more acidic it is. The higher the pH, the less acidic (more basic) it is.
- **5.** a) banana (pH = 5) and milk (pH = 6); banana is more acidic
 - **b**) Banana has a higher concentration of hydrogen ions and a lower concentration of hydroxide ions than milk.
- **6. a)** Solution B is more acidic by 10^2 (or 100) times.
 - **b)** Concentration of hydrogen ions in Solution A is 100 times less than that of Solution B.
- 7. a) bleach
 - **b**) pH = 12 (3 units higher than the pH value of baking soda, pH = 9)
- 8. a) grapes
 - **b)** pH = 3 (3 units lower than the pH value of milk, pH = 6)
- **9. a)** Student sketches of pH scale should be similar to pH scale on workbook page 110 and Figure 2.40 on page 170 of the student textbook.
 - **b**) Sea water, pH = 8

Liquid drain cleaner, pH = 14

Soft drink, pH = 3

Blood, pH = 7.3

Soap, pH = 10

Human saliva, pH = 6

Black coffee, pH = 5

Apples, pH = 3 Normal rain, pH = 5.6 Orange juice, pH = 3 Battery acid, pH = 0

pH Indicators

- **1.** a) red
 - b) orange
 - c) yellow
 - d) colourless
 - e) blue
 - f) red
- 2. a) carbonic acid, H₂CO₃(aq)
 - **b)** Student answers may vary. Answers may include: similar pH value of 2 (low pH), taste sour, good conductors of electric current, good electrolytes, turn litmus red, have more hydrogen ions than hydroxide ions, ionic compounds.
 - c) Red. Soft drink is comparable to the acidity of lemon juice (pH 2). Solutions with pH values less than 4.8 cause methyl red to turn red.
- **3.** Examples of natural acid-base indicators that students might cite include grape juice, red cabbage juice, rose petals, hibiscus, and herbal tea.

2.4 Assessment

9. B

1. C	10. D	19. A
2. E	11. A	20. C
3. F	12. F	21. D
4. B	13. D	22. A
5. D	14. B	23. B
6. A	15. C	24. B
7. E	16. C	25. C
8. C	17. A	26. C

18. D

27. A

NEL

