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Tolerance design plays a significant role in the relationship between the performance and the

manufacture of a product. It is important to maintain valid tolerances when product design is

constrained by the relationship between the dimensions of entities of a component and the

functional requirement of the design. Increasing the tolerance may decrease the

manufacturing cost, but will also worsen the performance. In this paper, an efficient

algorithm is proposed for computerized optimal allocation of tolerance among the

components of a complex assembly with a large number of constraints and entities. Basic

concepts of hierarchical interval constraint networks have been used in combination with

an iterative relative sensitivity analysis procedure for modeling and solving the tolerance

allocation problem. The proposed algorithm can handle practically any number of

constraints and entities with the required level of accuracy. It can also accept any type of

cost-tolerance relationship for modeling. Examples have been discussed and the results

of tolerance design obtained using the proposed method are presented.

INTRODUCTION

It is practically impossible to manufacture a component precisely with the
required dimensions. Therefore, all design dimensions have specified tolerances.
Manufacturing a component with a narrow tolerance band is more expensive
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when compared to a wider tolerance band. This is because a narrow tolerance
band requires better material, machine tools, control mechanisms, workman
skills, more processing time, measuring instruments, and involvement of man-
agement. Consequently, this will cost more when compared to wider band
manufacturing tolerances.Wider band tolerances will be cheaper, but there will
be a greater number of rejections during quality checks, assembly, and problems
during operation. Moreover, the tolerance of the assembly obtained from
components with wider tolerances may not meet all the required functional
specifications. It is desirable tomaintain valid tolerances when product design is
constrained by the relationship between the dimensions of entities of a com-
ponent and the functional requirement of the design. In this paper, a method is
designed for allocation of assembly-level functional tolerances to the compo-
nent-levelmanufacturing tolerances such that the total cost ofmanufacturing of
the assembly is minimized. The basic principles of hierarchical interval con-
straint networks have been used for tolerance analysis and subsequently for
deriving the necessary constraints of the optimization problem and eliminating
the redundant constraints. The objective function of the optimization problem
isminimization of the totalmanufacturing cost of the assembly. This function is
obtained from the manufacturing cost functions of each entity. Illustrative
examples are given in support of the proposed algorithm.

Literature on Tolerance Design

The relationship between the functional requirements and entities of the
mechanical part can be derived and expressed as F1 ¼ fðE1;E2; . . . ;EnÞ.
Tolerance design consists of tolerance analysis and tolerance synthesis. In
tolerance analysis, the goal is to ensure the tolerance of functional require-
ment tolerances are met given the entity tolerances. If the assigned functional
requirement tolerances are not met, the tolerances for the entities need to be
reassigned by tolerance synthesis. Therefore, in tolerance synthesis, the goal
is to determine a set of feasible entity tolerances to achieve the functional
requirement tolerances. The task of tolerance synthesis is more complicated
because large numbers of entity tolerances are determined, based on the
functional requirement tolerances, and minimization of manufacturing costs
are a concern during the synthesis. Tolerance design has been the focus of
many techniques such as tolerance analysis and synthesis, worst-case ana-
lysis, statistical analysis, design optimization, and constraint-based reason-
ing. Many of these techniques are restricted to either analysis or synthesis;
only a few are applicable to both analysis and synthesis. Most of them
approximate a nonlinear relationship between tolerances as a linear rela-
tionship for simpler computation and optimization. With this approximation,
some of the essential characteristics of the tolerance relationships are often
lost. Some of the most recent developments are discussed below.
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Chen (2001) has proposed a neural network-based tolerance propagation
algorithm for finding cost-tolerance relationships. The author claims that this
will represent a better relationship when compared to the relationships
usually developed by regression analysis. He has then used a simulated
annealing algorithm for solving the models. Choi et al. (2000) also have
suggested a complex search method for solving the tolerance optimization
problem. In their analysis, the objective function is a convex function, which
is taken as the sum of cost of manufacturing and Taguchi’s quadratic loss
function. Ji et al. (2000) have proposed a method based on the second-order
fuzzy comprehensive evaluation and the model is solved by genetic algo-
rithm. They have considered a reciprocal cost function for relating manu-
facturing cost and tolerance and the quality loss function has not been taken
into account. Feng and Kusiak (2000) have used statistical design of
experiments to solve the tolerance allocation problem. The objective of their
study is to minimize the variation of tolerance stack-ups. The Monte Carlo
simulation approach has been utilized for experimental analysis. Cho et al.
(2000) have also proposed a method for combined optimization for robust
and tolerance design. An experimental response surface methodology has been
used for robust design, instead of the usual practice of using orthogonal
arrays, linear graphs, and signal-to-noise ratio. Jeang (1999) and Jeang and
Leu (1999) have also used the response surface methodology for optimal
tolerance design by considering quality loss and machining cost simulta-
neously. The response variable is the total cost function. They have used
Monte Carlo simulation for generating experimental data necessary for the
analysis. Jeang (2001) has also proposed another model to determine the
optimal values of design tolerances, process mean, and process tolerances.
Moskowitz et al. (1999) have proposed a minimax cost model to determine
tolerance allocations. This model can be used when the only information
available is mean and variance of each design parameter (and the distribution)
is not known.

Lu and Wilhelm (1991) and Wilhelm and Lu (1992) proposed a tolerance
synthesis approach, CASCADE-T, which used a representation of the con-
ditional tolerance relations that exist between features of a part. Conditional
tolerances are automatically determined from functional requirements and
shape information. A constraint propagation network is employed for tol-
erance computation. However, the tolerances are propagated in a random
order. This technique may find one solution that satisfies the constraints but
does not guarantee finding a feasible solution. In addition, minimization of
manufacturing cost is not considered. In this paper, the interval constraint
network is employed to model the relationship between the tolerances
of entities and functional requirements; the iterative relative sensitivity
analysis procedure is used to minimize the manufacturing cost during the
propagation.
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Literature on Interval Constraints

Constraint satisfaction problems (CSPs) are often formulated in artificial
intelligence (AI) tasks. In CSPs, values are assigned to variables subject to a
set of constraints. Constraint specification represents the relationships among
the variables. A constraint network is a declarative structure that consists of
nodes and arcs. The nodes represent the variables or the constraints. The arcs
represent the relationship between the variables and the constraints. The
variables are labeled by intervals or sets of possible values. The constraints
include any type of mathematical operation or binary relation. Constraint
propagation is utilized to perform inferences about quantities. For different
types of variables and definitions of satisfaction in constraint satisfaction
problems, different propagation techniques can be formulated. A thorough
review of CSPs can be found in Tsang (1993). For tolerance design, the
variables are labeled by intervals and the constraints are n-ary mathematical
operations.

The constraint satisfaction problem was first formulated and investigated
by Huffman (1971) and Clowes (1971) to solve line-labeling problems in
computer vision. It was then investigated by other researchers for more
advanced searching algorithms and other applications. Dechter and Pearl
(1989; 1988) developed a method of generating heuristic advice to guide the
order of value assignments based on sparseness in the constraint network and
the simplicity of tree-structured CSPs. A backtrack search algorithm is uti-
lized to search for one or all solutions that assign a value to each variable,
which satisfies all the constraints. Mackworth and Freduer (1985) analyzed
the time complexity of several node, arc, and path consistency algorithms in
CSPs. The domains of the variables considered by Dechter and Pearl and
Mackworth and Freduer are discrete, finite sets instead of real intervals.
Ladkin and Reinefeld (1992) developed a technique to solve qualitative
interval constraint problems. The constraints are binary relations on intervals
instead of n-ary mathematical operations on intervals. Davis and Hyvonen’s
work is most closely related to the present study. The constraints in their
interval constraint satisfaction problems (ICSPs) are n-ary mathematical
operations and the intervals are real-valued intervals. Davis (1987) adapted
the Waltz filtering algorithm for screening impossible values from the vari-
able domain to solve the ICSPs. However, the Waltz filtering algorithm
cannot determine global solutions in general. Hyvonen (1992) used the tol-
erance propagation approach, which combines the consistency techniques
based on the topology of the constraint net with techniques of interval
arithmetic, to solve the ICSPs. Although ICSPs have been investigated,
optimization has not been considered.

In CSPs, all solutions determined by different techniques are considered
equally good. However, in applications such as industrial scheduling and
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tolerance design, some solutions are considered better than the others.
Assignment of different values to the same variables may satisfy the con-
straints but they acquire different costs. The constraint satisfaction optimi-
zation problems (CSOP) are an extension of CSP where the optimal solution
is desired. CSOP is defined as follows:

Definition 1

A constraint satisfaction optimization problem is a quadruple ðV;D;C;FÞ,
where V is a set of variables

D is a function mapping every variable in V to a set of possible values,
D: V ! a set of possible values

C is a set of constraints on an arbitrary subset of variables in V
F is an optimization function mapping every solution to a
numerical value

F: S ! a numerical value, S is the set of solutions

TOLERANCE DESIGN USING CONSTRAINT NETWORKS

A careful and critical analysis of the literature has revealed that the
tolerance allocation problems are not yet completely solved satisfactorily
using conventional methods. The methods and models suggested by various
authors can only handle certain types of simple problems. Solution of
complex tolerance design problems with many types of cost functions,
assembly constraints, and large number of entities requires further research
and development of better methods. The current effort in this work is to
develop an algorithm, which can solve the tolerance design of any com-
plexity. Recent studies have shown that constraint networks can be used to
simplify the complex tolerance design problems.

Hierarchical interval constraint networks can be used to represent the
relationship between the highest (assembly) level functional requirements and
the lowest level entities of any assembly (Yang et al. 1997). The functional
requirements are decided by considering various factors, including customer
feedback and market demand. Each functional requirement of the assembly
can be represented as a mathematical expression (function) of a number of
attributes. For example, volume of a cylindrical vessel is a function of the
inner radius and the effective inner height of the vessel. In this case, volume is
the functional requirement, whereas inner radius and height are the attri-
butes. Attributes can also be described as functions of the mechanical
dimensions of the associated parts entities. For example, the inner radius of a
cylinder can be expressed as a function of the outer radius and the radial
thickness. Similarly, the total height, base wall thickness, and the cylinder
leg height are entities of the attribute inner height. These relationships can
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be represented in a constraint network for tolerance analysis and synthesis.
A contraint network is a diagram in which functional requirements, attri-
butes, and entities are represented in circles called nodes of the diagram. The
relationships between entities and attributes and between attributes and
functional requirements are represented by rectangles. Arcs are used to
connect nodes through the rectangles (constraints). Figure 1 illustrates an
interval constraint network (ICN) designed for tolerance design.

The constraint functions represent the relationships between functional
requirements and attributes and between attributes and entities. An interval
constraint function is derived based on interval arithmetic. The interval
arithmetic is an extension of the real arithmetic and it deals with close
intervals X¼ [xlow,xup], representing {xj xlow � x � xup}. Given an arithmetic
operation, �, Z¼X � Y is defined as:

Z ¼ ½zlow; zup� ¼ X+Y ¼ ½xlow; xup�+½ylow; yup�
¼ fx+yjxlow� x� xup; ylow� y� yupg

Consistency of ICN for Tolerance Design

The satisfaction of a constraint networks can always be described in terms
of consistency of variables or constraints. The definition of consistency
depends on the applications of the constraint network. Hyvonen (1992)
defined the satisfaction of interval constraint network in terms of the con-
sistency of variables. The purpose of such definition is to refine the intervals of
the variables in the interval constraint network as far as possible without losing

FIGURE 1. Representation of an assembly by an interval constraint network. (Direction of arrows

indicate forward propagation. Opposite direction is backward propagation.)
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possible exact solutions of the constraints. For tolerance design, it is desirable
to have the computed interval using the input intervals and the interval con-
straint function to be a subset of the assigned output interval. For example, the
tolerances propagated from the attributes to a functional requirement through
the corresponding interval constraint function must be a subset of the toler-
ance of the functional requirement. (fkðAi; . . .Aj;; . . . ;AnÞ � FkÞ. Therefore,
the satisfaction of the interval constraint network for tolerance design is
defined in terms of the constraint consistency.

The interval constraint function in ICN for tolerance design consists of
multiple inputs and a single output function and is represented as a triple
CiðU; k; fiðÞÞ. U is the set of indexes for the input variables and k is the index
of the output variable for the constraint CI ; fiðÞ is the constraint function.

The definition of satisfaction of interval constraint network for tolerance
design is as follows:

Definition 2
A constraint CiðU; k; fiðÞÞ is consistent if and only if

T
j2U ð8vj 2 VjjVj ¼ vjÞ;

ð9vkjVk ¼ vkÞ such that CiðU; k; fiðÞÞ is satisfied.

Definition 3
The ICN for tolerance design is satisfied if and only if all the constraints are
consistent.

These definitions for consistency of constraints satisfaction of the ICN
ensure that the tolerances assigned to the entities satisfy the requirements of
the functional tolerance of the assembly. In other words, the computed tol-
erance of functional requirements based on the input tolerances and consistent
constraints will be a subset of the actual functional tolerance requirements.

Forward and Backward Propagation of Tolerance

Tolerance propagation is carried out to update the intervals (tolerances)
in the network to make the interval constraints consistent. There are two
types of tolerance propagations: forward propagation (FP) and backward
propagation (BP). In FP, tolerances of input variables are propagated
through the constraints to obtain the tolerances of the output variables. FP
will detect the consistency of various constraints in the network. On the other
hand, in BP, tolerance of an output variable is propagated through the
constraint expressions to distribute it among the multiple input variables
(such that the constraints are made consistent); the minimization of the
manufacturing costs is also considered in the propagation.

In this paper, FP is carried out to verify whether any of the functional
tolerances of the assembly is=are already satisfied by the natural tolerances
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(readily available and most economical tolerance under the present process
conditions) of the entities, i.e., tolerance analysis. This will provide a choice for
either eliminating the already satisfied functional tolerance requirement and
the corresponding entities (which do not affect other functional requirements)
from further backward propagation or retaining them for BP. The first choice
will reduce the dimension of the model and therefore will be easier to solve.
It is also logically correct to accept the first option because natural tolerance is
the most economical tolerance for any entity. (It is recommended that exer-
cising the first choice be done carefully and only if it is appropriate to the
process setup.) The FP is carried out with numerical values of the nominal and
the natural tolerances of the entities. In BP, the tolerances of functional
requirements are algebraically propagated through the constraint functions to
derive the algebraic functions of tolerances. These functions will relate the
increment of tolerances of assembly functions with that of the entities.

Tolerance Analysis by Forward Propagation
Forward propagation (FP), as described in Appendix A, propagates the

numerical tolerances of entities through attributes to functions to determine
if any of the constraints are consistent (satisfied). Entities, attributes, and
functions for the satisfied constraint can be removed from further modeling.
Those variables affecting the satisfied assembly function and not affecting the
other functions may only be removed.

Algorithm for tolerance analysis by forward propagation is below:

SetF¼ {Fi, i¼ 1..n} =define SetF as a Set of all assembly

functions=

Call FP, Get FFP¼ {Fbnom-pp, Fbup-pp,

Fblow-pp, i¼ 1..n}

=FPP is the propagated values of F=

Read Freq¼ {Fbnom-req, Fbup-req, Fblow-req,

i¼ 1..n}

=Freq is the required values of F=

For i¼ 1..n Do{

IF (Fbnom-pp¼Fbnom-req) AND (Fbup-

pp�Fbup-req) AND (Fblow-pp�Fblow-req)

THEN g¼ i, SetF¼ {Fi, i¼ 1..n, i 6¼ g} =If Ci is satisfied, remove Fi from SetF to

update it=

}

SetA¼ {Aj, j¼ 1..r} =define SetA as a Set of all attributes=

For j¼ 1..r Do {

IF Fg¼ f(Aj) AND (Fi, i¼ 1..n,

i 6¼ g) 6¼ f(Aj)

=if Aj affects only Fg, remove it from SetA=

THEN h¼ j, SetA¼ {Aj, j¼ 1..r, j 6¼ h}

}

SetE¼ {Ek, k¼ 1..m} =Define SetE as a Set of all entities=

For k¼ 1..m Do {

IF AL¼ f(Ek) AND (Aj, j¼ 1..r,

j 6¼h) 6¼ f(Ek)

=if Ek affects only Ah, remove it from SetE=

THEN s¼ j, SetE¼ {Ek, k¼ 1..m, k 6¼ s}

}

Write (SetF, SetA, Set E) =Remaining sets of functions, attributes, and

entities=
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Propagate the Tolerance of Functional Requirements Backward Algebraically
After removing the entities, attributes, and functional requirements of the

satisfied constraints, the algebraic relationships between the remaining enti-
ties and the remaining functional requirements are determined by backward
propagation (BP).

Step 1. Propagate the algebraic tolerances of functional requirements to
attributes for all assembly functions or only for those remaining
after elimination in tolerance analysis. We get a system of algebraic
expressions, each representing the incremental tolerance of assembly
function in terms of the incremental tolerances of attributes.

For i ¼ 1::n; i 6¼ g Do
Fi ¼ fðAjÞ =Constraint Ci in terms of Fi and related Ajs=
DFi ¼ fðDAjÞ =Taking the first order increment Fi=

Step 2. Carry out the second level of BP (attributes to entities) for all
attributes. We get another set of algebraic functions, each repre-
senting the incremental tolerance of attributes in terms of the
incremental tolerances of entities.

For j¼ 1::r; j 6¼ h Do
Aj ¼ fðEkÞ =Constraint Cj in terms of Aj; and related Eks=
DAj ¼ fðDEkÞ =Taking the first order increment Aj=

Step 3. Substitute the system of equations obtained in Step 2 into those in
Step 1. We get a new system of equations, each representing the
incremental tolerance of assembly functions in terms of the incre-
mental tolerances of entities. Substitute the numerical value of the
maximum required upper tolerance of all assembly level functions.
(Observe the rule that if any positive increment of Ek results in
monotonic decrease of Fi, then DEk should be multiplied by (�1) to
correctly represent in the maximum upper tolerance expression.)

For i¼ 1::n; i 6¼ g Do
ReadðDFiupÞ
DF1 ¼ fðDEkÞ =Substituting DAj obtained in Step 3 into Step 2=
f1ðDEkÞ ¼DFiup =Substituting the numerical value of the required

maximum positive tolerance of Fi=

Step 4. Identify the redundant equation in the system of equations obtained
in Step 3 and eliminate them. The remaining equations are the
constraints of the optimization problem. If dth expression is redun-
dant, update the constraint equations in Step 3 by eliminating it from

Optimum Tolerance Design 639



the system of equations. Repeat this for other redundancies. The
remaining equations are:

F1ðDEkÞ ¼ DFiup i ¼ 1::n; j 6¼ d; i 6¼ g; for all ‘d’ s and ‘g’ s

The actual number of constraints to the optimizing problem equals the
number of original assembly-level nodes (functions) minus the number of as-
sembly functions satisfied by FP and the number of constraints eliminated due
to redundancy.

Cost of Manufacturing and Tolerances

As discussed earlier, the cost of manufacturing increases when the
tolerance bands are reduced. Several models for relating cost of manu-
facturing with required tolerance, expressed as functions of the tolerances,
have been suggested in the literature. These include a linear model, a
reciprocal model (cost of manufacturing is proportional to reciprocal of
tolerance) (Chase and Greenwood 1988); a reciprocal-squared (Spotts
1973); a reciprocal-powered (Sutherland and Roth 1975); an exponential
(Speckhart 1972); and a combined exponential-reciprocal powered
(Michael and Siddali 1981; 1982), among others. While all these models are
empirical and based on experiences, it has been observed that the reciprocal-
squared and the exponential models are more frequently used than other
models. Chen (2001) has proposed an algorithm using neural networks for
deriving the cost-tolerance relationship. The proposed algorithm in this paper
can handle any form of cost model. In the illustrative example, an
exponential cost model has been used for the cost function. The general
form of exponential cost model is as given below:

Exponential cost tolerance relation is:

CMðDEkÞ ¼ aþ b� expð�cDEkÞ

where DEk corresponds to the tolerance of kth part (or entity), a, b, c are
constants for a part (estimates from cost-tolerance data), and CMðDEkÞ
corresponds to the cost of manufacturing of kth entity with tolerance DEk .

The objective function of the optimization problem is the total manu-
facturing cost function of the assembly. This is expressed as the sum of the
cost functions of the individual entities. If any entity is eliminated in toler-
ance analysis, the cost function for that entity will not be included in the
objective function. Moreover, if any particular entity is used more than once
in an assembly, its cost function will be multiplied by the number of times it is
used in the assembly. For example, suppose there are 4 similar drill holes in
an assembly. The cost function of the drill holes should be multiplied by 4
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while evaluating the total cost function of the assembly. All these cost
functions will be in terms of the tolerances of individual entities. Mathe-
matically, the objective function can be expressed as follows:

CMASS ¼
Xm

k¼1; k 6¼0

NkðCMEk
Þ

where CMASS equals the cost of manufacturing the assembly for required
tolerances, CMEk

equals the cost of manufacturing the kth entity, expressed
as a function of its tolerance, and Nk equals the number of components with
kth entity used in the assembly.

THE RELATIVE SENSITIVITY RATIO ALGORITHM

An efficient algorithm, which has been developed based on the principles
of hierarchical interval constraint networks, is proposed in this paper for
optimum tolerance design. The constraints and the objective functions of the
assembly are derived by the procedure explained in the previous subsections.
This will provide the mathematical models to represent the tolerance design
problem. The procedure for solution of the rexponential problem is iterative,
based on relative sensitivity ratio (RSR). RSR is defined as follows:

relative sensitivity ratio ¼

sensitivity of cost of manufacturing

with respect to entity tolerance

sensitivity of functional tolerance

with respect to entity tolerance

Mathematically, relative sensitivity ratio for the ith assembly constraint
function with respect to the kth entity, RSR (i,k), is derived as:

RSRði; kÞ ¼
@ðCMASSÞ

@Ek

@ðFtÞ
@Ek

where CMASS equals the cost of manufacturing of the assembly and

¼
Xm

k¼1

CMðDEkÞ:

In this algorithm, all the entities are initially assumed to have tolerances
equal to a very small number (say 0.0001 units). Then the RSR value is
evaluated for each entity and the minimum value is found. The tolerance of
that particular entity, having the minimum RSR value, is now increased by
one small step (say 0.0001 units) and the functional tolerance requirements
are tested. If the constraints are not satisfied, the procedure is repeated until
all constraints are satisfied (within required accuracy). At any stage, if any
one constraint is satisfied, it will be removed from the list of constraints and
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the present tolerance of entities of this constraint are stored as their optimum
values. These entities may appear in other remaining constraints, but their
tolerances will not change from these values. In each iteration, the tolerances
are propagated through all unsatisfied constraint functions and entities.
Selection of an entity for increasing its tolerance during the iteration is based
on the RSR value. This is based on the logic that increasing tolerance of this
particular entity should result in the highest decrease of overall cost of
manufacturing and lowest increase of the tolerance of assembly-level func-
tions. Details of the algorithm are discussed in the following sections.

The RSR Algorithm

Step 1. Define the accuracy required in solution.
(For example, the accuracy required for each entity tolerance is

0.0001 units.) accuracy¼ 0.0001
Step 2. Set the initial tolerance of each entity equal to the accuracy required.

For (k¼ 1..m), substitute DEk ¼ accuracy
Step 3. Evaluate RSR for all constraint functions with respect to all entities.

For (i¼ 1..n)
For (k¼ 1..m)

RSRði; kÞ ¼
@ðCMASSÞ

@Ek

@ðFiÞ
@Ek

Step 4. Evaluate the constraint functions for the present values of entity
tolerances and evaluate the error.

Forði ¼ 1 . . .nÞ
CFðiÞ ¼ fðDEkÞ =CFðiÞ is the propagated value of DFi=
ErrorðiÞ ¼ CFðiÞ � fðiÞ =fðiÞ is the required tolerance of Fi=

Step 5. (A) If any of the constraints are satisfied (or the error is within
acceptable limits), remove this constraint from further considera-
tion. The present values of the tolerances of those entities included in
this constraint are stored as their optimum values. These entities
may appear in other constraints, but their tolerances are now fixed.

For i¼ 1::n
If ððjErrorðiÞj<¼ eÞandðEk is included in CFðiÞÞÞ =e is the maximum

EoptðkÞ ¼ DEk allowable error=
=EoptðkÞ is the optimal
DEk=

pðiÞ ¼ pðiÞ þ i; =pðiÞ is the list storing
all the satisfied Fi=

qðkÞ ¼ qðkÞ þ k =qðkÞ is the list storing
all the satisfied Ek=
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(B) If all the constraints are satisfied or if all the entity tolerances
are stored as optimum, stop the iteration. The present values of
entity tolerances are the optimum.
If (p(i)¼ i) for all i, stop.

(C) For those unsatisfied constraints do the following:
(i) Evaluate RSR for unsatisfied constraints

For (i¼ 1..n)
For (k¼ 1..m)

If ((i 6¼ pðiÞÞ and (k 6¼ qðkÞÞÞ

RSRði; kÞ ¼
@ðCMASSÞ

@Ek

@ðFiÞ
@Ek

(ii) Find out the particular constraint and the particular entity
(after eliminating the satisfied constraints and entities) for
which the RSR is minimum.

For (i¼ 1..n)
For (k¼ 1..m)

If ((i 6¼ pðiÞÞ and (k 6¼ q(k))
and RSR(i,k)<RSRmin)

RSRmin¼RSR(i,k)
imin, kmin: indices of i

and k corresponding to RSRmin

(iii) Increase the tolerance of this entity by adding a value
equal to accuracy to its present value. It will result in
maximum reduction in cost and minimum increase in
functional tolerances.

DEkmin ¼ DEk þ accuracy

(iv) Evaluate the error for unsatisfied constraints. Go back to
5(A)

ErrorðiminÞ ¼ CFðiminÞ � fðiminÞ
Go to 5ðAÞ

Advantages of the Prosposed RSR Algorithm

The proposed algorithm has many advantages over the existing models
for tolerance design. The existing models do not guarantee optimum solution
to all types of tolerance design problems, especially when the problem is
complex. Most of these models can handle only specific cases of tolerance
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design problems, that is, those that are problem specific. There are restric-
tions on the types of cost functions, number of assembly functions, and
entities to use these models. These models do not ensure any level of required
accuracy in the final solution.

The proposed algorithm in this paper is a general-purpose optimization
model for solving tolerance design problems for assemblies. It can handle any
complex problem (with any number of entities, attributes, and assembly
function requirements) and any type of cost-function relating cost of manu-
facturing with entity tolerance. It can also solve nonlinear problems with a
combination of different cost functions for entities. Required level of accu-
racy or the permitted error can be stated at the beginning of the program and
the algorithm assures any level of accuracy in the final solution. The pro-
posed algorithm is very powerful, but simple and easy to program.

Many existing models define the objective functions as a sum of cost of
manufacturing tolerances and the Taguchi’s loss function. Obviously, this
function will be a convex function having a minimum value for a certain
combination of entities’ tolerances. However, this combination of entities’
tolerances will not satisfy the assembly-level function requirements. That
means such models only find a combination of entities’ tolerances to mini-
mize the total cost without satisfying constraints.

In the proposed model, the objective function is defined as a sum of cost
functions for all entities. The Taguchi’s loss function is not included in the
objective function. We know that the tolerance requirements of assembly
functions are the constraints of the problem. For an assembly, the Taguchi’s
loss function is a result of these constraints. These are decided by the design
engineer, so there is no need to include this in the objective function. In other
words, the assembly function tolerance requirements restrict the Taguchi’s
loss function for an assembly, Therefore, it can be concluded that the pro-
posed model generates an optimum combination of entities’ tolerances,
which will minimize the cost of manufacturing tolerance of the assembly and
will satisfy all the assembly function tolerance requirements.

EXAMPLES

In this section, the tank problem and themovable double-bearing assembly
are used as examples to illustrate the relative sensitivity ratio algorithm for
interval constraint networks in the application of tolerance analysis and
synthesis.

Example 1: Tank Problem

The tank as illustrated in Figure 2 is made of two cylinders. The
functional requirements are the volume and the thickness as labeled in
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Figure 2(b). The attributes are the inner, outer radius, inner length, and
outer lengths as labeled in Figure 2(c). The entities are several measurable
lengths and radius as shown in Figure 2(d). The corresponding interval
constraint network is given in Figure 3 and the constraint functions are
given in Table 1.

FIGURE 2. (a) A tank, (b) the labels of functional requirement, (c) the labels of attributes of the cylinders,

and (d) the labels of the measurable entities.

FIGURE 3. Hierarchical interval constraint network for the tank in Figure 2.
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Forward Propagation
Table 2 shows the initial assignment of tolerances and the result of for-

ward propagations for tolerance analysis. Using forward propagation, it has
been found that the tolerance of the functional requirement of volume is

TABLE 1 Constraint Functions for the Interval Constraint Network in Figure 3

Constraint functions between entities

and attributes

Constraint functions between attributes and

functional requirements

L1¼E3 V¼p�R1�R1�L1þp�R2�R2�L2

L2¼E1þE2�E3 T1¼R4�R2

L3¼E1 T2¼R3�R1

R1¼E6�E5 T1¼LI�L3

R2¼E6

R3¼E7�E4

R4¼E7

TABLE 2 The Tolerances of the Entities, Attributes, and Functional Requirements, initially, after

Forward Propagation

Natural

tolerances

Forward

propagation

Constraint

satisfaction

E1 [94mm, 96mm] [94mm, 96mm]

E2 [204mm, 206mm] [204mm, 206mm] �
E3 [99mm, 101mm] [99mm, 101mm]

Entities E4 [49mm, 51mm] [49mm, 51mm]

E5 [49mm, 51mm] [49mm, 51mm]

E6 [189mm, 191mm] [189mm, 191mm]

E7 [199mm, 201mm] [199mm, 201mm]

L1 [100mm, 100mm] [99mm, 101mm]

L2 [200mm, 200mm] [197mm, 203mm] ��
L3 [95mm, 95mm] [94mm, 96mm]

Attributes R1 [140mm, 140mm] [138mm, 142mm]

R2 [190mm, 190mm] [189mm, 191mm]

R3 [150mm, 150mm] [148mm, 152mm]

R4 [200mm, 200mm] [199mm, 201mm]

V [2.8� 107mm3,

3.0� 107mm3]

[2.8� 107mm3,

3.0� 107mm3]

���Satisfied

Functional

Requirements

T1 [9mm, 11mm] [8mm, 12mm] Not Satisfied

(BP is Required)

T2 [9mm, 11mm] [6mm, 14mm] Not Satisfied

(BP is Required)

T3 [4.5mm, 5.5mm] [3mm, 7mm] Not Satisfied

(BP is Required)

���V is satisfied with the present level of tolerances.
��L2 is the only attribute affecting V, but not others. So L2 is not considered for BP.
�E2 is the only entity affecting L2, but not others. The present tolerances of E2 are its natural tolerances

and therefore the most economic. Therefore, E2 is not considered for BP.
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satisfied, but the tolerances of three other functional requirements, thickness,
are not satisfied.

Backward Propagation
Referring to Table 1, the following constraint equations relate atributes

and functions:

T1 ¼ R4 �R2

T2 ¼ R3 �R1

T3 ¼ L1 � L3

To propagate the tolerances backward, we have to derive the tolerance
relationship between functions and attributes. For this purpose, we take first-
order derivatives (increments) of the corresponding constraint equations. We
get the following tolerance equations:

DT1 ¼ DR4 � DR2

DT2 ¼ DR3 � DR1

DT3 ¼ DL1 � DL3

The following constraint equations are retrieved from Table 1 to relate
entities with attributes:

L1 ¼ E3

L3 ¼ E1

R1 ¼ E6 � E5

R2 ¼ E6

R3 ¼ E7 � E4

R4 ¼ E7

Similarly, we get the following tolerance equations:

DL1 ¼ DE3

DL3 ¼ DE1

DR1 ¼ DE6 � DE5

DR2 ¼ DE6

DR3 ¼ DE7 � DE4

DR4 ¼ DE7

Substituting the tolerance function of the attributes to the tolerance function
of functional requirements, we obtain:

DT1 ¼ DE7 � DE6

DT2 ¼ DE7 � DE4 � DE6 þ DE5

DT3 ¼ DE3 � DE1
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Referring to the functional requirements specified earlier, we get the required
maximum tolerances of T1;T2, and T3 as follows:

DT1 ¼ T1up � T1nom ¼ 1:0mm

DT2 ¼ T2up � T2nom ¼ 1:0mm

DT3 ¼ T3up � T3nom ¼ 0:5mm

Substituting the maximum allowable tolerance values of the functions and
removing the redundant equations, we get the following constraint for the
optimization problem:

DE4 þ DE5 þ DE6 þ DE7 ¼ 1:0mm

DE1 þ DE3 ¼ 0:5mm

Manufacturing Cost Functions
As mentioned earlier our algorithm is able to handle any kind of cost model.
For this particular example, we adopt the cost functions with reciprocal
square relationships for illustration purposes. That is, the cost of manu-
facturing is inversely proportional to square of the entity tolerances.

CMðDEkÞ ¼ cþ d

ðDEkÞ
2

where c and d are constants for a given entity and DEk is the tolerance of k
th

entity.

For this example, the constants, c and d for entities E1 to E7 are given in
Table 3.

Total cost of manufacturing is:

CMASS ¼ 497þ 10

ðDE1Þ
2
þ 15

ðDE3Þ
2
þ 16

ðDE4Þ
2
þ 18

ðDE5Þ
2
þ 20

ðDE6Þ
2
þ 10

ðDE7Þ
2

The constraint satisfaction optimization problem is therefore:

Minimize CMASS ¼ 497þ 10

ðDE1Þ
2
þ 15

ðDE3Þ
2
þ 16

ðDE4Þ
2
þ 18

ðDE5Þ
2
þ 20

ðDE6Þ
2

þ 10

ðDE7Þ
2

TABLE 3 Values of Constants for the Manufacturing Cost Functions of E1 to E7

E1 E2 E3 E4 E5 E6 E7

c 58 112 87 43 67 75 55

d 10 12 15 16 18 20 10
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FIGURE 4. Movable double-bearing assembly (shows the sliding motion of bearing base on V-rail).

FIGURE 5. V-guide rail for sliding the bearing base.

FIGURE 6. Bush 1 and Shaft 1. Bush 2 and Shaft 2 are similar to these. The dimensions of Bush 2 are

E16, E17, E18, E19 and E31 The diameter of Shaft 2 is E29.
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subject to: DE4 þ DE5 þ DE6 þ DE7 � 1:0 mm

DE1 þ DE3 � 0:5 mm

Solution using RSR Algorithm
The optimization problem is solved by the proposed RSR algorithm also.
The starting tolerances for all the entities were equal to 0.0001 units and the
required accuracy was assumed equal to 0.0001 for each constraint. The
following is the results:

DE1 ¼ 0:2332 DE2 ¼ 1:0000 DE3 ¼ 0:2669
DE4 ¼ 0:2517 DE5 ¼ 0:2618 DE6 ¼ 0:2712
DE7 ¼ 0:2153

Example 2: Movable Double-Bearing Assembly

The main parts of the movable double-bearing assembly are base rail, bearing
base, bush bearings, and shafts. The bearing base can hold two parallel
bushes and shafts. It can slide on the base rail groove, parallel to the axis of
the shafts. This is a much more complicated problem compared to the tank
problem discussed previously. There are 9 functional requirements, 17
attributes, and 31 entities in this assembly. Figure 4, 5, 6, and 7 show various

FIGURE 7. Bearing holder base.

650 C. C. Yang and V. N. Naikan



parts and entities. Figure 8 shows the interval constraint network of the
movable double-bearing assembly problem.

Table 4 shows the various assembly functions required for smooth
operation of the movable double-bearing assembly. The notations used for
assembly functions are also shown in this table. Table 5 shows the various
attributes of different parts of the assembly with their notations. The list of
entities is shown in Table 6. There are 9 assembly functions, 17 attributes,
and 31 entities in this problem. The constraint functions between entities and
attributes and those between attributes and assembly functions are shown in
Table 7. The nominal dimensions and their required tolerances are specified

FIGURE 8. Hierarchical interval constraint network for movable double-bearing assembly.
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in Table 8. These are the numerical values of functional requirements. The
nominal dimensions and their initial tolerances of all entities are specified in
Table 9. Table 9 also shows the values of a, b, and c for the exponential cost-
tolerance equations.

Forward Propagation
The nominal values and initial tolerances of the entities are propagated
forward through the first stage of the constraint network to the attributes.
Thus, we get the nominal values and tolerances of all the attributes. These are
shown in Table 10. Thereafter, the nominal values and tolerances of attri-
butes obtained in the first stage of forward propagation are propagated to the
assembly functions through the second stage of the network. These are
shown in Table 11.

TABLE 4 Assembly Functions

Sl No. Description Function required Notation

1 Relative Length of Base & Bush 1 Minimum F1

2 Relative Length of Base & Bush 2 Minimum F2

3 Fit Between Base & Bush 1 Interference Locational Fit F3

4 Fit Between Base & Bush 2 Interference Locational Fit F4

5 Fit Between Bush 1 & Shaft 1 Clearance Locational Fit F5

6 Fit Between Bush 2 & Shaft 2 Clearance Locational Fit F6

7 Upper Rail Fit Running & Sliding Fit F7

8 Lower Rail Fit Running & Sliding Fit F8

9 Height Difference Between

Base and Support Rails

Minimum F9

TABLE 5 Attributes

Sl. No. Part Description Notation

1 Base Inner Diameter of Hole 1 A5

2 Inner Diameter of Hole 2 A7

3 Width of Base A6

4 Upper Width of Rail A12

5 Lower Width of Rail A13

6 Height of Rail A14

7 Bush 1 Length of Bush 1 A3

8 Outer Diameter of Bush 1 A4

9 Inner Diameter of Bush 1 A10

10 Bush 2 Length of Bush 2 A1

11 Outer Diameter of Bush 2 A2

12 Inner Diameter of Bush 2 A11

13 Support Rail Upper Width of Rail A15

14 Lower Width of Rail A16

15 Height of Rail A17

16 Shaft 1 Diameter of Shaft 1 A8

17 Shaft 2 Diameter of Shaft 2 A9
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Comparison of Table 8 with Table 11 shows that none of the constraints
is satisfied with the present level of tolerance of entities. Therefore, all the
constraints and entities are considered for backward propagation.

Backward Propagation
The first stage of backward propagation is done from assembly functions

to the attributes. The constraint functions for this are shown in Table 7.
Equations for first stage BP can be obtained by taking the first-order

TABLE 6 List of Entities

Parts Entities

Base: E1,E2,E3,E4,E5,E6,E7,E8,E9,E10,E11,E20,E21,E22,E23

Bush 1: E12,E13,E14,E15

Bush 2: E16,E17,E18,E19

Support Rail: E24,E25,E26,E27

Shaft 1: E28

Shaft 2: E29

TABLE 7 Constraint Functions

Constraint functions between entities

and attributes

Constraint functions between attributes

and functional requirements

F1¼A6�A3 A1¼E17�E19; A2¼E13�2 E15

F2¼A6�A1 A3¼E16�E18; A4¼E12�2 E14

F3¼A4�A5 A5¼E10�E4�E5�E6; A6¼E1þE2þE3

F4¼A2�A7 A7¼E11�E7�E8�E9; A8¼E28

F5¼A10�A8 A9¼E29; A10¼E12�2 E30

F6¼A11�A9 A11¼E13�2 E31; A12¼E20þE21þE25

F7¼A12�A15 A13¼E20; A14¼E23

F8¼A13�A16 A15¼E22þE24þE26; A16¼E24

F9¼A14�A17 A17¼E27

TABLE 8 Functional Requirements

Function Notation Nominal Minimum Maximum

Relative Length of Base & Bush 1 F1 0.0000 �0.0065 0.0065

Relative Length of Base & Bush 2 F2 0.0000 �0.0065 0.0065

Interference Between Base & Bush 1 F3 0.0056 0.0035 0.0077

Interference Between Base & Bush 2 F4 0.0056 0.0035 0.0077

Clearance Between Bush 1 & Shaft 1 F5 0.0025 0.0021 0.0029

Clearance Between Bush 2 & Shaft 2 F6 0.0025 0.0021 0.0029

Clearance of Upper Rails F7 0.0032 0.0030 0.0034

Clearance of Lower Rails F8 0.0018 0.0015 0.0021

Height Difference Between Base and

Support Rails

F9 0.0007 0.0005 0.0009
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derivative of these constraints. We get the following equations for relating
the tolerance of assembly functions with that of attributes:

DF1 ¼ DA6 � DA3

DF2 ¼ DA6 � DA1

DF3 ¼ DA4 � DA5

DF4 ¼ DA2 � DA7

DF5 ¼ DA10 � DA8

DF6 ¼ DA11 � DA9

DF7 ¼ DA12 � DA15

DF8 ¼ DA13 � DA16

DF9 ¼ DA14 � DA17

TABLE 9 Dimensions of Entities and Cost Functions

Cost-Tolerance relation

(exponential)

Entity ak bk ck Nominal Minimum Maximum

E1 0.52 2.52 1432 3.0000 2.9950 3.0050

E2 0.51 2.55 1443 0.5000 0.4996 0.5004

E3 0.53 2.62 1428 0.5000 0.4994 0.5006

E4 0.54 2.56 1436 0.5000 0.4992 0.5008

E5 0.54 2.71 1430 0.5000 0.4993 0.5007

E6 0.58 2.69 1442 1.0000 0.9990 1.0010

E7 0.60 2.57 1441 1.0000 0.9990 1.0010

E8 0.59 2.66 1429 0.5000 0.4991 0.5009

E9 0.56 2.65 1418 0.5000 0.4994 0.5006

E10 0.57 2.58 1434 3.5000 3.4995 3.5005

E11 0.51 2.49 1422 4.0000 3.9994 4.0006

E12 1.80 3.86 1224 2.0000 1.9985 2.0015

E13 1.90 3.78 1234 2.5000 2.4988 2.5012

E14 1.10 4.55 1126 0.2472 0.2469 0.2475

E15 1.30 4.45 1146 0.2472 0.2469 0.2475

E16 0.88 3.24 1184 4.5000 4.4985 4.5015

E17 0.86 3.28 1196 4.5000 4.4985 4.5015

E18 0.84 3.34 1208 0.5000 0.4986 0.5014

E19 0.82 3.26 1192 0.5000 0.4986 0.5014

E20 0.75 2.86 1368 4.0000 3.9985 4.0015

E21 0.78 2.88 1376 0.5000 4.9995 0.5005

E22 0.74 2.76 1372 0.4993 0.4992 0.4994

E23 0.79 2.78 1370 0.5000 0.4995 0.5005

E24 0.72 2.77 1362 3.9982 3.9981 3.9983

E25 0.77 2.82 1358 0.5000 0.4995 0.5005

E26 0.76 2.91 1380 0.4993 0.4992 0.4994

E27 0.71 2.85 1378 0.4993 0.4992 0.4994

E28 1.50 4.22 1155 1.1200 1.1196 1.1214

E29 1.50 4.22 1164 1.4950 1.4934 1.4966

E30 1.60 3.82 1242 0.4375 0.4365 0.4385

E31 1.70 3.85 1238 0.5000 0.4990 0.5010
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Similarly, the second stage of BP is done from attributes to the entities. Using
the constraint functions given in Table 8, we get the following equations for
relating the tolerance of attributes with that of entities:

DA1 ¼ DE17 � DE19

DA2 ¼ DE13 � 2 DE15

DA3 ¼ DE16 � DE18

DA4 ¼ DE12 � 2 DE14

DA5 ¼ DE10 � DE4 � DE5 � DE6

DA6 ¼ DE1 þ DE2 þ DE3

DA7 ¼ DE11 � DA7 � DE8 � DE9

DA8 ¼ DE28

DA9 ¼ DE29

DA10 ¼ DE12 � 2 DE30

DA11 ¼ DE13 � 2 DE31

DA12 ¼ DE20 þ DE21 þ DE25

DA13 ¼ DE20

DA14 ¼ DE23

DA15 ¼ DE22 þ DE24 þ DE26

DA16 ¼ DE24

DA17 ¼ DE27

TABLE 10 Forward Propagation from Entities to Attributes

Description Notation Nominal Minimum Maximum

Inner Diameter of Hole 1 A5 1.5000 1.4970 1.5030

Inner Diameter of Hole 2 A7 2.0000 1.9969 2.0031

Width of Base A6 4.0000 3.9940 4.0060

Upper Width of Base Rail A12 5.0000 4.9975 5.0025

Lower Width of Base Rail A13 4.0000 3.9985 4.0015

Height of Base Rail A14 0.5000 0.4995 0.5005

Length of Bush 1 A3 4.0000 3.9971 4.0029

Outer Diameter of Bush 1 A4 1.5056 1.5035 1.5077

Inner Diameter of Bush 1 A10 1.1250 1.1215 1.1285

Length of Bush 2 A1 4.0000 3.9971 4.0029

Outer Diameter of Bush 2 A2 2.0056 2.0038 2.0074

Inner Diameter of Bush 2 A11 1.5000 1.4968 1.5032

Upper Width of Rail A15 4.9968 4.9965 4.9971

Lower Width of Rail A16 3.9982 3.9981 3.9983

Height of Rail A17 0.4993 0.4992 0.4994

Diameter of Shaft 1 A8 1.1200 1.1195 1.1205

Diameter of Shaft 2 A9 1.4950 1.4945 1.4955

Optimum Tolerance Design 655



The results of the two stages of BP can be combined to get the constraint
equations of the optimization problem. This is done by substituting the
results of the second stage of BP into that of the first stage. Thus, we get the
following constraints:

DF1 ¼ DE1 þ DE2 þ DE3 � ðDE16 � DE18Þ
DF2 ¼ DE1 þ DE2 þ DE3 � ðDE17 � DE19Þ
DF3 ¼ DE12 � 2 DE14 � ðDE10 � DE4 � DE5 � DE6Þ
DF4 ¼ DE13 � 2 DE15 � ðDE11 � DE7 � DE8 � DE9Þ
DF5 ¼ DE12 � 2 DE30 � ðDE28Þ
DF6 ¼ DE13 � 2 DE31 � ðDE29Þ
DF7 ¼ DE20 þ DE21 þ DE25 � ðDE22 þ DE24 þ DE26Þ
DF8 ¼ DE20 � ðDE24Þ
DF9 ¼ DE23 � ðDE27Þ

The upper limits of assembly-level functional tolerances are specified in
Table 9. Substituting these values in the above equations and multiplying
the coefficients of monotonically decreasing entity tolerances by �1, we get
the following constraint equations:

DE1 þ DE2 þ DE3 þ DE16 þ DE18 ¼ 0:0065
DE1 þ DE2 þ DE3 þ DE17 þ DE19 ¼ 0:0065
DE12 þ 2 DE14 þ DE10 þ DE4 þ DE5 þ DE6 ¼ 0:0077
DE13 þ 2 DE15 þ DE11 þ DE7 þ DE8 þ DE9 ¼ 0:0077
DE12 þ 2 DE30 þ DE28 ¼ 0:0029
DE13 þ 2 DE31 þ DE29 ¼ 0:0029
DE20 þ DE21 þ DE25 þ DE22 þ DE24 þ DE26 ¼ 0:0034
DE20 þ DE24 ¼ 0:0021
DE23 þ DE27 ¼ 0:0009

TABLE 11 Forward Propagation from Attributes to Functions

Function Notation Nominal Minimum Maximum

Relative Length of Base & Bush 1 F1 0.0000 �0.0089 0.0089

Relative Length of Base & Bush 2 F2 0.0000 �0.0089 0.0089

Interference Between Base & Bush 1 F3 0.0056 0.0005 0.0107

Interference Between Base & Bush 2 F4 0.0056 0.0007 0.0105

Clearance Between Bush 1 & Shaft 1 F5 0.0050 0.0010 0.0090

Clearance Between Bush 2 & Shaft 2 F6 0.0050 0.0013 0.0087

Clearance of Upper Rails F7 0.0032 0.0004 0.0060

Clearance of Lower Rails F8 0.0018 0.0002 0.0034

Height Difference Between Base and

Support Rails

F9 0.0007 0.0001 0.0013
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Objective Function
The objective function of the problem is:

CMASS ¼
X31

k¼1

ak þ bk � expð�cDEkÞ

The values of ak; bk; and ck are given in Table 9.

Solution Using RSR Algorithm
The problem has now been solved using the proposed RSR algorithm.

The initial values of all entity tolerances are assumed equal to 0.0001 units
and the required accuracy is also assumed equal to 0.0001. Table 12 provides
the results.

CONCLUSIONS

Tolerance design is essential in manufacturing, which plays an important
role in relating performance to the design of a product. A good tolerance
design mechanism should be able to determine a set of tolerances for the
dimensioning of a component’s entities, where the manufacturing costs are
minimized, subject to the tolerance of the functional requirements. In this
paper, we have adopted the hierarchical interval constraint networks for
accurate and simple representation of an assembly and its optimal tolerance
analysis and synthesis. Relative sensitivity ratio algorithm is an efficient
technique for optimization of tolerance design. The RSR algorithm can be
used for simple as well as complex assemblies with practically any number of
entities and assembly functions. It can also handle any type of cost function
and achieve any required accuracy in optimum allocation of tolerance. We
have provided two illustrations to show the procedures of tolerance analysis
and optimization in tolerance synthesis using interval constraint networks
and RSR algorithm.

NOTATIONS

E, A, F: Entity, attribute, or assembly function
DE, DA, DF: Tolerances of E, A, F
i, j, k: Indices for assembly functions, attributes and entities
i¼ 1 to n; j¼ 1 to r; k¼ 1 to m

APPENDIX A

FP for constraint;Cðf1; 2; . . . ; ng; k; f ðÞÞ;FPðX1;X2; . . . ;Xn;XkÞ
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Propagated from Input Tolerance to the Upper Limit of the Output
Tolerance

xk0up ¼ fðxIj; . . . ;xnjÞ

where xij ¼ xiup if Xk is monotonic increasing with respect to Xi:

xij ¼ xilow if Xk is monotonic decreasing with respect to Xi:

Propagated from Input Tolerance to the Lower Limit of the Output
Tolerance

x0klow ¼ fðx1k . . . ; xnkÞ

TABLE 12 Optimum Tolerances of Entities by RSR Algorithm

Entity Optimum tolerance Nominal dimension Lower limit Upper limit

E1 0.0012 3.0000 2.9988 3.0012

E2 0.0012 0.5000 0.4988 0.5012

E3 0.0012 0.5000 0.4988 0.5012

E4 0.0011 0.5000 0.4989 0.5011

E5 0.0011 0.5000 0.4989 0.5011

E6 0.0011 1.0000 0.9989 1.0011

E7 0.0011 1.0000 0.9989 1.0011

E8 0.0011 0.5000 0.4989 0.5011

E9 0.0011 0.5000 0.4989 0.5011

E10 0.0011 3.5000 3.4989 3.5011

E11 0.0011 4.0000 3.9989 4.0011

E12 0.0014 2.0000 1.9986 2.0014

E13 0.0014 2.5000 2.4986 2.5014

E14 0.0010 0.2472 0.2462 0.2482

E15 0.0010 0.2472 0.2462 0.2482

E16 0.0015 4.5000 4.4985 4.5015

E17 0.0015 4.5000 4.4985 4.5015

E18 0.0015 0.5000 0.4985 0.5015

E19 0.0015 0.5000 0.4985 0.5015

E20 0.0005 4.0000 3.9995 4.0005

E21 0.0007 0.5000 0.4993 0.5007

E22 0.0005 0.4993 0.4988 0.4998

E23 0.0004 0.5000 0.4996 0.5004

E24 0.0006 3.9982 3.9976 3.9988

E25 0.0006 0.5000 0.4994 0.5006

E26 0.0007 0.4993 0.4986 0.5000

E27 0.0005 0.4993 0.4988 0.4998

E28 0.0009 1.1200 1.1191 1.1209

E29 0.0009 1.4950 1.4941 1.4959

E30 0.0003 0.4375 0.4372 0.4378

E31 0.0003 0.5000 0.4997 0.5003
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where xik ¼ xilow if Xk is monotonic increasing with respect to Xi:

xik ¼ xiup if Xk is monotonic decreasing with respect to Xi:
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