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Preface 
 

This the final report on a major study sponsored by the Federal Railroad Administration (FRA) 
to demonstrate a method to validate and calibrate fatigue models for use in predicting and 
managing fatigue in railroad workers.  This report provides the details of methods and findings 
which a previous summary report (Hursh, Raslear, Kaye and Fanzone, 2006) described in a more 
abbreviated form. Furthermore, the researchers will make available the database used for the 
study for future research and analysis, with the contents coded to protect the privacy of the 
participants.
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Executive Summary 
 

Biomathematical fatigue models allow the objective assessment of fatigue, so that employees 
and employers can schedule work and rest to minimize the degradation of operator performance 
by fatigue.  To be useful, a fatigue model must be validated.  Validation means that the model 
must be a predictor of fatigue-related performance errors.  Moreover, a model should be 
calibrated.   Calibration means that the predictions from a model can be related to the level of 
risk of failures of human performance.  One method of validating and calibrating a 
biomathematical fatigue model is to demonstrate that the model can predict an increased 
likelihood of human factors accidents relative to nonhuman factors accidents under conditions of 
fatigue. A valid fatigue model should predict higher levels of fatigue (based on opportunities to 
sleep and an accident’s time of day) when a greater likelihood of a human factors accident exists.  
By comparison, fatigue levels should have a weaker or no relationship to the likelihood of 
nonhuman factors accidents.  The Federal Railroad Administration (FRA) Office of Research 
and Development and the Office of Safety have partnered with the railroad industry to 
demonstrate a method to validate and calibrate fatigue models.  This study collected 30-day work 
histories of locomotive crews prior to 400 human factors and 1,000 nonhuman factors accidents 
to demonstrate this validation method.  More than 1 million 30-minute work intervals before the 
accidents, covering over 57,000 work starts, were evaluated for effectiveness (the inverse of 
fatigue) predicted by the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model using 
the Fatigue Avoidance Scheduling Tool (FAST).  This served as the baseline of exposure to 
various levels of effectiveness.  In addition, the effectiveness at the time of each accident was 
calculated.   

The analysis used two criteria to evaluate if the SAFTE biomathematical fatigue model was a 
valid predictor of fatigue-related accidents: 

• The proportion of human factors accidents that occur at low levels of effectiveness 
should be greater than the proportion of time working at those levels of effectiveness 
(exposure level).  If the proportion of human factors accidents is reliably greater than the 
exposure level, and a statistically reliable relationship exists between decreases in 
effectiveness and an increase in human factors accident risk, then low levels of 
effectiveness (increased fatigue) predict increased human factors accident risk. 

• By comparison, a statistically reliable relationship should not exist between effectiveness 
and nonhuman factors accident risk and at low levels of effectiveness (increased fatigue) 
the risk of human factors accidents should be greater than the risk of nonhuman factors 
accidents.  If the human factors accident risk is reliably greater than the nonhuman 
factors accident risk, then low effectiveness is associated with the kinds of accidents that 
would be expected to be related to fatigue. 

The statistical reliability of relationships was based on finding significant correlation coefficients 
(r).  The chi square (χ2) statistic was used to compare the distributions of human factors and 
nonhuman factors accidents to demonstrate significantly different distributions of risk.  In each 
case, we rejected the null hypothesis (the hypothesis that there is no correlation, i.e., r = 0, or that 
no difference occurs in the distributions of human factors and nonhuman factors accidents) when 
the chance probability of a finding was less than 5 percent (p < 0.05). 
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The results of the study indicated that the biomathematical fatigue model met both criteria for 
validation and the results were statistically reliable:   

• The biomathematical fatigue model estimates of effectiveness were significantly 
correlated with human factors accident risk (r = -0.93, p < 0.01, Figure 7). 

• The biomathematical fatigue model distinguished between human factors and nonhuman 
factors accidents.  Nonhuman factors accident risk was not correlated with estimated 
effectiveness (r = -0.14, p > 0.05, Figure 8), and at low estimated effectiveness the 
relative risk of human factors and nonhuman factors accidents were significantly 
different (χ2 = 7.201, p < 0.01). 

This study found that an elevated risk of human factors accidents occurs at any effectiveness 
score below 90, and accident relative risk increased as effectiveness decreased.  A reliable 
increase in human factors accident risk occurred when effectiveness scores were below 70 but 
nonhuman factors accident risk was not consistently elevated.  Although an effectiveness level of 
70 represents a point at which a detectible elevation of human factors accident risk occurs, 
various operational activities may occur below this level and still be conducted in a safe manner.   
Based on other research, effectiveness scores below 70 are the rough equivalent of a 0.08 blood 
alcohol level or being awake for 21 hours (hr) following an 8-hour sleep period the previous 
night. 

An analysis of the cause codes associated with accidents that occurred at or below an 
effectiveness score of 70 showed an overrepresentation of the type of human factors accidents 
that might be expected of a fatigued crew (e.g., failure to comply with a stop signal).  This 
confirms that the relationship between reduced effectiveness and elevated human factors 
accident risk is meaningful and not a mere correlation. 

A small fraction of the accident cases involved night-shift workers.  These cases were treated 
separately because these workers would be expected to be subject to more fatigue than the 
remainder of the sample.  Consistent with this assumption, human factors accidents accounted 
for 36 percent of the accidents in this sample as compared to only 27 percent of the incidents for 
the variable schedule or daytime workers.  This difference in distribution of human factors and 
nonhuman factors accidents is statistically significant (Chi square p = 0.010; Fisher’s exact test p 
= 0.003, p < 0.01).   Also, a nonsignificant trend between reduced effectiveness and elevated 
accident risk was smaller than the relationship for nonhuman factors accidents. 

The study also demonstrated that human factors accidents follow a circadian pattern that is 
significantly correlated with the circadian rhythm of a fatigue model (r = 0.71, p < 0.05).  The 
same model rhythm is not correlated with nonhuman factors accidents.  The maximum human 
factors accident risk due to time of day alone was increased by less than 20 percent, while the 
maximum accident risk due to reduced effectiveness (fatigue) was increased by 65 percent, 
reflecting the combined effects of time of day and sleep opportunities.  

This study was designed to demonstrate a method to test the validity of fatigue models. The data 
used accidents and the 30-day work histories that preceded them were not a random sample of all 
workers in freight rail operation.  Hence, the levels of effectiveness calculated by the SAFTE 
model should not be interpreted as representative of the freight railroad work force.  The study 
was not designed to determine the extent of fatigue in the freight rail industry.  Furthermore, 
given the well-known variations in individual sleep requirements and absence of specific 
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information on individual sleep habits, health, and circumstances, it was not the intent of this 
study to validate fatigue models based entirely on work schedule data as tools for determining 
the fatigue of particular individuals.  

This study provides the first evidence that a biomathematical fatigue model can relate work 
schedules to an elevated risk of railroad accidents.   This provides a strong scientific basis for 
evaluating work schedules with valid mathematical models to reduce worker fatigue.  A 
mathematical model for detecting elevated fatigue risk could be part of a nonprescriptive, 
performance-based fatigue management plan that would supplement current regulations.  
Although fatigue models do not identify all sources of fatigue and will require a cooperative 
partnership among management, labor, and government regulators, they are an important tool in 
the identification of one of the causes of fatigue in the railroad industry.  
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1. Introduction 
The Federal Railroad Administration (FRA) has sponsored a research program to demonstrate a 
method to validate and calibrate fatigue models for use in predicting and managing fatigue in 
railroad workers.  Fatigue models allow the objective assessment and forecasting of fatigue so 
that employees and employers can schedule work and rest to minimize degradation of operator 
performance by fatigue.  To be useful, a fatigue model must be validated.  Validation means that 
a fatigue model predicts changes in job performance and/or job-related errors, such as incidents 
and accidents, caused by fatigue.  A useful fatigue model must be calibrated.  Calibration means 
that the predictions from the model can be related to the risks of meaningful failures of human 
performance.  This report describes the results of the research program to demonstrate a method 
to validate and calibrate fatigue models.  

1.1 Background 
Human factors accidents have increased as a proportion of FRA reportable accidents over the 
past 5 years.  No question exists that fatigue may be a factor in many human factors accidents.  
Without a detailed history of work and rest before an accident, however, it is difficult to 
determine the role of fatigue in that accident.  The analysis of work/rest histories to rule out 
fatigue can be accomplished with many software models associated with fatigue, but until now, 
none of these models has been validated in commercial transportation operations.  In the interest 
of developing validated fatigue models, the Office of Research and Development and the Office 
of Safety sponsored a study of work histories of locomotive crews associated with accidents to 
provide the necessary data to validate fatigue models.  This report describes the details of the 
data collection, the methods used to analyze the data for signs of fatigue, and the results of the 
analysis.   

1.2 Objectives 
One method of validating and calibrating a fatigue model is to demonstrate that the model can 
predict an increased likelihood of human factors accidents relative to nonhuman factors accidents 
under conditions of fatigue.  A valid fatigue model should predict higher levels of fatigue (based 
on opportunities to sleep and the time of day of an accident) when a greater likelihood of a 
human factors accident exists.  By comparison, fatigue levels should have a weaker or no 
relationship to the likelihood of nonhuman factors accidents.  The present study determined 
cognitive effectiveness (a predictor of speed of reactions and vigilance in laboratory tests that is 
inversely related to fatigue) from 30-day work histories of locomotive crews prior to 400 human 
factors and 1,000 nonhuman factors accidents.  The objective was to determine if a statistically 
reliable relationship exists between reductions in effectiveness and the risk of human factors 
accidents.  Further, the study sought to determine if the relationship of effectiveness to human 
factors accidents was larger and more consistent than that for nonhuman factors accidents, which 
would be expected to be much less sensitive to the effects of fatigue.  The second objective was 
to determine the level of effectiveness at which an elevated likelihood of human factor accidents 
occurs relative to chance.  That result served to calibrate the fatigue model for aggregate work 
schedule analyses of fatigue.  The goal was to determine the nature of the relationship between 
effectiveness scores and statistically elevated accident risk.  Given the well-known variations in 
individual sleep requirements and absence of specific information on individual sleep habits, 
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health, and circumstances, it was not the intent of this study to validate fatigue models based 
entirely on work schedule data as tools for determining the fatigue of particular individuals.  

 The biomathematical fatigue model used for these studies, the Sleep, Activity, Fatigue, and Task 
Effectiveness (SAFTE) model, was originally developed for the U.S. Army and U.S. Air Force 
to predict potential fatigue caused by work schedules (Hursh, Redmond, Johnson, Thorne, 
Belenky, Balkin, Storm, Miller, and Eddy, 2004).  The model has been incorporated into a 
fatigue assessment tool (Hursh, Balkin, Miller, and Eddy, 2004) called the Fatigue Avoidance 
Scheduling Tool (FAST).  FAST uses work schedule information to estimate the amount of sleep 
and cognitive effectiveness.  Cognitive effectiveness is a metric that tracks speed of performance 
on a simple reaction time test and is strongly related to overall response speed, vigilance, and the 
probability of lapses (Hursh, et al., 2004; Van Dongen, 2004).  Cognitive effectiveness can be 
interpreted as the inverse of fatigue. 

1.3 Overall Approach 
FRA and the Association of American Railroads (AAR) determined which human factors 
accident cause codes would be appropriate to use.  This was important because work histories for 
locomotive crews would be analyzed to determine effectiveness, and therefore, only cause codes 
that related to locomotive crew errors would be relevant.  FRA and AAR also determined which 
nonhuman factors accident cause codes would be appropriate to use as a control group.  Finally, 
the kinds of track and equipment most likely to be associated with irregularly scheduled line-haul 
(between cities or terminals) freight service was determined.  For each accident, the researchers 
requested from that railroad the 30-day work history of the train crew just before the accident.  
The work histories were used to estimate the effectiveness of the crew at the time of the event 
and to determine the overall percentage of time typically spent at work at various levels of 
effectiveness.  This information was used to determine the ability of the fatigue model to predict 
increases in human factors accident risk relative to chance.  It was also used to determine if the 
relationship between effectiveness and accident risk was stronger for human factors than 
nonhuman factors accidents.  Little or no relationship should exist between effectiveness and 
nonhuman factors accident risk.  The reduction in effectiveness associated with statistically 
reliable cumulative increases in accident risk was determined in order to calibrate the 
effectiveness scores.  Additionally, human factors accidents that were overrepresented at reduced 
levels of effectiveness were examined to determine if these accidents were consistent with the 
expected effects of crew fatigue (e.g., lapses increase with fatigue and are consistent with 
accidents in which signals are passed at danger).  Descriptive information regarding work 
patterns and accident patterns that were independent of the model predictions were also 
developed.   

1.4 Scope 
The focus of this analysis was limited to FRA reportable incidents involving freight trains on 
mainline, siding, and industry track.  The researchers considered only a subset of human factors 
incidents that would have involved an error by the operating crew and compared them to 
nonhuman factors incidents involving equipment or track related cause codes.  The intent was to 
focus on line haul operations with crews (engineers and conductors) working irregular schedules.  
Nevertheless, because some engineers and conductors are qualified to work both yard and line-
haul jobs, there was no way to positively exclude individuals who may have worked a yard 
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assignment for a portion of the 30-day work history prior to the reportable incident.  Those 
individuals who worked a majority of the time at a regular night job were, however, segregated 
for a separate analysis.  As will be seen, those workers would be expected to have generally 
lower levels of effectiveness while at work because of the circadian loss of alertness at night 
between midnight and 0600 hrs. 

 7





2. Method of Analysis 

2.1 General Method 
The general method of the study was to use a biomathematical fatigue model (SAFTE) to 
estimate the cognitive effectiveness of locomotive crews at the time of accidents to determine if 
low levels of effectiveness are associated with higher than expected rates of accidents.  The 
model computes cognitive effectiveness (the inverse of fatigue) from opportunities to sleep and 
the time of day during the 30 days before the accident and at the time of the accident.  To control 
for extraneous factors, the analysis compared human factors and nonhuman factors accidents 
using the same methods.  The following sections describe the validation method, the sample 
determination, the data requested from the railroads that describe the accidents, and the 30-day 
work histories of the associated train crews. 

2.2 Validation Method 
Thirty-day work histories were collected for train crews who were involved in FRA reportable 
accidents.  FAST processed these histories with the SAFTE model to determine the crew’s 
cognitive effectiveness at the time of the accidents.  The histories were also used to estimate the 
proportion of time spent working at various levels of effectiveness during the preceding 30 days.  
This is the exposure of the locomotive crews to fatigue.  If fatigue is not associated with 
accidents, then the proportion of accidents at each effectiveness level should be similar to fatigue 
exposure.  Fatigue exposure provides an expected proportion of accidents at each effectiveness 
level.  To determine if the obtained proportion of accidents matches the expected proportion, the 
obtained proportion is divided by the expected proportion.  If accidents are independent of 
fatigue, the ratio should be close to one.  This ratio is the accident risk.  Statistically reliable 
deviations in the ratio indicate increased or decreased risk, depending on whether the ratio is 
greater or less than one.  This analysis yields a function that relates accident risk to levels of 
effectiveness and estimates fatigue-associated risk. 

It was expected that if fatigue is a factor in some accidents, then accident risk should be higher at 
lower levels of effectiveness (increased levels of fatigue), and the risk should be greater for 
human factors accidents than for nonhuman factors accidents.  Testing these hypotheses takes 
several steps and makes several assumptions.  

2.2.1 Assumptions  
First, it is assumed that loss of alertness, confusion, or slowed reaction time causes some railroad 
accidents.  These are all performance changes that are associated with fatigue.  Since these 
accidents are the result of human error, it was expected that fatigue-associated accident risk 
would be greater for human factors than for nonhuman factors accidents.  

Second, it is assumed that when the model predicts a loss in cognitive effectiveness, an increase 
occurs in the probability of a human error that could result in a railroad accident.  For example, 
when the model predicts reduced effectiveness, the train crewmen are more likely to miss a 
signal or run through a switch.  This connection is not deterministic; reduced effectiveness 
increases the probability of an error but does not determine that an error will occur.  
Furthermore, a similar error could occur in the absence of unusual fatigue, such as one caused by 
a distraction, so that not all occurrences of a particular sort of error can be attributable to fatigue.  
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Hence, a fatigue model can predict an increase in fatigue-associated risk, but not the specific 
occurrence of an accident. 

Third, the SAFTE model incorporated in FAST makes a number of assumptions about the 
amount of sleep that can be achieved under specific work schedules, the amount of sleep the 
average person requires, and the susceptibility of the average person to time of day variations in 
alertness.  Wide variations exist in individual sensitivity to the factors that cause fatigue, so, 
again, fatigue models can only predict an increased risk of fatigue, not a specific individual 
person’s level of fatigue or performance. 

2.2.2 Validation Criteria 
If the fatigue model is valid, it will show that human factors-related accidents are more likely to 
occur at decreased levels of crew effectiveness, whereas the likelihood of nonhuman factors-
related accidents are the same regardless of crew effectiveness.   

The fatigue model estimates effectiveness during each work shift of each worker in the database 
up to the time of an accident and records the mean effectiveness level across each 30-minute 
work interval.  From all work histories combined, the approximate proportion of work time spent 
by workers at given effectiveness levels can be computed.  This is the exposure to fatigue and, as 
noted above, determines the expected proportion of accidents at any given effectiveness level.  
The model also estimates the crew effectiveness at the time of the accident.  From these data the 
proportion of accidents occurring at any given crew effectiveness level can be computed.  
Combining the two proportions defines the risk ratio: 

( ) ( )
( ) ( )TimeWorkTotalLevelessEffectivenatTimeWork

AccidentsofNumberTotalLevelessEffectivenatAccidentsRatio Risk =  

Accident risk, as used in this report, is defined entirely in terms of the risk ratio specified above.  
If operator effectiveness is unrelated to accident occurrence, then the proportion of accidents 
occurring at any given level of effectiveness should be approximately equal to the proportion of 
work time spent at that effectiveness level (i.e., the accident risk should be close to one).  If 
lower effectiveness is related to a greater likelihood of an accident, then accident risk should 
increase with decreasing effectiveness (i.e., be greater than one at lower effectiveness levels and 
less than one at higher effectiveness levels).   

Therefore, model-derived estimates of effectiveness that show the following would constitute 
validation that the model provides a measure of fatigue-associated accident risk: 

1. A statistically reliable relationship between decreases in effectiveness and an increase in 
human factors accident risk 

2. The absence of a statistically reliable relationship between effectiveness and nonhuman 
factors accident risk, and a greater risk of human factors versus nonhuman factors 
accidents at low levels of effectiveness 

The statistical reliability of relationships was based on finding significant correlation coefficients 
(r).  The chi square (χ2) statistic was used to compare the distributions of human factors and 
nonhuman factors accidents to demonstrate significantly different distributions of risk.  In each 
case, we rejected the null hypothesis (the hypothesis that there is no correlation, i.e., r = 0, or that 
no difference exists in the distributions of human factors and nonhuman factors accidents) when 
the chance probability of a finding was less than 5 percent (p < 0.05). 
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2.2.3 

2.2.4 

Calibration of the Fatigue Model 
Up to this point, the analysis method has referred to low levels of effectiveness and levels of 
fatigue without specifying what those levels might be.  This is because it is not known in 
advance how much fatigue or reductions in cognitive effectiveness are sufficient to cause a 
detectable increase in accidents or a detectable difference between human and nonhuman factors 
accidents.  The level of effectiveness for human factor accidents that yields a reliable increase in 
accidents relative to chance and the effectiveness level for human factor accidents that is reliably 
different from the level for nonhuman factors accidents were used to calibrate the model. 

Variables Not Considered 
Given the nature of this analysis of historical work times associated with reportable accidents, 
the biomathematical fatigue model was not able to consider some variables that might ordinarily 
be part of an analysis.  The database included work start and stop times, typical call times for 
each location, and estimated average commute times for each location.  The analysis could not 
consider each worker’s usual sleep habits or actual sleep times, quality of the sleep environment, 
or schedule predictability.  The analysis did not consider the use of fatigue countermeasures or 
additional naps.  The analysis could not consider unusual events that might have interfered with 
usual sleep opportunities.  The analysis could not consider schedule delays or misinformation, 
medical conditions and sleep disorders, medications and/or drug use, observations of operator 
performance and appearance, concurrent stress, family issues, work demands, or crew resource 
management issues, such as communication problems.  Many of these factors could cause 
additional fatigue or performance disruptions.  Some of these factors could reduce fatigue, such 
as the use of napping strategies.  The analysis had to assume that each individual obtained as 
much sleep as was afforded by the schedule, call times, commute times, and personal 
obligations, up to a nominal level of 8 hrs of sleep per day.  Given these limitations, the 
predicted levels of effectiveness reported in this study are not necessarily the same as might be 
obtained if an accident investigator performed a detailed fatigue analysis at the time of the 
accident and caution should be exercised in extending the calibration levels to that application. 

2.3 Sample Size Determination 
A statistical process called power analysis, based on the results of a pilot study to evaluate the 
odds of finding a statistically significant difference in fatigue between human factor and 
nonhuman factor accidents given various sample sizes and assumptions about the signal to noise 
ratio, was used to determine sample size.  The power analysis indicated that sufficient accidents 
occur within a 2½-year period to reach an acceptable statistical power with a sample size of 400 
human factors cases and 1000 nonhuman factors cases.  Since usually two employees are on each 
locomotive, an engineer and conductor, this results in approximately 2800 work histories and 
accident cases.  

2.4 Selection of Accidents 
Accidents that were assigned a human factors cause code (H###) for either the primary or 
secondary cause were considered human factors accidents.  Human factors accidents caused by 
actions of non-operational personnel, such as maintenance or signal workers, cannot logically be 
associated with the fatigue or effectiveness levels of the crew operating the train.  Accidents with 
cause codes of H305, H402, H501, H993, H994, and H997 were, therefore, excluded from the 
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list of human factors accidents considered.  All track- and equipment-related accident cause 
codes (Txxx or Exxx) were included for the nonhuman factors accidents.   

2.5 Accident Samples for Each Participating Railroad 
To achieve the sample size specified in Section 2.3, it was estimated that data would be needed 
for all non-excluded human factors accidents occurring during calendar years 2003, 2004, and 
the first 6 months of 2005 on mainline, siding, and industry track involving freight trains.  All 
track- and equipment-caused accidents occurring over the same period on mainline, siding, and 
industry track involving freight trains were used as a comparison set of nonhuman factors 
accidents.  The 5 participating railroads—BNSF, CSX, Kansas City Southern (KCS), Norfolk 
Southern (NS), and Union Pacific (UP)1—provided data on a total of 405 non-excluded human 
factors accidents and 1015 nonhuman factors accidents reported in this interval, which 
constituted the study.  

 

2.6  Data Requested 
Each participating railroad provided work schedule data for each worker for the 30 days before 
each of the identified accidents. Most critical to the analysis was a record of the reporting and 
release date/times of each work episode, including deadhead and limbo times, which for 
analytical purposes were combined as unavailable for sleep. (The duty periods reported are not 
all regulated by hours of service rules and may exceed the allowable limit of 12 hr on duty.)  
Data on terminals, standard call times, and estimated commute times were also requested and 
applied to further limit opportunities to sleep.  Worker identification was used solely to associate 
each work history with the accident involved and was coded to insure confidentiality.  The data 
requested were as follows: 

30-day work histories prior to and including the event 

 Operator identifiers, anonymous code 

 Movement method: driving train, dead head, etc. 

 Origin terminal (to be coded) 

 Destination terminal (to be coded) 

 Movement type: home-away, away-home, home-home, away-away 

 Date and time of start (report time prior to any deadheading) 

 Date and time of end (final release time after any deadheading) 
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Terminal Information 
 Terminal identifier (to be coded) 

 Usual call time (amount of time prior to reporting when operator is called) for 
home and away terminals, if different 

 Average estimated commute time 

Accident/Event Data 
 Operator identifiers, anonymous code 

 Event date and time 

 Primary event cause code (FRA classification code) 

 Secondary event cause code (FRA classification code) 

 Home terminal of operators 

 Location of event 

 

2.7  The SAFTE Model and the Work Schedule Fatigue Assessment Tool 
The biomathematical fatigue model used for this specific analysis was the SAFTE model.  The 
SAFTE model has received a broad scientific review and the US Department of Defense 
considers it the most complete, accurate, and operationally practical model currently available to 
aid operator scheduling.  At the Fatigue and Performance Modeling Workshop held in 2002, six 
fatigue models from around the world were evaluated and the most recent version of SAFTE had 
the lowest error of all models evaluated (Van Dongen, 2004).  During the past six years, the U.S. 
Air Force and FRA have sponsored the development a scheduling tool based upon the model that 
can be used to assess and manage fatigue in aircrews and railroad workers. The software was 
developed by Science Applications International Corporation (SAIC) and NTI and is called the 
Fatigue Avoidance Scheduling Tool (FAST).  For the pilot project to develop a method for 
evaluating fatigue effects in railroad accidents, FRA sponsored the development of an extension 
of FAST that can process hundreds of work histories compiled in a database and provide 
aggregate estimates of fatigue across a spectrum of workers and for specific times associated 
with accidents.  That batch processing version of FAST was used in this project. 

 

2.7.1 The Work Schedule Fatigue Assessment Process 
In general, the batch processing involves the following steps.  First, the data are entered into a set 
of databases.  Second, the program processed those work histories to determine when sleep could 
have occurred, given that workers normally cannot sleep at work, generally do not sleep after 
they are called to work, and must commute to and from their place of work.  The tool uses an 
algorithm called AutoSleep to estimate how much sleep the average railroad worker would get 
given the sleep opportunities afforded by the work schedule and the call/commute times.  
AutoSleep is based on a study of railroad engineer work/rest diaries (Pollard, 1996).  The 
AutoSleep procedure emulates how a person is most likely to arrange sleep under a particular 
work schedule.  In general, it considers a standard bedtime, in this case set to 2200 hrs, and a 
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typical maximum duration of sleep if time permits, set to 8 hr per day.  In addition, it recognizes 
that the afternoon is a poor time to attempt sleep and generally does not schedule sleep between 
noon and 2000 hrs.  On the basis of these constraints, AutoSleep schedules the maximum amount 
of sleep, given the sleep opportunities afforded by the work schedule, the estimated commute to 
and from work, and the standard call-time for each location.  

The third step was to estimate the cognitive effectiveness of each worker for every minute that 
the worker was awake, using the SAFTE model.  A detailed description of the SAFTE model has 
been previously published (Hursh, et al., 2004) and was applied to these data using the default 
parameter settings of the model.  Simply stated, crew effectiveness2 is an estimate of the speed 
of reaction time and alertness.  Estimated effectiveness varies with the combined effect of the 
time of day and the pattern of sleep.  Crew effectiveness follows a daily (circadian) rhythm that 
is much lower between 0000 and 0600 hrs rather than between 1200 and 1800 hrs.  In addition, 
the model keeps track of the amounts of sleep opportunities a person gets as it contributes to 
performance and progressively degrades performance if the person experiences a loss of sleep 
from the nominal requirement of 8 hr per day.  The batch processor summarized these detailed 
effectiveness estimates into 30-minute averages during every work period in the database.  The 
program also summarized effectiveness in 30-minute intervals around the clock to provide a time 
of day estimate of work effectiveness.  The analysis summarized effectiveness for each person’s 
work shift by describing the distribution of the amount of time spent at work as a function of 
effectiveness.  Finally, and most importantly, the program estimated the effectiveness of each 
worker at the time he/she was reported to have been involved in an accident.   

2.7.2 

                                                

The Dimensions of the Analysis 
The batch processor created a schedule file for each worker that could be viewed in the standard 
version of FAST.  These schedule files were used to troubleshoot any unusual values and in 
several cases led to corrections to the database.  Of the 2962 workers involved in accidents 
(approximately 2 crewmembers per accident) that were reported, valid work histories were 
available for 2,843 workers, a 96-percent success rate.  Of those, 790 were involved in human 
factors accidents, and 2,053 were involved in nonhuman factors accidents.  Each work history 
was composed of a series of records that constituted a work shift.  Across the five railroads, the 
analysis processed 57,537 work shifts.  In total, the results reported are based on over 1 million 
30-minute work intervals.  Hence, the effectiveness exposure estimates and accident 
effectiveness values were based on over 2,800 work histories, and the results of all crewmembers 
contributed equally to the findings.  The data were not coded in such a way to permit estimates 
of effectiveness by craft (engineer or conductor). 

 

 
2 Crew effectiveness can have values in the range of 0 to 100.  A person who consistently obtains 8 hr of good 
quality sleep would have a peak effectiveness score of 100 during the following waking period. 
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3. Results of Analysis 

3.1  Descriptive Analysis 
The first results are simple descriptions of various features of the work schedule and accident 
data without any reference to the fatigue model predictions of effectiveness.  The three basic 
descriptive charts are: 

 Work durations 

 Clock time of work 

 Accidents by time of day 

For this and all other sections of the report, the results are shown as an aggregate of the findings 
based on the data from all railroads.   

3.1.1 Job-Related Non-Sleep Durations 
The railroads reported all times crewmembers were doing work related activities, such as 
performing as a crewman, deadheading, or in limbo time before release.  Together, these 
constituted job-related times unavailable for sleep.  Figure 1 shows the number of these intervals 
sorted by duration in hourly intervals.  Relatively few intervals were shorter than 5 hr.  Work 
periods were about equally distributed from lengths of greater than 6 hr to less than 11 hr.   
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 Figure 1.  Durations of Reported Job-Related Non-Sleep Intervals 

The most frequent job-related intervals were those between 11 and 12 hr and longer than 12 hr.  
This may not be surprising considering that these intervals would include deadhead time and 
limbo time.  For example, if a typical deadhead time is at least 3 hr, then duty shifts of 9 hr or 
longer that were combined with deadhead time would all fall in the longer than 12 hr category.  
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3.1.2 Clock Time of Work 
Figure 2 shows the number of work hours that occurred at hourly intervals around the clock.  
This analysis indicates the frequency of work at varying times of day and shows that, in general, 
work was fairly evenly distributed around the clock.  For the population at large (the full height 
of the bars in Figure 2), work is a bit more concentrated between 0800 and 1600 hr and 
diminishes between 1600 and 0500 hr.  A detailed analysis revealed that in the overall population 
involved in accidents, a subgroup of workers started a majority of their work periods between 
2200 and 0400 hr.  These workers are termed consistent night workers.  Their data were 
separated from the larger population and evaluated as a distinctly different group, reported 
below.  Their distribution of work is understandably more concentrated between 0000 and 1200 
hr, shown as the dark blue bars in the graph.   
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Figure 2.  Frequency of Work Hours by Time of Day for Variable Schedule Workers 
(yellow bars) and for Night Workers (dark blue bars) 

3.1.3 Accidents by Time of Day (Variable Schedule Workers) 
Figure 3 shows the risk of human factors and nonhuman factors accidents in 3-hr intervals 
around the clock for the workers who had irregular shifts or day shifts.  A similar analysis is not 
possible for consistent night workers because there are too few cases.  For each clock interval the 
analysis calculated the proportion of accidents that occurred in that interval and divided that 
proportion by the proportion of work times that occurred at that clock time based on the work 
interval values in Figure 2.  If accidents were randomly distributed around the clock, then the 
points would have a value of 1.0 and fall on the dashed line.  The blue triangles in Figure 3 are 
for human factors accidents, and the green squares are for nonhuman factors accidents.  A clear 
circadian pattern of human factors accident risk exists.  Taking into consideration the distribution 
of work around the clock, accidents are relatively more likely in the early morning hours from 
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0000 to 0300 hr (the circadian nadir) and in the early afternoon from 1200 to 1500 hr (the 
postprandial dip).  Accidents are much less likely in the late morning (0900 to 1200 hr) and in 
the early evening (1500 to 1800 hr).  These patterns are predicted by a circadian pattern 
generated by the SAFTE model, shown as a red line.  Because effectiveness is thought to decline 
with increased fatigue, the inverse of effectiveness is plotted against the right-hand axis.  The 
maximum value of inverse effectiveness corresponds to the early morning peak in accident risk.  
The data are plotted twice along the x-axis to illustrate the rhythmic pattern of the results.  
Human factors time of day accident risk is reliably correlated with the circadian pattern derived 
from the fatigue model (r = 0.71, p<0.05).  Circadian rhythms account for 51 percent of the 
variance in the time of day at which human factors accidents occur.  By comparison, circadian 
rhythms only account for 6 percent of the variance in the time of day at which nonhuman factor 
accidents occur.  Appendix C-1 shows the circadian patterns of accidents for each participating 
railroad. 
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Figure 3.  Accident Risk by Time of Day.  Data Have Been Double-Plotted to Show the 
Repeating Circadian Pattern 

3.2  Validation of a Fatigue Model 
Work Time in Effectiveness Categories (Variable Schedule Workers) 

Figure 4 shows the distribution of 30-minute work intervals for variable schedule workers as a 
function of effectiveness.  The figure shows the proportion of time spent at work with an 
effectiveness score between 90 and 100, between 80 and 90, between 80 and 70, and so on down 
to the lowest bin with scores of 50 or less effectiveness.  The right-hand axis shows that 42 
percent of the time locomotive crews have effectiveness scores above 90.  Another 23 percent of 
the time, they have effectiveness scores between 80 and 90.  Hence, 65 percent of the time, 
locomotive crews have scores above 80.  The percent of time declines consistently with 
decreasing effectiveness, and less than 5 percent of the time effectiveness is below a score of 50.   
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Figure 4.  Work Interval Effectiveness Distribution for Five Railroads 
These data provide an important reference for interpreting the estimated effectiveness values 
associated with accidents.  If accidents are independent of effectiveness (or fatigue), then when 
accidents are sorted by crew effectiveness at their time of occurrence, the accidents should 
distribute exactly as work time effectiveness is distributed in Figure 4.  However, if accidents are 
caused, in part, by low effectiveness (fatigue or lack of alertness), then one would expect that a 
greater proportion of human factors accidents would occur at low levels of effectiveness than the 
proportion of time or exposure to those levels of effectiveness.  In other words, if the fatigue 
model is predictive of accidents, then low effectiveness should be associated with an elevated 
risk of an accident.   

3.2.2 Effectiveness at the Time of the Accident (Variable Schedule Workers) 
Figure 5 shows the distributions of human factors and nonhuman factors accidents for variable 
schedule workers by effectiveness scores of the locomotive crews at the time of the accidents.  
Figure 5 also shows the mean work interval effectiveness distribution from Figure 4 for 
comparison. The y-axis is logarithmic, so that the distance between the accident distribution lines 
and the time distribution line at any effectiveness level reflects the degree of risk at that level; the 
greater the distance between the lines, the larger the ratio that defines risk (see Section 2.2.2). 

Figure 5 shows that the proportion of accidents that occur above an effectiveness score of 90 is 
less than expected by the distribution of time, indicating reduced risk.  Below an effectiveness 
score of 90, the rate of human factors accidents is consistently above the work-time distribution 
(heavy line) and gradually separates from the line as effectiveness decreases.  For nonhuman 
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factors accidents, the proportion is sometimes above the line and sometimes below the line, and 
no consistent relationship exists between nonhuman factors proportions and decreases in 
effectiveness. Work time and accidents by effectiveness distributions for the individual railroads 
are included in Appendix C-2. 
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Figure 5.  Proportion of Time or Accidents as a Function of Predicted Effectiveness 
Categories.  Human Factors and Nonhuman Factors Accidents are Indicated as Blue 

Triangles and Green Squares, respectively 

3.2.3 Consistent Night Workers 
As was noted previously, certain workers had fairly consistent nighttime work shifts. About 5.7 
percent or 161 out of 2,836 workers had this pattern that we have termed “consistent night 
workers.”  The analysis defined consistent night workers as those individuals for whom 50 
percent or more of their shifts started between 2200 and 0400 hrs.  Since they spend much of 
their night time at work or commuting back and forth to work, the analysis used somewhat 
different AutoSleep assumptions to process their work histories; the sleep estimator reduced the 
afternoon “forbidden zone” to the 4 hr from 1400 to 1800 hrs, allowing them to obtain some 
sleep in the afternoon—a reasonable assumption for workers who lack the opportunity to sleep at 
night.  The consistent night worker may be an engineer who regularly works a night job in the 
yard but was called for a line-haul job and had an incident.  The work history would be that of a 
yard worker even though the incident was a mainline freight accident.  Because the study is 
primarily concerned with the fatigue induced by irregular schedules of on-call engineers, the 
analysis separately analyzed all the night worker histories and incidents.  In fact, the distribution 
of work times by effectiveness categories is distinctly different for this category of workers, as 
shown in Figure 6. 
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Figure 6.  Work Intervals Sorted by Effectiveness Category for Consistent Night Workers, 
All Railroads 

 

Figure 6 indicates that compared to variable schedule workers (Figure 4), the consistent night 
workers spend considerably more time at low levels of estimated effectiveness.  Comparing Figs. 
4 and 6, one can see that 35 percent of the time variable schedule workers have effectiveness 
scores less than 80, but this is the case for consistent night workers 70 percent of the time.  It 
would not be appropriate to compare the incident effectiveness rates of the consistent night 
workers to the work time exposure profile of the variable schedule workers who spend much less 
time working at low levels of effectiveness; to do so would have inflated our estimate of incident 
risk.  To avoid this, the incident effectiveness for consistent night workers was evaluated in 
comparison to their exposure levels in Figure 6.   

 

3.2.4 Accident Risk as a Function of Effectiveness, Variable Schedule Workers 
As discussed in Section 2.2.2, if effectiveness (fatigue) is not associated with accidents, then the 
ratio that defines relative risk will be equal to 1.0.  In other words, if being exposed to a certain 
level of effectiveness (fatigue) does not alter chances of having an accident, then accident risk is 
approximately 1.0.  On the other hand, a ratio greater than 1.0 indicates that accidents are more 
likely than chance at that level of effectiveness.  A ratio of 1.5 means that a 50 percent increase 
in the risk of having an accident occurred at that level of effectiveness.  To show the relationship 
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between risk and effectiveness, the data points from Figure 5 were used to compute the risk ratio 
(using the expression from Section 2.2.2) for each effectiveness category.  Figures 7 and 8 show 
the accident risk for the aggregated data from all five railroads for human factors and nonhuman 
factors accidents, respectively. 
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Figure 7.  Human Factors Accident Risk at Each Level of Effectiveness Aggregated from 
Five Railroads   

In Figure 7, the solid blue circles and the heavy solid line fit to them show the increase in risk for 
human factors accidents as a function of decreases in effectiveness (increasing fatigue) at the 
time of the accident.  A risk value of 1.0 indicates no effect of fatigue on accident occurrence.  
The dashed line shows the mean accident risk of nonhuman factors accidents.  As can be seen 
from Figure 7, human factors accident risk is well described by a linear function.  The line that is 
fit to these data accounts for 86 percent of the variance in human factors accident risk and a 
significant inverse correlation exists between accident risk and effectiveness, the inverse of 
fatigue (r = -0.93, p < 0.01).  The data show that for effectiveness scores between 90 and 100 
(values associated with optimal prior sleep), a reduction of risk occurs.  At effectiveness scores 
below 90, risk progressively increases.  At the lowest level of effectiveness, a 65 percent increase 
in accident risk occurs (for effectiveness scores equal to or less than 50).  The consistent 
relationship between reduced effectiveness (increased fatigue) and elevated risk indicates that the 
additional risk is associated with fatigue.   

• This finding satisfies the first criterion for model validation:  there was a significant 
correlation between model predicted reductions in effectiveness and an increase in human 
factors accident risk.   

Importantly, the maximum increase in accident risk due to time of day alone was less than 20 
percent (Figure 3), while the maximum increase in accident risk due to reduced effectiveness 
(fatigue) was 65 percent (Figure 7), reflecting the combined effects of time of day and sleep 
opportunities.  Details of the statistical analysis are in Appendix B.  Charts of human factors 
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accident risk by effectiveness for individual railroads are included in Appendix C. 

Figure 8 shows the risk for nonhuman factors accidents as a function of effectiveness.   In Figure 
8 no consistent, statistically reliable relationship exists between risk and effectiveness.  Data 
points fall above and below the line that indicates a risk value of 1.0.  The best fitting straight 
line has a slope that is not reliably different from zero, indicating that no consistent relationship 
exists between nonhuman factors accident risk and effectiveness (r = -0.14, p > 0.05).  Only 2 
percent of the variance in risk is accounted for by a linear function.  Charts of nonhuman factors 
accident risk by effectiveness for individual railroads are included in Appendix C.   
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Figure 8.  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
from Five Railroads   

A large difference in relative risk occurred between human factors and nonhuman factors 
accidents in the lowest category of effectiveness and this difference was statistically reliable 
(χ2 = 7.201, p < 0.01).  These findings satisfy the second criterion for model validation: 

• No reliable relationship exists between effectiveness and nonhuman factors accident 
risk, and at low levels of effectiveness, human factors accident risk was elevated 
more than nonhuman factors accident risk.   

3.2.5 Accident Risk as a Function of Effectiveness, Consistent Night Workers 
To further assess the statistical significance of this possible risk factor, the analysis examined the 
distribution of human factors and nonhuman factors accidents between consistent night workers 
and the variable schedule workers.  If, consistent night workers are more prone to fatigue-related 
incidents owing to the greater amounts of time spent at low levels of effectiveness, then one 
would expect that the consistent night workers would have proportionately more human factors 
accidents than nonhuman factors accidents compared to the variable schedule workers.  Indeed, 
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human factors accidents account for 36 percent of the incidents for consistent night workers and 
only 27 percent of the incidents for the variable schedule workers.  This difference in distribution 
of human factors and nonhuman factors accidents is statistically significant (χ2 = 6.56 p = 0.01; 
Fisher’s exact test p = 0.003, p < 0.01).  A test of statistical reliability of the difference between 
the proportions of 27 percent and 36 percent is also statistically significant.  Hence, one can 
conclude that the combined effect of fatigue and relatively large amounts of time working 
fatigued leads to an elevated risk of night workers having human factors accidents and this 
appears to occur at levels of estimated effectiveness below 70 percent.  When effectiveness is 
above this level, it appears to be protective; fewer accidents occur than might be expected by 
chance (dashed line at 1.0), shown in Figure 9.   Despite this significant relationship, the linear 
trend between reduced effectiveness and increased accident risk is not statistically significant nor 
is the correlation coefficient of -0.596.  Results for night workers for individual railroads are not 
presented because the sample size is too small. 
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Figure 9:  Human Factors Accident Risk at Each Level of Effectiveness Aggregated for 
Consistent Night Workers from Five Railroads   

 
 The relationship between nonhuman factors accident risk and effectiveness at the time of 
the accident for consistent night workers is shown in Figure 10.  The correlation of -0.364 is 
lower than for human factors accidents and not statistically significant. 
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Figure 10:  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
for Consistent Night Workers from Five Railroads 

3.3 Calibration of a Fatigue Model 
3.3.1 Accident Likelihood at Selected Criterion Levels (Variable Schedule         

Workers) 
In addition to validating that a fatigue model can associate reductions in effectiveness with a 
reliable increase in human factors accidents, this study sought to calibrate the level of reduced 
effectiveness below in which a reliable increase occurs in accident risk (cumulative risk).  To do 
this, a somewhat different analysis was conducted.  In this case, a criterion level was set to 
include the proportion of all accidents that occurred with an effectiveness score at or below that 
level.  The analysis then compared that proportion to the proportion of exposure time that 
occurred at or below that level.  If the ratio of the two values is reliably greater than 1.0 at a 
particular criterion level, then that level could be considered the effectiveness level below which 
an increased cumulative risk of accidents would exist.  As before, the analysis was conducted on 
the aggregated data, excluding the consistent night workers.  Figure 11 shows the results, while 
Table 1 summarizes them.  The blue symbols are the cumulative human factors fatigue-
associated accident risk, the black line is the expected cumulative risk of accidents if they are 
distributed as work interval effectiveness exposure (see Figure 4), and the dashed line is the 
mean cumulative risk ratio for nonhuman factors accidents. 

Each point shows the 95 percent confidence limits.  If the lower confidence limit is above the 
black line (risk = 1), then the bar is reliably greater than 1.0 (chance).  Interestingly, for any 
effectiveness criterion score below 90, human factors accidents have a cumulative risk reliably 
greater than expected by chance.  Below an effectiveness score of 70, human factors cumulative 
risk is reliably greater than nonhuman factors cumulative risk and reliably greater than chance.  
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Figure 11.  Human Factors Accident Risk by Criterion Levels of Effectiveness Aggregated 
for Five Railroads 

 

Table 1 summarizes the results in Figure 11, along with the percent of work time and accidents at 
each criterion level.  Several things are clear.  First, no specific threshold defines the beginning 
of the relationship between estimated effectiveness and accident risk.  At any criterion level of 
effectiveness below a score of 90, a significant, albeit a small, increase in risk occurs. 
Effectiveness above a score of 90 is actually protective; accident likelihood is significantly less 
than chance for both human factors and nonhuman factors accidents.  An effectiveness level of 
90 is meaningful; the average daytime worker who consistently gets 8 hr of sleep each night will 
never have an effectiveness score below 90 according to the model used here.  If a person works 
at night or consistently misses some sleep, effectiveness drops below a score of 90, at least some 
of the time.  Here the analysis indicates that whenever workers are below an effectiveness level 
of 90, they have a statistically significant increase in accident risk.  However, an increase in risk, 
while detectable, may not be operationally meaningful.  For example, Figure 2 indicates that a 
considerable amount of work occurs at night, which is an operational necessity.  Undoubtedly, 
effectiveness is below a score of 90 for some or all of that time for those workers; however, that 
degradation is biologically determined.  An 11 percent increase in accident risk may be an 
operational cost inherent to any industry that operates at night.  What is more important to note is 
that fatigue risk gradually escalates with progressively lower levels of effectiveness.  
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Table 1.  Human Factors Accident Cumulative Risk at Various Criterion Levels of 
Effectiveness 

Criterion 
Effectiveness# 

Score 

Human Factors 
Accident Risk 

(%) 

Percent of 
Work Time 

Human Factors Cases 
 Number (Percent)+

> 90 - 16 * 42 259 (35%) 

≤ 90 + 11 * 58 472 (65%) 

≤ 80 + 14 * 35 289 (40%) 

≤ 70 + 21 * 19 166 (23%) 

≤ 60 + 39 * 7 71 (10%) 

≤ 50 + 65 * 2.7 33 (4.5%) 
* Significantly different from chance (p < 0.05).   
# Effectiveness at accident time based on 30-day work histories processed using the 
SAFTE biomathematical fatigue model. 
+ Human factors cases (two crewmembers per accident) in 2½ yrs, excluding accidents 
involving consistent night workers.  The percentages above and below 90 sum to 100 
percent.  The percentages below 90 are cumulative and do not sum to 100 percent. 

 

Choosing a criterion level for effectiveness, below which risk is intolerable, is an economic, 
operational, and safety decision beyond the scope of this report.  From a purely statistical point 
of view, however, a criterion set at 70 and below indicates the point at which human factors 
fatigue-associated accident risk is reliably greater than chance and the risk for nonhuman factors 
accidents.  Although an effectiveness level of 70 represents a point at which a detectible 
elevation of human factors accident risk occurs, various operational activities may occur below 
this level and still be conducted in a safe manner.    

3.4 Other Evidence of Fatigue 
The validation and calibration analyses documented in Figures 7 and 11 highlight human factors 
accidents that occur below an effectiveness score of 70 as the accidents most strongly related to 
the influence of fatigue or low effectiveness.  The relationship between estimated effectiveness 
and accident risk is merely a correlation.  This relationship could be due to fatigue, or it could be 
due to some other extraneous factor that is associated with this method for determining 
effectiveness.  One way to more strongly implicate fatigue as an important part of this 
relationship is to identify evidence that the accidents were caused by errors that are typical of a 
fatigued state.  To pursue this evidence, the analysis determined which cause codes were 
involved in the human factors accidents with effectiveness scores at or below 70 to see if they 
were the type of accident expected to be related to fatigue.  If those accidents were caused by 
human errors that might reasonably be expected to result from fatigue, then that would constitute 
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further validation of this method and increase confidence that the reliable statistical relationship 
is not a coincidental result of some extraneous factor(s). 

Table 2.  Human Factors Accident Cause Codes Related to Effectiveness ≤ 70 

Rank Cause 
Code 

Frequency w/ 
Effectiveness 

≤ 70 

Frequency 
Total 

Relative 
Likelihood Category Description 

1 H400 15 40 1.53 Main Track Authority 

2 H700 42 149 1.15 Use of Switches 

All Human Factors Cause Codes, 
Primary and Secondary Total  All HF 215 880

Rank Cause 
Code 

Frequency w/ 
Effectiveness 

≤ 70 

Frequency 
Total 

Relative 
Likelihood 

Individual Cause Code 
Description 

Spring switch not cleared before 
reversing 1 H701 4 4 4.09 

Moving cars while loading ramp, 
hose, or chute not in proper place 2 H311 5 7 2.92 

Failure to release hand brake on 
cars 3 H019 8 15 2.18 

Automatic block or interlocking 
signal displaying other than stop 
indication-failure to comply 

4 H222 4 8 2.05 

5 H404 7 17 1.69 Train order, etc. failure to comply 

Buffing or slack action excessive, 
train makeup 6 H504 4 10 1.64 

Automatic block or interlocking 
signal displaying stop indication-
failure to comply 

7 H221 12 31 1.58 

Failure to comply with restricted 
speed in connection with the 
restrictive indication of a block or 
interlocking signal 

8 H605 18 53 1.39 

9 H399 4 12 1.36 Other general switching rules 

Buffing or slack action excessive, 
train handling 10 H503 20 60 1.36 

Top 10 most overrepresented ≤ 70, excluding those with < 3 occurrences.   
Note:  A human factors accident could have two human factors cause codes; hence, more cases of human 
factors cause codes than human factors accidents occurred. 
 

About 400 human factors accidents occurred, and usually two crew members were associated 
with each.   Hence, about 800 cases occurred in which an effectiveness score was associated with 
a human factors accident, and 880 human factors cause codes were assigned because an accident 
could have more than one human factors cause code.  Table 2 displays those categories of cause 
codes and individual cause codes that were over-represented in human factors accidents with an 
effectiveness score below 70:  the proportion of these accidents at an effectiveness score below 
70 was greater than their overall proportion for all human factors accidents.  The top two rows of 

 27



Table 2 indicate the only two categories of causes that were overrepresented as a class:  main 
track authority and use of switches.  The lower part of the table lists the 10 most over-
represented individual codes, excluding those that were rare (less than three occurrences in the 
entire sample).  Most of these cause codes are associated with human errors that would be 
expected to increase with fatigue.  The analysis cannot determine if these elevated risks are 
statistically reliable because the sample of events is too small, but this analysis suggests that the 
relationship between effectiveness and human factors accident risk is meaningful and not due to 
extraneous factors.  

3.5 Interpretation of Effectiveness Scores 
The results of this analysis of freight railroad accident risk indicate a reliable relationship 
between reduced effectiveness and an increased risk of human factors accidents.  Below an 
effectiveness level of 70, the risk of human factors accidents is increased by about 20 percent; 
below an effectiveness level of 50, it is elevated by 65 percent.  In this section, the effectiveness 
metric is related to various other metrics and sleep histories to provide a context for 
understanding and appreciating the kinds of circumstances that can lead to reduced levels of 
effectiveness of this magnitude. 

The effectiveness values shown in Table 3 were derived from the SAFTE model and are based 
on an average person getting 8 hrs of sleep, awakening at 0700 hr, and remaining awake for the 
amount of time specified.  A lapse is defined as an excessively long reaction time caused by loss 
of alertness or a micro-sleep.  Lapse likelihood is the ratio of the expected frequency of lapses at 
an effectiveness level to the frequency of lapses of a well-rested person during a normal work 
day.  A lapse likelihood score of 8 means that expected lapses are 8 times more frequent than for 
a well-rested person (Hursh, et al., 2004).  The effects of wakefulness are based on studies of 
laboratory subjects who were kept awake after a full night of sleep and tested repeatedly on 
cognitive tests throughout the period of wakefulness (Angus and Heslegrave,1985; Belenky, et 
al., 1994).  The blood alcohol concentration (BAC) equivalence is based on studies comparing 
the effects of alcohol and sleep deprivation on performance on a driving simulator (Arnedt, 
Wilde, Munt, and MacLean, 2001) and cognitive test performance (Dawson and Reid, 1997).  As 
an example, Table 3 shows that at an effectiveness score of 70, lapses are 5 times more likely 
than for a well-rested person and that this score is the equivalent of being awake for 21 hr after 
awakening at 0700 h, or having a BAC of 0.08. 
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Table 3.  The Relationship Among Various Effectiveness Scores and Other Meaningful 
Metrics:  Likelihood of a Lapse, Continuous Hours Awake, and BAC 

Effectiveness 
Score 

Lapse 
Likelihood 

Hours Awake 
(Hr:Min) 

BAC 
Equivalent 

98 0.2 14:00  
94 1.0 15:10  
90 1.5 16:00  
80 3 18:00  
77 4 18:30 0.05 
70 5 21:00 0.08 
69 5.4 22:00  
60 8 40:50  
50 12 42:30  
40 18 64:00  

 

Another way to understand effectiveness values is to consider the kinds of sleep patterns and 
times of day that can lead to different levels of effectiveness.  The values in Table 4 were derived 
from the SAFTE model and are based on an average person awakening at 0700 hr after getting 
the hours of sleep shown in the first column or losing the amount of sleep (relative to 8 hr per 
day) in the second column.  Performance at 1600 hr reflects near optimal performance for a 
person on that schedule; performance at 0400 hr reflects the combined effects of prior sleep, time 
of day, and 21 hr of wakefulness.  The values at 0400 hr do not consider benefits of an evening 
nap; for example, a 2-hour nap at 2000 hr improves performance at 0400 hr by 4-6 percent. 

Table 4.  The Effects of Various Daily Sleep Patterns on Effectiveness Estimates at 1600 hr 
and 0400 hr.  Three schedules: 1, 2, 7 Days at the Specified Sleep Level 

Effectiveness Score After: 
One Day Two Days Seven Days 

Prior Daily 
Sleep 
(Hr) 

Prior Daily 
Sleep 

Loss (Hr) 1600 hr 0400 hr 1600 hr 0400 hr 1600 hr 0400 hr 
8 0 97 70 97 70 97 70 
7 1 96 69 95 68 93 67 
6 2 94 68 92 66 88 63 
5 3 92 65 89 62 82 57 
4 4 90 63 84 58 72 48 
3 5 87 59 78 51 57 34 
2 6 83 55 70 42 * * 
1 7 78 49 58 30 * * 
0 8 73 43 46 15 * * 

* No data available for these conditions

 

Relating Table 4 to Table 2, the analysis shows that if a person gets less than 8 hr sleep on a 
regular basis, then effectiveness at 0400 hr (the circadian minimum) will be below a score of 70 
and accident risk will be elevated by at least 21 percent.  If the person gets less than 4 hr sleep, 
then effectiveness at 0400 hr is below a score of 65 in one day, less than a score of 60 in two 
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days, and less than a score of 50 in seven days, at which point accident risk is elevated by 65 
percent. After seven days of 4 hr sleep per day, effectiveness at the circadian peak (about 1600 
hr) is nearing a score of 70 or an elevated risk of 14-21 percent in the daytime. 

3.6 Interpretations and Limitations 
This study was designed to test the validity of biomathematical models of fatigue, here the 
SAFTE model and the FAST software, as tools for evaluating schedules for increased risk of 
fatigue-related accidents.  The data considered—accidents and the 30-day work histories that 
preceded them—were not a random sample of all locomotive crews in freight rail operations.  
Hence, the levels of effectiveness calculated by the model should not be interpreted as 
representative of the railroad work force in general.  The study was not designed to determine the 
extent of fatigue in the freight rail industry.  The objective was to test the validity of the 
mathematical model and to calibrate the model so that one could relate the effectiveness 
estimates to an estimate of elevated accident risk. 

While the biomathematical model used is typical of other sleep and performance models and is 
designed to simulate the effects of circadian rhythms and sleep patterns on fatigue, it is important 
to emphasize that the data that drove these predictions were entirely related to work schedule and 
opportunities to obtain sleep.  The study did not measure sleep duration and quality directly, nor 
did the study directly measure cognitive performance.  Operationally, this study related work 
schedule to accident risk using a sophisticated mathematical algorithm, but it did not directly 
measure fatigue or the performance manifestations of fatigue.  The relationships observed are 
entirely correlational, not causal.  It is theoretically conceivable that some other factor correlated 
with the same work schedule factors considered by the fatigue model was the real operational 
cause of the elevated accident risk.  That possibility cannot be entirely eliminated with the sorts 
of data used in this study.  In practice, however, that logical possibility may not matter if 
elimination of those work schedule risk factors results in improved safety.  The encouraging 
results of this study provide justification for such an experiment. 

The inferences of sleep opportunity are based on a sleep estimation algorithm called AutoSleep, 
and the calculated effectiveness values were partly dependent on the settings of AutoSleep.  
Several studies have been completed (Gertler and Viale, 2006a,b, 2007) or are currently 
underway to measure actual sleep under typical railroad schedules, and those findings may lead 
to improvements in the sleep estimation accuracy of AutoSleep, which may lead to greater 
accuracy in estimates of the true risk of fatigue. 

The accident risk levels that were found must be carefully limited to the operational factors that 
were considered:  work schedule, time of day, call times, and commute times.  Accidents that 
were estimated to have occurred with relatively high levels of effectiveness could have been 
fatigue related if the fatigue were caused by factors not considered by the analysis, such as sleep 
disorders, poor sleep hygiene, unusual circumstances in the operator’s life, such as illness or 
family demands, or unusual sleep needs.  This sort of error might be called a miss, a case of 
fatigue that was misidentified as not fatigue.   

Even in cases where the fatigue model judged that fatigue could have occurred, it is possible that 
the human factors accident was caused by some other human error, such as distraction or poor 
training.  This sort of error might be termed a false alarm, a case in which the analysis suspected 
fatigue as the cause but was really some other cause.  These two sorts of errors, misses and false 
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alarms, are typical of discriminations involving noise, and unidentified factors that lead to error 
in judgment.  When making such judgments, the user of the model must weigh the relative costs 
associated with the two kinds of errors and set a criterion value for using the model, based on 
Table 1 that is operationally, economically, and socially optimal (see Raslear and Coplen, 2004).  
Making that decision is beyond the scope of this study.   

Furthermore, fatigue models based entirely on the sorts of data used in this study are not suitable 
for determining the fatigue of particular individuals because of the kinds of inaccuracies 
discussed above, especially the wide variation in individual sleep requirements and absence of 
specific information on individual sleep habits, health, and circumstances.  On the other hand, by 
adding such additional information to a fatigue analysis, it is possible to reduce the error 
sufficiently to use fatigue models as tools in accident investigations, combined with other 
important information about the performance of the individuals.  That sort of detailed analysis, 
however, was clearly beyond the scope of this study. 

Finally, it is important to properly interpret the risk values in Table 1.  Those values represent the 
percent change in human factors accidents relative to the expected distribution of accidents based 
on work time effectiveness. The results indicate that the lower the effectiveness level, the greater 
the elevation of human factors accident risk. The percent changes in risk (second column, Table 
1) are not to be confused with the percentages of human factors accidents associated with that 
level of risk (fourth column, Table 1).  The percentages in second column represent the increase 
(or decrease) in the risk of fatigue-associated human factors accidents compared to chance when 
at a particular level of effectiveness.     

The overall probability of a particular railroad worker on a particular work shift having a human 
factors accident is extremely low.  This study only considered work histories related to accidents, 
not all work histories. Consequently, an overall probability of fatigue-caused human factors 
accidents in freight service cannot be calculated, but that probability will be a number with four 
or five zeros after the decimal point.  
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4. Summary and Conclusions 

4.1 Summary 
This report summarized the results of a project sponsored by FRA’s Office of Research and 
Development and Office of Safety to develop a methodology to validate and calibrate 
biomathematical fatigue models for use as fatigue management tools.  This study assessed 
whether a fatigue model can predict an increased risk of human factors caused accidents.  Using 
2½ years of accident data from five Class I freight railroads, the fatigue model used 30-day work 
histories before a sample of human factors and nonhuman factors accidents to determine the 
relationship between accident risk and crew effectiveness (the inverse of fatigue).  This report 
summarized the scope of that effort, the methods used to conduct the analysis, and the results of 
the analysis to date.  The study considered approximately 2,800 crew member work histories 
associated with 1400 accidents, 400 of which involved human factors errors.  A biomathematical 
fatigue model (SAFTE) evaluated a total of over 1 million 30-minute work intervals, covering 
over 57,000 work starts, for predicted effectiveness.  The 2,800 work histories served as a basis 
for determining the exposure level to various levels of fatigue in these locomotive crews.  In 
addition, the fatigue model calculated estimated effectiveness at the time of each accident, again 
based on 2,800 estimates of effectiveness at the time of the accidents.  The following 
summarizes the results of the study. 

Human factors accidents follow a circadian pattern that is significantly correlated with the 
circadian rhythm of a fatigue model (r = 0.71, p < 0.05).  The same model rhythm is not 
correlated with nonhuman factors accidents.  The maximum human factors accident risk due to 
time of day alone was increased less than 20 percent (Figure 3), while the maximum increase in 
accident risk due to reduced effectiveness (fatigue) was 65 percent (Figure 7), reflecting the 
combined effects of time of day and sleep opportunities. 

• Validation.  The fatigue model met two validation criteria. 

1. Accident risk was significantly correlated with effectiveness for human factors 
accidents (r = -0.93, p < 0.01, Figure 7). 

2. The model distinguished between human factors and nonhuman factors accidents.  
Nonhuman factors accident risk was not correlated with estimated effectiveness (r 
= -0.14, p > 0.05, Figure 8), and the relative risk of human factors and nonhuman 
factors accidents were significantly different at low effectiveness levels (χ2 = 
7.201, p < 0.01). 

• Calibration.  Effectiveness has a reliable correspondence to increases in accident risk.   

1. Risk is a relatively smooth increasing function with decreases in effectiveness.   

2. Above an effectiveness score of 90, risk is significantly reduced relative to 
chance. 

3. Below an effectiveness score of 70, risk is significantly elevated relative to 
nonhuman factors risk. 

4. Overall, railroad workers in this study spent about 40 percent of work time above 
an effectiveness score of 90 and about 20 percent of work time below an 
effectiveness score of 70. 
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• Human factors accidents accounted for 36 percent of the incidents for night workers and 
27 percent of the incidents for the remaining population that do not work primarily at 
night (variable schedule workers).  This difference in distribution of human factors and 
nonhuman factors accidents was statistically significant (χ2 = 6.56, p = 0.01; Fisher’s 
exact test p = 0.003, p < 0.01). 

• An effectiveness score of 90 is the minimum level for a person getting 8 hrs sleep per day 
and awake from about 0700 to 2300 hr (day shift). 

• An effectiveness score of 70 is the minimum level for a rested person after being awake 
for 21 hr at 0400 hr.   

• An effectiveness score of 70 is about equal to the effects of 0.08 BAC and lapse 
likelihood five times greater than a well-rested person during the daytime. 

An analysis of the cause codes associated with the accidents that occurred at effectiveness at or 
below an effectiveness score of 70 indicated an overrepresentation of human factors errors 
associated with main track authority and use of switches.  Most of the overrepresented individual 
cause codes reflect the kinds of operator errors one might expect of persons who are fatigued.  
This finding confirms that the relationship between effectiveness and human factors accident risk 
is meaningful and not a circumstantial coincidence. 

4.2 Conclusion 
This project established that a biomathematical fatigue model can be used to assess how much 
work schedule factors can contribute to increased fatigue and an elevated risk of railroad 
accidents.  The virtue of having a validated fatigue model, especially if it is calibrated to accident 
likelihood, is that a carrier could use it to do a self-assessment of fatigue across its system.  By 
evaluating work histories on a terminal by terminal basis and using the scores from the model as 
a metric, the carrier could determine which terminals are experiencing schedules that might be 
generating increased risk of fatigue in train operators.  Perhaps none of the terminals have a 
problem, perhaps just a few.  In any case, the carrier would be in a position to use this objective 
assessment as a way to focus its fatigue management efforts where the greatest payoff would be 
expected.  This study provides evidence that such a strategy, using a validated fatigue model, can 
identify work schedule-related fatigue factors that contribute to an elevated risk of accidents. 

 34





5. References 
Abelson, R.P. (1995).  Statistics as principled argument. Hillsdale, NJ:  Lawrence Erlbaum.  

Angus, R., and Heslegrave, R. (1985).  Effects of sleep loss on sustained cognitive performance 
during a command and control simulation.  Behavior Research Methods, Instruments, 
and Computers, 17, 1, 55-67. 

Armitage, P., and Berry, G. (1994).  Statistical methods in medical research (3rd edition).  
London:  Blackwell Science. 

Arnedt, J.T., Wilde, G.J., Munt, P.W., and MacLean, A.W. (2001).  How do prolonged 
wakefulness and alcohol compare in the decrements they produce on a simulated driving 
task? Accident Analysis and Prevention, 33, 3, 337-44.

Belenky, G., Penetar, D., Thorne, D., Popp, K., Leu, J., Thomas, M., Sing, H., Balkin, T., 
Wesensten, N., and Redmond, D. (1994). The effects of sleep deprivation on performance 
during continuous combat operations.  In B.M. Marriott (Ed.), Food components to 
enhance performance (pp.127-135). Washington, DC:  National Academy Press. 

Belenky, G., Wesensten, N.J., Thorne, D.R., Thomas, M.L., Sing, H.C., Redmond, D.P., Russo, 
M.B., and Balkin, T.J. (2003).  Patterns of performance degradation and restoration 
during sleep restriction and subsequent recovery:  A sleep dose-response study.  Journal 
of Sleep Research, 12, 1, 1-12. 

Conover, W.J. (1999).  Practical nonparametric statistics (3rd edition).  New York:  John Wiley 
and Sons. 

Dawson, D., and Reid, K. (1997). “Fatigue, alcohol and performance impairment.” Nature 388, 
23. 

Fleiss, J.L., Levin, B., and Paik, M.C. (2003). Statistical methods for rates and proportions (3rd 
edition). Hoboken NJ: John Wiley & Sons. 

Gertler, J., and Viale, A. (2006a). Work schedules and sleep patterns of railroad signalmen 
(Report No. DOT/FRA/ORD-06/19).  Washington, DC: U.S. Department of 
Transportation. 

Gertler, J., and Viale, A. (2006b). Work schedules and sleep patterns of railroad maintenance of 
way workers (Report No. DOT/FRA/ORD-06/25).  Washington, DC: U.S. Department of 
Transportation. 

Gertler, J., and Viale, A. (2007). Work schedules and sleep patterns of railroad dispatchers 
(Report No. DOT/FRA/ORD-07/11).  Washington, DC: U.S. Department of 
Transportation. 

Hursh S.R., Balkin, T.J.,  Miller, J.C., and Eddy, D.R. (2004).  The fatigue avoidance scheduling 
tool:  Modeling to minimize the effects of fatigue on cognitive performance.  SAE 
Transactions, 113, 1, 111-119. 

Hursh, S.R., Raslear, T.G., Kaye, A.S., and Fanzone, J.F. (2006).  Validation and calibration of 
a fatigue assessment tool for railroad work schedules, summary report (Report No. 
DOT/FRA/ORD-06/21).  Washington, DC: U.S. Department of Transportation. 

Hursh S.R., Redmond, D.P., Johnson, M.L., Thorne, D.R., Belenky, G., Balkin, T.J, Storm, 

 36



W.F., Miller, J.C., and Eddy, D.R. (2004).  Fatigue models for applied research in 
warfighting.  Aviation, Space and Environmental Medicine, 75, 3, Suppl.: A44-53. 

Lowry, R. (1998-2006).  VassarStats:  Web site for Statistical Computation.  
http://faculty.vassar.edu/lowry/VassarStats.html

Newcombe, R.G. (1998).  Interval estimation for the difference between independent 
proportions:  Comparison of eleven methods.  Statistics in Medicine, 17, 873-890. 

Pollard, J. K. (1996).  Locomotive engineer’s activity diary (Report No. DOT/FRA/RRP-96/02). 
Washington, DC:  U.S. Department of Transportation. 

Raslear, T. G., and Coplen, M. (2004).  Fatigue models as practical tools: Diagnostic accuracy 
and decision thresholds.  Aviation, Space and Environmental Medicine; 75, 3, Suppl.: 
A168-172. 

Van Dongen, H.P.A. (2004).  Comparison of mathematical model predictions to experimental 
data of fatigue and performance.  Aviation, Space and Environmental Medicine; 75, 3, 
Suppl.: A15-36. 

Wilson, E.B. (1927).  Probable inference, the law of succession, and statistical inference.  
Journal of the American Statistical Association, 22, 209-212. 

 

 37

http://faculty.vassar.edu/lowry/VassarStats.html




Appendix A:   
Abbreviations/Acronyms 
 

AAR Association of American Railroads 

BAC blood alcohol concentration 

FAST Fatigue Avoidance Scheduling Tool 

FRA Federal Railroad Administration 

SAFTE Sleep, Activity, Fatigue, and Task Effectiveness Model 
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Appendix B.  
Statistical Analysis of Incident Frequency Data 
 

Analysis of data supplied by five railroads focused on the relationship between occurrence of 
human factors-related and nonhuman factors incidents and the amount of work hours recorded 
by employees at levels of effectiveness estimated by the fatigue model.  The following analyses 
are based on data presented in Tables B-1 and B-2 below. 

For each worker, the FAST model estimates an average effectiveness level over each half-hour 
interval of each work period recorded in the database.  Table B-1 shows the distribution of these 
effectiveness levels over all work intervals in the data set. For example, it can be seen that of 
1,052,978 half-hour intervals during which a worker in the database was on duty and that in 
49,131 of these intervals the worker’s estimated effectiveness level was between 50 and 60, a 
proportion of 0.047 or approximately 47 in 1,000.  Of 790 human factors incidents recorded in 
the data set analyzed, 45 occurred when a worker’s effectiveness level was between 50 and 60, a 
proportion of 0.057 or approximately 57 of 1,000. Of 2,046 nonhuman factors incidents recorded 
in the database, 118 occurred when a worker’s effectiveness level was between 50 and 60, a 
proportion of 0.058 or approximately 58 of 1,000.   

The concept of risk is discussed in Section 2.2.2 of the main report.  Briefly, the risk of an 
incident occurring, when a worker’s effectiveness level is in a specified range, is the proportion 
of all incidents (at any effectiveness level) in that range divided by the proportion of all work 
intervals in which worker effectiveness level in that range.  A risk of 1 indicates that the 
proportion of incidents is exactly what would be expected if there is no correlation between 
incidents occur at random across all work intervals; a risk greater than 1 indicates that an 
incident is more likely than would be expected by chance, and a risk less than 1 indicates that an 
incident is less likely than would be expected by chance.  In the case discussed above, the human 
factors incident risk associated with effectiveness levels between 50 and 60 is 0.057/0.047 or 
1.221, while the risk of a nonhuman factors incident is 0.058/0.047 or 1.236, so both types of 
incidents are found in this range of effectiveness levels more often than would be expected by 
chance. 

Table B-1 distinguishes between consistent night workers (those who regularly work at night and 
whose circadian rhythms and habitual sleeping patterns are likely to have been affected) and all 
other workers, including consistent day workers as well as those with variable work schedules 
(i.e., all those whose work schedules have presumably not affected their circadian rhythms or 
habitual sleep patterns).  Of the 1,052,978 half-hour intervals, 57,730 of them were associated 
with a consistent night worker on duty, and in 6,665 of these the worker’s effectiveness level was 
between 50 and 60, a proportion of 0.115.  Out of a total of 59 human factors incidents occurring 
while consistent night workers were on duty, 7 occurred when the worker’s effectiveness level 
was between 50 and 60, a proportion of 0.119; out of a total of 102 non human factors incidents 
that occurred while a consistent night worker was on duty, 14 occurred when that worker’s 
effectiveness level was between 50 and 60, a proportion of 0.137.  The corresponding HF risk is 
0.119/0.115 = 1.028 and the NHF risk is 0.137/0.115 = 1.189. 

 

Table B-2 presents the same measures as Table B-1 for cumulative effectiveness levels—i.e., all 
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work intervals and incidents occurring when a worker’s effectiveness level is at or below a given 
value.   

 

Table B-1. Work Interval and Incident Data for Five Railroads by Estimated Effectiveness 
Levels  

EFFECTIVENESS BREAKDOWNS Modeled Worker Effectiveness in Interval
<=50 50<=60 60<=70 70<=80 80<=90 >90 TOTAL

HALF-HOUR TIME INTERVALS
ALL SHIFTS 32,379 49,131 131,349 171,749 243,105 425,265 1,052,978
VARIABLE-SHIFT & DAY WORKERS 27,181 42,466 117,091 157,435 232,767 418,308 995,248
NIGHT WORKERS 5,198 6,665 14,258 14,314 10,338 6,957 57,730
FRACTION OF TIME INTERVALS
ALL SHIFTS 0.031 0.047 0.125 0.163 0.231 0.404 1.000
VARIABLE-SHIFT & DAY WORKERS 0.027 0.043 0.118 0.158 0.234 0.420 1.000
NIGHT WORKERS 0.090 0.115 0.247 0.248 0.179 0.121 1.000
HUMAN FACTORS INCIDENTS
ALL SHIFTS 39 45 114 134 193 265 790
VARIABLE-SHIFT & DAY WORKERS 33 38 95 123 183 259 731
NIGHT WORKERS 6 7 19 11 10 6
NON-HUMAN FACTORS INCIDENTS
ALL SHIFTS 59 118 322 352 488 707 2,046
VARIABLE-SHIFT & DAY WORKERS 45 104 305 327 471 692 1,944
NIGHT WORKERS 14 14 17 25 17 15 1
PROPORTION OF HUMAN FACTORS INCIDENTS
ALL SHIFTS 0.049 0.057 0.144 0.170 0.244 0.335 1.000
VARIABLE-SHIFT & DAY WORKERS 0.045 0.052 0.130 0.168 0.250 0.354 1.000
NIGHT WORKERS 0.102 0.119 0.322 0.186 0.169 0.102 1.000
PROPORTION OF NON-HUMAN FACTORS INCIDENTS
ALL SHIFTS 0.029 0.058 0.157 0.172 0.239 0.346 1.000
VARIABLE-SHIFT & DAY WORKERS 0.023 0.053 0.157 0.168 0.242 0.356 1.000
NIGHT WORKERS 0.137 0.137 0.167 0.245 0.167 0.147 1.000
HUMAN FACTORS RISK
ALL SHIFTS 1.605 1.221 1.157 1.040 1.058 0.831 1.000
VARIABLE-SHIFT & DAY WORKERS 1.653 1.218 1.105 1.064 1.070 0.843 1.000
NIGHT WORKERS 1.129 1.028 1.304 0.752 0.946 0.844 1.000
NON-HUMAN FACTORS RISK
ALL SHIFTS 0.938 1.236 1.262 1.055 1.033 0.856 1.000
VARIABLE-SHIFT & DAY WORKERS 0.848 1.254 1.334 1.063 1.036 0.847 1.000
NIGHT WORKERS 1.524 1.189 0.675 0.989 0.931 1.220 1.000

59

02

 
One question is whether incidents, either human factors related or not, tend to occur more 
frequently at lower effectiveness levels.  A related question is whether human factors-related 
incidents tend to occur more frequently relative to nonhuman factors incidents at lower 
effectiveness levels. 

To address the first question, the rates of occurrence of human factors-related incidents and of 
nonhuman factors-related incidents within a specified range of estimated effectiveness were 
compared with the fraction of time spent on the job within that range.  A first analysis compared 
the proportion of human factors and nonhuman factors incidents for effectiveness levels of 50 or 
less with the proportion of half-hour time intervals worked at estimated effectiveness levels of 50 
or less. 
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Table B-2.  Cumulative Work Interval and Incident Data for Five Railroads by Estimated 
Effectiveness Levels 

EFFECTIVENESS BREAKDOWNS Modeled Worker Effectiveness in Interval
<=50 50<=60 60<=70 70<=80 80<=90 >90 TOTAL

HALF-HOUR TIME INTERVALS
ALL SHIFTS 32,379 81,510 212,859 384,608 627,713 425,265 1,052,978
VARIABLE-SHIFT & DAY WORKERS 27,181 69,647 186,738 344,173 576,940 418,308 995,248
NIGHT WORKERS 5,198 11,863 26,121 40,435 50,773 6,957 57,730
FRACTION OF TIME INTERVALS
ALL SHIFTS 0.031 0.077 0.202 0.365 0.596 0.404 1.000
VARIABLE-SHIFT & DAY WORKERS 0.027 0.070 0.188 0.346 0.580 0.420 1.000
NIGHT WORKERS 0.090 0.205 0.452 0.700 0.879 0.121 1.000
HUMAN FACTORS INCIDENTS
ALL SHIFTS 39 84 198 332 525 265 790
VARIABLE-SHIFT & DAY WORKERS 33 71 166 289 472 259 731
NIGHT WORKERS 6 13 32 43 53 6 59
NON-HUMAN FACTORS INCIDENTS
ALL SHIFTS 59 177 499 851 1,339 707 2,046
VARIABLE-SHIFT & DAY WORKERS 45 149 454 781 1,252 692 1,944
NIGHT WORKERS 14 28 45 70 87 15 1
PROPORTION OF HUMAN FACTORS INCIDENTS
ALL SHIFTS 0.049 0.106 0.251 0.420 0.665 0.335 1.000
VARIABLE-SHIFT & DAY WORKERS 0.045 0.097 0.227 0.395 0.646 0.354 1.000
NIGHT WORKERS 0.102 0.220 0.542 0.729 0.898 0.102 1.000
PROPORTION OF NON-HUMAN FACTORS INCIDENTS
ALL SHIFTS 0.029 0.087 0.244 0.416 0.654 0.346 1.000
VARIABLE-SHIFT & DAY WORKERS 0.023 0.077 0.234 0.402 0.644 0.356 1.000
NIGHT WORKERS 0.137 0.275 0.441 0.686 0.853 0.147 1.000
HUMAN FACTORS RISK
ALL SHIFTS 1.605 1.374 1.240 1.151 1.115 0.831 1.000
VARIABLE-SHIFT & DAY WORKERS 1.653 1.388 1.210 1.143 1.114 0.843 1.000
NIGHT WORKERS 1.129 1.072 1.199 1.041 1.021 0.844 1.000
NON-HUMAN FACTORS RISK
ALL SHIFTS 0.938 1.118 1.206 1.139 1.098 0.856 1.000
VARIABLE-SHIFT & DAY WORKERS 0.848 1.095 1.245 1.162 1.111 0.847 1.000
NIGHT WORKERS 1.524 1.336 0.975 0.980 0.970 1.220 1.000

02

 
 

For 32,379 half-hour work intervals out of 1,052,978 total work intervals (all shifts), estimated 
effectiveness was 50 or less (i.e., 3.07 percent of the intervals were spent at an effectiveness level 
of 50 or less).  This was assumed to represent the proportion of work time spent by the 
population of all employees at such effectiveness levels.  Of 790 work intervals encompassing an 
human factors incident, 39 (4.94 percent) found the employee at an estimated effectiveness level 
of 50 or less.  This proportion is 1.605 as large as, or over 60 percent greater than, the proportion 
of work at these effectiveness levels in the population and represents a more than 60 percent 
increase in risk of a human factors accident when a worker’s effectiveness level is 50 or less. 

The data used in this study was a subset of all work records from the 5 railroads studied.  To 
better estimate the range of risk values likely to be found overall, a statistical confidence interval 
was computed in standard fashion (Fleiss, 2003) for the proportion of human factors incidents at 
effectiveness levels of 50 or less.  A 95 percent confidence interval for this proportion is given 
by 0.0494 ± 1.96 × √[0.0494 × (1-0.0494)/790], so that one can be 95 percent certain that the 
proportion of human factors incidents occurring when a worker on duty is at an effectiveness 
level of 50 or less is greater than 0.03426 and less than 0.06447.  Recalling that the proportion of 
half-hour intervals when a worker is at an effectiveness level of 50 or less was 0.307, then one 
can be 95 percent certain that the risk of a human factors incident with a worker in this range of 
effectiveness levels is greater than 0.03426/0.0307 = 1.102 and less than 0.06447/0.0307 = 
2.097.  In other words, the risk of an HF incident with a worker at an effectiveness level of 50 or 
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less is at least 0.102 (or 10.2 percent) higher than would be expected if no relationship existed 
between HF incident risk and worker effectiveness level, and may be over twice as high (1.097 
or 109.7 percent higher).  Therefore it can be said with 95 percent confidence that the HF risk 
when a worker on duty is at an effectiveness level of 50 or lower is significantly higher than 
would be expected if risk and effectiveness were not related. 

 

Similarly, in 59 of 2,046 work intervals (0.0288 of all work intervals) that included a nonhuman 
factors incident, a worker on duty’s estimated effectiveness was ≤ 50.  The corresponding 95 
percent confidence interval for this proportion is 0.0288 ± 1.96 * √[0.0288*(1-0.0288)/2046] or 
[0.02159, 0.03609].  At the lower limit of the confidence interval the risk of a nonhuman factors 
incident is 0.0288/0.0307 =0.702, and at the higher limit of the confidence interval, the risk is 
0.03609/0.0307 =1.174.  Thus, the nonhuman factors risk may be as much as 17.4 percent higher 
than would be expected by chance, but it may also be as little as nearly 30 percent lower than 
expected by chance—or it might be the same as that expected by chance.  Therefore, it cannot be 
said with 95 percent confidence that the human factors risk—when a worker on duty is at an 
effectiveness level of 50 or lower—is significantly higher than would be expected if risk and 
effectiveness were not related. 

Next the proportions of human factors and nonhuman factors incidents below and above an 
effectiveness level of 50 were compared by analyzing the 2 x 2 contingency Table B-3: 

Table B-3.  Human Factors and Nonhuman Factors Incidents Distribution Above and 
Below an Effectiveness Level of 50 

 ≤ 50 effectiveness > 50 effectiveness Total 

HF incidents 39 (4.94%) 751 (95.06%) 790 

NHF incidents 59 (2.88%) 1,987 (97.12%) 2,046 

Total 98 (3.46%) 2,738 (96.54%) 2,836 

 

Note that the proportion of human factors incidents at effectiveness levels of 50 or less is nearly 
50 percent higher than that for all incidents combined.  The chi-square test for a difference in 
proportions (Conover (1999), pp. 180-187) was applied to this table.  The computed test statistic 
is 7.201 with 1 degree of freedom, corresponding to a significance level p =  0.0073.  This 
indicates that that the type of incident (human factors vs. nonhuman factors) is reliably 
associated or correlated with the employee effectiveness level at the time of the incident with the 
rate of occurrence of human factors incidents at lower effectiveness levels significantly3 higher 
than would be expected if this rate is unrelated to the effectiveness level (i.e., is the same as the 
percentage of work intervals where the employee’s estimated effectiveness is 50 percent or 
lower). 

                                                 
3 Significant in the statistical sense at a confidence level of 95 percent:  If random samples of this size are repeatedly 
drawn from a population wherein the rate of HF incidents that fall within the specified effectiveness range is the 
same as the fraction of work intervals within that range, then an estimated proportion this much higher would be 
found by “luck of the draw” in less than 5 percent of the samples (here, in 0.73 percent of the samples, as indicated 
by the p-level).  

 44



A more precise means for testing association in a 2 x 2 contingency table is Fisher’s exact test 
(Conover, pp. 187-191), based on the hypergeometric distribution.  This test computes the 
probability of observing the value in the upper left hand cell of the table as 
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which evaluates4 to p = 0.003, confirming the finding of significance from the chi-square test. 

A statistically significant difference in and of itself is not necessarily meaningful, noteworthy, or 
otherwise demanding of attention or action5.  To establish the extent of the probable difference 
in proportions between the two types of incidents, it is reasonable to compute a confidence 
interval of the difference between the proportions in the table. From numerous methods for 
developing a confidence interval6 the researchers chose to compute an interval derived from a 
procedure outlined by Wilson (1927) and incorporating a continuity correction.7   The observed 
rate for human factors incidents at effectiveness levels of 50 percent or less is 39/790 = 4.94 
percent and that for nonhuman factors incidence is 59/2,046 = 2.88 percent and the 95 percent 
confidence interval for the difference between the two is [0.45 percent, 3.98 percent].  This 
suggests that the human factors rate is quite likely to be larger than the nonhuman factors rate by 
a factor of at least 15 percent (0.45/2.88). 

Computations analogous to those shown above were performed for the occurrence rates of 
human factors and nonhuman factors incidents at effectiveness levels no greater than 60 percent, 
70 percent, 80 percent, and 90 percent, and at effectiveness levels greater than 90 percent. 

 

                                                 
4 Although difficult to evaluate directly for large sample sizes (e.g. 2,836! ≈ 2.2 × 108652, a preposterous number), 
logarithms may be used to simplify the computation; since 
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and p = 10log  p.  In the current instance, log p = -2.536 and p ≈ 10-2.536 ≈ 0.003. 
5 This is discussed entertainingly by Abelson (1995). 
6 No less than eleven such methods are described in Newcombe (1998).  
7  Conveniently implemented by Dr. Richard Lowry on the VassarStats website in an interactive Web-based 
calculator at http://faculty.vassar.edu/lwry/prop2_ind.html . 

 

 45

http://faculty.vassar.edu/lwry/prop2_ind.html


Appendix C.  
Results for Individual Railroads 
 

 The five participating railroads are code names Aspen, Beech, Cottonwood, Dogwood, 
and Elm.  The next three sections provided individual railroad results for the circadian variations 
in human factors and nonhuman factors accident risk, section C-1, the charts of distributions of 
work time by effectiveness categories, section C-2, human factors accident risk, section C-3, and 
nonhuman factors accident risk, C-4. 

C-1:  Circadian variations in human factors and nonhuman factors accident risk. 
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Figure 12: Accident Risk by Time of Day from Aspen Railroad.  Data Have Been Double-
Plotted to Show the Repeating Circadian Pattern 
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Figure 13: Accident Risk by Time of Day, Beech Railroad.  Data Have Been Double-Plotted 
to Show the Repeating Circadian Pattern 
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Figure 14: Accident Risk by Time of Day, Cottonwood Railroad.  Data Have Been Double-
Plotted to Show the Repeating Circadian Pattern 
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Figure 15:  Accident Risk by Time of Day, Dogwood Railroad.  Data Have Been Double-
Plotted to Show the Repeating Circadian Pattern 
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Figure 16: Accident Risk by Time of Day, Elm Railroad.  Data Have Been Double-Plotted 
to Show the Repeating Circadian Pattern 
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C-2:  Distributions of work time and accidents by effectiveness categories. 
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Figure 17: Proportion of Time or Accidents as a Function of Predicted Effectiveness 
Categories, Aspen Railroad.  Human Factors and Nonhuman Factors Accidents are 

Indicated as Blue Triangles and Green Squares, respectively 
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Figure 18:  Proportion of Time or Accidents as a Function of Predicted Effectiveness 
Categories, Beech Railroad.  Human Factors and Nonhuman Factors Accidents are 

Indicated as Blue Triangles and Green Squares, respectively 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

<= 50 50 <= 60 60 <= 70 70 <= 80 80 <= 90 > 90

Effectiveness Scores

Pr
op

or
tio

n 
of

 T
im

e 
or

 A
cc

id
en

ts

Work Times

Human Factors

Nonhuman Factors

 

Figure 19:  Proportion of Time or Accidents as a Function of Predicted Effectiveness 
Categories, Cottonwood Railroad.  Human Factors and Nonhuman Factors Accidents are 

Indicated as Blue Triangles and Green Squares, respectively 
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Figure 20:  Proportion of Time or Accidents as a Function of Predicted Effectiveness 
Categories, Dogwood Railroad.  Human Factors and Nonhuman Factors Accidents are 

Indicated as Blue Triangles and Green Squares, respectively 
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Figure 21:  Proportion of Time or Accidents as a Function of Predicted Effectiveness 
Categories, Elm Railroad.  Human Factors and Nonhuman Factors Accidents are 

Indicated as Blue Triangles and Green Squares, respectively 
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C-3:  Human factors accident risk by effectiveness at the time of the accident. 
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Figure 22:  Human Factors Accident Risk by Criterion Levels of Effectiveness Aggregated 
for Aspen Railroad 
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Figure 23:  Human Factors Accident Risk by Criterion Levels of Effectiveness Aggregated 
for Beech Railroad 
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R2 = 0.1595
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Figure 24:  Human Factors Accident Risk by Criterion Levels of Effectiveness Aggregated 
for Cottonwood Railroad 
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Figure 25:  Human Factors Accident Risk by Criterion Levels of Effectiveness Aggregated 
for Dogwood Railroad 
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R2 = 0.7642
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Figure 26:  Human Factors Accident Risk by Criterion Levels of Effectiveness Aggregated 
for Elm Railroad 
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C-4:  Nonhuman factors accident risk by effectiveness at the time of the accident. 
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Figure 27:  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
from Aspen Railroad 
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Figure 28:  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
from Beech Railroad 
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R2 = 0.2706
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Figure 29:  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
from Cottonwood Railroad 
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Figure 30:  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
from Dogwood Railroad 
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R2 = 0.0006
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Figure 31:  Nonhuman Factors Accident Risk at Each Level of Effectiveness Aggregated 
from Elm Railroad 
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