M Rocket

U2 Toolkit for .NET

Version 2.2.2

May 2017
UNDK-222-OH-01

www.rocketsoftware.com

Notices

Edition
Publication date: May 2017

Book number: UNDK-222-OH-01
Product version: U2 Toolkit for .NET 2.2.2

Copyright

© Rocket Software, Inc. or its affiliates 2011-2017. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go to:
www.rocketsoftware.com/about/legal. All other products or services

mentioned in this document may be covered by the trademarks, service marks, or product names of their respective
owners.

Examples

This information might contain examples of data and reports. The examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software, Inc., are
furnished under license, and may be used and copied only in accordance with the terms of such license.

Note

This product may contain encryption technology. Many countries prohibit or restrict the use, import, or export of
encryption technologies, and current use, import, and export regulations should be followed when exporting this
product.

http://www.rocketsoftware.com/about/legal

Corporate information

Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks, and compliance;
database servers and tools; business information and analytics; and application development, integration, and
modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information and technical
support, use one of the following telephone numbers.

Country Toll-free telephone number
United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 800-720-1170
France 0800-180-0882
Germany 08-05-08-05-62
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting technical support

The Rocket Community is the primary method of obtaining support. If you have current support and maintenance
agreements with Rocket Software, you can access the Rocket Community and report

a problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to request a Rocket
Community account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Community to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com/
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

Table of Contents

Table of Contents 1-3
U2 Toolkit for .NET Help 4
New in this release 5
Supported versions of Microsoft Visual Studio 6
U2 Toolkit for .NET 7-8
U2 Toolkit for .NET Provider 9
Architecture 10-11
Getting Started 12

U2 Toolkit for .NET Provider system requirements 13
Installing U2 Toolkit for .NET Provider 14
Tracing and logging in U2 Toolkit for .NET Provider 15
Configuring a trace file 16
Preparing your U2 accounts 17
Testing your connection 18-19
Sample code 20
Converting IBM.NET projects into U2 Toolkit for .NET applications 21
Converting UO.NET projects into U2 Toolkit for .NET applications 22
Connection pooling 23-25
Connection pooling C# code sample 26-27
Connection pooling VB.NET code sample 28-29
Microsoft Performance Monitor support 30-31
Migrating applications from UniObjects for .NET to U2 Toolkit for .NET 32-34
Step-by-step migration example (UniObjects for .NET to U2 Toolkit for .NET) 35-36
Additional keyword support 37
Additional function support 38-39
Native Visual Studio Integration 40-41
Tutorial: Developing an application using ADO.NET (Native integration) 42
Tutorial: Adding a reference the project (Native integration) 43
Tutorial: Adding controls to the form (Native integration) 44-45
Tutorial: Creating event handlers for the button controls (Native integration) 46-48
Tutorial: Building the application (Native integration) 49
Tutorial: Accessing U2 data through the DataSet Object Model (Native integration) 50
DataSet Tutorial: Creating a new Windows application (Native integration) 51
DataSet Tutorial: Adding a reference the project (Native integration) 52

U2 Toolkit for NET Help 1

DataSet Tutorial: Adding a new Dataset to the Windows application (Native
integration)

Adding DataAdapters and tables to the DataSet (Native integration)
DataSet Tutorial: Building the application (Native integration)
Tutorial: Creating an EntityDataModel from U2 files (Native integration)
Entity Data Model Tutorial: Creating a new Windows application (Native integration)
Entity Data Model Tutorial: Adding controls to the form (Native integration)

Entity Data Model Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet
Packages (Native integration)

Entity Data Model Tutorial: Adding a new Entity Data Model to the Windows
application (Native integration)

Entity Data Model Tutorial: Creating event handlers for the button controls (Native
integration)

Entity Data Model Tutorial_Building the application (Native integration)

Tutorial: Creating a new Entity Data Model using Visual Studio 2013 to work with Entity
Framework 6.1.3

Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages
Tutorial: Adding a class object to the project
Tutorial: Adding an SqglQuery statement
Tutorial: Developing an application using ADO.NET
Tutorial: Adding a reference the project
Tutorial: Adding controls to the form
Tutorial: Creating event handlers for the button controls
Tutorial: Building the application
Tutorial: Developing an application using UniObjects
Tutorial: Adding a reference to a project
Tutorial: Adding controls to the form
Tutorial: Creating event handlers for the button controls
Tutorial: Building the application
Tutorial: Developing an application using ADO.NET and UniObjects
Tutorial: Adding a reference to the application
Tutorial: Adding controls to the form
Tutorial: Building the application
U2 Toolkit for .NET Developer
U2 Toolkit for .NET Developer system requirements
Installing U2 Toolkit for .NET Developer

Authorizing U2 Toolkit for .NET Developer licenses

U2 Toolkit for NET Help 2

53

54
55
56
57
58
59

60

61

62
63

64-65
66-67
68-69
70
71
72
73-74
75
76
77
78
79-81
82
83
84
85
86
87
88
89
90

Generating a configuration code 91

Authorizing a license 92
Establishing a server connection using the Visual Studio Server Explorer 93-94
Viewing the advanced settings of a U2 server definition 95-100
Accessing U2 database files through the Dataset object model 101-102
Accessing U2 database files through the Entity Data Model 103
Adding a TableAdapter to a project 104
Developing Applications with Native Visual Studio Integration 105
Using @ phrases and @SELECT phrases with Native Visual Studio Integration 106
Optimistic concurrency 107
Turning optimistic concurrency on/off in Dataset applications 108
Turning optimistic concurrency on/off in Entity Data Model applications 109
Turning optimistic concurrency on and off in subroutines 110
Limitations of U2 Toolkit for .NET Developer 111
U2 Entity Data Provider for .NET 112
Tutorial: Developing an application using the U2 Entity Data Provider 113
Tutorial: Adding a reference to the project 114
Tutorial: Adding controls to the form 115
Tutorial: Creating a new Entity Data Model from a U2 data source 116
Tutorial: Creating event handlers for the button controls 117-118
Tutorial: Building the application 119
Tutorial: Developing an application to call a subroutine using a Native Access connection 120
Tutorial: Adding a reference to the project 121
Tutorial: Adding the subroutine calling code 122-123
Working with Entity Framework 6 124-125
Limitations of the U2 Entity Data Provider 126

U2 Toolkit for .NET Help 3

U2 Toolkit for .NET Help
Welcome to U2 Toolkit for .NET help

Version 2.2.2

The help provides conceptual, task-based, and reference information about the U2 Toolkit for .NET.

You can search for a word or phrase in these help topics by selecting the Search tab and entering your search topic.
To narrow the search results to an exact phrase, enclose the phrase within quotation marks, for example, “dictionary
files.”

The help topics cover the following areas:

U2 Toolkit for .NET overview

U2 Toolkit for .NET Provider
Installing U2 Toolkit for .NET Provider
Getting Started

U2 Toolkit for .NET Developer

U2 Entity Data Provider
U2.Data.Client.Assembly

After you install the product, you can learn about the product interface, view tutorials, and find sample codes by
reading the topics in the Getting started section.

Additional resources

For additional information about U2 products, training, and technical resources go to www.rocketsoftware.com/u2

U2 Toolkit for .NET Help 4

http://www.rocketsoftware.com/u2

New in this release

The following features have been added at the 2.2.2 release:

® The First keyword now works with a Native connection
o This allows users to limit the number of items returned by using the First keyword at native connection

The following example uses the First keyword to return the first two records:
Action=Select;File=STUDENT;Attributes=ID, LNAME, FNAME; Sort.DSND=ID; First=2
® Support for descending order by using the Sort.DSND keyword for native queries
The following example uses the Sort.DSND keyword to return the results in descending order:

cmd.CommandText = string.Format ("Action=Select;File=STUDENT;
Attributes=FNAME, LNAME; Sort .DSND=FNAME")

U2 Toolkit for .NET Help 5

Supported versions of Microsoft Visual Studio

The following table details the versions of Microsoft Visual Studio that are supported in U2 Toolkit for .NET.

U2 Toolkit for Visual Visual Visual Visual Studio Visual Studio Express
.NET (v2.2.2) Studio 2017 Studio 2015 Studio 2013 2010/2012 2015/2013/2012/2010
U2 Toolkit for NET Yes Yes Yes Yes Yes

Provider

U2 Toolkit for NET Yes Yes Yes Yes No

Developer

For more information about the changes in Visual Studio, refer to the Microsoft website:
www.microsoft.com/visualstudio.

U2 Toolkit for .NET Help 6

http://www.microsoft.com/visualstudio

U2 Toolkit for .NET

The U2 Toolkit for .NET Provider provides a comprehensive ADO.NET provider, LINQ to Entity provider, and the native
UniObjects for .NET API for the U2 databases. Use Microsoft Visual Studio 2010 or later, to build applications and take
advantage of the powerful Microsoft .NET Framework and CLR.

The U2 Toolkit for NET Developer allows you to easily design U2 applications within Visual Studio. U2 Toolkit for .NET
works with both 32-bit and 64-bit Windows operating systems.

U2 Toolkit for .NET is made up of three primary components:

o U2 Toolkit for .NET Provider (ADO.NET Provider)
e U2 Entity Data Provider for .NET (LINQ to Entity)
e U2 Toolkit for .NET Developer (Visual Studio Add-ins for Server Explorer Integration)

Developers can use U2 Toolkit for .NET to take advantage of server-based capabilities, such as:

Automatic Data Encryption (ADE)

Secure Sockets Layer (SSL)

Connection Pooling

TOXML ('FillWithTOXML Method' in the on-line documentation)
TOJSON (‘ExecuteJson Method' in the on-line documentation)

U2 Toolkit for .NET is optimized for connection performance to a U2 database. The U2 Toolkit for .NET Provider is a
suite of data-access technologies that are included in the .NET Framework class libraries. ADO.NET helps applications
connect to a database and has been designed to be the data access model used by all server processes and
applications running on the Microsoft platform. The U2 Toolkit for .NET Developer allows designers to use the drag-
and-drop capabilities and code generation (C#/VB.NET) found within Visual Studio to create new U2 applications
without the need for extra programming. The Developer is designed to present a simple interface to U2 databases.
For example, you can access and manage U2 Connections in Visual Studio Server Explorer, view server-side object
properties, retrieve and update data from tables and views, and generate ADO .NET and EDM code using the drag-
and-drop functionality.

U2 Toolkit for .NET delivers a LINQ to Entity Framework provider for the U2 databases. Instead of relying on a physical
storage model to access data, you can query and update data using a conceptual model generated as Entity Data
Model (EDM) schemas. You can also develop LINQ to Entity applications to access data in UniData and UniVerse
databases.

UniObjects for .NET (UO.NET) is an interface to UniData and UniVerse through Microsoft .NET. UniObjects for .NET is
an application program interface (API) designed specifically for use with the U2 native data model. This interface is
managed code written in C# Common Language Runtime (CLR). Software developers can use the UniObjects for .NET
API and any CLR language to create applications and services. UO.NET supports SSL, NLS, and I18N.

.NET programmers can choose from a wide variety of languages, including C#, VB.NET, C++/CLI, and IronPython. Use
the most effective language for your application to access your U2 data.

Architecture

The following diagram describes the component architecture of U2 Toolkit for .NET

U2 Toolkit for .NET Help 7

U2 Database Provider for

ADONET (SQL A WNET (Mative A

U2

U2 Toolkit for .NET Help 8

U2 Toolkit for .NET Provider

The U2 Toolkit for .NET Provider is the U2 ADO.NET provider. It is based on the Microsoft ADO.NET 4.0 specification.
The provider supports both U2 Native Visual Studio Integration and SQL access. U2 Native Visual Studio Integration is
achieved using the UniObjects classes, while SQL is accessed using the ADO.NET classes.

The U2 Toolkit for .NET Provider is the .NET Framework provider. It connects with U2 database servers to access and
manipulate data, and execute commands and queries against the database. U2 Toolkit for .NET uses its UniRPC
protocol to communicate with the UniData and UniVerse databases. It accesses the U2 data servers directly, without
adding an OLE DB or ODBC layer, which increases performance.

U2 Toolkit for .NET Help 9

Architecture

The following diagram shows the architecture of U2 Toolkit for NET Provider and its relationship with the UniData and
UniVerse databases.

ADO.NET DataSet

U2Connection U2DataAdapter DataTableCollection

U2Transaction SelectCommand DataTable
UpdateCommand

L2Command InsertCommand

U2Parameters DeleteCommand =

ConsirainitC

UZ2DataReader, ... DataRelationCollection

Core UniObjects

UniSession, UniFile, UniSubroutine
UniCommand, UniSelectlist, UniTransachion
UniSequentialFile, ...

U2 Database

ADO.NET

ADO.NET is a set of classes used by programmers to interact with data accessed in XML format through the OLE DB,
ODBC, and JDBC interfaces. It comprises two primary components in the U2 Toolkit for .NET: The .NET Framework
Provider and the DataSet class.

The ADO.NET DataSet class is a collection class used to read and write bulk UniRecord transactions in a UniData or
UniVerse database.

UniObjects for .NET

UniObjects for .NET is an interface to the UniData and UniVerse databases through Microsoft .NET. UniObjects for
.NET is a proprietary middleware application program interface (API) designed specifically for software development in
the .NET Framework. This interface is managed code written in C# Common Language Runtime (CLR).

U2 Toolkit for .NET Provider

U2 Toolkit for .NET Provider is the data access model for .NET applications that connect to the UniData and UniVerse
databases, providing both native U2 access and SQL access. It contains a collection of classes that allow you to
connect to the UniData and UniVerse databases, execute commands, and read and write results, including the

U2 Toolkit for .NET Help 10

following:

® The UniSession class represents an open session to a UniData or UniVerse database.

® The UniFile and UniDictionary classes are used to access all file operations.

® The UniCommand class represents a Basic statement or stored procedure to execute against a UniData or
UniVerse database.

® The UniTransaction class represents a Basic transaction to be made in a UniData or UniVerse database.

® The UniDataSet is a collection class used to read and write bulk UniRecord transactions in a UniData or
UniVerse database.

Native Visual Studio Integration

The following diagram shows the architecture of how Native integration is used in U2 Toolkit for .NET Provider, and its
relationship with the UniData and UniVerse databases.

U2 ADO.NET Provider
(Native Access)

UniObjects API

U2 Database

Locating the U2 Toolkit driver
When there is more than one instance of the U2 Toolkit driver installed, such as when U2 Toolkit is deployed on an

application server, it may not always be apparent where the U2 Toolkit drivers are located. To locate the drivers, first
check the Global Assembly Cache (GAC) and then if it is not located there, check the application installation folder.

U2 Toolkit for .NET Help 11

Getting Started with the U2 Toolkit for .NET Provider

The topics in this section detail how to install the U2 Toolkit for NET and the specific steps you need to take to
prepare your UniData or UniVerse accounts. It provides you with several short tutorials that walk you through the
process of developing applications using ADO.NET and UniObjects, as well as a hybrid project that uses both
ADO.NET and UniObjects. It also introduces you to the U2 Toolkit for .NET Test Connection Tool.

U2 Toolkit for .NET Help 12

U2 Toolkit for .NET Provider system requirements

The following requirements must be met in order for the U2 Toolkit for .NET Developer to work correctly on your

system.

System requirements

Microsoft Windows 7, 8.1, 2008, 2012

Microsoft.NET Framework 4.0, 4.5, 4.6

Microsoft Visual Studio 2010, 2012, 2013, 2015, 2017
ADO.NET Entity Framework 4.0, 5.0, 6.1

Supported versions of UniData and UniVerse

e UniData 7.3 or later
® UniVerse 11.2 or later

Supported version of Microsoft Visual Studio

Visual Visual Visual
U2 Toolkit for .NET Studio Studio Studio
2010/2012 2013 2015
U2 Toolkit for .NET Provider Yes Yes Yes Yes
U2 Toolkit for .NET Developer Yes Yes Yes Yes

Visual Visual
Studio Studio
2017 Express

Yes

No

Supported versions the .NET Framework and the Entity Framework

U2 Toolkit for .NET Microsoft .NET

Framework
U2 Toolkit for .NET Provider 40
U2 Toolkit for .NET Developer 45,46

Note: Microsoft Visual Studio 2013 and later will not work with Entity Framework 5.0.

SSIS/SSRS (Optional)

Visual Studio L
Business Intelligence Development Studio Studio
2010/2012
2013
SQL Access Yes Yes
Native Visual Studio Integration Yes Yes

Microsoft Entity

Framework

40,50

6.1
Visual Visual
Studio Studio
2015 2017
Yes Yes
Yes Yes

U2 Toolkit for .NET Help 13

Installing U2 Toolkit for .NET Provider

Complete the following steps to install U2 Toolkit for NET on Windows.

Note: U2 Toolkit is a free driver. It is available for download from the Rocket Business Connect (RBC) website, at
https://u2tc.rocketsoftware.com/matrix.asp.

Prerequisites

U2 Toolkit for .NET Provider system requirements

Procedure

1. From the U2 Toolkit for .NET installation screen, select U2 Data Provider for .NET. Click Next.
After accepting the licensing agreement, click Next.
3. By default, the installation process installs U2 Toolkit for .NET in the following directories:

N

The installation path for the 32-bit provider on a 64-bit Windows 7 machine is C:\Program Files (x86)\Rocket
Software\U2 Toolkit for NET\U2 Database Provider

The installation path for the 64-bit provider on a 64-bit Windows 7 machine is C:\Program Files\Rocket
Software\U2 Toolkit for .NET\U2 Database Provider

The installation path for the 32-bit provider on a Windows 7/Windows XP machine is C:\Program Files\Rocket
Software\U2 Toolkit for NET\U2 Database Provider

4. Click Next to install U2 Toolkit for .NET in the default folder, or click Browse to search for a different folder.

5. By default, the installation process adds the Rocket U2 icon to the Program Folders list. Click Next to accept
this default, or select a different folder from the Existing Folders list and then click Next.

6. Review the information listed in the Start Copying Files dialog box. If the information is correct, click Next to
begin copying files. If the information is not correct, click Back to make changes.

7. Click Finish to complete the installation process.

U2 Toolkit for .NET Help 14

https://u2tc.rocketsoftware.com/matrix.asp

Tracing and logging in U2 Toolkit for .NET Provider

U2NETDK provides a standard tracing and logging facility to trace the execution of U2NETDK code and to log the data
in a user-specified destination. You can set the configuration for tracing and logging using the application's
environment variables. By default, tracing and logging are turned off in U2NETDK.

Procedure

1. To access the environment variables, navigate to Start > Control Panel > All Control Panel Items > System.
2. Click Advanced system settings and select the Advanced tab.
3. Select Environment Variables to add or edit the environment variables for your system.

In the .NET Framework, there are four predefined trace levels:
1(error)

2(warning)

3(info)

4(verbose)

A U2NETDK application can select one of these four levels and specify a storage destination for the output of tracing
and logging. The UCINETTRACE environment variable is used to define the log file folder. The
UCINETTRACESWITCH environment variable is used to define the specific trace levels.

Example

UCINETTRACE=c:\temp
UCINETTRACESWITCH=4

In this example, tracing is turned on and is set to the 4(verbose) level. The log file name is
c\temp\ucinet_trace_<pid>.txt.

U2 Toolkit for .NET Help 15

Configuring a trace file

Complete the following steps to configure a trace file.

Procedure

1. To access the environment variables, navigate to Start > Control Panel > All Control Panel Items > System.
2. Click Advanced system settings and select the Advanced tab.
3. Select Environment Variables and then set the U2NETDK_INSTALL_LOG environment variable.

For example:
U2NETDK_INSTALL_LOG = c:\temp

Verify installation

You can verify that U2 Toolkit for .NET installed correctly by viewing the contents in your Windows system's Control
Panel. Navigate to Control Panel > All Control Panel Items > Programs and Features. The U2 Toolkit for .NET
Provider appears in the list.

U2 Toolkit for .NET Help 16

Preparing your U2 accounts

Before you can begin using your U2 accounts in SQL-based applications, you must make the U2 data accessible to
those applications. The following list details where you can find the appropriate account preparation instructions for
your application.

Version Description

UniData 7.3 or later To prepare your UniData 7.3 (or higher) accounts, you must use the U2 Metadata
Manager (U2 MDM) tool. For more information about the U2 MDM tool, refer to the
documentation at:
http://docs.rocketsoftware.com/

UniData 7.2 or earlier To prepare your UniData 7.2 (or prior) accounts, you must use the VSG and Schema
API tools. For more information, refer to the documentation at:
http://docs.rocketsoftware.com/

UniVerse 11.1 or earlier To prepare your UniVerse 11.0 (or prior) accounts, you must use the HS.ADMIN tool.
For more information about preparing your accounts using HS.ADMIN, refer to the
UniVerse ODBC documentation at:
http://docs.rocketsoftware.com/

Note

Account preparation is not required for Native Visual Studio Integration.

U2 Toolkit for .NET Help 17

http://docs.rocketsoftware.com/
http://docs.rocketsoftware.com/
http://docs.rocketsoftware.com/

Testing your connection

While in the .NET developer, you can test the connection to U2 databases using the Test Connection Tool.

Procedure

1. Navigate to Start > All Programs > Rocket U2 > U2 Toolkit for .NET > U2 Toolkit for .NET Provider.

2. Select Test Connection > Test Connection.exe. The U2 Test Connection window opens, displaying two tabs:
ADO.NET (SQL Access) and UniObjects (Native Visual Studio Integration).

3. In the U2 Test Connection dialog box, select either the ADO.NET tab or the UniObjects tab. To test the
connection, enter information as described below:
Database Type: Select UniData or UniVerse.

Database: Enter the name of the database to which you are connecting.

NOTE: The database name can be set to full path or a UniData database name or a UniVerse account name.
When connecting to a UniData server using the database name, the name must be defined in both the
ud_database file and the system UD.ACCOUNT file.

Server: Enter the name or IP address of the computer on which UniData or UniVerse is running.

User: Enter the administrator user name or the user name of a valid user on the server computer running
UniData or UniVerse.

Password: Enter the password for the administrator or user on the server computer.

AccessMode: Enter the AccessMode for your application. For an ADO.NET connection, enter ADO.NET. For a
UniObjects connection, enter Native.

RpcServiceType: Select the correct RPC service type for the application. For UniData, select udcs. For UniVerse,
select uvcs.

4. Click Test. The results of the connection test appear in the viewing pane, as shown:

U2 Toolkit for .NET Help 18

gl U2 Test Connection Ew

ADO.NET (SQL Access) | UniObjects (Native Access) |

ERRENIWY TR IIGR FR s T S RGP PR
Database Type: UMIVERSE ¥ | class="System.Security.PermissionSet”
version="1"
Unrestricted="trus"/>

Database: H5.5ALES

Server: 8.72.198.235 assembly ReflectionOnly: False

i assembly SecuntyRuleSet: Levell
assembly tostring: U2.Data.Client, Version=1.1.0.0, Culture=neutral,
PublickeyToken=%9ab9148678f4f445

User: administrator

Password: snssssee

Connection string:
DatabaseType=UNIVERSE User=administrator;Password=""""";Server=9.72
199,235 Databaze=HS.SALES

Call GetSchema to execute command
GetSchema returns 9

If you are testing the UniObjects connection, the screen will look slightly different.

U2 Toolkit for .NET Help 19

Sample code

The U2 Toolkit for .NET Provider installation includes a large number of sample files, which are located by default in
the following location:

® On 32-bit machines: C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database
Provider\samples

® On 64-bit machines: C:\Program Files\Rocket Software\U2 Toolkit for .NET\U2 Database Provider\samples

Samples are provided for both UniData and UniVerse and are written in both C# and VB.NET.

The following samples are provided:

AutomaticDataEncryption

Connection

ConnectionPool

DataAdapter

DataAdapter_MultiValue

DataAdapter_ TOXML

DataReader

Subroutine

EntityFramework
EntityFramework_Subroutine
EntityFramework_CodeFirst
EntityFramework_CodeFirst2
EntityFramework_CodeFirst_MultiValuel
EntityFramework_CodeFirst_MultiValue2
EntityFramework_ExecuteStoreQuery_UNNEST
EntityFramework_POCO

SSLConnection

UO_UniCommand

UO_UniDataSet

UO_UniFile

UO_UniSelectList

UO_UniSubroutine

Viewing the samples

1. Open the sample .sin file that you want to view. For example, to view the Connection sample, double-click
Connection.sln to open the file.

Add a reference to the U2.Data.Client.dll.

Change the connection string in the Program.cs file.

Compile the code.

Run the application.

vk wnN

U2 Toolkit for .NET Help 20

Converting IBM.NET projects into U2 Toolkit for .NET
applications

To convert an IBM.NET project to U2 Toolkit for .NET, modify the namespaces and class names, as shown in
the following tables:

Namespaces

C# File

IBM.NET namespace U2 Toolkit for .NET namespace
IBM.Data.DB2 U2.Data.Client
IBM.Data.DB2Types U2.Data.ClientTypes

Classes

IBM.NET classes U2 Toolkit for .NET classes
DB2Connection U2Connection
DB2Command U2Command
DB2DataReader U2DataReader
DB2DataAdapter U2DataAdapter
DB2Parameter U2Parameter
DB2Transaction U2Transaction
DB2ComandBuilder U2ComandBuilder
DB2Error U2Error

U2 Toolkit for .NET Help 21

Converting UO.NET projects into U2 Toolkit for .NET
applications

To convert a UniObjects for .NET project into U2 Toolkit for .NET applications, modify the namespaces and classes, as
shown in the following tables:

Namespaces

C# File

UO.NET namespace U2 Toolkit for .NET namespace
IBMU2.UODOTNET U2.Data.Client.UO

Classes

UO.NET Classes U2 Toolkit for .NET Classes
UniObjects Not applicable

UniSession UniSession (Get UniSession Object from U2Connection Object). See sample code
included with the product.

UniCommand UniCommand (Get UniCommand Object from UniSession Object). See sample code
included with the product.

UniSubroutine UniSubroutine (Get UniSubroutine Object from UniSession Object). See sample
code included with the product.

UniSelectList UniSelectList (Get UniSelectList Object from UniSession Object). See sample code
included with the product.

UniTransaction UniTransaction (Get UniTransaction Object from UniSession Object). See sample
code included with the product.

UniSequentialFile UniSequentialFile (Get UniSequentialFile Object from UniSession Object). See
sample code included with the product.

U2 Toolkit for .NET Help 22

Connection pooling

UniData 7.2 or later and UniVerse 10.3 or later support connection pooling with U2 Toolkit for .NET, UniObjects for Java, and
UniObjects for .NET.

The term connection pooling refers to the technology that pools permanent connections to data sources for multiple threads
to share. It improves application performance by saving the overhead of making a fresh connection each time one is
required. Instead of physically terminating a connection when it is no longer needed, connections are returned to the pool
and an available connection is given to the next thread with the same credentials.

You can activate connection pooling in your program (C#/VB.NET), or activate it through a configuration file.

Connection pool size

You can set the minimum and maximum size of the connection pool either in your program or through a configuration file. If
you do not define these sizes, the minimum size defaults to 1 and the maximum size defaults to 1. The minimum size
determines the initial size of the connection pool.

The size of the connection pool changes dynamically between the minimum and maximum sizes you specify, depending on
the system demands. When there are no pooled connections available, U2 Toolkit for .NET either creates another connection,
if the maximum connection pool size has not been reached, or keeps the thread waiting in the queue until a pooled
connection is released or the request times out. If a pooled connection is idle for a specified time, it is disconnected.

License considerations

The actual size of a connection pool depends on the pooling licenses available on the server. For example, if you set a
connection pool to a minimum size of 2 and a maximum size of 100, and you have 16 licenses available, the maximum
connection pool size will be 16. If you only have 1 license available, U2 Toolkit for .NET does not create the connection pool
at all, since the minimum size of 2 cannot be met.

Connection allocation

After U2 Toolkit for .NET allocates a pooled connection to a thread, the connection remains exclusively attached to that
thread until it is explicitly freed by the thread. U2 Toolkit for .NET does not “clean up” the database environment side of a
pooled connection before allocating it to a new thread with the same connection credentials. For example, UDT.OPTIONS
settings, unnamed common, environment variables, and so forth remain from previous use.

Activating connection pooling

Connection pooling is activated as part of the U2Connection string, as shown in the following example:

U2ConnectionStringBuilder conn_str = new U2ConnectionStringBuilder () ;

U2 Toolkit for .NET Help 23

conn_str.UserID = "user";

conn_str.Password = "pass";
conn_str.Server = "localhost";
conn_str.Database = "HS.SALES";
conn_str.ServerType = "UNIVERSE";
conn_str.Pooling = true;
conn_str.MinPoolSize = 1;
conn_str.MaxPoolSize = 5;

string sConnStr = conn_str.ToString();

You must specify different credentials for each connection pool in the U2Connection string. The following table describes
each parameter of the syntax.

Parameter Description

UserID The name of the user connecting to the system.

Password The password corresponding to the UserID.

Server The name of the server to which you are connecting

Database The name of the database to which you are connecting

ServerType The type of server to which you are connecting. This will be either UniData or Universe.
AccessMode Uci: Select this mode if using SQL Access. For Example : AccessMode="Uci"

Native: Select this mode if using UO/Native Visual Studio Integration. For Example :
AccessMode="Native”

RpcServiceType The name of the rpc service. If you do not specify service_name, UniData and UniVerse default to defcs.
If you do specify service_name, the service name must exist in the unirpcservices file.

PersistSecurityInfo When set to false or no (strongly recommended), security-sensitive information, such as the password,
is not returned as part of the connection if the connection is open or has ever been in an open state.
Resetting the connection string resets all connection string values including the password. Recognized
values are true, false, yes, and no.

No two application processes can share connection pools.
You can also activate connection pooling in the configuration file, as shown in the following example:

<connectionStrings>

<add name="HSSALES UV"
connectionString="Database=HS.SALES;User

ID=user;Password=pass;Server=192.34.111.4;Pooling=true; ServerType=universe;

PersistSecurityInfo=true;MinPoolSize=1;MaxPoolSize=5"

providerName="U2.Data.Client" />

If the User ID and Password are specified and Integrated Security is set to either true or false, the User ID and Password will
be used. In other words, in this example, Integrated Security has no impact.

Specifying the size of the connection pool

To specify the size of the connection pool, use MinPoolSize to define the minimum number of connections, and MaxPoolSize
to define the maximum number of connections, as shown in the following example:

MinPoolSize = 1;

MaxPoolSize = 5;

U2 Toolkit for .NET Help 24

If you do not specify the minimum and maximum number of connections, UniData and UniVerse default to 1 for the

minimum and 10 for the maximum.

Creating multiple connection pools

You can create as many connection pools as you like by issuing different connection strings.
Multiple connection pool example

POOL A

<connectionStrings>

<add name="HSSALES UV"
connectionString="Database=HS.SALES;User

ID=user;Password=pass;Server=192.34.111.4;Pooling=true;ServerType=universe;

PersistSecurityInfo=true;MinPoolSize=1;MaxPoolSize=5"
providerName="U2.Data.Client" />

</connectionStrings>

POOL B

<connectionStrings>

<add name="HSSALES UV"
connectionString="Database=MYDB;User

ID=user;Password=pass;Server=192.34.111.4;Pooling=true; ServerType=universe;

PersistSecurityInfo=true;MinPoolSize=1;MaxPoolSize=5"
providerName="U2.Data.Client" />

</connectionStrings>.

The following table describes the configuration parameters for connection pooling:

Parameter Description

Pooling Gets or sets a Boolean value that indicates whether the connection will be pooled or explicitly opened every

time that the connection is requested. By default, this value is false.

MinPoolSize = Gets or sets the minimum number of connections allowed in the connection pool for this specific connection

string.

MaxPoolSize Gets or sets the maximum number of connections allowed in the connection pool for this specific connection

string.

Connection The length of time a connection can be idle before its returned to the pool (connection lifetime).

Lifetime

Connection Defines whether or not the current connection will be put in the connection pool when it is closed

Reset (connection reset).

When you close a session using connection pooling, U2 Toolkit for .NET does not close the connection. Instead, it makes the

connection available in the connection pool.

U2 Toolkit for .NET Help 25

Connection pooling C# code sample

This code sample shows how to use connection pooling with a native connection against a UniVerse server. It creates
a C# .NET console project and adds the U2.Data.Client.dll driver to the project.

Example

// Create a C#.NET console project and add the U2.Data.Client.dll driver to the
project

// For SQL connections, 1t comments out the native mode code and uncomments the SQL
code

// Update the UserID, Password, and Server information

using System;
using U2.Data.Client;
using U2.Data.Client.UO;

namespace ConnectionPoolSample
{
class Program
{
static void Main(string[] args)
{
U2Connection con = new U2Connection();
U2ConnectionStringBuilder csb = new U2ConnectionStringBuilder () ;

//Native Mode

csb.AccessMode = "Native"; //Uncomment this line if using Native mode.

csb.RpcServiceType = "uvcs"; //Uncomment this line if using Native mode.
Use "udcs"for UniData server.

csb.Database = "HS.SALES";

csb.UserID = "user";

csb.Password = "password";

csb.Server = "localhost";

csb.ServerType = "universe"; //Use "unidata"for UniData server.

csb.Connect Timeout = 360;
csb.ConnectionLifeTime = 300;
csb.ConnectionReset = true;
csb.MaxPoolSize = 2;

csb.MinPoolSize = 1;

csb.Pooling = true;

con.ConnectionString = csb.ToString();

con.Open() ;

Console.WriteLine ("Connected with pooling is true............ ")
//SQL mode

//string commandString = "SELECT * FROM STATES";

//U2Command cmd = con.CreateCommand () ;

//cmd.CommandText = commandString;

//cmd.ExecuteNonQuery () ;

//Native mode

string commandString = "LIST STATES";
UniSession usl = con.UniSession;

UniCommand uniCmd = usl.CreateUniCommand() ;
uniCmd.Command = commandString;
uniCmd.Execute () ;

U2 Toolkit for .NET Help 26

// Get response string but not output
string strNative = uniCmd.Response;

con.Close();

Console.WritelLine ("Disconnected.......... ") ;
Console.WritelLine ("Enter to exit:");
Console.Read() ;

U2 Toolkit for .NET Help 27

Connection pooling VB.NET code sample

This code sample shows how to use connection pooling with an SQL connection against a UniData server. It creates a
VB.NET console project and adds the U2.Data.Client.dll driver to the project.

Example

VB.NET Sample code for Connection Pool using SQL connection against UniData server

' Create a VB.NET console project and add the U2.Data.Client.dll driver to the project
' For Native connections, it comments out the SQL mode code and uncomments the Native
code

' Update the UserID, Password, and Server information

Imports System
Imports U2.Data.Client
Imports U2.Data.Client.UO

Namespace ConnectionPoolSample VB
Class Program
Shared Sub Main(args As String())

Try
Dim con As New U2Connection ()
Dim csb As U2ConnectionStringBuilder = New U2ConnectionStringBuilder ()

'Native Mode

'csb.AccessMode = "Native" 'Uncomment this line if using Native
mode.

'csb.RpcServiceType = "udcs" 'Uncomment this line if using Native
mode. Use "uvcs"for Universe server.

csb.Database = "demo"

csb.UserID = "user"

csb.Password = "password"

csb.Server = "localhost"

csb.ServerType = "unidata" 'Use "universe"for Universe server.

csb.Connect Timeout = 360
csb.ConnectionLifeTime = 300
csb.ConnectionReset = True

csb.MaxPoolSize = 2
csb.MinPoolSize = 1
csb.Pooling = True

con.ConnectionString = csb.ToString/()
con.Open ()
Console.WriteLine ("Connected with pooling is true............ ")

'SQL Mode

Dim commandString As String = "SELECT * FROM STATES"
Dim cmd As U2Command = con.CreateCommand ()
cmd.CommandText = commandString

cmd . ExecuteNonQuery ()

'Native Mode

'Dim usl As UniSession = con.UniSession
'Dim cmd As UniCommand = usl.CreateUniCommand ()
'cmd.Command = "LIST STATES"

'cmd. Execute ()

U2 Toolkit for .NET Help 28

not output

'Dim response str As String = cmd.Response

con.Close()

Catch e As Exception

Dim s As String = e.Message

If e.InnerException IsNot Nothing Then
s &= e.InnerException.Message

End If

Console.WritelLine(s)

Finally

Console.WritelLine ("Disconnected.......... ")
Console.WritelLine ("Enter to exit:")
Dim line As String = Console.ReadLine ()

End Try

End Sub

End Class
End Namespace

'Get response string but

U2 Toolkit for .NET Help 29

Microsoft Performance Monitor support

U2 Toolkit for .NET 1.3.0 and later supports the Microsoft Performance Monitor in two ways:

® Monitoring connections in a connection pool
e Monitoring non-pooled connections

In both cases, U2 users can graph connection pool usage with the U2 Toolkit for .NET performance counters.

Szl Performance counter Description

number

1 U2.Data.Client: Current # of pooled Current number of connections, pooled or not.
and non pooled connections

2 U2.Data.Client: Current # pooled Current number of connections in all pools associated with the process.
connections

3 U2.Data.Client: Current # connection Current number of pools associated with the process.
pools

4 U2.Data.Client: Peak # pooled The highest number of connections in all pools since the process started.
connections

5 U2.Data.Client: Total # failed The total number of connection open attempts that have failed for any
connects reason.

6 U2.Data.Client: Total # of failed Returns the total number of attempts to execute a command or
command subroutine that failed for any reason since the process started.

Monitoring connections in a connection pool

To minimize the cost of opening connections, U2 Toolkit for NET uses an optimization technique called connection pooling,
which minimizes the cost of repeatedly opening and closing connections. The performance monitor can be used to monitor
these connection pools.

For example, if you use a connection string to turn on connection pooling using the following parameters, then you can
monitor any or all of the U2 performance counters.

Connection pool example

<connectionStrings>

<add
name="HSSALES UV" connectionString="Database=HS.SALES;User
ID=user;Password=pass;Server=192.34.111.4;Pooling=true; ServerType=universe;
PersistSecurityInfo=true;MinPoolSize=1;MaxPoolSize=5"
providerName="U2.Data.Client" />

</connectionStrings>

Monitoring non-connections/commands/subroutines

You can also monitor connections, commands, and subroutines made outside of a connection pool, such as for monitoring
U2Commands (for SQL access), UniCommands, and UniSubroutines (for Native Visual Studio Integration).

In the following example, a connection string is used with the U2Command : CALL SLEEP 10, to monitor that the command
will run for 10 seconds.

U2 Toolkit for .NET Help 30

<connectionStrings>

<add
name="HSSALES UV" connectionString="Database=HS.SALES;User

ID=user;Password=pass;Server=192.34.111.4;ServerType=universe;

PersistSecurityInfo=true;"
providerName="U2.Data.Client" />

</connectionStrings>

Prerequisite

You must have administrative privileges to use the performance monitor. If you are not the administrator, navigate

to C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\tools. Right-click the
SetupPerformanceCounter.exe file and select Run as administrator. Click the Create Performance Counter button and
then close the dialog box.

Procedure
1. Navigate to Start >Control panel > Administrative tools > Performance monitor.
2. Click the Performance Monitor node the tree view. This opens the performance monitor.
3. Click the green plus (+) sign to add the U2 Toolkit for .NET counters.
4. Browse through the available counters and select .NET Data Provider for U2 Database. Click Add.
5. Click OK.
6. A graph of the selected counters appears in the editor. You can select any or all of the counters.

U2 Toolkit for .NET Help 31

Migrating applications from UniObjects for .NET to U2
Toolkit for .NET

The U2 Toolkit for .NET is an interface to the UniData and UniVerse (U2) databases through the Microsoft .NET
framework. U2 users have long had access to the .NET framework using UniObjects for .NET (UODOTNET), however,
much of the functionality of UODOTNET is outdated and is now in maintenance mode. U2 is encouraging users to
migrate to U2 Toolkit for .NET, which is a much more robust .NET interface and is fully supported.

Migrating UODOTNET applications involves making a few small changes to the following:

Assembly Reference
Namespace

Connection functionality
Connection Pooling parameters
Configuration files

Assembly reference

UniObjects for .NET U2 Toolkit for .NET
UODOTNET.dI U2.Data.Client.dll
Namespaces

UniObjects for .NET U2 Toolkit for .NET
IBMU2.UODOTNET U2.Data.Client

U2.Data.Client.UO

Connection functionality

Changes to connection functionality are now made in the U2Connection class. Previously, changes were made using
the UniObjects class.

UniObjects for .NET U2 Toolkit for .NET
UniSession usl = U2ConnectionStringBuilder Ibdr
UniObjects.OpenSession("localhost","user","pass","demo","udcs"); = new

U2ConnectionStringBuilder();
Ibdr.UserID = "user";
Ibdr.Password = "pass";
Ibdr.Server = "localhost";
Ibdr.Database = "demo";
Ibdr.ServerType = "unidata";
Ibdr.AccessMode = "Native";
Ibdr.RpcServiceType = "udcs";

string IConnStr =
Ibdr.ToString();

U2Connection IConn = new
U2Connection();

U2 Toolkit for .NET Help 32

IConn.ConnectionString =
IConnStr;
[Conn.Open();

UniSession usl =
IConn.UniSession;

Connection pooling parameters

All connection pool settings must be set in the connection string.

UniObjects for .NET U2 Toolkit for .NET
UOPooling Pooling

MinPoolSize MinPoolSize
MaxPoolSize MaxPoolSize
IdleRemoveThreshold ConnectionLifeTime
IdleRemoveExecInterval ConnectionReset

Configuration files

Make changes to either the App.Config file for Windows applications or the Web.Config file for web applications.

UniObjects for .NET U2 Toolkit for .NET
<UO.NET> <connectionStrings>
<General> <add name="DemoConnectionString"
<add key="SocketTimeOut" connectionString="Database=demo;User
value="300000" /> ID=user;Password=pass;
</General> Server=localhost;Persist Security
<ConnectionPooling> Info=True;
<add key="ConnectionPoolingOn"
value="1" /> ServerType=unidata;AccessMode=Uci;Pooling=true;
<add key="ConnectionPoolingOn" MinPoolSize=1;MaxPoolSize=10"
value="1" /> providerName="U2.Data.Client" />
<add key="MinimumPoolSize" value="1" </connectionStrings>
/>

<add key="MaximumPoolSize" value="16"
/>

<add key="IdleRemoveThreshold"
value="10000" />

<add key="IdleRemoveExecInterval"
value="60000" />

</ConnectionPooling>
</UO.NET>

SSL enablement

U2 Toolkit for .NET Help 33

If SSL is enabled, add the following to the connection string:

U2 Toolkit for .NET

conn_str.SSLConnection = True;
conn_str.SslignoreCertificateNameMismatch = true;
conn_str.SsICheckCertificateRevocation = false;

conn_str.SslignorelncompleteCertificateChain = true

Related links

U2 Toolkit for .NET
Converting IBM.NET projects into U2 Toolkit for .NET applications
Converting UO.NET projects into U2 Toolkit for .NET applications

U2 Toolkit for .NET Help 34

Step-by-step migration example (UniObjects for .NET to U2
Toolkit for .NET)

This topic will walk you through the steps required to migrate an existing UniObjects for .NET application into U2
Toolkit for .NET.

Prerequisite

The following example is that of an existing UniObjects for .NET application, in which you can see the
deprecated UO.NET assembly references, namespaces, and connection functions.

Procedure

1. Change the assembly reference.

o Remove the reference to the UODOTNET.dII.

o Add a reference to the U2.Data.Client.dll.
2. Change the namespace.

o Remove the IBMU2.UODOTNET namespace.

o Add the U2.Data.Client namespace and the U2.Data.Client.UO namespace.
3. Replace all references to the UniObjects class with the U2Connection class.

Result

The changes to the code should now look similar to the following example.

U2 Toolkit for .NET Help 35

UniObjects for .NET example

using system;
using IBMUZ.UODOTHET;

Step 2

namespace IBMUZ.Ccnnecticn
1

{ <SUMmMary:>
J summary >

class Connection

A < summary>
H0 </ summary >
[c-_"-- ad

Iatic woid Majolstrinel] aros)

U2 Toolkit for .NET example

using system;

Jfusing IBMU2.UODOTHET;
using U2.Data.Client;
using U2.Data.Client.ud;

Step 2

namespace U2.Connecticn

{

Unisession usl = null; Step 3

try

usl = Unighiects.opensession("lecalhost”, “user
" wnass®, "demo”, "ugdcst):
}

-

{

£ <summary>

£ </ summary >

class Connection

{

£ <summary>

f0F </ summary >

[52a7hread]

static woid Main{string[] args)

COLLI LCALCpLIon By
if (usl != null &% usl.IsActive)

ion{usi};
usl = null;

1 -
Console.WriteLing(""):

string s = "Connection Failed :
console.MriteLine(s);

¥
finally

"+ g.Message;

if (usl != null & usl.IsActive)

{ = =
consal ("3
string s = "Connecticn Passed”;
Censele.iciteine(s);
Unighiects.Closesession(usi);

U2 Toolkit for .NET Help 36

1

1 usl=null;
u2connecticn Iconn = null;

try

Step 3

U2ConnectionstringBuilder lbdr = new
uv2connecticnstringBuilder();
lbdr.userd = "user”;

lbdr.Fassword = "pass”;

lbdr.Server = “localhost”s

" - :
string leonnstr = lbdr.destringl();
lfonn = new U2Connection();
i connectionstring =

lconn.open(};
usl = H
ynirile 1f = usl.CreateUniFile("STUDENT™};

ffusl = ynighiects.Opensess("lecalhost”, "user”, "pass”, "demo”, "udes”

b
Ja

ks

catch{Excepticn e}

{
if(usl !'= mull && usl.IsActive)
{

fiundghiects.Clesesessian(usl);

dconn.Close();
usl= null;
Censnle-Mriteline (" };

string s = "Connecticn Failed :

fonzele.Mriteline(s);

"+ g.MRSSEEE;

3
finally
if{usl != null && usl.IsActive)

{
consle.Mriteline (");

string s = "Connecticn Passed™;

Jfuniohiects.Closesession(usl);

Additional keyword support

U2 Toolkit allows users to utilize the following additional built-in functions.

First

The FIRST keyword allows users to limit the number of items returned in a native query. When the FIRST keyword is used, the first N
records are retrieved according to the natural scan positions of all the records in the file. If the query needs to sort the output, the sorting
will be done after the first N records already are collected.

Example

The following example uses the First keyword to return the first two records:

Action=Select;File=STUDENT;Attributes=ID, LNAME, FNAME; Sort.DSND=ID; First=2

Sort.DSND

The Sort.DSND keyword allows users to sort native queries by descending order.

Example

The following example uses the Sort.DSND keyword to return the results in descending order:

cmd.CommandText = string.Format ("Action=Select;File=STUDENT;Attributes=FNAME, LNAME; Sort.DSND=FNAME")

U2 Toolkit for .NET Help 37

Additional function support

U2 Toolkit allows users to utilize the following additional built-in keywords. Beginning at v2.2.2, U2 functions can be
used in UniObjects without requiring an active connection.

LEFT()

The LEFT() function returns the left part of a character string with the specified number of characters.
Syntax

LEFT (field name, length)

Arguments

field_name

Is an expression of character or binary data. field_name can be a constant, variable, or column. field_name can be of
any data type.

length
Is a positive integer that specifies how many characters of the field_name will be returned.

Example

>SELECT FNAME, SUBSTRING(LNAME FROM 1 FOR 3) FROM CUSTOMER

>SELECT FNAME, SUBSTRING(LNAME FROM 1 FOR 3) FROM CUSTOMER;
First Name.. SUBSTRING (LNAME FROM 1 FOR 3)

Diana Mor
Jill Kah
Betty Bur
David Arg
Kenneth Wil
Martha Gil
Andrew McC
Steven Hol
Laurie Pat
Samuel Smi
Nicole Orl
Skip Lew

12 records listed.

UniSession.NullSession()
This function allows users to create a new UniDynArray object without an active U2 connection.

Syntax

UniSession uss = UniSession.NullSession();

Example

U2 Toolkit for .NET Help 38

UniSession uss =

String AM = Convert.ToChar (254) .ToString() ;
Convert.ToChar (253) .ToString () ;
String SM = Convert.ToChar (252) .ToString() ;

String VM

String strRec = "one" + AM + "twoA" + VM + "twoB" + AM + "three";

UniSession.NullSession () ;

// Create dynamic array from string

UniDynArray rec =

Console
Console
Console
Console

.WriteLine
.WriteLine
.WriteLine
.WritelLine

uss = null;

(
(
(
(

1
2
2
3

4

, 1
2

+

nw

nw

rec.Extract (1)) ;

+ rec.Extract (2,
+ rec.Extract (2,

rec.Extract (3));

uss.CreateUniDynArray (strRec) ;

U2 Toolkit for .NET Help 39

Native Visual Studio Integration

Beginning at version 2.1.0, U2 Toolkit for .NET supports Native Visual Studio Integration to U2 applications through
the ADO.NET Provider and LINQ to Entity Provider. Native Visual Studio Integration users are able to fully access U2
files and subroutines without having to make changes to their account dictionaries. For example, U2 Toolkit for

.NET can natively access or modify System Builder accounts and subroutines. U2 Toolkit users can seamlessly use
single values, multivalues, or multi-subvalues in SQL syntax to create a DataSet, a DataAdapter, or Entity Data Model.

Native Visual Studio Integration allows users to easily perform a variety of functions, such as:

® Accessing multivalue U2 files, fields, and subroutines directly from the ADO.NET provider

® Accessing multivalue U2 files, fields, and subroutines directly from the LINQ-to-Entity provider

® Accessing multivalue U2 files, fields, and subroutines directly from within the Microsoft Visual Studio Server
Explorer

® Filtering on dictionary fields using the @ and @SELECT phrases

® Accessing System Builder accounts

® Accessing U2 files with JSON using the ExecuteJson() (‘'ExecuteJson Method' in the on-line
documentation) API

Syntax examples

The U2 ADO.NET Provider allows users to use either ANSI SQL syntax or Action syntax to perform SELECT, UPDATE,
INSERT, and DELETE operations, as shown:

Syntax ANSI SQL example

SELECT SELECT
CUSTID, FNAME, LNAME, BUY DATE FROM
CUSTOMER

UPDATE UPDATE CUSTOMER SET
FNAME='{0}',BUY DATE='{1l}' WHERE
CUSTID=444555

INSERT INSERT INTO CUSTOMER
(CUSTID, FNAME, BUY DATE)
VALUES ('{O0}"', "{1}',"{2}")

DELETE DELETE FROM CUSTOMER WHERE
CUSTID=444555

Limitations

Action syntax example

Action=Select;File=CUSTOMER;Attributes=CUSTID,
PRODID,BUY DATE, FNAME
, LNAME ; Where=CUTID>5; Sort=CUSTID

Action=Update;File=CUSTOMER;Attributes=CUSTID="?,
PRODID=?, BUY DATE=?, FNAME=?, LNAME=?,
;Where=CUSTID=? AND 7z MV KEY=?

Action=Insert;File=CUSTOMER;Attributes=CUSTID=?,
PRODID=?, BUY DATE=?, FNAME=?, LNAME=?

Action=Delete;File=CUSTOMER; Where=CUSTID=? AND
PRODID=? AND BUY DATE=? AND FNAME=? AND LNAME=?
AND Z MV KEY=?

Complex SQL statements or clauses such as JOIN, GROUPBY, and SAMPLE are not supported at this time.

Code examples

Several code examples are provided as part of the U2 Toolkit for .NET installation package. These code examples are
installed to the following default directories:

e (C:\Program Files (x86)\Rocket Software\U2 Toolkit for .NET\U2 Database
Provider\samples\C#\UniVerse\NativeAccess
® (C:\Program Files (x86)\Rocket Software\U2 Toolkit for .NET\U2 Database

Provider\samples\VB.NET\UniVerse\NativeAccess

U2 Toolkit for .NET Help 40

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database
Provider\samples\C#\UniData\NativeAccess

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database
Provider\samples\VB.NET\UniData\NativeAccess

C:\Program Files\Rocket Software\U2 Toolkit for .NET\U2 Database
Provider\samples\C#\UniVerse\NativeAccess

C:\Program Files\Rocket Software\U2 Toolkit for .NET\U2 Database
Provider\samples\VB.NET\UniVerse\NativeAccess

C:\Program Files\Rocket Software\U2 Toolkit for .NET\U2 Database Provider\samples\C#\UniData\NativeAccess
C:\Program Files\Rocket Software\U2 Toolkit for .NET\U2 Database
Provider\samples\VB.NET\UniData\NativeAccess

U2 Toolkit for .NET Help 41

Developing an application using ADO.NET (Native
integration)

This example demonstrates how to create a simple application using ADO.NET with a Native Visual Studio Integration
connection. The application calls the HS.SALES account in UniVerse. After dropping a DataGridView onto the form, the
DataGridView control automatically loads the information from the CUSTOMER file and allows you to make changes
to the CUSTOMER file using the U2 CommandBuilder class to update the file.

Prerequisite

® U2 Toolkit for .NET 2.1.0
® UniVerse 10.3 or later
or
e UniData 7.1 or later
® Visual Studio 2010, 2012, or 2013

Procedure

1. Open a project in Visual Studio. This project was created in Visual Studio 2012.

2. Select the programming language with which you want to work. The examples in this document are all created
using C#.

3. Select File > New Project.

4. When the New Project dialog box opens, select Windows Forms Application.

5. In the name field, enter a name for the project. The project name in this example is
WindowsFormsApplicationl.

6. In the location field, enter the location where the project will reside. The location in this example is
C:\NativeAccessTutorials.

7. Click OK.

Result

The new project opens in the form designer.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

Next

Tutorial: Adding a reference the project (Native integration)

U2 Toolkit for .NET Help 42

Tutorial: Adding a reference the project (Native integration)

You must add a reference to the U2 Data.Client.dll.

Prerequisite

Developing an application using ADO.NET (Native integration)

Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine):

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.0
3. Select the U2.Data.Client.dll and click OK.

Next

Tutorial: Adding controls to the form (Native integration)

U2 Toolkit for .NET Help 43

Tutorial: Adding controls to the form (Native integration)

After adding a reference to the to the topic, you can add some controls to the form.

Prerequisite

Tutorial: Adding a reference the project (Native integration)

Procedure

1. From the Visual Studio Toolbox, drag two buttons onto the form. In the properties window, change the button
properties as follows:
o Change the Text property of Buttonl to Load
o Change the Text property of Button2 to Update
2. From the Visual Studio Toolbox, drag a DataGridView control onto the form.
3. Add a TextBox control onto the form and position it beneath the DataGridView. Change the TextBox
properties as follows:
o Change the Multiline property of True

Result

The form should look similar to the following:

U2 Toolkit for .NET Help 44

Next

Tutorial: Creating event handlers for the button controls (Native integration)

U2 Toolkit for .NET Help 45

Tutorial: Creating event handlers for the button controls
(Native integration)

After updating the properties, create an event handler for each button click. This requires you to add a small amount
of code to the form.

Prerequisite

Tutorial: Adding controls to the form (Native integration)

Procedure

1. Double-click Load to create an event handler for the button.

2. In the code editor, add the following using statement to the form:
using U2.Data.Client

3. In the code editor, declare the class member variable;

private U2Connection m Conn;
private DataSet m DS;
private U2DataAdapter m da;
4. Add the following code to the Buttonl click event. Note that you may need to modify the connection string
settings.

private void buttonl Click(object sender, EventArgs e)

{
Try

this.textBoxl.AppendText (Environment.NewLine + "Start..." +
Environment.NewLine) ;
U2ConnectionStringBuilder conn bldr = new U2ConnectionStringBuilder();

conn bldr.UserID = "user";

conn bldr.Password = "mypass";
conn bldr.Server = "192.33.11.31";
conn bldr.ServerType = "universe";
conn bldr.Database = "HS.SALES";
conn bldr.AccessMode = "Native";
conn_bldr.RpcServiceType = "uvcs";

conn bldr.UseFastGetRecordID = true;

string 1lConnStr = conn bldr.ConnectionString;

m_Conn = new U2Connection();

m Conn.ConnectionString = lConnStr;

m Conn.Open () ;

Console.WritelLine ("Connected...");

U2Command cmd = m Conn.CreateCommand () ;

//CUSTID,FNAME, LNAME : Single Value

//PRODID, BUY DATE : Multi Value

cmd.CommandText = string.Format ("SELECT CUSTID, FNAME, LNAME,
PRODID,BUY DATE FROM CUSTOMER WHERE CUSTID > 0 ORDER BY CUSTID ");

m da = new U2DataAdapter (cmd) ;

m DS = new DataSet();

m da.Fill(m DS);

this.dataGridViewl.DataSource = m DS.Tables[0].DefaultView;

this.textBoxl.AppendText ("Total Rows:" + m DS.Tables[0].Rows.Count +
Environment.NewLine) ;

//m_Conn.Close () ;

U2 Toolkit for .NET Help 46

this.textBoxl.AppendText (Environment.NewLine + "End...");
}
catch (Exception e2)
{
string lErr = e2.Message;
if (e2.InnerException != null)
{
lErr += lErr + e2.InnerException.Message;
}

this.textBoxl.AppendText (Environment.NewLine + lErr);

Note

Edit the login credentials required for the server connection.

4. Return focus to the Form designer and then double-click the Update button.
5. Add the following code to the Button2 click event:

private void button2 Click(object sender, EventArgs e)
{

try

{
U2CommandBuilder builder = new U2CommandBuilder (m da);
m da.UpdateCommand = builder.GetUpdateCommand () ;
DataTable dt = m DS.Tables[0];
DataRow[] lDataRowCollection =
int 1 = 1;
foreach (DataRow item in lDataRowCollection)

{

dt.Select ("CUSTID=2");

item["FNAME"] = item["FNAME"] + " update";// modify single value
DateTime 1ld = Convert.ToDateTime (item["BUY DATE"]) ;

DateTime 1d2 = 1d.AddDays(1l);

item["BUY DATE"] = 1d2;//modify multi-value

i++;

}
m da.Update (m _DS);//use DataAdapter's Update() API

}
catch (Exception e2)

{

string lErr = e2.Message;
if (e2.InnerException != null)
{
lErr += lErr + e2.InnerException.Message;
}

this.textBoxl.AppendText (Environment.NewLine + 1lErr);

Result

The Buttonl event handler creates a connection the to the HS.SALES database and then loads the information from
the CUSTOMER file into the data grid.

The Button2 event handler uses the U2 CommandBuilder class to generate an update statement. It checks to see

U2 Toolkit for .NET Help 47

whether any changes have been made to the record(s). If it detects any changes, it first checks to see how many
changes have been made and then repopulates the DataGrid using the generated Update statement.

Next

Tutorial: Building the application (Native integration)

U2 Toolkit for .NET Help 48

Tutorial: Building the application (Native integration)

After creating all of the controls and event handlers, the application is ready to build.

Prerequisite

Tutorial: Creating event handlers for the button controls (Native integration)

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.
2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without
Debugging option. This opens a working version of the application you just created.

Tip: If you want to debug the application, you can choose to Start Debugging instead.

w

Click Load. The customer information populates in the GridView, as shown:
4. In the grid, locate the name Diana in the FNAME field of the CUSTOMER table. Click in the cell to edit the
name, and change it to Diana2. Click Update.

Result

The change is saved to your account, as shown:

3 Forml ESEE ™=
[Lload | | CUSTID FNAME LNAME PRODID BU ~
1 | Samuel | Smith M2000 17,
|

2 2 Diana?_update Moz C2000 1/9
2 Diana2_update | Mormis M3000 179"
2 Diana2 update | Morris 53000 VZ
3 David Argonne MZ000 /8.
4 Ji Kahn C3000 179,
5 Kenneth Wiliams M1000 141
LE Kemeth Williams M1000 Pl
& Betty Burke
7 Martha Gil M2000 12 -

14 | 1] [3

Start...

Total Rows: 15

End..

Start...

Total Rows: 15

End.

U2 Toolkit for .NET Help 49

DataSet Tutorial: Accessing U2 data through the DataSet
Object Model (Native integration)

You can use the Native Visual Studio Integration to access your data files through the Dataset model. In the Dataset
object model, U2 files and attributes are mapped to the DataTable or Column and can be viewed as columns or rows.

This example was created in Visual Studio 2012.

Prerequisite

U2 Toolkit for .NET 2.1.0
UniVerse 10.3 or later

or

UniData 7.1 or later

Visual Studio 2010, 2012, or 2013

Procedure

N

Open Visual Studio. If the Server Explorer is not open, select View Server Explorer.

In the Server Explorer, right-click the Data Connections node and then select Add Connection.

Select Change and then select U2 Database from the Data source options. Click OK to return to the Add
Connection dialog box.

. Enter the appropriate connection information. For this example, enter the following information:

- Set the Account name to demo (for UniData) or HS.SALES (for UniVerse)

- Set the Database type to either UniData or UniVerse

- Set the Access mode to Native (UO Server)- Set the RpcServiceType to udcs, uvcs, or defcs
Click Test Connection. The new connection node should now show in the Server Explorer.
Navigate to the new node and then expand the Stored Procedures node and the U2Files node.

Next Step

DataSet Tutorial: Creating a new Windows application (Native integration)

U2 Toolkit for .NET Help 50

DataSet Tutorial: Creating a new Windows application
(Native integration)

This example demonstrates how to create a simple application using ADO.NET's DataSet with a Native Visual Studio
Integration connection. The application calls the HS.SALES account in UniVerse. It loads the information from the
CUSTOMER file on to DataSet Designer.

Prerequisite

DataSet Tutorial: Accessing U2 data through the DataSet Object Model (Native integration)

Procedure

=

Open a project in Visual Studio. This project was created in Visual Studio 2012.

Select the programming language with which you want to work. The examples in this document are all created
using C#.

Select File > New Project.

When the New Project dialog box opens, select Windows Forms Application.

In the name field, enter a name for the project. The project name in this example is TestWalkthrough.

In the location field, enter the location where the project will reside. The location in this example is
C:\NativeAccessTutorials.

7. Click OK.

N

A e

Result

The new project opens in the form designer.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

Next

DataSet Tutorial: Adding a reference the project (Native integration)

U2 Toolkit for .NET Help 51

DataSet Tutorial: Adding a reference the project (Native
integration)

You must add a reference to the U2 Data.Client.dll.

Prerequisite

DataSet Tutorial: Creating a new Windows application (Native integration)

Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine):

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.0
3. Select the U2.Data.Client.dll and click OK.

Next

DataSet Tutorial: Adding a new Dataset to the Windows application (Native integration)

U2 Toolkit for .NET Help 52

DataSet Tutorial: Adding a new Dataset to the Windows
application (Native integration)

This example demonstrates how to create a simple application using ADO.NET with a Native Visual Studio Integration
connection. The application calls the HS.SALES account in UniVerse. It loads the information from the CUSTOMER file
on to a DataGridView control, and allows you to make changes to the CUSTOMER file using the U2 CommandBuilder
class to update the file.

Prerequisite

DataSet Tutorial: Creating a new Windows application (Native integration)

Procedure

1. If it is not already available, open the TestWalkthrough project in Visual Studio.
2. Select Project > Add New Item.

3. Select DataSet from the list of available items.

4. Name the DataSet CustomerDataSet and then click Add.

Result

Visual Studio adds a file to the project called CustomerDataSet.xsd, which opens in the DataSet Designer.

Next

DataSet Tutorial: Adding DataAdapters and tables to the DataSet (Native integration)

U2 Toolkit for .NET Help 53

DataSet Tutorial: Adding DataAdapters and tables to the
DataSet (Native integration)

This example demonstrates how to create a simple application using ADO.NET with a Native Visual Studio Integration
connection. The application calls the HS.SALES account in UniVerse. It loads the information from the CUSTOMER file
on to a DataGridView control, and allows you to make changes to the CUSTOMER file using the U2 CommandBuilder
class to update the file.

Prerequisite

DataSet Tutorial: Adding a new Dataset to the Windows application (Native integration)

Procedure

1. If it is not already available, open the CustomerDataSet.xsd, which opens in the DataSet Designer.

Expand the HS.SALES connection you created in step 1, and then select the U2Files node.

3. Drag the CUSTOMER table onto the DataSet Designer. The CUSTOMER data table and
CUSTOMERTableAdapter are added to the DataSet Designer, as shown:

=

? CusTID -
SAL '
FNAME
LNAME
COMPANY
ADDR1
ADDR2
CITY
STATE
7P
PHOME
PRODID .

N

m

o

Fald [

5

L Fill, GetData ()

4. Select View > Other Windows >Data Sources. This opens the Data Sources menu.
5. From the Solution Explorer, double-click the Form1.cs file to open the Windows form designer.
6. From the Data Sources menu, drag the CUSTOMER data source onto the form.

Tip

Right-click on the TableAdapter and select Preview Data to preview the contents of the U2 database files
accessed through this DataSet model.

Next

DataSet Tutorial: Building the application (Native integration)

U2 Toolkit for .NET Help 54

DataSet Tutorial: Building the application (Native

integration)

After creating all of the controls and event handlers, the application is ready to build.

Prerequisite

DataSet Tutorial: Adding DataAdapters and tables to the DataSet (Native integration)

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.
2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without
Debugging option. This opens a working version of the application you just created.

Tip: If you want to debug the application, you can choose to Start Debugging instead.

Result

The results open in a DataSet, as shown:

&

at! Forml L == g N
4 4 |1 of19 | b Pl
| CUSTID SAL FMAME LNAME COMPANY =t
B O Jil Kahn Fast Copy Certer
& Ms. Betty Burke Lightring Comput ...
3 Mr. David Argonne Fast Copy Certer =
b Mr. Kenneth Wiliams Ocean State Fish..
L] Mr. Kenneth Williams Ocean State Fish..
7 Dir. Martha Gill Central Hospital
7 Dr. Martha Gill Central Hospital
2 Ms. Diana?_update Marris Fast Copy Certer
2 Ms. Diana?_update Marmis Fast Copy Center
2 Ms. Diana?_update Marmis Fast Copy Center _
il " P

U2 Toolkit for .NET Help 55

Entity Data Model Tutorial: Creating an Entity Data Model
from U2 files (Native integration)

You can use the Native Visual Studio Integration to access your data files through the Entity Data Model. You do not
need to normalize the account using VSG (UniData) or HS.ADMIN (UniVerse). You can also execute subroutines
natively.

This example was created in Visual Studio 2013.

Prerequisite

U2 Toolkit for .NET 2.2.2
UniVerse 10.3 or later
or

UniData 7.1 or later
Visual Studio 2013

.NET Framework 4.5

Procedure

N

Open Visual Studio. If the Server Explorer is not open, select View Server Explorer.

In the Server Explorer, right-click the Data Connections node and then select Add Connection.
Select Change and then select U2 Database from the Data source options. Click OK to return to the Add
Connection dialog box.

Enter the appropriate connection information. For this example, enter the following information:
- Set the Account name to demo (for UniData) or HS.SALES (for UniVerse)

- Set the Database type to either UniData or UniVerse

- Set the Access mode to Native (UO Server)

- Set the RpcServiceType to udcs, uvcs, or defcs

Click Test Connection. The new connection node should now show in the Server Explorer.
Navigate to the new node and then expand the Stored Procedures node and the U2Files node.

Next

Entity Data Model Tutorial: Creating a new Windows application (Native integration)

U2 Toolkit for .NET Help 56

Entity Data Model Tutorial: Creating a new Windows
application (Native integration)

This example demonstrates a simple application using the LINQ to Entity data model. The application calls the
HS.SALES account in UniVerse. It loads the information from the CUSTOMER file on to Entity Data Model.

Prerequisite

Entity Data Model Tutorial: Creating an Entity Data Model from U2 files (Native integration)

Procedure

1. Open a project in Visual Studio. This project was created in Visual Studio 2013.

2. Select the programming language with which you want to work. The examples in this document are all created

using C#.

Select File > New Project.

When the New Project dialog box opens, select Windows Forms Application.

5. In the name field, enter a name for the project. The project name in this example
is EntityDataModelFromUZ2File.

6. In the location field, enter the location where the project will reside. The location in this example is
C:\NativeAccessTutorials.

7. Click OK.

> w

Result

The new project opens in the form designer.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

Next

Entity Data Model Tutorial: Adding controls to the form (Native integration)

U2 Toolkit for .NET Help 57

Entity Data Model Tutorial: Adding controls to the form
(Native integration)

After adding a .dll reference to the project, you can add controls to the form.
Prerequisite

Entity Data Model Tutorial: Creating a new Windows application (Native integration)

Procedure

1. From the Visual Studio Toolbox, drag a button onto the form.

2. In the properties window, change the button Text property of Buttonl to Load

3. From the Visual Studio Toolbox, drag a DataGridView control onto the form. Your form should look similar to
the following:

I] O
0 lead D
| e

| S —GL—L—.———S—S———N——N—————————————————————

Next

Entity Data Model Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages (Native
integration)

U2 Toolkit for .NET Help 58

Entity Data Model Tutorial: Installing Entity Framework
6.1.3 using Manage NuGet Packages (Native integration)

After adding the controls to the form, you can create an Entity Data Model from your U2 files.

Prerequisite

Entity Data Model Tutorial: Adding controls to the form (Native integration)

Procedure

2. Select Project -> Manage NuGet Packages.

3. Select Browse, and then select the EntityFramework package and click Install. This updates the App.cofig
configuration file with the EntityFramework information.

4. In the Solution Explorer pane, double-click the App.config file.

5. Update the U2 data provider in the App.config provider list, as shown in the following example:

<providers>

<provider invariantName="U2.Data.Client.4.5"
type="U2.Data.Client.Entity.U2ProviderServices,
U2.Data.Client.Entity, Version=2.2.2.0, Culture=neutral,
PublicKeyToken=883335d992998a08" />
</providers>

Note: Visual Studio 2015 or 2017 projects will use U2.Data.Client.4.6
instead of U2.Data.Client.4.5.

<providers>

<provider invariantName="U2.Data.Client.4.6"
type="U2.Data.Client.Entity.U2ProviderServices,
U2.Data.Client.Entity, Version=2.2.2.0, Culture=neutral,
PublicKeyToken=7fldclla3fe6lleb" />
</providers>

6. Select Build -> Rebuild Solution to save your changes and rebuild the project.

Result

Visual Studio adds the Entity Framework 6.1.3 package to the project.

Next

Entity Data Model Tutorial: Adding a new Entity Data Model to the Windows application (Native integration)

U2 Toolkit for .NET Help 59

Entity Data Model Tutorial: Adding a new Entity Data
Model to the Windows application (Native integration)

After adding controls to the form, you are ready to create a new Entity Data Model from a U2 data source.

Prerequisite

Entity Data Model Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages (Native
integration)

Procedure

If it is not already available, open the EntityDataModelFromU2File project in Visual Studio.

Select Project > Add New Item.

Select ADO.NET Entity Data Model from the list of available items.

Name the model Customer and then click Add.

After the Entity Data Model wizard opens, select Generate from Database and then click Next.

Select the data connection you defined in Step 1, and then choose how the sensitive data will display. Click

Next to continue.

7. Select the database objects to be included in the Entity Data Model. For this example, select Tables and
then CUSTOMER. Keep all other default selections.

8. Click Finish.

SOk wnE

Result

Visual Studio adds a file to the project called Customer.edmx which opens in the Entity Data Model Wizard.

Next

Entity Data Model Tutorial: Creating event handlers for the button controls (Native integration)

U2 Toolkit for .NET Help 60

Entity Data Model Tutorial: Creating event handlers for the
button controls (Native integration)

After creating the Entity Data Model, you must add some event handlers to the form.

Prerequisite

Entity Data Model Tutorial: Adding a new Entity Data Model to the Windows application (Native integration)
Tip

This example uses the Entity data model (CUSTOMER EDMX) file. Refer to the C# EntityFramework.sln sample code for
details about this file. The sample code is located by default in the following location:

On 32-bit machines: C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\samples
On 64-bit machines: C:\Program Files\Rocket Software\U2 Toolkit for NET\U2 Database Provider\samples

Procedure

After adding the Entity Data Model data source, create an event handler for each button click. This requires you to add
a small amount of code to the form.

1. Double-click Load to create an event handler for the button. The code editor opens.
2. Add the following code to the Buttonl click event:

private void buttonl Click(object sender, EventArgs e)
{

try

{
Entities ctx = new Entities();
var q = ctx.CUSTOMERs.ToList ()
this.dataGridViewl.DataSource = qg;

}

catch (Exception e2)
{
string lErr = e2.Message;
if (e2.InnerException != null)

{

1Err += e2.InnerException.Message;

}

MessageBox.Show (1lErr) ;

Result

The Buttonl event handler creates a connection the to the HS.SALES database and then loads the information from
the CUSTOMER account into the data grid.

Next

Entity Data Model Tutorial_Building the application (Native integration)

U2 Toolkit for .NET Help 61

Entity Data Model Tutorial_Building the application (Native
integration)

After creating all of the controls and event handlers, the application is ready to build.

Prerequisite

Entity Data Model Tutorial: Creating event handlers for the button controls (Native integration)

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.
2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without
Debugging option. This opens a working version of the application you just created.

Tip: If you want to debug the application, you can choose to Start Debugging instead.

Result

The results open in a DataSet, as shown:

i Forml S

| load | CUSTID SAL FNAME LNAME -
b _Ms. Ji Kahn r
6 Ms. Betty Burke L
3 Mr. David Argonne =
5 Mr. Kenneth Williams (
5 Mr. Kenneth Williams [
T Cr. Martha Gill (==
¥ Cr. Martha Gill (
2 Ms. Diana?_update Moz f
2 Ms. Diana?_update Marris f
2 Ms. DianaZ_update Marris f
[Cr. Andrew McCaia HEE
1 | 1] [F

U2 Toolkit for .NET Help 62

Tutorial: Creating a new Entity Data Model using Visual
Studio 2013 to work with Entity Framework 6.1.3

In this example, you will create a C# console program that uses the U2 Entity Data Provider with Entity Framework
6.1.3, in a Visual Studio 2013 environment.

Prerequisite

® UniVerse 10.3 or later
or
e UniData 7.1 or later
e Visual Studio 2013, 2015, 2017

Procedure

1. Open Visual Studio. This project was created in Visual Studio 2013.

2. Select the programming language with which you want to work. The examples in this document are all created

using C#.

Select File > New Project. When the New Project dialog box opens, select Windows > Console Application.

In the name field, enter a name for the project. The project name in this example is ConsoleApplicationl.

5. In the location field, enter the location where you want the project to reside. The location in this example is
C:\walkthrough.

6. Click OK.

> w

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

The new project opens in the form designer.

Next

Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages

U2 Toolkit for .NET Help 63

Tutorial: Installing Entity Framework 6.1.3 using Manage
NuGet Packages

After creating the new Visual Studio Console Application project, you need to add the NuGet package to the project.

Prerequisite

Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages

Procedure

2. Select Project -> Manage NuGet Packages.

3. Select Browse, and then select the EntityFramework package and click Install. This updates the App.cofig
configuration file with the EntityFramework information.

4. In the Solution Explorer pane, double-click the App.config file.

5. Update the U2 data provider in the App.config provider list with the CustomerContext connection string, as
shown in the following example:

Note: For the U2.Data.Client.Entity 4.6 driver, the PublicKeyToken is “7fldclla3fe6lleb”. You can use the VS
2013 x86 native sn command with “-T" option to find the public token information.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<configSections>
<section name="entityFramework"
type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,
EntityFramework, Version=6.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
requirePermission="false"/>
</configSections>
<connectionStrings>
<add name="CustomerContext" connectionString="Database=HS.SALES;User
ID=administrator;
Password=password; Server=localhost; Pooling=false;ServerType=universe;
ConnectTimeout=360;PersistSecurityInfo=true"
providerName="U2.Data.Client.4.5"/>
</connectionStrings>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5"/>
</startup>
<entityFramework>
<providers>
<provider invariantName="U2.Data.Client.4.5"
type="U2.Data.Client.Entity.U2ProviderServices,
U2.Data.Client.Entity, Version=2.2.2.0, Culture=neutral,
PublicKeyToken=883335d992998a08"/>
</providers>
</entityFramework>
</configuration>

U2 Toolkit for .NET Help 64

6. Select Build -> Rebuild Solution to save your changes and rebuild the project.

Result

Visual Studio adds the Entity Framework 6.1.3 package to the project.

Next

Tutorial: Adding a class object to the project

U2 Toolkit for .NET Help 65

Tutorial: Adding a class object to the project

After adding the NuGet package to the project, you can add a class object to the project.

Prerequisite

Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages

Procedure

1. From the Visual Studio menu, select Project > Add Class.
2. Give the class a name. In this example, we use Customer.cs.
3. Add the following code in the class editor:

using System;

using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
namespace ConsoleApplicationl
{
public class Customer
{
Customer ()
{
}
[Key]
public int CUSTID { get; set; }
public string FNAME { get; set; }
public string LNAME { get; set; }
public string FULLADDR { get; set; }
}
public class CustomerContext : DbContext
{
public CustomerContext ()
{
}
public DbSet<Customer> Customers { get; set; }
protected override void OnModelCreating (DbModelBuilder modelBuilder)
{
modelBuilder.Entity<Customer> ()
.Property (s => s.FNAME)
.IsRequired() ;
modelBuilder.Conventions.Remove<IncludeMetadataConvention> () ;

U2 Toolkit for .NET Help 66

Next

Tutorial: Adding an SqlQuery statement

U2 Toolkit for .NET Help 67

Tutorial: Adding an SqlQuery statement

After adding a class object to the project, add a new SqglQuery statement to the Customer entity in the Program.cs file.

Prerequisite

Tutorial: Adding a class object to the project

Procedure

1. In the Solution Explorer pane, double-click the Program.cs file.
2. Add the following code in the editor:

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApplicationl
{
class Program
{
static void Main(string[] args)
{
try
{
Console.WriteLine ("start");
CustomerContext ctx = new CustomerContext () ;
var t = ctx.Database.SglQuery<Customer> ("SELECT
CUSTID, FNAME, LNAME, FULLADDR FROM CUSTOMER") ;
foreach (Customer item in t)
{
Console.WritelLine (item.CUSTID + "=>" + item.FNAME + "=>" +
item.LNAME + "=>" + item.FULLADDR) ;
}
}
catch (Exception e)
{

if (e.InnerException != null)

{Console.WriteLine (e.InnerException.Message); }

else
{Console.WritelLine (e.Message);}

}

finally

{
Console.WriteLine ("Enter to exit:");
string line = Console.ReadLine();

U2 Toolkit for .NET Help 68

}
3. Click the Start button on the Visual Studio menu bar to run the query.

Result

The sample program should run the entity query and return the following result in the console window.

e

K file AT EDMConsolelpplicationlfConsolelfpplicationLfbin/Debug/Console&pplication1.EXE = _IEI_|@
start -

2=>Diana=>Morris=>»431 Third Ave.
4=>Jil1=>Kahn=>*12 School St.
6=>Betty=>Burke=>480 Technology PathiM318-27
3=>David=>Argonne=>Y5 Great Road
L=*Kenneth=>Williamz=>837 Ocean
7=>Martha=»>Gill=>555 Main Street
18=>Andrew=>McCaig=>77? Hill Road
8=>Steven=»*Holland=>4325 Hill Road
12=>Laurie=>Patry=>180 Rustic Trail
1=>Samuel=>Smith=»>18 Commerical St.
?=>Nicole=>0rlando=>820 Middlesex Turnpike
11=>Skip=>Lewisz=»18 Dock Street

Enter to exit:

m

U2 Toolkit for .NET Help 69

Tutorial: Developing an application using ADO.NET

This example demonstrates a simple application using ADO.NET. The application calls the HS.SALES account in
UniVerse. It loads the information from the CUSTOMER file on to a DataGridView control, and allows you to make
changes to the CUSTOMER file using the U2 CommandBuilder class to update the file.

Procedure

1. Open a project in Visual Studio 2010.

2. Select the programming language with which you want to work. The examples in this document are all created

using C#.

Select File > New Project.

When the New Project dialog box opens, select Windows Forms Application.

5. In the name field, enter a name for the project. The project name in this example is
WindowsFormsApplicationl.

6. In the location field, enter the location where the project will reside. The location in this example is
C:\walkthrough.

7. Click OK.

> w

Result

The new project opens in the form designer.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

Next

Tutorial: Adding a reference the project

U2 Toolkit for .NET Help 70

Tutorial: Adding a reference the project
You must add a reference to the U2 Data.Client.dll.
Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine):

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.0
3. Select the U2.Data.Client.dll and click OK.

Next

Tutorial: Adding controls to the form

U2 Toolkit for .NET Help 71

Tutorial: Adding controls to the form

After adding a reference to the to the topic, you can add some controls to the form.

Prerequisite

Tutorial: Adding a reference the project

Procedure

1. From the Visual Studio Toolbox, drag two buttons onto the form. In the properties window, change the button
properties as follows:
o Change the Text property of Buttonl to Load
o Change the Text property of Button2 to Update
2. From the Visual Studio Toolbox, drag a DataGridView control onto the form.

Result

The form should look similar to the following:

Next

Tutorial: Creating event handlers for the button controls

U2 Toolkit for .NET Help 72

Tutorial: Creating event handlers for the button controls

After updating the properties, create an event handler for each button click. This requires you to add a small amount

of code to the form.

Prerequisite

Tutorial: Adding controls to the form

Procedure

Double-click Load to create an event handler for the button.

In the code editor, add the following using statement to the form:
using U2.Data.Client

Add the following code to the Buttonl click event:

private DataSet m DS
private U2DataAdapter m DA
public Forml ()

{

new DataSet () ;
new U2DataAdapter();

InitializeComponent () ;

}

private void buttonl Click(object sender, EventArgs e)
{

try

{

U2ConnectionStringBuilder conn_ str

conn str.UserID = "user";

conn_ str.Password = "pass";
conn_str.Server = "server";
conn_str.Database = "HS.SALES";
conn_ str.ServerType = "UNIVERSE";
conn_str.Pooling = false;

string s conn_str.ToString();

U2Connection con new U2Connection () ;
con.ConnectionString s;

con.Open () ;

Console.WriteLine ("Connected. ..o v vttt ittt i ennennnnn
U2Command cmd con.CreateCommand () ;

cmd.CommandText = "SELECT * FROM CUSTOMER";

m DA.SelectCommand
m DA.Fill(m DS);

DataTable dt m DS.Tables[0];
this.dataGridViewl.DataSource

cmd;

dt;
con.Close () ;

}

catch

{

(Exception e2)

MessageBox.Show (e2.Message) ;

new U2ConnectionStringBuilder () ;

U2 Toolkit for .NET Help 73

Note

Edit the login credentials required for the server connection.

4. Return focus to the Form designer and then double-click the Update button.
5. Add the following code to the Button2 click event:

private void button2 Click(object sender, EventArgs e)

{

Result

try
{

}

if (m_DS.HasChanges () == false)
{
// Nothing to do
return;
}
DataTable modifiedTable = m DS.Tables[0] .GetChanges (DataRowState.Modified);
U2CommandBuilder d = new U2CommandBuilder (m DA) ;
U2Command 1lUpCmd = d.GetUpdateCommand () ;
m_DA.Update (modifiedTable) ;

catch (Exception ex)

{

MessageBox.Show (ex.Message) ;

The Buttonl event handler creates a connection the to the HS.SALES database and then loads the information from
the CUSTOMER file into the data grid.

The Button2 event handler uses the U2 CommandBuilder class to generate an update statement. It checks to see
whether any changes have been made to the record(s). If it detects any changes, it first checks to see how many
changes have been made and then repopulates the DataGrid using the generated Update statement.

Next

Building the application

U2 Toolkit for .NET Help 74

Tutorial: Building the application

After creating all of the controls and event handlers, the application is ready to build.

Prerequisite

Tutorial: Creating event handlers for the button controls

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.
2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without
Debugging option. This opens a working version of the application you just created.

Tip: If you want to debug the application, you can choose to Start Debugging instead.

w

Click Load. The customer information populates in the GridView, as shown:
4. In the grid, locate the name Diana in the FNAME field of the CUSTOMER table. Click in the cell to edit the
name, and change it to Diana2. Click Update.

Result
The change is saved to your account, as shown:
o5 Forml | =
[Lo Updste |
| cusTin SAL FHAME LHAME FLILLMAME COMPANY ADDR
P M. EXN - Ma. DianaZ Momis | Fast Copy Certer | 431
[4 _Hu |4 Hahn _h'h Jil Hahn _Fﬂ':mr(:vur _12
_E _Hu. _Biem' Burks Ms. Eetty Bukos Lightring Comput... 400 T
1 M. Diawd Argonne We. Ciaid Argonre | Fast Copy Certer | 75
E | M | Kannesn Willans | M. Kenvsth Wi, | Ocean Sate Fah. | 237
7 [| Marihe |G |Ov. Matha B Conte Hoeptel | 555
(10 b, Andres McCag L. Andrew McCaig | HGT Dertal Certer | 595 Hl
8 Mr Cleven Haolland Mr. Sieven Holland | Copees, Inc 4125
_12 _hh | Linrie Patry _l-h L Py _Rﬂﬁl’m _1[l
1 M. | Samuel Smith W Samusl Smith | Better Bser iz, |10
g M. Mo Cefandn M. Mo Oriando | A1 Used fbn | B20
11 M Skip Lesss W, Saip: Liwsis Skip's Whale Wa ., |10 Dack

U2 Toolkit for .NET Help 75

Tutorial: Developing an application using UniObjects

This example demonstrates a simple application using UniObjects. The application calls the HS.SALES account in
UniVerse. It loads the information from the CUSTOMER file on to a DataGridView control, and allows you to make
changes to the CUSTOMER file using the U2 CommandBuilder class to update the file.

Procedure

1. Open Visual Studio 2010.

2. Select the programming language with which you want to work. The examples in this document are all created

using C#.

Select File > New Project.

When the New Project dialog box opens, select Windows Forms Application.

5. In the name field, enter a name for the project. The project name in this example is
WindowsFormsApplication_UO.

6. In the location field, enter the location where the project will reside. The location in this example is
C:\walkthrough.

7. Click OK.

> w

Result

The new project opens in the Form designer.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

Next

Tutorial: Adding a reference to a project

U2 Toolkit for .NET Help 76

Tutorial: Adding a reference to a project
You must add a reference to the U2 Data.Client.dll.
Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine):

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.0

3. Select the U2.Data.Client.dll and click OK.

Next

Tutorial: Adding controls to the form

U2 Toolkit for .NET Help 77

Tutorial: Adding controls to the form
After adding a reference to the project, you can add controls to the form.
Prerequisite

Tutorial: Adding a reference to a project

Procedure

1. From the Visual Studio Toolbox, drag two buttons onto the form. In the properties window, change the button
properties as follows:
o Change the Text property of Buttonl to Load
o Change the Text property of Button2 to Update
2. From the Visual Studio Toolbox, drag a DataGridView control onto the form.

Result

The form should look similar to the following:

Next

Tutorial: Creating event handlers for the button controls

U2 Toolkit for .NET Help 78

Tutorial: Creating event handlers for the button controls

After updating the properties, create an event handler for each button click. This requires you to add a small amount
of code to the form.

Prerequisite

Tutorial: Adding controls to the form

Procedure

1. Double-click Load to create an event handler for the button.
2. In the code editor, add the following using statement to the form:

using U2.Data.Client

3. Add the following code to the Buttonl click event:

{

public partial class Forml : Form

{

private DataSet m DS = new DataSet();
private U2DataAdapter m DA = new UZ2DataAdapter();
public Forml ()
{
InitializeComponent () ;

}

private void buttonl Click(object sender, EventArgs e)
{

try

{

U2Connection con = GetConnection();

Console.WritelLine ("Connected. . v v ii it itennnneeenns ") ;

// get RECID
UniSession usl = con.UniSession;
UniSelectList sl = usl.CreateUniSelectList(2);

// Select UniFile
UniFile fl = usl.CreateUniFile ("CUSTOMER") ;
sl.Select (fl);

bool lLastRecord = sl.LastRecordRead;
List 1RecIdList = new List();
while (!lLastRecord)
{
string sRecID = sl.Next();
1RecIdList.Add (sRecID) ;
Console.WriteLine ("Record ID:" + sRecID);
lLastRecord = sl.LastRecordRead;
}
UniDataSet uSet = fl.ReadRecords (lRecIdList.ToArray());

// we Jjust create simple table

DataTable dt = new DataTable();
dt.Columns.Add ("CUSTID", typeof (int));
dt.Columns.Add ("SAL", typeof (string));
dt.Columns.Add ("FNAME", typeof (string));
dt.Columns.Add ("LNAME", typeof(string));

// use for each statement to print the record
foreach (UniRecord item in uSet)

U2 Toolkit for .NET Help 79

try

UniDynArray dr = item.Record;

DataRow lDataRow = dt.NewRow () ;

1DataRow ["CUSTID"] = Convert.ToInt32 (item.RecordID);
1DataRow["SAL"] = dr.Extract(l).StringValue;
1DataRow ["FNAME"] = dr.Extract(2).StringValue;
1DataRow ["LNAME"] = dr.Extract(3).StringValue;

dt.Rows.Add (1DataRow) ;
}
catch (Exception)

{

}

dt.AcceptChanges () ;

m DS.Tables.Add(dt) ;
this.dataGridViewl.DataSource = dt;

con.Close () ;

}

catch (Exception e4)

{

Console.WriteLine (ed4.Message) ;

}

finally

{
Console.WritelLine ("Enter to exit:");
string line = Console.ReadLine();

private U2Connection GetConnection ()

U2ConnectionStringBuilder conn str = new U2ConnectionStringBuilder();
conn str.UserID = "user";

conn_ str.Password = "password";

conn_ str.Server = "server";

conn str.Database = "HS.SALES";

conn str.ServerType = "UNIVERSE";
conn_str.AccessMode = "Native"; // FOR UO
conn_str.RpcServiceType = "uves"; // FOR UO
conn_str.Pooling = false;

string s = conn _str.ToString();
U2Connection con = new U2Connection();
con.ConnectionString = s;

con.Open () ;

return con;

Note

Edit the login credentials required for the server connection.
4. Return focus to the Form designer and then double-click the Update button.

5. Add the following code to the Button2 click event:

private void button2 Click(object sender, EventArgs e)

{

U2 Toolkit for .NET Help 80

Result

try
{

DataTable modifiedTable = m DS.Tables[0] .GetChanges (DataRowState.Modified);

if

{

}
}

catch

{

(modifiedTable.Rows.Count > 0)

U2Connection con = GetConnection();
Console.WriteLine ("Connected. .. v ittt it it ieeennnn ")
// get RECID

UniSession 1lUniSession = con.UniSession;

// Select UniFile

UniFile fl1 = lUniSession.CreateUniFile ("CUSTOMER") ;
UniDynArray udr3 = new UniDynArray (lUniSession);

foreach (DataRow item in modifiedTable.Rows)
{
udr3.Insert(l, -1, (string)item["FNAME"])
}
string[] 1Fields = { "FNAME" };
string lRecID = modifiedTable.Rows[0][0].ToString();
fl.WriteNamedFields (1RecID, 1lFields, udr3);

con.Close () ;

(Exception ex)

MessageBox.Show (ex.Message) ;

The Buttonl event handler creates a connection the to the HS.SALES database and then loads the information from
the CUSTOMER file into the data grid.

The Button2 event handler uses the U2 CommandBuilder class to generate an update statement. It checks to see
whether any changes have been made to the record(s). If it detects any changes, it first checks to see how many

changes have been made and then repopulates the DataGrid using the generated Update statement.

Next

Tutorial: Building the application

U2 Toolkit for .NET Help 81

Tutorial: Building the application

After creating all of the controls and event handlers, the application is ready to build.

Prerequisite

Tutorial: Creating event handlers for the button controls

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.
2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without
Debugging option. This opens a working version of the application you just created.

Tip: If you want to debug the application, you can choose to Start Debugging instead.

3. Click Load. The customer information populates in the GridView.
4. In the grid, locate the word Diana in the FNAME field in the CUSTOMER table. Click in the cell to edit the name,
and change it to Diana2. Click Update.

Result
The change is saved to your account, as shown:
& Forml L il
Lotoed | [ledsme |
CUSTID SAL FHARE LNAME
QESS—C—- [
4 ™ | (Kehn
5 i [y lose
3 | e, | Do | Pegonne
5 ™ | Kerneth | il
7 |or | Matha ="
10 or I | Metag
o ™ [steven | Hotard
12 IH'.|. !Lu.ne !Pr.m'
] ™ | Samuei | smen
0 (e [racole |oando
= [| [

U2 Toolkit for .NET Help 82

Tutorial: Developing an application using ADO.NET and
UniObjects

This example demonstrates a simple application using both ADO.NET and UniObjects. The application calls the
HS.SALES account in UniVerse. It loads the information from the CUSTOMER file on to a DataGridView control, and
allows you to make changes to the CUSTOMER file using the U2 CommandBuilder class to update the file.

Procedure

Open a project in Visual Studio 2010

1. Open Visual Studio 2010.

2. Select the programming language with which you want to work. The examples in this document are all created
using C#.

3. Select File > New Project.

When the New Project dialog box opens, select Windows Forms Application.

5. In the name field, enter a name for the project. The project name in this example is
WindowsFormsApplication_ADO_UO.

6. In the location field, enter the location where the project will reside. The location in this example is
C:\walkthrough.

7. Click OK.

»

Result

The new project opens in the Form designer.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

Next

Tutorial: Adding a reference to the application

U2 Toolkit for .NET Help 83

Tutorial: Adding a reference to the application

You must add a reference to the U2 Data.Client.dll.

Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine): :

C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.0

3. Select the U2.Data.Client.dll and click OK.

Next

Tutorial: Adding controls to the form

U2 Toolkit for .NET Help 84

Tutorial: Adding controls to the form

After adding the references, it is time to add some controls to the form.

Prerequisite

Adding a reference to the application

Procedure

1. From the Visual Studio Toolbox, drag two buttons onto the form. In the properties window, change the button
properties as follows:
o Change the Text property of Buttonl to Load
o Change the Text property of Button2 to Update
2. From the Visual Studio Toolbox, drag a DataGridView control onto the form.

Result

The form should look similar to the following:

Next

Tutorial: Building the application

U2 Toolkit for .NET Help 85

Tutorial: Building the application

After creating all of the controls and event handlers, the application is ready to build.

Prerequisite

Tutorial: Creating event handlers for the button controls (on-line documentation)

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.

2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without

Debugging option. This opens a working version of the application you just created.

Click Load. The customer information populates in the GridView.

4. In the grid, locate the BUY_DATE fields for record 2. Click in the 1/8/1991 cell to edit the date, and change it to
1/8/1995. Click in another cell to save the change and then select Update.

w

Result
The change is saved to your account, as shown:
e Forml r=efeis] H-
CUSTID FHAME LHAME LIST_PRICE BUY_DATE i
F! [Rara ity BAS) 1E5EE
F. Diara Maoris 12350 121990
g ks Charas Mams 1550 vz 9

4 i LEy 173590 199
k! =105 Aygonng 445(R
£ Hisrrath Vil 1550 V141551
5 Kenneth Willkams 1530 21519591 =

U2 Toolkit for .NET Help 86

U2 Toolkit for .NET Developer

U2 Toolkit for .NET Developer is a Data Designer Extensibility (DDEX) provider. It allows Microsoft Visual Studio
components such as the Server Explorer and the data designers to work with the U2 databases. The U2 Server Objects,
such as tables, views, and subroutines, are fully integrated within Visual Studio. U2 Toolkit for .NET

Developer allows designers to use the drag-and-drop capabilities and code generation (C#/VB.NET) found within
Visual Studio to create new U2 applications without the need for extra programming. U2 Toolkit for .NET Developer
is designed to present a simple interface to U2 databases. For example, you can access and manage U2
Connections in Visual Studio Server Explorer, view server-side object properties, retrieve and update data from
tables and views, and Generate ADO .NET and EDM code using the drag-and-drop technique.

Note

UniData users must normalize their demo account for use with SQL. This can be done using the U2 Metadata
Manager (U2 MDM). Refer to the U2 MDM Help for information on how to easily use this tool to normalize your data.

Alternatively, Visual Schema Generator (VSG) can also be used to normalize files. If using VSG, you must create a sub-
table from the CUSTOMER file in the demo account and include all fields. Ensure the privileges are set to PUBLIC.

Note

UniVerse tables and views are always accessible to ODBC applications, but UniVerse files that are not tables are not.
To make UniVerse files accessible to ODBC applications, you must run the ODBC file access utility in the account.
Among other things, this utility creates the HS_FILE_ACCESS file, which lists all UniVerse files referenced by F- and Q-
pointers in the VOC file. You can edit this file to define exactly which files should be ODBC-accessible. You probably
also need to run the HS.UPDATE.FILEINFO program from time to time, which updates the account’s file information
cache. Refer to the UniVerse ODBC Guide for more information about making UniVerse files accessible.

U2 Toolkit for .NET Help 87

U2 Toolkit for .NET Developer system requirements

The following requirements must be met in order for the U2 Toolkit for .NET Developer to work correctly on your
system.

System requirements
® Microsoft Windows 7 (32-bit/64-bit), Windows 8 (32-bit/64-bit), Windows 8.1 (32-bit/64-bit), and Windows
2012
® Microsoft.NET Framework 4.0, 4.5

® Microsoft Visual Studio 2010, 2012, 2013
e ADO.NET Entity Framework 4, 4.1, 4.2, 5

Supported versions of UniData and UniVerse

e UniData 7.1 or later
® UniVerse 10.3 or later

SSIS/SSRS (Optional)

FTE;\:ework #Il\fg;ework Visual Studio Visual Studio Visual Studio Visual Studio
2.0 4.0 2008 BIDS 2010 BIDS 2012 BIDS 2013 BIDS
SQL Access Yes Yes Yes Yes Yes Yes
Native Visual No Yes No Yes Yes Yes

Studio
Integration

U2 Toolkit for .NET Help 88

Installing U2 Toolkit for .NET Developer

Complete the following steps to install U2 Toolkit for .NET Developer on Windows.

Prerequisites

e U2 Toolkit for .NET Provider system requirements

e The U2 Toolkit for .NET Developer in Visual Studio IDE requires a valid license. There is no charge for a
Developer license. To obtain a copy of U2 Toolkit for .NET Developer, contact the Rocket Business
Connects team at https://u2tc.rocketsoftware.com/main.asp?js=y.

Procedure

1. From the U2 Toolkit for .NET installation screen, select Install U2 Toolkit for .NET Developer. Click Next.
After accepting the licensing agreement, click Next.
3. By default, the installation process installs U2 Toolkit for .NET Developer in the following directories:

N

o The installation path on a 64-bit Windows 7 machine is C:\Program Files (x86)\Rocket Software\U2
Toolkit for .NET\U2 Toolkit for .NET Developer
o The installation path on a 64-bit Windows 7 machine is C:\Program Files\Rocket Software\U2 Toolkit for
.NET\U2 Toolkit for .NET Developer
o The installation path on a Windows 7/Windows XP machine is C:\Program Files\Rocket Software\U2
Toolkit for .NET\U2 Toolkit for .NET Developer
4. Click Next to install U2 Toolkit for .NET in the default folder, or click Browse to search for a different folder.
5. By default, the installation process adds the Rocket U2 icon to the Program Folders list. Click Next to accept
this default, or select a different folder from the Existing Folders list and then click Next.
6. Click Close to complete the installation process.

Next step

Authorizing U2 Toolkit for .NET Developer licenses

U2 Toolkit for .NET Help 89

https://u2tc.rocketsoftware.com/main.asp?js=y

Authorizing U2 Toolkit for .NET Developer licenses

The U2 Toolkit for .NET Developer in Visual Studio IDE, requires a license. This license is per machine. The
License Manager controls validity of the license.

To obtain a license, you must generate a configuration code from within the tool. After generating this code, request

an authorization code from the U2BusinessConnect site. The license can then be authorized in the tool using the
authorization code.

The U2BusinessConnect site can be accessed from the following links:

US: https://u2tc.rocketsoftware.com/authprod.asp
International: https://u2tcint.rocketsoftware.com/authprod.asp

U2 Toolkit for .NET Help 90

https://u2tc.rocketsoftware.com/authprod.asp
https://u2tcint.rocketsoftware.com/authprod.asp

Generating a configuration code

U2 Toolkit for .NET Developer requires a valid license for development. A configuration code is needed when obtaining the

authorization code from the U2BusinessConnect site.

Procedure

1. Open the authorization tool by navigating to Start > Rocket U2 > U2 Toolkit for .NET > U2 Toolkit for .NET

Developer > Authorization > Authorization Tool. Select the Configuration Code tab.

F

J_Eﬂ U2 Toolkit for MET Developer's Autharization

Configuration Code | Autharization Code

[=][O s)

| Fipat

Serial Mumber : 12412931-MDEAI
Product Wersion : 1.21

Expiration : 071/01./4000
Murnber of Users : 1

Output for UZEC

Generated Configuration Code :

kD EH=AIGREIMIS YT E D ==514501401,/400081 241 2331-NDKAN .21

[Generate Configuration Code] I Copy to Clipboard

Cloze

2. Enter the required information and then click Generate Configuration Code. A generated configuration code

displays. Click Copy to Clipboard to copy the code.

3. At this point, you must obtain an authorization code from U2BusinessConnect, using the configuration code. To

obtain the authorization code, visit the appropriate URL below and click Authorize Products.

US: https://u2tc.rocketsoftware.com/authprod.asp

International: https://u2tcint.rocketsoftware.com/authprod.asp

Note

If user access control is enabled, licensing must be done in administration mode.

Next

Authorizing a license

U2 Toolkit for .NET Help 91

https://u2tc.rocketsoftware.com/authprod.asp
https://u2tcint.rocketsoftware.com/authprod.asp

Authorizing a license

After obtaining an authorization code from the U2BusinessConnect site, the U2 Toolkit for .NET license must be
authorized.

Prerequisite

Generating a configuration code

Procedure

1. Open the authorization tool by navigating to Start > Rocket Software > U2 Toolkit for .NET > U2 Toolkit
for .NET Developer > Authorization > Authorization. Select the Authorization Code tab.
2. Paste the authorization code obtained from the U2BusinessConnect site into the Authorization Code box. If

the authorization code is on the clipboard, click Copy from Clipboard to paste the code into the authorization
field.

3. Click Authorize.

U2 Toolkit for .NET Help 92

Establishing a server connection using the Visual Studio
Server Explorer

To work with UniData or UniVerse accounts and data, you must enable your computer to connect to the server on
which the accounts and data reside. Your computer (the client) requires a U2 server definition to make a connection
with the server.

A U2 server is a defined connection to a server computer on which U2 accounts and data are stored. All existing U2
servers on the client computer are listed in the U2 Resource view. The U2 server definition is stored on the client
computer on which it was created, and is not shared across a network. One or several users can create multiple U2
server definitions on the same client computer.

Creating U2 server definitions

To administer UniData or UniVerse accounts and data, create a U2 server definition that enables the computer to
connect to the U2 data server on which the accounts and data are stored.

Procedure

1. Start Microsoft Visual Studio.

2. Select View > Server Explorer from the Visual Studio menu. The Server Explorer displays the server resources
in a treeview, which includes the following top-level nodes: Data Connections and Servers.

3. In the Server Explorer, right-click the Data Connections node, and then click Add connection.

4. Select the General tab.

5. In the Server name field, enter a unique name to identify the U2 server definition. The name cannot contain a
slash (/) or backslash (\) character.

6. In the Login details fields, enter the correct login credentials.

7. In the Account name field, enter the name of the account to which you are connecting.

NOTE: The database name can be set to full path or a UniData database name or a UniVerse account name.
When connecting to a UniData server using the database name, the name must be defined in both the
ud_database file and the system UD.ACCOUNT file.

8. From the Database type field options, select UniData or UniVerse.
9. In the Access mode field, select the access mode. In the current release, Native (UO Server) is not supported.
10. Optional. To view or edit the table subroutine, views, or schema filters, click the Filters tab and modify the
information.
11. Optional. To view or edit the protocol, port number, and other advanced settings defining the connection, click
Advanced. Make changes to any of the fields in the following categories
o Data
Initialization
Misc
Pooling
Schema keywords
Security
Source

O O 0O 0O 0 ©°

See Viewing the advanced settings of a U2 server definition to view details about each of these properties.

12. To save the U2 server definition, click OK.

U2 Toolkit for .NET Help 93

Example

Enter information to connect to the selected data source or click "Change” to choose a different data
source and,or provider.

Data source:

U2 Database ((MET Framewark Data Provider for L2 Database)
General | Filter

SEMVEr Name;

Legin details
Ilser narme;

Password:

Save my password

Account name:

Database type:

Select...

Access mode:

| |
|

I Test Connection QK Cancel

Result

U2 Toolkit for .NET creates a directory for the U2 server, registering the server definition so the tool can find it in
future sessions. The name of the new U2 server is added to the list in the Server Explorer.

U2 Toolkit for .NET Help 94

Viewing the advanced settings of a U2 server definition

On the advanced settings page of the server definition, you can view or edit the protocol, port number, and other
advanced settings that define the connection. You can also specify commands to run when you connect to the U2

server.

Prerequisite

Establishing a server connection using the Visual Studio Server Explorer

Procedure

1. Click Advanced on the Add Connections page.
2. Make changes to any of the fields in the following categories:

Property
Data

ConnectionString (‘ConnectionString
Property’ in the on-line
documentation)

Initialization

AccessMode ('AccessMode Property’
in the on-line documentation)

AppendParameterMarker
(‘AppendParameterMarker Property’
in the on-line documentation)

CacheMetaDataOnConnection
(‘CacheMetaDataOnConnection
Property' in the on-line
documentation)

CodePage ('CodePage Property’ in
the on-line documentation)

Connect Timeout ('Connect_Timeout
Property’ in the on-line

Description

The connection string used
to connect to the data
source.

This property gets or sets
the AccessMode to be used
when connecting to a U2
database.

This property allows you to
append append the "@"
character in the parameter
name. For Example, if
parameter name is ‘pl’ then
it changes to "@p1" if this
property is set True.

This property gets or sets a
value indicating whether
metadata, such as schema
or tables, should be cached
when connecting to a U2
database.

This property gets or sets
the code page identifier of
the current encoding.

This property is used to set
the amount of time

Remarks

The connection string that includes
settings, such as the database name,
needed to establish the initial
connection. The ConnectionString
can be set only when the connection
is closed.

For SQL Access, the
AccessMode=Uci. For Native Access,
the AccessMode=Native. The default
value is Uci.

This property is useful if the
generated code ignores the “@”
variable for the parameter. The
default value is false.

This property returns a value of true
if the metadata is cached when a
connection is made to U2 database;
otherwise, a value of false is
returned. The default value is true.

This property is equivalent to the
Encoding.CodePage property.

You can set the amount of time a
connection waits to time out by

U2 Toolkit for .NET Help

95

Property

documentation)

ExpandMultiValueRows

(‘ExpandMultiValueRows Property’ in

the on-line documentation)

MAXFETCHBUFF ('MaxFetchBuff
Property’ in the on-line
documentation)

MAXFETCHCOLS (‘MaxFetchCols
Property’ in the on-line
documentation)

NamedParameters
(‘NamedParameters Property’ in the
on-line documentation)

NativeFetch (‘NativeFetch Property’
in the on-line documentation)

QueryTimeout ('QueryTimeout
Property’ in the on-line
documentation)

U2 Toolkit for .NET Help 96

Description

between when a request is
sent and when the request
terminates and throws a
Timeout error.

This property gets or sets a
value that indicates whether
to expand multivalued rows.

This property gets and sets
the maximum buffer size. It
controls the maximum
buffer size on the server to
hold data rows.

This property gets and sets
the maximum number of
columns. It controls the
maximum number of
column values the server
can put in the buffer before
sending data to the client.

This parameter gets or sets
a value that indicates
whether to treat arguments
as named parameters. For
example, if set to true, then
the argument @ARG is
treated as a function
parameter. If set to false,
then @ARG will not be
treated as a function
parameter.

This property is used to get
data in chunks in order to
improve performance.

This property gets or sets
the QueryTimeout keyword
value, a value specifying the
default number of seconds

Remarks

using the ConnectTimeout or
Connection Timeout keywords in the
connection string. A value of 0
indicates no limit, and should be
avoided in a ConnectionString
because an attempt to connect waits
indefinitely.

This property returns a value of true
if multivalued rows are expanded;
otherwise, a value of false is
returned. The default value is false.

The server usually fills this buffer with
as many rows as possible before
sending data to the client. If any
single row exceeds the length of
MAXFETCHBUFF, SQLFetch fails and
you should increase the value of this
parameter.

The maximum number of columns.

Named arguments improve the
readability of the code by
identifying what each argument
represents.

The NativeFetch property should be
used when fetching a large number
of record IDs. For example, if there
are 50,000 record IDs and
NativeFetch=10000 is specified, the
fetch will occur five times for
performance gains.

The functionality of QueryTimeout
Property and ConnectionTimeOut
property is the same. It allows users
to Get or Set the wait time before

Property Description Remarks

to wait for an SQL query to terminating the attempt to execute a

execute. The default value is command and generating an error. If

300 seconds. it is used in a connection string, the
QueryTimeout property and
ConnectionTimeOut property are
included. The maximum value of
these two property will be used for
TimeOut value.

RpcServiceType (‘RpcServiceType This property gets or sets A passed value (for example: uvcs or
Property' in the on-line the value of the RPC service udcs) that should exist in the
documentation) type. By default, in for unirpcservices file.

native

access (UniObjects/UO.NET
API or Native Visual Studio
Integration), the UniVerse
value is uvcs and the value
for UniData is udcs. In SQL
AccessMode, the UniVerse
value is uvserver and the
value for UniData is

udserver.
SleepAfterClose ('SleepAfterClose This property gets or sets This property is useful for closing
Property' in the on-line the length of time (in the socket properly. The default
documentation) milliseconds) to wait after value is 0.

the connection is closed.

ThrowMismatchDataTypeException This property gets or sets Returns a value of true if
(‘ThrowMismatchDataTypeException the Boolean value used to | ‘ThrowMismatchDataTypeException’
Property’ in the on-line hand the data type is enabled; otherwise a value of false
documentation) exception that occurs is returned.

during the fetch process.

The default value is false.

UseATSelect (‘UseATSelect Property’ Use this property to filter This property requires server-side

in the on-line documentation) out dictionary items defined dictionary modification. You must
in the "@" or "@SELECT" specify an "@" phrase or an
phrase. "@SELECT" phrase to list the fields

and attributes in a file. If both an
"@" phrase and an "@SELECT"
phrase are specified, the fields
defined in the "@" phrase take

precedence.

UseFastGetRecordID This property allows users This property may help to improve
(‘UseFastGetRecordID Property’ in the to get all record IDs in one performance as it gets all record IDs
on-line documentation) server call. This value is true in one server call.

by default.
UselPv6 ('UselPv6 Property’ in the This property allows users This property requires server-side
on-line documentation) to connect to servers using IPv6 functionality. UniVerse (11.2.4)

the IPv6 protocol. This and UniData (7.4.1) will have server-

U2 Toolkit for .NET Help

Property

UseMDM (‘UseMDM Property’ in the

on-line documentation)

UseSameSocketOnClose

('UseSameSocketOnClose Property' in

the on-line documentation)

Misc

ServerType ('ServerType Property' in

the on-line documentation)

Pooling

Connection LifeTime

(‘ConnectionLifeTime Property’ in the

on-line documentation)

Connection Reset ('ConnectionReset

Property' in the on-line
documentation)

Max Pool Size (‘MaxPoolSize

Property’ in the on-line
documentation)

Min Pool Size (‘MinPoolSize Property’
in the on-line documentation)

Pooling ('Pooling Property’ in the on-

line documentation)

U2 Toolkit for .NET Help 98

Description

property returns true if
UselPv6 is enabled;
otherwise false. False is the
default.

This property gets or sets a
Boolean value that indicates
how to retrieve metadata
information.

This property gets or sets
the criteria needed to reuse
the socket after it closes.

This property gets or sets
database type. It indicates
whether the connection is
to be made to a UniData or
UniVerse database.

This property specifies how
long a connection stays
active in the connection
pool before it is ended and
then created again.

This property gets or sets a
Boolean value that indicates
whether the connection is
reset when drawn from the
connection pool.

This property gets or sets
the maximum number of
connections in the
connection pool.

This property gets or sets
the minimum number of
connections in the
connection pool.

This property gets or sets a
Boolean value indicating
whether a connection pool

Remarks

side IPv6 functionality. If the server
supports IPv6 and the UseIPv6
property is enabled, the connection
is made using the IPv6 protocol.

If the server does not support IPv6
functionality and is enabled, the
connection is made using the IPv4
protocol.

If this property is true, metadata
information such as Tables, Views,
Columns are retrieved different way.
You will use this property if you
normalize your account using U2
Metadata Manager.

To reuse a socket after it closes, set
this value to true. The default value
is false.

The type of the connected server.
The default value is ("UNIVERSE")
until the connection is opened.

A value of zero (0) causes pooled
connections to have the maximum
connection timeout. The default
value is 60 seconds.

The value set by the
ConnectionReset property. If no
value is supplied, the default is true.

This property corresponds to the
"Max Pool Size" key within the
connection string.

This property corresponds to the
"Min Pool Size" key within the
connection string.

This property corresponds to the
"Pooling" key within the connection
string.

Property

Security

ClientCertificatePath
(‘ClientCertificatePath Property’ in
the on-line documentation)

Password (‘Password Property’ in the
on-line documentation)

PersistSecuritylnfo
(‘PersistSecurityInfo Property’ in the
on-line documentation)

SslCheckCertificateRevocation
('SslCheckCertificateRevocation
Property’ in the on-line
documentation)

SSLConnection ('SSLConnection
Property’ in the on-line
documentation)

SslignoreCertificateNameMismatch
(‘SslignoreCertificateNameMismatch
Property’ in the on-line
documentation)

SslignorelncompleteCertificateChain
(‘SslignorelncompleteCertificateChain
Property' in the on-line
documentation)

UserID (‘UserID Property’ in the on-
line documentation)

WalletID (‘WalletID Property’ in the

Description

is used for the connection.

This property gets or sets
the path to the certificate.

This property gets or sets
the password connected to
your U2 database account.

This property gets or sets a
Boolean value that defines
whether security-sensitive
information is returned as
part of the connection.

This property gets or sets
the flag that indicates
whether the certificate
revocation list is checked
during authentication.

This property is used to
create a Secure Socket
Layer (SSL) connection.

This property gets or sets
the flag that indicates
whether to ignore name
mismatch errors on the
server certificate during
authentication.

This property gets or sets
the flag that indicates
whether an incomplete
chain error is ignored
during authentication.

This property gets or sets
the User ID being used to

connect to the U2 database.

This property gets or sets

Remarks

The path of the PKCS7 signed file
from which to create the X.509
certificate.

This property corresponds to the
"Password" and "pwd" keys within
the connection string.

If Password has not been set and you
retrieve the value, the return value is
Empty. To reset the password for the
connection string, pass null to the
Item property.

This property corresponds to the
"Persist Security Info" and
"persistsecurityinfo" keys within the
connection string.

This property gets or sets the flag
that indicates whether the certificate
revocation list is checked during
authentication.

The default value is false.

Name mismatch errors occur when
the name specified in the certificate
is different from the name of the
server machine which provides the
certificate.

This property gets or sets the flag
that indicates whether to ignore
name mismatch errors on the server
certificate during authentication.
Name mismatch errors occur when
the name specified in the certificate
is different from the name of the
server machine which provides the
certificate.

This property corresponds to the
"User ID", "user", and "uid" keys
within the connection string.

This property gets or sets

U2 Toolkit for .NET Help

99

Property

on-line documentation)

WalletPwd (‘WalletPwd Property’ in
the on-line documentation)

Source

Database (‘Database Property’ in the
on-line documentation)

Server ('Server Property' in the on-
line documentation)

Description

encryption keys.

This property gets or sets
the encryption password.

This property gets or sets
the name of the database
associated with the
connection.

This property gets or sets
the value that specifies the
host and port number to
which you want to connect.

Remarks

encryption keys.

This property gets or sets the
encryption password.

You need to provide a valid
database name. For example,
demo.

You need to provide a valid
database name. For example,
localhost.

3. To save any changes made to the advanced setting and return to the main page, click OK.

U2 Toolkit for .NET Help 100

Accessing U2 database files through the Dataset object
model

You can use the U2 Toolkit for NET Developer to access your data files through the Dataset model. In the Dataset
object model, data files are mapped to the U2 RDMS tables and can be viewed as columns and rows.

Procedure

1. In Visual Studio create a new Windows Forms Application project and go to Data > Show Data Sources.

Note: To view the data source wizard in Visual Studio 2012, select View > Other windows > Data Sources.

2. In the Data Sources window, click Add New Data Source.

3. Choose a Data Source Type from which the application will get the data. In this example, select Database and
then click Next.

4. Choose a Database Model to determine the types of data objects your application will use. In this example,
select Dataset and then click Next.

5. Choose the Data Connection your application will use to connect to the database. For this example, select
New Connection to establish a data connection to the local U2 database account.

6. Enter the required information to connect to the account of your chosen database (HS.SALES for UniVerse or
demo for UniData). For this example, select SQL (UCI Server) as the Access Mode.

7. Click Test Connection to verify this information and then click OK.

Note: In the current release, Native (UO Server) is not supported.
8. Select the new Data Connection and then click Next.
9. Accept the default name to Save the Connection String to the Application Configuration file and then click
Next.
10. Choose Database Objects to make them accessible in your Visual Studio project. For this example, select
CUSTOMER and CUSTOMER_ORDERS from the Tables list and then click Finish.

Result

The U2 database files are now mapped to the Dataset model and are located in the project file, which is denoted by
the .xsd extension and should look similar to the following:

U2 Toolkit for .NET Help 101

Server Explorer
%Yy

a4 i Data Conmections

[TSTFTETE] 1 ‘;

4 |l avaite@HS.SALES [LIMIVERSE 1

4 _J Tables

4 I CUSTOMER
T cusTip
I saL
T] FMAME
T LNAME
1 FULLNAME
T ComMPany
T ADDR1
I ADDRZ
3] FULLADDR
a2 amy
3] STATE
Z] STATEMAME
i zw
3] PHONE

SR2INCr L Ee .:_'|

4 T CUSTOMER_ORDERS

3 cusTin

I PRODID

7] DESCRIPTION
1 SER_MUM

Z] BUY_DATE
3] PAID_DATE

_HE SALESDataSet and” 0 QEIiiRalzan 1]

L. CUSTOMER 3]
I cusmib -

sAL

FHAME

LMAME

FULLMAME

COMPANY .

ADDRL

ADDR2

FULLADDR

cITY

STATE

STATEMAME -

'® CUSTOMERTableAdapter [%]
% Fill GetData ()

T CusTiD -
PRODID
DESCRIFTION
SER_MUM
BUY_DATE
FAID_DATE
LIST_PRICE
PRICE
DISCOUMNT
SWC_START
SVC_END
SVC_PRICE -

'R CUSTOMER_ ORDERSTableAdapter [7]
e Fill GetDiata)

You can now data-bind items from the Dataset model by dragging them from the Data Sources window onto any
forms or existing controls in your project.

Tip

Right-click in the *.xsd window and select Preview Data to preview the contents of the U2 database files accessed

through this Dataset model.

U2 Toolkit for NET Help 102

Accessing U2 database files through the Entity Data Model

You can use the U2 Toolkit for NET Developer to expose U2 database files through the Entity Data Model. In the
Entity Data Model, data files are mapped to specific object classes and are not inherited.

Procedure

1. In Visual Studio create a new Windows Forms Application project and go to Data > Show Data Sources.

In the Data Sources window, click Add New Data Source.

3. Choose the Data Source Type from which the application will get the data and then click Next. For this
example, select Database.

4. Choose a Database Model which determines the types of data objects your application will use and then click
Next. For this example, select Entity Data Model.

5. Choose the contents of the Entity Data Model. Select Generate from Database to generate the Entity Data
Model from your U2 database and then click Next. Classes are generated from the model automatically.

6. Choose the Data Connection the application will use to connect to the database. Select New Connection to
establish a data connection to your local U2 database account and then click Next.

7. Choose the Database Objects to include in your model. For this example, select CUSTOMER and
CUSTOMER_ORDERS from the Tables list then click Finish.

N

Result

The U2 database files are now mapped to the Entity Data Model and are located in the project file, which is denoted
by the .edmx extension and should look similar to the following:

A Sereer Explorer = B RERREIRSLPEEE Forml.cs [Design) CUSTOMER: Query(H5.5ALES)
;' [EIERR R
Sl + (3 Data Connections -
o [, awaite@HS.SALES [UNIVERSE 1
3‘ o T Tbles #: CUSTOMER E3 s: CUSTOMERO.. =
1 4 1 CUSTOMER
E“ 3 custip = Properties = Properties
7 3 AL 8 cusmp P8 cusmp
2] FNAME e 4 PRODID
1] LNAME = FNAME 7 DESCRIPTIOM
] FULLMAME A LNAME S SER_NLMA
3 comPany FUILLMAME =5 BUY_DATE
] ADDRL 4 COMPANY % pAID_DATE
& aAppAz =5 ADDRL | S LIST_PRICE
1] FULLADDR AD0R2 1 : “ PRICE
& amy E 5 FULLADOR 5 DISCOUNT
Z] STATE o CITY =l S\JC_START
E] STATEMAME 5 STATE = SVC_END
& zw i STATENAME i SVE_PRICE
il PHONE = 71p 5 SWC_PAID_DATE
4 T CUSTOMER_ORDERS 1 BHONE 5 C_ASSOC_ROW
3] custio o —
] PRODID Mavigation Properties | Mavigation Properties
7] DESCRIPTION %, CUSTOMER_OR... | %, CUSTOMER
1] SER_MUM
& BUY_DATE
Z] PAID_DATE 4 UL

You can now data-bind items from this Entity Data Model by dragging from the Data Sources window onto the forms
or existing controls in the project.

U2 Toolkit for .NET Help

103

Adding a TableAdapter to a project

In Visual Studio, TableAdapters connect to UniData or UniVerse, execute a query or stored procedure, and either
returns a new data table containing the returned data or fills an existing DataTable object with the returned data.
Updated data from your application can also be sent back to either UniData or UniVerse using a TableAdapter.

Prerequisite

An existing project in Visual Studio that contains a data source. When you drag any table, view, or subroutine into a
project, it creates DataSet . A DataSet consists of two files:

« xsd file

« .Designer.cs file

Procedure

1. From the Solution Explorer, double-click the .xsd file for the project to open the file in the editor.

2. Select Data > Add > TableAdapter from the Visual Studio menu. Alternatively, you can drag a TableAdapter
from the DataSet Toolbox, onto the form.

3. Specify the connection string used to connect to the database. Click Next.

4. Choose the command type (SQL statements or stored procedures) the TableAdapter will use and click Next.

5. Optional. Select Advanced Options to optionally generate Insert, Update, and Delete statements, turn
optimistic concurrency on/off, or add a Select statement to refresh the data table.

6. Add the SQL statement to define what should be loaded into the table. Click Next.

7. Select the methods that the TableAdapter will use to load and save the data between the application and the
database. Click Next.

8. Select Finish to exit the TableAdapter wizard.

U2 Toolkit for .NET Help 104

Developing Applications with Native Visual Studio
Integration

Beginning at version 2.1.0, U2 Toolkit for .NET supports Native Visual Studio Integration to U2 applications through
the ADO.NET Provider, LINQ to Entity Provider, and Visual Studio

add-ins. Visual Studio users are able to fully access U2 files and subroutines without having to make changes to their
account dictionaries. For example, U2 Toolkit for .NET can natively access or modify System Builder accounts and
subroutines. U2 Toolkit users can seamlessly use single values, multivalues, or multi-subvalues from within the Visual
Studio Explorer.

Server Explorer integration

When you connect to U2 Toolkit for .NET using Native Visual Studio Integration, all account files and all globally
cataloged subroutines populate in the Server Explorer in one of two folders: U2 Files or Stored Procedures. The U2
Files folder contains all files and attributes in the account. The Stored Procedures folder contains all of the globally
cataloged subroutines in the account. Only U2 data files (such as AD,LS, or V field types) display in the Server
Explorer.

Entity Data Model and LINQ to Entity

Native Visual Studio Integration supports both Database First models and Code First development. This allows
developers to create entity data models from U2 files and subroutines. When an entity is added to the Visual Studio
project using the Entity Data Model wizard, the file U2 files is mapped to the entity. Developers can also map u2
subroutines to functions.

DataSets and TableAdapters

In Visual Studio, TableAdapters are used to communicate between an application and the U2 databases. When a file
is added to a new dataset using a DataTable, a TableAdapter is also added. These TableAdapters contain all of the
functionality required for users to utilize create, read, update, and delete functions for U2 files and subroutines,
without having to make any programmatic changes. The TableAdapter sends the request to the database and then
returns the query information to the application and populates the information in the DataTable.

U2 Toolkit for .NET Help 105

Using @ phrases and @SELECT phrases with Native Visual
Studio Integration

Native Visual Studio Integration allows users to view U2 accounts, fields, and attributes in the Server Explorer. A U2
account often contains a lot of fields, and it can be helpful to be able to filter out the fields you do not want to see.
This can be done by specifying required fields using an @ phrase or and @SELECT phrase.

To filter out dictionary items in the Visual Studio Server Explorer, you can specify your dictionary items in an @ phrase
or @SELECT phrase. If both an @ phrase and an @SELECT phrase are specified, the @ phrase will take precedence. If
the dictionary contains neither an @SELECT nor an @ phrase, all dictionary items will be populated.

@ phrase example

@ phrase
001 PH
002 ID, Sv1, SvV2, MV1l,MV2

@SELECT phrase example

@SELECT phrase
001 PH
002 ID, SV1, SvV2, MV1l,MV2

Tip

Rocket does not recommend using wild card (*) queries when using Native Visual Studio Integration.

For more information about using @ and @SELECT phrases, refer to UniVerse System Description or Using UniData
SQL.

U2 Toolkit for .NET Help 106

Optimistic concurrency

In a development environment, a multiuser development system is often used. In this situation, multiple users can be
working on the same project simultaneously without affecting another person's work. In order to prevent the work of
one user from affecting anyone else, one of two concurrency controls are typically used: pessimistic and optimistic.

Pessimistic concurrency

Pessimistic transactions behave differently from optimistic transactions, in that they exclusively lock anything read
from the database. This eliminates the possibility of concurrent changes to the same data, but also increases the
potential for dead locking among different transactions. Since no concurrent read is possible, performance and
scalability can suffer in comparison with optimistic transactions. U2 Toolkit for .NET supports pessimistic concurrency
using the U2Transaction class (ADO.NET) or the UniTransaction class (UO.NET).

Optimistic concurrency

Optimistic concurrency improves performance because record locking is not required, as record locking
consumes additional server resources.

U2 Toolkit for .NET (ADO.NET) and Visual Studio use optimistic concurrency because the data architecture is based on
disconnected data (DataSet). Therefore, you need to add business logic to resolve issues with optimistic concurrency.

If you choose to use optimistic concurrency, there are two general ways to determine if changes have occurred: the
version approach (true version numbers or date-time stamps) and the saving-all-values approach.

U2 Toolkit for .NET uses saving-all-values approach.
U2 Toolkit for .NET does not currently support the version approach.

You can set/configure Optimistic concurrency using U2 Toolkit for .NET and Visual Studio during:
+ DataSet Generation/DataSet Designer
« Entity Data Model Generation/EDM Designer

Subroutines

U2 Toolkit for .NET supports optimistic concurrency in subroutines.

U2 Toolkit for .NET Help 107

Turning optimistic concurrency on/off in Dataset
applications

You can control the optimistic concurrency settings by completing the following steps.

Prerequisite

Adding a TableAdapter to a project

Procedure
1. From the Solution Explorer, double-click the .xsd file for the project to open the file in the editor.
2. Right-click on the TableAdapter and select Configure.
3. Click Advanced Options.
4. Select or deselect the Use optimistic concurrency option and then click OK.
5. Select Finish to exit the wizard.

U2 Toolkit for .NET Help 108

Turning optimistic concurrency on/off in Entity Data Model
applications

You can control the optimistic concurrency settings by completing the following steps.
Prerequisites

An existing project in Visual Studio that contains a data source.

Procedure

1. From the Solution Explorer, double-click the .edmx file for the project to open the file in the editor.
2. Click the field in the entity where you want to set optimistic concurrency.

3. Select Concurrency Mode from the Properties pane.

4. Select Fixed to turn optimistic concurrency on. Select None to turn it off.

Note

Optimistic concurrency can only be set on the individual fields in an entity, and not on the entity itself.

U2 Toolkit for .NET Help 109

Turning optimistic concurrency on and off in subroutines

You can use the following U2Parameter class methods to utilize optimistic concurrency in subroutines:

® MV _To_DataTable ()
e DataTable_To_MV_0OC()
® SetOptimisticConcurrencyError()

Procedure

1. Execute the subroutine to get the multivalued data and then convert the multivalued data into a .NET
DataTable object.
2. Modify the DataTable object. For example,
dt.Rows[0][0]="fo0";
dt.AcceptChanges();
Call the DataTable_To_MV_OC() method to convert the modified DataTable into multivalued data.
4. Call the update subroutine and pass the modified multivalue data as INPUT PARAM. This update subroutine
should include the OUTPUT PARAM parameter to receive the date operation status.
5. Call the SetOptimisticConcurrencyError() method to set the ROW ERROR as an OptimisticConcurrencyError.

w

Example
U2ConnectionStringBuilder 1 = new U2ConnectionStringBuilder();
1.Server = "localhost";
1.UserID = "user";
l.Password = "pass";
1.Database = "HS.SALES";
1.ServerType = "universe";

string lconnstr = 1.ToString();

U2Connection ¢ = new U2Connection () ;

U2ServerMarks 1lU2ServerMarks = c.U2ServerMarks;
c.ConnectionString = lconnstr;

c.Open();

U2Command command = c.CreateCommand() ;
command.CommandText = "CALL DATASET TO MV UPDATE SUBROUTINE (2,7?)";
// UniVerse subroutine

command.CommandType = CommandType.StoredProcedure;
U2Parameter pl = new U2Parameter () ;

pl.Direction = ParameterDirection.InputOutput;

pl.Value = data;// modified multi-value data
pl.ParameterName = "@argl";

U2Parameter p2 = new U2Parameter();
p2.Direction = ParameterDirection.InputOutput;

p2.Value = ""; // Return Value such as 0:QVM:0:@VM:0:Q@VM:0:@FM: "Namel":@SVM:
"NamelNEW" :@VM:0:Q@VM:0:@VM:0:@FM:0:@VM:0:@VM:0:Q@VM: 0

// non-zero indicates optimistic concurrency

p2.ParameterName = "@arg2";

command.Parameters.Add (pl) ;

command.Parameters.Add (p2) ;

pl.DataTable To MV OC(ds DataTableToMV.Tables[0]);
command.ExecuteNonQuery () ;
p2.SetOptimisticConcurrencyError (ds DataTableToMV.Tables[0], 252);

U2 Toolkit for NET Help 110

Limitations of U2 Toolkit for .NET Developer

The following features are not currently supported in U2 Toolkit for .NET Developer.

Entity Data Model Designer

e The Update Model from Database option is not supported.
e UniData customers must manually establish associations between multivalues and multi-subvalues.

Server Explorer

The KEEP ALIVE value is not supported.

U2 Toolkit for .NET Help 111

U2 Entity Data Provider for .NET

The U2 Entity Data Provider for .NET is the U2 Entity Framework provider used to connect with a U2 database. It
enables developers to create .NET applications that do not rely on additional query-based languages. With this
paradigm, developers can write set-based queries directly. Developers create applications by programming against
the Entity Data Model (EDM), and a conceptual application model that primarily deals with entities, associations, and
conceptual schemas. Applications built using the Entity Framework can work well within an application-centric
conceptual model, which allows developers to create mappings between a single conceptual model and various
storage schemas without having to change the application code.

The following diagram illustrates the architecture of the U2 Entity Data Provider for .NET.

Ta
Erifity |Enasnmesr

ablecl>

Object Services

Concepfual
Model

U2 Entity Data Provider

2 Data Server Provider for .NET

U2 Data Server

For more information about the Entity Framework Provider, refer to the Microsoft MSDN documentation.

U2 Toolkit for NET Help 112

Tutorial: Developing an application using the U2 Entity Data
Provider

In this example, we develop a simple application using ADO.NET. This application calls the HS.SALES account in
UniVerse. It loads the information from the CUSTOMER file on to a DataGridView control, and allows you to make
changes to the CUSTOMER file using the U2 CommandBuilder class to update the file.

Prerequisite

You must be running ADO.NET Entity Framework 4.1 or later to develop applications using the U2 Entity Data
Provider.

Procedure

1. Open Visual Studio 2010.

2. Select the programming language with which you want to work. The examples in this document are all created
using C#.

3. Select File > New Project. When the New Project dialog box opens, select Windows Forms Application.

4. In the name field, enter a name for the project. The project name in this example is
WindowsFormsApplicationl.

5. In the location field, enter the location where you want the project to reside. The location in this example is
C:\walkthrough.

6. Click OK.

The Microsoft Visual Studio Form Design window has three main panes: The form designer, the Solution Explorer, and
the Properties pane. You can create and edit your application in the form designer by dragging items from the Visual
Studio Toolbox onto the form. The Solution Explorer provides a navigation tree view of all the files associated with
your project. The property pane allows you to set the properties of the form and of the individual objects on the form.

The new project opens in the form designer.

Next

Tutorial: Adding a reference to the project

U2 Toolkit for .NET Help 113

Tutorial: Adding a reference to the project
You must add a reference to the U2 Data.Client.dll.
Prerequisite

Tutorial: Developing an application using the U2 Entity Data Provider

Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine): :

32-bit: C:\Program Files\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.0

64-bit: C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database
Provider\bin\.NETFramework\v4.0

3. Select the U2.Data.Client.dll and click OK.

Next

Tutorial: Adding controls to the form

U2 Toolkit for NET Help 114

Tutorial: Adding controls to the form

After adding a .dll reference to the project, you can add controls to the form.

Prerequisite

Tutorial: Adding a reference to the project

Procedure

1. From the Visual Studio Toolbox, drag two buttons onto the form. In the properties window, change the button
properties as follows:
o Change the Text property of Buttonl to Load
o Change the Text property of Button2 to Update

2. From the Visual Studio Toolbox, drag a DataGridView control onto the form. Your form should look similar to
the following:

Next

Tutorial: Creating a new Entity Data Model from a U2 data source

U2 Toolkit for .NET Help 115

Tutorial: Creating a new Entity Data Model from a U2 data
source

After adding controls to the form, you are ready to create a new Entity Data Model from a U2 data source.

Prerequisite

Tutorial: Adding controls to the form

Procedure

1. In Visual Studio create a new Windows Forms Application project and go to Data > Show Data Sources.

In the Data Sources window, click Add New Data Source.

3. Choose the Data Source Type from which the application will get the data and then click Next. For this
example, select Database.

4. Choose a Database Model which determines the types of data objects your application will use and then click
Next. For this example, select Entity Data Model.

5. Choose the contents of the Entity Data Model. Select Generate from Database to generate the Entity Data
Model from your U2 database and then click Next. Classes are generated from the model automatically.

6. Choose the Data Connection the application will use to connect to the database. Select New Connection to
establish a data connection to your local U2 database account and then click Next.

7. Choose the Database Objects to include in your model. For this example, select CUSTOMER from the Tables
list then click Finish.

N

Result

The U2 database files are now mapped to the Entity Data Model and are located in the project file, which is denoted
by the .edmx extension. The Customer.edmx should look similar to the following:

“#s CUSTOMER ES

= Properties
¥ CUsTID
o5 SAL
2 FNAME
5 LNAME
5 FULLNAME
25 COMPANY
5 ADDR1
5 ADDR2
5 FULLADDR
FE CITY
5 STATE
5 STATENAME
5 7IP
5 PHOME

= MNavigation Properties

Next

Tutorial: Creating event handlers for the button controls

U2 Toolkit for NET Help 116

Tutorial: Creating event handlers for the button controls

After creating the Entity Data Model, you must add some event handlers to the form.

Prerequisite

Tutorial: Creating a new Entity Data Model from a U2 data source
Tip

This example uses the Entity data model (CUSTOMER EDMX) file. Refer to the C# EntityFramework.sln sample code for
details about this file. The sample code is located by default in the following location:

On 32-bit machines: C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database Provider\samples
On 64-bit machines: C:\Program Files\Rocket Software\U2 Toolkit for NET\U2 Database Provider\samples

Procedure

After adding the Entity Data Model data source, create an event handler for each button click. This requires you to add
a small amount of code to the form.

1. Double-click Load to create an event handler for the button. The code editor opens.
2. Add the following code to the Buttonl click event:

{
public partial class Forml : Form

{

CustomerEntities m ctx = new CustomerEntities();
public Forml ()
{

InitializeComponent () ;

}

private void buttonl Click(object sender, EventArgs e)
{
var g = from ¢ in m ctx.CUSTOMERs
select c;

this.dataGridViewl.DataSource = qg;

3. Add the following code to the Button2 click event:

private void button2 Click(object sender, EventArgs e)
{
var g = from ¢ in m ctx.CUSTOMERs

select c;
CUSTOMER cust = g.FirstOrDefault();
cust.FNAME = "Diana2";

m_ctx.SaveChanges () ;

U2 Toolkit for .NET Help 117

Result

The Buttonl event handler creates a connection the to the HS.SALES database and then loads the information from
the CUSTOMER account into the data grid.

The Button2 event handler uses the U2 CommandBuilder class to generate an update statement. It checks to see
whether any changes have been made to the record(s). If it detects any changes, it first checks to see how many
changes have been made and then repopulates the DataGrid using the generated Update statement.

Next

Tutorial: Building the application

U2 Toolkit for NET Help 118

Tutorial: Building the application

After adding all of the references, controls, and event handlers to the form, you are ready to build the application.

Prerequisite

Tutorial: Creating event handlers for the button controls

Procedure

1. Select Build > Build Solution from the Visual Studio toolbar.

2. Run the application. To do this, click Debug on the Visual Studio toolbar, and then select the Start Without

Debugging option. This opens a working version of the application you just created.

Click Load. The customer information populates in the GridView.

4. In the grid, locate the name Diana in the FNAME field of customer 2. Click in the cell to edit the name, and
change it to Diana2. Click Update.

w

Result

The change is saved to your account.

U2 Toolkit for .NET Help 119

Tutorial: Developing an application to call a subroutine
using a Native Access connection

This example demonstrates a simple application using UO.NET. The application calls the "*GETXMLSUB" subroutine
against the HS.SALES account in UniVerse. It runs the "LIST CUSTOMER" command to return the CUSTOMER XML
data.

Procedure

1. Open Visual Studio 2010.

2. Select the programming language with which you want to work. The examples in this document are all created
using C#.

3. Select File > New Project. When the New Project dialog box opens, select Console Application.

4. In the name field, enter a name for the project. The project name in this example is ConsoleApplicationl.

5. In the location field, enter the location where you want the project to reside. The location in this example is
C:\walkthrough.

6. Click OK. The project opens in the Visual Studio code editor.

Next

Tutorial: Adding a reference to the project

U2 Toolkit for NET Help 120

Tutorial: Adding a reference to the project
You must add a reference to the U2 Data.Client.dll.
Prerequisite

Tutorial: Developing an application to call a subroutine using a Native Access connection
Procedure

1. In the Solution Explorer, right-click the References node and select Add Reference from the context menu.
2. Select the Browse tab and navigate to (on a 64-bit Windows machine): :
32-bit: C:\Program Files\Rocket Software\U2 Toolkit for NET\U2 Database Provider\bin\.NETFramework\v4.5

64-bit: C:\Program Files (x86)\Rocket Software\U2 Toolkit for NET\U2 Database
Provider\bin\.NETFramework\v4.5

w

Select the U2.Data.Client.dll and click OK.
4. Add the following using statements to the form:

using statements

using System.Data;
using U2.Data.Client.dll

Next

Tutorial: Adding controls to the form

U2 Toolkit for NET Help 121

Tutorial: Adding the subroutine calling code

After adding a reference to the project, you must add the code to the form that will call the subroutine.

Prerequisite

Tutorial: Adding a reference to the project

Procedure

1. Add the following code to the application.
Subroutine calling code

try
{

U2ConnectionStringBuilder conn str = new U2ConnectionStringBuilder();

conn_str.UserID = "administrator";

conn_str.Password = "password";

conn_str.Server = "localhost";

conn_str.ServerType = "universe";

conn_str.Database = "HS.SALES";

conn_str.AccessMode = "Native";

conn_str.RpcServiceType = "uvcs";

string s = conn_str.ToString();

U2Connection con = new U2Connection();
con.ConnectionString = s;

con.Open() ;

Console.WriteLine("Connected. ... oo, ")
U2Command command = con.CreateCommand () ;
command.CommandText = "*GETXMLSUB"; // UniVerse subroutine

command.Parameters.Clear () ;
command.CommandType = CommandType.StoredProcedure;
U2Parameter pl = new U2Parameter();
pl.Direction = ParameterDirection.InputOutput;
pl.Value = "LIST CUSTOMER";

pl.ParameterName = "@argl";

U2Parameter p2 = new U2Parameter();
p2.Direction = ParameterDirection.InputOutput;
p2.Value = "";

p2.ParameterName = "@arg2";

U2Parameter p3 = new U2Parameter();
p3.Direction = ParameterDirection.InputOutput;
p3.Value = "";

p3.ParameterName = "@arg3";

U2Parameter p4 = new U2Parameter();
p4.Direction = ParameterDirection.InputOutput;
p4.Value = "";

p4.ParameterName = "@arg4d";

U2Parameter p5 = new U2Parameter();

pb.Direction = ParameterDirection.InputOutput;

U2 Toolkit for NET Help 122

p5.vValue = "";

p5.ParameterName =

H@argSH;

U2Parameter p6 = new U2Parameter();

p6.Direction = ParameterDirection.InputOutput;

p6.vValue = "";

p6.ParameterName =

command.
command.
command.

command.

Parameters
Parameters

Parameters

Parameters.
.Add (p
.Add
.Add

"@arg6" .

(
(
(
(

command.Parameters.Add

'O ' T

command.Parameters.Add (
command.ExecuteNonQuery (
string sl = command.Parameters|[0
string s2 = command.Parameters([1l
string s3 = command.Parameters([2
[3
[4
5

]
]
]
]
]
]

string s4 = command.Parameters .Value.ToString
string s5 = command.Parameters .Value.ToString
string s6 = command.Parameters| .Value.ToString (

.Value.ToString
.Value.ToString
.Value.ToString

; //command

;// command option

// msg description

Console.WriteLine ("Subroutine xml Output:" + s3 + Environment.NewLine);

Console.WriteLine ("Subroutine xsd Output:" + s4 + Environment.NewlLine);

con.Close () ;

Console.Read() ;

}

catch (Exception e) {
Console.WritelLine (e.Message) ;

}

finally {
Console.WritelLine ("Enter to exit:");
string line = Console.ReadLine();

}

2. Update the login information in the sample code with your login credentials.

3. Click Build > Build Solution to run the program.

Result

The CUSTOMER file is output as both an XML file and an XSD file.

U2 Toolkit for .NET Help 123

Working with Entity Framework 6

Beginning with Entity Framework 6.x, the Entity Framework is shipped independently of the .NET Framework. Visual
Studio projects require Visual Studio 2012 or later to work with .NET Framework 4.5 or 4.6. Entity Framework 6.1 and
later also requires the Manage NuGet Packages tool to install additional packages to the project. For more
information about managing NuGet packages, refer to the Microsoft website at https://docs.microsoft.com/en-us/.

When using the U2 Toolkit Entity Framework driver, Visual Studio projects won't recognize a U2 driver by default. The
U2 Data Client Entity information must be added manually to Visual Studio projects via the app.config configuration
file in the U2 Toolkit application. The following examples highlight these change in the app.config file.

Example

In this example, the app.config file has been modified to use the U2 .NET Framework 4.5 driver to work with Entity
Framework 6.1.

U2 .NET Framework 4.5 driver with Entity Framework 6.1

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<configSections>
<section name="entityFramework"
type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,
EntityFramework, Version=6.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
requirePermission="false"/>
</configSections>
<connectionStrings>
<add name="CustomerContext" connectionString="Database=HS.SALES;User
ID=user;Password=pass; Server=localhost;Pooling=false; ServerType=universe;
ConnectTimeout=360;PersistSecurityInfo=true"
providerName="U2.Data.Client.4.5"/>
</connectionStrings>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.5.2"/>
</startup>
<entityFramework>
<providers>
<provider invariantName="U2.Data.Client.4.5"
type="U2.Data.Client.Entity.U2ProviderServices, U2.Data.Client.Entity,
Version=2.2.2.0, Culture=neutral, PublicKeyToken=883335d992998a08"/>
</providers>
</entityFramework>
</configuration>

U2 Toolkit for NET Help 124

https://docs.microsoft.com/en-us/

Example

In this example, the app.config file has been modified to use the U2 .NET Framework 4.6 driver to work with Entity
Framework 6.1.

U2 .NET Framework 4.6 driver with Entity Framework 6.1

<?xml version="1.0" encoding="utf-8"?2>
<configuration>
<configSections>
<section name="entityFramework"
type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection,

EntityFramework, Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"
requirePermission="false"/>

</configSections>
<connectionStrings>

<add name="CustomerContext" connectionString="Database=HS.SALES;User
ID=user;Password=pass;Server=localhost;Pooling=false;ServerType=universe;
ConnectTimeout=360;PersistSecurityInfo=true"
providerName="U2.Data.Client.4.6"/>
</connectionStrings>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
</startup>
<entityFramework>
<providers>
<provider invariantName="U2.Data.Client.4.6"
type="U2.Data.Client.Entity.U2ProviderServices, U2.Data.Client.Entity,

Version=2.2.2.0, Culture=neutral, PublicKeyToken=7fldclla3fe6lleb"/>
</providers>

</entityFramework>
</configuration>

Restrictions

® Visual Studio 2012 or 2013 applications must use the .NET Framework 4.5 compiler target option with Entity
Framework 6.1 to create new U2 Entity data.

® Visual Studio 2015 or 2017 applications must use the .NET Framework 4.6 compiler target option with Entity
Framework 6.1 to create new U2 Entity data.

U2 Toolkit for .NET Help 125

Limitations of the U2 Entity Data Provider

The following features are not supported in the U2 Entity Data Provider.

LINQ to Entity

Group

Skip

Functions such as TRIM, RIGHT, DIFFERENCE, etc.
Except

Intersect

Concat*

Union with Distinct

OrderBy with FK Collection

Instead of Concat, use Union

U2 Toolkit for .NET Help 126

	Table of Contents
	U2 Toolkit for .NET Help
	New in this release
	Supported versions of Microsoft Visual Studio
	U2 Toolkit for .NET
	U2 Toolkit for .NET Provider
	Architecture
	Getting Started
	U2 Toolkit for .NET Provider system requirements
	Installing U2 Toolkit for .NET Provider
	Tracing and logging in U2 Toolkit for .NET Provider
	Configuring a trace file

	Preparing your U2 accounts
	Testing your connection
	Sample code
	Converting IBM.NET projects into U2 Toolkit for .NET applications
	Converting UO.NET projects into U2 Toolkit for .NET applications

	Connection pooling
	Connection pooling C# code sample
	Connection pooling VB.NET code sample

	Microsoft Performance Monitor support
	Migrating applications from UniObjects for .NET to U2 Toolkit for .NET
	Step-by-step migration example (UniObjects for .NET to U2 Toolkit for .NET)
	Additional keyword support
	Additional function support
	Native Visual Studio Integration
	Tutorial: Developing an application using ADO.NET (Native integration)
	Tutorial: Adding a reference the project (Native integration)
	Tutorial: Adding controls to the form (Native integration)
	Tutorial: Creating event handlers for the button controls (Native integration)
	Tutorial: Building the application (Native integration)

	Tutorial: Accessing U2 data through the DataSet Object Model (Native integration)
	DataSet Tutorial: Creating a new Windows application (Native integration)
	DataSet Tutorial: Adding a reference the project (Native integration)
	DataSet Tutorial: Adding a new Dataset to the Windows application (Native integration)
	Adding DataAdapters and tables to the DataSet (Native integration)
	DataSet Tutorial: Building the application (Native integration)

	Tutorial: Creating an EntityDataModel from U2 files (Native integration)
	Entity Data Model Tutorial: Creating a new Windows application (Native integration)
	Entity Data Model Tutorial: Adding controls to the form (Native integration)
	Entity Data Model Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages (Native integration)
	Entity Data Model Tutorial: Adding a new Entity Data Model to the Windows application (Native integration)
	Entity Data Model Tutorial: Creating event handlers for the button controls (Native integration)
	Entity Data Model Tutorial_Building the application (Native integration)

	Tutorial: Creating a new Entity Data Model using Visual Studio 2013 to work with Entity Framework 6.1.3
	Tutorial: Installing Entity Framework 6.1.3 using Manage NuGet Packages
	Tutorial: Adding a class object to the project
	Tutorial: Adding an SqlQuery statement

	Tutorial: Developing an application using ADO.NET
	Tutorial: Adding a reference the project
	Tutorial: Adding controls to the form
	Tutorial: Creating event handlers for the button controls
	Tutorial: Building the application

	Tutorial: Developing an application using UniObjects
	Tutorial: Adding a reference to a project
	Tutorial: Adding controls to the form
	Tutorial: Creating event handlers for the button controls
	Tutorial: Building the application

	Tutorial: Developing an application using ADO.NET and UniObjects
	Tutorial: Adding a reference to the application
	Tutorial: Adding controls to the form
	Tutorial: Building the application

	U2 Toolkit for .NET Developer
	U2 Toolkit for .NET Developer system requirements
	Installing U2 Toolkit for .NET Developer
	Authorizing U2 Toolkit for .NET Developer licenses
	Generating a configuration code
	Authorizing a license

	Establishing a server connection using the Visual Studio Server Explorer
	Viewing the advanced settings of a U2 server definition

	Accessing U2 database files through the Dataset object model
	Accessing U2 database files through the Entity Data Model
	Adding a TableAdapter to a project
	Developing Applications with Native Visual Studio Integration
	Using @ phrases and @SELECT phrases with Native Visual Studio Integration

	Optimistic concurrency
	Turning optimistic concurrency on/off in Dataset applications
	Turning optimistic concurrency on/off in Entity Data Model applications
	Turning optimistic concurrency on and off in subroutines

	Limitations of U2 Toolkit for .NET Developer

	U2 Entity Data Provider for .NET
	Tutorial: Developing an application using the U2 Entity Data Provider
	Tutorial: Adding a reference to the project
	Tutorial: Adding controls to the form
	Tutorial: Creating a new Entity Data Model from a U2 data source
	Tutorial: Creating event handlers for the button controls
	Tutorial: Building the application

	Tutorial: Developing an application to call a subroutine using a Native Access connection
	Tutorial: Adding a reference to the project
	Tutorial: Adding the subroutine calling code

	Working with Entity Framework 6
	Limitations of the U2 Entity Data Provider

