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Abstract 

Uninhabited Aerial Vehicles (UAVs), like other highly complex systems, require a thorough integration and 

validation before they can be considered fit for active duty. Highly specialized operators need several hours 

of flight training with such aircrafts to achieve acceptance. UAV Flight Simulators play an important role 

towards this goal. Not only they allow testing of all of the integrated onboard software and hardware without 

compromising a real aircraft, they also provide safe and affordable means to train operators and plan 

missions. 

This thesis defines an UAV Flight Simulator software architecture based on the European Space Agency 

(ESA) Software Infrastructure for Modelling SATellites (SIMSAT). This architecture defines how models 

should be developed to simulate the flight of an UAV. This thesis also implements an Automatic Flight 

Control System model, Sensors and Actuators models, and a Vehicle Specific Model based on STANAG 

4586 standard to handle a generic interface for the simulator. 

Additionally, this thesis defines the development of a generic UAV Command and Control console. This 

console is based on the STANAG 4586 standard for compatibility with the developed simulator and other 

compliant aircrafts. Its development is heavily based on Geographical Information Systems (GIS) 

technology. In order to assist UAV operators in mission planning, an informed algorithm to plan courses is 

implemented within the console. 

An example of a simulator run will be presented, along with the discussion of some of the results obtained 

with the integration of the entire work. 

Keywords: Uninhabited Aerial Vehicle, Flight Simulation, Simulation Model Portability, SIMSAT, 

STANAG 4586, Command and Control Console. 
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Resumo 

As Aeronaves Não Tripuladas (ANTs), bem como todos os sistemas complexos necessitam de ser integrados 

e submetidos a uma validação intensiva antes de poderem ser considerados aptos ao serviço. Operadores 

altamente especializados necessitam de largas horas de voo nestes aparelhos de forma a obterem a 

certificação necessária. Os Simuladores de ANTs têm portanto um papel decisivo neste âmbito. Não só 

permitem testar todo o equipamento e software a bordo do aparelho com segurança, como ainda 

providenciam uma forma económica para treinar operadores e planear missões. 

No âmbito desta tese será definida a arquitectura de um simulador de ANTs baseado na infra-estrutura de 

simulação de satélites da Agência Espacial Europeia (SIMSAT). Esta arquitectura define como os modelos 

deverão ser desenvolvidos. Nesta tese serão também desenvolvidos modelos do Sistema de Controlo de Voo, 

Actuadores e Sensores, bem como um modelo que implementa uma interface genérica e compatível com o 

standard STANAG 4586. 

Adicionalmente, será apresentado o desenvolvimento de uma consola genérica de Commando e Controlo de 

ANTs implementando o standard STANAG 4586 e capaz de interagir com o Simulador e outras aeronaves. 

O desenvolvimento é baseado em Sistemas de Informação Geográfica. Para assistir os operadores, um 

algoritmo informado para planear rotas é implementado. 

Será apresentada uma missão de exemplo produzida pelo simulador, bem como a discussão de alguns 

resultados considerados relevantes. 

Palavras-chave: Aeronave Não Tripulada, Simulação de Voo, Simulation Model Portability, SIMSAT, 

STANAG 4586, Consola de Comando e Controlo. 
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Chapter 1  

Introduction 

1.1 Background and Motivation 

1.1.1 UAV simulation 
Uninhabited Aerial Vehicles (UAVs) are used by men from even before the age of manned flight. After first 

appearing during the United States Civil War in the form of balloons filled with explosives they have evolved 

significantly. Nowadays UAVs come in several sizes and shapes and are of particular interest for missions known as 

“dull, dirty or dangerous”. Most UAVs have been designed for military purposes to cope with the risk associated 

with losing human pilots or for situations where the human pilot is a limitative factor, such as long repetitive 

reconnaissance flights. High risk patrol missions or tactical incursions over enemy territory are two examples of 

missions where UAVs can offer advantages. 

While the usage of UAVs spurred in the military context, the civilian side has lagged behind largely due to 

unresolved issues of operating in commercial airspace. However, common applications will usually involve wide 

area coverage activities. Example applications [RD-1] range from border patrol, public event security, maintenance 

and security of oil and gas pipelines, communications, and power lines, early warning against forest fires, coastline 

patrolling, search and rescue support, environmental observation, mail and package delivery and numerous other 

uses for governments, industry, academia and science. 

The rapid growth of both platforms and applications also has spurred airspace regulators to begin drafting the rules 

under which unmanned aircraft will be able to operate in the same airspace with passenger flights. Europe has taken 

the lead in the civilian arena, through efforts of the Join Aviation Authorities and the European Organization for the 

Safety of Air Navigation (EUROCONTROL), an agency responsible for the advancement of air traffic management. 

These vehicles are nevertheless a highly complex system, made of several complex sub-systems, thus making the 

integration and validation of these aircrafts a serious issue. 

The level of automation of these vehicles demands intensive and thorough tests to validate the integration of the 

various aircraft systems, as well as the integration with support systems such as ground control. The validation of the 
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interface to the ground control systems is a critical requirement before the aircraft can be deemed operational and, at 

an initial stage of this process, this validation is supported by the simulation of the aircraft behaviour. The simulator 

allows the verification and validation of ground systems and equipments and analysis of new operational concepts, 

such as integration with command and control systems. In this particular scenario, the simulator receives the 

commands generated from the ground systems, simulates the execution of these commands, and generates an output 

coherent with the output a real aircraft would provide, as illustrated in Figure 1, where SIMSAT (which will be 

presented within this thesis) provides the simulated segment of the system. The validation of these systems based on 

simulation tools allows for a fast, low-cost and safe solution. Another example of application of simulation to support 

validation activities is the validation of the automatic on-board systems to handle equipment faults (e.g. Datalink, 

Propulsion, Control, etc) as is common procedure among space simulation products. A simulator can also assist in 

the development of the actual hardware that will incorporate the aircraft, in the way that the simulator can generate 

realistic stimulus to the hardware and the response can be recorded and analysed. This concept is usually known as 

“hardware in the loop” within the simulator. This is an important asset as it allows for more debug and testing of each 

unit separately without the need to fully integrate the aircraft before the assembly tests begin. 

 

Figure 1 - Simulation of UAVs systems. 

Another very important application of simulation is the training of ground crew to operate the vehicle and especially 

to handle emergency situations. The use of simulation as a training tool reduces the learning costs and increases 

safety and availability of the real aircrafts. At the same time, it exposes pilots to a large set of difficult and dangerous 

situations, which increases awareness and responsiveness in a real crisis, without endangering any life or equipment.  

The use of simulation as a training and validation tool is already a common practice in space projects where 

simulation supports each step of the development of a space vehicle and mission. Simulators support the 

development and integration phases of all the systems that compose the space vehicle; support the testing and 

validation of its interfaces and functionalities; support the mission planning phase and assist in the training of the 

ground crew. 

Each space mission has its particularities and goals; therefore, they must have specific simulators. However, it is 

obvious that there is a set of common features between the different simulators, which are independent of the mission 

and consequently exist within several simulator tools. One important common feature to all the simulators is the 
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infrastructure responsible for managing and running the models1 execution, or in other words, for running the 

simulation. In the interest of reutilization, this infrastructure or framework might be developed in order to be 

simulator independent and to provide generic and common functionalities to simulator developers. This enhances the 

focus on model development. Requirements such as how the models are executed in real time, treatment and 

displaying of information, displaying messages and providing interfaces to the user are supplied by the infrastructure. 

Due to the nature of the critical requirements for space simulations, the infrastructures available (e.g. SIMSAT [RD-

2] and EuroSim [RD-3]) are very mature and generic. Mature in the sense that these simulators are stable and well 

established in the space industry, being commonly used to support in various mission phases, and generic as they 

provide a level of abstraction that is clear enough to separate the simulation services from the services the models 

provide, therefore allowing for the simulation of anything within the models. This provides the major motivation for 

the work of this thesis: bridge the space technology and all the advantages in the fields it excels in, to the aeronautical 

scope of interest in order to create a UAV Simulator. 

1.1.2 UAV command and control 
UAVs, Command and Control consoles and operators all in conjunction make a system of its own. The UAV is 

essentially a tool, the operator assumes the responsibility of making decisions and the console provides the interface 

between both. The console itself is composed by the hardware and software necessary to provide this interface. Even 

tough the major element of this trio is the aircraft, the advantage brought by them could never be fully appreciated if 

the console cannot properly interact with the UAV, or the operator cannot interact with the console. This leads to the 

second scope of this thesis: the interaction between the console to the UAV and thus the operation of the console. 

Until recently there were no generic UAV consoles on the market mainly as a consequence of the inexistence of a 

common and well-defined interface between the consoles and the UAVs. This has lead to the development of 

consoles exclusively for a single aircraft. The publication of the STANAG 4586 [RD-4] standard for UAV 

interoperability in 2004 brought new advantages for the development of the UAV industry. Consoles compliant with 

this standard can be developed almost completely independent of the target vehicle. In practice this leads to a 

dramatic reduction of development and validation costs for the console. As a consequence of a single user interface 

to several aircrafts, costs of operator training and certification are also reduced. Some tailoring in the consoles always 

has to be done in order to handle unique features of a particular UAV model, but the bulk of the work remains the 

same as a consequence of this standard. 

STANAG 4586 defines the architectures, interfaces, communication protocols, data elements, message formats and 

identifies related standards to which compliance is required to operate and manage multiple legacy and future UAVs. 

These standards provide interoperability within the data links (STANAG 7085), digital sensor data transmission 

between the payload and the air vehicle element of the data link (STANAG 7023, 4545), and for on board recording 

                                                                  
1 A model is a software representation of the behaviour of a real-word system or phenomenon. 
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device(s) (STANAG 7024, 4575). STANAG 4586, despite being issued by the North Atlantic Treaty Organization 

(NATO) and clearly oriented to military purposes, also provides a common interface to civil vehicles as all the 

necessary features for commanding and control of a UAV are included within. 

One motivation for this thesis within the scope of the generic and STANAG compliant UAV command and control 

segment is to develop a prototype that will in the future lead to a commercial solution. Additionally, as a proof-of-

concept of simulation as a support tool, the console development will be supported by the UAV simulator previously 

mentioned. 

1.2 State of the Art 

Actual flight simulators have been used since the dawn of aviation as a tool for training pilots without endangering 

them – or the aircraft. The first systems were very simple non-powered aircraft replicas with restricted movements 

and a limited range of simulated features. World Wars I and II eventually brought about the need for better and 

cheaper pilot training, to which simulation was an effective answer. Simulators began to include electrical actuators 

for cockpit motion, such as the famous Link Trainer in Figure 2 [RD-5]. More features were progressively added, 

such as flight instrumentation. In 1940, the use of computers to solve the equations of flight resulted in the first 

electronic simulators and, in 1969, the first Six Degrees of Freedom (DoF) simulators were developed.  

 

Figure 2 - The Link Trainer. 

Nowadays, modern flight simulators can range from simple video games to full-size computer-controlled cockpit 

replicas used for aircrew training. All revolve around the concept of simulating the flight of an aircraft to a higher or 

lower degree depending on the purpose and budget of the product. Figure 3 [RD-5] shows NASA’s Advanced 

Concepts Flight Simulator (ACFS), a Six DoF simulator of generic commercial transport aircraft for pilot training 

purposes. 
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Figure 3 - Advanced Concepts Flight Simulator (ACFS). 

Due to the growing popularity of UAVs in the past few years, there has been an increasing demand of UAV flight 

simulators for the purpose of operator training. A set of projects supported by the European Commission [RD-6] 

identify the need to develop technologies and actively participate in the UAV industry, including the development of 

communication systems and standardization of interfaces. These new technologies should support overcoming 

difficulties associated with air traffic management and certification. All of these areas can be supported by simulation 

platforms. Currently there are very few simulators exclusively designed for UAVs, and most are developed within 

Military projects and specific to a given vehicle. Some were developed in order to support the development of new 

technologies and others to train operators or to assist in the implementation of new concepts. 

The Civilian European UAV Industry is in development [RD-7]. This makes the development of an aircraft and 

mission independent UAV Simulator very appealing. The following UAV simulators exemplifying the state of the 

art on this field could be found: 

• MultiUAV [RD-8] [RD-9]: Developed by the American Air Force and the Institute for Scientific Research. 

It is based on MATLAB/Simulink with the purpose of being a research tool to develop cooperative control 

strategies. The simulation is capable of simulating multiple unmanned aerospace vehicles which cooperate 

to accomplish a predefined mission. 

• UAVRTB [RD-10] [RD-11]: Developed by the Canadian Armed Forces. It is an open and modular system 

developed to evaluate platforms and specific sensors, consisting of a ground control station and a synthetic 

environment that includes simulations of the UAV airframe, sensors as well as additional computer-

generated forces and weather effects. STANAG 4586 compliant. 

• UAV Simulator [RD-12]: Developed by Ness Tech and Israel Aircraft Industry. The system may be 

appended to a UAV shelter or operated as a stand-alone classroom trainer. It consists of a trainee station, 

which is equipped with all the relevant devices; an instructor station, which controls and records a complete 

after mission review and analysis; and a rapid, user friendly, scenario generation tool, correlated with the 

visual terrain data base. 
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• Virtual UAV [RD-13]: UAV Training Simulator developed by 5DT. It is powered by a virtual reality 

simulator to generate scenarios. This system may be adapted for a specific UAV or Remotely Piloted 

Vehicle. 

The MultiUAV Simulator is a research tool based on Matlab/Simulink with the goal of simulating specific missions 

and evaluating algorithms. It is not a generic and aircraft independent simulator. The UAV Simulator is a fully 

integrated system with an incorporated console. It is focused mainly on the console and operator training. 

Unfortunately it was not possible to find any more relevant information regarding the simulator of the aircraft itself 

and its capabilities. Virtual UAV appears to be a simple simulator to provide operator training in payload (camera) 

manipulation. None of the simulators provide the capability to be generic enough and act as a baseline to simulate 

any aircraft and mission. They focus and are restrained to a specific application. 

Following in parallel with the development of UAV simulators are the UAV consoles. Before the publication of the 

STANAG 4586 standard, all consoles were developed exclusively to a specific aircraft. Figure 4 shows the ground 

control station specifically produced for the Pioneer UAV [RD-14]. Currently, a higher abstraction can be achieved 

by implementing the aircraft/simulator and the console in a STANAG 4586 compliant manner. This allows for the 

development of a superior multi-aircraft and modular console. 

 

Figure 4 - Pioneer UAV Ground Control Station. 

Some companies have devoted their exclusive attention to the ground segment of this duo, like Raytheon for 

example with a new Advanced Multi-Unmanned Aerial System's Cockpit [RD-15] as illustrated in Figure 5. This 

new cockpit, called Universal Control System is designed to simplify control of multiple unmanned aerial systems, 

by improving situational awareness and ability to control multiple unmanned platforms. 
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Figure 5 - Raytheon Universal Control System Cockpit. 

Figure 6 presents the Vehicle Control Station developed by CDL Systems to control and monitor Unmanned 

Vehicles [RD-16], which is now used to control two military UAVs. One operator can control multiple vehicles 

using only one control station. On the other hand, vehicle and payload information and control can be shared 

between multiple consoles and operators to ease up the task of managing the system. This console is fully STANAG 

4586 compliant. 

 

Figure 6 - CDL Systems Vehicle Control Station. 

1.3 Scope of the Thesis 

This thesis was done within an internal research project at Critical Software. This work was originated from the 

Critical Software need for a UAV Simulator in order to test and validate their future Command and Control platform, 

as well as to be among the first European companies to produce a UAV Simulator. It covers part of the work 

developed to achieve this goal, and presents an overview of the UAV simulator as well as some developed modules. 
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It was required that the simulator would follow a similar architecture and infrastructure as used in space simulators 

currently in development by ESA to increase modularity, reusability and scalability. This was set to be one of the 

main goals and challenges due to the fact that no other UAV simulator could be found following such a strategy. It 

was also required that the simulator could provide a standard interface to the most recent consoles and systems within 

the industry. This has lead to the choice of STANAG 4586 as the standard to be implemented within the simulator 

external interface. Therefore, this thesis will focus on the architecture of the simulator itself and how modularity, 

reusability and scalability were achieved. Modularity reflects itself in the fact that models can be easily removed and 

replaced within the simulation. This brings an advantage in the sense that models can be developed concurrently for 

one or various simulators, and simplifies the upgrading of outdated models tremendously. 

The models developed for the simulator will also be presented, namely the Automatic Flight Control System model, 

a Sensors model, Actuators model and Vehicle Specific Model to interface with the external STANAG 4586 

compliant systems. The Automatic Flight Control System acts as a demonstrator flight control system for the 

simulator. It was not intended to be a state of the art model or perform the functions of a ready to fly system as it was 

not designed with considerations of aircraft performance. A fully capable and approved flight control system must be 

designed for a single aircraft, and would be another thesis of its own, which was not the point of this project. The 

Sensors model provides the bridge between the simulated environmental conditions and states of the aircraft, to the 

UAV systems. This is a simplified model as the work is based on the assumption that any UAV can be used. It is a 

fact that different aircrafts carry different sensors payload, and this project was meant to be as much independent of 

the aircraft as possible, therefore not investing much effort into this model. It also simulates the signal received from 

an Instrumented Landing System to provide guidance for the Automatic Flight Control System to auto land the 

UAV. The Actuators model follows the idea of the Sensors model. It simulates the behaviour of the fundamental 

aircrafts control surfaces: ailerons, elevator and rudder. The Vehicle Specific Model intends to bridge the simulator 

as a whole to external monitoring and commanding systems. It does not simulate the radio data link between the 

UAV and ground systems. It simply provides the common interface as specified by the Data Link Interface of 

STANAG 4586. All the current and most advanced UAV simulators and consoles provide a STANAG 4586 

interface because of its generality. Its purpose in the scope of this project will be to connect the UAV Simulator to the 

developed Console. 

An initial prototype of a Command and Control console will also be developed within this thesis. This console also 

adopts the STANAG 4586 standard for compliance with the previously mentioned simulator and other commercial 

systems. 

Additionally, to support the scenario of fire combat support a special algorithm was developed for this project to plan 

a route based on a risk area map. This algorithm is independent of the vehicle and is applicable to a myriad of 

situations as long as there is quantifiable information regarding the zone to be monitored. Within this simulator, this 

will be used to plan the UAV mission in order to maximize a scouted area for fire prevention, while still respecting 

range constraints due to fuel. 
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1.4 Thesis Layout 

In the second chapter, the Software Development Life Cycle presents a short description of the Critical Software 

quality policy for the development of software which defines a set of phases and goals that software development 

should follow. This allows for the standardization of software development and enables other people to continue the 

work with the purpose of maintaining or improving it. The work produced follows these standard set of rules to break 

down the complexity of the problem, thus providing a set of stable baselines after each step to use in the following. 

The phases of the software development lifecycle provide the guideline for most of the chapters of this thesis: each 

phase is covered in a particular chapter. 

In Chapter three, Requirements Analysis, a set of requirements is presented for the UAV Simulator as a whole, as 

well as for the models developed within the scope of this work. It also presents the requirements for the UAV 

Console. 

The fourth chapter, the Architecture Design and Specification introduces the high level architecture for the simulator. 

Its purpose is to guide the reader on how the blending of all the different models was achieved to obtain a working 

product. It does not intend to go into coding details for every module. The architecture and detailed design for the 

UAV Console is also presented.  

Fifth chapter, Validation Results will present the results obtained using a specific platform (UAV) to validate the 

UAV Simulator. The Risk Area Route Planner algorithm results will be analyzed and commented here. Finally, the 

demonstration of the integration of the entire system will be provided. 

A set of conclusions of the work conducted and a baseline for further improvements will be presented in the last 

chapter, Synthesis. 

Appendix A provides information regarding the Pioneer UAV used to validate the Simulator and design the 

Automatic Flight Control System. 
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Chapter 2  

Software Development Life Cycle 

2.1 Introduction 

The work presented in this thesis was produced in the scope of an internship at Critical Software which influenced 

the approach to solve the problem. The work follows a well-defined software development process. The purpose of 

this chapter is to outline Critical Software project life cycle policy regarding software development. The Critical 

Software Quality Management System [RD-17] is designed to encompass the requirements of international reference 

models (e.g. ISO 9001, TickIT, ISO 15504 (SPICE), ISO 12207, AQAP 2110 and 150, EN/AS 9100 and 9006, and 

ESA standards). These set of procedures define and characterize the different project phases required to produce 

software and were followed in this project defining the approach to solve the problem.  

In this chapter, a short overview of the entire software production process life cycle will be presented. A section will 

also be dedicated to each of the phases of the software life cycle: Requirements Analysis; Architecture Design; 

Implementation and Validation. These sections will provide a more in depth description of the entire process and 

provide guidance to the work produced, since each of the following chapters is closely related to each of the phases 

described herein. 

2.2 Overview 

Life cycle models vary accordingly with the nature, purpose and use of the project. Despite a necessary and 

apparently endless variety of project life cycle models, there is an underlying, essential set of characteristics in the life 

cycle of any project. 

To assure effective phasing and planning, the life cycle is broken into phases, each having its associated milestones. 

Phases are an indicator of the project focus in an instant of time. They provide a framework within which 

organisation management has high-level visibility and control of the project and technical processes. The life cycle 

milestones are used by project stakeholders to measure the progress and risks associated with costs, schedule and 

functionality. 
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A project phase is a sequenced set of distinct activities carried out in a project that together constitutes the project life 

cycle. Each phase has a clear distinct purpose and contribution to the whole. It describes the major progresses and 

achievements of the project through its life cycle and they are completed by a milestone. The number and purpose of 

each phase depends on the project characteristics; in small projects one phase may have more than one single 

purpose (may be two or more phases merged) because it is more efficient to achieve the project goals. 

This abstract and generic approach outlines the basic principles that may be applied to any kind of project type. This 

generic approach is presented in Figure 7. 

 

Figure 7 - Life cycle phases - generic approach. 

The names and purpose of life cycle phases and milestones are tailored and defined by each project. The KOM 

(Kick-Off Meeting) and PCM (Project Closedown Meeting) milestones are mandatory in all projects and identify the 

formal start and end of the project. When applicable, the AR (Acceptance Review) and PCM milestone can be 

performed at the same time. In the particular case of software development, each phase has the following 

nomenclature: 

• Phase 1 is the Requirements Analysis, where the criteria of what the software shall and should do is 

defined. 

• Phase 2 is the Architecture Design, where the high level proposal to approach the problem is defined. 

• Phase 3 is the Implementation, where the coding takes place, along with its respective documentation. 

• Phase 4 is the Validation, where a formal verification of the software is performed for acceptance. 

The project has not undergone Phases 5 and 6. Due to the academic nature of the work there is no specific customer 

to accept the product. The following sections will present what is done on each phase, including detailed descriptions 

of the expected output. 
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2.3 Phase 1: Requirements Analysis  

The purpose of this phase is to produce a clear, complete, consistent, and ascertain (testable) specification of the 

problem identified and described by the customer. It produces the input information to be used by the project team. It 

establishes the knowledge of the work to be done into the first baseline. In practice, this phase produces a document 

specifying what the final product should do. Typical results from this phase are: 

• Specification of “what to do”. A set of statements (requirements) from the customer (or agreed with the 

customer) specifying what the customer wants as a result of the project. 

• Specification of “what to validate”. A set of statements and criteria (might be in the form of acceptance test 

cases) from the customer (or agreed with the customer) that will be used to validate the result of the project 

(to verify in the end that one is delivering what is specified). 

The specific output of this phase within this project is a System Requirements document [RD-18] focusing 

essentially on the “what to do”. This document is the baseline for the following phases. 

2.4 Phase 2: Architecture Design 

The purpose of this phase is to produce a technical response to “what to do” as specified on the previous phase. It 

produces the input information to be used by the project team during the Implementation (next phase). It establishes 

the technical details containing a precise and coherent definition of activities/functions, performances, cost, schedule 

and plans for all activities to be undertaken during the project. Typical results from this phase are: 

• Specification of “how to do”. A set of statements (detailing the specification from previous phase), 

diagrams, architecture, data flows, templates, etc, specifying what the project has to do in order to produce 

the result of the project. 

• Specification of “how to validate”. A set of statements (criteria) that will be used to validate the result 

generated by the project team. In some cases this output may be only the identification of a methodology, 

standard or other mechanisms that will be used by the project team to validate the result within the project. 

• Definition of methodology to apply during the Implementation phase. 

In practice, this phase produces a document specifying how the product goals defined in the previous phase will be 

accomplished and validated. This is a high level and logical breakdown of the software to be developed. 

The output of this phase within this project is a Software Requirements document [RD-19] focusing essentially on 

the high level architecture of the simulator. This document was the baseline for the following phases. 
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2.5 Phase 3: Implementation 

The purpose of this phase is to create and integrate the final product to deliver to the customer. It follows the how to 

do specification defined in previous phase. This is the most important phase, but not necessarily the longest. The 

output of this phase is detailed design, the code and the software produced. The detailed design provides a detailed 

description of how the software was implemented. 

The output of this phase within this project is a Software Detailed Design document [RD-20] focusing essentially on 

the details of the implementation, and the code/program produced for the project. 

2.6 Phase 4: Validation 

The purpose of this phase is to verify and validate that the “how to do” specification is correctly implemented. It 

produces the end-to-end validation before delivering the product to the customer. Effectively, this phase takes on the 

code produced during the previous phase and applies to it the battery of tests that were defined during the 

Architecture Design phase. During this time, everything must be carefully documented in order to trace all tests. 

Typical results from this phase are: 

• A set of validated work products ready to be delivered to the customer. 

• A set of records proving that the validation was performed. 

As there was no commercial costumer, little formal validation was performed at the level of the components defined 

in the previous phase. The focus lies on producing and delivering the maximum amount of functionalities, and obtain 

a prototype capable of demonstrating concepts and technology. However, the system as a whole was thoroughly 

tested in normal conditions. This phase formally produced a Test Case Specification document [RD-21] containing 

the environment in which the tests where conducted, the results and all necessary information in order to reproduce 

these tests. 

2.7 Synopsis 

This chapter provided a global overview of Critical Software generic project life cycle, and consequently, the 

structure of the work produced within this thesis: 

• The Requirements Analysis section presented the first phase of the project where the “what to do” is 

defined. 
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• The Architecture Design section presented the second phase of the project, where the “how to do” is 

defined. 

• The Implementation section presented the third phase of the project, where the work was implemented. 

• The Validation section presented the fourth and last phase of the project, where results are demonstrated. 
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Chapter 3  

Requirements Analysis 

3.1 Introduction 

This is the first phase of the software development project life cycle, as defined in Section 2.3. More detailed 

information regarding the work produced can be found at [RD-18] and [RD-19]. The purpose of this chapter is to 

provide the analysis of general requirements for the Simulator as a whole (Section 3.2), and in particular for the 

models produced and presented in this thesis: the Automatic Flight Control System; Sensors; Actuators; and Vehicle 

Specific Model. General requirements are common to all models contained within the Simulator, either a product of 

this thesis, or developed within [RD-22]. A set of general and detailed requirements for the Console and all of its 

modules will also be provided in section 3.3. 

Technology requirements and challenges expected within the work will be presented in the appropriate section. This 

shall introduce the specific technology needs that must be known before presenting an overview of the Simulator and 

the solution to the proposed problem. Operation capabilities will detail the expected user interaction with the final 

product which needs to be accounted for. Regarding the UAV Console, an overview of the problem will also be 

provided, as well as the expected technological particularities inherent to the solution itself. 

3.2 UAV Simulator  

3.2.1 Technology Requirements  

SIMSAT 
The UAV flight simulator will be developed on top of SIMSAT. This infrastructure is free for use among ascertained 

companies and projects within the European Space Agency (ESA) member states. This is the compelling reason that 

led to support a research project based on this infrastructure. Additionally, it is also currently used in other space 

projects where it has a clean record of reliability while still promoting modularity. 
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SIMSAT is a soft real-time simulation infrastructure/environment developed by ESA. The design concept is based 

on the principle that every simulator can easily be broken down into an invariant tool part (infrastructure) and a part 

that is specific to the subject being simulated (model). By means of careful design of the tool component, this can be 

used for both small and large simulators. Among other features, SIMSAT synchronizes different models and 

provides visualization of simulation data, possibility to interact with the simulation (e.g. injecting failures), and 

save/restore the simulation state. The more usual scenario is simulating the satellite and the ground segment with 

SIMSAT as illustrated in Figure 8. 

MISSION 
CONTROL
SYSTEM 

GROUND
STATIONS

SPACE
SEGMENT

SIMSAT

MISSION 
CONTROL
SYSTEM 

GROUND
STATIONS

SPACE
SEGMENT

SIMSAT  

Figure 8 - System’s framework. 

The SIMSAT infrastructure is being developed based on ‘milestone’ deliveries as illustrated in Figure 9. The 

SIMSAT project was announced in the beginning of 1997. The SIMSAT Release 2 (2004) was based on Windows. 

The SIMSAT Release 3.0 (2005) was mainly a porting activity to migrate the SIMSAT infrastructure from a MS 

Windows dependant system to the use of “portable” technologies and a validation on the Linux operating system. 

SIMSAT has always been tightly coupled with the Simulation Model Portability (SMP) standard (see next section), 

which defines how the models shall be developed to be run by SIMSAT. Both these releases are compliant with 

SMP1 [RD-23]. The SIMSAT Release 4.0 (expected within 2007) will focus on evolving the functional aspects of 

the SIMSAT infrastructure including the support for SMP2 compliant simulators. Due to the unavailability of 

SIMSAT 4.0 at the time of implementation, the UAV simulator is built on top of SIMSAT 3 and is therefore SMP1 

compliant. 

1997                                                  2001      2003     2004    2005      2006      2007

SIMSAT
Project 
Announcement

R1 R2
(Windows)

R3
(Linux)

R4

SMP1 
compliant

SMP2 
compliant  

Figure 9 - SIMSAT release time table. 

SIMSAT is composed of the Man-Machine Interface (MMI) and the Kernel (see Figure 10). The MMI is the 

graphical user interface. The SIMSAT Kernel is the framework for running the simulations and providing the 

facilities for command and control of the simulation, model scheduling, time keeping, data logging and recording. 



 

19 

SIMSAT however does not provide any models. SMP provides a set of rules on “how to” implement the models to 

be able to interact with SIMSAT. The functionality within these models is the complete responsibility of the 

developer, and anything can be implemented, as SIMSAT does not impose any restrictions to its content. 
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Figure 10 - Overview of SIMSAT architecture. 

Simulation Model Portability (SMP) 
The simulator is compliant with the Simulation Model Portability standard [RD-23] [RD-24]. The SMP standard has 

been developed by ESA in order to provide a “plug-and-play” approach for the development of simulators. In 

practice, the SMP standard provides the developer with rules on how models should be implemented to be SMP 

compliant, and therefore compliant with SIMSAT or any other simulation infrastructure supporting SMP. 

Additionally, and by adopting a consistent architecture for model development, it is also possible to easily port 

specific models between simulators. 

The first version of this standard was SMP1 [RD-23]. The Simulation Model Interface (SMI) is a software 

implementation of the SMP1. SMI allows to publish models, services, and data, and to interact with the simulation 

environment. Some limitations of SMP1 are being overcome by the recent version SMP2 [RD-24]. Compliance of 

the simulation models with SMP2 promotes portability and reuse of models by minimising their interaction with the 

execution environment, standardizing the interface used by models, making the models own interface simpler, and 

making the model understandable for other developers. The major goal of these standards is to enhance the reuse of 

models within the European Space Industry and the portability between simulation environments, such as SIMSAT 

and EUROSIM. 

The models are developed in C++, which is one of the standard languages supported by SMP. The SMP handbooks 

[RD-23] introduce the concepts and present them with C++ examples. Additionally, and delivered together with 

SIMSAT is a SMP wizard, which facilitates the integration of the models. The models implementation follows the 

rules and recommendations presented in the Programming conventions for C++ [RD-25] of Critical Software. This 

project makes use of SMP1 due to the unavailability of SIMSAT Release 4.0 as discussed previously. 
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STANAG 
The inclusion of a STANAG 4586 [RD-4] standard interface within the Simulator provides the possibility to connect 

to external systems at a later time. This is driven by the absence of other open and common standards for UAV 

Interoperability, either civilian or military. This is a NATO standard that specifies the interfaces required to achieve 

the operational interoperability according to the respective UAV theatre of operations. This is accomplished through 

implementing standard interfaces in the UAV Control System (UCS) to communicate with different UAVs and their 

payloads, as well as with different external systems. The implementation of standard interfaces also simplifies the 

integration of components from different sources as well as the interoperability of legacy systems. 

Even tough the simulator is not restricted to military applications, following the STANAG 4586 provides a consistent 

baseline to understand the system interfaces and the operation of UAVs providing an initial baseline for the simulator 

operational requirements. Additionally, if the design of the UAV Simulator and UAV Console is compliant with this 

standard from the beginning, the task of integration of this software with other systems will be easier later on.  

The UCS Functional Architecture required to support interoperability among UAV systems is illustrated in Figure 

11. It is important to support interoperability among legacy UAV systems (i.e. UAV systems that already exist at this 

moment) and future UAV systems. This architecture establishes the following functional elements and interfaces: 

• Air Vehicle (AV) – The AV is the core platform consisting of all the flight relevant subsystems but without 

payload and data link. 

• Vehicle Specific Module (VSM) – A function that resides between the DLI and the air vehicle subsystem. 

The VSM provides the compliance with STANAG by acting as a bridge between standard DLI data 

formats, protocols and a specific air vehicle. 

• Core UCS (CUCS) – The CUCS provides the UAV operator with the functionality to conduct all phases of 

a UAV mission. It must support the requirements of the DLI, CCI and HCI which are described next.  

• Command Control Communication Computers and Intelligence System (C4I) – External systems that must 

interact with the UCS. 

• Command and Control Interface Specific Module (CCISM) – Conversion software and/or hardware 

between the CCI and incompatible C4I systems. The CCISM can range in complexity from a simple format 

or protocol translator to a user-specific application to adapt the type of information to C4I requirements. 

• Human Computer Interface (HCI) – Definitions of the requirements of the functions and interactions that 

the UCS should allow the operator to perform  

• Human Computer Interface Specific Module (HCISM) – The HCISM can be considered the physical 

realisation of the HCI (e.g., the set of controls and displays available to the operator(s)). 
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• Data Link Interface (DLI) – The interface between the VSM and the UCS core element. It provides for 

standard messages and formats to enable communication between a variety of air vehicles and standardised 

ground control stations. 

• Command and Control Interface (CCI) – The CCI is an interface between the UCS Core and the external 

C4I systems. It specifies the data requirements that shall be adopted for communication between the UCS 

Core and all C4I end users through a common, standard interface. 

 

Figure 11 - UCS Functional Architecture. 

STANAG 4586 contains the standard messages and protocols required at the DLI that enable the CUCS to 

communicate with and exploit different UAVs and payloads and to support the required UAV System operator(s) 

interface as specified in the HCI. This standard message set and accompanying protocols have been developed to be 

air vehicle and payload class independent. In addition, the DLI specifies the mechanism for the processing and 

display of vehicle specific messages. Within the Simulator, only the Data Link Interface (DLI) recommendations are 

followed, as they deal directly with the onboard representation of data, and transmission to the ground station and 

vice-versa. Not all STANAG 4586 messages are implemented since they are not required for basic functionality. 

Modularity allows for the easy implementation of support for new/updated messages. The messages to be 

implemented at this stage are the ones that carry the most important information generated within the simulation. 

Further details regarding the message structure are defined within STANAG 4586 document [RD-4]. 

Figure 12 presents the role of the Vehicle Specific Model and the Core UAV Control System. Data transmission 

through antennas takes place before the VSM module, but that is not always the case. If one were to control a 

different UAV system with the CUCS, one could have to replace every item in the figure except for the CUCS. For 

example, a different UAV system could use a different communication system requiring different antennas.  
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Figure 12 - Role of the Vehicle Specific Module. 

The Vehicle Specific Module provides the unique/proprietary communication protocols, interface timing, and data 

formats that the respective air vehicles require. The VSM also provides any necessary “translation” of the DLI 

protocols and message formats to the unique air vehicle requirements. Since the VSM is unique to each air vehicle, 

the air vehicle manufacturer would generally provide it. The VSM function can be hosted on the air vehicle or on the 

ground. A ground based VSM function can reside on the same, different, or even remote hardware with respect to the 

core UCS, as long as sufficient bandwidth is provided for the message interface. 

The CUCS Processing Suite provides the UAV operator with the functionality to conduct all phases of a UAV 

mission. Ideally, it must support the requirements of the DLI, CCI, and HCI. The CUCS shall provide a high 

resolution, computer generated, graphical user interface that enables the UAV operator to control different types of 

UAVs and payloads with minimal additional training. Depending on the appropriate level of interoperability, the 

CUCS Processing Suite should provide: 

• The functionality and capability to receive, process, and disseminate payload data from the aircraft; perform 

mission planning; monitor and control the payload; monitor and control the vehicle; and monitor and 

control the data links. 

• An open software architecture to support additional future air vehicles and payload capabilities. 

• The UAV operator with the necessary tools for computer related communications, mission tasking, mission 

planning, mission execution and monitoring, data receipt, data processing, and data dissemination. 

STANAG 4586 DLI only defines the format and content of the messages being transmitted between the VSM and 

CUCS. There is a set of common and generic messages that must be implemented in order for the system to obtain a 

certain level of interoperability. Within this work, only a few relevant messages for the models being simulated are 

implemented. As not all the systems aboard the aircraft are being simulated, or are not being thoroughly simulated, 

such as payload or the propulsion. This provides a baseline for further development and customization tough. Further 
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details regarding the message structure are defined within the standard itself at [RD-4]. Following is a brief 

description of STANAG 4586 protocol. 

The philosophy for developing the message types in the DLI is to use metric (SI, ISO 1000:1992) units wherever 

possible. Since this relates only to internal system representation, any conversions required for human 

readability/familiarity or message generation (STANAG 4586 mandates the use of non-SI units in certain situations) 

can be performed at the appropriate interface. All Earth-fixed position references are expressed in the latitude-

longitude system with respect to the WGS-84 ellipsoid in units of degrees. All time related variables are represented 

in Universal Coordinated Time (UCT) in seconds since Jan 1, 1979. Angles are referenced in radians although, for 

convenience, control surface deflections that are typically measured in degrees are expressed in that way. Bearings 

are measured clockwise from true north. Elevation is referenced from local horizontal, positive towards the zenith. 

Each message has a wrapper around the message body consisting of a header and a trailer, as depicted in Figure 13. 

The header contains information that enables the message handling software to manage transmission and distribution 

of the messages to the appropriate entities. The footer contains the checksum information that assists identifying 

transmission errors. Next, a brief description of the data items in the wrapper and its role in the message handling 

system are presented. The extensive definition of each message format can be found at Appendix B1, Section 3.3.1.3 

of STANAG 4586 [RD-4]. 

 

Figure 13 - Message Wrapper Structure. 

In this thesis, only the STANAG messages defined as Structured Binary Data Sets are implemented. Structured 

binary data are data represented as binary numbers or symbols that are aligned in a pre-specified way to permit 

parsing algorithms to be defined and developed. The message is divided into a number of fields, each of which has a 

fixed length representation of some variable. Parsing software knows how to find a certain data element because it 

always appears in the same location in the message. Data labels and typing information are unnecessary since they 

are implicit in the organization of the binary data. The structure is generally defined using a tabular format identifying 

fields, lengths per field, and variable type. 
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STANAG 4586 defines several Common Message Formats in Section 4.1 of Annex B [RD-4]. The goal of the 

common message set is to provide a standard information group required by the CUCS for displays that are common 

to compliant implementations. Provisions are also made for vehicle-specific message types. Manufacturers may 

provide any amount of information, as required by their particular design. They may transmit information already 

contained in mandatory STANAG-compliant messages. However, the common message types guarantee 

interoperability with CUCS functionality, though not every data element is needed in every application. Table 1 

summarizes the implemented message types implemented within the simulator. The same numeration used in 

STANAG 4586 is retained for common messages. Each message type is identified with several properties, indicated 

in the rightmost six columns. 

Msg 
Type Description Criticality 

Level 
Type Source Ack. 

Req’d 
Guar. 

Delivery 
LOI

5 Inertial States (Lat/Lon Flight Push VSM No No 2 
6 Air and Ground Relative Flight Push VSM No No 2 
7 Body-Relative Sensed States Flight Push VSM No No 2 
8 Vehicle Operating States Flight Pull VSM - Yes 3 
9 Engine Operating States Mission Pull VSM - Yes 4 
10 Vehicle Operating Mode Mission Push CUCS Yes Yes 4 
11 Vehicle Steering Command Flight Push CUCS Yes Yes 4 
15 Mission Plan Upload Mission Push CUCS Yes Yes 4 
40 Message Acknowledgement None Pull Any - Yes 2 

Table 1 - Message Summary and Properties. 

The six properties are defined for a single message: 

• Criticality Level: this refers to how the message affects system performance. In general, messages that are 

flight critical could, if lost, result in a chain of events that might result in loss of control. Mission critical 

messages are those that, if lost, would affect mission performance but not necessarily result in loss of 

control. Non-critical message types do not directly or immediately affect system performance.  

• Type: messages are labelled as either “push” or “pull” types. Pull messages are messages that are generated 

in response to a request. This mechanism is used to assure that data link bandwidth is not unnecessarily 

consumed by unneeded data. Push messages are broadcast either periodically or based on some event, but 

do not require a request to result in sending a message. 

• Source: identifies the entity from which the message is issued. 

• Acknowledgement Required: specifies whether the receiving function must acknowledge receipt of the 

message type. Acknowledgements are only required for “Push” type messages, since “Pull” type messages 

are themselves a response to a request. If the request is not granted in a timely fashion, the requestor must 

generate a fresh request. Acknowledgement is accomplished by sending message #40. 
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• Guaranteed Delivery: identifies whether the given message requires guaranteed delivery. In general, 

guaranteed delivery is required in the case of pull type messages (response to a specific request) or push 

type messages that are commands. Messages requiring guaranteed delivery must be communicated through 

a port using TCP/IP protocols. Messages not requiring guaranteed delivery (such as periodic state 

information broadcasts for which failure to receive and process the data is not a critical event) may be 

transmitted using UDP datagrams. 

• Level of Interoperability: lists the minimum level of UAV interoperability applicable to each of the 

common message types. The levels of control refer to the authority level with which the user may provide 

commands that alter air vehicle state and are defined in Annex B [RD-4]. The LOI specifies the lowest 

level and all levels above (e.g., level 2 means that the message is required to support level 2, 3, 4 and 5). In 

the scope of the implemented messages, this property has no functionality although to maintain coherence 

and future reuse the implemented messages follow the same convention. 

3.2.2 Simulator Operation Requirements 
This section describes the desired simulator operation, the expected users, and the functionalities available to them. 

To understand the functionalities a software tool should provide it is necessary to identify who is going to use that 

tool and how it is going to be used, while retaining that the objective of this UAV Flight Simulator is to provide 

affordable means to test/validate ground stations and train operators. Two user profiles are foreseeable: 

• Simulation Operator (SO) – this user is going to interact with the simulator as a UAV operator would 

interact with the UAV. This user is the operator responsible for the management of the ground station, and 

UAV commanding. 

• Training/Configuration Operator (TCO) – this user is responsible by the simulation itself. Any training 

exercise requires appropriate supervision intervention, which in this case is provided by this user. This user 

is also responsible for the setup of the simulations. 

The TCO is usually located in a control console, separated from the operational console, where he can access the 

entire simulation domain. In this simulator, this scenario can easily be managed from within SIMSAT Man Machine 

Interface (MMI), providing direct control and access to simulation parameters and variables. The SO is stationed in a 

console independently from the simulator, with only a standard set of operations available to him, as would happen if 

commanding a real UAV. In practice, both user roles can be performed by the same person. 

After defining the user for the Simulator, an assessment of what they can do is required. The Simulator is composed 

by a set of models that within the system can be controlled directly in a detailed manner that would not be physically 

feasible otherwise. This provides the TCO with the possibility to insert failures and anomalies into the simulator and 

systems of the UAV for testing and training purposes. The full list of commands available for each of the operator is 

presented in the following sections. As a consequence, there are two modes of controlling the UAV: 
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• Direct control mode – In this mode, the possible set of commands include the deflection of the UAV 

control surfaces, and issuing actuator commands (e.g., engine throttle and ailerons). This can only be 

performed within certain conditions that should usually not be met during an usual simulation run. Other 

possibilities are to change internal model parameters. Essentially, nearly any change to the simulation state 

can be done as the majority of the parameters should be available through SIMSAT. Only the TCO can 

perform these operations. 

• Normal mode – In this mode, the user is only able to steer the aircraft with high level commands as defined 

in the following section, thus, not having direct access to the UAV systems. The definition of these 

commands is based on the list of possible parameters and operating modes to be passed to the UAV, as 

defined by STANAG 4586, and essential to guarantee interoperability This is the usual case on a simulator 

run and resembles a real aircraft operation scenario. 

Simulation Operator Commands 
This operator has at his disposal commands to control the UAV in Normal mode only. The commands specified in 

Table 2 will be followed by a brief description. These commands are defined according to the STANAG 4586 list of 

possible parameter values for command messages. 

Command Description 

Commanded Airspeed This command issues the desired airspeed for the aircraft. 
Commanded Altitude This command issues the desired flight altitude. 
Commanded Altitude 
Rate 

This command issues the desired flight altitude rate. 

Commanded Rate-
Limited Altitude 

This command issues the desired flight altitude, but never exceeding the indicated altitude 
rate. 

Commanded Heading This command issues the desired heading. 
Commanded Heading 
Rate 

This command issues the desired heading rate. 

Commanded Rate-
limited Heading 

This command issues the desired heading, but never exceeding the specified heading rate. 

Flight Plan Upload This command uploads a preset Waypoint list to the flight plan. 
Loiter This command puts the aircraft in a circular loiter flight pattern at its current location. 
Autoland This command puts the aircraft in autoland mode. This will bring the vehicle into a 

controlled descent following an Instrumented Landing System glide signal and land in the 
runway. 

Take-Off This command puts the vehicle in Take-Off mode. The aircraft will start its roll on the 
runway and lift off automatically. 

Fire Following This command activates a mode which will cause the aircraft to attempt to follow fire 
fronts, if any is detected. 

Table 2 - Commands available for the Simulation Operator. 
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Training/Configuration Operator Commands 
This operator has at his disposal commands to control the UAV systems internally. Note that almost any parameters 

can be changed within the simulation. Only the most common will be presented here. Table 3 specifies the 

commands available for the TCO in Direct mode. The commands are specified and followed by a brief description. 

Command Description 

Elevator This command issues the desired elevator position. 
Aileron This command issues the desired aileron position. 
Rudder This command issues the desired rudder position. 
Engine Throttle This command issues the desired engine throttle. 
Landing Gears This command issues the desired landing gears position. 

Table 3 - Commands available for the Training/Configuration Operator. 

Table 4 specifies the possibilities available to the TCO during simulation for setup and management purposes. The 

commands are specified and a brief description provided. 

Command Description 

Load Simulation This command setups the simulation from the specified XML file. This is provided by 
SIMSAT. 

Save Simulation This command saves the simulation to the specified XML file. This is provided by SIMSAT. 
Load Aerodynamics This loads the initial aircraft aerodynamics parameters from the specified XML file. 
Load Dynamics This loads the initial dynamics parameters from the specified XML file. This includes states 

such as positions and velocities. 
Load Atmosphere This loads the initial atmospheric parameters from the specified XML file. 
Load Sensors This loads the initial sensors parameters from the specified XML file. 
Load Actuators This loads the initial actuators parameters from the specified XML file. 
Load AFCS This loads the Automatic Flight Control System parameters from the specified XML file. 
Start Simulation This command starts/resumes the simulation. This is provided by SIMSAT. 
Pause Simulation This command pauses the simulation. This is provided by SIMSAT. 
Shutdown 
Simulation 

This commands pauses and unloads the simulation. This is provided by SIMSAT. 

Start Telemetry 
Generation 

This command starts the telemetry generation in the Vehicle Specific Model. 

Stop Telemetry 
Generation 

This command stops the telemetry generation in the Vehicle Specific Model. 

Define Simulation 
Rate 

This command specifies the speed of the simulation. It is possible to run the simulation in real 
time (default) and batch mode (faster than real time). This is provided by SIMSAT. 

Table 4 - Commands available for simulation setup. 
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3.2.3 Models Requirements Overview 
Each model represents a reality to the simulator. This can be an aircraft system or a phenomenon of nature for 

example. Models can also provide functionality to the simulator even tough it may not exist in the real system, in 

order to enhance it. Within the simulator these models have the possibility of mutual interaction to simulate a reality 

as complex as desired. 

The set of models to be implemented provide a baseline for further development and customization. Further 

developments can be performed at any time in the future to enhance accuracy, performance, etc. The idea is to set up 

an architecture that would provide guidance for further work and customization to achieve specific goals defined by 

users. The models are developed using a modular approach and run over SIMSAT. SIMSAT drives the execution of 

simulation models in time and provides the ability to interact with the simulation and the visualisation of data. This is 

one of the main advantages of using an existent simulation infrastructure: as these fundamental functionalities are 

already provided. As a consequence, the simulator developer can focus on the development and improvement of 

specific models. Further details regarding SIMSAT infrastructure are presented in Section 3.2.1. 

In the scope of this work, special attention is given to modularity and portability to not restrict the simulator to 

specific UAV platforms. It allows for the simulation of generic missions as long as they are feasible with the set of 

commands available and defined in the previous section and to the particular UAV being simulated. Additionally, 

and to support demonstration purposes, extra functionality is implemented within [RD-22] in order to simulate the 

specific scenario of fire detection as demonstration of the simulator for a purpose documented in section 1.1.1. The 

implementation of a generic interface provided by STANAG 4586 allows the simulator to easily connect to a 

commercial ground station. This is provided by the Vehicle Specific Model produced within this thesis, thus 

allowing the simulator to interact with the console software described in Section 3.3. The simulator also interacts 

with external visualization applications (Google Earth and FlightGear), which are described later but implemented 

within [RD-22]. The need for these visualization applications became evident during the initial implementation of the 

Simulator as it was not feasible to completely understand and test the response of the simulation without visual and 

real-time results. 

During the requirements gathering, one of the goals is to identify and characterize each of the simulator models. At 

this point, it is not necessary to characterize the detailed design of each model neither to identify dependences 

between models. Figure 14 provides the high level logical breakdown for the Simulator. 
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Figure 14 - Simulator high level logical breakdown. 

To better organise and structure the simulator logical breakdown, it was divided into two different major branches:  

• Aircraft Specific Models: These set of models are naturally dependent on the aircraft properties and 

systems they intend to simulate. It is possible to implement these models with a layer of abstraction and 

generality in order to represent the majority of the aircrafts, increasing reuse. Special functions such as 

unique payloads, actuators and sensors to be simulated within a particular aircraft can be added at a later 

phase. 

• Aircraft Independent Models: These set of models are independent of the aircraft by concept. They are 

completely generic, and contribute only to the accuracy of the simulation as a whole. The models described 

therein can also provide additional functionality to the simulator and not necessarily simulate a reality. This 

is the case of the FlightGear and Google Earth Interfaces. Other models may also add logic functionality 

specific to a certain mission, but does not change when the aircraft changes as long as it supports this 

functionality as well. This happens in the Follow Fire model case for example. 

The configurations required by each model are provided by a set of Configuration Files, mainly written in eXtensible 

Markup Language (XML) to be easily editable without additional software, but still be accessible by the models. 

The design, implementation, and validation of each model mentioned is a very demanding task. The work presented 

in this thesis covers part of these tasks, in particular the design, implementation and validation of the automatic flight 

control system, sensors, actuators and vehicle specific model which will be presented shortly in the appropriate 

sections. For the sake of completeness, the remaining models (developed within [RD-22]) are presented next, 

together with a short description of their basic functionalities: 

• Dynamics Model – This model deals with the dynamic simulation of the UAV as a rigid body. It is the core 

of the simulator since it determines the UAV status at each time step therefore it is indispensable. This 

supports a six DoF mathematical formulation. 
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• Propulsion Model – This model simulates the propulsion force and the behaviour of the engine system and 

eventual failures. The determination of the propulsion force is indispensable to the simulator. However, 

additional requirements that deal with engine dynamical response and fault insertion are optional. 

• Aerodynamics Model – The purpose of this model is to calculate aerodynamic forces applied to the aircraft 

on every step. It is based on a non-linear aerodynamic coefficient build-up method sponsoring accuracy, 

aircraft portability and customization. 

• Atmospheric Model – This model simulates basic atmospheric parameters, such as pressure, density and 

temperature. As a minimum it supports the International Standard Atmosphere (ISA) model. Additional, it 

can support wind or more complex atmospheric models. 

• Gravitation Model – The purpose of this model is to calculate the gravitational forces applied to the aircraft 

on every step. It is designed to be independent of the planet. 

• Terrain Model – This model simulates the ground reaction forces when the aircraft is touching the runway 

with the landing gears. 

• Fire Propagation Model – The purpose of this model is to simulate the propagation of a large scale fire. 

This is used to implement and validate the Follow Fire Model. 

• Follow Fire Model – This model commands the Automatic Flight Control System so that the aircraft 

follows the front of a large scale fire continuously. 

• Google Earth Interface – This model provides an interface between the simulator and the Google Earth. It 

transmits data to Google Earth for displaying the location of the aircraft in near real-time and also its path. 

Additionally, it enables mission planning, in particular the definition of waypoints, in Google Earth to be 

transposed to the Simulator. 

• Flight Gear Interface – This model interfaces the simulator with FlightGear for visualizing the position and 

attitude in 3D of the aircraft within FlightGear. 

Automatic Flight Control System (AFCS) 
The Automatic Flight Control System is part of the aircraft specific group of models. Any aircraft flight system is a 

complex piece of hardware and software tightly coupled together, which must be thought and thoroughly prepared 

for one specific target vehicle and set of missions. The design, implementation and validation of one complete flight 

system for one aircraft would be out of scope for this project. However, some degree of autonomy is necessary in the 

UAV for demonstrations purposes, leading to the development of this model. The Automatic Flight Control System 

is a very simplified control system developed exclusively for demonstration purposes. Little effort is done to formally 
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validate the system and implement complicated or truly generic features for all flight modes. It supports the set of 

actions already defined in section 3.2.2 for the Simulation Operator. 

Effort should be invested in making the AFCS as generic and independent of the aircraft as possible; however this is 

not a priority. The AFCS should be modular enough to separate the mathematical formulation involving control laws 

from the logical and flight plan modes implementation. This model takes as inputs aircraft states, mission planning 

commands, and output actuators orders. 

Sensors  
The Sensors model is part of the aircraft specific group of models. Ideally, each sensor type should correspond to a 

model itself. This would increase the portability and modularity of the simulator as a whole. However it also 

increases the complexity tremendously due to the number and different type of sensors that can possibly be fit in the 

same aircraft. This number can vary very reasonably for each aircraft, leading to numerous problems when 

integrating models in different simulators for different aircrafts. In order to present a baseline of models to work with 

and further customize, the sensors model is done in such a way that all the states of the aircraft are visible by the 

sensors and can be an output of them as well. Additionally, other environment parameters may also be an output of 

this model, depending on the needs of other aircraft internal system models. 

When applicable, sensed parameters should also be affected by measure lag and noise, to increase the realism of the 

simulation. It is also the responsibility of this model to generate an Instrumented Landing System error signal based 

on the location of the aircraft in relation to the ideal landing glide slope. This is used to assist the AFCS in landing the 

aircraft. 

Actuators 
The Actuators model is part of the aircraft specific group of models. Much in line with the justification on the 

Sensors model case, every actuator on the aircraft should provide a model of its own. For simplicity, the most 

important actuators are grouped within this model. When applicable, control surface positions should also be affected 

by a lag, to increase the realism of the simulation. 

Vehicle Specific Model (VSM) 
As mentioned previously, the UAV simulator interfaces to external systems are defined by the STANAG 4586 Data 

Link Interface specification. This specification provides a great deal of generality to connect to a real commercial 

ground system that supports this standard, as well as the UAV Console to be developed within this project. Due to 

this reason, no distinction is made between the two cases. More information relating to STANAG 4586 can be found 

at section 3.2.1. This model implements the Vehicle side of the Data Link Interface only to some extent. The full 

protocol is not implemented as it would be beyond the scope of this project due to its complexity. Enough 

functionality is implemented to allow the Simulator to be demonstrated, and at the same time provide a baseline for 

further work. 
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3.3 UAV Console 

3.3.1 Overview 
This section describes the set of requirements for the Console developed within this project. This console should 

provide a consistent baseline of modules to allow an operator to monitor and control a set of UAVs with the 

assistance of Geographical Information Systems (GIS). Special attention was given to the module development to 

easily allow further customization and the addition of new functionalities. 

The Console allows the operator to control a baseline of functionalities of any STANAG 4586 [RD-4] compliant 

UAV, for any given mission, as required by the STANAG interoperability rule set. Therefore, it is built over a 

simplified Core UAV Control System, compliant with the Data Link section of STANAG 4586 (see Section 3.2.1). 

The list of operations that the Console allows the Simulation Operator to perform is specified in Section 3.2.2. The 

set of operations is the same for both products to enable the console to fully appreciate the capabilities within the 

Simulator. The Console is composed of core functionality and a Graphical User Interface (GUI). This architecture is 

necessary to promote modularity and scalability and greatly reduce the effort for future developers working on this 

baseline. The developed was done in C/C++ technology and the product runs on a Linux workstation, as the usage of 

free software for both the development and implementation of the final product reduces costs and maintenance. 

Special attention was given to the layout of the console and provision of information to the user. The operator should 

be able to choose to see only the information relevant for the mission in progress, as too much information is as bad 

as too few. 

To promote modularity and scalability, several modules distinguished by functionality and hierarchy have been 

defined and are presented in Figure 15. 

 

Figure 15 - UAV Console Logical Breakdown. 
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The Workspace Manager is a window that allows the SO to save and load the layout of the other windows, as well as 

define if the three directly dependent windows are visible, namely: the UAV Link Manager; the GeoViewer and the 

Flight Plan Manager. This window is always visible, and be as small as possible to minimize the loss of useful view 

area that could otherwise be used by a more relevant module to provide information. By controlling the visibility of 

the other windows, the operator can remove unimportant information from the screen and more easily focus on what 

is relevant. 

The GeoViewer displays all associated geographical information to the SO. It will display maps, both in raster and 

vector format, and will also display other objects, such as flight plans or UAVs. This window allows for the 

geographical visualization of the theatre of operations, including for example a ground picture, the location of the 

UAVs and their flight path and plans. This is an essential feature for any console. 

The Flight Plan Manager allows the SO to manipulate the currently loaded Flight Plans, upload them to the UAV or 

create new ones. The Flight plans are editable from the GeoViewer. The high level planning and execution of the 

mission is deemed a requirement in section 3.2.2. This window in conjunction with the GeoViewer allows the SO to 

plan the mission before issuing it to the aircraft. 

The UAV Link Manager provides the SO with a list of the currently monitored UAVs, the ability to connect or 

disconnect to and from a VSM, and to control the visibility of the directly dependant windows for each UAV, such as 

Monitoring Windows, Commanding Windows or Payload Windows. This is necessary to maintain the requirement 

of allowing the SO to manage the UAVs being monitored, and to satisfy the requirements of allowing the SO to hide 

unimportant information. 

The CUCS provides the Console communication endpoint for the VSM. It internally handles all the encoding and 

decoding of messages, and provides a simple interface for the remaining modules. It implements the STANAG 4586 

standard. 

The Monitoring, Commanding and Payload modules are UAV specific windows that provide the SO with UAV 

monitoring and commanding capabilities, for both the flight generic equipment and the on-board mission specific 

payload. A set of windows is defined to provide the SO with the generated telemetry within the Simulator, as 

required by the messages transmitted from the VSM to the CUCS, defined in section 3.2.1. 

The Risk Area Route Planner is a module that assists the SO in the definition of surveillance Flight Plans by 

automatically generating one based on geographical and risk information. This answers to the need for an automatic 

system to assist the SO in mission planning by providing a mathematical optimal solution. 

The functionality associated with GIS and used within the GeoViewer is provided by an external toolkit application 

to reduce implementation cost and risk. To properly choose the toolkit to assist with the GIS functionality a trade off 

analysis is performed and documented in [RD-26]. A short description of the main goals while performing the trade-

off is described next. 
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3.3.2 Trade-off Analysis of GIS Tool 
The Console provides the SO with the ability to visualize flight plans and paths, and plan a mission graphically. A 

tool can be developed to comply with these requirements but it is more fruitful to reuse an already existent and 

validated tool. This leads to the necessity to perform a trade-off analysis to already existent GIS packages and choose 

one that is most appropriate. However, GIS software can fork into very different programs at the functional level that 

may or may not suit the particular needs of this project and greatly vary in complexity. In order to keep the 

integration with GIS simple, the following requirements have been identified: 

• The ability to load GIS data files and to provide the contained information to the underlying application. 

• The ability to display the loaded data. 

• The ability to draw on the display. 

The research is conducted based on web searches but mostly on the software lists available on [RD-27] and [RD-28]. 

These two websites are dedicated to promoting open source GIS software. Taking into account the needs described 

above, several factors were taken into consideration when choosing the software package to be used: 

• Purpose: Preference is given to toolkit-oriented GIS packages. Standalone projects increase the risk and 
complexity of the project. Preferably, these toolkit-oriented packages should have example applications. 

• License: The Lesser General Public License (or a similar one) is desirable, in order to simplify the process 
of reutilization and implementation. 

• Technology: The software should be implemented either in C/C++ (popular and fast programming 
language that usually all core software developers are familiar with) or in Java (since it provides advantages 
in fast GUI building). 

• Web Map Service2 (WMS) support: The software should support modern standards for GIS information 
interchange services. 

• Level of activity: the software should be an active project, i.e. have recent and regular releases. 

• Documentation: a good documentation (user manual, API, etc.) is fundamental. 

• Community: an active community (mailing lists, forums, etc.) is critical for obtaining support during the 
development stage. 

From the extensive list of products found (several dozens of very different tools), five were identified as most 

adequate to the objective: 

• Demeter [RD-29]  

                                                                  
2 A WMS produces maps of spatially referenced data dynamically from geographic information. This international 
standard defines a "map" to be a portrayal of geographic information as a digital image file suitable for display on a 
computer screen. A map is not the data itself. WMS-produced maps are generally rendered in a pictorial format such as 
PNG, GIF or JPEG. 
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• Mapnik [RD-30]  

• deegree [RD-31]  

• OpenMap [RD-32]  

• OpenEV [RD-33]  

The analysis of these tools, with the above criteria in mind led to the results presented in Table 5. For each criteria 

(i.e. column), entries with a shaded cell indicate that the respective tool fulfils the desirability requirements of that 

criteria. Other aspects are important in picking the right application, such as look & feel and compatibility with many 

GIS file formats, but the items listed above are deemed the most important. As a result, the OpenEV toolkit [RD-33] 

was chosen mainly because it demonstrated much better runtime performance compared to the other equivalent 

toolkits. Also, it was developed in C which at the time was an advantage as it eliminated the risk and time 

requirements of learning a new technology. This resulted in the development of the GUI under GTK+ [RD-34]. 

OpenEV will be presented is section 3.3.3. 

 Type License Language WMS Active Docs Community 

Demeter Toolkit  LGPL C++ No Not much Good Dead 

Mapnik Toolkit LGPL C++, Python 
bindings Yes 

Yes, but 
seems rather 

immature 
Poor Nearly dead 

mailing lists 

deegree Toolkit + 
example LGPL Java Yes Yes Very good Very active 

mailing list 

OpenMap Toolkit + 
example 

Appears 
similar to 

LGPL 
Java Yes Seems to be Excelent! Active 

mailing list 

OpenEV Toolkit + 
example LGPL C, Python 

bindings Yes More or less Very good Active 
mailing list 

Table 5 - Trade-off analysis of initially selected GIS tools. 

3.3.3 Technology Requirements  

Geographical Information Systems (GIS) 
GIS concept and software is explored within the Console to provide geo-localization of objects. Therefore a small 

introduction to GIS will be provided within this section. According to [RD-35], “GIS is a collection of computer 

hardware, software, and geographic data for capturing, managing, analyzing, and displaying all forms of 

geographically referenced information”. In other words, GIS is an emerging concept that intends to deal with data 

that only makes sense if geographically localized. These data can be elevation maps, salinity maps, border lines, road 

maps, hospital locations, population distribution, etc. The applications are varied and can fall into the concepts of 

analysing and displaying information in real-time or creating a database for future processing. For example, it is 

already common practice to integrate road maps with Global Positioning Satellite receivers displaying the location on 
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the map, as well as assisting the user in reaching his destination by providing the shortest path. This is all done in 

real-time, over a map that was previously created. 

Even tough the concept of GIS is abstract and allows for a great deal of diversity and imagination on how storing the 

necessary information to process, it has matured into two different types of data that are used within the console, and 

mentioned through this thesis: Raster and Vector. 

• Raster data are image files that contain the information associated with each pixel. The pixels themselves 

are in a coordinate system which is specified within the file and will allow the GIS software programs to 

read and correctly display them. The most common format is the GeoTIFF, which is an extension to the 

ordinary TIFF format for regular images. 

• Vector data is based on a different approach. The fundamental primitive is the point which is the entity that 

is located in space. Objects are usually created by connecting points with straight lines (some systems allow 

for connections with arcs of circles). Areas, or sometimes called polygons, are defined by sets of lines. The 

information on the geo-localization of the points is stored differently from format to format. The most 

common format is the ESRI Shapefile. 

OpenEV 
As defined previously (see section 3.3.2), OpenEV is used to provide the Console with the ability to display map 

images, and geo-localized objects. This section is reserved to explore this tool as technological requirement, but 

mostly challenge. OpenEV [RD-33] is a software library and application for viewing and analysing raster and vector 

geospatial data. It is used by private companies, universities, governments and non-profit organizations around the 

world. It is both: 

• An application for displaying and analysing geospatial data. 

• A developer library from creating new applications, including a simple example program. 

OpenEV is released under the GNU Lesser General Public License (LGPL). Essentially, this means that an 

application based on this library can be proprietary without prohibitive restrictions. It is multiplatform, available for 

Windows, Linux, Solaris, and Irix operating systems. Additional advertised features of OpenEV are: 

• Handle raster and vector data. 

• Support 2D and 3D display. 

• Gracefully handle very large (gigabyte) raster datasets. 

• Support multi-channel, and complex raster datasets. 
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• Provide view manipulation functions (pan, zoom, rotate) at interactive frame rates. 

• Uses OpenGL for high speed raster and vector rendering. 

• WMS database support (This is handled in Python however). 

The Graphical User Interface (GUI) is implemented in GTK+, providing portability and sophisticated GUI 

components. The project OpenEV is based on GTK+ 1, however, the second version, usually called OpenEV2 is 

based on GTK+ 2. The core of OpenEV is implemented in C and detailed Python bindings are provided for 

applications that are built on top of OpenEV. OpenEV2 does not support Python bindings yet which is of no 

relevance for this project as the development is mandatory to be performed in C and C++. OpenEV provides an 

Application Programming Interface (API) for the Python bindings, which in many cases are an extension of the C 

functions. This provides most of the documentation available for OpenEV. Unfortunately, there is no document to 

directly use the C library, and the code available is not documented. OpenEV incorporates two additional libraries 

noteworthy of mention, GDAL [RD-36] and OGR [RD-37] that provides the console with flexibility to open and 

display a myriad of file types for maps: 

• Geospatial Data Abstraction Library (GDAL) – This is a general library used to access data in raster file 

format. It supports over 50 file formats, providing OpenEV with a great deal of flexibility in accessing 

raster files. 

• The OGR Simple Feature Library is a library that provides read and write access to a variety of vector file 

formats (around 25). However, for ESRI Shapefiles, OpenEV uses its own library. 

This software package provides the necessary GIS functionalities for this work to speed the development of the 

Console. However, caution should be taken when using an external open license library to produce software as there 

is no guarantee that the software is validated and properly working. Figure 16 presents a screenshot of OpenEV. 

 

Figure 16 - OpenEV screenshot. 
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3.4 Synopsis 

This chapter defined the requirements analysis for both the UAV Simulator and the UAV Console to be used in the 

following phases of the project. A Generic overview and logical breakdown of both systems was also defined, with 

relevance to the models developed within this project for the Simulator, namely: the Automatic Flight Control 

System; Sensors; Actuators and Vehicle Specific Model. The different modules that compose the Console were also 

defined. Technology requirements and challenges were presented including a short overview of the GIS concepts and 

the OpenEV package. 
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Chapter 4  

Architecture Design and Specification 

4.1 Introduction 

This chapter corresponds to the second phase on the software development project life cycle, as defined in Section 

2.4. More complete information regarding the work produced can be found at [RD-19] and [RD-20]. The software 

architecture for the UAV Simulator and the UAV Console, will be defined as well as implementation details for the 

two products. Within the UAV Simulator section, a detailed description of the Automatic Flight Control System, 

Sensors, Actuators and Vehicle Specific Model will be provided. The formulation and the processing of these models 

will also be defined. Within the UAV Console, a detailed description of the composing modules will be defined. This 

will cover the user interaction and the processing of the Workspace Manager, GeoViewer, Flight Planning, UAV 

Manager, Risk Area Route Planner, and UAV Instance. 

4.2 UAV Simulator 

4.2.1 System Logical Breakdown 
The Requirements for the UAV Simulator are described in Section 3.2 and served as a starting point for this phase. 

As mentioned, a baseline of models will be implemented so that basic functionality is achieved. The Logical 

Breakdown is shown in Figure 17, and can be found at [RD-19] together with other documentation regarding this 

phase. 
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Figure 17 - UAV Simulator Architectural Breakdown. 

Visible in the figure is the separation of the simulator in three components: Air Component, Environment 

Component, and Visualization Interface Component. The Air Component features the models that are implemented 

in order to simulate flight. The environment component is responsible for simulating the physical reality around the 

UAV. The Visualization Interface Component is comprised of two components that perform the interaction with 

Google Earth and FlightGear for real-time visualization of the simulation output. This separation is different than was 

done within Section 3.2.3 due to the fact that now it is necessary to clarify dependencies between models. Despite 

that apparently both breakdowns are different they complement each other. Where this breakdown pretends to 

demonstrate the relations between models, the breakdown at Section 3.2.3 intends to provide a global overview of 

what models are necessary, and how they relate to the modularity and portability of the simulation as a whole and 

may contribute to other different simulators. The interfaces between the major components are not shown for clarity 

and are labelled (1), (2), and (3). They are presented in detail in Figure 18. 
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Figure 18 - UAV Simulator Logical Breakdown Detailed Interfaces. 

The requirements of each specific model are described in Section 3.2.3. A more thorough description of the models 

not implemented in this thesis will be provided within this chapter. Further detail and information concerning the 

implementation of these models can be found within [RD-22]. The Automatic Flight Control System (AFCS), 

Sensors, Actuators and Vehicle Specific Model (VSM) will be defined in the appropriate sections. 

The Dynamics model will receive force and moment data from the Propulsion, Aerodynamics, Gravity, and Terrain 

models and will integrate the equations of motion in time, providing the trajectory of the air vehicle. The Propulsion 

and Aerodynamics models are responsible for determining the forces and moments generated by the engine and the 

aerodynamic surfaces, respectively. The Atmospheric model is responsible for providing the simulation with 
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atmospheric parameters and wind data. Note that if e.g. the AFCS model requires the current pressure level, it must 

read this value from the Sensors model since in the real world the considered value is affected by sensor 

performance. However, if the Aerodynamics model requires the current pressure level for e.g. calculating a lifting 

force, it must read this value from the Atmospheric model directly, since that value will be the real value. The 

Gravitation model is responsible for reading the current UAV state and determining the gravitation force at its 

position. The Terrain model must provide the Dynamics model with the ground reaction force that exits when the 

UAV is in contact with the ground. The objective of the Fire Propagation model is to simulate the existence of a fire 

so that it is possible to demonstrate that the UAV is able to follow the fire front. 

The visualization Interface Component is composed of the Google Earth and Flight Gear. The interaction with 

Google Earth is performed through Google Earth KML files (which are actually XML files) and involves the reading 

of flight plans defined using Google Earth into the simulation and the writing of the UAV position to be read and 

displayed by Google Earth. The interaction with FlightGear is performed through a network connection, and involves 

the sending of current aircraft states into FlightGear, for visualization purposes. A possible functionality that may be 

of interest is the visualization in Google Earth of the fire front as simulated by the fire propagation module. 

4.2.2 Generic Model Architecture Breakdown 
To promote modularity, the implementation of each model is done inside a C++ class that does not make use of any 

simulation standard. This class therefore requires an adapter that will instantiate it and make use of its public 

methods, associating its functionalities with code compatible with a simulation standard (e.g. SMP1) to allow it to 

run on a simulation platform (e.g. SIMSAT 3). In this work, each implementation class has associated SMP1 code 

that handles aspects such as publishing and scheduling, so the class will be able to communicate with SIMSAT and 

other models. This concept is illustrated in Figure 19. The Implementation class is responsible for the implementation 

of each model at the functional level. This component holds all the data and methods necessary to execute the model, 

almost independently of the Interface Layer. 

  

Figure 19 - Generic SIMSAT Architecture. 
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The purpose of this architecture is to separate the Implementation from the Adapter to a specific standard. In this 

way, it is possible to easily reuse and adapt the Implementation code in various simulation environments and 

standards, namely SMP2 for SIMSAT version 4. Therefore, the simulator is assured to have higher reuse capability 

and longevity by supporting the most modern simulation standards and environments. 

4.2.3 Automatic Flight Control System 

Overview 
The purpose of the Automatic Flight Control System (AFCS) is to engineer a simple state feed-back controller and 

high level logical functionalities to control the aircraft. This model aims to be a demonstrator for the UAV Simulator, 

and not in any way a replacement for a real controller, as this is clearly outside of the scope of this thesis, and a 

complete aircraft controller would be one project of its own. This component retrieves the sensed aircraft states and 

performs the necessary autopilot calculations to provide control inputs to the actuators. The control law used is based 

on modern control (e.g Linear-Quadratic Regulator with output weighting). This is specified next within the 

Formulation. Several additional layers exist to support the Flight Control Mode requirements, also defined next 

within the Processing. 

Formulation 
The Controller was designed and tested on Matlab/Simulink, based on the wind tunnel Aerodynamic data available 

for the pioneer UAV from [RD-38]. The controller state feed-back algorithm was implemented as C/C++ code in the 

AFCS model. 

For this project, the controller was based on a modern control technique, namely Linear-Quadratic state-feedback 

with output weighting (lqry). This is a widely known design technique, and references can be found on [RD-39] and 

[RD-40]. The details of the design have been omitted for simplicity, thus, only the procedure and results will be 

shown. The following requirements have been identified for the controller: 

• The controller is designed to operate for a steady flight condition of 66 Knots (approximately 34 meters per 

second), with a steady pitch angle and angle of attack of 6 degrees at sea level altitude. These are the steady 

state conditions for levelled flight in the Pioneer case. 

• The controller is able to follow desired Air Speeds, Altitudes, Altitude Rates, Headings and Heading Rates 

around the steady state condition, as well as Altitude and Heading Commands, to comply with the operator 

commands previously defined in section 3.2.2. 

• In addition to the command inputs stated above, the controller is also expected to receive the following 

aircraft states: Angle of Attack, Pitch Rate, True Airspeed, Pitch Angle, Altitude, Side Slip Angle, Roll 

Angle, Roll Rate, Yaw Rate and Heading Angle. 
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The Control method is based on the plant 

=x Ax + Bu
y = Cx + Du  

where x  is the perturbed State Vector, and u  the perturbed Inputs Vector. , , , A B C D  are coefficient matrices. 

To satisfy the requirements, the following aircraft State Vector has been defined: 

[ ]Tq vt h p rα θ β φ ψ=x
 

where:α  is the angle of attack; q  is the pitch rate; vt , is the true airspeed; θ  is the pitch; h  is the altitude; β  is 

the sideslip angle; φ  is the roll angle; p is the roll rate; r is the yaw rate;ψ is the yaw angle. The Inputs Vector is: 

[ ]Te t a rδ δ δ δ=u
 

where: eδ  is the elevator deflection; tδ  is the propulsion actuation; aδ is the ailerons deflection; rδ is the rudder 

deflection. The A  and B  matrices depend on the stability coefficients of the aircraft. Following the considerations 

in [RD-39], the matrices A  and B  can be constructed with the data available for the Pioneer on [RD-38]. The C  

matrix is an identity matrix since all aircraft states are observable. The D  matrix is null. 

For the purpose of automating the process a MATLAB script is used. It provides a function that automatically 

calculates the controller gains, and supplies the Simulink model with the necessary variables to run. Figure 20 

presents the Simulink block diagram used as a prototype to the controller. 

 

Figure 20 - Simulink block diagram. 

(1) 

(2) 

(3) 
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After some iteration on the lqry tuning parameters, a good controller can be defined, and the implementation of the 

algorithm on the AFCS model can be performed. A complete validation and assertion of the controller responses and 

flight levels is not formally performed due to the demonstration nature of this model. Only the mathematical part of 

the problem has been solved so far. Above this implementation, a set of logical functions must be set to allow the 

aircraft to fly safely and provide the SO with a simple commanding interface. 

Processing  
This section defines how the model operates internally. This model is divided in several layers relating to the 

functionalities each of them provide: 

• ImplementationController 

• ImplementationControllerAdapter 

• FlightPathControlModes 

The ImplementationController layer is the state feedback layer presented in the Formulation Section. This is where 

the states are multiplied by gains to produce actuators commands. The ImplementationControllerAdapter is created 

to provide the ImplementationController layer with the states and references and execute it. This is necessary to 

control the states and references that are sent to the ImplementationController (e.g. The ImplementationController, 

receives altitude, however the command given is climb at constant altitude rate. The necessary adaptation is made at 

the ImplementationControllerAdapter level). This layer directly receives the following commanding parameters: 

• SetAirspeed 

• SetAltitudeCommand 

• SetAltitude 

• SetAltitudeRate 

• SetHeadingCommand 

• SetHeading 

• SetHeadingRate 

The FlightPathControlModes layer is the highest level. This layer is divided in multiple functions, one for each Flight 

Path Control Mode. The respective function is called directly by a periodic update function that is responsible for 

executing the model. These are responsible for setting up the references for the ImplementationControllerAdapter 

layer and executing it. In this work there are six possible modes: 
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• Manual Flight 

• Waypoint Following Flight 

• Circular Loiter Flight 

• Autoland 

• Take-Off 

• Follow Fire Front 

This flow of information is describing on how the layers interact with each other is depicted in Figure 21. 

ImplementationController

ImplementationControllerAdapter

FlightPathControlModes

Actuators 
Deflections

High Level Tasks

ImplementationController

ImplementationControllerAdapter

FlightPathControlModes

Actuators 
Deflections

High Level Tasks

 

Figure 21 - Automatic Flight Control System processing. 

In Manual Flight mode, the controller directly follows the commanding parameters as they are specified by the user. 

In Waypoint Following mode, the controller follows a specified list of waypoints. This list can be loaded using 

GoogleEarth Interface, or can come from the VSM Model. When within this mode, the controller will automatically 

follow the Flight Plan, starting on the first waypoint. When the last waypoint is achieved, the controller will 

automatically engage the Circular Loiter mode. In the Circular Loiter mode, the controller attempts to follow a 

circular pattern over the point where it was first engaged. The algorithm is simple: when the mode is first engaged 

plot a Flight Plan consisting of eight waypoints defined over a circle around the loiter location, and then follow the 

waypoints in order. In Autoland mode, the aircraft must first be within the Instrumented Landing System glide slope. 

If this is not verified, the aircraft will maintain its current altitude and heading. In normal conditions, the aircraft will 

align itself with the runway alone, and adopt the descent rate given by the glide slope until it touches the runway and 

comes to a full stop. In Take-Off mode, the aircraft should first be stopped and fully aligned with the runway. After 

engaged, the aircraft will start its roll, gaining speed. When the airspeed is sufficient, the aircraft will leave the 

runway and start its climb. In Follow Fire Front mode the aircraft will retrieve one waypoint from the Follow Fire 



 

47 

Front Model and follow it if a fire has been detected. If no fire was detected, then the aircraft will maintain its 

heading and altitude. The responsibility for generating this waypoint belongs to the Fire Front Following Model, as 

defined in [RD-22]. 

4.2.4 Sensors 

Overview 
The Sensors model retrieves the actual simulated aircraft states (e.g. position, orientation), and provides this 

information to other models in the simulator as sensed states, including a small delay when applicable (to simulate 

sensor lag). This model is also responsible for generating an Instrumented Landing System vertical and horizontal 

glide slope to assist in the aircraft landing. 

Processing  
This component reads published values from the Dynamics and Atmospheric models, and makes them available for 

the aircraft systems, namely the AFCS and VSM. Whenever necessary, vector decomposition and unit conversion 

will be done. When applicable, a first order lag filter is implemented in order to more accurately simulate a real 

sensors dynamic response. The first order lag filter is implemented using the discrete equation: 

( )1 1k k ky y uα α−= ⋅ + − ⋅ , 

where ky  is the output of the filter for the step k, 1ky −  is the previous output, ku  is the input of the filter for the step 

k, and α  is the discrete time pole. 

The generation of the Instrumented Landing System error signal is also simple. The location of the beginning and 

end of the runway, in conjunction with the location of the aircraft are used to determine the error in relation to the 

ideal glide slope that would be passed to the aircraft. 

4.2.5 Actuators 

Overview 
The Actuators model deals with the simulated aircraft actuator surfaces (ailerons, elevator and rudder). It retrieves the 

desired actuator surfaces positions from the AFCS model, apply a first order lag filter (as defined for the Sensors 

model) over these values and make them available for the Aerodynamics model to calculate aerodynamic forces. 

(4) 
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4.2.6 Vehicle Specific Model 

Overview 
The VSM model implements the Vehicle Specific Module for the Simulator. This model acts as a standalone 

network server, waiting connections from a ground station. Communication is performed by a set of messages as 

specified in STANAG 4586. This component gathers all the necessary data from the Sensors, Actuators and AFCS 

models and wraps it according to the structure specified by STANAG 4586 (see Section 3.2.1), acting as a telemetry 

generation and telecommand sink module for the CUCS. 

Processing  
This model acts as a network TCP3 server, capable of supporting multiple CUCS clients. For visual guidance of the 

process, Figure 22 has been provided. 

This model contains a shared memory that is defined by two structures, namely the shared input memory and the 

shared output memory. Parallel to these two shared memories, there are regular memories. Publication to the SMI is 

performed with the data available on the regular memories due to inter-process synchronization issues. Input to 

message encoding and output from message decoding are always based on the shared memory sets. To synchronize 

the access to these memory structures, a set of two semaphores is used. Periodically, bound to the model update 

function, the shared memories are synchronized with the regular memories by copying the entire memory blocks. 

When started, the TCPServer creates a thread that will wait for inbound connections on a given port (specifiable by 

the user). When there is a successful connection from a new client, the server spawns a new thread to handle that 

particular connection and returns to its previous state of waiting for new inbound connections. The newly spawned 

thread instances an UDP4 client to be able to send periodic UDP telemetry messages. This thread will hold for a 

specifiable time, waiting for messages. If no message is received meanwhile, the thread will timeout and close that 

particular connection. This procedure is necessary to drop client connections that are no longer present, but still 

consuming resources. Whenever a telecommand message is received, the VSM decodes it and publishes its values to 

the shared output memory. A set of periodic functions have been published and scheduled in SIMSAT to trigger the 

sending of the periodic telemetry messages. The algorithm behind the sending of these messages is simple. If a given 

TCP connection is active, then send an UDP message to that client. This model architecture guarantees that there is 

no memory corruption due to the possibility of multiple accesses to the same memory address by different processes, 
                                                                  

3 The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol suite, often simply 
referred to as TCP/IP. Using TCP, applications on networked hosts can create connections to one another, over which 
they can exchange data. The protocol guarantees reliable and in-order delivery of data from sender to receiver. 

4 The User Datagram Protocol (UDP) is one of the core protocols of the Internet protocol suite. Using UDP, programs 
on networked computers can send short messages sometimes known as datagrams. UDP does not provide the reliability 
and ordering while TCP does. Datagrams may arrive out of order, appear duplicated, or go missing without notice. 
Without the overhead of checking if every packet actually arrived, UDP is faster and more efficient for many 
lightweight or time-sensitive purposes. Also, its stateless nature is useful for servers that answer small queries from huge 
numbers of clients. 
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and the reception of messages is asynchronous. At any time, the entire process can be shut down, and this command 

will terminate all threads. 
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Figure 22 - VSM Terminal processing. 

4.3 UAV Console 

4.3.1 System Logical Breakdown 
The requirements for the UAV Console are defined in Section 3.3 and served as a starting point into this phase. As 

mentioned, the console follows a modular and a service oriented structure to increase scalability of the console. The 

Logical Breakdown is shown in Figure 23. The Console is implemented in a way that easily allows the addition of 

new functionality. The modules implemented compose a baseline for further work. Each of these modules will be 

analysed in the appropriate sections. 
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Figure 23 - UAV Console Architectural Breakdown. 

There is a separation between Aircraft Specific modules from the rest of the Console. The simulator was produced in 

an open architecture regarding the addition of new windows to monitor and control specific UAVs. A specific UAV 

type can have functionalities that others do not, and this must be reflected in the interaction with the operator. An 

unlimited number of UAVs can be handled at the same time by the console. Therefore, each UAV Instance is no 

more than a set of windows for monitoring and controlling one particular UAV of a given type and logic to support 

the generality of having multiple UAVs being handled concurrently. 

4.3.2 Workspace Manager 

Overview 
The Workspace Manager is a module that allows the user to control the window visibility of the main modules: 

GeoViewer, LogViewer, UAV Manager and Flight Planning. It also serves the purpose of saving and loading the 

other windows layouts on screen to provide the SO with the ability to easily organise the work environment. 

User Interaction 
Figure 24 provides the window for this module. Buttons to save and load the layouts of the major five windows are 

provided (Workspace Manager, GeoViewer, Flight Planning, UAV Management, LogViewer). 

A “Lock Display” button is provided to avoid accidentally hiding or moving a window out of place. 

Check boxes near the name of other four windows are provided to allow the SO to hide or show any of these 

windows. This removes unnecessary information from the window of the SO, allowing him to focus on what is 

relevant. 
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Figure 24 - Workspace Manager window. 

4.3.3 GeoViewer 

Overview 
The GeoViewer is where the hearth of the Geographical Information Systems is located. In order to simplify the 

integration of further functionality at a later time, the interaction with OpenEV is done within this module. This 

allows further improvements to be done for the console without having the need to interact with this external library, 

which is not trivial. In practice, this module is responsible for showing maps, aircraft locations, flight plans and any 

information to be displayed on top of a map. 

User Interaction 
Figure 25 presents the window for this module. The SO can visualize flight plans, UAVs and flight paths within this 

window. Functionality for controlling the view is also provided. Zooming and Panning can be done with the mouse 

or the keyboard. Raster or Vector map for an extensive number of formats (see section 3.3.3) can be loaded from a 

file. The SO can also choose to hide or show different layers within the view: 

• Raster (map): This provides a map as an image. 

• Vector (line map): This provides a map as a set of contourns. 

• Regions (polygons): This provides an overlay with special regions of interest (e.g. no fly zones) 

• Flight plans (lines): This provides a line for each Flight Plan. 

• Flight paths (lines): This provides a line for each UAV Flight Path. 

• UAVs (points): This provides the current location of each UAV. 

• Objects (points): This provides the last known location of a given object. 
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Figure 25 - GeoViewer window. 

4.3.4 Flight Planning 

Overview 
The purpose of the Flight Planning is to allow the Simulation Operator to deal with Flight Plans, manage them 

internally and make this information available to the other modules. There is no limitation to the number of flight 

plans, or waypoints this module can manage. 

User Interaction 
Figure 26 presents the window for this module. This window presents the user with the ability to load and save flight 

plans. Flight plans are no more than a sequence of waypoints with coordinates (latitude, longitude and altitude) 

connected by lines. The SO can also create new flight plans selecting this mode and clicking on the GeoViewer the 

location of the new waypoints. The SO can choose as many waypoints as necessary. An Edit function is also 

available, to allow the editing of the waypoints from the GeoViewer. This module also provides a button to call the 

Risk Area Route Planner window. 

 

Figure 26 - Flight Planning window. 
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4.3.5 UAV Manager 

Overview 
The UAV Manager module allows the SO to initiate new sessions in which he can monitor and control UAVs. It is 

important to note that an unlimited number of UAVs can be monitored, and that any or all windows for all the UAVs 

can be visible or hidden. Whenever a new session is initiated, a UAV Instance is instantiated to allow the user to 

monitor and control that particular UAV. This module also provides some internal logic to handle the different UAV 

Instances. 

User Interaction 
Figure 27 presents the window to this module. Two buttons allow the SO to initiate or terminate connections. A list 

of all the currently opened sessions is also provided. For each UAV there is also a list of all the UAV specific 

windows available to it, as well as the option to hide or show them. 

 

Figure 27 - UAV Manager window. 

4.3.6 LogViewer 

Overview 
The LogViewer is a simple module to allow messages generated from other modules to be recorded and presented to 

the user. This module allows three types of messages: Information, Error and Debug. 

User Interaction 
Figure 28 presents the window to this module. Three check boxes allow the SO to choose whether each message 

type is visible or not. 
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Figure 28 - Log Viewer window. 

4.3.7 Risk Area Route Planner 

Overview 
The Risk Area Route Planner provides the SO with the ability to automatically generate flight plans based on 

quantifiable information regarding risk areas. Within the simulator, the purpose of this algorithm is to automatically 

plan a mission to optimize the fuel and maximize the surveillance of the higher risk areas by using a fire risk map. 

The module can be divided in two sections, the window that provides the interface to the user and the algorithm that 

provided the functionality mentioned above. The following sections will present the interface to the SO and the 

internal processing of the algorithm developed for this thesis. The development of this algorithm is necessary due to 

the fact that no suitable algorithm could be found after an extensive research of publications and papers on the 

subject. 

Processing  
This section describes the algorithm developed in this thesis, in order to generate the best route based on geo-

localized raster risk information by the application of a search algorithm, while being restricted by a maximum 

allowable range, which is usually the case on vehicles. In order to structure the problem, the algorithm is divided in 

two steps:  

• Node Generation - An algorithm that generates and applies a mesh to the raster containing the risk 

information, and provides a list of best explorable nodes, within the given geo-localized bounds. 

• Route Planning - An algorithm that determines the best route between a given number of nodes, respecting 

a maximum possible range. If necessary, not all nodes are visited, but no node is visited twice. 

In either case, the solution is independent of the problem. Each of the two phases will be documented in the 

following sections. However, it must respect the following conditions/restrictions: 

• The Risk Information must be provided in a Raster format map, where each pixel corresponds to a risk 

value, or a gain depending on the context of the problem. 
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• The user must provide the area where to perform the search on the map, as well as the maximum allowable 

range for the vehicle. 

• The user must provide the size of the cell that will compose each node. 

• The user must provide a start and a finishing location on the map. 

• The user must provide the number of nodes that will be generated. 

Node Generation 
In order to better understand the algorithm’s processing, Figure 29 provides a visual guidance. The processing of this 

algorithm is: 

• Isolate the area where the search is conducted based on the user provided bounds. 

• Divide this area in smaller rectangles corresponding to the size of cell provided by the user. 

• Perform an average of all the pixel values in each of the cells and store this information. 

• Generate a list of possible explorable nodes with the N (provided by the user) highest value nodes. This list 

contains the location of the nodes as well as its gain, and is the input to the second phase. 

 

Figure 29 - Node Generation processing. 
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Route Planning 
The developed algorithm for this phase is heavily based on the A* (A star) search algorithm [RD-41]. This is a 

widely know algorithm to solve route planning scenarios. However it is not directly applicable to the current problem 

and its restrictions. The A* is a graph search algorithm that finds a path from a given initial node to a given goal 

node. It employs a heuristic estimate that ranks each node by an estimate of the best route that goes through that node 

and ends at the goal node. It visits the nodes in order of this heuristic, making it a best-first search type algorithm. 

The follow characteristics can be enumerated: 

• It is complete in the sense that it is guaranteed to find a solution if one exists. 

• If the heuristic estimate is admissible (never overestimates the cost to the goal node), then the algorithm is 

optimum if a closed set is used. This guarantees that it finds the best possible solution. 

• A* is optimally efficient for any given heuristic, meaning that no other algorithm employing the same 

heuristic will expand fewer nodes, except for some specific cases where the heuristic predicts the exact cost 

of the optimal path. 

The nature of the problem, more specifically the geo-localization and attributes of each node, makes it not possible to 

directly use the A* algorithm, and forces the development of an appropriate heuristic estimate applicable to the 

problem. The problem at hand requires that the algorithm finds a route from an initial node to a goal node by 

optimizing the gain, without ever going over the vehicle range limit. The gain can be understood as the symmetric of 

the cost in the conventional A* formulation. The gain of a node is obtained by averaging the pixel cells (this happens 

in phase one). The gain of a route can be found by summing the gains of each visited node: 

1,
( ) i

i n
g n g

=

= ∑ , 

where ig  is the gain for the i-th node. A route is a sequence of visited nodes, where the order is relevant and must be 

stored. Therefore, the following equation is valid to assign a priority to a path, or also knows as the overall gain 

function: 

( ) ( ) ( )f n g n h n= +   

In the context of this problem, a heuristic estimate is admissible if it never sub-estimates the gain to the goal node. A 

heuristic for the problem that includes both the gains and the range characteristics of the problem is: 

( ) ( )h n r n K= ⋅ , 

where  

(5) 

(6) 

(7) 
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GK
D

+

−=   

and ( )r n  is the range still available to the vehicle in this particular route, G+ is the highest gain of all nodes, 

and D− is the minimum distance between any two nodes. 

As a consequence of the defined formulation, every route must maintain a list of all visited nodes including the order 

they were visited. Preferably, it should also maintain a variable holding the remaining distance the vehicle can travel 

in the context of the problem, as well as the accumulated gain so far. The last two variables are not mandatory as they 

can be calculated by knowing the list of visited nodes; however it considerably speeds up the process at cost of a 

small amount of memory. The processing of the algorithm is depicted in Figure 30. There are three lists to maintain 

the routes on every step: 

• Open - This list maintains all the valid routes that have yet to be explored. 

• Best - This maintains only one and the best route so far that reaches the goal node. 

• Current – This maintains only one and the currently being analysed route. 

The initial node supplied by the user is used to create a route that has only one node. This route is placed in Current 

and only happens at the start. Note that valid routes are routes that have an overall gain function higher than the 

current best route. 

 

Figure 30 - Route Planning processing. 

(8) 
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User Interaction 
Figure 31 presents the window to this module. This window allows the SO to choose the risk map that will be used to 

plan the route. Two buttons allow running each step of the algorithm: Node Generation and the Route Planning. By 

using this separation, the user will be able to edit the location of the nodes Generated before applying the Route 

Planning algorithm. The SO has a number of fields to fill with the information that will be used by the algorithm: 

• The location of where the route generation is centred, as well as the radius to which it is extended. 

• The size of each cell as defined in the Node Generation phase. It also allows the SO to choose the output 

number of cells from this phase. This has an extremely high impact on the time the algorithm takes to run 

and find a solution. 

• The band of the raster where the information regarding risk area is located. This is necessary because one 

image may contain various sets of data, and this must be identified. 

• The location of the First and Last node in the Route Planning phase. This determines where the aircraft 

starts, and where it ends. 

 

Figure 31 - Risk Area Route Planner window. 

4.3.8 UAV Instance 

Overview 
The UAV Instance module provides the SO with the interface to the UAVs themselves. This is composed by a set of 

windows that are specific to a given UAV type. Different UAVs could require different functionalities, and this must 

be taken into consideration when displaying the information to the SO. Therefore this module was developed so that 

it is easy to create new windows in future Console development. This module also provides the servers to receive and 

transmit network data, and the encoding and decoding facilities which implement the STANAG 4586 protocol. 

Within this thesis, this module is composed by the following windows that will be present in the appropriate sections: 
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• Basic T – This window displays basic information regarding the main aircraft parameters. 

• Air & Ground Relative States – This window provides parameters relative to air and ground states. 

• Inertial states – This window provides parameters relative to inertial states. 

• Body relative states – This window provides parameters relative to body relative states. 

• Commanding window – This window enables the SO to command the UAV. 

UAV Commanding 
As already mentioned, there are several windows associated with each specific UAV being simulated. One of these 

windows is the Commanding window, as depicted in Figure 32. 

 

Figure 32 - Commanding window. 

This window allows the user to command the UAV. The list of commands available is in concordance to the list of 

required commands specified in Section 3.2.2. Several options are available: 

• Manual Mode 

• Waypoint Following Mode 

• Loiter Mode 

• Take-Off 

• Autoland 

• Follow Fire Front 
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The following section presents the functionality of each option: A common feature to all options is, after the desired 

option is configured, the Command button should be pressed in order to issue the command to the UAV.. 

Manual Mode 
This mode allows the user to command the UAV manually. A set of parameters can be chosen with radio buttons 

and text entries: 

• Velocity: Desired velocity for the UAV 

• Altitude: 

o Rate Limited Altitude: Go to the specified Altitude with the provided Altitude Rate. 

o Altitude Rate: Assume the specified Altitude Rate. 

o Defined: Go immediately to this altitude. 

• Heading: 

o Rate Limited Heading: Go to the specified Heading with the provided Heading Rate. 

o Heading Rate: Assume the specified Heading Rate. 

o Defined: Go immediately to this heading. 

Waypoint Following Mode 
This mode uploads a waypoint to the UAV. To do so, one must first select the Flight Plan to upload in the Flight 

Planning window. By pressing the Issue Command button, the UAV will automatically start following the first 

waypoint of the new flight plan. 

Loiter Mode 
When this mode is selected, the UAV will start a circular loiter over the current location. The AFCS is responsible 

for the Loiter characteristics. 

Take-Off Mode 
The aircraft must be correctly placed in a runway before issuing this command. When the command is issued, the 

aircraft will start its roll on the runway, gaining airspeed, and lift off when enough airspeed is attained. 

Autoland Mode 
This mode should only be engaged when the aircraft is in the Instrumented Landing System glide path cone 

generated from the SimUAV Sensors Model. If this condition is not verified, the UAV will simply maintain its 

current altitude and heading until a new order is issued or the UAV enters the glide cone. If the UAV is in the glide 
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path, the Automatic Flight Control System will make a controlled descent along the glide path, land smoothly and 

come to a full stop on the runway.  

Follow Fire Front Mode 
This mode activates the Follow Fire Front model. This mode attempts to follow a fire front if one is detected. In the 

case that it is not detected, the UAV will simply maintain its current Altitude and Heading. 

UAV Monitoring 
The several windows associated with Monitoring the UAV progress are depicted within this section. 

Basic T – This provides the six most important parameters for an aircraft, following the standard location in an 

instruments panel (hence the name “basic T”). It contains airspeed, pitch, altitude, roll angle, heading, and vertical 

speed information as depicted in Figure 33. 

 

Figure 33 - Basic T monitoring window. 

Air & Ground relative states – This provides a variety of parameters that are measured relatively to the airflow 

outside of the aircraft, and the ground beneath it, as depicted in Figure 34. 

 

Figure 34 - Air & Ground states monitoring window. 

Inertial states – This provides a set of parameters that are measured relatively to the (assumed) inertial frame, 

including Latitude and Longitude, as depicted in Figure 35. 

 

Figure 35 - Inertial states monitoring window. 

Body Relative states – This provides a set of parameters that are measured in the aircraft reference frame. This 

includes aircraft body accelerations and angular rates, as depicted in Figure 36. 
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Figure 36 - Body Relative states monitoring window. 

4.4 Synopsis 

This chapter defined the work executed during the second and third phases of the software development life cycle, 

Sections 2.4 and 2.5. The software architecture for the UAV Simulator and the Console were also provided. Details 

regarding the implementation of the Automatic Flight Control System, Sensors, Actuators and Vehicle Specific 

Model were presented on the Simulator part. Within the UAV Console, a detailed description of the Workspace 

Manager, GeoViewer, Flight Planning, UAV Manager, Risk Area Route Planner, and UAV Instance was also 

provided along with figures of the console windows and details regarding the interaction with the user. 
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Chapter 5  

Validation Results 

5.1 Introduction 

This chapter presents the fourth phase on the software development project life cycle, as defined in Section 2.6. More 

information regarding the work produced can be found at [RD-21]. Details regarding the UAV used to demonstrate 

the Simulator can be found in Appendix A. Results obtained from the prototyping phase of the Risk Area Route 

Planner will be presented. Additionally, a demonstration of a small mission obtained with the Simulator completely 

integrated will also be shown. The Console will be used to command the simulation run. 

5.2 Risk Area Route Planner prototype validation  

The implementation of the Risk Area Route Planner (see Section 4.3.7) was performed in steps. The first step aimed 

at the proof of concept of the algorithm to generate the flight plan from a list of possible nodes (defined as Route 

Planning phase). The algorithm in question was developed exclusively for this thesis. It was not supported by any 

previous work other than being based upon another well known search algorithm. However, in order to demonstrate 

that the algorithm is feasible, it was implemented in a prototype just for demonstration and validation purposes. One 

run from the prototype will be presented here. 

This algorithm accepts a list of possible explorable nodes along with their location and gain to produce results, in 

addition to the location of the route starting and ending node. To support the prototype testing, a total of 15 nodes 

were automatically generated with a random function, both for the gain of these nodes, as for the location. The nodes 

are restricted in a Cartesian plane with coordinates between 0 and 100. The same method was used to generate the 

value of the nodes. The route stating node is located at (0,0), and the end node at (100,100). Figure 37 presents the 

location of the randomly generated nodes in the plain together with an idea of their risk value (the bigger the circle, 

the higher the risk is in the context of the problem). The algorithm was restricted to a maximum of 200 map units. 

The output of the algorithm is drawn in blue. 
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Figure 37 - Route Planning algorithm output route. 

The total distance of the generated route is 186.6 map units, lower than the imposed restriction. It is visible that the 

algorithm successfully completed its purpose: To generate the best route between the initial and final node within the 

range restriction. However, it is not possible to compare or prove these results analytically. One solution would be to 

use another already proven algorithm that can solve this particular problem and provide a similar result. 

Unfortunately, one is not available. Alternatively, the graph tree can be generated to prove that the result is the best 

possible. A tree graph is a graphical representation of all the paths the algorithm can take, therefore showing a tree 

with branches that show all the results possible. Figure 38 presents an example of a small graph tree. For 15 nodes, 

the problem is in the order of 15!, which comes to roughly 1,307,674,368,000 full routes. These routes however do 

not respect the range restriction of the problem. A more correct approach would be to calculate the permutations of 6 

elements from the 15 possible nodes (6 nodes is the number of nodes actually visited by the route in this case). This 

would still results in a graph with roughly 3,603,600 possible results, which is still not feasible. 

 

Figure 38 - Example graph tree. 
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5.3 System Validation 

This section presents a simple mission performed by the Simulator. The Console is used to control and monitor the 

aircraft during all the mission segments: Take-Off, Cruising, Loitering and Lading. Figure 39 presents the last leg of 

the simulated mission as visible from Google Earth. This image was provided by the Google Earth Interface model. 

 

Figure 39 - Full mission Google Earth screenshot. 

Figure 40 presents the fully simulated mission as visible from the console. The red line is the flight path of the 

aircraft. The blue lines are the flight plans. 

 

Figure 40 - Full mission Console screenshot. 
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The aircraft started on the air, and assumed a course to the left in the picture. This was done while following a small 

flight plan that brought it within the Instrumented Landing System glide slope. At that moment (leftmost on the 

picture), the aircraft was re-planned, and the Autoland mode was engaged (hence the visible blue line meaning that 

the original flight plan was abandoned before it had the time to be completed) and a controlled descent all the way to 

the touchdown where it finished the landing procedure after coming to a full stop on the runway. Figure 41 presents a 

screenshot taken from FlightGear moments before the touchdown. 

 

Figure 41 - Landing screenshot with chase camera. 

Figure 42 presents the Airspeed, Angle of Attack, Pitch and Altitude during the Landing and Take-off procedures for 

the aircraft. It is important note that both of these procedures are within the full responsibility of the Automatic Flight 

Control System. 

 

Figure 42 - Aircraft parameters during landing and take-off. 
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This is the final leg of the descent, moments before landing. The touchdown happens at approximately 40 seconds. 

The aircraft reduces the airspeed to approximately 30 meters per second just before touchdown. Note that during this 

period, the angle of attack is about 15 degrees, which is almost closing to stall for the pioneer. Since flaps were not 

modelled, the aircraft cannot land any slower. After touching down, the angle of attack and pitch are below 6 degrees 

and then raise. This is due to the torque created by the wheel brakes. The take-off starts at approximately 85 seconds. 

The small perturbation in the angle of attack is caused by the raising of the throttle to full with the wheel brakes on. 

When the wheel brakes are released, the aircraft starts to accelerate. At about 105 seconds, it lifts the nose wheel of 

the runway. This is a standard procedure to avoid damage and unnecessary stress on the front wheel. At about 30 

meters per second, the Automatic Flight Control System increases the pitch, and the aircraft lifts off naturally from 

the runway and starts its climb at constant speed. Additionally, the aircraft also loiter over certain locations. The loiter 

is circular and maintains the speed and altitude. Figure 43 presents the result of the loiter manoeuvre as seen from the 

Console. The aircraft came from the top of the image, started loitering with a right turn, and stayed there until orders 

were issued to carry on the mission to the bottom left of the image. 

 

Figure 43 - Circular loiter Console screenshot. 

5.4 Synopsis 

The Validation phase of the software development life cycle was presented in this chapter. The Pioneer UAV was 

defined as the platform to validate the simulator. Results from the prototype of the Risk Area Route Planner were 

also presented. A fully integrator simulator run was also exemplified for a simple mission: follow a mission plan, 

loiter to monitor an area, land and take-off again. 
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Chapter 6  

Synthesis 

6.1 Conclusions 

Uninhabited Aerial Vehicles (UAVs) are scaling up in use, and rapidly starting to replace the conventional aircraft 

for dangerous and monotonous tasks. However, these vehicles require a thorough integration testing and validation 

before considered fit for active duty and highly specialized operators need several hours of flight training to achieve 

acceptance. UAV Flight Simulators play an important role towards this goal and the most sophisticated simulators 

have undoubtedly been developed for space applications where every contingency must be studied to the hearths 

content of hundreds of engineers. This thesis demonstrated how a space technology was successfully used to create 

an aeronautical application, from grasping the concepts and the requirements of the project, to providing a UAV 

Simulator architecture and models. 

A functional UAV Simulator was successfully implemented using ESA space simulation infrastructure (SIMSAT). 

This simulator, developed in a modular and scalable fashion is effectively a baseline to support scientific and 

industrial work in a cost effective manner. SIMSAT proved to be a stable and straightforward infrastructure to build 

the simulator upon. This tool enhanced the focus on model development and simplified simulator implementation, 

reducing time and effort and avoiding errors related with the models execution in real time. The usage of Simulation 

Model Portability standard allows the models developed to be ported to different simulations and simulation 

infrastructures that also support this standard. This opens a set of possibilities for reuse and interoperability. The 

implementation of a simplified Vehicle Specific Model as defined in the STANAG 4586 standard for UAV 

interoperability provides the Simulator with the state of the art standard interface among current and future UAVs. 

This exposes a standard and open interface to external systems, such as commercial consoles, effectively placing the 

simulator among the few that are compliant with this standard. The development of a generic set of Sensor and 

Actuator models guarantees compatibility for a myriad of mission and air vehicles. The implementation of an 

Automatic Flight Control System capable of automated cruising, flight plan following, loitering, take-off and landing 

enables this Simulator to present itself as a technology demonstrator. 

A UAV Console was developed to answer the need to easily command and control the aircraft within the Simulator. 

This Console, while not aiming to be a state of the art product among its kind, is an effective solution to control a 
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STANAG 4586 compliant simulator and real UAVs. The modular and contained design of the Console also provides 

a stable baseline for future improvements. The Risk Area Route Planner algorithm developed especially for this work 

provides an optimal and complete solution to mission planning needs, leveraging down Artificial Intelligence 

solutions to assist in ground operations. 

6.2 Further work 

Further work should focus on the further development of the Simulator models and capabilities. The design of the 

architecture of the simulator is decisive on how the models were implemented. This detail, even tough not presenting 

itself as of great value at a first glance, defines how future models should be implemented, and current ones upgraded 

to more precise and specific versions. In practice this is the foundation of all the further work that will be developed. 

Due to the modularity of the Simulator any functionality may be easily added at a later time. Upgrading current 

models is also a possibility. Each aircraft has its particular hardware set, and in order to correctly simulate it, specific 

models must be developed and implemented. This dictates that all the aircraft specific models can be tailored for one 

specific vehicle. The aircraft independent models remain the same, which proves to be a major advantage of the 

modularity within the simulator architecture. Also, one could use the Simulator as a research platform, and test 

models that would later be incorporated in a real aircraft, such as interferometers, ground penetrating radars, 

radiological and bio-hazard sensors, etc. Due to SIMSAT real time scheduler, interaction with hardware is also 

possible, thus providing a baseline for hardware-in-the-loop testing and validation. This can directly assists in the 

development phase of the real UAVs for example. 

By achieving compliance with SMP2 and SIMSAT R4.0, the portability and reuse of models would be greatly 

enhanced by minimising their interactions with the execution environment and standardizing the model’s interface, 

thus increasing the value of the simulator. This can easily be done due to the separation of the core of the models 

from its interface to SIMSAT, which also allows for the portability of the functionality to infrastructures other than 

SIMSAT, not necessarily supporting the SMP standard. 

The focus on further work for the Console should be driven by the need to develop a particular module to support a 

new functionality specific to a target UAV. New functionalities must first be implemented in the particular aircraft 

being monitored and the respective payload, or otherwise risk the development of something that will not fit its 

purpose. However, this does not remove the generality of the Console to monitor several different UAVs, as the 

design was fully oriented towards such purpose. The idea is to have a target UAV and mission to sponsor the creation 

of new modules and windows that are necessary, and later reuse these modules within another platform, in a “plug-

in” style. Little work must be done to achieve this goal in the sense that as long as the model is implemented within 

the Console, any aircraft can automatically be loaded and make use of it. For example, a given forest fire patrol UAV 

would most likely have an Infrared camera on-board, and therefore a module to support this special payload must be 

developed for the Console. A completely different UAV with a possible different role could still reuse this module, 

and therefore be compliant with the Console. 
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Many improvements can and should be made to the Console on how information is presented to the user, as this 

greatly influences his situational awareness and responsiveness. Many issues have arisen regarding continued 

operator exposure to a stressful and complex working environment, leading to physical and mental fatigue which 

eventually ends in accidents. Not much attention was given to this issue other than that of the architecture of the 

console itself that allows full customization of windows locations, sizes (when applicable) and visibilities to the 

user’s choice. For example, improvements should be made to replace text labels with parameters by graphical gauges 

and appliances to make a more comfortable working environment. 
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Appendix A  

Demonstration Platform 

A model of a specific UAV platform is necessary for validation purposes. It must include data such as aerodynamic 

coefficients, inertias, and engine performance. The choice fell upon a model of the RQ-2 Pioneer UAV [RD-42] 

because detailed non-linear aerodynamic data was available at [RD-38]. Unfortunately there was no engine 

performance, but the necessary data could be extrapolated from aerodynamic and performance charts. The remaining 

data could also be found throughout several publications and documents, [RD-42], [RD-43], [RD-44], [RD-45] and 

[RD-46]. The RQ-2 Pioneer UAV (Figure 44) was developed jointly by AAI Corporation and Israel Aircraft 

Industries [RD-43]. It is the USA’s first deployed aircraft of its kind [RD-42]. The Pioneer has served with United 

States Navy, Marine, and Army units, deploying aboard ship and ashore since 1986. Initially deployed aboard 

battleships to provide gunnery spotting, its mission evolved into reconnaissance and surveillance, primarily for 

amphibious forces. Launched by rocket assist, by catapult, or from a runway, it recovers into a net or with arresting 

gear after flying up to 5 hours with a 75-pound payload. It relays video in real time via a line-of-sight data link. Since 

1991, Pioneer has flown reconnaissance missions during the Persian Gulf, Bosnia, Kosovo and Iraq conflicts. 

 

Figure 44 - RQ-2 Pioneer UAV. 

The primary functions of the RQ-2 Pioneer UAV are [RD-43]: Artillery Targeting and Acquisition, Control of Close 

Air Support, Reconnaissance and Surveillance, Battle Damage Assessment, Search and Rescue and Psychological 

Operations. General characteristics of the RQ-2 Pioneer UAV are summarized in Table 6. 
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Generic 

Contractor Pioneer UAV, Inc. 

Manufacturer AAI 

Propulsion & Performance 

Power Plant 
(for Pioneer 
RQ-2A) 

Sachs & Fichtel SF2-350 piston 
engine; 19.4 kW (26 hp)  

Range 185 km (100 nautical miles) 

Fuel Capacity 40-47 liters 

Endurance Approximately 4 hours 

Speeds 

Stall: 52 knots (96 km/h) 

Cruise: 65 knots (120 km/h) 

Maximum: 110 knots (204 km/h) 

Service Ceiling 15.000 ft (4600 m) 

Geometry 

Length 4.27 m 

Height 1.01 m 

Wingspan 5.15 m 

Aerodynamic 
Chord 0.5486 m 

Wing surface 2.826 m2 

Inertia 

Maximum 
Weight 205 kg 

Empty Weight 178 kg 

Ixx 47.23 kg.m2 

Iyy 90.95 kg.m2 

Izz 111.5 kg.m2 

Ixz -6.646 kg.m2 
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Data Link 

Frequency C-band/UHF 

Line-of-sight Yes 

Satellite No 

GPS Yes 

Table 6 - General Characteristics of the RQ-2 Pioneer UAV. 
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