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Abstract
Quantum Monte Carlo methods represent a powerful and broadly applicable computational
tool for finding very accurate solutions of the stationary Schrödinger equation for atoms,
molecules, solids and a variety of model systems. The algorithms are intrinsically parallel and
are able to take full advantage of present-day high-performance computing systems. This
review paper concentrates on the fixed-node/fixed-phase diffusion Monte Carlo method with
emphasis on its applications to the electronic structure of solids and other extended
many-particle systems.
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1. Introduction

Many properties of condensed matter systems can be
calculated from solutions of the stationary Schrödinger
equation describing interacting ions and electrons. The grand
challenge of solving the Schrödinger equation has been around

from the dawn of quantum mechanics and remains at the
forefront of condensed matter physics today and, undoubtedly,
will do so for many decades to come.

The task of solving the Schrödinger equation for systems
of electrons and ions, and predicting quantities of interest
such as cohesion and binding energies, electronic gaps, crystal
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structures, variety of magnetic phases or formation of quantum
condensates, is nothing short of formidable. Paul Dirac
recognized this state of affairs back in 1929: ‘The general
theory of quantum mechanics is now almost complete . . ..
The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble’ [1]. Arguably, this is the most
fundamental approach to the physics of condensed matter:
applications of the rigorous quantum laws to models that are
as close to reality as currently feasible.

The goal of finding accurate solutions for stationary
quantum states is hampered by a number of difficulties inherent
to many-body quantum systems:

(i) Even moderately sized model systems contain anywhere
between tens to thousands of quantum particles.
Moreover, we are often interested in expectation values
in the thermodynamic limit that is usually reached by
extrapolations from finite sizes. Such procedures typically
require detailed information about the scaling of the
quantities of interest with the system size.

(ii) Quantum particles interact and the interactions affect the
nature of quantum states. In many cases, the influence is
profound.

(iii) The solutions have to conform to quantum symmetries,
such as the fermionic antisymmetry linked to the Pauli
exclusion principle. This is a fundamental departure from
classical systems and poses different challenges which call
for new analytical ideas and computational strategies.

(iv) For meaningful comparisons with experiments, the
required accuracy is exceedingly high, especially when
comparing with precise data from spectroscopic and low-
temperature studies.

In the past, the most successful approaches to address
these challenges were based mostly on reductionist ideas.
The problem is divided into the dominant effects, which are
treated explicitly, and the rest, which are then dealt with by
approximate methods based on a variety of analytical tools:
perturbation expansions, mean-field methods, approximate
transformations to known solutions, and so on. The
reductionist approaches have been gradually developed into
a high level of sophistication and despite their limitations,
they are still the most commonly used strategies in many-body
physics.

Progress in computer technology has opened up a new
avenue for studies of quantum (and many other) problems
and has enabled researchers to obtain results beyond the scope
of analytic many-body theories. The performance of current
large computers makes computational investigations of many-
body quantum systems viable, allowing predictions that would
be difficult or impossible to make otherwise. The quantum
Monte Carlo (QMC) methods described in this review provide
an interesting illustration of what is currently possible and how
much the computational methods can enrich and make more
precise our understanding of the quantum world.

Some of the ideas used in QMC methods go back to
the times before the invention of electronic computers. In

the 1930s, Enrico Fermi noticed similarities between the
imaginary time Schrödinger equation and the laws governing
stochastic processes in statistical mechanics. In addition,
based on memories of his collaborator Emilio Segrè, Fermi
also envisioned stochastic methodologies for solving the
Schrödinger equation, which were very similar to concepts
developed decades later. Fermi’s ideas were acknowledged
by Metropolis and Ulam in a paper of 1949 [2], where they
outlined a stochastic approach to solving various physical
problems and discussed merits of ‘modern’ computers for
its implementation. In fact, this group of scientists at the
Los Alamos National Laboratory attempted to calculate the
hydrogen molecule by a simple version of QMC in the early
1950s, around the same time when pioneering work on the
first Monte Carlo study of classical systems was published
by Metropolis et al [3]. In the late 1950s, Kalos initiated
development of QMC simulations and methodologies for few-
particle systems and laid down the statistical and mathematical
foundations of Green’s function Monte Carlo method [4].
Eventually, simulations of large many-particle systems became
practicable as well. First came studies of bosonic fluids
modelling 4He [5–7], and later followed investigations of
extended fermionic systems exemplified by liquid 3He [8, 9]
and by the homogeneous electron gas [10, 11]. In addition
to these applications to condensed matter, essentially the
same methods were in the mid-1970s introduced in quantum
chemistry to study small molecular systems [12, 13]. To date,
various QMC methods have been developed and applied to the
electronic structure of atoms, molecules and solids, to quantum
lattice models, as well as to nuclear and other systems with
contributions from many scientists.

The term ‘quantum Monte Carlo’ covers several related
stochastic methodologies adapted to determine ground-state,
excited-state or finite-temperature equilibrium properties of a
variety of quantum systems. The word ‘quantum’ is important
since QMC approaches differ significantly from Monte Carlo
methods for classical systems. For an overview of the latter,
see for instance [14]. QMC is not only a computational tool
for large-scale problems but also encompasses a substantial
amount of analytical work needed to make such calculations
feasible. QMC simulations often utilize results of the
more traditional electronic-structure methods in order to
increase the efficiency of the calculations. These ingredients
are combined to optimally balance the computational cost
with achieved accuracy. The key point for gaining new
insights is an appropriate analysis of the quantum states and
associated many-body effects. It is typically approached
iteratively: simulations indicate the gaps in understanding of
the physics, closing these gaps is subsequently attempted
and the improvements are assessed in the next round.
Such a process involves construction of zero- or first-order
approximations for the desired quantum states, incorporation
of new analytical insights and development of new numerical
algorithms.

QMC methods inherently incorporate several types of
internal checks, and many of the algorithms used possess
various rigorous bounds, such as the variational property of
the total energy. Nevertheless, the coding and numerical
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aspects of the simulations are not entirely error-proof and the
obtained results should be verified independently. Indeed, it
is a part of the modern computational-science practice that
several groups revisit the same problem with independent
software packages and confirm or challenge the results.
‘Biodiversity’ of the available QMC codes on the scientific
market (including QWalk [15], QMCPACK [16], CHAMP
[17], CASINO [18], QMcBeaver [19] and others) provides
the important alternatives to verify the algorithms and their
implementations. This is clearly a rather labourious, slow
and tedious process. Nevertheless, experience shows that
independently calculated results and predictions eventually
reach a consensus and such verified data become widely used
standards.

In this overview, we present QMC methods that solve
the stationary Schrödinger equation for condensed systems
of interacting fermions in continuous space. Conceptually
very straightforward is the variational Monte Carlo (VMC)
method, which builds on explicit construction of trial
(variational) wave functions using stochastic integration
and parameter optimization techniques. More advanced
approaches represented by the diffusion Monte Carlo (DMC)
method are based on projection operators that find the ground
state within a given symmetry class. Practical versions of
the DMC method for a large number of particles require
dealing with the well-known fermion sign problem originating
in the antisymmetry of the fermionic wave functions. The
most commonly used approach to overcome this fundamental
obstacle is the fixed-node approximation. This approximation
introduces the so-called fixed-node error, which appears to
be the key limiting factor in further increase in accuracy.
As we will see in section 5, the fixed-node error is
typically rather small and does not hinder calculation of
robust quantities such as cohesion, electronic gaps, optical
excitations, defect energies or potential barriers between
structural conformations. By robust, we mean quantities
which are of the order of tenths of an electronvolt to several
electronvolts. Nevertheless, the fixed-node errors can bias
results for more subtle phenomena, such as magnetic ordering
or effects related to superconductivity. The development
of strategies to alleviate such biases is an active area of
research.

Fixed-node DMC simulations are computationally rather
demanding when compared with the mainstream electronic-
structure methods that rely on mean-field treatment of
electron–electron interactions. On the other hand, QMC
calculations can provide unique insights into the nature of
quantum phenomena and can verify many theoretical ideas.
As such, they can produce not only accurate numbers but
also new understanding. Indeed, QMC methodology is very
much an example of ‘it from bit’ paradigm, alongside, for
example, the substantial computational efforts in quantum
chromodynamics, which not only predict hadron masses but
also contribute to the validation of the fundamental theory
[20, 21]. Just a few decades ago, it was difficult to imagine
that one would be able to solve the Schrödinger equation for
hundreds of electrons by means of an explicit construction of
the many-body wave function. Today, such calculations are

feasible using the available computational resources. At the
same time, there remains more to be done to make the methods
more insightful and more efficient, and their application less
labourious. We hope that this review will contribute to the
growing interest in this rapidly developing field of research.

The review is organized as follows. The rest of this
section provides mostly definitions and notations. Section 2
follows with description of the VMC and DMC methods.
The strategies for the calculation of quantities in the
thermodynamic limit are presented in section 3. Section 4
introduces currently used forms of the trial wave functions
and their recently developed generalizations. The overview
of applications presented in section 5 is focused on QMC
calculations of a variety of solids and related topics.

1.1. Many-body stationary Schrödinger equation

Let us consider a system of quantum particles, such as electrons
and ions interacting via Coulomb potentials. Since the masses
of nuclei and electrons differ by three orders of magnitude or
more, the problem can be simplified with the aid of the Born–
Oppenheimer approximation, which separates the electronic
degrees of freedom from the slowly moving system of ions.
The electronic part of the non-relativistic Born–Oppenheimer
Hamiltonian is given by

Ĥ = −1
2

∑

i

∇2
i −

∑

i,I

ZI

|ri − xI |
+

∑

j<i

1
|ri − rj |

, (1.1)

where i and j label the electrons and I runs over the ions with
charges ZI . Throughout the review, we employ the atomic
units, me = h̄ = e = 4πε0 = 1, where me is the electron
mass, −e is the electron charge and ε0 is the permittivity of a
vacuum. We are interested in eigenstates |#n〉 of the stationary
Schrödinger equation,

Ĥ |#n〉 = En|#n〉. (1.2)

Colloquially, we call such solutions (either exact or
approximate) and derived properties collectively the electronic
structure.

An important step forward in calculations of the
eigenstates was made by Hartree [22] and Fock [23] by
establishing the simplest antisymmetric wave functions and
by formulating the Hartree–Fock (HF) theory, which correctly
takes into account the Pauli exclusion principle [24, 25]. The
HF theory replaces the hard problem of many interacting
electrons with a system of independent particles in an effective,
self-consistent field. The theory was further developed by
Slater [26] and others, and it has become a starting point
of many sophisticated approaches to fermionic many-body
problems.

For periodic systems, the effective free-electron theory
and the band theory of Bloch [27] were the first crucial
steps toward our present understanding of the real crystals.
In the 1930s, Wigner and Seitz [28, 29] performed the first
quantitative calculations of the electronic states in sodium
metal. Building upon the homogeneous electron gas model, the
density-functional theory (DFT) was invented by Hohenberg
and Kohn [30] and further developed by Kohn and Sham [31],
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who formulated the local density approximation (LDA) for
the exchange-correlation functional. These ideas were later
elaborated by including spin polarization [32], by constructing
the generalized gradient approximation (GGA) [33, 34], and by
designing a variety of orbital-dependent exchange-correlation
functionals [35–37]. The DFT has proved to be very
successful and has become the mainstream computational
method for many applications, which cover not only solids
but also molecules and even nuclear and other systems
[38, 39]. The DFT together with the Hartree–Fock and post-
Hartree–Fock methods [40] are relevant to our discussion
of QMC methodology, since the latter uses the results of
these approaches as a reference and also for construction of
the many-body wave functions. Familiarity with the basic
concepts of the Hartree–Fock and density-functional theories
is likely to make the subsequent sections easier to follow,
but we believe that it is not a necessary prerequisite for
understanding our exposition of the QMC methods and their
foundations.

2. Methods

2.1. Variational Monte Carlo

In the VMC method, the ground state of a Hamiltonian Ĥ is
approximated by some trial wave function |#T〉, whose form
is chosen following a prior analysis of the physical system
being investigated. Functional forms relevant to solid-state
applications will be discussed later in section 4. Typically,
a number of parameters are introduced into |#T〉, and these
parameters are varied to minimize the expectation value E#2

T
=

〈#T|Ĥ |#T〉/〈#T|#T〉 in order to bring the trial wave function
as close as possible to the actual ground state |#0〉.

Wave functions of interacting systems are non-separable,
and the integration needed to evaluate E#2

T
is therefore a

difficult task. Although it is possible to write these wave
functions as linear combinations of separable terms, this tactic
is viable only for a limited number of particles, since the length
of such expansions grows very quickly as the system size
increases. The VMC method employs a stochastic integration
that can treat the non-separable wave functions directly. The
expectation value E#2

T
is written as

E#2
T

=
∫ |#T(R)|2

〈#T|#T〉
[Ĥ#T](R)

#T(R)
d3NR

≈ EVMC = 1
N

N∑

i=1

[Ĥ#T](Ri )

#T(Ri )
, (2.1)

where R = (r1, r2, . . . , rN) is a 3N -dimensional vector
encompassing the coordinates of all N particles in the system
and the sum runs over N such vectors {Ri} sampled from the
multivariate probability density ρ(R) = |#T(R)|2/〈#T|#T〉.
The summand EL(R) = [Ĥ#T](R)/#T(R) is usually
referred to as the local energy. We assume spin-independent
Hamiltonians, and therefore spin variables do not explicitly
enter the evaluation of the expectation value (2.1). This
statement is further corroborated in section 4.1 where the

elementary properties of the trial wave functions |#T〉 are
discussed.

Equation (2.1) transforms the multidimensional integra-
tion into a problem of sampling a complicated probability
distribution. The samples {Ri} can be obtained such that
they constitute a Markov chain with transitions Ri+1 ← Ri

governed by a stochastic matrix M(Ri+1 ← Ri ) whose sta-
tionary distribution coincides with the desired probability den-
sity ρ(R),

ρ(R′) =
∫

M(R′ ← R)ρ(R) d3NR for all R′. (2.2)

After a period of equilibration, the members of the Markov
sequence sample the stationary distribution regardless of the
starting point of the chain, provided the matrix M(R′ ← R)

is ergodic. Inspired by the way the samples explore the
configuration space, they are often referred to as walkers.

The Markov chain can be conveniently constructed with
the aid of the Metropolis method [3, 41]. The transition matrix
is factorized into two parts, M(R′ ← Ri ) = T (R′ ←
Ri )A(R′ ← Ri ), which correspond to two consecutive
stochastic processes: a candidate R′ for (i + 1)th sample is
proposed according to the probability T (R′ ← Ri ), and this
move is then either accepted with the probability A(R′ ← Ri )

or rejected with the probability 1 − A(R′ ← Ri ). If the move
is accepted, the new member of the sequence is Ri+1 = R′,
otherwise it is Ri+1 = Ri . The length of the chain is
thus incremented in either case. The acceptance probability
A(R′ ← Ri ), complementing some given T (R′ ← Ri ) and
ρ(R) such that the stationarity condition (2.2) is fulfilled, is not
unique. The choice corresponding to the Metropolis algorithm
reads as

A(R′ ← R) = min
[

1,
T (R ← R′) ρ(R′)

T (R′ ← R) ρ(R)

]
(2.3)

and depends only on ratios of T and ρ. Consequently,
normalization of the trial wave function |#T〉 is completely
irrelevant for the Monte Carlo evaluation of the quantum-
mechanical expectation values. The freedom to choose the
proposal probability T (R′ ← Ri ) can be exploited to improve
ergodicity of the sampling; for instance, to make it easier to
overcome a barrier of low probability density ρ separating two
high-density regions. A generic choice for T (R′ ← Ri ) is
a Gaussian distribution centered at Ri with its width tuned to
optimize the efficiency of the sampling.

The variational energy EVMC is a stochastic variable, and
an appropriate characterization of the random error EVMC −
E#2

T
is thus an integral part of the VMC method. When the

sampled local energies EL(Ri ) are sufficiently well behaved
[42], this error can be represented by the variance of EVMC.
In such cases, the error scales as N −1/2 and is proportional
to fluctuations in the local energy. Reliable estimation of
the variance of EVMC is a non-trivial affair since the random
samples {Ri} generated by means of the Markov chain are
correlated. These correlations are not known a priori and
depend on the particular form of the transition matrix M that
varies from case to case. Nevertheless, it is possible to estimate
the variance without detailed knowledge of the correlation
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properties of the chain with the aid of the so-called blocking
method [43].

The fluctuations of the local energy EL are reduced as
the trial wave function |#T〉 approaches an eigenstate of the
Hamiltonian, and EL becomes a constant when |#T〉 is an
eigenstate. In particular, it is crucial to remove as many
singularities from EL as possible by a proper choice of the
trial function. Section 4.1 illustrates how it is achieved in
the case of the Coulomb potential that is singular at particle
coincidences.

The total energy is not the only quantity of interest and
evaluation of other ground-state expectation values is often
desired. The formalism sketched so far remains unchanged,
only the local energy is replaced by a local quantity AL(R) =
[Â#T](R)/#T(R) corresponding to a general operator Â. An
important difference between AL and the local energy is that
fluctuations in AL do not vanish when |#T〉 is an eigenstate
of Ĥ . These fluctuations can severely impact the efficiency of
the Monte Carlo integration in 〈#T|Â|#T〉/〈#T|#T〉, and the
random error can decay even slower than N −1/2 [42]. The trial
wave function cannot be altered to suppress the fluctuations in
this case, but a modified operator Â′ can often be constructed
such that 〈#T|Â′|#T〉 =〈 #T|Â|#T〉 while the fluctuations of
AL are substantially reduced [44–48].

2.2. Diffusion Monte Carlo

The accuracy of the VMC method is limited by the quality
of the trial wave function |#T〉. This limitation can be
overcome with the aid of the projector methods. In particular,
the DMC method [12, 49–51] employs an imaginary time
evolution,

|#D(t)〉 = exp
(

− [Ĥ − ET(t)]t
)

|#T〉, (2.4)

where the energy offset ET is introduced to maintain the wave-
function norm at a fixed value. Formal properties of (2.4) can
be elucidated by expanding the trial function |#T〉 in terms of
the Hamiltonian eigenstates (1.2), which readily yields

|#D(t)〉 = exp
(

− [E0 − ET(t)]t
)[

|#0〉〈#0|#T〉

+
∞∑

n=1

e−(En−E0)t |#n〉〈#n|#T〉
]
. (2.5)

The ground state |#0〉 is indeed reached in the limit of large t

as long as the trial function was not orthogonal to |#0〉 from
the beginning. The requirement of a finite norm of |#D(t)〉
translates into a formula,

E0 = lim
t→∞

ET(t), (2.6)

that can be used to obtain the ground-state energy. An
alternative approach is to evaluate the matrix element E#D#T =
〈#D(t)|Ĥ |#T〉/〈#D(t)|#T〉 that asymptotically coincides with
the ground-state energy, since 〈#0|Ĥ |#T〉/〈#0|#T〉 =
〈#0|Ĥ |#0〉/〈#0|#0〉. The integration in E#D#T can be

performed stochastically in analogy with the VMC method,

E#D#T =
∫

#∗
D(R, t)#T(R)

〈#D(t)|#T〉
[Ĥ#T](R)

#T(R)
d3NR

≈ EDMC = 1
N

N∑

i=1

EL(Ri ), (2.7)

where the samples Ri are now drawn from the probability
distribution ρ(R, t) = #∗

D(R, t)#T(R)/〈#D(t)|#T〉.

2.2.1. Fixed-node/fixed-phase approximation. The Monte
Carlo integration indicated in (2.7) is possible only if ρ(R, t)

is real-valued and positive. Since the Hamiltonians we usually
deal with are symmetric with respect to time reversal, the
eigenfunctions can be chosen real. Unfortunately, many-
electron wave functions must necessarily have alternating
sign to comply with the fermionic antisymmetry. In general,
the initial guess |#T〉 will have different plus and minus
sign domains (also referred to as nodal pockets or nodal
cells) than the sought for ground-state wave function |#0〉,
which results in changing sign of ρ(R, t). In certain special
cases, the correct sign structure of the ground state can be
deduced from symmetry considerations [52–54], but in a
general interacting system the exact position of the boundary
between the positive and negative domains (the so-called
fermionic node) is unknown and is determined by the quantum
many-body physics [55]. A number of exact properties of
the fermionic nodes have been discovered [56–59], but a lot
remains to be done in order to transform this knowledge into
constructive algorithms for the trial wave functions.

The problem with the variable sign of ρ(R, t) can be
circumvented by complementing the projection (2.4) with the
so-called fixed-node constraint [13],

#D(R, t)#T(R) ! 0 for all R and all t. (2.8)

Doing so, limt→∞ |#D(t)〉 only approximates |#0〉, since
the projection cannot entirely reach the ground state if the
initial wave function |#T〉 does not possess the exact nodes.
The total energy calculated with this fixed-node method
represents an upper-bound estimate of the true ground-state
energy because the projection (2.4) is restricted to a subspace
of the whole Hilbert space when the constraint (2.8) is
implemented [60–62]. The fixed-node approximation has
proved very fruitful in quantum chemistry [63, 64] as well as
for investigation of the electronic structure of solids as testified
by the applications reviewed in section 5.

In calculations of extended systems and especially metals,
it is beneficial to allow for boundary conditions that break
the time-reversal symmetry, since it facilitates reduction of
finite-size effects (section 3.1). The eigenfunctions are
then complex-valued and a generalization of the fixed-node
approximation is required. The constraint (2.8) is replaced
with #D(t) = |#D(t)| eiϕT , where ϕT is the phase of the trial
wave function #T = |#T| eiϕT [65]. The phase ϕT is held
constant during the DMC simulation to guarantee that ρ(R, t)

stays non-negative for allR and t . Additionally, a complex trial
wave function |#T〉 causes the local energy EL to be complex
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as well. The appropriate modification of the estimate for the
total energy (2.7) coinciding with the asymptotic value ofET(t)

then reads as

EDMC = 1
N

N∑

i=1

Re[EL(Ri )]. (2.9)

Analogous to the fixed-node approximation, the fixed-phase
method provides a variational upper-bound estimate of the true
ground-state energy. Moreover, the fixed-phase approximation
reduces to the fixed-node approximation when applied to real-
valued wave functions.

2.2.2. Sampling the probability distribution. The
unnormalized probability distribution that we wish to sample
in the fixed-phase DMC method,

f (R, t) = #∗
D(R, t)#T(R) = |#D(R, t)||#T(R)|, (2.10)

referred to as the mixed distribution, fulfills an equation of
motion,

−∂t f (R, t) = −1
2
∇2f (R, t) + ∇ · [vD(R)f (R, t)]

+ f (R, t)
[
Re[EL(R)] − (1 + t ∂t )ET(t)

]
, (2.11)

that is derived by differentiating (2.4) and (2.10) with respect to
time, combining the resulting expressions and rearranging the
terms. The drift velocity vD introduced in (2.11) is defined as
vD = ∇ ln |#T| and ∇ denotes the 3N -dimensional gradient
with respect to R. The equation of motion is valid in this
form only as long as the kinetic energy is the sole non-local
operator in the Hamiltonian. Strategies for inclusion of non-
local pseudopotentials will be discussed later in section 2.3.
The case of the fixed-node approximation is virtually identical
to (2.11), except that the local energy is real by itself. The
following discussion therefore applies to both methods.

The time evolution of the mixed distribution f (R, t) can
be written in the form of a convolution,

f (R, t) =
∫

G(R ← R′, t)f (R′, 0) d3NR′, (2.12)

where f (R, 0) = |#T(R)|2 and Green’s function G(R ←
R′, t) = 〈R|Ĝ(t)|R′〉 is a solution of (2.11) with the initial
condition G(R ← R′, 0) = δ(R − R′). Making use of
the Trotter–Suzuki formula [66, 67], the Green’s function is
approximated by a product of short-time expressions,

Ĝ(t) = [Ĝg/d(τ ) Ĝdiff(τ ) Ĝdrift(τ )
︸ ︷︷ ︸

Ĝst(τ )

]M + O(τ ), (2.13)

where τ denotes t/M and the exact solution of (2.11) is
approached as this time step goes to zero. Consequently, the
DMC simulations should be repeated for several sizes of the
time step and an extrapolation of the results to τ → 0 should
be performed in the end. For simplicity, we show in (2.13) only
the simplest Trotter–Suzuki decomposition which has a time
step error proportional to τ . Commonly used are higher order
approximations whose errors scale as τ 2 or τ 3. The three new

Green’s functions constituting the short-time approximation
Ĝst can be explicitly written as

Gdrift(R ← R′, τ ) = [1 − τ∇ · vD(R′)]

× δ[R − R′ − vD(R′)τ ] + O(τ 2), (2.14)

Gdiff(R ← R′, τ ) = 1
(2πτ )3N/2

exp
[

− (R − R′)2

2τ

]
,

(2.15)

Gg/d(R ← R′, τ ) = exp
[

− τ
(

Re[EL(R)]

− ET(t)
)]

δ[R − R′], (2.16)

and they correspond to the three non-commuting operators
from the right-hand side of (2.11) in the order: drift
(∇ · [vD(R) •]), diffusion (−∇2/2 •) and growth/decay
(•[Re[EL(R)] − (1 + t ∂t )ET(t)]). The drift and diffusion
Green’s functions preserve the normalization of f (R, t)

whereas the growth/decay process does not.
The factorization of the exact Green’s function into the

product of the short-time terms forms the basis of the stochastic
process that represents the DMC algorithm. First, M samples
{Ri} are drawn from the distribution f (R, 0) = |#T(R)|2 just
like in the VMC method. Subsequently, this set of walkers
evolves such that it samples the mixed distribution f (R, t) at
any later time t . The probability distribution is updated from
time t to t + τ by multiplication with the short-time Green’s
function,

f (R, t + τ ) =
∫

Gst(R ← R′, τ )f (R′, t) d3NR′, (2.17)

which translates into the following procedure performed on
each walker in the population:

(i) a drift move )Rdrift = vD(R′)τ is proposed
(ii) a diffusion move )Rdiff = χ is proposed, where χ is a

vector of Gaussian random numbers with variance τ and
zero mean

(iii) the increment )Rdrift + )Rdiff is accepted if it complies
with the fixed-node condition #T(R′)#T(R′ + )Rdrift +
)Rdiff) > 0, otherwise the walker stays at its original
position; moves attempting to cross the node occur
only due to inaccuracy of the approximate Green’s
function (2.13), and they vanish in the limit τ → 0; the
moves)Rdrift+)Rdiff are accepted without any constraint
in the fixed-phase method

(iv) the growth/decay Green’s function Gg/d is applied; several
algorithms devised for this purpose are outlined in the
following paragraph

(v) at this moment, the time step is finished and the simulation
continues with another cycle starting back at (i).

After the projection period is completed, the algorithm samples
the desired ground-state mixed distribution and the quantities
needed for the evaluation of various expectation values can be
collected in step (v).

At this point we return to a more detailed discussion
of several algorithmic representations of the growth/decay
Green’s function Gg/d needed in step (iv).

6
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• The most straightforward way is to assign a weight w to
each walker. These weights are set to 1 during the VMC
initialization of the walker population and the application
of Gg/d then amounts to a multiplication w(t + τ ) =
w(t)W(R), where the weighting factor is

W(R) = exp
[

− τ
(

Re[EL(R)] − ET(t)
)]

. (2.18)

Consequently, the formula for calculation of the total
energy (2.9) is modified to

EDMC =
( N∑

i=1

wi

)−1 N∑

i=1

wiRe[EL(Ri )] (2.19)

and the walkers remain distributed according to |#T(R)|2,
as in the VMC method. This algorithm is referred to as the
pure DMC method [68, 69]. It is known to be intrinsically
unstable at large projection times where the signal-to-
noise ratio deteriorates [70], but it is still useful for small
quantum-chemical systems [71–73].

• The standard DMC algorithm fixes the weights to w = 1
and instead allows for a stochastically fluctuating size of
the walker population by branching walkers in regions
with large weighting factor W(R) and by removing them
from areas with small W(R). The copies from high-
probability regions are treated as independent samples
in the subsequent time steps. The time dependence of
the energy offset ET(t) provides a population control
mechanism that prevents the population from exploding or
collapsing entirely [50, 74]. The branching/elimination
algorithm is much more efficient in large many-body
systems than the pure DMC method, although it also
eventually reaches the limits of its applicability for a very
large number of particles [75].

• An alternative to the fluctuating population is various
flavours of the stochastic reconfiguration [15, 70, 76–78].
These algorithms complement each branched walker
with high weighting factor W(R) with one eliminated
walker with small W(R), and therefore the total number
of walkers remains constant. This pairing introduces
slight correlations into the walker population that are
comparable to those caused by the population control
feedback of the standard branching/elimination algorithm
[75]. Keeping the population size fixed is advantageous
for load balancing in parallel computational environments,
since the number of walkers can be a multiple of the
number of computer nodes (CPUs) at all times during the
simulation.

The branching/elimination process interacts in a subtle way
with the fixed-node constraint. Since the walkers are not
allowed to cross the node, the branched and parent walkers
always stay in the same nodal cell. If some of these
cells are more favoured (that is, if they have a lower local
energy on average), the walker population accumulates there
and eventually vanishes from the less favoured cells. Such
uneven distribution of samples would introduce a bias to the

simulation. Fortunately, it does not happen, since all nodal
cells of the ground-state wave functions are connected by
particle permutations and are therefore equivalent (see the
tiling theorem in [56]). For general excited states, this theorem
does not hold and the unwanted depopulation of some nodal
cells can indeed be observed. The problem is absent from
the fixed-phase method, since it contains no restriction on the
walker propagation.

The branching/elimination algorithm is just one of the
options for dealing with the weights along the stochastic paths.
Another possibility was introduced by Baroni and Moroni
as the so-called reptation algorithm [79], which recasts the
sampling of both the path in the configuration space and the
weight into a straightforward Monte Carlo process, avoiding
thus some of the disadvantages of the DMC algorithm. The
reptation method has its own sources of inefficiencies which
can be, however, significantly alleviated [80].

This concludes our presentation of the stochastic
techniques that are used to simulate the projection operator
introduced in (2.4). We would like to bring to the reader’s
attention that the algorithm outlined in this section is rather
rudimentary and illustrates only the general ideas. A number of
important performance improvements are usually employed in
practical simulations (see for instance [74] for further details).

2.2.3. General expectation values. So far, only the
total energy has been discussed in connection with the
DMC method. An expression analogous to (2.7) can be
written with any operator Â in place of the Hamiltonian
Ĥ . The acquired quantity A#D#T = 〈#D|Â|#T〉/〈#D|#T〉,
called the mixed estimate, differs from the pure expectation
value 〈#D|Â|#D〉/〈#D|#D〉 unless Â commutes with the
Hamiltonian. In general, the error is proportional to the
difference between |#D〉 and |#T〉. The bias can be reduced to
the next order using the following extrapolation [7, 50],

〈#D|Â|#D〉
〈#D|#D〉

= 2
〈#D|Â|#T〉
〈#D|#T〉

− 〈#T|Â|#T〉
〈#T|#T〉

+ O
(∣∣∣∣

#D√
〈#D|#D〉

− #T√
〈#T|#T〉

∣∣∣∣
2)

. (2.20)

Alternative methods that allow for a direct evaluation of the
pure expectation values have been developed, such as the
forward (or future) walking [50, 81, 82], the reptation QMC
[79, 83, 84] and the Hellman–Feynman operator sampling
[85, 86]. Due to their certain limitations, these techniques do
not fully replace the extrapolation (2.20)—they are usable only
for local operators and the former two become computationally
inefficient in large systems.

The discussion of the random errors from the end of
section 2.1 applies also to the DMC method, except that the
serial correlations among the data produced in the successive
steps of the DMC simulations are typically larger than the
correlations in the VMC data. Therefore, longer DMC runs are
necessary to achieve equivalent suppression of the stochastic
uncertainties of the calculated expectation values.

7
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2.2.4. Spin degrees of freedom. The DMC method as
outlined above samples only the spatial part of the wave
function, and the spin degrees of freedom remain fixed during
the whole simulation. This simplification follows from the
assumption of a spin-independent Hamiltonian that implies
freezing of spins during the DMC projection (2.4). This is
indeed the current state of the DMC methodology as applied
to electronic-structure problems: in order to arrive at the
correct spin state, a number of spin-restricted calculations are
performed and the variational principle is employed to select
the best ground-state candidate among them.

Fixing spin variables is not possible for spin-dependent
Hamiltonians, such as for those containing spin–orbital
interactions, since they lead to a non-trivial coupling of
different spin configurations. In fact, spin-dependent QMC
methods were developed for studies of nuclear matter. A
variant of Green’s function Monte Carlo method [87, 88]
treats the spin degrees of freedom directly in their full
state space. Since the number of spin configurations grows
exponentially with the number of particles, this approach
is limited to relatively small systems. More favourable
scaling with the system size offers the auxiliary-field DMC
method that samples the spin variables stochastically by means
of auxiliary fields introduced via the Hubbard–Stratonovich
transformation [89, 90]. Recently, a version of the auxiliary-
field DMC method was used to investigate properties of the
two-dimensional electron gas in the presence of the Rashba
spin–orbital coupling [91].

2.3. Pseudopotentials

The computational cost of all-electron QMC calculations
grows very rapidly with the atomic number Z of the elements
constituting the simulated system. Theoretical analysis
[92, 93] as well as practical calculations [94] indicate that the
cost scales as Z5.5–6.5. Most of the computer time spent in
these simulations is used for sampling large energy fluctuations
in the core region, which have very little effect on typical
properties of interest, such as interatomic bonding and low-
energy excitations. For investigations of these quantities,
it is convenient to replace the core electrons with accurate
pseudopotentials. A sizeable library of norm-conserving
pseudopotentials targeted specifically to applications of the
QMC methods has been built up over the years [95–100].

Pseudopotentials substitute the ionic Coulomb potential
with a modified expression,

− Z

r
→ V (r) + Ŵ , (2.21)

where V (r) is a local term behaving asymptotically as
−(Z − Zcore)/r with Zcore being the number of eliminated
core electrons. The operator Ŵ is non-local in the sense
that electrons with different angular momenta experience
different radial potentials. Explicitly, the matrix elements of
the potential Ŵ associated with the I th atom in the system are

〈R|ŴI |R′〉 =
∑

i

lmax∑

l=0

l∑

m=−l

〈r̂iI |lm〉WI,l(riI )δ(riI − r ′
iI )

× 〈lm|r̂′
iI 〉, (2.22)

where |lm〉 are the angular momentum eigenstates, riI is
the distance of an electron from the I th nucleus and r̂iI is
the associated direction riI /riI . Functions WI,l vanish for
distances riI larger than some cut-off radius rc, and the sum∑

i therefore runs only over electrons that are sufficiently close
to the particular nucleus.

Evaluation of pseudopotentials in the VMC method is
straightforward, despite the fact that the local energy EL itself
involves integrals. As can be inferred from the form of the
matrix elements (2.22), these are two-dimensional integrals
over surfaces of spheres centered at the nuclei. The integration
can be implemented with the aid of the Gaussian quadrature
rules that employ favourably sparse meshes [101, 102].

The use of non-local pseudopotentials in the fixed-node
DMC method is more involved, since the sampling algorithm
outlined in section 2.2.2 explicitly assumed that all potentials
were local. Non-local Hamiltonian terms can be formally
incorporated by introducing an extra member into the Trotter
break-up (2.13), namely

Gnloc(R ← R′, τ ) = #T(R)

#T(R′)
〈R|e−τŴ |R′〉

= δ(R − R′) − #T(R)

#T(R′)
〈R|τŴ |R′〉 + O(τ 2), (2.23)

where Ŵ now combines the non-local contributions from all
atoms in the system. This alone is not the desired solution,
since the term involving the matrix element of Ŵ does not
have a fixed sign and thus cannot be interpreted as a transition
probability.

To circumvent this difficulty, the so-called localization
approximation has been proposed. It amounts to a replacement
of the non-local operator in the Hamiltonian with a local
expression [93, 102, 103],

Ŵ → WL(R) = Ŵ#T(R)

#T(R)
. (2.24)

Consequently, the contributions from Ŵ are directly
incorporated into the growth/decay Green’s function (2.16) and
no complications with alternating sign arise. Unfortunately,
the DMC method with this approximation does not necessarily
provide an upper-bound estimate for the ground-state energy.
The calculated total energy EDMC is above the lowest
eigenvalue of the localized Hamiltonian, which does not
guarantee that it is also higher than the ground-state energy
of the original Hamiltonian Ĥ . The errors in the total energy
incurred by the localization approximation are quadratic in
the difference between the trial function |#T〉 and the exact
ground-state wave function [102]. The trial wave functions
are usually accurate enough for the localization error to be
practically insignificant and nearly all applications listed in
section 5 utilize this approximation.

A method that preserves the upper-bound property of
EDMC was proposed in the context of the DMC algorithm
developed for lattice models [104]. The non-local operator Ŵ

is split into two parts, Ŵ = Ŵ + + Ŵ−, such that Ŵ + contains
those matrix elements, for which 〈R|Ŵ |R′〉#T(R)#T(R′)
is positive, and Ŵ− contains the elements, for which the
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expression is negative. Only the Ŵ + part is localized in order
to obtain the approximate Hamiltonian,

Ŵ → Ŵ− +
Ŵ +#T(R)

#T(R)
. (2.25)

One can explicitly show that the lowest eigenvalue of this
partially localized Hamiltonian is an upper bound to the lowest
eigenvalue of the original fully non-local Hamiltonian [104].
Recently, a stochastic representation of the non-local Green’s
function (2.23) corresponding to Ŵ− was implemented also
into the DMC method for continuous space [105]. Apart
from the recovered upper-bound property, the new algorithm
reduces fluctuations of the local energy for certain types of
pseudopotentials. On the other hand, the time step error is in
general larger [105, 106], since the distinct treatment of the Ŵ +

and Ŵ− parts of the pseudopotential essentially corresponds to
a Trotter splitting of the growth/decay Green’s function (2.16)
into two pieces. Very recently, a more accurate Trotter break-
up and other modifications improving the efficiency of this
method have been proposed for both continuous and lattice
DMC formulations [107].

The localization approximation is directly applicable also
to the fixed-phase DMC method. Adaptation of the non-
local moves representing Ŵ− to cases involving complex
wave functions has not been reported yet. Nevertheless, the
modifications required should be only minor.

3. From a finite supercell to the thermodynamic
limit

QMC methods introduced in the preceding section can be
straightforwardly applied to physical systems of a finite size,
such as atoms and clusters of atoms. To allow investigation of
bulk properties of solids, the algorithms described so far have
to be complemented with additional techniques that reduce the
essentially infinitely many degrees of freedom into a problem
of manageable proportions.

3.1. Twist-averaged boundary conditions

In approximations that model electrons in solids as an ensemble
of independent (quasi-)particles, it is possible to map the whole
infinite crystal onto a finite volume so that the thermodynamic
limit becomes directly accessible. Hamiltonians of such
models are invariant with respect to separate translations of
electrons by any lattice vector R. That is, for each i we can
write

Ĥ (r1, r2, . . . , ri + R, . . .) = Ĥ (r1, r2, . . . , ri , . . .). (3.1)

This invariance allows us to diagonalize the Hamiltonian only
in the primitive cell of the lattice and then use the translations
to expand the eigenstates from there into the whole crystal.
Unfortunately, the explicit two-body interactions that we are
set out to keep in the Hamiltonian break the symmetry (3.1).
The only translation left is a simultaneous displacement of all
electrons by a lattice vector, which is not enough to reach the
thermodynamic limit with a finite set of degrees of freedom.

To proceed further, we introduce artificial translational
symmetries with the aid of the so-called supercell
approximation that is widely used within the independent-
particle methods to investigate non-periodic structures such as
lattice defects. We select a supercell having a volume *S that
contains several (preferably many) primitive cells. The whole
crystal is then reconstructed via translations of this large cell by
supercell lattice vectors {RS}, which are a subset of all lattice
vectors {R}. Simultaneously, we divide the electrons in the
solid into groups containing N = ρav*S particles, where ρav is
the average electron density in the crystal. This partitioning is
used to construct a model Hamiltonian, where electrons within
each group interact, whereas there are no interactions between
the groups,

Ĥmodel =
∞∑

I=1

ĤS(R(I )) =
∞∑

I=1

[ N∑

i=1

ĥ(r(I )
i ) + V̂ee(R(I ))

]
.

(3.2)

The vector R(I ) = (r(I )
1 , . . . , r(I )

N ) denotes coordinates of the
electrons belonging to the I th group. Note that these electrons
are not confined to any particular region in the crystal. The
supercell Hamiltonian ĤS consists of single-particle terms
ĥ, which encompass kinetic energy as well as ionic and all
external potentials, and of an electron–electron contribution

V̂ee(R) =
∑

j<i

1
|ri − rj |

+
∑

i

[
1
2

∑

j,RS -=0

1
|ri − rj − RS|

]
.

(3.3)

The first term in (3.3) represents the explicit Coulomb
interaction among electrons in the N -member group and the
second term mimics the interactions with the electrons outside
the group. The physical meaning of the latter term is as follows.
A set of images is associated with each electron j , and these
virtual particles are placed at positions rj + RS so that they
create a regular lattice. The combination of all images has
the same average charge density as the original crystal and
thus represents a reasonable environment for the selected N

electrons. Each electron i then interacts with the arrays of
charges associated with the other electrons in the group as well
as with its own images. Only one half of the interaction energy
with images is included in (3.3); the other half belongs to the
rest of the system and is distributed among the other members
of the sum in (3.2). The model Hamiltonian Ĥmodel approaches
the original fully interacting Hamiltonian as N increases and
a larger fraction of the interactions has the exact form.

Hamiltonians ĤS and Ĥmodel possess the symmetry
described by (3.1) with lattice translations R replaced with
RS. Consequently, the eigenfunctions of ĤS are many-particle
Bloch waves,

#Kα(R) = UKα(R) exp
(

iK ·
N∑

i=1

ri

)
, (3.4)

where α is a many-body analogue of the band index and K
is the crystal momentum [108, 109]. The wave functions
of the form (3.4) can be found in the same way as the
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single-particle Bloch waves within the independent-particle
methods—as solutions to a problem of N particles confined to
a simulation cell defined by vectors L1, L2 and L3 belonging
to the set {RS} and giving *S = |L1 · (L2 × L3)|. The
dynamics of this finite N -particle system are governed by
the Hamiltonian ĤS complemented with the so-called twisted
boundary conditions [110],

#Kα(r1, . . . , ri + Lm, . . . , rN)

= #Kα(r1, . . . , ri , . . . , rN) eiK·Lm, (3.5)

where i = 1, . . . , N and m = 1, 2, 3. The indistinguishability
of electrons implies that the phase factor is the same
irrespective of which electron is moved, and therefore only a
single K vector common to all electron coordinates is allowed
in (3.4) and (3.5). Once the quantum-mechanical problem in
the finite simulation cell is solved, wave functions for the whole
crystal can be constructed. Since there are no interactions
between individual N -particle groups, these wave functions
have the form of an antisymmetrized product of the Bloch
functions (3.4), namely

#{KI }{αI }({r}) = A
[ ∞∏

I=1

#KI αI
(R(I ))

]
. (3.6)

The indicated antisymmetrization is straightforward as long as
all KI in the product are different, because each factor #KI αI

then comes from a disjoint part of the Fock space. The total
energy corresponding to the wave function (3.6) with the extra
restriction KI -= KI ′ reads as

E{KI -=KI ′ }{αI } =
∞∑

I=1

〈#KI αI
|ĤS|#KI αI

〉 (3.7)

and the lowest energy is obtained by setting αI = 0, that is, by
selecting the ground state for each of the different boundary
conditions. Although unlikely, it is possible that the true
ground state of Ĥmodel falls outside the constraint KI -= KI ′ .
In those cases, expression (3.7) with αI = 0 is an upper-
bound estimate of the actual ground-state energy of Ĥmodel

with a bias diminishing as N increases. Taking into account
the continuous character of the momentum K in the infinite
crystal and the fact that all possible boundary conditions (3.5)
are exhausted by all K vectors within the first Brillouin zone,
the ground-state energy per simulation cell can be written as

ES = 〈ĤS〉 ≡ *S

(2π)3

∫

1.B.Z.

d3K 〈#K0|ĤS|#K0〉. (3.8)

The total energy as well as expectation values of other periodic
operators are calculated as an average over all twisted boundary
conditions [110, 111]. In practice, the integral in (3.8) is
approximated by a discrete sum. The larger the simulation
cell, the smaller the number of K points needed to represent
the integral, since the first Brillouin zone of the simulation cell
shrinks and the K-dependence of the integrand gets weaker
with increasing *S.

Formula (3.8) is almost identical to the expression used in
supercell calculations within the independent-particle theories,

Figure 1. Deviation of the twist-averaged total energy (3.8) from
the exact thermodynamic limit E∞, ) = [ES(N) − E∞]/N ,
for a three-dimensional gas of non-interacting electrons with
dispersion relation εk = k2/2 at density ρ corresponding to
rs = [3/(4πρ)]1/3 = 1. The dashed line represents the average
asymptotic decay of ) that behaves as N−1.32.

the only difference being that the number of electrons at each
K point is fixed to N . This constraint is benign in the case
of insulators where the number of occupied bands is indeed
constant across the Brillouin zone. In metals, however, the
number of occupied bands fluctuates from one K point to
another, and therefore the average (3.8) does not coincide
with the exact thermodynamic limit. Figure 1 provides an
illustration of the residual error. In principle, it is possible
to remove this error with the aid of the grand-canonical
description of the simulation cell [110], but this concept is
not straightforward to apply since the supercell is no longer
charge neutral.

3.2. Ewald formula

Our definition of the simulation-cell Hamiltonian ĤS in the
preceding section was only formal and deserves a further
commentary. It turns out that V̂ee is not absolutely convergent,
and therefore it does not unambiguously specify the interaction
energy. In particular, the seemingly periodic form of the
sums in (3.3) does not by itself imply the desired periodicity
of the Hamiltonian. However, enforcing this periodicity as
an additional constraint makes the definition unique and the
resulting quantity is known as the Ewald energy V̂

(E)
ee . It can

be shown that the requirement of periodicity is equivalent to
a particular boundary condition imposed on the electrostatic
potential at infinity [112, 113]. The peculiar convergence
properties of the sums in (3.3) are a manifestation of the long-
range character of the Coulomb potential—the boundary of the
sample is never irrelevant, no matter how large its volume is.
Consequently, careful considerations are required in order to
perform the thermodynamic limit correctly.

For the purposes of practical evaluation in QMC
simulations, the Ewald energy is written as

V̂ (E)
ee (R) =

∑

j<i

VE(ri − rj ) +
N

2
lim
r→0

(
VE(r) − 1

|r|

)
, (3.9)

where VE(ri − rj ) stands for an electrostatic potential at ri

induced by the charge at rj together with its images located at
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rj + RS. An explicit formula for the Ewald pair potential VE

reads as [112, 114]

VE(ri − rj ) =
∑

RS

1
|ri − rj − RS|

erfc(κ|ri − rj − RS|)

+
4π

*S

∑

GS -=0

1
G2

S

exp
[

−
G2

S

4κ2
+ iGS · (ri − rj )

]
− π

*Sκ2
,

(3.10)

where GS are vectors reciprocal to RS, exp(iGS ·RS) = 1, and
κ is an arbitrary positive constant that does not alter the value
of VE. The omission of the GS = 0 term in the reciprocal sum
corresponds to the removal of the homogeneous component
from the potential VE. When evaluating the total energy
of a charge neutral crystal, these ‘background’ contributions
exactly cancel among the Ewald energies of electron–electron,
electron–ion and ion–ion interactions.

The important feature of the Ewald formula (3.10) is the
decomposition of the slowly converging Coulomb sum into
two rapidly converging parts, one in real space and the other in
reciprocal space. The break-up is not unique (not only due
to the arbitrariness of κ) and can be further optimized for
computational efficiency [115, 116].

3.3. Extrapolation to the thermodynamic limit

The total energy per electron εN = ES/N evaluated according
to the outlined recipe still depends on the size of the simulation
cell. These residual finite-size effects can be removed by an
extrapolation: energy εN is calculated in simulation cells of
several sizes and an appropriate function εfit(N) = ε∞ +f (N)

is subsequently fitted through the acquired data. In the end,
ε∞ is the desired energy per electron in the thermodynamic
limit, where the error term f (N) by definition vanishes,
limN→∞ f (N) = 0. Experience with a wide range of
systems [10, 117–119] indicates that as long as the integral
over the Brillouin zone in (3.8) is well converged, the
finite-size data are well approximated by a smooth function
f (N) < 0 dominated by a 1/N contribution4. The size
extrapolation is therefore quite straightforward, although often
computationally expensive due to the relatively slow decay of
the error term.

The origin and behaviour of the finite-size effects is a
subject of ongoing investigations with the aim of finding
means of accelerating the convergence of the total energy
and other expectation values to the thermodynamic limit.
Furthermore, understanding the dependence of the finite-size
errors on various parameters, such as particle density, can
reduce the number of explicit size extrapolations needed to
obtain quantities of interest. In calculations of equations of
state (section 5.3), for instance, it is then sufficient to perform
the extrapolation only at selected few, instead of all, electron
densities [119].

It turns out that, in the twist-averaged expectation values
〈ĤS〉 calculated in finite simulation cells, both the Hamiltonian
and the wave function contain biases that contribute to the
4 The finite-size scaling depends on the dimensionality of the problem and the
1/N dependence corresponds to three-dimensional samples considered here.

1/N asymptotics of the error term f (N). It has been argued
[113, 120] that the slow converging parts of the Hamiltonian
reside in the exchange-correlation energy,

VXC = 〈V̂ (E)
ee 〉 − 1

2

∫

*S×*S

ρ(r)VE(r − r′)ρ(r′) d3r d3r ′,

(3.11)

defined as the difference between the expectation value
of the Ewald energy 〈V̂ (E)

ee 〉 and the Hartree term that
describes the interaction of the charge densities ρ(r) = 〈ρ̂(r)〉.
The Hartree energy is found to converge rather rapidly with
the size of the simulation cell. In systems with cubic and
higher symmetry, the leading contribution to f (N) can be
written as [121]

fXC(N) = VXC

N
− lim

N→∞

VXC

N
= −2π

*S
lim

GS→0

S(GS)

G2
S

. (3.12)

This formula involves the static structure factor,

S(GS) = 1
N

[〈ρ̂(GS)ρ̂(−GS)〉 − |〈ρ̂(GS)〉|2], (3.13)

where ρ̂(GS) is a Fourier component of the density operator.
The exact small-momentum asymptotics of the structure
factor in Coulomb systems is given by the random phase
approximation (RPA) [122] and reads as S(GS) ∼ G2

S, which
ensures that the limit in (3.12) is well defined. In systems with
lowered symmetry and for less accurate approximations, as is
the Hartree–Fock theory where S(GS) ∼ GS, the expression
for fXC(N) must be appropriately modified [123].

The random phase approximation provides insight also
into the finite-size effects induced by restricting the wave
function into a finite simulation cell. According to the RPA, the
many-body wave function in Coulomb systems factorizes as

#(R) = #s.r.(R) exp
[

−
∑

j<i

u(ri − rj )

]
, (3.14)

where #s.r. contains only short-range correlations and the
function u(r) decays as 1/r at large distances. Such long-
range behaviour is not consistent with the boundary conditions
(3.5), and a truncation of this tail is therefore unavoidable.
The corresponding finite-size bias is most pronounced in
the expectation value of the kinetic energy T = 〈T̂ 〉 and
contributes an error term [121]

fT(N) = T

N
− lim

N→∞

T

N
= − 1

4*S
lim

GS→0
G2

S u(GS), (3.15)

where u(GS) ∼ 1/G2
S is a Fourier component of u(r).

Assuming that we are able to evaluate expressions (3.12)
and (3.15), we can decompose f (N) into parts f (N) =
fXC(N)+fT(N)+f ′(N), where f ′(N) is substantially smaller
than f (N) and the size extrapolation is therefore better
controlled. In the case of the homogeneous electron gas, the
RPA provides analytic expressions for the small-momentum
behaviour of the required quantities S(GS) ≈ G2

S/(2ωp)

and u(GS) ≈ 4π/(G2
Sωp), where ωp =

√
4πN/*S is the
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plasma frequency. Subsequently, the individual error terms
simplify to

fXC(N) = − 1
N

ωp

4
and fT (N) = − 1

N

ωp

4
. (3.16)

It can be demonstrated that these two contributions completely
recover the 1/N part of f (N), and that the residual term f ′(N)

scales as ∼N−4/3 [123].
Application of the derived finite-size corrections to

simulations of realistic solids is less straightforward, since
reliable analytic results are not available. The small-
momentum asymptotics of S(GS) and u(GS) have to be
examined numerically. Sufficiently large simulation cells are
needed for this purpose, since the smallest non-zero reciprocal
vector available in a supercell with volume *S is GS ∼ *

−1/3
S .

Utilization of the kinetic energy correction (3.15) within DMC
simulations is further complicated by the fact that the function
u(r) is not given as an expectation value of an operator, and
thus it is not clear how it could be extracted from the sampled
mixed distribution #∗

D#T. One has to rely on the trial wave
function alone to correctly reproduce the long-range tail (3.14),
which can be a challenging task in simulation cells containing
a large number of electrons.

The above analysis employs exact analytic formulae or
QMC simulations themselves to find corrections to the finite-
size biases. Alternatively, it is possible to adopt a more
heuristic approach and estimate the finite-size effects within an
approximative method. For instance, the error term f (N) can
be rewritten as f (N) = ε

(LDA)
S −ε

(LDA)
∞ +f ′′(N), where ε

(LDA)
S

and ε
(LDA)
∞ are total energies per particle provided by the LDA

with two distinct exchange-correlation functionals, and f ′′(N)

is anticipated to be considerably smaller than f (N) [124].
The exchange-correlation functional corresponding to ε

(LDA)
∞ is

constructed from properties of the homogeneous electron gas
in the thermodynamic limit (in other words, it is the standard
LDA functional), the functional leading to ε

(LDA)
S is based

on the homogeneous electron gas confined to the same finite
supercell as the quantum system under investigation. The latter
functional is not universal and needs to be found for each
simulation cell separately at the cost of auxiliary simulations
of the homogeneous Coulomb gas.

3.4. An alternative model for Coulomb interaction energy

The expression for the electron–electron interaction energy
V̂

(E)
ee has two properties: (i) it is periodic and (ii) it corresponds

to an actual, albeit artificial, system of point charges. Although
the latter property is conceptually convenient, it is not really
necessary, and any periodic potential that exhibits the correct
behaviour in the limit of the infinitely large simulation cell
is legitimate. Relaxation of the constraint (ii) in favour of
faster convergence of the total energy per particle εN to its
thermodynamic limit has been explored in a series of papers
[113, 120, 125], where the so-called model periodic Coulomb
(MPC) interaction was proposed. The replacement for the

Ewald energy V̂
(E)

ee reads as

V̂ (MPC)
ee (R) =

∑

j<i

1
|ri − rj |m

+
∑

i

∫

*S

[
VE(ri − r) − 1

|ri − r|m

]
ρ(r) d3r

−
∫

*S×*S

[
VE(r − r′) − 1

|r − r′|m

]
ρ(r)ρ(r′) d3r d3r ′,

(3.17)

where the so-called minimum image distance |r − r′|m =
minRS |r − r′ + RS| was introduced. The operator V̂

(MPC)
ee is

constructed in such a way that the Hartree part of its expectation
value is the same as in the Ewald method, whereas the slowly
converging contribution to the exchange-correlation energy
is removed. Therefore, the MPC interaction is essentially
equivalent to the Ewald formula (3.9) complemented with the
a posteriori correction (3.12). Instead of the structure factor,
it is the one-particle density ρ that has to be evaluated as an
extra quantity in this case (unless it is known exactly as in a
homogeneous system). The explicit presence of the density ρ

in the Hamiltonian is inconvenient for the DMC method where
the local energy is needed from the start of the simulation,
that is, before the density data could be accumulated. The
situation can be remedied by replacing the unknown density
ρ with an approximation ρA. For instance, the one-particle
density provided by DFT is usually quite accurate. The error
introduced by this substitution is proportional to (ρ−ρA)2 and
further diminishes as the simulation cell increases. The Ewald
and MPC energies per particle are therefore the same in the
thermodynamic limit even if the approximate charge density
is used [123, 126].

4. Trial wave functions

Accurate trial wave functions are essential for successful
applications of the QMC methods. The quality of the
employed wave functions influences the statistical efficiency
of the simulations as well as the accuracy of the achieved
results. Equally important, especially for investigations of
extended systems, is the ability to quickly compute the wave
function value and its derivatives (∇#T and ∇2#T), since
these quantities usually represent the most computationally
costly part of the whole simulation. Compact expressions are
therefore strongly preferred.

A significant part of the construction of the trial
wave functions is optimization of the variational parameters
introduced into the functional form representing #T. This
is a non-trivial task since the number of parameters is
often large, #T depends non-linearly on them, and the
quantity to be minimized (EVMC or the variance of the local
energy) is a fluctuating number. Several powerful methods
addressing these problems have been developed during the
years [127–130] and even hundreds of parameters can be
optimized with good efficiency nowadays.
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4.1. Elementary properties

Since our aim is the electronic structure, and the electrons
are subject to the Pauli exclusion principle, our trial wave
functions have to be antisymmetric with respect to pair-
electron exchanges. We assume collinear spins that are
independent of electron positions, and therefore the full wave
function #̃T can be factorized as

#̃T(R, S) =
√

N↑! N↓!
N !

∑

C

(−1)C #T(CR)

×|C{↑ . . . ↑︸ ︷︷ ︸
N↑

↓ . . . ↓︸ ︷︷ ︸
N↓

}〉, (4.1)

where S = (σ1, . . . , σN) is a vector consisting of N = N↑+N↓
spin variables. The sum runs over all distinct states of N↑
up-oriented and N↓ down-oriented spins. In the case of
N↑ = 2 and N↓ = 1, the spin states are |↑1↑2↓3〉, |↑1↑3↓2〉
and | ↑2↑3↓1〉, and the corresponding CR combinations are
{r1, r2, r3}, {r1, r3, r2} and {r2, r3, r1}. The spatial-only part
#T is antisymmetric with respect to exchanges of parallel
electrons and its symmetry with respect to exchanges of
antiparallel electrons is unrestricted. The sum in (4.1) with
the appropriate sign factors (−1)C represents the residual
antisymmetrization for the antiparallel spins.

Both #̃T and#T are normalized to unity and 〈#̃T|Â|#̃T〉 =
〈#T|Â|#T〉 holds for any spin-independent operator Â, since
the spin states |C{↑ . . . ↑↓ . . . ↓}〉 are mutually orthonormal.
Therefore, it is usually sufficient to consider only the spatial
part #T of the full many-body wave function in applications
of the VMC and DMC methods, and we limit our discussion
to #T from now on5.

Our goal is for the local energy Ĥ#T/#T to be very close
to a Hamiltonian eigenvalue and fluctuating as little as possible.
In systems with charged particles interacting via the Coulomb
potentials, it requires that the kinetic energy proportional to
∇2#T contains singularities which cancel the 1/r divergencies
of the potential. This cancellation is vital for controlling the
statistical uncertainties of the Monte Carlo estimate of the
total energy and takes place when Kato cusp conditions are
fulfilled [131, 132].

At electron–electron coincidences, these conditions can be
formulated with the aid of projections of the trial wave function
#T onto spherical harmonics Ylm centered at the coincidence
point,

#
(l,m)
T (rij , rc.m., R \ {ri , rj }) = 1

rl
ij

∫

4π

#T(R)Y ∗
lm(*ij )d*ij .

(4.2)
In this definition, the following notation has been introduced:
rij = |rij | = |ri − rj | is the electron–electron distance, *ij is
the spherical angle characterizing orientation of the vector rij

and rc.m. = (ri + rj )/2 is the position of the center of mass of

5 In fact, the DMC algorithm is defined only for the spatial part #T (consult
sections 2.2.2 and 2.2.4). Decomposition (4.1) then provides a hint at how
to calculate expectation values of spin-dependent operators from the sampled
mixed distribution #∗

D#T.

the electron pair. The cusp conditions can then be written as

lim
rij →0

1

#
(0,0)
T

∂#
(0,0)
T

∂rij

= 1
2

(4.3)

for unlike spins and

lim
rij →0

1

#
(1,m)
T

∂#
(1,m)
T

∂rij

= 1
4

(4.4)

for like spins. Expressions (4.3) and (4.4) differ because #T

is an odd function with respect to rij in the latter case, which
implies #

(0,0)
T = 0.

Analogous cusps occur in all-electron calculations when
electrons approach nuclei. Unless the s-wave component
#

(0,0)
T vanishes (for a general discussion see [132]), it can be

shown that

lim
rI i→0

1

#
(0,0)
T

∂#
(0,0)
T

∂riI

= −ZI , (4.5)

where riI is the electron–nucleus distance and ZI is the charge
of the nucleus.

A convenient functional form that meets the specified
criteria is a product of an antisymmetric part #A and a positive
symmetric expression exp(−Ucorr) [133],

#T(R) = #A(R) exp[−Ucorr(R)]. (4.6)

The Jastrow correlation factor exp(−Ucorr) incorporates the
electron–electron cusp conditions (4.3) and (4.4), and #A

ensures the fermionic character of the wave function. The
electron–ion cusps (4.5) can be included in either #A

[63, 94, 134, 135] or in the correlation factor [136]. In
simulations of extended systems, the antisymmetric part obeys
the twisted boundary conditions (section 3.1) and exp(−Ucorr)

is periodic at the boundaries of the simulation cell. We discuss
the individual parts of the trial wave function (4.6) in some
detail next.

4.2. Jastrow factor

The majority of applications fits into a framework set by the
expression

Ucorr(R) =
∑

i

χσi
(ri ) +

∑

j<i

uσiσj
(ri , rj ), (4.7)

where the functions χ and u take a specific parametrized form
[61, 137, 138] and can depend also on spins of the involved
electrons as indicated by the indices σ ∈ {↑, ↓}. The inclusion
of the uncorrelated one-body terms χ is important especially if
the trial wave function is optimized with a fixed antisymmetric
part #A [51, 101, 139]. The two-body terms u are typically
simplified to
∑

j<i

uσiσj
(ri , rj ) →

∑

j<i

uee(rij )+
∑

j<i,I

ueen(|rij |, |riI |, |rjI |),

(4.8)
where uee is an expression corresponding to a homogeneous
system and the electron–electron–nucleus term ueen takes into
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account the differences between the two-body correlations in
high-density regions near nuclei and in low density regions
far from them. Spin indices were dropped to simplify the
notation. The ueen contribution can usually be short ranged in
the |rij | parameter, whereas the simpler uee term is preferably
long ranged in order to approximate the RPA asymptotics
(3.14) as closely as allowed by the given simulation cell
[10, 136]. Of course, limited computational resources can
(and often do) enforce further simplifying compromises. In
simulations of homogeneous fermion fluids (electron gas,
3He), on the other hand, even higher order correlations were
successfully included: three-particle [9, 140–143] as well as
four-particle [144].

4.3. Slater–Jastrow wave function

The simplest antisymmetric form that can be used in place of
#A in (4.6) is a product of two Slater determinants,

#Slater
A (R) = A[ψ↑

1 (r↑
1 ) . . . ψ

↑
N↑

(r↑
N↑

)]

× A[ψ↓
1 (r↓

1 ) . . . ψ
↓
N↓

(r↓
N↓

)]

= det[ψ↑
n (r↑

i )] det[ψ↓
m(r↓

j )], (4.9)

where ψ
↑
n and ψ

↓
m are single-particle orbitals that correspond to

spin-up respectively spin-down electronic states and ψσ
n (rσ

i ) in
the arguments of the determinants stands for a Nσ ×Nσ matrix
Aσ

ni . In quantum-chemical applications, a common strategy
to improve upon the Slater wave function is to use a linear
combination of several determinants,

#m-det
A (R) =

∑

α

cα det[ψ↑
α,n(r

↑
i )] det[ψ↓

α,m(r↓
j )]. (4.10)

These multi-determinantal expansions are mostly impractical
for simulations of solids, since the number of determinants
required to describe the wave function to some fixed accuracy
increases exponentially with the system size. One case where
multiple determinants are vital even in extended systems are
fixed-node DMC calculations of excitation energies, since
adherence to proper symmetries is essential for validity of
the corresponding variational theorem [62, 145] and the trial
wave functions displaying the correct symmetry are not always
representable by a single determinant. In these instances,
however, the expansions (4.10) are short.

In simulation cells subject to the twisted boundary
conditions (3.5) specified by a supercell crystal momentum
K, the one-particle orbitals ψσ

m are Bloch waves satisfying

ψσ
Km(r + Lα) = ψσ

Km(r) eiK·Lα , (4.11)

where α = 1, 2, 3 and m is a band index in the supercell. Since
the simulation cell contains several primitive cells, the crystal
has a higher translational symmetry than implied by (4.11) and
the orbitals can be conveniently relabeled using m → (k, m′),
where k and m′ are a momentum and a band index defined
with respect to the primitive cell. The Bloch waves fulfill also

ψσ
Kkm′(r + lα) = ψσ

Kkm′(r) eik·lα , (4.12)

where lα are the lattice vectors defining the primitive cell.
Assuming that the supercell is built as Lα = nαlα with
integers nα , the momenta k compatible with (4.11) fall onto a
regular mesh

k = K + 2π

(
j1

n1

l2 × l3

l1 · (l2 × l3)

+
j2

n2

l3 × l1

l2 · (l3 × l1)
+

j3

n3

l1 × l2

l3 · (l1 × l2)

)
(4.13)

with indices jα running from 0 to nα − 1. This set of k points
corresponds to the Monkhorst–Pack grid [146] shifted by a
vector K.

A number of strategies have been devised to determine
the optimal one-particle orbitals for use in the Slater–Jastrow
wave functions, which certainly differ from the Hartree–
Fock orbitals that minimize the variational energy only when
Ucorr = 0. Ideally, the orbitals are parametrized by an
expansion in a saturated basis with the expansion coefficients
varied to minimize the VMC or DMC total energy. The
stochastic noise and the computational demands of the DMC
method make the minimization of EDMC extremely inefficient
in practice. The VMC optimization of the orbitals was
successfully performed in atoms and small molecules of the
first-row atoms [130, 147, 148], but the method is still too
demanding for applications to solids.

To avoid the large number of variational parameters
needed to describe the single-particle orbitals, another family
of methods has been proposed. The orbitals in the Slater–
Jastrow wave function are found as solutions to self-consistent-
field equations that represent a generalization of the Hartree–
Fock theory to the presence of the Jastrow correlation factor
[139, 149–151]. These methods were tested in atoms as
well as in solids within the VMC framework [149, 152].
Unfortunately, the wave functions derived in this way did not
lead to lower DMC energies compared with wave functions
with orbitals from the Hartree–Fock theory or from the
LDA [149, 153]. It is unclear whether the lack of observed
improvements in the fermionic nodal surfaces stems from
insufficient flexibility of the employed correlation factors or
from the fact that only applications to weakly correlated
systems were considered so far.

An even simpler approach is to introduce a parametric
dependence into the self-consistent-field equations without a
direct relation to the actual Jastrow factor. An example are
the Kohn–Sham equations corresponding to some exchange-
correlation functional, in which it is possible to identify a
parameter (or several parameters) measuring the degree of
correlations in the system and thus mimicking, to a certain
degree, the effect of the Jastrow factor. Particular hybrid
functionals with variable admixture of the exact-exchange
component [37] were successfully employed for this purpose in
conjunction with the DMC optimization, so that the variations
of the fermionic nodal structure could be directly quantified
[154–157]. Sizeable improvements of the DMC total energy
associated with the replacement of the Hartree–Fock (or
LDA) orbitals with the orbitals provided by the optimal
hybrid functional were observed in compounds containing
3d elements.
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Evaluation of the Slater determinants dominates the com-
putational demands of large-scale Monte Carlo calculations,
and it is therefore very important to consider its implemen-
tation carefully. Notably, schemes combining a localized
basis set (atom-centered Gaussians or splines [158, 159]) with
a transformation of the single-particle orbitals into localized
Wannier-like functions can achieve nearly linear scaling of
the computational effort with the system size when applied to
insulators [160–162].

4.4. Antisymmetric forms with pair correlations

Apart from the Pauli exclusion principle, the Slater determinant
does not incorporate any correlations among the electrons,
since it is just an antisymmetrized form of a completely
factorized function, that is, of a product of one-body orbitals.
A better account for correlations can be achieved by wave
functions built as the appropriate antisymmetrization of a
product of two-body orbitals. The resulting antisymmetric
forms are called Pfaffians and can generally be written
as [59, 163]

#Pfaff
A (R) = A

[ NP∏

m=1

φσm,1σm,2
m (r

σm,1
m,1 , r

σm,2
m,2 )

N−2NP∏

n=1

ψσn
n (rσn

n )

]
,

(4.14)

where NP is the number of correlated pairs, NP " N/2.
The two-body orbitals φ

↑↓
m that couple unlike-spin electrons

(singlet pairs) are symmetric, whereas φ
↑↑
m and φ

↓↓
m (triplet

pairs) are antisymmetric functions. The inclusion of the
one-body orbitals ψσ

n allows for odd N or for only partially
paired electrons. The Pfaffian wave functions can be
viewed as compacted forms of particular multi-determinantal
expansions (4.10).

An important representative of the functional form (4.14)
is the Bardeen–Cooper–Schrieffer (BCS) wave function [164]
projected onto a fixed number of particles, which is obtained
from (4.14) by considering a singlet pairing in an unpolarized
system (N↑ = N↓ = N/2) with all two-body orbitals
identical. In that case, the antisymmetrization reduces to a
determinant [165],

#BCS
A (R) = det[φ↑↓(r↑

i , r↓
j )], (4.15)

where φ↑↓(r↑
i , r↓

j ) is to be understood as a N/2 ×N/2 matrix
Aij . In the quantum-chemical literature, this functional form is
also known as the antisymmetrized geminal power. Note that
the form of the BCS wave function does not by itself imply
formation of Cooper pairs and their condensation, since the
determinant in (4.15) reduces to the Slater wave function (4.9)
when the pair orbital is taken in the form

φ
↑↓
Slater(r

↑
i , r↓

j ) =
N/2∑

n=1

ψ↑
n (r↑

i )ψ↓
n (r↓

j ) . (4.16)

The BCS–Jastrow wave functions were employed in
investigations of ultra-cold atomic gases (section 5.8)
[166, 167] as well as in calculations of the electronic structure
of atoms [168] and molecules [169].

Trial wave functions with triplet pairing among particles
were suggested in the context of liquid 3He two decades ago
[165, 170]. It was realized only recently that even in these
cases the exponentially large number of terms constituting the
Pfaffian can be rearranged in a way that facilitates its evaluation
in a polynomial time, and therefore allows application of the
Pfaffian–Jastrow trial wave functions in conjunction with the
VMC and DMC methods [163, 171].

4.5. Backflow coordinates

Another way to further increase the variational freedom of the
antisymmetric part of the trial wave function is the backflow
transformation #A(R) → #A(X ), where the new collective
coordinates X are functions of the original electron positions
R. The designation ‘backflow” originates from an intuitive
picture of the correlated motion of particles introduced by
Feynman to describe excitations in quantum fluids [172, 173].

In order to illustrate the origin of such coordinates, let
us consider homogeneous interacting fermions in a periodic
box with a trial wave function of the Slater–Jastrow type,
#T(R) = det[exp(ik · ri )] exp[

∑
i<j γ (rij )]. The Jastrow

factor is optimized so that its Laplacian cancels out the
interactions as much as possible within the variational freedom.
Applying the kinetic energy operator to the Slater–Jastrow
product results in local energy of the form

[Ĥ#T](R)

#T(R)
= Evar(R) −

(
∇ ln | det[exp(ik · ri )]|

)

·
(

∇
∑

i<j

γ (rij )

)
, (4.17)

where we can qualitatively characterize Evar(R) as a mildly
varying function close to a constant while the second term
represents a non-constant ‘spurious’ contribution, which
appears as a scalar product of two fluxes. Consider now the
following modification of the Slater–Jastrow form, #T(R) =
det[exp(ik · xi )] exp[

∑
i<j γ (rij )], where the single-particle

coordinates are modified as xi = ri+
∑

j ϑ(rij )with ϑ(0) = 0.
One can show that with a proper choice of the function ϑ(rij ),
the Laplacian of det[exp(ik·xi )] produces terms that cancel out
most of the spurious contributions in the local energy given by
(4.17). Of course, the backflow form generates also new non-
constant terms so that the wave function has to be optimized
for the overall maximum gain using variational strategies.

In general, the new coordinates are written as xi =
ri + ξi (R) with ξ taken in a form analogous to the
parametrization of the Jastrow factor Ucorr (4.7) and (4.8).
The vector ξ contains two-particle and possibly higher order
correlations and, in systems with external potentials, also
inhomogeneous one-body terms. The backflow transformation
has been very successful in simulations and the understanding
of homogeneous quantum liquids [9, 141, 143, 144], and
some progress has recently been reported in applying these
techniques also to atoms and molecules [163, 174].

15



Rep. Prog. Phys. 74 (2011) 026502 J Kolorenč and L Mitas

5. Applications

In the last part of this paper, we will go through selected
applications of the QMC methodology to the electronic
structure of solids. In practically all listed cases, with
the exception of sections 5.1 and 5.8 dealing with model
calculations, the Slater–Jastrow functional form is employed
as the trial wave function. The reviewed results therefore map
out the accuracy that is achievable in the realistic solids when
the mean-field topology of the fermionic nodes is assumed. It
is shown that the quality of the DMC predictions is remarkable
despite this relatively simple approximation.

5.1. Properties of the homogeneous electron gas

The homogeneous electron gas, also referred to as jellium, is
one of the simplest many-body models that can describe certain
properties of real solids, especially the alkali metals. At zero
temperature, the model is characterized by the densities of
spin-up and spin-down electrons, ρ↑ and ρ↓, or, alternatively,
by the total density ρ = ρ↑ + ρ↓ and the spin polarization
ζ = |ρ↑ − ρ↓|/ρ. It is convenient to express the density ρ

and other quantities in terms of a dimensionless parameter
rs = [3/(4πρ)]1/3/aB, where aB is the Bohr radius. For
example, the density of valence electrons in the sodium metal
corresponds to rs ≈ 4.

The total energy of jellium is particularly simple since
it includes only the kinetic energy of the electrons, the
Coulomb electron–electron repulsion, and a constant which
represents the interaction of the electrons with an inert
uniformly distributed positive charge that maintains overall
charge neutrality of the system. A straightforward dimensional
analysis shows that the kinetic energy dominates the Coulomb
interaction at high densities (small rs), where the electrons
behave like a nearly ideal gas and the unpolarized state (ζ = 0)
is the most stable. In the limit of very low densities, on the other
hand, the kinetic energy becomes negligible and the electrons
‘freeze’ into a Wigner crystal [175].

The homogeneous electron gas at zero temperature was
one of the first applications of the VMC and DMC methods. In
the early investigations [10, 11], only the unpolarized (ζ = 0)
and fully polarized (ζ = 1) fluid phases were considered
together with the Wigner crystal. Later, fluids with partial spin
polarization were taken into account as well [176–179]. The
most accurate trial wave functions (the Slater–Jastrow form
with backflow correlations) were used in [179] where it was
found that the unpolarized fluid is stable below rs = 50±2. At
this density, the gas undergoes a second-order phase transition
into a partially polarized state, and the spin polarization ζ

then monotonically increases as the fluid is further diluted.
Eventually, the Wigner crystallization density is reached, for
which two DMC estimates exist: rs = 100 ± 20 [11] and
rs = 65 ± 10 [178]. The discrepancy is presumably caused
by the very small energy differences between the competing
phases over a wide range of densities, and by uncertainties in
the extrapolation to the thermodynamic limit. Advanced finite-
size extrapolation methods, outlined in section 3 earlier, could
possibly shed some new light on these quantitative differences.

Indeed, recent calculations show further improvements in
accuracy of the total and correlation energies [180]. A number
of static properties of the liquid phases that provide a valuable
insight into the details of the electron correlations in the jellium
model and in Coulomb systems in general have been evaluated
by QMC methods as well [86, 177, 179, 181].

The impact of the QMC calculations of the homogeneous
electron gas [11] has been very significant because of the
prominent position of the model as one of the simplest extended
many-body systems, and also due to the fact that the QMC
correlation energy has become widely used as an input in
density-functional calculations [35, 182].

The results quoted so far referred to the homogeneous
Coulomb gas in three dimensions. The two-dimensional
gas, which is realized by confining electrons to a surface,
interface or to a thin layer in a semiconductor heterostructure,
has received similar if not even greater attention of QMC
practitioners [10, 183–188]. The Wigner crystallization was
predicted to occur at rs = 37±5 [183]6, a value that coincides
with the density rs = 35±1 where a metal–insulator transition
was experimentally observed later [189].

5.2. Cohesive energies of solids

The cohesive energy measures the strength of the chemical
bonds holding the crystal together. It is defined as the
difference between the energy of a dilute gas of the constituent
atoms or molecules and the energy of the solid. Calculation
of the cohesive energy is a stringent test of the theory, since
it has to accurately describe two different systems with very
dissimilar electronic structure.

The first real solids whose cohesive energies were
evaluated by a QMC method were carbon and silicon
in the diamond crystal structure [101, 190]. These early
VMC estimates were later refined with the DMC method
[191–194]. The most accurate results to date are shown in
table 1, where we have compiled the cohesive energies of a
number of compounds investigated with the QMC methods.
Corresponding experimental data are shown for comparison.
The electronic total energy calculated in QMC simulations
is not the only contribution to the cohesive energy of a
crystal, and the zero-point and thermal motion of the nuclei
has to be accounted for as well, especially in compounds
containing light atoms. We refer the reader to the original
references for details of these corrections. At present, a direct
QMC determination of the phonon spectrum is generally not
practicable due to unresolved issues with the reliable and
efficient calculation of forces acting on the nuclei [48]. The
effects due to the nuclear motion are thus typically estimated
within the DFT.

Overall, the agreement of the DMC results with
experiments is excellent; the errors are smaller than 0.1 eV
most of the time, including the Na and Mg elemental metals
where coping with the finite-size effects is more difficult.
Notably, the DMC performs (almost) equally well in strongly
correlated solids represented in table 1 by 3d transition metal

6 Note that in two dimensions the dimensionless density parameter rs is
defined as rs = 1/(aB

√
πρ).
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Table 1. Cohesive energies of solids (in eV). Shown are DMC
numbers unless only VMC data are available for the particular
compound; those instances are marked with (∗). The latest results
are preferred in cases where multiple calculations exist. If not
indicated otherwise, the experimental cohesive energies are deduced
from the room-temperature formation enthalpies quoted in [198].

Compound QMC Experiment

Li 1.09 ± 0.05 [196] 1.65
1.57 ± 0.01 [197] (∗)

Na 1.14 ± 0.01 [124] 1.11
1.0221 ± 0.0003 [126]

Mg 1.51 ± 0.01 [106] 1.52
Al 3.23 ± 0.08 [199] (∗) 3.43 [199]
MgH2 6.84 ± 0.01 [106] 6.83
BN 12.85 ± 0.09 [200] (∗) 12.9 [201]
C (diamond) 7.346 ± 0.006 [194] 7.37 [202]
Si 4.62 ± 0.01 [193] 4.62 [203]
Ge 3.85 ± 0.10 [109] 3.86
GaAs 4.9 ± 0.2 [195] (∗) 6.7 [204]
MnO 9.29 ± 0.04 [157] 9.5
FeO 9.66 ± 0.04 [119] 9.7
NiO 9.442 ± 0.002 [205] 9.5
BaTiO3 31.2 ± 0.3 [206] 31.57

oxides MnO, FeO and NiO. The GaAs result is an obvious
outlier with a systematic error of almost 2 eV that the authors
identify with the deficiencies of their pseudopotentials [195].
The two decades old application of the DMC method to
the Li metal [196] is the only all-electron simulation in the
list and its comparison with a subsequent pseudopotential
calculation [197] suggests that a large part of the discrepancy
with the experiment is due to the fixed-node errors in the
high-density core regions. It is likely that a substantial
improvement would be observed if the all-electron calculations
were revisited with today’s state-of-the-art trial wave
functions.

5.3. Equations of state

The equilibrium volume V0, the lattice constant a0 and the
bulk modulus B0 = V (∂E/∂V )|V =V0 are among the most
basic parameters characterizing elastic properties of a solid
near the ambient conditions. Within QMC methods, these
quantities are determined by evaluating the total energy at
several volumes around V0 and by fitting an appropriate
model [207, 208] of the equation of state E(V ) through the
acquired data (see figure 2 for an illustration). Results of this
procedure for a wide range of solids are shown in table 2
together with the corresponding experimental data. As in
the case of the cohesion energy discussed in the preceding
section, the raw QMC numbers correspond to the static lattice
and corrections due to the motion of nuclei may be needed
to facilitate the comparison with experimentally measured
quantities. Particular details about applied adjustments can
be inspected in the original papers.

The data in table 2 demonstrate that the equilibrium
geometries predicted by the QMC simulations are very good
and all lie within 2% of the experiments, in many cases within
only a few tenths of a per cent. The agreement is slightly
worse for the bulk moduli, where errors of several per cent

Figure 2. DMC total energies of the rock-salt (squares) and the
NiAs (circles) phases of FeO. Statistical error bars are smaller than
the symbol sizes. Lines are fits with the Murnaghan equation of
state. Inset: difference between the Gibbs potentials of the two
phases at T = 0 K; its intercept with the x-axis determines the
transition pressure Pt . Adopted from [119].

are common and in a few instances the mean values of the
Monte Carlo estimates deviate from the experimental numbers
by more than 10%. Note, however, that determination of
the curvature of E(V ) near its minimum is impeded by the
stochastic noise of the QMC energies and that the error bars
on the less favourable results are relatively large.

QMC methods are not limited to the covalent solids listed
in table 2. Investigation of the equation of state of solid
neon [209] represents an application to a crystal bound by van
der Waals forces. Although the shallowness of the minimum of
the energy–volume curve in combination with the Monte Carlo
noise prevented the determination of the lattice constant and
the bulk modulus to a sufficient accuracy, the DMC equation
of state was still substantially better than results obtained with
LDA and GGA. This example, together with a recent study
of interlayer binding in graphite [210], illustrates that the
DMC method provides a fair description of dispersive forces
already with the simple nodal structure defined by the single-
determinantal Slater–Jastrow wave function. More accurate
trial wave functions incorporating backflow correlations were
employed to study van der Waals interactions between
idealized metallic sheets and wires [211].

Calculations of the equations of state are by no means
restricted to the vicinity of the equilibrium volume, and many
of the references quoted in table 2 study the materials up to
very high pressures. Such investigations are stimulated by
open problems from earth and planetary science as well as
from other areas of materials physics. Combination of the
equation of state with the pressure dependence of the Raman
frequency [135, 212], both calculated from first principles with
QMC, can provide a very accurate high-pressure calibration
scale for use in experimental studies of condensed matter under
extreme conditions [135].
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Table 2. Equilibrium lattice constants a0, equilibrium volumes V0 (per formula unit) and bulk moduli B0 for a number of solids investigated
with the QMC methods. The first line for each compound contains QMC predictions, the second line shows experimental data. Theoretical
results for Li, Al and GaAs come from VMC simulations, the rest of the table corresponds to the DMC method.

Compound a0 (Å) V0 (Å3) B0 (GPa)

Li 3.556 ± 0.005 [197] 13 ± 2 [197]
3.477 [213] 12.8 [214]

Al 3.970 ± 0.014 [199] 65 ± 17 [199]
4.022 [199] 81.3 [199]

GaAs 5.66 ± 0.05 [195] 79 ± 10 [195]
5.642 [215] 77 ± 1 [216]

LiH 4.006 [217] 35.7 ± 0.1 [217]
4.07 ± 0.01 [218] 32.2 ± 0.03 [218]

BN 11.812 ± 0.008 [135] 378 ± 3 [135]
11.812 ± 0.001 [219] 395 ± 2 [219]

Mg 23.61 ± 0.04 [106] 31.2 ± 2.4 [106]
23.24 [220] 36.8 ± 3.0 [221]

MgO 4.23 [222] 158 [222]
4.213 [223] 160 ± 2 [223]

MgH2 30.58 ± 0.06 [106] 39.5 ± 1.7 [106]
30.49 [224] —

C 3.575 ± 0.002 [212] 437 ± 3 [212]
(diamond) 3.567 [198] 442 ± 4 [225]
Si 5.439 ± 0.003 [193] 103 ± 10 [193]

5.430 [226] 99.2 [227]
SiO2 37.6 ± 0.3 [228] 32 ± 6 [228]
(quartz) 37.69 [229] 34 [229]
FeO 4.324 ± 0.006 [119] 170 ± 10 [119]

4.334 [230] ≈180 [231]

5.4. Phase transitions

Theoretical understanding of structural phase transitions often
necessitates a highly accurate description of the involved
crystalline phases. Simple approximations are known to
markedly fail in a number of instances due to significant
changes in the bonding conditions across the transition. A
classic example is the quartz–stishovite transition in silica
(SiO2), where LDA performs very poorly and GGA is needed
to reconcile the DFT picture with experimental findings [232].
The DMC method has been employed to investigate pressure-
induced phase transitions in Si [193], MgO [222], FeO [119]
and SiO2 [228].

A transition from the diamond structure to the β-tin
phase in silicon was estimated to occur at Pt = 16.5 ±
0.5 GPa [193], which lies outside the range of experimentally
determined values 10.3–12.5 GPa (see [193] for compilation
of experimental literature). Since the diamond structure is
described very accurately with the DMC method, as testified
by the data in tables 1 and 2, it was suggested that the
discrepancy is a manifestation of the fixed-node errors in
the high-pressure β-tin phase. This view is supported by a
recent calculation utilizing the so-called phaseless auxiliary-
field QMC, a projector Monte Carlo method that shows smaller
biases related to the fermion sign problem in this particular case
and predicts the transition at 12.6±0.3 GPa [233]. It should be
noted, however, that the volume at which the transition occurs
was fixed to its experimental value in this later study, whereas
the approach pursued in [193] was entirely parameter-free.

In iron oxide (FeO), a transition from the rock-salt
structure to a NiAs-based phase is experimentally observed
to occur around 70 GPa at elevated temperatures [234]

and to move to higher pressures exceeding 100 GPa when
the temperature is lowered [235]. The DMC simulations
summarized in figure 2 place the transition at Pt = 65±5 GPa
[119]. This value represents a significant improvement over
LDA and GGA that both find the NiAs structure more stable
than the rock-salt phase at all volumes. The agreement
with experiments is nevertheless not entirely satisfactory,
since the DMC prediction corresponds to zero temperature
where experimental observations suggest stabilization of the
rock-salt structure to higher pressures. Sizeable sensitivity
of the transition pressure Pt to the choice of the one-
particle orbitals in the Slater–Jastrow trial wave function was
demonstrated in a subsequent study [157], but those wave
functions that provided higher Pt also increased the total
energies, and therefore represented poorer approximations
of the electronic ground state. It remains to be determined
whether the discrepancy between the experiments and the
DMC simulations is due to inaccuracies of the Slater–Jastrow
nodes or if some physics not included in the investigation, for
instance the inherently defective nature of the real FeO crystals,
plays a significant role.

Investigations of phase transitions involving a liquid
phase, such as melting, are considerably more involved
due to a non-trivial motion of ions. An often pursued
approach is a molecular dynamics simulation of ions subject
to forces derived from the electronic ground state that is
usually approximated within the DFT. More accurate results
would be achieved if the forces were calculated using QMC
methods instead. At present, this is generally not feasible
due to excessive noise of the available force estimates [48].
Nevertheless, it was demonstrated that one can obtain an
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improved picture of the energetics of the simulated system
when its electronic energy is evaluated with the aid of a QMC
method while still following the ion trajectories provided by
the DFT forces [236, 237].

5.5. Lattice defects

The energetics of point defects substantially influences high-
temperature properties of crystalline materials. Experimental
investigations of the involved processes are relatively difficult,
and it would be very helpful if the electronic-structure theory
could provide dependable predictions. The role of electron
correlations in point defects was investigated with the DMC
method in silicon [192, 238] and in diamond [194]. The
formation energies of selected self-interstitials in silicon were
found to be about 1.5 eV larger than in LDA, whereas the
formation energy of vacancies in diamond came out as
approximately 1 eV smaller than in LDA. These differences
represent 20–30% of the formation energies and indicate that
an improved account of electron correlations is necessary for
an accurate quantitative understanding of these phenomena.

Charged vacancies constituting the Schottky defect were
investigated in MgO [239], and in this case the predictions
of the DMC method differ only marginally from the results
obtained within the LDA. The non-zero net charge of
the supercells employed in these simulations represents an
additional technical challenge in the form of increased finite-
size effects that require a modification of some of the size
extrapolation techniques discussed in section 3 [240, 241].

5.6. Surface phenomena

Materials surfaces are fascinating systems from the point of
view of electronic structure and correlation effects. The
vacuum boundary condition provides surface atoms with more
space to relax their positions and surface electronic states
enable the electronic structure to develop features which cannot
form in the periodic bulk. This leads to a plethora of surface
reconstruction possibilities with perhaps the most studied
paradigmatic case of 7 × 7 Si(1 1 1) surface reconstruction.
Seemingly, QMC methods should be straightforward to
apply to these systems, similarly to the three-dimensional
periodic solids. However, mainly technical reasons make such
calculations quite difficult. There are basically two possible
means of modeling a surface. One option is to use a two-
dimensional periodic slab geometry which requires certain
minimal slab thickness in order to accurately represent the
bulk environment for the surface layers on both sides. The
resulting simulation cells end up quite large, making many
such simulations out of reach at present. The other option
is to use a cluster with appropriate termination that mimics
the bonding pattern of the bulk atoms. This strategy assumes
that the termination does not affect the surface geometries
in a substantial manner. Moreover, it is applicable only
to insulating systems. Given these difficulties, the QMC
simulations of surfaces are rare and this research area awaits
to be explored in future.

The simplest possible model for the investigation of
surface physics is the surface of the homogeneous electron

Table 3. Comparison of the surface energies (in erg cm−2) of the
homogeneous electron gas calculated by a number of
electronic-structure methods [243]. The DMC calculations were
done with the LDA orbitals in the trial wave functions.

rs LDA GGA DMC RPA

2.07 −608.2 −690.6 −563 ± 45 −517
2.30 −104.0 −164.1 −82 ± 27 −34
2.66 170.6 133.0 179 ± 13 216
3.25 221.0 201.2 216 ± 8 248
3.94 168.4 158.1 175 ± 8 182

gas that has been studied by DFT as well as QMC methods.
The first QMC calculations [242] were later found to be biased
due to complications arising from finite-size effects, especially
due to different scaling of finite-size corrections for bulk and
surface. Once these issues had been properly taken into
account by Wood et al [243], the QMC results exhibited trends
that were consistent with DFT and RPA methods which are
expected to perform reasonably well for this model system
(see table 3).

Applications to real materials surfaces are still very few.
The cluster model was used in the calculations of the Si(0 0 1)
surface by Healy et al [244] with the goal of elucidating a long-
standing puzzle in reconstruction geometry of this surface,
which exhibits regularly spaced rows of Si–Si dimers. The
dimers could take two possible conformations: they could
either be positioned symmetrically or form an alternating
buckling in a zig–zag fashion. While experiments suggested
the buckled geometry as the low-temperature ground state,
theoretical calculations produced conflicting results, in which
various methods favoured one or the other structure. The
QMC calculations [244] concluded that the buckled geometry
is lower by about 0.2 eV/Si2. This problem was studied
with QMC methodology also by Bokes et al [245], who
found that several systematic errors (such as uncertainty of
geometries in cluster models and pseudopotential biases)
added to about 0.2 eV, and therefore prevented unequivocal
determination of the most stable geometry. This conclusion
corroborated the experimental findings which suggested that
at temperatures above 100 K the distinct features of buckling
were largely washed out and indicated that the effect is
energetically very small. Very recently, the QMC study of
this system was repeated by Jordan and coworkers [246], with
the conclusion that the buckled structure is lower by about
0.1 eV/Si2 and that the highest level correlated basis set method
which they used (CASPT3) is consistent with this finding.
It was also clear that once the correlations were taken into
account, the energy differences between the competing surface
reconstruction patterns were becoming very small. This brings
the calculations closer to reality, where the two structures could
be within a fraction of 0.1 eV/Si2, as suggested by experiments.

Perhaps the most realistic QMC calculations of surfaces
have been done on LiH and MgO surfaces by the group
of Alfè and Gillan [217, 247], who compared predictions of
several DFT functionals with the fixed-node DMC method.
The results showed significant differences between various
exchange-correlation functionals. For the MgO(1 0 0) surface,
the best agreement with QMC results was found for the LDA
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functional, while for the LiH surface the closest agreement
between QMC and DFT predictions was found for particular
GGA functionals.

Clearly, more applications are needed to assess the
effectiveness of QMC approaches for investigation of surface
physics. As we have already mentioned, the surfaces represent
quite challenging systems for QMC methods. Nevertheless,
we expect more applications to appear in the future since the
field is very rich in variety of correlation effects that are difficult
to capture by more conventional methods.

5.7. Excited states

The VMC and the fixed-node DMC methods both build on the
variational principle, and they therefore seem to be applicable
exclusively to the ground-state properties. Nevertheless, the
variational principle can be symmetry constrained, in which
case the algorithms search for the lowest lying eigenstate
within the given symmetry class (provided, in the case of the
DMC method, that the eigenstate is non-degenerate [62]), and
thus enable access to selected excited states.

Excitation energies in solids are calculated as differences
between the total energy obtained for the ground state and
for the excited state. It is a computationally demanding
procedure since the stochastic fluctuations of the total energies
are proportional to the number of electrons in the simulation
cell, whereas the excitation energy is an intensive quantity.
Trial wave functions for excited states are formed by modifying
the determinantal part of the ground-state Slater–Jastrow wave
function such that an occupied orbital in the ground-state
determinant is replaced by a virtual orbital. This substitution
corresponds to an optical absorption experiment where an
electron is excited from the valence band into the conduction
band. The fact that both the original occupied orbital and
the new virtual orbital necessarily belong to the same K

point restricts the types of excitations that can be studied,
since only a limited number of k points from the primitive
cell fold to the given K point of the simulation cell (recall
equations (4.11)–(4.13)). Clearly, the larger the simulation cell,
the finer the mapping out of excitations that can be performed.

Averaging over twisted boundary conditions (section 3.1)
is not applicable to the calculations of the excitation energies,
since both the ground state and the excited state are fixed to a
single K point. This is not a significant issue, since finite-size
effects tend to cancel very efficiently in the differences of the
total energies calculated at the same K point.

DMC simulations following the outlined recipe were
utilized to estimate the band gap in solid nitrogen [248] and
in transition-metal oxides FeO [119] and MnO [249]. The
gaps calculated for the two strongly correlated oxides are
compared with experimental data in table 4. The ratio of the
FeO and MnO gaps is reproduced quite well, but the DMC
gaps themselves are somewhat overestimated, likely due to
inaccuracies of the trial wave functions used for the excited
states. A large number of excitations were calculated in
silicon [250] and in diamond [145, 251], and the obtained data
were used to map, albeit sparsely, the entire band structure. In
these weakly correlated solids, the agreement with experiments

Table 4. Band gaps (in eV) of Mott insulators MnO and FeO
calculated with the fixed-node DMC method. Experimental data are
provided for comparison.

Compound DMC Experiment

MnO 4.8 ± 0.2 [249] 3.9 ± 0.4 [253]
FeO 2.8 ± 0.3 [119] ≈2.4 [254]

Figure 3. Band gap in hcp solid helium as a function of density
calculated with several electronic-structure methods. The gap is
determined as the energy needed to promote an electron from the
highest valence state at the 6 point to the lowest conduction state at
the M point. The DMC data from the smaller simulation cell
(8 atoms) show a significant finite-size error, the data from the larger
cell (64 atoms) are converged with respect to the system size and
virtually coincide with the GW predictions. Metallization densities
estimated by the individual methods are indicated as well. Adopted
with permission from [252].

is very good. Recently, a pressure-induced insulator–metal
transition was investigated in solid helium by calculating
the evolution of the band gap with compression [252]. As
illustrated in figure 3, the DMC band gaps were found to
practically coincide with the gaps calculated with the GW
method.

5.8. BCS–BEC crossover

The repulsive Coulomb interaction considered so far is not the
only source of non-trivial many-body effects in the electronic
structure of solids. A weak attractive interaction among
electrons is responsible for a very fundamental phenomenon—
the electronic states in the vicinity of the Fermi level rearrange
into bosonic Cooper pairs that condense and give rise to
superconductivity. The ground state of the system can be
described by the BCS wave function #BCS discussed earlier
in section 4.4 [164]. The Cooper pair is an entity that has
a meaning only as a constituent of #BCS. In order to form
an isolated two-electron bound state, some minimal strength
of the two-body potential is needed in three dimensions,
whereas the Cooper instability itself occurs for arbitrarily weak
attraction. When the interaction is very strong, the composite
bosons formed as the two-electron bound states indeed exist
and undergo the Bose–Einstein condensation (BEC). It turns
out that a mean-field description of both the BCS and BEC
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limits leads to the same form of the many-body wave function,
which indicates that the interacting fermionic system is likely
to continuously evolve from one limit to the other when the
interaction strength is gradually changed [255–257]. A large
amount of research activity aimed at a detailed understanding
of this physics was stimulated by the possibility of realizing
the BCS–BEC crossover in experiments with optically trapped
ultra-cold atoms [258].

In a dilute Fermi gas with short-ranged spherically
symmetric inter-particle potentials, the interactions are fully
characterized by a single parameter, the two-body scattering
length a. The system is interpolated from the BCS regime to
the BEC limit by varying 1/a from −∞ to ∞. In experiments,
this is achieved by tuning across the Feshbach resonance with
the aid of an external magnetic field. Particularly intriguing
is the quantum state of an unpolarized homogeneous gas
at the resonance itself, where the scattering length diverges
(1/a = 0). The only relevant length scale remaining in the
problem in this case is the inverse of the Fermi wave vector
1/kF, and all ground-state properties should therefore be
universal functions of the Fermi energy EF. Since there is
only a single length scale, the system is said to be in the unitary
limit. The total energy can be written as

E = ξEfree = ξ
3
5
EF, (5.1)

where Efree denotes the energy of a non-interacting system
and ξ is a universal parameter. The universality of ξ

is illustrated in figure 4 that shows the ratio E/Efree as
a function of the interaction strength calculated for three
different particle densities using the DMC method with the
trial wave function of the BCS–Jastrow form. All three curves
indeed intersect at 1/a = 0 with the parameter ξ estimated as
0.42 ± 0.01 [166, 259–261]. The energy calculated with the
fermionic nodes fixed by the Slater–Jastrow wave function is
considerably higher and would lead to ξ ≈ 0.54 [166], which
underlines the significance of particle pairing in this system.

A further insight into the formation of the Cooper pairs is
provided by evaluation of the condensate fraction that can be
estimated from the off-diagonal long-range order occurring in
the two-particle density matrix [263]. The condensate fraction
α is given as

α = N

2
lim
r→∞

ρP
2↑↓(r) (5.2)

and the so-called projected two-particle density matrix ρP
2↑↓

is [264]

ρP
2↑↓(r)= 1

4π

∫
d*r

∫
d3NR #∗(r1 + r, r2 + r, r3, . . . , rN)

×#(r1, r2, r3, . . . , rN), (5.3)

where r1 corresponds to the spin-up state and r2 to the spin-
down state. The evolution of α with interaction strength
calculated with the DMC method [265] is shown in figure 5. It
is found that approximately half of the particles participate in
pairing in the unitary regime and this fraction quickly decreases
toward the BCS limit, where only states in the immediate
vicinity of the Fermi level contribute to Cooper pair formation.

Figure 4. Fixed-node DMC energies of 38 fermions in a cubic box
with the periodic boundary conditions plotted as a function of
interaction strength. BEC regime is on the left, BCS limit on the
right. Shown are three particle densities ρ characterized by the
dimensionless parameter rs defined in section 5.1. The simulations
employed BCS–Jastrow trial wave function. Statistical error bars
are smaller than the symbol sizes. Data taken from [262].

Figure 5. Condensate fraction in a dilute Fermi gas as a function of
the inter-particle interaction strength specified by the two-body
scattering length a (interaction increases from right to left as in
figure 4). Compared are fixed-node DMC simulations (symbols)
and a self-consistent mean-field theory [266] (line). Adopted with
permission from [265].

Note that the condensate fraction vanishes if the Slater–Jastrow
form is used in place of the trial wave function.

The DMC simulations were used to study also the total
energy and the particle density profile in the unitary Fermi
gas subject to a harmonic confining potential [267–269]. Due
to the lowered symmetry compared with the homogeneous
calculations referred to above, the system sizes were more
limited. To extrapolate the findings to a larger number of
particles, a DFT fitted to the DMC data can be employed [270].

6. Concluding remarks

In this paper we have attempted to provide an overview
of selected quantum Monte Carlo methods that facilitate
the calculation of various properties of correlated quantum
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systems to a very high accuracy. Particular attention has
been paid to technical details pertaining to applications of
the methodology to extended systems such as bulk solids.
We hope that we have been able to demonstrate that the
QMC methods, thanks to their accuracy and a wide range of
applicability, represent a powerful and valuable alternative to
more traditional ab initio computational tools.
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[63] Manten S and Lüchow A 2001 On the accuracy of the
fixed-node diffusion quantum Monte Carlo method J.
Chem. Phys. 115 5362

[64] Grossman J C 2002 Benchmark quantum Monte Carlo
calculations J. Chem. Phys. 117 1434–40

[65] Ortiz G, Ceperley D M and Martin R M 1993 New stochastic
method for systems with broken time-reversal symmetry:
2D fermions in a magnetic field Phys. Rev. Lett.
71 2777–80

[66] Trotter H F 1959 On the product of semi-groups of operators
Proc. Am. Math. Soc. 10 545–51

[67] Suzuki M 1985 Decomposition formulas of exponential
operators and Lie exponentials with some applications to

quantum mechanics and statistical physics J. Math. Phys.
26 601–12

[68] Caffarel M and Claverie P 1988 Development of a pure
diffusion quantum Monte Carlo method using a full
generalized Feynman–Kac formula: I. Formalism J. Chem.
Phys. 88 1088–99

[69] Ceperley D M and Bernu B 1988 The calculation of excited
state properties with quantum Monte Carlo J. Chem. Phys.
89 6316–28

[70] Assaraf R, Caffarel M and Khelif A 2000 Diffusion Monte
Carlo methods with a fixed number of walkers Phys. Rev.
E 61 4566–75

[71] Caffarel M and Claverie P 1988 Development of a pure
diffusion quantum Monte Carlo method using a full
generalized Feynman–Kac formula: II. Applications to
simple systems J. Chem. Phys. 88 1100–9

[72] Flad H and Dolg M 1997 Probing the accuracy of
pseudopotentials for transition metals in quantum Monte
Carlo calculations J. Chem. Phys. 107 7951–9

[73] Schautz F and Flad H J 1999 Quantum Monte Carlo study of
the dipole moment of CO J. Chem. Phys. 110 11700–7

[74] Umrigar C J, Nightingale M P and Runge K J 1993 A
diffusion Monte Carlo algorithm with very small time-step
errors J. Chem. Phys. 99 2865–90

[75] Nemec N 2010 Diffusion Monte Carlo: exponential scaling
of computational cost for large systems Phys. Rev. B
81 035119

[76] Hetherington J H 1984 Observations on the statistical
iteration of matrices Phys. Rev. A 30 2713–9

[77] Buonaura M C and Sorella S 1998 Numerical study of the
two-dimensional Heisenberg model using a Green
function Monte Carlo technique with a fixed number of
walkers Phys. Rev. B 57 11446–56

[78] Jones A, Thompson A, Crain J, Müser M H and Martyna G J
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Schmidt K E 2006 Pfaffian pairing wave functions in
electronic-structure quantum Monte Carlo simulations
Phys. Rev. Lett. 96 130201

[172] Feynman R P 1954 Atomic theory of the two-fluid model of
liquid helium Phys. Rev. 94 262–77

[173] Feynman R P and Cohen M 1956 Energy spectrum of the
excitations in liquid helium Phys. Rev. 102 1189–204
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iron-rich phase boundary Phys. Chem. Minerals
10 106–13

[231] Zhang J 2000 Effect of defects on the elastic properties of
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