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8:00 - 10:00 PM
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GGT (LR 2/2) GT (LR 5/2) DS (LR 5/1)  CT (LR 4/2)
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Johnson 5:45 - 6:00

Tentative Schedule (subject to change)

Sunday, June 21, 2015

Registration - Hotel Lero

Welcome Party - Hotel Lero, at pool

Monday, June 22, 2015

Registration - IUC

Welcome (LLR)

Agol (LLR)

Coffee Break

10:30 - 11:10 Brock Ferry Izydorek

11:20 - 12:00 Bromberg Okun Janczewska

Registration - IUC

Lunch Break

3:40 - 4:20 Canary Eda Sanjurjo

4:30 - 5:10 Bridgeman  Koyama
Sánchez-

Gabites

5:20 - 6:00 Kim Willett del Portal

Tuesday, June 23, 2015

Gabai (LLR)

Coffee Break

10:30 - 11:10 Vogtmann Belegradek Misiurewicz

11:20 - 12:00 Algom-Kfir Virk Stimac

Lunch Break

4:30 - 5:10
Charney Babenko Ishii

5:20 - 6:00
Feighn Matic Hazard
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GGT (LR 2/2) GT (LR 5/2) DS (LR 5/1)  CT (LR 4/2)
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Megaritis 11:20 - 11:35

Georgiou  11:45 - 12:00

Cencelj  3:40 - 3:55

Gupta 4:05 - 4:20

Clais 4:30 - 4:45

Fink  4:55 - 5:10

Pfaff  5:20 - 5:35

Pfaff  5:45 - 6:00

8:00

9:00 - 9:50

GGT (LR 2/2) GGT (LR 5/2) DS (LR 5/1)  CT (LR 4/2)

Zava 10:30 - 10:45

Kawamura  10:55 - 11:10

Yamauchi 11:20 - 11:35

11:45 - 12:00

3:40 - 4:20

4:30 - 4:45

4:55 - 5:10

5:20 - 5:35

5:45 - 6:00

Departure from Hotel Lero at 9:00 AM

Wednesday, June 24, 2015 - Excursion

Thursday, June 25, 2015

Boyland (LLR)

Coffee Break

10:30 - 11:10 Guirardel Levin Tal

11:20 - 12:00 Fujiwara Gaifullin de Carvalho

Lunch Break

3:40 - 4:20 Aramayona Lafont Barge

4:30 - 5:10 Tao Nowak Kennedy

5:20 - 6:00 Rafi Melikhov Kuperberg

CONFERENCE DINNER IN THE RESTAURANT “KLARISA” 

Friday, June 26, 2015

Schwartz (LLR)

Coffee Break

10:30 - 11:10 Przytycki Groves Oprocha

11:20 - 12:00 Hilion Cashen Kwietniak

Lunch Break

Deverman (workshop, LLR)

4:30 - 5:10 Sisto Niblo Boronski

5:20 - 6:00 Horbez Osin Pilyugin

IUC = Inter-University Centre, Address: don Frana Bulića 4, 20000 Dubrovnik, Croatia

Hotel Lero, Address: Iva Vojnovića 14, 20000 Dubrovnik, Croatia

GGT = Geometric Group Theory

GT = Geometric Topology

DS = Dynamical Systems

CT = Contributed Talks

LR = Lecture Room

LLR = Large Lecture Room, Ground Floor
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Places to eat (According to Tripadvisor with filters Lunch, Mid-range prices)

A) Onofrio, Poljana Paska Milicevica 3, Korean food 
B) Mea Culpa, Za Rokom 3, Italian
C) Presa, Dordiceva 2,  Fast food, sandwiches
D) Portun, Od Sigurate 2, Mediterranean, Croatian 
E) Nishta, Prijeko bb, Vegetarian, Vegan
F) Stara Loza, Prijeko 24, French, Mediterranean, Contemporary 
G) Taj Mahal, Nikole Gucetica 2, Indian, Pizza, European, Yugoslavian 
H) Gil's Little Bistro, Petilovrijenci 4, French
I) Konoba Dalmatino, Miha Pracata 6, Seafood, Croatian 
J) Moskar Konoba, Prijeko 16, Seafood, Mediterranean, Vegetarian, Croatian 
K) Pizzeria Petica 5, Izmedu Polaca 7, Italian
L) Segreto Pasta&Grill, Cvijete Zuzoric 5, Italian
M) Restaurant Dubrovnik, Marojice Kaboge 5, Mediterranean, Croatian 
N) Konoba Jezuite, Poljana Rudera Boskovica 5, Mediterranean, Croatian 
O) Bistro Teatar, Ulica Cvijete Zuzoric 2, Mediterranean, Croatian 
P) Marco Polo Restaurant, Lucarica 6
Q) Oliva Pizzeria, Lucarica 5, Italian
R) Barba, Boskoviceva 5, Fish & Chips, Seafood, Sandwiches, Mediterranean 
S) Azur Dubrovnik, Pobijana 10, Asian,  Mediterranean, Fusion, Asian fusion 
T) Pizzeria&Spaghetteria Storia, Kneza Damjana Jude 6, Italian 
U) Konoba Ribar, Damjana Jude bb, Italian, Seafood, Mediterranean, Croatian 
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Plenary Speakers

Veering triangulations and pseudo-Anosov flows
Ian Agol
UC Berkeley
ianagol@math.berkeley.edu

Coauthors: Franois Gueritaud

Attached to a pseudo-Anosov map of a surface, we associated a canonical
ideal triangulation of the mapping torus punctured along the singular fibers
called a veering triangulation. We’ll survey some of the properties and open
questions about these triangulations. Then we’ll discuss an extension of the
construction to pseudo-Anosov flows with certain properties. This is joint work
with Franois Gueritaud.

Dynamics lifted to Abelian covers
Phil Boyland
Uinversity of Florida
boyland@ufl.edu

Lifting to a covering space helps unravel dynamics and the universal free
Abelian cover is particularly useful for computing asymptotic averages. The
lifted dynamics fall roughly into three cases depending on the growth of the
action of a homeomorphism on first homology: exponential, polynomial and
none. The results and objects of study vary in the three cases. Semiconjugacies,
invariant decompositions and eigen-cocyles in the first, transitivity in the cover
in the second, and rotation sets in the third. The strongest results are known for
surface dynamics and in particular, for pseudoAnosov maps. We give a general
introduction followed by sample results in each of the cases.

On the classification of Heegaard splittings
David Gabai
Princeton University
Gabai@math.princeton.edu

Coauthors: Toby Colding (MIT) Dan Ketover (Princeton)

We discuss how geometric methods can be used to obtain an algorithm to
enumerate without duplication the irreducible Heegaard splittings of closed non
Haken hyperbolic 3-manifolds.
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The Plaid Model and Outer Billiards
Richard Schwartz
Brown University
res@math.brown.edu

I will explain a combinatorial model which produces embedded polygons
with integer-coordinate vertices. The model depends on a rational number pa-
rameter. It has a surprisingly rich combinatorial structure, exhibiting renor-
malization phenomena and a hierarchical structure. It is related both to outer
billiards on kites and to Pat Hooper’s Truchet tile system. I’ll illustrate my talk
with many computer pictures and demos.

7



Geometric Topology

Finite rigidity of curve complexes
Javier Aramayona
Universite de Toulouse III
aramayona@gmail.com

Coauthors: Christopher J. Leininger

A celebrated theorem of Ivanov, extended by Korkmaz and Luo, states that
the curve complex C(S) of a surface is ”simplicially rigid”: every automorphism
of C(S) is, except in a few well-understood cases, induced by an element of the
mapping class group Mod(S). In this talk we will give a construction, for every
surface S, of a finite subcomplex X(S) of C(S) that is also ”rigid”, in the sense
that every injection of X(S) into C(S) is the restriction of an element of Mod(S).
These finite rigid sets enjoy some curious properties; for instance, In the case
of S a sphere with punctures, X(S) happens to coincide with the generator for
the homology of C(S) identified by Birman-Broaddus-Menasco. We will then
explain how to express C(S) as an increasing union of finite rigid sets, thus
offering a new proof of the theorem of Ivanov-Korkmaz-Luo. Time permitting,
we will describe an alternate proof of this latter result, due to Jesus Hernandez,
which has interesting consequences to the rigidity of self-maps of C(S).

Spaces of nonnegatively curved metrics on surfaces
Igor Belegradek
Georgia Tech
ib@math.gatech.edu

Coauthors: Jing Hu

I will survey recent progress on the spaces of nonnegatively curved metrics
on the 2-sphere and the plane. The methods is a mix of infinite-dimensional
topology and complex analysis.

Bounds on Renormalized Volume for Convex Co-compact hyperbolic
3-manifolds.
Martin Bridgeman
Boston College
bridgem@bc.edu

Coauthors: R. Canary

In this paper, we consider convex cocompact hyperbolic 3-manifolds and
compare the convex core volume VC(M) to their renormalized volume VR(M).
We show that they differ by a constant which depends only on the injectivity
radius of the Poincare metric on the domain of discontinuity generalizing a
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recent result of Schlenker in the quasifuchsian case. We further show that the
difference necessarily tends to infinity as the injectivity radius tends to zero and
obtain an optimal description of the rate of divergence as the injectivity radius
tends to zero.

Existence and uniqueness of group structures on covering spaces over
groups
Katsuya Eda
Department of Mathematics, Waseda University
eda@waseda.jp

Coauthors: Vlasta Matijević

Let f : X → Y be a covering map from a connected space X onto a topolog-
ical group Y and let x0 ∈ X be a point such that f(x0) is the identity of Y. We
examine if there exists a group operation on X which makes X a topological
group with the identity x0 and f a homomorphism of groups. We prove that
the answer is positive in two particular cases: if f is an overlay map over a
locally compact group Y or if Y is locally compactly connected. In this way
we generalize previously obtained results for overlay maps over compact groups
and covering maps over locally path-connected groups. Furthermore, we prove
that in both cases the group structure on X is unique.

[1] J. Dydak, Overlays and group actions, preprint.
[2] K. Eda, V. Matijević, Finite-sheeted covering maps over 2-dimensional

connected, compact Abelian groups, Topology Appl. 153 (2006), 1033-1045.
[3] K. Eda, V. Matijević, Covering maps over solenoids which are not cov-

ering homomorphisms, Fundamenta Math.221 (2013), 69-82..
[4] R. H. Fox, Shape theory and covering spaces, Lecture Notes in Math.,

Vol. 375, Springer, Berlin, 1974, pp 77-90.
[5] S. A. Grigorov, R. N. Gumerov, On the structure of finite coverings of

compact connected groups, Topology Appl. 153 (2006), 3598-3614.
[6] S. Mardešić, V. Matijević, Classifying overlay structures of topological

spaces,
[7] V. Matijević, Classifying finite-sheeted covering mappings of paracompact

spaces, Revista Mat.Complut. 16 (2003), 311-327.
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An Infiite-Dimensional Phenomenon in Finite-Dimensional Topology
Steve Ferry
Rutgers University
sferry@math.rutgers.edu

Coauthors: Alexander N. Dranishnikov, Shmuel Weinberger

The Gromov-Hausdorff metric is a metric on the isomorphism classes of
compact metric spaces. The Gromov-Hausdorff distance from a metric space X
to the 1 point metric space p is (X)/2, so being Gromov-Hausdorff close imposes
little connection between the topologies of compact metric spaces.

However, if one assumes a uniform local contractibility condition, then much
more structure is preserved. Let ρ : [0, R)→ [0,∞) be a function with ρ(0) = 0
and ρ(t) ≥ t, such that ρ is continuous at 0. Following Borsuk and Gromov,
we say that X is LGC(ρ) if every ball of radius r < R in X is nullhomotopic
in the concentric ball of radius ρ(r). Sufficiently Gromov-Hausdorff close n-
dimensional LGC(ρ) spaces are homotopy equivalent – and there are explicit
estimates on the required degree of closeness in terms of n and ρ.

An old result of Ferry (for n > 4, the 3 and 4 follow from Freedman-Quinn
and Perelman) shows that Gromov-Hausdorff close manifolds are often homeo-
morphic.

Theorem. For every n, and contractibility function ρ, precompact collections
of closed LGC(ρ) Riemannian manifolds in Gromov-Hausdorff space contain
only finitely many homeomorphism types.

However, it can happen that for suitable precompact collections of closed
Riemannian manifolds with contractibility function ρ, for every epsilon, there
are epsilon-balls (not centered at manifolds!) containing more than one home-
omorphism type.

Definition. We will say that closed manifolds M and N are deformation
equivalentif there are paths Mt and Nt, 0 ≤ t < 1 in a pre compact subset
of Gromov-Hausdorff space consisting of manifolds with contractibility function
rho such that the Gromov-Hausdorff distance between Mt and Nt goes to zero
as t approaches 1. It turns out that this relation is an equivalence relation. A
manifold that possesses no nontrivial deformation is immutable.

Theorem 1. If Mm, m ≥ 7, is a closed simply connected manifold such that
pi2(M) vanishes, then there are manifolds which are deformation equivalent to
M in a precompact collection of LGC(ρ)-manifolds for some rho if and only if
KOm(M) has odd torsion.

For the general non-simply connected situation, there are additional sec-
ondary invariants that arise in the problem. These invariants are related to
eta invariants, except that the familiar Atiyah-Patodi-Singer invariants usually
give rise to torsion free invariants, and the generalization of them we need must
contain torsion information.

We shall give a complete analysis of the deformation problem for dimensions
≥ 7. Here are some consequences and examples:

Theorem 2. For any M , the set of homotopy structures f : M ′ → M that
are obtainable by deformations in some precompact subset of LGC(ρ) manifolds
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in Gromov-Hausdorff space defines a subset SCE(M) that is an odd torsion
subgroup of the structure group S(M).

Theorem 3. If M has word hyperbolic fundamental group, or has fundamen-
tal group that is a lattice is a semisimple Lie group, SCE(M) is finite.

Theorem 4. There is a compact M such that SCE(M) is infinite.
The Borel conjecture is currently unresolved in its full generality, so the

following corollary to our analysis is especially gratifying.
Theorem 5. If M is aspherical then SCE(M) = 0.

Characterization of n-dimensional compacta in the product of n curves
Akira Koyama
Waseda University
akoyama@waseda.jp

Coauthors: Jozef Krasinkiewicz a and Stanislaw Spiez (the Institute of Mathe-
matics, Polish Academy of Sciences)

One of important embedding theorems in dimension theory was given by
J. Nagata (1958): Everyn-dimensional space, n ≥ 2, can be embedded in the
topological product X1 × · · ·Xn+1 of 1-dimensional spaces. On the contrary
Borsuk(1975) showed the following interesting result. The 2-sphere S2 is not
embeddable in any product of two curves. Analogous result holds for all spheres
Sn, n ≥ 3.

Motivated by these results, we investigated geometric, algebraic and com-
binatorial characterizations of n-dimensional compacta in the product of n 1-
dimensional compacta. For example, we introduced a kind of generalized man-
ifolds, called quasi n-manifolds, and showed that if a locally connected quasi
n-manifold X is in a product of n curves, then rank H1(X) ≥ n. From a
view point of algebraic way is the following: if a compactum X is in a product
of n curves and Hn(X;G) 6= 0 for some abelian group G, then H1(X;G) 6= 0.
Those lead the above Borsuk’s theorem.

We are showing results, topics and posing questions related to these embed-
ding theorems.
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Hyperbolic groups with boundary an n-dimensional Sierpinski space
Jean-Francois Lafont
Ohio State University
jlafont@math.ohio-state.edu

Coauthors: Bena Tshishiku

For n > 6, consider a torsion-free hyperbolic group G whose boundary at
infinity is an (n−2)-dimensional Sierpinski space. I will explain why G must be
the fundamental group of an aspherical n-manifold with non-empty boundary.
Concerning the converse, for each n > 3, there are aspherical n-manifolds with
boundary, with hyperbolic fundamental group G, whose boundary at infinity is
*not* homeomorphic to Sierpinski (n− 2)-space.

Unstable Intersection Conjecture
Michael Levin
Ben-Gurion University of the Negev
mlevine@math.bgu.ac.il

Compact metric spaces X and Y are said to unstably intersect in Rn if any
maps from X and Y to Rn can arbitrarily closely be approximated by maps
with disjoint images. The Unstable Intersection Conjecture asserts that X and
Y unstably intersect in Rn if and only if dim X × Y ¡n. We present recent
results leaving this conjecture open only in the case dim X =dim Y =3, dim X
× Y=4 and n=5.

Algebraic topology of non-compact non-ANRs with applications in
geometric topology
Sergey Melikhov
Steklov Math Institute (Moscow)
melikhov@mi.ras.ru

Homology and cohomology theories are well-understood for (separable) poly-
hedra and for (metrizable) compacta — in other words, for countable unions or
sequential inverse limits of compact polyhedra. Here ”well-understood” means,
in particular, axiomatic description — which is by the usual axioms of Eilen-
berg and Steenrod with Wallace’s strong excision and the two infinite additivity
axioms of Milnor (see [P] for the case of ordinary theories). Let us note that
this description incidentally excludes pathological theories (such as singular)
and refines homotopy invariance to (strong) shape invariance.

In contrast, homology and cohomology of non-compact non-ANRs are far
from being well-understood, because direct and inverse limits of abelian groups
do not commute in general. Here are three old examples.
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1) The two computations of complex K-theory of the group Zp of p-adic
integers — based on representing a classifying space BZp as a countable union
of inverse limits or as an inverse limit of countable unions of compact polyhedra
— yield two different answers [W; §6]. According to the interesting computation,
BZp is cohomologically infinite-dimensional, but it is this computation that had
been only a handwaving until recently. Let us note that there is no contribution
from derived limits in either of the two computations.

2) The so-called Čech homology, or quasi-homology qHn(X) of the separable
metrizable space X is the inverse limit of the nth homology groups of the nerves
of open covers of X (beware that it is not a homology theory in any sense since
it is not exact). There is also the pseudo-homology pHn(X), which is the direct
limit of the nth quasi-homology groups of compact subsets of X. The natural
homomorphism pHn(X)→ qHn(X) from the direct limit of inverse limits to the
inverse limit of direct limits (of finitely generated groups) is generally neither
injective nor surjective for Polish spaces, as shown respectively by P. S. Alexan-
droff (1947) and E. F. Mishchenko (1953). In fact, we improve their examples
to make X locally compact.

3) There is an obvious genuine extension of homology and cohomology to sep-
arable metrizable spaces: take the direct limit of homology of compact subsets of
X (this is called Steenrod–Sitnikov homology) or the direct limit of cohomology
of nerves of open covers of X (this is called Čech cohomology). In both cases this
is a direct limit of refined inverse limits (the refinement takes into account the
lim1 term) of finitely generated groups. (Thus, Steenrod–Sitnikov homology is
a ”correction” of pseudo-homology.) By going in the opposite order, one obtains
the so-called strong homology and cohomology — a refined inverse limit (taking
into account also the higher limk) of direct limits of finitely generated groups.
(Thus, strong homology attempts to ”correct” Čech quasi-homology.) Weirdly
enough, the coincidence of (ordinary) strong homology with Steenrod–Sitnikov
homology can be neither proved nor disproved in ZFC for the space as simple as
N+ × N (where N denotes the infinite countable discrete space, and + denotes
the one-point compactification) [MP]. The same can be said of the two kinds
of cohomology of the metrizable quotient N+ ×N/({∞}×N) (with topology of
the quotient uniformity).

It turns out that paradoxes of this sort can be explained, and either exploited
to advantage (as with (1) and (2)) or remedied (as with (3)) by means of a
more geometric approach to inverse limits based on uniform spaces. The finite-
dimensional case of this approach is not hard and long known in essense (Isbell,
1950s); the infinite-dimensional case (which is essential in the context of (1)) is
based on a new theory of infinite-dimensional uniform polyhedra [M].

I) The classifying space of a topological group is naturally a uniform space,
which is well-defined up to uniform homotopy equivalence. This yields a new
kind of cohomology for topological groups (other than Lie groups, for which
there is nothing new), which can be used to make sense out of Williams’ mys-
terious computation (1).

An application is the following p-adic Borsuk–Ulam theorem: there exists
no Zp-equivariant uniformly continuous map from EZp to any compactum with
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a free action of Zp. (For instance, to Floyd’s 2-dimensional cell-like compactum
[W; §5].)

II) In contrast to homology, the analogous homomorphism in cohomology
pHn(X) → qHn(X) from the direct limit of inverse limits to the inverse limit
of direct limits of finitely generated groups is shown to be surjective for lo-
cally compact separable metrizable spaces X, and its kernel is computed to be
lim1Hn−1(Ki)/lim

1
fgH

n−1(Ki), where the compact subsets Ki exhaust X (so

that each Ki ⊂ IntKi+1), and the ”tame” derived limit lim1
fg is the direct

limit of the lim1 of inverse sequences of finitely generated subgroups. Here the
quasi-cohomology qHn(X) is the inverse limit of the nth cohomology groups of
compact subsets of X; and the pseudo-cohomology pHn(X) is the direct limit
of the nth quasi-cohomology groups of the nerves of open covers of X.

An application is to embeddability of compacta in Euclidean spaces (a part of
this is joint work with E. V. Shchepin). An n-dimensional compactum X embeds
in R2n for n > 3 if and only if the van Kampen obstruction θ(X) ∈ H2n(X∗) van-
ishes in Cech cohomology, whereX∗ = (X×X\diagonal)/(Z/2). Next, X quasi-
embeds in R2n for n > 2 (i.e., is an inverse limit of compact n-polyhedra that
embed there) if and only if the image of θ(X) in quasi-cohomology qH2n(X∗)
vanishes. Finally, X pseudo-embeds in R2n for n > 3 (i.e., is the limit of an
inverse sequence of compact n-polyhedra Xi whose finite mapping telescopes
X[0,k] admit level-preserving embeddings in R2n × [0, k]) if and only if the im-
age of θ(X) in pseudo-cohomology pH2n(X∗) vanishes. Thus the difference
between lim1, lim1

fg and 0 corresponds precisely to the difference between
embeddability, pseudo-embeddability and quasi-embeddability. The notion of
pseudo-embeddability is interesting because it is equivalent to embeddability
when X is a solenoid (i.e., an inverse limit of coverings between polyhedra) and
to quasi-embeddability when X is an ANR (here n > 3).

III) The definition of strong (co)homology is ”wrong” (philosophically —
in the sense of Occam’s razor), and its ”correction” is merely an alternative
computation (in ZFC) of the usual (co)homology, at least for Polish spaces.
Thus, for instance, the Cech cohomology of a Polish space X can be computed
with a spectral sequence of the form Epq2 = limpHq(Kλ)⇒ Hp+q(X), where the
Kλ, λ ∈ Λ, are nonempty compact subsets of X and the derived limit functors
limp are ”corrected” by taking into account a natural topology on the indexing
poset Λ. Namely, when Λ is zero-dimensional (in particular, this applies to
X = N+ × N/({∞} × N)), the ”corrected” derived limits of a diagram Gλ,
λ ∈ Λ, are the homology groups of the cochain complex whose nth term is now
not the usual product

∏
(λ,λ1,...,λn−1)∈Λn Gλ, but its ”correction” — the group

of all global sections of the natural sheaf with stalks Gλ over the indexing space
Λn. In the general case, we define the derived limit limpG of the sheaf G of
abelian groups over a partially ordered space Λ as the pth cohomology group of
the induced sheaf ∆(G) over the topological order complex ∆(Λ). Topological
order complexes (see [V]) are a special case of the homotopy colimit of a diagram
indexed by a continuous category (R. Vogt, 1973).

Incidentally, it is clear from this that the definition of strong shape is also
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“wrong” for non-compact spaces, and so is the definition of compactly generated
strong shape; we will discuss the “correction” for Polish spaces if time permits.

This work is supported by the Russian Science Foundation under grant 14-
50-00005.

[MP] S. Mardešić, A. V. Prasolov, Strong homology is not additive, Trans.
Amer. Math. Soc., 307 (1988), 725–744; http://www.ams.org/journals/tran/1988-

307-02/S0002-9947-1988-0940224-7/

[M] S. A. Melikhov, Infinite-dimensional uniform polyhedra, 39 pp. (2012);
http://arxiv.org/abs/1109.0346

[P] S. V. Petkova, On the axioms of homology theory, Mat. Sbornik 90
(1973), 607–624; English transl., Math. USSR-Sb. 90 (1974), 597–614;
http://mi.mathnet.ru/eng/msb3069

[V] V. A. Vassiliev, Topological order complexes and resolutions of discrim-
inant sets, Publ. Inst. Math. (Belgrade) 66/80 (1999), 165-185;
https://eudml.org/doc/120742

[W] R. F. Williams, The construction of certain 0-dimensional transforma-
tion groups, Trans. Amer. Math. Soc., 129 (1967), 140–156;
http://www.ams.org/journals/tran/1967-129-01/S0002-9947-1967-0212127-3/

Coarsely n-to-1 maps
Žiga Virk
University of Ljubljana
virk@fmf.uni-lj.si

Coarsely n-to-1 maps are an asymptotic version of maps whose fibers are
of cardinality at most n. They are naturally induced by finite group actions
on a space. If such action is sufficiently tame then the induced map is a coarse
equivalence by the varc-Milnor Lemma. However, a more general action induces
a coarsely n-to-1 map which changes the coarse type of a space.

In this talk I will present a number of properties of coarsely n-to-1 maps.
These will include their role in the dimension raising theorem and the classifica-
tion of the asymptotic dimension (a joint work with T. Miyata), the behaviour
of the induced maps on the Gromov boundary of a geodesic hyperbolic space (a
joint work with J. Dydak), and the impact on property A and recently intro-
duced related invariants (a joint work with J. Dydak and with K. Austin).
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Geometric Group Theory

A dense geodesic in reduced Outer Space
Yael Algom-Kfir
University of Haifa
algomy@gmail.com

Coauthors: Catherine Pfaff

We will prove that there exists a geodesic ray in reduced Outer Space that
projects to a dense subset of its quotient by Out(Fn), in fact to the quotient of
a certain unit tangent bundle of reduced Outer Space. This is an analogue of a
theorem of Masur from 1981, proving the existence of a dense geodesic in the
unit tangent space of Moduli space of a closed surface.

Hyperbolic volume, pants decompositions, and Weil-Petersson geom-
etry
Jeffrey Brock
Brown University
Jeffrey Brock@brown.edu

Coauthors: Kenneth Bromberg

Following work of Schlenker, and inspired by Kojima and Macshane, we
recount new developments illustrating new connections between Weil-Petersson
geometry and 3-dimensional hyperbolic volume. In particular we give the first
explicit lower bounds on systole of moduli spaces of Riemann surfaces with the
Weil-Petersson metric in terms of volumes of hyperbolic mapping tori. The
results also give explicit upper and lower bounds on Weil-Petersson distances
between rational points in the boundary of moduli space in terms of hyperbolic
volume and pants distance. This is joint work with Ken Bromberg.

The capacity dimension of the space of ending laminations and the
asymptotic dimension of the curve complex
Ken Bromberg
University of Utah
ken.w.bromberg@gmail.com

Coauthors: Mladen Bestvina

We give linear bounds, in terms of complexity of the surface, on the two
dimensions mentioned in the title.
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Amalgam Anosov representations
Richard Canary
University of Michigan
canary@umich.edu

Coauthors: Michelle Lee, Andres Sambarino and Matthew Stover

We introduce amalgam Anosov representations of an one-ended hyperbolic
group into a semi-simple Lie groups and prove that the set of all amalgam
Anosov representations forms a domain of discontinuity for the action of the
outer automorphism group on the relevant character variety. We show that if
the restriction of the representation to each rigid or Fuchsian vertex group of
the JSJ-splitting is Anosov, then the representation is amalgam Anosov.

Contracting elements in infinitely presented small cancellation groups
Christopher Cashen
Universitt Wien
christopher.cashen@univie.ac.at

Coauthors: Goulnara Arzhantseva, Dominik Gruber, David Hume

We study contraction properties of closest point projection to a local geodesic
in small cancellation groups.

We construct (many) examples of finitely generated, torsion-free groups in
which every element is strongly contracting, but the group is not a subgroup of
a hyperbolic group.

Contracting Boundaries: New Developments
Ruth Charney
Brandeis University
charney@brandeis.edu

In a recently published paper with Harold Sultan, we introduced a quasi-
isometry invariant boundary for CAT(0) spaces, called the contracting bound-
ary. In this talk I will review the basics of that construction and talk about some
new developments due to D. Murray and M. Cordes, including dynamical prop-
erties of the contracting boundary and a generalization to Morse boundaries for
proper geodesic metric spaces.
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The boundary of the free splitting graph
Mark Feighn
Rutgers-Newark
feighn@rutgers.edu

Coauthors: Mladen Bestvina and Patrick Reynolds

The free splitting graph S has as its vertices the free splittings of the free
group Fn and its edges correspond to collapse maps between splittings. S was
shown to be hyperbolic by Handel-Mosher. We discuss ongoing work using
fold lines in the closure of Culler-Vogtann’s Outer space to explore/describe the
boundary of S.

Handlebody subgroups in a mapping class group
Koji Fujiwara
Kyoto University
kfujiwara@math.kyoto-u.ac.jp

Coauthors: Mladen Bestvina

Suppose subgroups A,B < MCG(S) are given and let < A,B > be the sub-
group they generate. We discuss a question by Minsky asking when < A,B >=
A ∗A∩B B for handlebody subgroups A, B. We construct an example such that
Heegaard distance between A and B is arbitrarily large, A ∩ B is trivial but
< A,B > is not A ∗B.

Dehn fillings and elementary splittings of groups
Daniel Groves
University of Illinois at Chicago
groves@math.uic.edu

Coauthors: Jason Manning

We investigate certain conditions about the (non-)existence of splittings of
relatively hyperbolic groups, and how these conditions persist under long Dehn
fillings. This implies that certain topological features of the (Bowditch or Gro-
mov) boundary are preserved by long fillings.
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Torsion groups acting on CAT(0) cube complexes.
Vincent Guirardel
Universit de Rennes 1
vincent.guirardel@univ-rennes1.fr

Coauthors: Rmi Coulon

We construct examples of finitely generated, infinite torsion groups having a
proper action on an infinite dimensional cube complex. This implies that such
a group has the Haagerup property.

Geosphere laminations for the sphere complex
Arnaud Hilion
AMU - Aix-Marseille University
arnaud.hilion@univ-amu.fr

Coauthors: Thierry Coulbois and Camille Horbez

I will explain how geosphere laminations (introduced by Siddhartha Gadgil
and Suhas Pandit) can be useful to investigate the Gromov boundary of the
sphere complex.

The Tits alternative for the automorphism group of a free product
Camille Horbez
Universit de Rennes 1
camille.horbez@univ-rennes1.fr

A group G is said to satisfy the Tits alternative if every subgroup of G either
contains a nonabelian free subgroup, or is virtually solvable. I will present a
version of this alternative for automorphism groups of free products of groups. A
classical theorem of Grushko states that every finitely generated group G splits
as a free product of the form G1 ∗ ... ∗Gk ∗ FN , where FN is a free group, and
all groups Gi are nontrivial, non isomorphic to Z, and freely indecomposable.
In this situation, I prove that if all groups Gi and Out(Gi) satisfy the Tits
alternative, then so does Out(G). I will give some applications, and present
a proof of this theorem, in parallel to a new proof of the Tits alternative for
mapping class groups of compact surfaces. The proof relies on the study of the
actions of some subgroups of Out(G) on a version of the outer space, and on a
hyperbolic simplicial graph.
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RAAGs in braids
Sang-hyun Kim
Seoul National University
s.kim@snu.ac.kr

Coauthors: Thomas Koberda (Yale University)

We show that every right-angled Artin group (RAAG) embeds into a RAAG
defined by the opposite graph of a tree. It follows that an arbitrary RAAG
is a quasi-isometrically embedded subgroup of a pure braid group and of the
symplectomorphism groups of the disk and the sphere with Lp metrics (for
suitable p). This is a joint work with Thomas Koberda.

Extended quotients, Langlands duality and the Baum Connes conjec-
ture for Coxeter groups
Graham Niblo
University of Southampton
G.A.Niblo@soton.ac.uk

Coauthors: Nick Wright and Roger Plymen

Examining the Baum-Connes conjecture for the (3,3,3) triangle group reveals
a relationship between the Baum Connes assembly map and Langlands dual-
ity which can be visualised in some simple cases using the extended quotient
construction.

Kazhdan projections and random walks
Piotr Nowak
Institute of Mathematics of the Polish Academy of Sciences
pnowak@impan.gov.pl

Coauthors: Cornelia Drutu

A Kazhdan projection is a proper projection in the maximal group C*-
algebra of a locally compact group that exists if and only if the group has
Kazhdan’s property (T). Kazhdan projections have applications to K-theory,
in particular, they are the source of the currently known counterexamples to
various versions of the Baum-Connes conjecture.

The goal of this talk is to present a new construction of Kazhdan projections
via random walks. This construction is new in particular in the classical setting
of Hilbert spaces, but works in the setting of uniformly convex Banach spaces
and has several applications. In particular, we use this construction to answer
questions on Banach space versions of property (T), obtain new shrinking target
theorems for actions of higher rank groups and construct new examples of ghost
projections, which are relevant for higher index theory.
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Action Dimension and L2-homology
Boris Okun
University of Wisconsin-Milwaukee
okun@uwm.edu

Coauthors: Kevin Schreve

The action dimension of a group G, actdim(G) is the least dimension of a
contractible manifold which admits a proper G-action. The action dimension
conjecture states that L2-homology of any group G vanishes above actdim(G)/2.

I will explain the equivalence of this conjecture to the classical Singer con-
jecture.

Small subgroups of acylindrically hyperbolic groups
Denis Osin
Vanderbilt University
denis.osin@gmail.com

Coauthors: Ashot Minasyan

A subgroup H of a group G is called small if there exists a non-elementary
acylindrical action of G on a hyperbolic space such that H has bounded or-
bits. Examples of small subgroups include proper hyperbolically embedded
subgroups, quasi-convex subgroups of infinite index in (relatively) hyperbolic
groups, and convex cocompact subgroups of mapping class groups and Out(Fn).
We show that many results known in some particular cases can be recovered in
this general context.

Balanced walls in random groups
Piotr Przytycki
McGill and Polish Academy of Sciences
pprzytyc@mimuw.edu.pl

Coauthors: John Mackay

We study a random group G in the Gromov density model and its Cayley
complex X. For density < 5/24 we define walls in X that give rise to a nontrivial
action of G on a CAT(0) cube complex. This extends a result of Ollivier and
Wise, whose walls could be used only for density < 1/5. The strategy employed
might be potentially extended in future to all densities < 1/4.
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Rigidity of Teichmüller space
Kasra Rafi
University of Toronto
rafi@math.toronto.edu

Coauthors: Alex Eskin and Howard Masur.

We study the large scale geometry of Teichmüller space equipped with the
Teichmüller metric. We show that, except for low complexity cases, any self
quasi-isometry of Teichmüller space is a bounded distance away from an isom-
etry of Teichmüller space.

Boundaries at infinity of Dehn fillings
Alessandro Sisto
ETH Zurich
sisto@math.ethz.ch

Coauthors: Daniel Groves and Jason Manning

In 3-manifold theory, Dehn filling is an important construction of closed
hyperbolic manifolds starting from finite-volume ones. There is an algebraic
version of such construction in the context of relatively hyperbolic groups that
has been used, for example, in the proof of the virtual Haken conjecture. I
will describe a method to control the effect of Dehn filling on the boundary at
infinity, and present some applications. Based on joint work with D. Groves
and J. Manning.

SCL gap for RAAGs
Jing Tao
University of Oklahoma
jing@ou.edu

Coauthors: Talia Fernos and Max Forester

I will discuss a gap theorem for stable commutator lengths in right-angled
Artin groups.
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Cycles in moduli spaces of graphs
Karen Vogtmann
University of Warwick
k.vogtmann@warwick.ac.uk

Coauthors: James Conant, Allen Hatcher, Martin Kassabov

Moduli spaces of graphs with a fixed number of loops and leaves are rational
classifying spaces for various groups of automorphisms of free groups. These
spaces (and therefore the groups) have interesting topology that is not at all
well understood. For example, for graphs with no leaves Euler characteristic
calculations indicate a huge number of nontrivial homology classes, but only a
very few have actually been found. I will discuss the structure of these moduli
spaces, including recent progress on the hunt for homology based on joint work
with Jim Conant, Allen Hatcher and Martin Kassabov.
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Dynamical Systems

On modelling strange attractors on inverse limits of graphs
Jan P. Boroński
IT4 Innovations, Ostrava
jan.boronski@osu.cz

Coauthors: Piotr Oprocha

I will discuss the results from [2] where, motivated by [1], we study graph
maps that give hereditarily indecomposable inverse limits. We show that pos-
itive entropy of such maps imply the existence of an entropy set with infi-
nite topological entropy. This also implies that if f is such a degree 1 circle
map then its rotation set is a nondegenerate interval. As a corollary we get
that the Anosov-Katok type constructions of the pseudo-circle as a minimal
set in volume-preserving smooth dynamical systems, or in complex dynamics,
obtained previously by Handel, Herman and Chritat cannot be modeled on in-
verse limits. This also relates to a result of M. Barge who proved that certain
dynamical systems with Hnon-type attractors cannot be modeled on inverse
limits.

[1] Boroński J.P.; Oprocha P., Rotational chaos and strange attractors on
the 2-torus, Mathematische Zeitschrift, (2015) 279:689–702

[2] Boroński J.P.; Oprocha P., On entropy of graph maps that give hereditar-
ily indecomposable inverse limits, Journal of Dynamics and Differential Equa-
tions (to appear)

Surface dynamics and hyperbolic 3-dimensional geometry
André de Carvalho
Universidade de São Paulo
andre@ime.usp.br

Coauthors: Marcel V. Bertolini

Thurston’s classification theorem for mapping classes and hyperbolization
theorem for fibered 3-manifolds establishes a strong connection between the
dynamics of surface homeomorphisms and hyperbolic geometry of 3-manifolds.
Thurston’s theorems deal with finite topology: the surfaces (fibers) considered
are compact surfaces minus a finite number of points. In dynamics, however, it
is often necessary to consider infinite orbits. In this talk we will discuss an ex-
tension of Thurston’s hyperbolization to mapping tori associated to generalized
pseudo-Anosov homeomorphisms acting on surfaces with infinitely many punc-
tures. We will also discuss connections with the dynamical study of families of
interval and plane homeomorphisms.
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Braid Equivalence and Renormalization in Dimension Two
Peter Hazard
University of Toronto
p.hazard@utoronto.ca

Coauthors: André de Carvalho, Toby Hall

We describe a new mechanism for producing braid equivalences of periodic
orbits for diffeomorphisms in dimension two. This mechanism can be shown to
yield braid equivalences in the restricted class of Hénon-like diffeomorphisms of
the plane. We relate this to the following phenomenon: there are distinct renor-
malization types for unimodal maps of the interval which are induced by the
same Hénon renormalization operator. We then consider some consequences of
this last statement, and finish with numerical evidence that these braid equiv-
alences are realised in the Hénon family itself.

On parameter loci of the Hénon family
Yutaka Ishii
Kyushu University
yutaka@math.kyushu-u.ac.jp

Coauthors: Zin Arai (Hokkaido University)

Consider the dynamics of the celebrated Hénon family:

fa,b : (x, y) 7−→ (x2 − a− by, x)

defined on R2. We define the hyperbolic horseshoe locus:

H× ≡ {(a, b) ∈ R× R× : fa,b is a hyperbolic horseshoe on R2}

as well as the maximal entropy locus:

M× ≡ {(a, b) ∈ R× R× : fa,b attains the maximal entropy log 2}.

The goal of my talk is to characterize these two loci, namely

Theorem. There exists an analytic function atgc : R× → R from the b-axis
to the a-axis of the parameter space R × R× for the Hénon family fa,b with
limb→0 atgc(b) = 2 so that

(i) (a, b) ∈ H× iff a > atgc(b),

(ii) (a, b) ∈M× iff a ≥ atgc(b).

Moreover, when a = atgc(b), the map fa,b has exactly one orbit of either homo-
clinic (b > 0) or heteroclinic (b < 0) tangencies of stable and unstable manifolds
of suitable saddle fixed points.
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On equivariant homotopy groups of spheres
Marek Izydorek
Faculty of Applied Physics and Mathematics, Gdansk University of Technology,
80-233 Gdansk, ul. G. Narutowicza 11/12, Poland
izydorek@mif.pg.gda.pl

Let V be a finite-dimensional orthogonal representation of a compact Lie
group G. We denote by SV a pointed G-sphere obtained by the one-point com-
pactification of V and by Sk+V the one-point compactification of k ⊕ V, were k

is a trivial representation.
We will be concerned with the following three families of maps.
- M∗G(Sk+V , SV ) - the space of G-equivariant maps from Sk+V into SV

preserving base points;
-M⊥G(Sk+V , SV ) - the subspace ofMG(Sk+V , SV ) consisting of orthogonal

G-maps. We say that f ∈MG(Sk+V , SV ) is a G-equivariant orthogonal map if

f(x, v) ⊥ TvGv

for each (x, v) ∈ f−1(V ) ⊂k ⊕V.
- M∇G(Sk+V , SV ) - the subspace of MG(Sk+V , SV ) consisting of gradient

G-maps.
Relations between gradient and nongradient equivariant homotopy groups of

spheres will be discussed. To this purpose we will consider the auxiliary class of
orthogonal equivariant maps. That class is in some sense natural enlargement of
the class of gradient equivariant maps. We will give a description of the stable
equivariant homotopy groups of spheres in the category of orthogonal maps in
terms of classical stable equivariant groups of spheres with shifted stems. We
conjecture that stable equivariant homotopy groups of spheres for orthogonal
maps and for gradient maps are isomorphic. The concept of otopy , introduced
by Becker and Gottlieb in [1], provides a convenient framework for simultanous
proof of results in all three categories of mappings (see [3]).

[1] J.C. Becker, D.H. Gottlieb Vector fields and transfers, Manuscripta
Math., 72 (1991), 111-130.

[2] M.C. Crabb, I. James Fiberwise Homotopy Theory, Springer-Verlag
London Ltd., 1998.

[3] K. Geba, M. Izydorek On relations between gradient and classical ho-
motopy groups of spheres, J. Fixed Point Theory Appl. 12, no 1-2, (2012),
49-58.

Connecting Orbits for a Class of Singular Planar Newtonian Systems
Joanna Janczewska
Faculty of Applied Physics and Mathematics, Gdansk University of Technology
janczewska@mif.pg.gda.pl
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We will consider a planar Newtonian system q′′+∇V (q) = 0 with a potential
V : R2 \ {ξ} → R possessing a singularity at a point ξ: V (x) → −∞ as x → ξ,
and a strict global maximum 0 that is achieved at two distinct points a and b
in R2 \ {ξ}. Applying a variational approach we will establish the existence of
homoclinic and heteroclinic solutions winding around ξ provided that nearby
the singularity the potential V satisfies a strong force condition.

Horseshoes in generalized inverse limits
Judy Kennedy
Lamar University
kennedy9905@gmail.com

Coauthors: Goran Erceg, Van Nall

Suppose f : I → 2I is a upper semicontinuous bonding map. Let M =
{(x0, x1...) : xi−1 ∈ f(xi) for i > 0}. Even though f is not even a function
in the usual sense, it induces a continuous function σ from M onto M . The
function σ is called the shift map on M , since for x = (x0, x1, ...) ∈M , σ(x) =
σ(x0, x1, ...) = (x1, x2, ...). M is called an inverse limit on set-valued functions,
or, equivalently, a generalized inverse limit. These objects were introduced in
2003 by W. Mahavier, and they present a new method of understanding the
dynamical behavior of set-valued functions.

While much work by many researchers has been done on understanding
the topology of these spaces, we are just beginning a study of the dynamical
properties exhibited by the shift map σ. Horseshoes arise naturally in these
inverse limits under very mild conditions. We will discuss our findings.

Measure preserving aperiodic dynamical systems
Krystyna Kuperberg
Auburn University
kuperkm@auburn.edu

There are many examples of aperiodic dynamical systems on closed three
dimensional manifolds, but few are measure preserving. We will discuss the
difficulties in obtaining aperiodic, smooth, measure preserving dynamical sys-
tems on S3 and measure preserving nonsingular dynamical systems on R3 with
uniformly bounded orbits.
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Dynamically defined pseudometrics and the construction of generic
points
Dominik Kwietniak
Jagiellonian University in Krakow
dominik.kwietniak@uj.edu.pl

Coauthors: Martha  L ↪acka, Piotr Oprocha

Generic points are dynamical analogs of normal numbers. Ergodic Theorem
guarantees that every ergodic invariant measure of a dynamical system has a
generic point, but this is not necessarily true for non-ergodic measures. I am
going to discuss conditions, which imply that every invariant measure has a
generic point. These conditions generalize various notions of specification and
lead to a construction of explicit examples of numbers normal to non-integer
bases in the spirit of Champernowne. Dynamically defined Besicovitch and
Weyl pseudometrics play an important role in our investigations.

Counting preimages
Micha l Misiurewicz
Indiana University-Purdue University Indianapolis
mmisiure@math.iupui.edu

Coauthors: Ana Rodrigues

For a transitive piecewise monotone interval map one of the ways to compute
its entropy is to find the exponential growth rate of the number of preimages of
a point under iterates of the map. However, looking for all preimages takes too
much computer memory and time. One of the ideas used in similar situations
(for instance, for Iterated Function Systems or rational holomorphic maps) is to
replace the tree of all preimages of a point by one randomly chosen branch. We
iterate the following procedure: given a point, we note the number of its preim-
ages under the map and choose the next point randomly from those preimages.
It turns out that this process is governed by a special measure, which we call
fair measure, and instead of the topological entropy we get the entropy of this
measure.
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Shadowing of pseudo-orbits: partial and complete
Piotr Oprocha
AGH University, Poland & IT4 Innovations
oprocha@agh.edu.pl

A δ-pseudo orbit in a dynamical system (X,T ) is a sequence satisfying
d(T (xi), xi+1) < δ for all i ∈ I ⊂ N (and some δ > 0), while shadowing
means that every δ-pseudo orbit can be ε-shadowed by a point z ∈ X, that is
d(T i(z), xi) < ε for all i ∈ J ⊂ N (and clearly δ depends on ε). In the classical
definition of shadowing we demand I = J = N, however recently there appeared
in the literature concepts of shadowing, where I, J are from a specified class of
subsets of integers. In that sense we can speak about “partial” shadowing. At
one hand, when I 6= N, we can combine blocks of pseudo-orbits which gives
us lots of freedom. On the other hand, we do not know exact segments where
tracing takes place.

In this talk we will survey recent results on relations between “partial” and
“complete” shadowing. Surprisingly, for some choices of classes of sets I, J ⊂ N
these connections are quite tight.

Dynamical systems with Lipschitz shadowing: the role of smoothness
Sergei Yu. Pilyugin
St.Petersburg State University, St.Petersburg, Russia
sergeipil47@mail.ru

It was shown in [1] that a diffeomorphism of a smooth closed manifold having
the Lipschitz shadowing property is structurally stable.

In this talk, we discuss the proof of this result.
We also show that there exists a homeomorphism of the segment having the

Lipschitz shadowing property and a nonisolated fixed point (thus, its dynamics
is completely different from that of a structurally stable diffeomorphism).

[1] S. Yu. Pilyugin and S. B. Tikhomirov. Lipschitz shadowing implies struc-
tural stability, Nonlinearity, 23, 2509-2515 (2010).
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Dynamical zeta functions and symmetric products
Francisco R. Ruiz del Portal
Universidad Complutense de Madrid
rrportal@ucm.es

Coauthors: Eduardo Blanco Luis Hernndez-Corbato

Let X be an ENR, U ⊂ X be an open set and f : U → X be a continuous
map. The fixed point indices of the iterates of f in U , when well defined, provide
valuable information about the set of periodic orbits of f . The computation of
that sequence is an important and usually very difficult problem. We shall
adopt an alternative point of view. We will study the fixed point indices of the
induced maps in the n-symmetric products of X, i(SPn(f), SPn(U)), discuss
its main properties and encode all of them in the formal serie SP∞(f, U) =∑
n≥0 i(SPn(f), SPn(U))zn.
From an axiomatic approach and a uniqueness theorem it follows that SP∞(f, U)

coincides with the dynamical zeta function obtained from the indices of the it-
erates of f .

Obtaining information about isolated invariant sets in terms of their
isolating blocks
J. J. Sánchez-Gabites
Universidad Autónoma de Madrid
JaimeJ.Sanchez@uam.es

We consider isolated invariant sets K in 3–manifolds. In Conley index theory
one does not study these sets directly, but rather in terms of their so-called iso-
lating neighbourhoods N . In applications, these neighbourhoods are frequently
computable, unlike the invariant sets themselves, so it is natural to wonder how
much information about K can be gleaned from N . In this talk we shall con-
sider two instances of this problem: given an isolating block N , (i) what can
be said about the Betti numbers of K? and (ii) assuming it is known that K
is an invariant loop (for instance, a periodic orbit), what can be said about its
knottedness?
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Non-saddle sets, bifurcations and Morse decompositions
José M.R. Sanjurjo
Universidad Complutense. Madrid
jose sanjurjo@mat.ucm.es

Coauthors: Héctor Barge

We study the general structure of a flow on a manifold having a non-saddle
set. We examine, in particular, the role of dissonant points and analyze the
existence of these points in the case of flows on surfaces. We prove that bifur-
cations consisting of implosions of the basin of attraction of an attracting point
produce non-saddle sets of spherical shape. We characterize non-saddle sets of
Morse decompositions in terms of topological properties of their duals. These
results have been obtained in collaboration with Héctor Barge.

Lozi mappings and symbolic dynamics
Sonja Štimac
University of Zagreb & IUPUI
sonja@math.hr

In 1978 Lozi introduced a two-parameter family of piecewise linear home-
omorphisms of the plane which may give rise to very complicated chaotic dy-
namics and strange attractors. In 1997 Ishii coded the Lozi strange attractors
by bi-infinite sequences of two symbols, which are called itineraries (of points
of attractor). He proved that the Lozi map restricted to its strange attractor
is topologically conjugate to the shift homeomorphism restricted to the corre-
sponding symbol space, the space of all itineraries. I will show necessary and
sufficient conditions, in terms of kneading sequences, that a bi-infinite sequence
of two symbols be an itinerary of a point of the Lozi attractor, and discuss some
applications and interesting questions which arise from that result.

Forcing theory for transverse trajectories of surface homeomorphisms
and applications
Fabio Tal
University of São Paulo, USP
Fabiotal@ime.usp.br

Coauthors: Patrice Le Calvez - Paris VII

We develop a new theory of orbit forcing for homeomorphisms of surfaces in
the isotopy class of the identity and we present some applications. In particular,
we extend Franks and Handel’s classification of entropy zero maps of the sphere
to nonwandering homeomorphisms, showing that such maps have an almost
integrable behaviour, and also a Handel result for transitive maps of S2. We
also show that any homeomorphism of the open annullus which satisfies the
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Birkhoff instability condition and whose rotation set has two different points
must have positive topological entropy.

Arithmetical coding and tiling dynamics
Marcy Barge
Montana State University
marcy.barge@gmail.com

The idea of an aritmetical coding of a hyperbolic toral automorphism be-
gan with Thurston (1989 AMS Colloquium Lectures) and has been considerably
developed by Kenyon, Schmidt, Vershik, Sidorov, and others; it can be summa-
rized as follows. Given a Pisot unit β > 1 of algebraic degree d, let (Xβ , σ) be
the β-shift, let M be the companion matrix of the minimal polynomial of β,
and let FM : Td → Td be the corresponding hyperbolic toral automorphism. An
aritmetical coding of FM (the terminology is due to Sidorov) is a continuous,
bounded-to-one, surjection h : Xβ → Td with the properties:
(i) If x and y are non-negative real numbers having β -expansions x and y, then
h(x+ y) = h(x) + h(y); and
(ii) h ◦ σ = FM ◦ h.

Such codings always exist and it is conjectured that, in fact, there is always
an almost everywhere one-to-one arithmetical coding. We will sketch a proof of
the following:
Theorem: If β > 1 is a Pisot unit, and also a simple Parry number (meaning
that there is k ∈ N with T kβ (1) = 0, where Tβ(x) := βx − bβxc), then there is
an a.e. 1-1 aritmetical coding of the associated hyperbolic toral automorphism.

The proof routes through the following recent result for substitution tiling sys-
tems:
Theorem: If φ is primitive substitution on the alphabet A, with Pisot infla-
tion, for which there are n ∈ N and b ∈ A so that φn(a) = a · · · b for all a ∈ A,
then the tiling dynamical system (Ωφ,R) has pure discrete spectrum.
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Contributed Talks

On the role of universal G-spaces of R. Palais in the conjecture of J.
West and H. Torunczyk
S.M. Ageev
Belarus State University
ageev sergei@inbox.ru

When we shift the accent in studying of compact transformation groups from
G-spaces to their orbit projections, there arises the natural point of view on G-
spaces as generalized principal fibrations. (Thus, the restriction of the orbit
projection on each orbit bundle of given type is reduced to principal fibrations.)
When acting accordingly to such approach, it is natural to wonder about the
G-spaces that correspond to the universal principal fibrations. Answering this
question R. Palais introduced the notion of the universal G-space (though he had
restricted himself to finite-dimensional G-spaces with finite collection of orbit
types), and with its help he extended the classical theorem on classification
of fibrations for the equivariant category G-TOP. However, in doing so the
structure of universal G-spaces was not investigated in details (in particular,
the question whether the restriction of orbit projection on each its orbit bundle
of given type is intimately connected with an universal principal fibration was
not answered).

The progress in the investigation of universal G-spaces was made recently
(in what follows we will use another term – isovariant extansors). (See the
papers [2] and [3] containing the progress in the theory of universal G-spaces.)
It turns out that these objects may shed additional light on many questions.
Thus, the properties of universal F-spaces in the sense of T. Dieck are fully
unveiled within the isovariant extensor theory. Several objects of geometry,
topology and analysis are endowed in natural manner with extra structure of
isovariant extansors, that sometimes permits to make decisive step in the study
of their properties (for example, Banach-Mazur compacta). It is very plausible
hypothesis that classifying G-spaces of some equivariant homotopy functors are
in fact isovariant neighborhood extensors. When applied to the equivariant K-
functor this means that the space of Fredholm operators on the complex Hilbert
G-space is an isovariant neighborhood extensor, and the general linear group on
the complex Hilbert G-space is an isovariant extensor.

The aim of our report is a discussion of these and some others questions on
isovariant extensors. The part of them gets a positive solution. The question
on exponent exp(G) of connected compact Lie group G is among them.

Investigating exp(S1) J. West and H. Torunczyk displayed an interesting
structure connected with Eilenberg-MacLane complexes in the orbit space (re-
mark that they used essentially one-dimensional arguments and their method
can not be generalized to more interesting Lie groups). Apparently, the initial
aim of their research was the conjecture that for each connected compact Lie
group G, exp(G) is the equivariant Hilbert cube with unique fixed point. We
prove that this conjecture is reduced to isovariant extensors:
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Theorem 1. Let G be a connected compact Lie group. If exp(G) is an
isovariant extensor, then exp(G) is the equivariant Hilbert cube with unique
fixed point.

Theorem 2. Let G=SO(n) be a connected orthogonal group. Then exp(G)
is an isovariant extensor and therefore exp(G) is the equivariant Hilbert cube
with unique fixed point.

[1] R. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. 36
(1960).

[2] S.M. Ageev, On Palais universal G-spaces and isovariant absolute exten-
sors, Mat. Sb. 203 (6) (2012) 334.

[3] S.M. Ageev, Isovariant extensors and the characterization of equivariant
homotopy equivalences, Izv. Ross. Akad. Nauk Ser. Mat. 76 (5) (2012) 328.

[4] J. West and H. Torunczyk, The fine structure of exp(S1)/S1; a Q-
manifold hyperspace localization of the integers, Proceedings of the Interna-
tional Conference on Geometric Topology (Warsaw, 1978), pp. 439-449, PWN,
Warsaw, 1980

Detecting (weak) fractals among Peano continua
Taras Banakh
Jan Kochanowski University in Kielce (Poland) and Ivan Franko National Uni-
versity of Lviv (Ukraine)
t.o.banakh@gmail.com

Coauthors: T.Martynyuk, M.Nowak

A compact metric spaceX is called a (weak) fractal ifX = f1(X)∪· · ·∪fn(X)
for some (weakly) contracting maps f1, . . . , fn : X → X.

A self-map f : X → X of a metric space (X, d) is called contracting if
it is Lipschitz with Lipschitz constant < 1, and f is weakly contracting if
d(f(x), f(y)) < d(x, y) for any distinct points x, y ∈ X.

We shall discuss the following open problem posed by Hata in 1985:
Problem. Is each Peano continuum homeomorphic to a weak fractal?
The following theorem (whose partial case for n = 1 was proved by Dumitru

in 2012) gives a partial answer to this problem of Hata.
Theorem. A Peano continuus is homeomorphic to a weak fractal if it con-

tains an open subset homeomorphic to Rn for some n > 0.
This theorem is completed by the following characterization:
Theorem. For a Peano continuum X containing an open subset homeo-

morphic to the interval (0, 1) the following conditions are equivalent:

• X is homeomorphic to a fractal;

• X has finite S-dimension S − dim(X);

• X has finite Hölder dimension Hö− dim(X).
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The S-dimension S-dim and Hölder dimension Hö-dim were introduced in
[BT] and used in [BN] (for constructing a one-dimensional Peano continuum,
which is not homeomorphic to a fractal).

[BN] T.Banakh, M.Nowak, A 1-dimensional Peano continuum which is not
an IFS attractor, Proc. Amer. Math. Soc. 141:3 (2013) 931–935.

[BT] T.Banakh, M.Tuncali, Controlled Hahn-Mazurkiewicz Theorem and
some new dimension functions of Peano continua, Topology Appl. 154:7 (2007),
1286–1297.

Unstable manifold, Conley index and applications to planar flows
Héctor Barge
Universidad Complutense de Madrid
hbarge@ucm.es

Coauthors: Jos M. R. Sanjurjo (Universidad Complutense de Madrid)

The unstable manifold of an isolated invariant compactum is a complicated
topological object which carries an important amount of dynamical information.
Although in the general situation the flow restricted to the unstable manifold
is not parallelizable, we shall see that a mild form of parallelizability is fulfilled.
From this fact many nice consequences are derived, specially in the case of
plane continua. For instance, an easy method of calculation of the Conley index
involving some knowledge of the topology of the unstable manifold, and as a
consequence, a relation between the Brouwer degree and the unstable manifold
is established for smooth vector fields. All the results presented in this talk have
been obtained in collaboration with J.M.R Sanjurjo.

Divergent sequences of quasi-Fuchsian representations
Marcel Vinhas Bertolini
University of São Paulo - Brazil
marcelvbertolini@gmail.com

Coauthors: André de Carvalho

Consider a sequence of quasi-Fuchsian representations of a finitely generated
group acting on the three-dimensional hyperbolic space. If the sequence goes to
infinity, there’s an isometric action of the group on a -tree for which it converges.
This compactification, due to Morgan-Shalen / Bestvina / Paulin, is a key step
in Otal’s proof of Thurston’s hyperbolization of fibered 3-manifolds. In this talk
I’ll discuss an extension of the compactification for infinitely generated groups
that arises puncturing generalized pseudo-Anosov homeomorphisms of surfaces.
This is a joint work in progress with Andr de Carvalho.
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Continuity of coarse shape groups
Nikola Koceić Bilan
University of Split, Faculty of natural sciences and mathematics, Croatia
koceic@pmfst.hr

The coarse shape groups are algebraical invariants in the homotopy and
the (coarse) shape theory, as well. Their structure is significantly richer than
the structure of homotopy and shape groups. In this talk we give an explicit
formula for computing coarse shape groups for a large class of metric compacta
including solenoids. We show that every coarse shape group can be obtained as
the inverse limit of an inverse system of groups. It is proven that, for inverse
systems of compact polyhedra, the coarse shape group functor commutes with
the inverse limit.

Hyperbolic volume of links, via pants graph and train tracks
Antonio De Capua
University of Oxford
decapua@maths.ox.ac.uk

A result of Jeffrey Brock states that, given a hyperbolic 3-manifold which
is a mapping torus over a surface S, its volume can be expressed in terms of
the distance induced by the monodromy map in the pants graph of S. This
is an abstract graph whose vertices are pants decompositions of S, and edges
correspond to some ’elementary alterations’ of those. Brock’s theorem motivates
investigation about distances in the pants graph; in particular we generalise
a result of Masur, Mosher and Schleimer that train track splitting sequences
induce quasi-geodesics in the marking graph. This will be the core piece of a
volume estimate for complements of closed braids in the solid torus.

Gropes and crumpled cubes
Matija Cencelj
University of Ljubljana, IMFM
matija.cencelj@guest.arnes.si

Recently Daverman and Gu have introduced a hierarchy for crumpled n-
cubes. We present some examples of crumpled 3-cubes based on generalizations
of Alexander’s Horned Sphere and show some relations.
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Combinatorial modulus on boundaries of some right-angled hyper-
bolic buildings
Antoine Clais
Universit Lille 1
Antoine.clais@math.univ-lille1.fr

It is known since G.D. Mostow that the quasi-conformal structure of the
boundary of a hyperbolic space can be used to obtain rigidity results. In the
case of right-angled buildings of dimension 2, the Loewner property is a key tool
to prove the rigidity of quasi-isometries. Hence a natural question to ask is: do
some boundaries of buildings of dimension 3 carry the Loewner property?

The combinatorial Loewner property is a discrete version of the Loewner
property that is conjecturally equivalent to it. Yet this second property seems
easier to find on the boundary of a hyperbolic group as it do not require the
knowledge of the conformal dimension.

In my talk I will investigate the quasi-conformal structure of some right-
angled hyperbolic buildings of dimension 3 thanks to combinatorial tools. As a
result I will present some buildings whose boundaries satisfy the combinatorial
Loewner property.

On the geometry of the flip graph
Valentina Disarlo
Indiana University Bloomington
vdisarlo@indiana.edu

Coauthors: Hugo Parlier

The flip graph of an orientable punctured surface is the graph whose vertices
are the ideal triangulations of the surface and whose vertices are joined by an
edge if the two corresponding triangulations differ by a flip. The combinatorics
of this graph is crucial in works of Thurston and Penner’s decorated Teichmuller
theory. In this talk we will explore some geometric properties of this graph, in
particular we will see that it provides a coarse model of the mapping class group
in which the mapping class groups of the subsurfaces are convex. Moreover, we
will provide upper and lower bounds on the growth of the diameter of the
flip graph modulo the mapping class group. Joint work with Hugo Parlier
(Universite de Fribourg).
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Axiomatization of geometry employing group actions and topology
Jerzy Dydak
University of Tennessee
jdydak@utk.edu

The aim of the talk is to outline a new axiomatization of planar geometry by
reinterpreting the original axioms of Euclid. The basic concept is still that of a
line segment but its equivalent notion of betweenness is viewed as a topological,
not a metric concept. That leads quickly to the notion of connectedness without
any need to dwell on the definition of topology. In our approach line segments
must be connected. Lines and planes are unified via the concept of separation:
lines are separated into two components by each point, planes contain lines that
separate them into two components as well. We add a subgroup of bijections
preserving line segments and establishing unique isomorphism of basic geomet-
rical sets, and the axiomatic structure is complete. Of fundamental importance
is the Fixed Point Theorem that allows for creation of the concepts of length
and congruency of line segments.

The resulting structure is much more in sync with modern science than other
axiomatic approaches to planar geometry. For instance, it leads naturally to the
Erlangen Program in geometry. Our Conditions of Homogeneity and Rigidity
have two interpretations. In physics, they correspond to the basic tenet that
independent observers should arrive at the same measurement and are related
to boosts in special relativity. In geometry, they mean uniqueness of congruence
for certain geometrical figures.

Euclid implicitly assumes the concepts of length and angle measure in his
axioms. Our approach is to let both of them emerge from axioms. Euclid
obfuscates the fact that to compare lengths of line segments one needs rigid
motions beforehand. Our system of axioms of planar geometry rectifies that
defect of all current axiomatic approaches to planar geometry (of Hilbert and
Tarski).

Another thread of the talk is the introduction of boundary at infinity, an
important concept of modern mathematics, and linking of Pasch Axiom to en-
dowing boundaries at infinity with a natural relation of betweenness. That way
spherical geometry can be viewed as geometry of boundaries at infinity.

Mahavier product and topological entropy
Goran Erceg
University of Split, Faculty of Science, Croatia
gorerc@pmfst.hr

Coauthors: Judy Kennedy

We introduce new definition of topological entropy, which is given in terms
of a new tool, the Mahavier product which was introduced by Judy Kennedy
and Sina Greenwood.
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Suppose that X, Y and Z are topological spaces, and A ⊂ X×Y , B ⊂ Y ×Z.
Then we define the Mahavier product of A and B as set {(x, y, z) ∈ X×Y ×Z :
(x, y) ∈ A and (y, z) ∈ B}.

We calculate topological entropy using covers of Mahavier product.
By using the entropy of the shift map (a function in the usual sense) it is

shown that this generalization of the notion of entropy has many of the same
properties as those for entropy in regular functions. We will show the entropy
of some new ones and some well-known examples.

Morse geodesics in lacunary hyperbolic groups
Elisabeth Fink
ENS Paris
elisabethmfink@gmail.com

Coauthors: Romain Tessera

A geodesic is Morse if quasi-geodesics connecting points on it stay uniformly
close. If the embedding of the cyclic subgroup generated by an element is a
Morse geodesic, then that element is called a Morse element. In many known
examples, Morse geodesics in groups have been found via Morse elements. By
studying asymptotic cones and using small cancellation, we will show how Morse
geodesics can be exhibited in many lacunary hyperbolic groups, including Tarski
monsters. This represents first examples of groups that have Morse geodesics
but no Morse elements. I will describe further properties of non-Morse geodesics
and also show how a tree can be quasi-isometrically embedded into such groups.

A topological dimension like-function of the type dim
Dimitrios N. Georgiou
Department of Mathematics, University of Patras, 265 04 Patras, Greece
georgiou@math.upatras.gr

Coauthors: A.C. Megaritis

We introduce a dimension like-function for topological spaces, denoted by
dimq, using the classical covering dimension dim. Basic properties of dimq,
examples, and questions are given.
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The primitivity index function for a free group, and untangling closed
curves on surfaces
Neha Gupta
University of Illinois Urbana-Champaign
ngupta10@illinois.edu

Coauthors: Ilya Kapovich

A theorem of Scott shows that any closed geodesic on a surface lifts to an
embedded loop in a finite cover. Our motivation is to find a worst-case lower
bound for the degree of this cover, in terms of the length of the original loop.
Using probabilistic methods we establish lower bounds for certain analogous
functions, like the Primitivity Index Function and the Simplicity Index Function,
in a free group. These lower bounds, when applied in a suitable way to the
surface case, give us some lower bounds for our motivating question. This is
joint work with Ilya Kapovich. (arXiv:1411.5523)

Mapping the harmonic archipelago
Wolfram Hojka
Vienna University of Technology
w.hojka@gmail.com

The study of wild algebraic topology has in the last decade seen an increased
interest in spaces of dimension two or higher where nontrivial loops can be
homotoped arbitrarily close to a point. The harmonic archipelago is a standard
example with this property. The space is homeomorphic to a disc but for a
single point and can be described as the reduced suspension of the graph of the
topologist’s sine curve y = sin(1/x).

The fundamental group of this space has peculiar mapping properties. For
example, every countable locally free group embeds in G as a subgroup (hence
so does the fundamental group of the complement of Alexander’s horned cell!).
In turn, every separable profinite group is an epimorphic image, as is every
cotorsion group of at most continuum cardinality.
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There is a Bounded Non Convex set S, in the Union of all Euclidean
Spaces E, that has the Unique Nearest Point Property and T, the
Closure of S in the Completion of E, does not have the Unique Nearest
Point Property
Gordon G. Johnson
University of Houston
gjohnson10@uh.edu

E is the union of all Euclidean spaces and H is the separable Hilbert space
that is the completion of E. Bunt in 1934 showed that if a set in a Euclidean
space has the unique nearest point property, then it is closed and convex. Klee
asked in 1951 if this was also true in Hilbert space. In 1984 it was shown that
there is a bounded non convex set S in E that has the property that each point
in E has a unique nearest point in S. We shall show that T, the closure of S in
H, does not have the property that each point in H has a unique nearest point
in T.

Linear isometries of continuous function spaces
Kazuhiro Kawamura
University of Tsukuba
kawamura@math.tsukuba.ac.jp

Coauthors: Takeshi Miura (Niigata University)

For a compact Hausdorff space X, C(X) denotes the Banach space of all
complex-valued continuous functions with the supremum norm. The classical
Banach-Stone theorem states that each complex-linear surjective isometry T :
C(X) → C(Y ) of C(X) onto C(Y ) is a weighted composition operator with
a unimodular weight, in other words, there exists a homeomorphism h : Y →
X and a continuous function α : Y → C with |α| ≡ 1 such that Tf(y) =
α(y) · f(h(y)) for each f ∈ C(X) and for each y ∈ Y . When T is real-linear,
the conclusion still holds with ”a unimodular weighted composition operator”
being replaced by ”a unimodular weighted composition operator, its complex-
conjugate, and their combination.” Such isometry is said to take the canonical
form. Banach-Stone type theorems hold for many linear subspaces of continuous
functions, while there exists a real-linear isometry S : A → A of non-canonical
form defined on a complex-linear subspace A of C(T), the continuous functions
of the circle T. In this talk we discuss topological conditions on a compact
Hausdorff space X which imply that every linear isometry between subspaces of
C(X) is of the canonical form. Also a sytematic construction of non-canonical
isometry will be given when the underlying space admits a semi-free action of
T with a global section. Extensions to Banach space-valued function spaces are
discussed. This is a joint work with Takeshi Miura, Niigata Univesity.
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A class of topological spaces between the classes of regular and Urysohn
spaces
A. C. Megaritis
Technological Educational Institute of Western Greece, Department of Account-
ing and Finance, Messolonghi, Greece
thanasismeg13@gmail.com

Coauthors: D. N. Georgiou

We define and investigate the rU-spaces. A space X is said to be a rU-space
if X is a Hausdorff space and for every x ∈ X and every open neighbourhood
V of x there exists an open neighbourhood U of x such that U ⊆ Cl(V ) and
Bd(U) ⊆ V . The class of rU-spaces is properly placed between the classes of
regular and Urysohn spaces.

Devaney’s chaos in general semiflows
Alica Miller
University of Louisville
alica.miller@louisville.edu

Coauthors: Chad Money

We will talk about sensitivity, syndetic sensitivity and Devaney’s chaos in
general abelian semiflows. We give some conditions for a semiflow which imply
syndetic sensitivity even with a restricted acting monoid.

Higson corona and fixed points
Kotaro Mine
The University of Tokyo
mine@ms.u-tokyo.ac.jp

It is known that a quasi-isometriy on a proper metric space has a homeo-
morphic extension on its Higson corona. In this talk, we consider a condition of
spaces (or maps) to induce the fixed point free homeomorphism on the corona.
It is also considered that when the fixed points set on the corona is expressed
as the accumulation points of a closed subset of the underlying space.
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Equivalence of intrinsic strong shape and external strong shape
Zoran Misajleski
SS. Cyril and Methodius University, Skopje, Macedonia
misajleski@gf.ukim.edu.mk

Coauthors: Shoptrajanov Martin, Shekutkovski Nikita

In the paper [2] the authors showed that their strong shape category of metric
compacta is isomorphic to the categories of Yu. Lisica, and of J.B. Quigley, and
therefore coincides with strong shape theories for metric compacta by D. A.
Edwards and H. M. Hastings, F. W. Bauer, Y. Kodama and J. Ono, J. Dydak
and J. Segal, F. W. Catney and Z. R. Miminovili. In the paper will be shown the
equivalence of Intrinsic strong shape from [2] and External strong shape from
[1]. References: [1] Yu. Lisica, S. Mardešić, Coherent homotopy and strong
shape for compact metric spaces, Glasnik Mat. Vol. 20(40) (1985), 159-167 [2]
N.Shekutkovski, Intrinsic definition of strong shape for compact metric spaces,
Topology Proceedinds 39 (2012), 27-39

When Outer Space behaves like Teichmuller space (or hyperbolic
spaces) & how we can use this to understand Out(Fr)
Catherine Pfaff
Bielefeld University / UCSB
catherine.pfaff@gmail.com

Coauthors: Yael Algom-Kfir, Ilya Kapovich, Lee Mosher

Out(Fr) is one of the most intriguing groups to study because of its natural
action on a space, Culler-Vogtmann Outer Space, which both strongly resembles
and intricately differs from some of the most well-known and studied spaces, such
as Teichmuller space and hyperbolic spaces. In this talk I will present several
dynamical results about when Outer Space behaves like these other spaces and
explain how we have used them to help understand Out(Fr). This is joint work
with Yael Algom-Kfir, Ilya Kapovich, and Lee Mosher.

The Quotient Shapes - a new perspective to shape
Nikica Uglešić
University of Zadar, Croatia
nuglesic@unizd.hr

For every category C and each infinite cardinal k, there exists a pair of
shape categories Ck-, Ck determined by all the objects having cardinality less
than k, less or equal to k, respectively. The idea is to consider the quotient
objects by equivalence relations that are compatible with the structures and
morphisms. The application to the well known concrete categories C: partially
ordered sets, pseudometric spaces, topological spaces, monoids, groups, rings,
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modules, vector spaces, ..., gives rise to intersting examples, especially to the k-
- shape and k-shape classifications of C-objects.

Asymptotic property C of the countable sum of integers
Takamitsu Yamauchi
Ehime University
yamauchi.takamitsu.ts@ehime-u.ac.jp

The notion of asymptotic property C is introduced by Dranishnikov (2000)
as a coarse analogue of Haver’s property C in topological dimension theory. In
2013, Dranishnikov and Zarichnyi asked whether the countable direct sum of
integers has asymptotic property C. In this talk, we consider the question.

Milnor-Thurston homology theory for wild spaces
Andreas Zastrow
University of Gdansk
zastrow@mat.ug.edu.pl

Coauthors: Janusz Przewocki (Univ. of Gdansk)

In the algebraic topology of manifolds and CW-complexes the computa-
tion of homology groups is often regarded to be just a standard exercise in
diagram chase. For more “wild” spaces, this is usually not the case. The
Mayer-Vietoris Theorem is not valid without local conditions that are usually
not fulfilled by such spaces, and the homology groups are not longer determined
by the Eilenberg-Steenrod Axioms any longer; and therefore the computation of
homology groups becomes usually a non-trivial task, often also requiring meth-
ods of geometric topology, e.g. surgery techniques to those maps which can
represent cycles. Geometric topology has also the power to explain some of the
results, that are commonly interpreted that way that the behaviour of singular
homology groups on wild spaces must sometimes be regarded to be anoma-
lous ([MB], [EK1, Thm.3.1], the fact that there is no standard formula for the
shrinking wedge [EK2] vs. [EKRZ, Thm.1.6]). There have also propositions
been made to create new homology theories with the idea of better behaving
on wild spaces. ([DiSpr], [Grg]). However, the main goal of the talk will not
be to create a new homology theory, but to report on a research project ([Prz],
[PZ]) of the past four years that has been testing an existing homology theory,
to what extent it is suitable for being applied to wild spaces. This homology
theory (“Milnor-Thurston homology theory”) was proposed by Thurston giving
a part of the credit to Milnor, for having a certain application in the theory
of hyperbolic manifolds. It is based on the idea of replacing the classical finite
chains of singular homology theory by measures of sets of singular simplices.
Since a good deal of the above quoted anomaly-results have its origin in the fact
that the classical algebraical invariants are built on a finite arithmetic while the
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structure of wild spaces could often only be mimicked by an infinite arithmetic,
and measures are kinds of infinite sums, the idea to test this homology theory
on wild spaces arose. The so far computed Milnor-Thurston homology groups
were in some cases unexpected, but in all cases as discussed so far, geometric
topology could explain what is going on.

[DiSpr] Diestel, Reinhard; Sprüssel, Philipp: “On the homology of locally com-
pact spaces with ends”, Topology Appl., Vol. 158 (2011), no. 13, 1626–1639.

[EKRZ] Eda, Katsuya; Karimov, Umed H.; Repovš, Dušan; Zastrow, Andreas:
“On snake cones, alternating cones and related constructions”, Glas. Mat. Ser.
III, Vol. 48(68) (2013), no. 1, 115–135.

[EK1] Eda, Katsuya; Kawamura, Kazuhiro: “The singular homology of the
Hawaiian earring”, J. London Math. Soc. (2), Vol. 62 (2000), no. 1, 305–310.

[EK2] Eda, Katsuya; Kawamura, Kazuhiro: “Homotopy and homology groups
of the n-dimensional Hawaiian earring”, Fund. Math., Vol. 165 (2000), no. 1,
17–28.

[Grg] Georgakopoulos, Agelos: “Cycle decompositions: from graphs to con-
tinua”, Adv. Math., Vol. 229 (2012), no. 2, 935–967.

[MB] Barratt, M. G.; Milnor, John: “An example of anomalous singular homol-
ogy”, Proc. Amer. Math. Soc., Vol. 13 (1962) 293–297.

[Prz] Przewocki, Janusz: ”Milnor-Thurston homology groups of the Warsaw
Circle”, Topology Appl. 160 (2013), no. 13, 1732–1741.

[PZ] Przewocki, Janusz; Zastrow, Andreas: “On the coincidence of zeroth Milnor-
Thurston homology with singular homology”, 2014, preprint, submitted, avail-
able at: http://www.impan.pl/∼jprzew/

Hernndez Paradigm for the asymptotic dimension of locally compact
abelian groups
Nicol Zava
University of Udine
nicolo.zava@gmail.com

Coauthors: Dikran Dikranjan (University of Udine)

Let G be a locally compact abelian group and let G+ denote the same group
equipped with the Bohr topology (namely the topology induced on G by its
Bohr compactification). We discuss the asymptotic dimension of G and G+

and, extending a theorem of S. Hernández on the covering dimension, we prove
that asdimG = asdimG+. According to a recent result of A. Nicas and D.
Rosenthal, this equality can be extended to asdimG+ = asdimG = dimG,
where G denotes the Pontryagin dual of G.
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Special Lecture

Flatness and Local Flatness of (n− 1)-spheres in Sn

Robert Daverman
Unniversity of Tennessee, Knoxville
daverman@math.utk.edu

This workshop talk will review classical results, due to Morton Brown, about
embeddings of the (n− 1)-sphere in Sn. An embedded sphere is said to be flat
if it is ambiently equivalent to the standart one. Brown’s striking results are (1)
that bicollared spheres are flat and (2) that locally flat spheres are bicollared.
(A sphere Σ is bicollared if there exists an embedding of Sn−1 × [−1, 1] → Sn

with Σ being the image of Sn−1 × 0.)
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Dynamic Asymptotic Dimension 
by 

Rufus Willett,  
University of Hawaii 

Coauthors: Erik Guentner and Guoliang Yu 

 

I’ll introduce a notion of ‘dynamic asymptotic dimension’ (d.a.d.), which is a translation of 

Gromov’s asymptotic dimension from coarse geometry and geometric group theory into 

topological dynamics.  I’ll describe some motivating examples, and the relationship with 

asymptotic dimension and some other notions of dimension.  I’ll then sketch applications to 

Novikov and Baum-Connes type conjectures using controlled K-theory, inspired partly by earlier 

work of Farrell-Jones, Yu, and Bartels-Lück-Reich. 
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