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* Repeated game between an agent and an environment

-

environment agent

QWV

Reinforcement learning

MAB

Online learning




* Model
= At each (discrete) time t, the agent plays action A, from a set of K actions
* The agent receives reward Ya,.:, drawn from unknown distribution A,

* Performance measure
= Regret(loss) R(T)=E

T

T
max Yz’,t— E YAt,t
C[K

ielK] T t=1

" Minimize regret = maximize total reward

* Regret lower bounds o
Q ' _logT o
< — K L(jta, 1) & ) where i is expected reward

" Problem-dependent:

* Popular algorithms
= Upper Confidence Bounds (UCB), Thompson Sampling, epsilon-greedy



* Computational Complexity matters
= Real-time applications: robotic control, portfolio optimization
" Large-scale applications: recommendation systems, meta-algorithm for learning

* Optimal algorithms involve heavy computation ®
= k|I-UCB, DMED: optimization problems
=" Thompson Sampling: posterior updating

 Simple algorithms are far from being optimal ®
= UCB1: gap of Pinsker’s inequality is unbounded
= Epsilon-greedy: same gap as UCB1, requires one more prior knowledge

[Can we design an algorithm that can trade-off complexity and optimality?]




* UCBoost algorithms kl-UCB
* Ensemble a set of “weak” but closed-form > Boosting!
UCB-type algorithms i
" Propose two solutions: a finite set and an % UCBoost(€)
infinite set for any epsilon g
= First to offer trade-off between complexity ©

UCBoost(D) UCBI1
@

and optimality with guarantees

Gap to optimality

kI-UCB UCBoost(e) UCBoost(D) UCBI

Regret/log(T) | O (; dkl;(/;zlj/j*)> O <§a: dkl(ﬁéua_ﬁf)_e) O (2@: dkl(ia,;f)a_1/€> O (Z 2(5 —ss )
Complexity unbounded O(log(1/¢)) O(1) O(1)
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* Semi-distance function d:©x0 =R
= Between expectations of random variables over bounded support ©®
= Non-negative, triangle inequality, not necessary to be symmetric
= Strong semi-distance function satisfies d(p,q) =0iff p=gq

e kl-dominated: upper-bounded by du(p,q) = plogg + (1 - p)log -
* Generic UCB algorithm is

K

[ At time t, play arm arg maxmax{q € © : N, (t)d(Ya(t), q) < log(t)} ]




* UCB kernel is a semi-distance function d, with problem [P(d) : max ¢

qeEO
= kl-UCB: kl-divergence d,,, need iterative method to solve s.t. d(p,q) <6

» UCB1: ds(p,q) = 2(p — q)?, closed-form solution

* New semi-distance functions with closed-form solutions
= Hellinger distance: dun(p,q) = (vp — va)* + (ﬂ — \/H)Q
* Biquadratic distance: d,,(p,q) =2(p—q)* + g (p—q)°
=" Theorem 1 provides regret bounds for these new UCB algorithms
= Closed-form solution allows O(1) complexity

* A natural question is

[Can we ensemble these closed-form UCB algorithms to a “stronger” one?]




* Consider a set D of kl-dominated semi-distance functions. If maxdijs g
strong semi-distance function, then D is said to be feasible

= Sufficient condition: exists one strong semi-distance in D
= Easy to construct and verify a feasible set ©

e UCBoost(D) algorithm is

[At time t, play arm arg maximinjmax{q € © : N, (¢)d(Y,(t),q) < log(t)ﬂ

ack|deD

e If all d in D have closed-form solutions, complexity is O(|D]|)



UCB1 UCB2 UCB3 UCBoost
0.9 0.8 0.6 0.6

* Why taking the minimum?

* Philosophy of voting
= Majority vote?
= No! (If the ordering is known, follow the leader)

= UCBoost takes the minimum, thus the tightest
upper confidence bound

08 075 0.7 0.7

02 02 03 02

decision 1 1 2 2

* Geometric view of UCBoost
= Kernel of UCBoost is maxd
» Taking the minimum = solving P ( maxd

deD
" The closer to KL divergence, the better the regret

d(p.q)

Value of q



* A new candidate semi-distance function
" Lower bound of d,: dj;(p, q) = plog(p) + (1 — p) log
" Closed-form solution of P(d,,)
" Tight to d,, when q goesto 1
= Allows bounded gap to optimality

1—gq




* Recall geometric view of UCBoost:
" The closer to KL divergence, the better the regret
" Design a sequence of semi-distance functions to approximate d,,

* For any ¢, step-function approximation
= A sequence of points: ¢ =1—-1/(1+¢)" forany k>0
= For each k, step function: @i, ) = du(p, ax)1{q > a}
" For each p, construct dynamic set D(p) = {ds,, di, d* : p < qr < exp(—¢/p)}
= Bisection search over step functions in D(p)




e Background and Motivations
AMulti-Armed Bandits Framework
(dStochastic Bandits At a Glance
dComplexity vs Optimality Dilemma
(AOur results Overview

* UCBoost Algorithm
(dGeneric UCB Algorithm
(JUCBoost(D) Algorithm
JUCBoost(€) Algorithm

* Numerical Results
dExperiment Setting
(JRegret Results
dComputation Results

* Conclusion



* Average results over 10k independent runs of the algorithms

 Bernoulli Scenario 1
= 9 arms with u; =i/10
m Basic scenario with Bernoulli rewards

* Bernoulli Scenario 2
= 10 arms with p1 = pe = p3 = 0.01, pg = ps = pe = 0.02, u7 = pug = pg = 0.05, p1p = 0.1
= Model the cases in online recommendations

* Beta Scenario
* 9 arms with Beta distributions, Beta(a,2), where a, = i
= Another typical distribution with bounded support
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* Computational Costs per arm per round

UCBoost(¢)

UCBoost(e)

UCBoost(e)

Scenario | klI-UCB e = 0.01(0.001) || € = 0.05(0.005) e — 0.08 UCBoost({dpq, dp,dip}) | UCBI
Bernoulli 1 | 933us 7.67us 6.67us D.7T8 18 1.67us 0.31us
Bernoulli 2 | 986us 8.76 s 7.96 s 6.27us 1.60ps 0.30us

Beta 907 us 8.33us 6.89us 5.89us 2.01us 0.33us

= UCBoost(D) always outperforms UCB1 with same scale of computational cost
= 1% computation cost of kl-UCB to achieve competitive regret
= 100x faster response time or 100x capacity of arms




* Generic UCB algorithm
= New alternatives to UCB1

* Two recipes for complexity vs optimality dilemma
= UCBoost(D) algorithm: bounded gap, O(1) complexity
= UCBoost(€) algorithm: €-gap, O(log(1/€) complexity

* A boosting framework

= Design of UCB algorithm reduces to finding new semi-distance functions
= Try your own semi-distance functions
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