

UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits

Fang Liu¹, Sinong Wang¹, Swapna Buccapatnam² and Ness Shroff¹

¹The Ohio State University

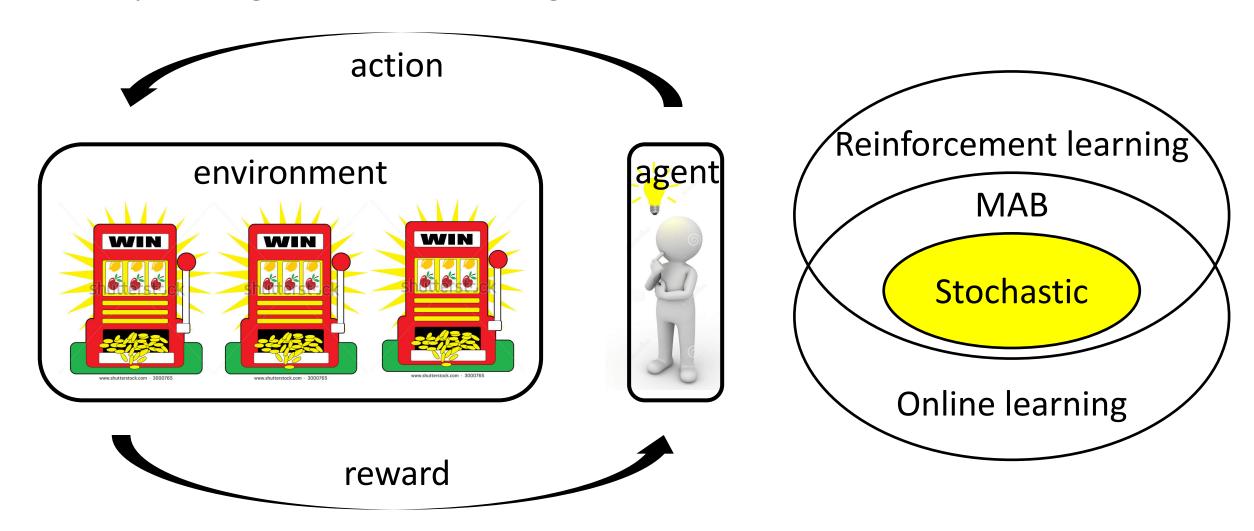
²AT&T Labs Research

Outline

- Background and Motivations
 - ☐ Multi-Armed Bandits Framework
 - ☐ Stochastic Bandits At a Glance
 - ☐ Complexity vs Optimality Dilemma
 - ☐ Our results Overview
- UCBoost Algorithm
 - ☐Generic UCB Algorithm
 - □UCBoost(D) Algorithm
 - \square UCBoost(ϵ) Algorithm
- Numerical Results
 - ☐ Experiment Setting
 - ☐ Regret Results
 - ☐ Computation Results
- Conclusion

Multi-Armed Bandits Framework

Repeated game between an agent and an environment



Stochastic Bandits At a Glance

- Model
 - At each (discrete) time t, the agent plays action A_t from a set of K actions
 - The agent receives reward $Y_{A_t,t}$, drawn from unknown distribution A_t
- Performance measure
 - Regret(loss) $R(T) = \mathbb{E}\left[\max_{i \in [K]} \sum_{t=1}^{T} Y_{i,t} \sum_{t=1}^{T} Y_{A_t,t}\right]$
 - Minimize regret = maximize total reward
- Regret lower bounds
 - Problem-dependent:

$$\Omega\left(\sum_{i} \frac{\mu^* - \mu_i}{KL(\mu_a, \mu^*)} \log T\right)$$
 where μ_i is expected reward

- Popular algorithms
 - Upper Confidence Bounds (UCB), Thompson Sampling, epsilon-greedy

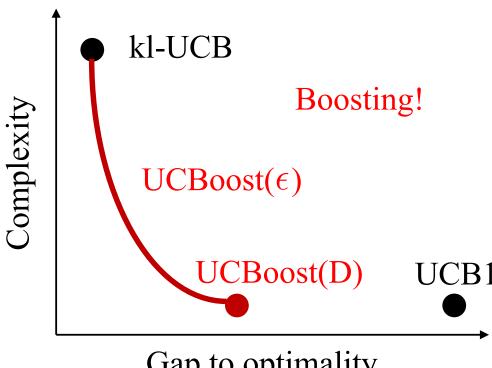
Complexity vs Optimality Dilemma

- Computational Complexity matters
 - Real-time applications: robotic control, portfolio optimization
 - Large-scale applications: recommendation systems, meta-algorithm for learning
- Optimal algorithms involve heavy computation 😊
 - kl-UCB, DMED: optimization problems
 - Thompson Sampling: posterior updating
- Simple algorithms are far from being optimal 😊
 - UCB1: gap of Pinsker's inequality is unbounded
 - Epsilon-greedy: same gap as UCB1, requires one more prior knowledge

Can we design an algorithm that can trade-off complexity and optimality?

Our Results Overview

- UCBoost algorithms
 - Ensemble a set of "weak" but closed-form **UCB-type** algorithms
 - Propose two solutions: a finite set and an infinite set for any epsilon
 - First to offer trade-off between complexity and optimality with guarantees



Gap to optimality

	kl-UCB	$UCBoost(\epsilon)$	UCBoost(D)	UCB1	
Regret/ $\log(T)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*)}\right)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*) - \epsilon}\right)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*) - 1/e}\right)$	$O\left(\sum_{a} \frac{\mu^* - \mu_a}{2(\mu^* - \mu_a)^2}\right)$	
Complexity	unbounded	$O(\log(1/\epsilon))$	O(1)	O(1)	

Outline

- Background and Motivations
 □Multi-Armed Bandits Framework
 □Stochastic Bandits At a Glance
 □Complexity vs Optimality Dilemma
 □Our results Overview
- UCBoost Algorithm
 - ☐Generic UCB Algorithm
 - □UCBoost(D) Algorithm
 - \square UCBoost(ϵ) Algorithm
- Numerical Results
 - ☐ Experiment Setting
 - ☐ Regret Results
 - ☐ Computation Results
- Conclusion

Generic UCB Algorithm

- Semi-distance function $d:\Theta\times\Theta\to\mathbb{R}$
 - Between expectations of random variables over bounded support ⊖
 - Non-negative, triangle inequality, not necessary to be symmetric
 - Strong semi-distance function satisfies d(p,q) = 0 iff p = q
- kl-dominated: upper-bounded by $d_{kl}(p,q) = p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$
- Generic UCB algorithm is

At time t, play arm $\underset{a \in \mathcal{K}}{\arg\max} \max\{q \in \Theta : N_a(t)d(\bar{Y}_a(t),q) \leq \log(t)\}$

Theorem 1. If d is a strong semi-distance function and is also kl-dominated, then the regret of UCB(d) algorithm is

$$\limsup_{T \to \infty} \frac{\mathbb{E}[R(T)]}{\log T} \le \sum_{a} \frac{\mu^* - \mu_a}{d(\mu_a, \mu^*)}$$

Generic UCB Algorithm

- UCB kernel is a semi-distance function d, with problem $P(d) : \max_{i \in A} q_i$
 - kl-UCB: kl-divergence d_{kl}, need iterative method to solve
 - UCB1: $d_{sq}(p,q) = 2(p-q)^2$, closed-form solution

$$P(d) : \max_{q \in \Theta} q$$

 $s.t. \ d(p,q) \le \delta$

- New semi-distance functions with closed-form solutions
 - Hellinger distance: $d_h(p,q) = (\sqrt{p} \sqrt{q})^2 + \left(\sqrt{1-p} \sqrt{1-q}\right)^2$ Biquadratic distance: $d_{bq}(p,q) = 2(p-q)^2 + \frac{4}{9}(p-q)^4$

 - Theorem 1 provides regret bounds for these new UCB algorithms
 - Closed-form solution allows O(1) complexity
- A natural question is

Can we ensemble these closed-form UCB algorithms to a "stronger" one?

UCBoost(D) Algorithm

- Consider a set D of kl-dominated semi-distance functions. If $\max_{d \in D} d$ is a strong semi-distance function, then D is said to be feasible
 - Sufficient condition: exists one strong semi-distance in D
 - Easy to construct and verify a feasible set ©
- UCBoost(D) algorithm is

At time t, play arm
$$\arg\max_{a\in\mathcal{K}}\min_{d\in D}\max\{q\in\Theta:N_a(t)d(\bar{Y}_a(t),q)\leq\log(t)\}$$

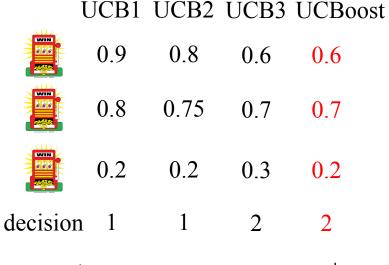
Theorem 2. If D is a feasible set of kl-dominated semi-distance functions, then the regret of UCBoost(D) algorithm is

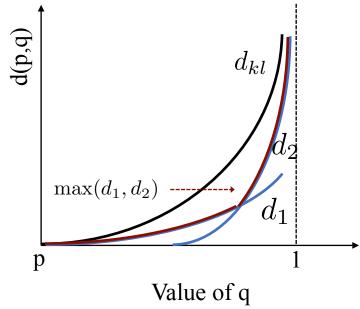
$$\limsup_{T \to \infty} \frac{\mathbb{E}[R(T)]}{\log T} \le \sum_{a} \frac{\mu^* - \mu_a}{\max_{d \in D} d(\mu_a, \mu^*)}$$

• If all d in D have closed-form solutions, complexity is O(|D|)

UCBoost(D) Algorithm

- Why taking the minimum?
- Philosophy of voting
 - Majority vote?
 - No! (If the ordering is known, follow the leader)
 - UCBoost takes the minimum, thus the tightest upper confidence bound
- Geometric view of UCBoost
 - Kernel of UCBoost is $\max_{d \in D} d$
 - Taking the minimum = solving $P\left(\max_{d \in D} d\right)$
 - The closer to KL divergence, the better the regret





UCBoost(D) Algorithm

- A new candidate semi-distance function
 - Lower bound of d_{kl} : $d_{lb}(p,q) = p \log(p) + (1-p) \log \frac{1-p}{1-q}$
 - Closed-form solution of P(d_{lb})
 - Tight to d_{kl} when q goes to 1
 - Allows bounded gap to optimality

Corollary 1. If D={ d_{bq} , d_h , d_{lb} }, then the regret of UCBoost(D) algorithm is $\limsup_{T\to\infty} \frac{\mathbb{E}[R(T)]}{\log T} \leq \sum_a \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*) - 1/e}$

where e is the natural number. The complexity is O(1) per arm per round.

$UCBoost(\epsilon)$ Algorithm

- Recall geometric view of UCBoost:
 - The closer to KL divergence, the better the regret
 - Design a sequence of semi-distance functions to approximate d_{kl}
- For any ϵ , step-function approximation
 - A sequence of points: $q_k = 1 1/(1 + \epsilon)^k$ for any $k \ge 0$
 - For each k, step function: $d_s^k(p,q) = d_{kl}(p,q_k)1\{q>q_k\}$
 - For each p, construct dynamic set $D(p) = \{d_{sq}, d_{lb}, d_s^k : p \le q_k \le \exp(-\epsilon/p)\}$
 - Bisection search over step functions in D(p)

Theorem 3. The regret of UCBoost(ϵ) algorithm is

$$\limsup_{T \to \infty} \frac{\mathbb{E}[R(T)]}{\log T} \le \sum_{a} \frac{\mu^* - \mu_a}{d_{kl}(\mu_a, \mu^*) - \epsilon}$$

The complexity is $O(\log(1/\epsilon))$ per arm per round.

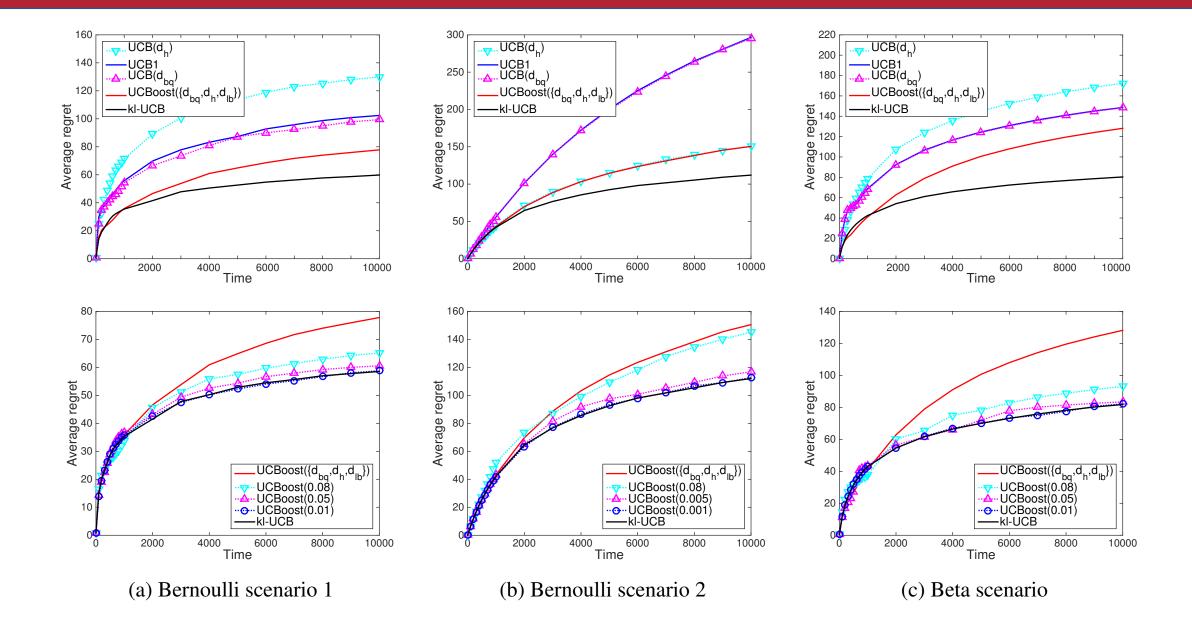
Outline

- Background and Motivations
 - ☐ Multi-Armed Bandits Framework
 - ☐ Stochastic Bandits At a Glance
 - ☐ Complexity vs Optimality Dilemma
 - ☐ Our results Overview
- UCBoost Algorithm
 - ☐Generic UCB Algorithm
 - □UCBoost(D) Algorithm
 - \square UCBoost(ϵ) Algorithm
- Numerical Results
 - ☐ Experiment Setting
 - ☐ Regret Results
 - ☐ Computation Results
- Conclusion

Experiment Setting

- Average results over 10k independent runs of the algorithms
- Bernoulli Scenario 1
 - 9 arms with μ_i = i/10
 - Basic scenario with Bernoulli rewards
- Bernoulli Scenario 2
 - 10 arms with $\mu_1 = \mu_2 = \mu_3 = 0.01, \mu_4 = \mu_5 = \mu_6 = 0.02, \mu_7 = \mu_8 = \mu_9 = 0.05, \mu_{10} = 0.1$
 - Model the cases in online recommendations
- Beta Scenario
 - 9 arms with Beta distributions, Beta(a_i , 2), where $a_i = i$
 - Another typical distribution with bounded support

Regret Results



Computation Results

Computational Costs per arm per round

Scenario	kl-UCB	$UCBoost(\epsilon)$ $\epsilon = 0.01(0.001)$	$UCBoost(\epsilon)$ $\epsilon = 0.05(0.005)$	$UCBoost(\epsilon)$ $\epsilon = 0.08$		UCB1
Bernoulli 1	$933\mu s$	$7.67 \mu s$	$6.67 \mu s$	$5.78\mu s$	$1.67 \mu s$	$0.31\mu s$
Bernoulli 2	$986\mu s$	$8.76\mu s$	$7.96\mu s$	$6.27\mu s$	$1.60\mu s$	$0.30\mu s$
Beta	$907\mu s$	$8.33 \mu s$	$6.89 \mu s$	$5.89 \mu s$	$2.01 \mu s$	$0.33\mu s$

- UCBoost(D) always outperforms UCB1 with same scale of computational cost
- 1% computation cost of kl-UCB to achieve competitive regret
- 100x faster response time or 100x capacity of arms

Conclusion

- Generic UCB algorithm
 - New alternatives to UCB1
- Two recipes for complexity vs optimality dilemma
 - UCBoost(D) algorithm: bounded gap, O(1) complexity
 - UCBoost(ϵ) algorithm: ϵ -gap, O(log(1/ ϵ) complexity
- A boosting framework
 - Design of UCB algorithm reduces to finding new semi-distance functions
 - Try your own semi-distance functions

Thanks!