## UCLA STAT 110 A

Applied Probability \& Statistics for Engineers
-Instructor: Ivo Dinov,
Asst. Prof. In Statistics and Neurology

- Teaching Assistant: Maria Chang, UCLA Statistics

University of California, Los Angeles, Spring 2003
http://www.stat.ucla.edu/~dinov/

STAT HOA. UCLA. Jvo Dinov
Slide 1

Let's Make a Deal Paradox aka, Monty Hall 3-door problem

- This paradox is related to a popular television show in the 1970's. In the show, a contestant was given a choice of three doors/cards of which one contained a prize (diamond). The other two doors contained gag gifts like a chicken or a donkey (clubs).



## Let's Make a Deal Paradox.

- The intuition of most people tells them that each of the doors, the chosen door and the unchosen door, are equally likely to contain the prize so that there is a $50-50$ chance of winning with either selection? This, however, is not the case.
- The probability of winning by using the switching technique is $2 / 3$, while the odds of winning by not switching is $1 / 3$. The easiest way to explain this is as follows:


## Let's Make a Deal Paradox.

- After the contestant chose an initial door, the host of the show then revealed an empty door among the two unchosen doors, and asks the contestant if he or she would like to switch to the other unchosen door. The question is should the contestant switch. Do the odds of winning increase by switching to the remaining door?



## Let's Make a Deal Paradox.

- The probability of picking the wrong door in the initial stage of the game is $2 / 3$.
- If the contestant picks the wrong door initially, the host must reveal the remaining empty door in the second stage of the game. Thus, if the contestant switches after picking the wrong door initially, the contestant will win the prize.
- The probability of winning by switching then reduces to the probability of picking the wrong door in the initial stage which is clearly $2 / 3$.



## Definitions ...

The law of averages about the behavior of coin tosses - the relative proportion (relative frequency) of heads-to-tails in a coin toss experiment becomes more and more stable as the number of tosses increases. The law of averages applies to relative frequencies not absolute counts of \#H and \#T.

- Two widely held misconceptions about what the law of averages about coin tosses:
■ Differences between the actual numbers of heads \& tails becomes more and more variable with increase of the number of tosses - a seq. of 10 heads doesn't increase the chance of a tail on the next trial.
$\square$ Coin toss results are fair, but behavior is still unpredictable.


## Coin Toss Models

Is the coin tossing model adequate for describing the sex order of children in families?
$\square$ This is a rough model which is not exact. In most countries rates of $\mathrm{B} / \mathrm{G}$ is different; form $48 \% \ldots 52 \%$, usually. Birth rates of boys in some places are higher than girls, however, female population seems to be about $51 \%$.
$\square$ Independence, if a second child is born the chance it has the same gender (as the first child) is slightly bigger.

## Types of Probability

- Probability models have two essential components (sample space, the space of all possible outcomes from an experiment; and a list of probabilities for each event in the sample space). Where do the outcomes and the probabilities come from?
- Probabilities from models - say mathematical/physical description of the sample space and the chance of each event. Construct a fair die tossing game.
- Probabilities from data - data observations determine our probability distribution. Say we toss a coin 100 times and the observed Head/Tail counts are used as probabilities.
- Subjective Probabilities - combining data and psychological factors to design a reasonable probability table (e.g., gambling, stock market).


## Sample Spaces and Probabilities

- When the relative frequency of an event in the past is used to estimate the probability that it will occur in the future, what assumption is being made?
- The underlying process is stable over time;
- Our relative frequencies must be taken from large numbers for us to have confidence in them as probabilities.
- All statisticians agree about how probabilities are to be combined and manipulated (in math terms), however, not all agree what probabilities should be associated with a particular real-world event.
- When a weather forecaster says that there is a $70 \%$ chance of rain tomorrow, what do you think this statement means? (Based on our past knowledge, according to the barometric pressure, temperature, on our past knowledge, according to the barometric pressure, temperature,
etc. of the conditions we expect tomorrow, $70 \%$ of the time it did rain under such conditions.)


## Sample spaces and events

A sample space, $S$, for a random experiment is the set of all possible outcomes of the experiment.

- An event is a collection of outcomes.
- An event occurs if any outcome making up that event occurs.


## Combining events - all statisticians agree on

- "A or $\boldsymbol{B}$ " contains all outcomes in $A$ or $B$ (or both).
- "A and $\boldsymbol{B}$ " contains all outcomes which are in both $A$ and $B$.



## Review

Law of averages for the coin-toss example.

- Sample spaces, outcomes, events, complements.
- Probabilities are always in the range [0:1]
- $\operatorname{pr}(\boldsymbol{A})$ can be obtained by adding up the probabilities of all the outcomes in $A$.

$$
\operatorname{Pr}(A)=\sum_{\substack{\mathrm{E} \text { outcome } \\ \text { in event } \mathrm{A}}} \operatorname{Pr}(\boldsymbol{H})
$$

## Probability distributions

- Probabilities always lie between 0 and 1 and they sum up to 1 (across all simple events) .
- $\boldsymbol{\operatorname { r r }}(\boldsymbol{A})$ can be obtained by adding up the probabilities of all the outcomes in $A$.

$$
\operatorname{pr}(A)=\sum_{E} p r(E)
$$

| Job losses in the US |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Job Losses in the US (in thousands) for 1987 to 1991 |  |  |  |  |
|  | Reas <br> Workplace <br> moved/closed | on for Job Lo <br> Slack work | Position abolished | Total |
| Male | 1,703 | 1,196 | 548 | 3,447 |
| Female | 1,210 | 564 | 363 | 2,137 |
| Total | 2,913 | 1,760 | 911 | 5,584 |
| Slide 18 sturwenuch |  |  |  |  |



## Properties of probability distributions

- A sequence of number $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots, \mathrm{pn}_{\mathrm{n}}\right\}$ is a probability distribution for a sample space $S=\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n}\right\}$, if $\operatorname{pr}\left(s_{k}\right)=p_{k}$, for each $1<=k<=n$. The two essential properties of a probability distribution $p_{1}, p_{2}, \ldots, p_{n}$ ?

$$
p_{k} \geq 0 ;{ }_{k} p_{k}=1
$$

- How do we get the probability of an event from the probabilities of outcomes that make up that event?
- If all outcomes are distinct \& equally likely, how do we calculate $\operatorname{pr}(A)$ ? If $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{9}\right\}$ and $\operatorname{pr}\left(a_{1}\right)=\operatorname{pr}\left(a_{2}\right)=\ldots=\operatorname{pr}\left(a_{9}\right)=p ;$ then

$$
\operatorname{pr}(A)=9 \times \operatorname{pr}\left(a_{1}\right)=9 p .
$$

## Proportion vs. Probability

- How do the concepts of a proportion and a probability differ? A proportion is a partial description of a real population. The probabilities give us the chance of something happening in a random experiment. Sometimes, proportions are identical to probabilities (e.g., in a real population under the experiment choose-a-unit-at-random).
- See the two-way table of counts (contingency table) on Table 4.4.1, slide 19. E.g., choose-a-person-atrandom from the ones laid off, and compute the chance that the person would be a male, laid off due to position-closing. We can apply the same rules for manipulating probabilities to proportions, in the case where these two are identical.


## Example of probability distributions

- Tossing a coin twice. Sample space $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}$, TT\}, for a fair coin each outcome is equally likely, so the probabilities of the 4 possible outcomes should be identical, $p$. Since, $\mathrm{p}(\mathrm{HH})=\mathrm{p}(\mathrm{HT})=\mathrm{p}(\mathrm{TH})=\mathrm{p}(\mathrm{TT})=\mathrm{p}$ and

$$
p_{k} \geq 0 ; \sum_{k} p_{k}=1
$$

- $\mathrm{p}=1 / 4=0.25$.

$$
\operatorname{pr}(A \text { or } B)=\operatorname{pr}(A)+\operatorname{pr}(B)
$$

[^0]| Unmarried couples |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Select an unmarried couple at random - the table proportions give us the probabilities of the events defined in the row/column titles. |  |  |  |  |  |
| Proportions of Unmarried Male-Female Couples Sharing Household in the US, 1991 |  |  |  |  |  |
|  |  |  |  |  |  |
| Male | Never <br> Married | Divorced | Widowed | Married to other | Total |
| Never M arried | 0.401 | . 111 | . 017 | . 025 | . 554 |
| Divorced | . 117 | . 195 | . 024 | . 017 | . 353 |
| Widowed | . 006 | . 008 | . 016 | . 001 | . 031 |
| Married to other | . 021 | . 022 | . 003 | . 016 | . 062 |
| Total | . 545 | . 336 | . 060 | . 059 | 1.000 |
| Slide 25 STAT Hoa UCLIA, Wio Din |  |  |  |  |  |


| Melanoma - type of skin cancer an example of laws of conditional probabilities |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 400 Melanoma Patients by Type and Site |  |  |  |  |
|  |  |  |  |  |
| Type | Head and Neck | Trunk | Extremities | Row <br> Totals |
| Hutchinson's melanomic freckle | 22 | 2 | 10 | 34 |
| Superficial | $16$ | 54 | 115 | 185 |
| Nodular | $19$ | 33 | 115 73 | 125 |
| Indeterminant | 11 | 17 | 28 | 56 |
| Column Totals | 68 | 106 | 226 | 400 |
| Contingency table based on Melanoma histological type and its location |  |  |  |  |
|  |  | Slide 27 | STAT moavcha |  |



## Review

- If $A$ and $B$ are mutually exclusive, what is the probability that both occur? (0) What is the probability that at least one occurs? (sum of probabilities)
- If we have two or more mutually exclusive events, how do we find the probability that at least one of them occurs? (sum of probabilities)
- Why is it sometimes easier to compute $\operatorname{pr}(A)$ from $\operatorname{pr}(A)=1-\operatorname{pr}(\bar{A})$ ? (The complement of the even may be easer to find or may have a known probability. E.g., a random number between 1 and 10 is drawn. or may have a known probability. E.g., a random number between 1 and 10 is
Let $\mathrm{A}=\{$ a number less than or equal to 9 appears $\}$. Find $\operatorname{pr}(\mathrm{A})=1-\operatorname{pr}(\bar{A})$ ). probability of $\bar{A}$ is $\operatorname{pr}(\{10$ appears $\})=1 / 10=0.1$. Also Monty Hall 3 door example!


## Conditional Probability

The conditional probability of $\boldsymbol{A}$ occurring given that $B$ occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

Suppose we select one out of the 400 patients in the study and we want to find the probability that the cancer is on the extremities given that it is of type nodular: $\mathrm{P}=73 / 125=\mathrm{P}(\mathrm{C}$. on Extremities $\mid$ Nodular)
\#nodular patients with cancer on extremities \#nodular patients


## A tree diagram for computing conditional probabilities

Suppose we draw 2 balls at random one at a time without replacement from an urn containing 4 black and 3 white balls, otherwise identical. What is the probability that the second ball is black? Sample Spc?

Mutually
$\mathrm{P}(\{2-n d$ ball is black $\})=$
$\mathrm{P}(\{2-n d$ is black $\}$ \& $\{1$-st is black $\})+$
$\mathrm{P}(\{2-\mathrm{nd}$ is black $\} \&\{1$-st is white $\})=$

$$
4 / 7 \times 3 / 6+4 / 6 \times 3 / 7=4 / 7 .
$$




- Many problems involving conditional probabilities can be solved by constructing two-way tables

This includes reversing the order of conditioning
$\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \times \mathrm{P}(\mathrm{A})$

Proportional usage of oral contraceptives and their rates of failure

We need to complete the two-way contingency table of proportions




## Summary

- What does it mean for two events $A$ and $B$ to be statistically independent?
- Why is the working rule under independence, $P(A$ and $B)=P(A) P(B)$, just a special case of the multiplication rule $P(A \& B)=P(A \mid B) P(B)$ ?
- Mutual independence of events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{n}}$ if and only if $P\left(A_{1} \& A_{2} \& \ldots \& A_{\mathrm{n}}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{\mathrm{n}}\right)$
- What do we mean when we say two human characteristics are positively associated? negatively associated? (blond hair - blue eyes, pos.; black hair - blue eyes, neg.assoc.)


## Example using independence

There are many genetically based blood group systems. Two of these are: $R h$ blood type system (Rh+ and Rh-) and the Kell system (K+ and K-). For Europeans the following proportions are experimentally obtained.

| . $08 \times .8$ | $\operatorname{pr}($ RH + ) $=.81$ |  |  | Blood Type Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | K+ $\mathrm{K}^{-}$ | Total |  | K+ | K- | Total |
| .19 Rh+ | ? | . 1 | Rh+ | . 0648 | . 7452 | . 81 |
| Rh- | ? | . 19 | Rh- | . 0152 | . 1748 | . 19 |
| Total | . 08.92 | 1.00 | Total | . 08 | . 92 | 1.00 |

How can we fill in the inside of the two-way contingency table? It is known that anyone's blood type in one system is independent of their type in another system.

$$
\mathrm{P}(\mathrm{Rh}+\text { and } \mathrm{K}+)=\mathrm{P}(\mathrm{Rh}+) \times \mathrm{P}(\mathrm{~K}+)=0.81 \times 0.08=0.0648
$$

## Statistical independence

- Events $A$ and $B$ are statistically independent if knowing whether $B$ has occurred gives no new information about the chances of $A$ occurring,

$$
\text { i.e. if } \operatorname{pr}(A \mid B)=\operatorname{pr}(A)
$$

- Similarly, $\mathrm{P}(B \mid A)=\mathrm{P}(B)$, since
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B} \& \mathrm{~A}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B}) / \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
- If $A$ and $B$ are statistically independent, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \times \operatorname{pr}(B)
$$

## Review

- What happens to the calculated $\mathrm{P}(A$ and $B)$ if we treat positively associated events as independent? if we treat negatively associated events as independent?
(Example, let $\mathrm{B}=\{\mathrm{A}+\{\mathrm{b}\}\}, \mathrm{A} \& \mathrm{~B}$ are pos-assoc' d ,
$\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{A})[\mathrm{P}(\mathrm{A})+\mathrm{P}(\{\mathrm{b}\})]$, under indep. assump's. However,
$\mathrm{P}(\mathrm{A} \& \mathrm{~B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})=1 \times \mathrm{P}(\mathrm{A})>\mathrm{P}(\mathrm{A})[\mathrm{P}(\mathrm{A})+\mathrm{P}(\{\mathrm{b}\})]$, underestimating the real chance of events. If A \& B are neg-assoc $\mathrm{d} \rightarrow \mathrm{A} \& \operatorname{comp}(\mathrm{~B})$ are pos-assoc'd. In general, this may lead to answers that are grossly too small or too large ...)
- Why do people often treat events as independent? When can we trust their answers? (Easy computations! Not always!)


## Summary of ideas

- The probabilities people quote come from 3 main sources:
- (i) Models (idealizations such as the notion of equally likely outcomes which suggest probabilities by symmetry).

Alist of numbers $p_{1}, p_{2}, \ldots$ is a probability

■ (ii) Data (e.g.relative frequencies with which the event has occurred in the past).

- (iii) subjective feelings representing a degree of belief
- A simple probability model consists of a sample space and a probability distribution.
- A sample space, $S$, for a random experiment is the set of all possible outcomes of the experiment.


## Summary of ideas cont.

An event is a collection of outcomes

- An event occurs if any outcome making up that event occurs
- The probability of event A can be obtained by adding up the probabilities of all the outcomes in A
- If all outcomes are equally likely,

$$
\operatorname{pr}(A)=\frac{\text { number of outcomes in } A}{\text { total number of outcomes }}
$$

## Summary of ideas cont.

- The conditional probability of $A$ occurring given that $B$ occurs is given by

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \text { and } B)}{\operatorname{pr}(B)}
$$

- Events $A$ and $B$ are statistically independent if knowing whether $B$ has occurred gives no new information about the chances of $A$ occurring, i.e. if $\mathrm{P}(A \mid B)=\mathrm{P}(A) \quad \rightarrow \quad \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$.
- If events are physically independent, then, under any sensible probability model, they are also statistically independent
- Assuming that events are independent when in reality they are not can often lead to answers that are grossly too big or grossly too small


## Formula Summary

- For discrete sample spaces, $\operatorname{pr}(A)$ can be obtained by adding the probabilities of all outcomes in $A$
- For equally likely outcomes in a finite sample space

$$
\operatorname{pr}(A)=\frac{\text { number of outcomes in } A}{\text { total number of outcomes }}
$$



## Formula summary cont.

Multiplication Rule under independence:

- If $A$ and $B$ are independent events, then

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(A) \operatorname{pr}(B)
$$

If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent, $\operatorname{pr}\left(A_{1}\right.$ and $A_{2}$ and $\ldots$ and $\left.A_{n}\right)=\operatorname{pr}\left(A_{1}\right) \operatorname{pr}\left(A_{2}\right) \ldots \operatorname{pr}\left(A_{n}\right)$

Generalized Principle of Counting: If M (independent) experiments are performed and the first one has $\mathrm{N}_{\mathrm{m}}$ possible outcomes, $1<=m<=\mathrm{M}$, then the TOTAL number of outcomes of the combined experiment is

$$
\mathbf{N}_{1} \times \mathbf{N}_{2} \mathbf{x} \ldots \times \mathbf{N}_{\mathbf{M}}
$$

E.g., How many binary functions $[f(i)=0$ or $f(i)=1]$, defined on a grid $1,2,3, \ldots, n$, are there? How many numbers can be stored in 8 bits $=1$ byte?

$$
2 \times 2 \times \ldots \times 2=2^{n}
$$

## Formula summary cont.

## Conditional probability

- Definition:

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \operatorname{and} B)}{\operatorname{pr}(B)}
$$

- Multiplication formula:

$$
\operatorname{pr}(A \text { and } B)=\operatorname{pr}(B \mid A) \operatorname{pr}(A)=\operatorname{pr}(A \mid B) \operatorname{pr}(B)
$$

Theory of Counting $=$ Combinatorial Analysis
Principle of Counting: If 2 experiments are performed and the first one has $\mathrm{N}_{1}$ possible outcomes, the second (independent) experiment has $\mathrm{N}_{2}$ possible outcomes then the number of outcomes of the combined (dual) experiment is $\mathrm{N}_{1} \times \mathrm{N}_{2}$.
E.g., Suppose we have 5 math majors in the class, each carrying 2 textbooks with them. If I select a math major student and 1 textbook at random, how many possibilities are there? $5 \times 2=10$

## Permutation \& Combination

Permutation: Number of ordered arrangements of $\underline{\mathbf{r}}$ objects chosen from $\underline{\mathbf{n}}$ distinctive objects

$$
\begin{gathered}
P_{n}^{r}=n(n-1)(n-2) \ldots(n-r+1) \\
P_{n}^{n}=P_{n}^{n-r} \cdot P_{r}^{r}
\end{gathered}
$$

$$
\text { e.g. } \quad P_{6}{ }^{3}=6 \cdot 5 \cdot 4=120 .
$$

## Permutation \& Combination

## Permutation \& Combination

## Combinatorial Identity:

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

Analytic proof: (expand both hand sides)
Combinatorial argument: Given $n$ object focus on one of them (obj. 1). There are ${ }^{n-1}$ groups of size r that contain obj. 1 (since each group contains r-1 other elements out of $n-1$ ). Also, there are ${ }^{n-1} \begin{aligned} & \text { 1 }\end{aligned}$ groups of size $r$, that do not contain obj1. But the total of all r-size groups of n -objects is ${ }_{( }^{n}{ }_{r}^{n}$ !

## Permutation \& Combination

Combinatorial Identity:

$$
\binom{n}{r}=\binom{n}{n-r}
$$

Analytic proof: (expand both hand sides)
Combinatorial argument: Given $n$ objects the number of combinations of choosing any $r$ of them is equivalent to choosing the remaining n-r of them (order-of-objs-notimportant!)

## Examples

2. How many different letter arrangement can be made from the 11 letters of MISSISSIPPI?

Solution: There are: 1 M, 4 I, 4 S, 2 P letters. Method 1: consider different permutations:

$$
11!/(1!4!4!2!)=34650
$$

Method 2: consider combinations:

## Examples

3. There are N telephones, and any 2 phones are connected by 1 line. Then how many lines are needed all together?

Solution: $\mathrm{C}^{2}{ }_{\mathrm{N}}=\mathrm{N}(\mathrm{N}-1) / 2$
If, $\mathrm{N}=5$, complete graph with 5 nodes has $\mathrm{C}^{2}{ }_{5}=10$ edges.

## Examples

4. N distinct balls with M of them white. Randomly choose $\mathbf{n}$ of the $\mathbf{N}$ balls. What is the probability that the sample contains exactly $m$ white balls (suppose every ball is equally likely to be selected)?

Solution: a) For the event to occur, $m$ out of $M$ white
balls are chosen, and $\mathbf{n - m}$ out of $\mathbf{N}$-M non-white
balls are chosen. And we get

$$
\binom{M}{m}\binom{N-M}{n-m}
$$

b) Then the probability is

Later These Probabilities
Will be associated with the name
$\binom{M}{m}\binom{N-M}{n-m} /\binom{N}{n}$

## Examples

5a. How would this change if there are N functional $(\rho)$ and $M$ defective chips ( ()$, \mathrm{M}<=\mathrm{N}+1$, in an assembly line?

Solution: $\quad\binom{N+1}{M}$


There are $\mathbf{N}+1$ slots for the girls to fill between the boys And there are $\mathbf{M}$ girls to position in these slots, hence
the coefficient in the middle.

## Examples

5. N boys ( 9 ) and M girls ( ()$, \mathrm{M}<=\mathrm{N}+1$, stand in 1 line. How many arrangements are there so that no 2 girls stand next to each other?
There are $\mathbf{N}$ ! ways of ordering $\quad$ There are $\mathbf{M}$ ! ways of ordering the girls among
the boys among themselves the boys among themselves themselves. NOTE - if girls are indistinguishable $\underline{\text { Solution: }} \mathrm{N}!\cdot\binom{N+1}{M} \cdot \mathrm{M}$ !

## There are $\mathbf{N}+\mathbf{1}$ slots for the girls to fill between the boys And there are $\mathbf{M}$ girls to position in these slots, hence

 the coefficient in the middle.How about they are arranged in a circle? Answer: N! $\binom{N}{M}$ M!
$\underset{\text { Slide } 69}{\text { E. }} \mathrm{N}=3, \mathrm{M}=2$


## Examples

5a. How would this change if there are N functional $(\rho)$ and M defective chips ( ()$, \mathrm{M}<=\mathrm{N}+1$, in an assembly line?

Solution: $\quad\binom{N+1}{M}$
There are $\mathbf{N}+\mathbf{1}$ slots for the girls to fill between the boys And there are $\mathbf{M}$ girls to position in these slots, hence
the coefficient in the middle. And there are
the coefficient in the middle.

## Multinomial theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Generalization: Divide n distinctive objects into k groups, with the size of every group $\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{\boldsymbol{k}}$, and $\boldsymbol{n}_{1}+\boldsymbol{n}_{2}+\ldots+\boldsymbol{n}_{\boldsymbol{k}}=\boldsymbol{n}$ $\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}=\sum\left({ }_{n_{1}, n_{2} \ldots \ldots, n_{k}}^{n}\right) x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{k}^{n_{k}}$ where $\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}} \ldots\binom{n-n_{1}-\ldots-n_{k-1}}{n_{k}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}$ $\underset{\text { Probabilities }}{\text { Multinomial }} p\left(n_{1}, \ldots, n_{k}\right)=\frac{n!}{n_{1}!\cdots n_{k}!} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$

On the left is the coeff of $1^{k} x^{(m+n-k)}$. On the right is the same coeff in the product of $\left(\ldots+\right.$ coeff $\left.* x^{(m-1)}+\ldots\right) *\left(\ldots+\right.$ coeff $\left.* x^{(n-k+i)}+\ldots\right)$.

## Multinomial theorem - will discuss in Ch. 03

- N independent trials with results falling in one of k possible categories labeled $1, \ldots, k$. Let $p_{i}=$ the probability of a trial resulting in the $i^{\text {th }}$ category, where $\mathrm{p}_{1}+\ldots+\mathrm{p}_{\mathrm{k}}=1$
- $\mathrm{N}_{\mathrm{i}}=$ number of trials resulting in the $\mathrm{i}^{\text {th }}$ category, where $\mathrm{N}_{1}+\ldots+\mathrm{N}_{\mathrm{k}}=\mathrm{N}$
-Ex: Suppose we have 9 people arriving at a meeting.
$P($ by Air $)=0.4, P($ by Bus $)=0.2$
$P($ by Automobile $)=0.3, P($ by Train $)=0.1$
$P(3$ by Air, 3 by Bus, 1 by Auto, 2 by Train $)=$ ?
$P(2$ by air $)=$ ?


## Application - Number of integer solutions to linear equ's

1) There are $\binom{n-1}{r-1}$ distinct positive integer-valued vectors ( $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots, \mathrm{x}_{\mathrm{r}}$ ) satisfying

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{r}}=\mathrm{n}, \& \mathrm{x}_{\mathrm{i}}>0,1<=\mathrm{i}<=\mathrm{r}
$$

2) There are $\binom{n+r-1}{r-1}$ distinct positive integer-valued vectors $\left(\mathrm{y}_{1}, \mathrm{y}_{2} \cdots, \mathrm{y}_{\mathrm{r}}\right)$ satisfying

$$
\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots+\mathrm{y}_{\mathrm{r}}=\mathrm{n}, \quad \& \mathrm{y}_{\mathrm{i}}>=0,1<=\mathrm{i}<=\mathrm{r}
$$

Since there are $\underline{n+r-1}$ possible positions for the dividing splitters (or by letting $\mathrm{y}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-1, \mathrm{RHS}=\mathrm{n}+\mathrm{r}$ ).

Slide 76

## Examples

8. Randomly give n pairs of distinctive shoes to n people, with 2 shoes to everyone. How many arrangements can be made? How many arrangements are there, so that everyone gets an original pair? What is the the probability of the latter event, $\boldsymbol{E}$ ?
Solution: a) according to
 total arrangements is

$$
\binom{2 n}{n_{1}, n_{2}, \ldots, n_{r}}=
$$

$$
\binom{2 n}{n_{1}}\binom{2 n-n_{1}}{n_{2}} . .\binom{2 n-n_{1}-n_{2}-\ldots-n_{r-1}}{n_{r}}=
$$

$$
N=(2 n)!/(2!)^{r}=(2 n)!/ 2^{r}
$$

$$
\frac{(2 n)!}{n_{1}!n_{2}!\ldots n_{r}!}=\frac{(2 n)!}{(2!)^{r}}
$$

$$
\text { as one object, and give them to people, there are } \mathrm{M}=\mathrm{n} \text { ! arrangements. }
$$

$$
\text { c) } \mathrm{P}(\boldsymbol{E})=\mathrm{M} / \mathrm{N}=\mathrm{n}!/\left[(2 \mathrm{n})!/ 2^{\mathrm{n}}\right]=1 /(2 \mathrm{n}-1)!!
$$

$$
\text { (Do } \mathrm{n}=6 \text {, case by hand!) }
$$

$$
\text { *note: } n!!=n(n-2)(n-4) . .
$$

$$
\text { Slide } 78
$$

## Examples

7. There are $\mathbf{n}$ balls randomly positioned in $\mathbf{r}$ distinguishable urns. Assume $n>=r$. What is the number of possible combinations? $\quad \mathrm{n}=9, \mathrm{r}=3$
(labeled) : $r^{n}$ possible
1) If the balls are distinguishable (labeled) : $r^{\mathrm{n}}$ possible
outcomes, where empty urns are permitted. Since each of the $\underline{n}$ balls can be placed in any of the $\underline{r}$ urns.
2) If the balls are indistinguishable: no empty urns are $\binom{n-1}{r-1}$ allowed - select $\mathrm{r}-1$ of all possible $\mathrm{n}-1$ dividing points between the n -balls. $(r-1)$ 3) If empty urns are allowed $\quad \mathrm{n}=9$, and are empty bins $(n+r-1)$


## Example

1) An investor has $\$ 20 \mathrm{k}$ to invest in 4 potential stocks. Each investment is in increments of $\$ 1 \mathrm{k}$, to minimize transaction fees. In how many different ways can the money be invested?
2) $x_{1}+x_{2}+x_{3}+x_{4}=20, x_{k}>=0 \rightarrow\binom{23}{3}=1,771$
3) If not all the money needs to be invested, let $x 5$ be the left over money, then
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20$
$\binom{24}{4}=10,626$

## Sterling Formula for asymptotic behavior of $\mathbf{n}$ !

## Sterling formula:




## Probability and Venn diagrams



## Probability and Venn diagrams



Conditional probability:

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(A \cap B) / \mathrm{P}(\mathrm{B})$
$A=A B \cup A B^{C}$ or $P(A)=P(A \mid B)+P\left(A \mid B^{C}\right)$

## Examples

9. (True or false)All K are S, all S not W. Then all W are not K. ( T ) All K are S, Some S are W. Then surely some K is W. (F)
10. A class have 100 pupils, each of them is enrolled in at least one course among A,B\&C. It is known that 35 have A, 40 have B,50 have C, 8 have both A\&B, 12 have both A\&C, 10 have both B\&C. How many pupils have all 3 courses?
Solution: Use Venn's diagram, $35+40+50-8-12-10+X=100$

Note: The arrangement: $8 \rightarrow \mathrm{~A} \& \mathrm{~B} ; 15 \rightarrow \mathrm{~A} \& \mathrm{C} ; 12 \rightarrow \mathrm{~B} \& \mathrm{C}$ won't work, since the only solution is $10 \rightarrow \mathrm{~A} \& B \& C$, but $\mathrm{A} \& \mathrm{~B} \& \mathrm{C}<=\mathrm{A} \& \mathrm{~B}$, which is a contradiction!


[^0]:    From Chance Encounters by C.J. Wild and G.A.F. Seber, © John Wiley \& Sons, 2000

