
Calculus of Variations Problems:

•Introduction

•Minimal Surface Area of Revolution Problem

•Brachistochrone Problem

•Isoperimetric Problem



A Typical Calculus of Variations Problem:

Maximize or minimize (subject to side condition(s)):

( ) ( ), ,
b

a

I y F x y y dx′= ∫
Where y and y’ are continuous on            , and  F has

continuous first and second partials.
[ ],a b



Example:

( ) 2, ,F x y y xy y′ ′= +

and

[ ] [ ], 0,1a b =



For              , 2y x=

( ) ( ) ( )
1 1

22 5

0 0

72 2
6

I y x x x dx x x dx⎡ ⎤= + = + =⎢ ⎥⎣ ⎦∫ ∫



Here’s a table of values for various functions, y:

y ( )
1

2

0

I y xy y dx′⎡ ⎤= +⎣ ⎦∫
1

x

2x

1
2
5
4
7
6

xe
2 4 3

4
e e+ −



Complete the table of values for ( )
1

0

I y xyy dx′= ∫
y ( )I y

1
x
2x

xe

0

x
(See handout, 
page 1!)



y ( )I y

1

x

2x

xe

0

x

Answer:

1
3
2
5

1
4
2 1
4

e +



What’s the equivalent of setting             equal to zero, and

solving for the critical points(functions)? 
( )I y′

Consider                                                        

With the side conditions                          and           .

( ) ( ), ,
b

a

I y F x y y dx′= ∫
( )y a c= ( )y b d=

This is called a fixed endpoint problem.



If        is a minimizing or maximizing function, and      is a 

continuously differentiable function with                      and

, then we can let      be a real variable and

consider the ordinary function 

y
( ) 0h a =

( ) 0h b =

h

ε

( ) ( ) ( ), ,
b

a

f I y h F x y h y h dxε ε ε ε′ ′= + = + +∫

a b

c

d

y

h

ba

a b

c

d

y hε+



With       and       held fixed,       is a real valued function of 

that attains its minimum or maximum at             , so if

exists, it must equal zero.  

So let’s differentiate and see what happens.

y h f
ε 0ε =

( )0f ′

Under the assumptions, 

( ) ( )

( )

, ,

, ,

b

a

b

a

df F x y h y h dx
d

F x y h y h dx

ε ε ε
ε

ε ε
ε

⎡ ⎤
′ ′ ′⎢ ⎥= + +

⎢ ⎥⎣ ⎦

∂ ′ ′= + +⎡ ⎤⎣ ⎦∂

∫

∫



We can use the Chain Rule to get

( ), ,F x y h y hε ε
ε
∂ ′ ′+ +⎡ ⎤⎣ ⎦∂

( ) ( ), , , ,y y

F x F y F y
x y y

F x y h y h h F x y h y h h
ε ε ε

ε ε ε ε′

′∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅

′∂ ∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′= + + ⋅ + + + ⋅



So now we know that 

( ) ( ) ( ), , , ,
b

y y

a

f F x y h y h h F x y h y h h dxε ε ε ε ε′′ ′ ′ ′ ′ ′⎡ ⎤= + + ⋅ + + +⎣ ⎦∫
Setting             yields: 0ε =

( ) ( ) ( )0 , , , ,
b

y y

a

f F x y y h F x y y h dx′′ ′ ′ ′⎡ ⎤= ⋅ +⎣ ⎦∫
Since this must be zero, we arrive at



( ) 0
b

y y

a

F h F h dx′ ′+ =∫
If we apply integration by parts to the second summand, we get

( ) ( ) ( ) ( ), , , ,

b b
b

y y ya
dvua a

b

y y y

a

b

y

a

dF h dx F h F hdx
dx

dF b y y h b F a y y h a F hdx
dx

d F hdx
dx

′ ′ ′

′ ′ ′

′

⎛ ⎞′ = − ⎜ ⎟
⎝ ⎠

⎛ ⎞′ ′= − − ⎜ ⎟
⎝ ⎠

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∫ ∫

∫

∫



So now we have the equation

0
b

y y

a

dF h F h dx
dx ′

⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫
Or simply

0
b

y y

a

dF F h dx
dx ′

⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫



0
b

y y

a

dF F h dx
dx ′

⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫
This equation must be true for every

continuously differentiable function h with

. ( ) ( ) 0h a h b= =



Suppose that for a continuous function f,

for all continuously differentiable functions h, with 

.  What must f equal?

( ) ( ) 0
b

a

f x h x dx =∫

( ) ( ) 0h a h b= =

Suppose that f is not the zero function.  Then there must be a

point c in             with                 .  If we further suppose that 

, then since f is continuous, there must be an

interval           containing c on which f is positive.

[ ],a b ( ) 0f c ≠

( ) 0f c >

[ ],d e



a bd c e

f

Choose h with           inside           , and           outside        .

For example  

0h > [ ],d e 0h = [ ],d e

( ) ( ) ( )2 2 ;
0 ;

x d x e d x eh x
           otherwise

⎧ − − ≤ ≤⎪= ⎨
⎪⎩



a bd c e

f

h

Clearly,                            .  See if you can show that h is

continuously differentiable on           . 

( ) ( ) 0h a h b= =

[ ],a b

(See handout, 
page 2!)



For this choice of h, what can you conclude about the value

of                             ? ( ) ( )
b

a

f x h x dx∫

So f must be the zero function on           . [ ],a b



Since                                               for all continuously 

differentiable functions h with                            , we can 

conclude that                                on           .   

0
b

y y

a

dF F hdx
dx ′

⎡ ⎤⎛ ⎞− =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫
( ) ( ) 0h a h b= =

0y y
dF F
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠

[ ],a b



To clear up one point, when we integrated by parts in the 

second part of                                      , there was no 

guarantee that             exists or is continuous.  But according 

to the Dubois-Reymond lemma, if                                         

for all continuously differentiable functions h with

, then                              .                                   

( ) 0
b

y y

a

F h F h dx′ ′+ =∫

( ) 0
b

y y

a

F h F h dx′ ′+ =∫
y

d F
dx ′

( ) ( ) 0h a h b= = 0y y
dF F
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠



So a maximizing or minimizing function, y, must 
satisfy:

0y y
dF F
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠

Subject to

and( )y a c= ( )y b d=



The differential equation                                is referred to

as the Euler-Lagrange equation.  

It is typically converted into a second-order differential 
equation in y, even though the existence of      was not 
assumed or needed in the original problem.

Solutions of the modified Euler-Lagrange equation are 
solutions of the original Euler-Lagrange equation.  

A solution of the original Euler-Lagrange equation which 
doesn’t have a second derivative is called a weak 
solution.

0y y
dF F
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠

y′′



It can be shown that if y has a continuous first derivative, 

satisfies                               , F has continuous first and second 

partials, then y has a continuous second derivative at all points 

where                             .

0y y
dF F
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠

( ), , 0y yF x y y′ ′ ′ ≠



As an example, let’s find the Euler-Lagrange

equation for                                      .( ) ( )21
b

a

I y y y dx′= +∫



( ) ( )2, , 1F x y y y y′ ′= +

( )21yF y′= +
( )21

y
yyF

y
′

′
=

′+

( ) ( ) ( )
( )

3
2

4 2

21
y

y yy yd F
dx y

′

′ ′′ ′+ +
=

⎡ ⎤′+⎣ ⎦



So the Euler-Lagrange equation is

( ) ( ) ( )
( )

3
2

4 2
2

2
1 0

1
y

y

F

d F
dx

y yy y
y

y

′

′ ′′ ′+ +
′+ − =

⎡ ⎤′+⎣ ⎦

Or simply

( )2 1 0yy y′′ ′− − =



See if you can find the Euler-Lagrange equation 
for 

( ) ( )
2

22

0

I y y y dx

π

⎡ ⎤′= −⎣ ⎦∫

(See handout, 
page 3!)



0y y′′ + =

Answer:



Find all optimal solution candidates of 

( ) ( )
2

22

0

I y y y dx

π

⎡ ⎤′= −⎣ ⎦∫
Subject to

and( )0 0y = 1
2

y π⎛ ⎞ =⎜ ⎟
⎝ ⎠

(See handout, 
page 4!)



Answer:

siny x=

Let’s see if it’s a maximum, minimum, or neither?



Suppose that z is a function which is continuously

differentiable with               and             .   Then     

would be a continuously differentiable function with            

and               .  So every such function z can be represented 

as                    for some function h.  Therefore to investigate

the value of         for any such function, z, we can consider

, for a continuously differentiable

function h, with               and             .    

( )0 0z = ( )2 1z π = sinh z x= −

( )0 0h =

( )2 0h π =

( ) ( ) ( )( )sinI z I x h x= +

( )sin x h x+

( )I z

( )0 0h = ( )2 0h π =



( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

2

2 2

2

2

2 2

0

2 2

0 0

0

22

0

22

00

sin sin cos

sin cos 2 sin cos

sin

I x h x x h x x h x dx

x x dx h x x h x x dx

     h x h x dx

I x h x h x dx

π

π π

π

π

=

⎡ ⎤′+ = + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

′= − + −

⎡ ⎤′+ − ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤′= + − ⎡ ⎤⎣ ⎦⎣ ⎦

∫

∫ ∫

∫

∫



So what’s going on at the critical function               , depends

on whether the expression                                       is always 

positive, always negative, or can be either positive or 

negative for continuously differentiable functions h with

and                   .  So let’s investigate.

siny x=

( ) ( )
2

22

0

h x h x dx

π

⎡ ⎤′− ⎡ ⎤⎣ ⎦⎣ ⎦∫

( )0 0h = 0
2

h π⎛ ⎞ =⎜ ⎟
⎝ ⎠



We’ll use a special case of the Poincare Inequality to get our 
result: (Assume that                .) 

( ) ( )
0

x

h x h t dt′= ∫
so

( ) ( )
2

2

0

x

h x h t dt
⎡ ⎤

′⎢ ⎥=
⎢ ⎥⎣ ⎦
∫

0 1x≤ ≤



We’ll need a version of the Cauchy-Schwarz inequality:

For f and g continuous functions on 

( ) ( ) ( ) ( )
2

2 2
b b b

a a a

f x g x dx f x dx g x dx
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∫ ∫ ∫

[ ],a b

See if you can prove it.

(See handout, 
page 5!)



From the Cauchy-Schwarz Inequality, we get

( ) ( )

( )

22 2

0 0

2

0

1
x x

x

h x dt h t dt

x h t dt

′≤ ⎡ ⎤⎣ ⎦

′≤ ⎡ ⎤⎣ ⎦

∫ ∫

∫
And so

( ) ( )
1

22

0

h x h x dx′≤ ⎡ ⎤⎣ ⎦∫



If we integrate this inequality, we get 

( ) ( )
1 1

22

0 0

h x dx h x dx′≤ ⎡ ⎤⎣ ⎦∫ ∫

We can do the same thing for                   . 1
2

x π
≤ ≤

( ) ( )
2

x

h x h t dt

π

′= −∫



so

( ) ( )
2

2

2

x

h x h t dt

π⎡ ⎤
⎢ ⎥′= −
⎢ ⎥
⎣ ⎦
∫

From the Cauchy-Schwarz Inequality, we get

( ) ( )

( )

2 2

2

22 2

2

1

2

x x

x

h x dt h t dt

x h t dt

π π

π

π

′≤ ⎡ ⎤⎣ ⎦

⎛ ⎞ ′≤ − ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

∫ ∫

∫



And so

( ) ( )
2

22

1

1
2

h x h x dx

π

π⎛ ⎞ ′≤ − ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠∫
If we integrate this inequality, we get 

( ) ( )

( )

2 2

2

2
22

1 1

2

1

1
2

h x dx h x dx

h x dx

π π

π

π⎛ ⎞ ′≤ − ⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

′≤ ⎡ ⎤⎣ ⎦

∫ ∫

∫



So we have

( ) ( ) ( ) ( )
1 1 1

2 22 2

0 0 0

0h x dx h x dx h x h x dx⎡ ⎤′ ′≤ ⇒ − ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∫ ∫ ∫

and

( ) ( ) ( ) ( )
2 2 2

2 22 2

1 1 1

0h x dx h x dx h x h x dx

π π π

⎡ ⎤′ ′≤ ⇒ − ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∫ ∫ ∫



If we add them together, we get

( ) ( )
2

22

0

0h x h x dx

π

⎡ ⎤′− ≤⎡ ⎤⎣ ⎦⎣ ⎦∫
So

( )( ) ( ) ( ) ( )
2

22

00

0

sin sinI x h x I x h x h x dx

π

≤

⎡ ⎤′+ = + − ⎡ ⎤⎣ ⎦⎣ ⎦∫

Which means that                 is a maximum.siny x=



Let’s just change the previous example a little bit. 

( ) ( )
3
2

22

0

I y y y dx

π

⎡ ⎤′= −⎣ ⎦∫
The Euler-Lagrange equation is still 

0y y′′ + =



The optimal solution candidate of 

( ) ( )
3
2

22

0

I y y y dx

π

⎡ ⎤′= −⎣ ⎦∫
Subject to

and( )0 0y =
3 1
2

y π⎛ ⎞ = −⎜ ⎟
⎝ ⎠

is

siny x=



( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

3
2

3 3
2 2

3
2

3
2

2 2

0

2 2

0 0

0

22

0

22

00

sin sin cos

sin cos 2 sin cos

sin

I x h x x h x x h x dx

x x dx h x x h x x dx

     h x h x dx

I x h x h x dx

π

π π

π

π

=

⎡ ⎤′+ = + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

′= − + −

⎡ ⎤′+ − ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤′= + − ⎡ ⎤⎣ ⎦⎣ ⎦

∫

∫ ∫

∫

∫



Consider                         and ( )1 sin 2h x x= ( )2
3
2

h x x xπ⎛ ⎞= −⎜ ⎟
⎝ ⎠

( ) ( )1 2 1 2
3 30 0 0
2 2

h h h hπ π⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Compute                                                and ( ) ( )
3
2 22

1 1

0

h x h x dx

π

⎡ ⎤⎡ ⎤′−⎢ ⎥⎣ ⎦⎣ ⎦∫

( ) ( )
3
2 22

2 2

0

h x h x dx

π

⎡ ⎤⎡ ⎤′−⎢ ⎥⎣ ⎦⎣ ⎦∫
(See handout, 
page 6!)



( ) ( )
3
2 22

1 1

0

9 0
4

h x h x dx

π

π⎡ ⎤⎡ ⎤′− = − <⎢ ⎥⎣ ⎦⎣ ⎦∫

( ) ( )
3
2 222 3

2 2

0

9 9 1 0
8 40

h x h x dx

π

ππ
⎛ ⎞⎡ ⎤⎡ ⎤′− = − >⎜ ⎟⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠∫



So in this case,                 is neither a maximum or minimum. siny x=

( ) ( ) ( )

( )

3
2 2

2 2

0

sin sin 2 sin sin 2 sin 2

sin

I x x I x x x dx

I x

π

ε ε
⎡ ⎤⎡ ⎤′+ = + −⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

<

∫

( )

( )

3
2

2
2

2 2

0

3 3 3sin sin
2 2 2

sin

I x x x I x x x x x dx

I x

π

π π πε ε
⎡ ⎤⎡ ⎤′⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥+ − = + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦

>

∫



See if you can find the Euler-Lagrange equation 
for 

( ) ( )
ln 2

22

0

I y y y dx⎡ ⎤′= +⎣ ⎦∫

(See handout, 
page 7!)



0y y′′ − =

Answer:



Find all optimal solution candidates of 

( ) ( )
ln 2

22

0

I y y y dx⎡ ⎤′= +⎣ ⎦∫
Subject to

and( )0 0y = ( ) 3ln 2
4

y =

(See handout, 
page 8!)



Answer:

sinhy x=

See if you can determine if it’s a maximum or 
minimum.

(See handout!, 
page 9)



( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

ln 2
2 2

0

ln 2 ln 2
2 2

0 0

0

ln 2
22

0

ln 2
22

01

0

sinh sinh cosh

sinh cosh 2 sinh cosh

sinh

I x h x x h x x h x dx

x x dx h x x h x x dx

     h x h x dx

I x h x h x dx

=

≥

⎡ ⎤′+ = + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

′= + + +

⎡ ⎤′+ + ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤′= + + ⎡ ⎤⎣ ⎦⎣ ⎦

∫

∫ ∫

∫

∫

So, it’s a minimum!



See if you can find the Euler-Lagrange equation 
for 

( ) ( )21
b

a

I y y dx′= +∫

(See handout, 
page 10!)



( )2
0

1

d y
dx y

⎛ ⎞′⎜ ⎟ =
⎜ ⎟′+⎝ ⎠

Answer:

( )21

y C
y

′
=

′+

( ) ( )2 22 1y C y⎡ ⎤′ ′= +⎣ ⎦ 21
Cy K
C

±′ = =
+



Find all optimal solution candidates of 

( ) ( )21
b

a

length of y

I y y dx′= +∫
Subject to

and( )y a c= ( )y b d=

(See handout, 
page 11!)



Answer:

( )d cy x a c
b a
−⎛ ⎞= − +⎜ ⎟−⎝ ⎠

Do you think that it’s a maximum or minimum?

Shortest path between two points in the plane?



Is there a 2nd Derivative Test?
Yes.

If 

1. y is a stationary function

2. along y 

3. There is no number z in           such that

has a nontrivial solution along y.

Then y is a local minimum.           

0y yF ′ ′ >

( ],a b

( )
( ) ( )

0

0

y y yy yy
d dF h F F h
dx dx

h a h z

′ ′ ′
⎛ ⎞′− + − =⎜ ⎟
⎝ ⎠

= =



For                                      ,                      .  ( ) ( )21
b

a

I y y dx′= +∫ ( )21F y′= +

( ) ( )
3
22 2

10 , 0 , ,
1 1

y yy y y y
yF F F F

y y
′ ′ ′ ′

′
= = = =

′ ⎡ ⎤+ ′+⎣ ⎦

Along the stationary curve                                      ,( )d cy x a c
b a
−⎛ ⎞= − +⎜ ⎟−⎝ ⎠

3
22

1 0

1
y yF

d c
b a

′ ′ = >
⎡ ⎤−⎛ ⎞+⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦



Along y, the boundary value problem is

( ) ( )

3
22

1 0 0 0

1

0

d dh h
dx dxd c

b a

h a h z

⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎛ ⎞′− + − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟⎡ ⎤−⎛ ⎞+⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦⎝ ⎠
= =

Or simply

( )
( ) ( )

0

0

h x

h a h z

′′ =

= =



The boundary value problem has only the trivial solution for 

all choices of z in          , and so                                         is

at least a local minimum.                

[ ],a b ( )d cy x a c
b a
−⎛ ⎞= − +⎜ ⎟−⎝ ⎠

See if you can show that the boundary value problem has 
only the trivial solution.

(See handout, 
page 12!)



See if you can find the Euler-Lagrange equation 
for 

( ) ( )
1

2

0

12I y y xy dx⎡ ⎤′= +⎣ ⎦∫

(See handout, 
page 13!)



6y x′′ =

Answer:



Find all optimal solution candidates of 

( ) ( )
1

2

0

12I y y xy dx⎡ ⎤′= +⎣ ⎦∫
Subject to

and( )0 0y = ( )1 1y =
(See handout, 
page 14!)



Answer:

3y x=

See if you can determine if it’s a maximum or 
minimum?

(See handout, 
page 15!)



( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1
23 2 3

0

1 1 1
24 2

0 0 0

0

1
23

021
5 0

3 12

21 12 6

I x h x x h x x x h x dx

x dx h x dx xh x x h x dx

I x h x dx

=

≥

⎡ ⎤′⎡ ⎤ ⎡ ⎤+ = + + +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

′ ′⎡ ⎤= + + +⎡ ⎤⎣ ⎦ ⎣ ⎦

′= + ⎡ ⎤⎣ ⎦

∫

∫ ∫ ∫

∫

So, it’s a minimum!



Find all optimal solution candidates of 

( )
1

0

I y xyy dx′= ∫
Subject to

and( )0 0y = ( )1 1y =
(See handout, 
page 16!)



A Minimal Surface Area of 
Revolution Problem



aa−

b



aa−

b



We want to find a function,           , with                    

which makes the surface area                                    

as small as possible.

( )y x ( ) ( )y a y a b− = =

( ) ( )22 1

a

a

A y y y dxπ
−

′= +∫



Here’s the Euler-Lagrange equation(we essentially 
found it earlier):

( ) ( ) ( )
( )

3
2

4 2
2

2
2 1 2 0

1

y yy y
y

y
π π

′ ′′ ′+ +
′+ − =

⎡ ⎤′+⎣ ⎦

Or simply

( )2 1 0yy y′′ ′− − =



So we have to solve

( )2 1 0yy y′ ′− − =
Subject to

( ) ( )y a y a b− = =

If we let               , then                                  , and the 

differential equation becomes  

dyp
dx

=
dp dy dp dpy p
dx dx dy dy

′′ = = ⋅ = ⋅

2 1 0dpyp p
dy

− − =



Separation of variables leads to

2

1
1

p dp dy
p y

=
+

2

1
1

p dp dy
p y

=
+∫ ∫

( )2 2
1ln 1 lnp y C+ = +



2 2
11p C y+ =

2 2
1 1p C y= −

2
1 1y C y′ = ± −

Another separation of variables leads to



2
1 1
dy dx

C y
= ±

−∫ ∫
22

1 1
dy x C

C y
= ± +

−∫

( )1
1 2

1

1 cosh C y x C
C

− = ± +



( ) ( )1
1 1 2cosh C y C x C− = ± +

( )1 2

1

cosh C x C
y

C

⎡ ⎤± +⎣ ⎦=

( )1 2

1

cosh C x C
y

C
± +

=

( ) ( )y a y a b− = =



From the symmetry and boundary conditions, we get:

( )1 1cosh C a bC=

Let 
br
a

=

1 1cosh bC bC r
r r

⎛ ⎞ = ⋅⎜ ⎟
⎝ ⎠

So if we can solve the equation

( )cosh x rx=



For          , then we’ll have a stationary function for each 

solution of the equation

0r >

( )cosh x rx=

No stationary solution

One stationary solution

Two stationary solutions



If                                 then no stationary solution. 1.508879563r <

If                                 then one stationary solution.1.508879563r =

If                                 then two stationary solutions.    1.508879563r >



In other words, if the distance from the point              to the y-
axis,    , is larger than                          , then there is no 
stationary solution.  If     is equal to                        , then there 
is one stationary solution.  If     is less than                , then 
there are two stationary solutions.

( ),a b
.6627434187ba
a .6627434187b

a .6627434187b

It can be shown that for                               , the two disks 
give the absolute minimum area, and there are no other local 
minima; for                                                     ,  the two 
disks give the absolute minimum area and the two stationary 
solutions are local minima; for                                , then one 
stationary solution is the absolute minimum, the other is a 
local minimum, and the two disks are a local minimum.

.5276973968 .6627434187b a b< <

.6627434187a b>

.5276973968a b<



By the way, surfaces of revolution 
generated by catenaries(graphs of 
hyperbolic cosines) are called 
catenoids.



Let’s check the mathematical prediction 
with reality.

The large rings have a radius of approximately 
12.75 cm.

The medium rings have a radius of approximately 
10 cm.

The small rings have a radius of approximately 5 
cm.



You should see a catenoid for separation 
distances between 0 and 13.5 cm.(The other 
catenoid and two discs are local minima.)

You should see the two discs as the absolute 
minimum for separation distances between 13.5 
cm and 16.9 cm.(The two catenoids are local 
minima.)

You should have the two discs as the absolute 
minimum for separation distances larger than 16.9 
cm.(There are no other local minima.)

So for the large rings:



You should see a catenoid for separation 
distances between 0 and 10.6 cm.(The other 
catenoid and two discs are local minima.)

You should see the two discs as the absolute 
minimum for separation distances between 10.6 
cm and 13.3 cm.(The two catenoids are local 
minima.)

You should have the two discs as the absolute 
minimum for separation distances larger than 13.3 
cm.(There are no other local minima.)

So for the medium rings:



You should see a catenoid for separation 
distances between 0 and 5.3 cm.(The other 
catenoid and two discs are local minima.)

You should see the two discs as the absolute 
minimum for separation distances between 5.3 cm 
and 6.6 cm.(The two catenoids are local minima.)

You should have the two discs as the absolute 
minimum for separation distances larger than 6.6 
cm.(There are no other local minima.)

So for the small rings:

(See handout, 
pages 17-19!)



The Brachistochrone Problem
(Curve of quickest descent)



Consider the two points in the plane                and         . ( ),a c ( ),b d

( ),a c

( ),b d



We want to join the two points by a curve so that a particle

starting from rest at           and moving along the curve

under the influence of gravity alone will reach the point      
in minimum time. 

( ),a c

( ),b d

( ),a c

( ),b d



To formulate the problem, we’ll determine the velocity of 
the particle in two ways:

Since the velocity, v, of the particle is determined by 
gravity alone, we must have

dv dv dy dvg v
dt dy dt dy

= = ⋅ = ⋅

So we get the initial value problem:

( )
0

, 0dvv g v a
dy

<

= =



The solution of the initial value problem is

( )2v g y c= −

But the velocity must also equal the rate of change of 
arclength along the curve with respect to time, so we get

( )21ds ds dx dxv y
dt dx dt dt

′= = ⋅ = +



Equating the two formulas for velocity leads to

( )
( )

21

2

y
dt dx

g y c

′+
=

−

Which means that the total travel time for the particle is 
given by

( )
( ) ( )

( )2 21 11
2 2

b b

a a

y y
dx dx

c yg y c g

′ ′+ +
=

−− −∫ ∫



So the mathematical statement of the problem is to find a 
continuously differentiable function, y, that minimizes

( ) ( )21b

a

y
I y dx

c y

′+
=

−∫
Subject to                         and                         .( )y a c= ( )y b d=

(So in other words, it’s a fixed endpoint Calculus of Variations problem.)



Equivalent versions of the Euler-Lagrange Equation in special 
cases:

0y y
dF F
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠

Case I: If F doesn’t involve y, then the Euler-Lagrange

equation reduces to                    ,  which can be 

integrated into               . 

0y
d F
dx ′ =

yF C′ =



Case II: If F doesn’t involve x, then the Euler-Lagrange

equation reduces to                         .      yF y F C′′− =

For the Brachistochrone Problem                                           ,

which is independent of x.

( ) ( )21
, ,

y
F x y y

c y

′+
′ =

−



( ) ( )21
y

yF
c y y

′

′
=

⎡ ⎤′− +⎣ ⎦

So using Case II, we get the Euler-Lagrange Equation as 

( ) ( )
( ) ( )

2 2

2

1

1

y y
C

c y c y y

′+ ′
− =

− ⎡ ⎤′− +⎣ ⎦



Simplifying algebraically, we get                               ,

and solving for y’ yields                                      .  If we make

the substitution                                 , where t is a parameter,  

we get                                                    .  The simplification 

was chosen to reflect the fact that initially the curve will have a 
negative slope.                                                 

( ) ( )22 1 1C c y y⎡ ⎤′− + =⎣ ⎦

( )
( )
2

2

1 C c y
y

C c y
− −

′ = ±
−

( )2
22

1 sin tc y
C

− =

( )
( )

( )
( )

2
2 2

2
2 2

1 sin cos
sin sin

t t

t t
y

−
′ = ± = −



From the Chain Rule,                       , so

and    .  

This gives us                                       .  We can solve for k if 

we insist that             when          .  

See if you can verify the formula for x and find the value of k.

dy dy dt
dx dt dx

= ⋅

( )
( ) ( ) ( )2

2 22
2

cos 1 sin cos
sin

t
t t

t

dt
C dx

⎡ ⎤− = −⎢ ⎥⎣ ⎦
( )2

22

1 sin tdx dt
C

=

( )2

1 sin
2

x t t k
C

= − +

x a= 0t =

(See handout, 
page 20!)



So             ,and we’ll let                 to get the parametric  

equations  

k a= 2

1
2

A
C

=

( )
( )

sin

cos 1

x A t t a

y A t c

= − +

= − +

To satisfy the condition                , you’d have to solve( )y b d=

( )
( )

sin

cos 1

b a A t t

d c A t

− = −

− = −



For example: Suppose that                        and            .  

The system would be 

( ) ( ), 0,0a c = ( ) ( ), 1, 1b d = −

( )
( )

1 sin

1 cos 1

A t t

A t

= −

− = −

If we eliminate A, we get 

( )sin cos 1t t t− = − −



Here’s a plot of the left side and right side of the equation:

The t-coordinate of the intersection point between 2 and 3 is 
the one we want.



See if you can approximate the t-coordinate of this intersection 
point.

(See handout, 
page 21!)



So an approximate parameterization of the solution curve in 
this case is

( )

( )

.5729170374 sin

;0 2.412011144

.5729170374 cos 1

A value

intersection

A value

x t t

                                               t

y t

= −

≤ ≤

= −

See if you can plot this parametric curve.





In general, the solution curve is an inverted cycloid, and

furthermore, since                             the inverted cycloid will 

have its minimum at          .  So the coordinates of the 

minimum will be                             , and they lie on the line 

L which passes through the point           with slope          .

t π=

( )
( )

2

2

cos
sin

t

t
y′ = −

( ), 2a A c Aπ+ −

( ),a c 2
π

−



( ),a c

L

( ),b d ( ),b d ( ),b d

If            lies below L, then the particle will still be moving down 
at          .  

If           lies on L, then the particle will just stop moving down 

at           .  

If          lies above L, then the particle will be moving up at .                  

( ),b d
( ),b d

( ),b d

( ),b d

( ),b d ( ),b d



See if you can demonstrate these properties 
with the Brachistochrone Demo.



Isoperimetric Problem



The Isoperimetric Problem is to find the plane curve of given 
length that encloses the largest area.  

The Generalized Isoperimetric Problem is to find a 
stationary function for one integral subject to a constraint 
requiring a second integral to take a prescribed value.



Lagrange Multipliers

Suppose that we want to optimize                      subject to the 

constraint that                    .   One approach is to arbitrarily

designate one of the variables x and y in the equation

as independent, say x, and the other dependent.

Provided that               on the curve                      , we can use 

the Chain Rule to calculate       .

( ),z f x y=

( ), 0g x y =

( ), 0g x y =

0g
y
∂

≠
∂

( ), 0g x y =

dy
dx (See handout, 

page 22!)



So                     on the curve                    .  In order for

to have an optimal value,            . But

.  So necessary 

conditions for                      to be optimized subject to

are                             

g
x
g
y

dy
dx

∂
∂
∂
∂

= − ( ), 0g x y =

( )( ),z f x y x= 0dz
dx

=

g
x
g
y

dz f f dy f f
dx x y dx x y

∂
∂
∂
∂

∂ ∂ ∂ ∂
= + ⋅ = − ⋅
∂ ∂ ∂ ∂

( ),z f x y=

( ), 0g x y =

( )

0

, 0

g
x
g
y

f f
x y

g x y

∂
∂
∂
∂

∂ ∂
− ⋅ =

∂ ∂

=



An alternative approach to such a problem is to introduce an 
additional variable,    , called a Lagrange Multiplier and

consider a modified function,             

, called the Lagrangian, and investigate its unconstrained 
extrema.  This leads to the system of equations:

λ
( ) ( ) ( ), , , ,L x y f x y g x yλ λ= +

( )

0

0

, 0

L f g
x x x
L f g
y y y

L g x y

λ

λ

λ

∂ ∂ ∂
= + =

∂ ∂ ∂
∂ ∂ ∂

= + =
∂ ∂ ∂
∂

= =
∂



If               on the curve                    , then the second equation 

can be solved as                , and if you substitute into the

first equation, you get                             .   So necessary 

conditions for an unconstrained optimal value of                are

0g
y
∂

≠
∂

( ), 0g x y =

f
y
g
y

λ
∂
∂
∂
∂

= −

0
g
x
g
y

f f
x y

∂
∂
∂
∂

∂ ∂
− ⋅ =

∂ ∂

( ), ,L x y λ

( )

0

, 0

g
x
g
y

f f
x y

g x y

∂
∂
∂
∂

∂ ∂
− ⋅ =

∂ ∂

=



Example:

Find the maximum and minimum values of 

subject to                                                   .

( ) 2 2,f x y x y= +

( ) 2 2, 9 0g x y x y xy= + + − =



The constraint 

curve 

along with 
some level 
curves of

( ), 0g x y =

( ),f x y Minimal points

Maximal points



The system of equations to solve in order to optimize the 
Lagrangian is

2 2

2 2 0
2 2 0

9 0

x x y
y y x

x y xy

λ λ
λ λ

+ + =
+ + =

+ + − =

And it’s equivalent to the system

( )
( )

2 2

2 2

2 2

9 0

x x y

y y x

x y xy

λ

λ

= − +

= − +

+ + − =



If you multiply the first equation by y, the second equation by 
x, and subtract, you get

( )
( )

( )2 2

2 2

2 2

0

   xy y x y

xy x y x

        y x

λ

λ

λ

= − +

− = − +⎡ ⎤⎣ ⎦

= − −

Since           , we can conclude that             or           .

Substitute these into                                     to get the 

maximum and minimum values.

0λ ≠ y x= y x= −

2 2 9 0x y xy+ + − =

(See handout, 
page 23!)



Problem (The Generalized Isoperimetric Problem) :

Find the function y that maximizes or minimizes

subject to the constraint

with                 and                 .  

( ) ( ), ,
b

a

I y F x y y dx′= ∫

( ) ( ) ( ), ,
b

a

J y G x y y dx k constant′= =∫

( )y a c= ( )y b d=



Suppose that            is such a function.  Previously, we 

Considered                                    , where h is a continuously 

differentiable function with                           .   This won’t be 

enough in this situation, because there is no guarantee that

will satisfy the integral constraint.  So we’ll consider 

, where and      are

continuously differentiable and

. 

( )y x
( ) ( ) ( )y x y x h xε= +

( ) ( ) 0h a h b= =

( )y x
( ) ( ) ( ) ( )1 1 2 2y x y x h x h xε ε= + +

( ) ( ) ( ) ( )1 2 1 2 0h a h a h b h b= = = =

1h 2h



So we want

to have a maximum or minimum at           subject to            

( ) ( )1 2 1 1 2 2 1 1 2 2, , ,
b

a

I F x y h h y h h dxε ε ε ε ε ε′ ′ ′= + + + +∫
( )0,0

( ) ( )1 2 1 1 2 2 1 1 2, , ,
b

a

J G x y h h y h h dx kε ε ε ε ε ε′ ′ ′= + + + + =∫



Let’s look at a specific example:

( ) ( ) 2
, , 1F x y y y x′ ′= + ⎡ ⎤⎣ ⎦ ( ), ,G x y y y′ = [ ] [ ], 0,1a b =

0 , 1c d= = 1
2

k =

We want to minimize                                             subject to

and                .  

( ) ( )
1

2

0

1I y y x dx⎡ ⎤′= + ⎣ ⎦∫
( ) ( )

1

0

1
2

J y y x dx= =∫ ( ) ( )0 0 , 1 1y y= =

( )y x x=

( ) ( )1 1h x x x= − ( ) ( )2 sinh x xπ=



( )y x x=

( ) ( )1 1h x x x= −

( ) ( )2 sinh x xπ=

( ) ( )1 1 2 2y x h x h xε ε= + +



( ) ( ) ( )
1

2
1 2 1 2

0

, 1 1 1 2 cosI x x dxε ε ε ε π π= + + − +⎡ ⎤⎣ ⎦∫

( ) ( ) ( )
1

1 2 1 2

0

, 1 sinJ x x x x dxε ε ε ε π= + − +⎡ ⎤⎣ ⎦∫

Let’s look at the curve                        .( )1 2
1,
2

J ε ε =



( ) 2 1
1 2

12 3,
6

J ε πε πε ε
π

+ +
=

So the constraint curve                         is just the line

through the origin                   .  If we substitute this into the 

formula for   , we get

( )1 2
1,
2

J ε ε =

2 112
πε ε= −

I

( ) ( ) ( )
1 22

1 1 1

0

1 1 1 2 cos
12

I x x dxπε ε ε π
⎡ ⎤

= + + − −⎢ ⎥
⎣ ⎦∫



Here’s a plot of 

( ) ( ) ( )
1 22

1 1 1

0

1 1 1 2 cos
12

I x x dxπε ε ε π
⎡ ⎤

= + + − −⎢ ⎥
⎣ ⎦∫

1ε

The minimum 

value of           

occurs at           .  
This will be true 
for all choices of 

and     .

2

1 0ε =

1h 2h



In general, we won’t be able to conveniently solve for one 
variable in terms of the other(parametrize the constraint 
curve), so we’ll use the Method of Lagrange.  The Lagrangian
is

( ) ( )

( )

1 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

, , , ,

, ,

b

a

b

a

L F x y h h y h h dx

G x y h h y h h dx

ε ε λ ε ε ε ε

λ ε ε ε ε

′ ′ ′= + + + +

′ ′ ′+ + + + +

∫

∫



First, let’s abbreviate:

where

( ) ( )1 2 1 1 2 2 1 1 2 2, , , , ,
b

a

L H x y h h y h h dxε ε λ ε ε ε ε λ′ ′ ′= + + + +∫

( ) ( )
( )

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

, , , , ,

, ,

H x y h h y h h F x y h h y h h

G x y h h y h h

ε ε ε ε λ ε ε ε ε

λ ε ε ε ε

′ ′ ′ ′ ′ ′+ + + + = + + + +

′ ′ ′+ + + + +

It must be that                           for                   .                          
1 2

0L L
ε ε
∂ ∂

= =
∂ ∂ 1 2 0ε ε= =



( )
( )

( )

( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2
1 10,0 0,0

1 1

, , ,

, , , , , ,

b

a

b

y y

a

L H x y h h y h h dx

H x y y h x H x y y h x dx

ε ε ε ε λ
ε ε

λ λ′

⎡ ⎤∂ ∂ ′ ′ ′⎢ ⎥= + + + +
∂ ∂ ⎢ ⎥⎣ ⎦

⎡ ⎤′′ ′= +
⎣ ⎦

∫

∫

( )
( )

( )

( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2
2 20,0 0,0

2 2

, , ,

, , , , , ,

b

a

b

y y

a

L H x y h h y h h dx

H x y y h x H x y y h x dx

ε ε ε ε λ
ε ε

λ λ′

⎡ ⎤∂ ∂ ′ ′ ′⎢ ⎥= + + + +
∂ ∂ ⎢ ⎥⎣ ⎦

⎡ ⎤′′ ′= +
⎣ ⎦

∫

∫



If we integrate by parts and use the arbitrariness of        and

, we can conclude that

is the Euler-Lagrange equation for the Isoperimetric Problem, 

and solutions which satisfy                 ,                , and

will be candidates for maxima or

minima.   

1h

2h

0y y
dH H
dx ′

⎛ ⎞− =⎜ ⎟
⎝ ⎠

( )y a c= ( )y b d=

( ), ,
b

a

G x y y dx k′ =∫



Let’s reexamine the previous example:

Minimize                                              subject to

and                .  

( ) ( )
1

2

0

1I y y x dx⎡ ⎤′= + ⎣ ⎦∫
( ) ( )

1

0

1
2

J y y x dx= =∫ ( ) ( )0 0 , 1 1y y= =

( ) ( ) ( )2
, , , 1H x y y y x y xλ λ′ ′= + +⎡ ⎤⎣ ⎦

yH λ=
( )21

y
yH

y
′

′
=

′+ ( )
3
221

y
d yH
dx y

′

′′
=
⎡ ⎤′+⎣ ⎦



So the Euler-Lagrange equation is

( )
3
22

0
1

y

y
λ

′′
− =
⎡ ⎤′+⎣ ⎦

or

( )
3
221

y

y
λ

′′
=

⎡ ⎤′+⎣ ⎦

A solution curve will have constant curvature, so it will be a 
circular arc or a line segment.  Circular arcs through          

and          won’t satisfy                         .

( )0,0

( )1,1 ( )
1

0

1
2

y x dx =∫



So a solution must be a line segment through           and      .  

This leads us to                .  

( )0,0 ( )1,1

( )y x x=

Let’s try another one:  Find the curve of fixed length    that joins
the points            and          , lies above the x-axis, and encloses 
the maximum area between itself and the x-axis.

Maximize

Subject to                                       ,              and               .  

( )0,0 ( )1,0

( )
1

0

y x dx∫

5
4

( )
1

2

0

31
2

y x dx′+ =⎡ ⎤⎣ ⎦∫ ( )0 0y = ( )1 0y =



( ) ( )2, , , 1H x y y y yλ λ′ ′= + +

1yH =
( )21

y
yH
y

λ
′

′
=

′+ ( )
3
221

y
d yH
dx y

λ
′

′′
=
⎡ ⎤′+⎣ ⎦

So the Euler-Lagrange equation is

or

( )
3
22

1 0
1

y

y

λ ′′
− =
⎡ ⎤′+⎣ ⎦

( )
3
22

1

1

y

y λ
′′

=
⎡ ⎤′+⎣ ⎦



Again, a solution curve must have constant curvature, and so 
must be a circular arc or a line segment.  A line segment 
through           and           would lead to the curve         , but its 
length is 1, not     .  So from symmetry a solution curve will

have the form                                       .  The conditions

imply that                         , or                       .

See if you can find the value of r so that  

( )0,0 ( )1,0 0y =
5
4

( )22 1
2y r x c= − − +

( ) ( )0 1 0y y= = 2 1
4 0r c− + = 2 1

4c r= − −

( )
( )

2
1

1
2

22 1
0 2

2 51
4

x
dx

r x

⎡ ⎤− −⎢ ⎥+ =
⎢ ⎥− −⎣ ⎦

∫



( )1
2 ,c

( )0,0 ( )1,0

1
2

c−

1

2 1 21 1
4 4

12 tan
12 2 2tan

2 2
clength c c

c
π

π

−

−

⎛ ⎞−⎜ ⎟ ⎛ ⎞⎝ ⎠= ⋅ + = − +⎜ ⎟
⎝ ⎠



See if you can approximately solve

1 2 1
4

1 52 tan
2 4

c
c

− ⎛ ⎞− + =⎜ ⎟
⎝ ⎠

(See handout, 
page 24!)



.2352032224c ≈ −

Here’s a plot of the solution:



Try to solve the similar problem

Find the curve of fixed length    that joins the points         and

, lies above the x-axis, and encloses the maximum area 
between itself and the x-axis.

Maximize

subject to                                         ,            and                . 

2
π ( )0,0

( )1,0

( )
1

0

y x dx∫

( )
1

2

0

1
2

y x dx π′+ =⎡ ⎤⎣ ⎦∫ ( )0 0y = ( )1 0y =

(See handout, 
page 25!)


