
Ultimate Design of Prestressed Concrete Beams 
NARBEY KHACHATURIAN, Professor of Civil Engineering, and 
GERMAN GURFINKEL, Civil Engineering Department, University of Illinois, Urbana 

A method is presented by which prestressed concrete beams can 
be designed on the basis of strength and ductility. The require-
ments of strengt.h and dudility are developed in a general form 
and their influence on the dimensions of the beam is studied. The 
influence of compression steel on ductility and the required area 
of the beam is presented. Numerical examples are included to 
show the practical application of the method in design. 

•IN PRESENT design practice, prestressed concrete beams are almost always designed 
and proportioned by working stress design. The provisions of ultimate design are used 
to check the flexural strength of a section that has already been designed. It can be 
shown that the provisions of ultimate design can be used to proportion a section with a 
rigorous control of both strength and ductility. The provisions of working stress design 
can then be used to check the stresses at transfer, and at service loads in the section 
so designed. A rational design of a section is considerably simpler by ultimate design 
than by service load design. 

A simply supported bonded beam is considered, and it is assumed that the strength 
of the beam is measured by flexure. It is assumed that the only loads acting-in addition 
to the prestressing force-are the weight of the beam, the superimposed dead load and 
live load. 

NOTATION 

a = distance from the neutral axis to the top fiber 
A = gross cross-sectional area of the beam 

As = area of prestressed steel 

A~ = area of non-prestressed compression steel 

b = width of compression zone or top flange 
b' = web thickness 

d = distance from the center of gravity of prestressed steel to the top fiber 
ct' = distance from the center of gravity of the non-prestressed compression 

steel to the top fiber 
F( £ su) = fsu, equation of the stress-strain diagram of prestressed steel 

f(f) = stress in the concrete, equation of the stress-strain diagram of concrete 

f~ = cylinder strength of concrete at 28 days 

fsu = stress in prestressed steel at failure 

f~u = stress in non-prestressed compression steel at failure 

fy = yield point of non-prestressed compression steel 

G(t:~u) = f~u equation of the stress-strain diagram of non-prestressed compression 
steel 

h = overall depth of the beam 
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L = span length of a simply supported beam 
Mg moment due to the weight of the beam 

M-1, = moment due to the live load 

Ms = moment due to the superimposed dead load or slab 

Mw = moment due to any dead load acting on the roadway slab 

Mu required flexural strength of the beam 

Mcu = flexural strength of composite section 

Nd load factor for the dead load 

N-1, = load factor for the live load 

p = 

p' 

Q 

percentage of prestressed steel, As/bd 

percentage of non-prestressed compression steel, A~/bd 

M /bd2 f' U C 

S = effective width of slab in composite section 
t = flange thickness 

ts = thickness of slab 

y = unit weight of concrete 
E" = strain 

E" ce = strain in concrete at the level of steel due to effective prestress 

E'se strain in the prestressed steel due to effective prestress 

E' st = limiting strain in prestressed steel 

E" su = strain in the prestressed steel at ultimate 

E" ~u = strain in the non-prestressed compression steel at ultimate 

, u ultimate strain of concrete in flexural compression 

'-y = strain at yield of non-prestressed steel 

cp = curvature of the section 
l/,1 = a dimensionless shape factor, A/bh 

ANALYSIS OF PRESTRESSED CONCRETE BEAMS AT ULTIMATE 
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Analysis of a prestressed concrete beam at ultimate is discussed for beams having 
an idealized section as shown in Figure 1. The section considered is flanged, the pre­
stressed steel is assumed to be bonded to concrete, and in addition to prestressed steel 
the section is assumed to have non-prestressed compression steel. Detailed studies of 
flexural strength of prestressed concrete beams have been reported previously (1, 2, 3); 
the presentation here is brief, and is in a form suitable for ultimate design. - - -

The calculation of the ultimate moment is based on the following assumptions: 

1. The strain distribution in concrete varies linearly with depth in the compression 
zone of the beam. 

2. The stress- strain diagrams for the pre stressed as well as non-prestressed rein­
forcement are known; the stress-strain diagram for concrete is known and is the same 
for all fibers in the compression zone. 

3. Failure occurs when the strain in concrete at the top fiber reaches a limiting 
value. 

4. The strain in non-prestressed compression steel is equal to the strain in concrete 
at the level of compression steel. 

5. The average strain in steel is not greatly different from the maximum strain, 
hence the area of steel is concentrated at its centroid. 

In addition to the above assumptions, the tension contributed by concrete is usually 
neglected since it is small at ultimate. 
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Figure 1. Idealized I-section. 
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The neutral axis at failure may be either in the flange or below the flange depending 
on the dimensions of the beam, the amount of steel and the properties of steel and con­
crete. The case in which the neutral axis falls in the flange is considered first. 

Flexural Str ength of Section in Which the Neutral Axis at 
Ultimate Falls in the Flange 

In this case the width of the compression zone is constant and is equal to b (Fig. 2). 
The equation for the stress-strain diagram for concrete is expressed as f = f(r). Since 
the width of the compression zone is constant and the strain distribution is assumed to 
be linear with depth in the compression zone, equations ot eqm11ormm oi moments anci 
forces in the section may be written as 

a 2 b 1EU d(£)dE + A f (d - a) + A'f' (a - d') = M 
2 S SU S SU u 
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Figure 2. Flanged section, neutral axis in the flange. 
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ultimate moment, 
distance from neutral axis to the top fiber, 
limiting strain at the extreme fiber of the beam which defines the condition 
of flexural failure, 
stress in prestressed steel at failure, 

stress in non-prestressed compression steel at failure, 

width of compression zone or top flange, 
distance from the center of gravity of prestressed steel to the top fiber, 
distance from the center of gravity of the non-prestressed compression steel 
to the top fiber, 
area of prestressed steel, and 

area of non-prestressed compression steel. 

The strain in prestressed steel and non-prestressed compression steel is given by 

and 

where 

E:u 
r = E: + E + - (d - a) F su se ce a 

' E: 
SU 

E: 
u (a - d') 

a 

E su = strain in prestressed steel at failure, 

E se = strain in prestressed steel due to effective prestress, 

Ece 

' Esu 
F 

= 
= 
= 

strain in concrete at the level of steel due to effective prestress, 

strain in non-prestressed compression steel at failure, and 

a strain compatibility factor taken as unity . 

(3) 

(4) 

The stress-strain relations for prestressed and non-prestressed compression steel 
are given by 

f~u G(E:~u) 

(5) 

(6) 

The first term on the left side of Eqs. 1 and 2 is the force and moment contributed 
by concrete respectively and does not take into account the area of concrete replaced 
by the compression steel. This effect is small and if necessary can be taken into ac­
count. 

In order to analyze a beam with given dimensions and a specified value for Eu, Eqs. 
1 through 6 can be solved simultaneously for the 6 unknowns, Mu, a, E su, fsu, E: ~u 
and f~u· 

Flexural Strength of Section in Which the Neutral Axis at 
Ultimate Falls Below the Flange 

When the neutral axis at ultimate falls below the flange Eqs. 1 and 2 should be re­
placed by the following 2 equations: 
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Figure 3. Flanged section, neutral axis below the flange. 

M = b'a2 l(u d(E)dE + (b - b') a2 
U 2 2 

Eu O (u 

+ A f (d - a) + A'f' (a - d') 
S SU S SU 

where 

b' = the web thickness, and 
t = the flange thickness. 

+ A'f' 
S SU 

(7) 

= A f 
S SU 

(8) 

Equations 7 and 8 describe the equilibrium of moments and horizontal forces respec­
tively. Figure 3 shows the forces in the section. 

Expressions for Ultimate Moment in Dimensionless Form 

For convenience in design Eqs. 1 and 2 will be expressed in dimensionless form as 
follows: 

Q 
M 

u 

bd1'' 
C 

(a/d) 2 

f' E" 2 
C U l 'u 

O d(E)dE 
f 

SU 
+p-

f' 
C 

(1 -~) 

f' 
I SU 

+p -
f' 

C 

f 
SU 

p-
f' 

C 

As , A~ ' 
where p = bd, p = bd, and fc = cylinder strength of concrete at 28 days. 

Similarly Eqs. 7 and 8 may be expressed in dimensionless form: 

(la) 

(2a) 



Q = 
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fsu 
+ p-

f' 
C 

(b' /b)(a/d)
2 
l'u d(E)d, + (1- b'/b)(a/d)
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f' f 
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f' 
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ULTilVIATE DESIGN 
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(7a) 

(8a) 

Ultimate design of a prestressed concrete beam is based on the ultimate moment 
and ductility of the section. The section is proportioned in such a way that the ultimate 
moment is greater than the moment developed under service loads by a prescribed 
quantity, and that it deforms a certain amount before it fails . 

These concepts may be stated in the form 

(9) 

and 

(10) 

where 

Mu flexural strength of the beam, 

Nd load factor for the dead load, 

Mg = moment due to weight of the beam, 

Ms moment due to the superimposed dead load, 

Nt load factor for the live load, 

Mt moment due to the live load, 

'su = strain in steel at ultimate, and 

's~, limiting strain in steel. 

Expression 9 states that the required flexural strength of the beam should be at least 
equal to Nd(Mg + Ms) + NtMt, which is a requirement for the strength of the beam. 

Expression 10 states that the ductility of the beam should be large enough so that the 
strain in steel at ultimate is at least equal to a given limiting value designated as £st. 
Ductility is usually measured by the curvature at ultimate, which may be defined as 
follows: 

( 
u 

cp = a 
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where cp is the curvature of the section. For given values of Ese, Ece, Eu and d, Esu 
may be used as a measure of ductilir.;. 

Determination of the Area of the Beam 

Expression 9 can be written as an equation in the following form: 

Substituting A/hl/J for b where A is the gross cross- sectional area of the beam, h is 
the over-all depth, and l/J is a dimensionless shape factor, the following is obtained: 

and 
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Figure 4. Relationship between v and geometric parameters of the section. 
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where y is the unit weight of concrete. 

yL2 

8 

For the idealized I-section shown in Figure 1, ljJ is given by 

t b' ( t) 1/J = 1i {l + k) + b 1 - 2 h 
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(11) 

(12) 

The quantity k in Eq. 12 is the ratio of the width of bottom flange to that of top flange. 
Equation 12 is plotted in Figure 4 for typical sections. 

A study of Eq. 11 indicates that for a given design problem, in which the depth and 
type of concrete are specified, A depends on ljJ and Q only. It can be seen that A de­
creases with Q and increases with 1/J; i.e., to decrease the area of the beam it is neces­
sary to increase Q and decrease 1/J, or to increase the ratio Q/1/J. 

The quantities t/d and b'/b usually decrease with increasing Q/1/); hence they should 
be made small, without causing the dimensions of the beam to become unreasonably thin. 

From Eq. 12 it can be seen that 1/J increases and Q/1/> decreases with k. Therefore a 
small bottom flange is desirable. However, since the bottom flange of the beam should 
be large enough to permit the placing of steel, k cannot be reduced indefinitely. 

From Eqs. la and 7a it can be seen that Q increases with a/d and hence it is de­
sirable to make a/d as large as possible; however, Expression 10 for the required 
ductility sets the upper limit for a/ d. Since Expression 10 sets the required minimum 
ductility of the beam at a strain in steel equal to <st• the required maximum a/d con­
sistent with the required ductility can be computed from Eq. 3 as follows: 

(a/d)max = {3a) 

Equation 3a contains the quantity £ se, the strain in steel due to effective prestress. 
It can be seen that since Ese increases with the maximum value of a/d, it should be 
taken as large as practicable. The practical upper limit for £ se for the materials used 
in pretensioned construction is about 0 . 00 5. 

It should be pointed out that d/h also influences A, the area of the beam, and from 
Eq. 11 it can be seen that A decreases with d/h. In most practical problems, however, 
d/h cannot exceed 0 . 9. 

Design Procedure 

In the design method presented here it is assumed that the span length, the acting 
load, the load factors, the strength and unit weight of concrete are given. It is further 
assumed that the limiting strain in concrete Eu, the requirement of ductility Est, the 
effective prestrain E se• as well as the stress-strain relations for all materials are 
given. Hence for a selected value of h, the calculation of A from Eq. 11 means deter­
mination of d2Q/IJJ . The quantities d, 1/J and Q may be determined as follows: 

1. Assign a reasonable value to d as close to h as the arrangement of strands would 
permit. 

2. Assign values to b'/b, t/h and k, and calculate 1/J from Eq. 12. These values 
should be as small as possible. 

3. Calculate a/d from Eq. 3a based on the given values of Eu• £ se and Est· 
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4. Calculate p(fsu/f~) from either Eq. 2 a or 8a, whichever applies. 
5. Calculate Q from Eq. la or 7a, whichever applies. 

EXAMPLES OF APPLICATION 

Example 1 

The following example illustrates the procedure for the ultimate design of a pre­
stressed concrete beam and shows the influence of the required ductility on the dimen­
sions of the beam so designed. 

Given a simply supported beam of 54-ft span subjected to a superimposed dead load 
of 1. 0 klf and a live load of O. 6 klf which produce midspan moments of Ms = 4370 in-k 
and M,e, = 2630 in-k respectively . The load factors are Na = 1. 5 and N,t = 1. 8. Design 
the section (a) for a minimum ductility corr esponding to E s,t, = 0. 01, and (b) for a mini-
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mum ductility corresponding to E"s,t = 0.02. Non-prestressed compression steel is not 
to be used. 

The effective prestress or the prestress after losses is given as 145 ksi, which cor­
responds to a transfer pre stress of 170 ksi. The strain due to effective prestress is 
£ se = 0. 0048. The quantity E: ce is approximated as 0. 000 5 initially, which may be veri­
fied after the section is designed. The limitin,g strain in concrete is given as E"u = 0.003, 
unit weight of concrete as y = 0.15 kcf, and overall depth ash= 36 in. The strength of 
concrete f~ is specified as -5 ksi. The stress-strain diagram for concrete and steel are 
as shown in Figures 5 and 6 respectively. 

la. Section With Minimum Required Ductility Corresponding to £ su = 0.01. -It was 
shown before thatthe quantities t/h, b 'lb and k increase with A, and thus they should be 
taken as small as possible. Here they will be taken as t/h = 1/6 (or t = 6 in.), b'/b = 
0. 3 and k = 1. 0. Substitution of these values in Eq. 12 gives 1/J = 0. 533. It is further 
assumed that d/h = 0.9, which for h = 36 in. yields d = 32.4 in. For the given ductility, 
E: su = E: s-t = 0. 01, Eq. 3a gives depth to the neutral axis as a= 12. 64 in. Since in this 
case the neutral axis is in the web, Eqs. 7a and Ba apply. 

From Figure 5, f(r) = 4722E: when E: < 0.0009, and f(r) = 4.25 when£ 5" 0.0009, the 
quantity p(fsu/f~) may be calculated from Eq. Ba as follows: 

f 
SU 

p-
f' C 

[[

0.0009 
(0. 3)(0. 390) 4722 £d£ 
(O. 003) (5) 

0 10.003 ] 
+ 4.25 dE: 

0.0009 

10.003 
+ (0, 70)(0.390) 4.25 d£ = 0.085 + 0.11 = 0.195 

(0. 003) (5) 
0 . 00158 

For the above value of p(fsu/f~), in a similar way Q is obtained from Eq. 7a: 

Q 
(O. 3)(0. 390)2 
(5) (0.003)2 

[L

0.0009 ro.003 ] 
4722 r

2
dr + Jn 4. 25 E:d£ 

0 0.0009 

+ l-0 .3 o. 39o 4.25 rdr + 0.195 (1-0.390) ( )( ) 2 L0.003 

(5) (0.003)z 0.00158 
0.171 

From Eq. 11 the area of the beam is 284 in2
• In addition, the following quantities 

are obtained: b = b' = 14.8 in.; b' = 0.3 x 14.8 = 4.4 in. 
The stress-strain diagram for steel (Fig. 6) yields fsu = 214 ksi. The amount of 

prestressing can be found from p(f8 u/fc) = 0 .195 to be p = 0. 00455 from which As = 
2 .18 in2

• A total of sixteen ½-in. strands is needed. Each ½-in. strand has an area of 
0. 1438 in2

• The final dimensions of the section in this solution are shown in Figure 7a. 
The bottom flange has been widened to properly accommodate the reinforcement, and 
it is tapered to facilitate construction. The final width of the top flange is taken the 
same as that of bottom flange to maintain the symmetry of the section originally as­
sumed. The properties of the gross section and the transformed section as well as the 
stresses at the top and bottom fibers before and after losses for both assumptions are 
given in Table 1. 

lb. Section With Minimum Required Ductility Corresponding to £ su = 0. 02. -The 
ultimate strain in the steel required for this example is large, and is not necessarily 
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Figure 7. Sections of design examples. 

TABLE 1 

SUMMARY OF SECTION PROPERTIES AND STRESSES FOR SECTIONS OBTAINED BY ULTIMATE DESIGN 
(For each example the results shown are based first on the gross area of the section and second on the 

transformed section assuming n = 7. Negative stresses are tensile.) 

Stress Before Stress 
Losses (Transfer) After Losses 

A Yt Yb I As A' Weight (ksi) (ksi) 
Section s 

(in~) (in. ) (in. ) (in~) (in!) (in~) (lb/ft) 
Top Bottom Top Bottom 

\lens. } \ \..OIDp,/ \ Cun1p.J \ 'Tem:1. j 

Example la 294 17.76 18.24 48,080 -0.34 3.04 2.37 -0.13 
2.30 307 

tsu = 0.01 308 18.43 17.57 51,040 -0.27 ~ 2.37 -0.14 

Example lb 327 16.20 19.80 55, 230 -0.23 2. 60 1. 92 -0.37 
2.01 341 

<su = 0.02 339 16,81 19.19 58,610 -0.18 ~ 1. 92 -0.35 

Example 2 294 17.76 18.24 48,080 -0.30 2.66 2.40 -0.46 
2.01 3.60 307 

<su = 0.02 328 17.29 18. 71 56,270 -0.22 ~ ~ -0.34 

A= area; Yt = distance from ce:nl roidal c:n<iJ to top fi bor; Yb= distance from can t.roidal axis to bottom fiber; I = moment of inerlia; A5 = area of 
prestressed steel; A;= area of non-prestrnsi:ed compronive steel; n = modular ratio for both types of steel; f~ = strength of concroto; r;i = strength 
of concrete at transfer; prestress at transfer= 170 ksi; effective prestress after losses== 145 ksi. The underlined quantities correspond to the 
results obtained on the basis of the transformed section. 

used in practice. It has been selected to show that direct design for the largest levels 
of ductility is possible, and to study how it affects the shape of the section. 

All the quangties are the same as in Example la except that in this case Esu = 0.02, 
which corresponds to a higher ductility. Since a higher required ductility results in a 
wider top flange, and the bottom flange need only be large enough to accommodate the 
reinforcement, k is taken as 0. 75 in this case. For a similar r eason the quant ity b'/b 
istakenas0.2. Takingt= 5.5in., t/h=0.153, Eq. 12yieldsl/J=0.407. As before, 
d = 32.4 in. 

From Eq. 3a we obtain a = 5. 49 in. , which places the neutral axis in the flange. For 
the stress-strain diagram adopted for concrete from Eq. 2a we have p(fsu/f~) = 0.122, 
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andfromEq. laweobtainQ=0 . 113 . FromEq.11, A=336 in~ , andb=22.9in., 
b ' = 4 . 6 in. , kb = 17 . 2 in. 

From the stress- s train diagram for steel (Fig. 6), fsq = 225 ksi. From p(fsu/fc) = 
0.122, p = 0.00271 , from which As= 2.01 in~ Fourteen 1/2-in. arestrands needed. Fig­
ure 7b shows the final section ofth!;! beam. The dimension of the bottom flange is the mini­
mum required to accommodate the prestressing steel at the required depth. As kb 
turned out to be larger than necessary, only the minimum required was used, because 
the bottom flange does not contribute to the strength and ductility of the section. Had 
the adjustment of the dimensions been large, recalculation may have been necessary 
to improve the shape of the section. The properties of the section and the stresses be­
fore and after losses for this part are given in Table 1. 

Example 2 

In order to show that the non-prestressed compressive reinforcement increases the 
ductility without increasing the area of the section, the following example is presented. 
It is required to design the section in Example 1 in such a way that for a ductility cor­
responding to t' su = 0. 02, the area of the section will be the same as that for a ductility 
corresponding to E su = 0. 01. The yield point stress of the compressive reinforcement 
may be assumed as fy = 50 ksi. The section designed in Example la has a ductility 
corresponding to t'su = 0.01. The problem is to determine how much com pressive steel 
of the type given should be placed so that the ductility of the section will reach that cor­
responding to t' su = 0. 02. 

The distance of the neutral axis from the top fiber was determined as a = 5. 49 in. in 
Example lb for the same required t' su. Since in this case the neutral axis falls in the 
flange , Eqs. la and 2a may be used with Q = 0. 171, as in Example la, and d' = 2 in., 
to write the following independent relations between p(fsu/ fc) and p(fsu/ fc): 

0.171 
fsu , f~u 

0.012 + p - (1 - 0.170) + p (0.170 - 0.062) 
f ' f' 

C C 

I f$U 
0.122 + p 

f' 
C 

fsu 
p-

f' 
C 

(la) 

(2a) 

The simultaneous solution of the above equations yields p(fsu/ fc) = 0 . 183 and 
p '(fsu/ fc) = 0. 061. 

From Figure 6, t'su = 0.02 corresponds approximately to fsu = 225 ksi. Ther efore , 
p = 0. 00407 and As = 1. 9 5 in~ A total of four teen %- in . strands is needed. Si11ce t he 
strain in compr ession steel is 0 . 003(3. 49/ 5. 49) = 0. 0019 > Ey the intermediate gr ade 
steel has yielded and the net fsu is 50 - 4 . 25 = 45. 75 ksi. Therefore, p' = 0. 00 666, 
A~ = 3 . 20 in .2· and six No . 7 bars of inter mediate grade steel are required. The length 
of these non-prestressed bars need not be the total span of the beam. Theoretically 
they are not needed at a section where the required Q is that of the section without the 
compression reinforcement. The properties of the section and the stresses before and 
after losses for this example are shown in Table 1; Figure 7c shows the beam section . 

A reduction in the amount of non-prestressed compression reinforcement is possible 
with a section having a wider top flange . The parameter p(fsu/ f~) is related to p(fsu/ fc) 
by Eq . 2a. Selection of a smaller value of p (f5u/fc) would fix Plfsu/fc) and permit the 
determination of the required Q by Eq. la. The area of the section and its final shape 
can be determined as usual from Eq. 11. If the proper values of t/h, b'/b, and k were 
selected, the new section will present a flange wider than that of Example la, but not 
as large as that of Example lb. Also, the compressive reinforcement required will be 
smaller than that of Example 2. This solution would show that to obtain high ductility 
a compromise section can be obtained if some increment of weight is tolerated with a 
smaller amount of non-prestressed compression steel. 
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Comparison of the Three Solutions 

It has been shown that ultimate strength design provides a convenient procedure which 
leads to well-proportioned sections. The desired ductility and strength were used as 
the fundamental constraints for proportioning the sections, while the stresses at trans­
fer and under service loads were checked. 

An examination of Table 1 shows interesting details. The beam of Example la with 
a required ductility corresponding to <su = 0.01 required more prestressing steel (2 
strands) than the beams of Examples lb and 2 with a required ductility corresponding 
to f SU = 0 . 02 . 

For the stress-strain diagram of prestressing steel adopted in these examples, any 
increase in ductility is accompanied by an increase in stress in steel at ultimate. For 
the larger ductility considered here the stress in steel increases at ultimate from 214 
ksi to 225 ksi. This increase in steel stress causes a decrease in the required area of 
prestressing steel. 

The beam of Example lb shows that by increasing the width of the top flange and 
thereby adding concrete area to the compression zone, high ductility can be obtained. 
This, however, increases the weight of the section by 11 percent, but decreases the 
amount of prestressing steel to 14 strands. The increase in stress in steel at ultimate 
not only supports the additional weight of the beam, but also permits a reduction in the 
required area of steel. Under the service loads this beam shows, however, a tendency 
for a larger tensile stress at the bottom fiber due to the smaller amount of prestressing 
force. 

1'he beam of Example 2 shows a different way of obtaining high ductility. Six No. 7 
intermediate grade bars are added to the top flange of the low ductility section of Ex­
ample la. This increment in compression area raises the neutral axis and increases 
the lever arm of the resisting couple by approximately 7 percent. In addition the stress 
in the steel at ultimate is increased from 214 ksi to 225 ksi, approximately 5 percent. 
These 2 factors combined explain the 12 percent reduction in the number of prestressing 
strands, from 16 to 14, since the required tensile force at ultimate can be obtained 
with less area of steel at a higher stress and a larger lever arm. The non-pre stressed 
bars also provide additional tensile strength for the top part of the beam at transfer 
and during handling operations. Furthermore, they have a tendency to reduce the in­
eic:1.::;i,l1,; ueu.e1,;i,luu::; uue lU cn~e!J. 

SUMMARY AND CONCLUSIONS 

A method is presented by which a prestressed concrete beam can be proportioned by 
ultimate design. Particular emphasis has been placed on the requirement of ductility 
and its influence on the dimensions of the section. The design examples presented show 
the actual method of proportioning as well as the influence of ductility on the dimensions 
of the beam. 

The following conclusions may be drawn from the study. 

1. A prestressed concrete beam can be proportioned for given required minimum 
flexural strength and ductility. The stresses at transfer and at service conditions may 
be checked in a section thus obtained. 

2 . The dimensions of a section are influenced greatly by the required ductility . An 
increase in the required ductility results in an increase in the required area of the sec­
tion, unless compression steel is provided. 

3. Compression steel contributes appreciably to the ductility of the section. Example 
2 shows that the most expeditious way for increasing the ductility of a section is by 
placing non-prestressed compression reinforcement as near the top fiber as possible. 

For a large required ductility considerable saving in the area of the beam may be 
effected by use of non-prestressed compression steel. Compression steel has addi­
tional advantages such as its contribution to the crack stability of the top fiber, its use 
as spacer for the web reinforcement and its function in providing more safety for the 
beam during transportation and erection. 
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Appendix 

DESIGN OF COMPOSITE SECTIONS 

The method discussed in the preceding sections may be used to design composite 
prestressed concrete beams on the basis of safety and ductility. Composite construc­
tion, which is used extensively in highway bridges, consists of a reinforced concrete 
slab cast in place on top of precast prestressed concrete stringers. It is assumed that 
the shear connection between slab and stringer is strong enough to develop the flexural 
strength of the composite section. 

Design of stringers in highway bridges is based on the assumption that a known por­
tion of the loads acts on each stringer, and that a strip of the roadway slab contributes 
to support any load which comes on the bridge after the roadway concrete has set. Thus 
the problem is reduced to the design of a stringer with a slab of given width, thickness 
and strength at the top. The slab becomes an. integral part of the stringer section for 
all the loads acting after the slab concrete has hardened. The loads as well as the ef­
fective slab section available for each stringer are different for the end and inter­
mediate stringers. 

The strength of a composite section, which consists of the stringer and the slab of 
known width and thickness, is calculated assuming that it is a unit all by itself. Strength 
calculated in this fashion provides only a measure of safety, and should not be confused 
with the safety of the entire bridge for the intended loads . 

In the discussion that follows it will be assumed that a concrete deck of known thick­
ness is cast on top of parallel stringers at a given spacing, and that a portion of the 
deck slab behaves compositely with each stringer. The design of the stringer is to be 
based on the prescribed strength and ductility of the composite section as well as that 
of the stringer section by itself. 

The stringer should be designed such that the following two inequalities are satisfied 
in the composite section: 

(9a) 

and 

(10a) 

The above inequalities are similar to Inequalities 9 and 10. The quantity Mcu is the 
flexural strength of the composite section; £ csu is the strain in the prestressing steel 
at failure of the composite section; Ms denotes the moment caused by the weight of that 
portion of the slab which contributes to the composite section; Md is the moment due to 
any additional dead load that may be present before the slab concrete has set, and Mw 
is the moment due to any dead load (such as wearing surface) that may act on the struc­
ture after the slab concrete has set. 
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Figure 8. Composite section. 

In addition, the following inequality should be satisfied in the stringer section: 

(9b) 

Thus Inequalities 9a, 10a and 9b constitute the basis of design. 
The condition expressed by Inequality 10a can easily be satisfied in a composite 

section, since a comparatively large area of concrete is available in the compression 
zone. Figure 8 shows a ductile beam in which the neutral axis at failure is in the slab. 
It can be seen that a considerable compression force may be developed in the slab if 
the width of slab is large, even though the strength of concrete in the slab is usually in 
the neighborhood of 3000 psi. 

The effective width of slab is usually taken as the center-to-center spacing of stringers, 
which ranges between 4 and 7 ft. A width of this order of magnitude for the slab pro­
vides large compression forces even for high ductilities. On the other hand the higher 
the ductility, the smaller the available compression force and the required area of pre­
stressing steel. Hence if the ductility is too high, the requirement expressed by In­
equality 9a may no longer be satisfied. Thus it can be seen that although high ductility 
is available, Inequality 9a provides an upper limit for it. In practice the highest duc­
tility compatible with Inequality 9a should be used. 

The requirement expressed by Inequality 9b assures that the flexural strength of the 
stringer section is adequate. Where the available area of slab is large, this require­
ment is automatically satisfied. 

Determination of Area and Prestressing Force 

The preceding discussions may be expressed conveniently in algebraic form for use 
in design. It is assumed that the neutral axis of the composite section at failure will 
fall in the slab. Ignoring the effect of non-prestressed compression reinforcement, if 
any, and designating S and ts respectively as the width and thickness of the slab, from 
Eqs. 1 and 2 the following can be derived: 

(lb) 

and 

(2b) 
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where 

E: 
a = u (d + t ) 

t' s t - t' se - t' ce + £ u s 
(3b) 

The substitution of Eq. lb for Mcu and (AyL2)/8 for Mg in Inequality 9a yield the fol­
lowing expression for A, the area of the stringer: 

(13) 

Inequality 13 provides an upper bound for A. 
Since Inequality 9b for the stringer section is similar to non- composite design, a 

lower bound for A may be obtained by expressing 9b in the following form: 

A > Ms+ Mct 

d2fc Q yL 2 

hit,Nd - 8 

(11a) 

Since Inequality 11a seldom governs in practical problems, it is more convenient to 
check the flexural strength of the stringer section directly by Inequality 9b. 

The steps to be taken in the determination of A and As may be summarized as follows: 

1. On the basis of a ductility greater than or equal to the prescribed ductility cal­
culate a from Eq. 3b. 

2. Calculate As from Eq. 2b using the given stress-strain diagram for concrete. 
3 . Find the upper bound of A from Inequality 13. If A is too large it means that the 

ductility may be increased further . On the other hand if A is unreasonably small the 
ductility should be decreased. 

4. Determine the proportions of the section and check Inequality 9b. 

Example 3 

Given a simply supported bridge of 54-ft span consisting of precast pr estressed 
concrete stringers and cast-in-place slab; the roadway s lab is 6½ in. thick and the 
structure is to be designed for H20-Sl6-44 loading. It is anticipated that the structure 
will have to support a 2-in. wearing surface. The bridge will have one diagram at 

Figure 9. Design Example 3. 

midspan connecting the stringers, whose 
weight is equivalent to a concentrated load 
of 1. 25 k per intermediate stringer. De­
sign an intermediate stringer assuming a 
center-to-center spacing of 5 ft O in. and 
overall depth of 3 6 in. 

The following are given: for slab, f~ = 
3000 psi; for stringer, f ~ = 5000 psi; £ se = 
0.0048; Eu= 0.003; y = 0.15 kcf. 

The quantity t' ce may be taken as 
0 . 000 5. The stress- strain diagrams for 
concrete and prestressing steel are as 
shown in Figures 5 and 6 respectively. 

The moments may be calculated as 
follows: 
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TABLE 2 

SU1'v'Hv'IATIY Of:' SECTION PnCPERTIE[i AND STTIESSES !N EXTRfil'~'!E FIBERS OF STPJNCER 

Section 

Gross Stringer 

Composite 

Transformed Stringer 

Composite 

A 
(in'.) 

330,8 

642. 8 

344.6 

656.6 

Yt 
(in. ) 

20. 24 

8. 85 

20. 78 

9.36 

Yb 
(in ,) 

15 , 76 

27, 15 

15,22 

26.64 

I 
(in~) 

48050 

137960 

50190 

145800 

Stress Before 
Losses (Transfer) 

(ksi) 

rap Bottom 
(Tens.) (Comp .) 

-0.23 2.16 

-0 . 17 1.98 

Stress 
After Losses 

(ksi) 

Top Bottom 
(Comp , ) (Tens . ) 

1.10 -0.03 

1.14 -0. 04 

In the above ca lculation the ratio of modulus of elasticity of concrete in the slab to that in the stringer is taken as 0.8. The properties of 
the transformed ~8<::lion ore calculated assuming N = 7 and A5 = 2.3 in~ 

Ms 0 406 X (
54)2 . 8 X 12 1775 in. k 

Md 1.25 X 
(54) 

X 12 203 in. k 
4 

Me 1/2 X 699.3 Xi X 1.28 X 12 5370in.k 

Mw 0 125 X (54)2 . 8 X 12 546 in. k 

Aoouiut: t st = V. u:,::., c:t..uU u ;- ts - 33 T G. ~ ;_ ~.:, . .., Ul. J..~ I. VU1 C.Y,_. ::,t,, a.. - 4. 1~ i1i. ' 

from Eq. 2b, As = 2. 33 in~; from Inequality 13, A s 330 in ~ 
To provide the required area for prestressing steel, sixteen ½-in . strands are used. 

Figure 9 shows the stringer section and the arrangen1ent of strands. The "'Web is taken 
as 5½ in. to provide sufficient room for draping. The top flange is made 12 in. wide 
in order to provide sufficient area to transmit the shearing stresses which occur be­
tween slab and stringer in the composite section. 

It can be shown that the section of Figure 9 satisfies Inequality 9b. Table 2 shows a 
summary of the section properties and stresses in the stringer before and after losses. 

In the example the effect of non-prestressed reinforcement either in slab or stringer 
is not taken into account. The non-prestressed compression reinforcement increases the 
ductility of the stringer section, but is usually under tensile stress at the failure of the 
composite section. The longitudinal reinforcement in the slab increases the ductility of 
the composite section, if placed at the top of the slab. 




