Ultra Low Power Bioelectronics

Fundamentals, Biomedical Applications, and Bio-inspired Systems

RAHUL SARPESHKAR

Massachusetts Institute of Technology

Contents

	Acknowledgements	page xvi
Section 1	Foundations	1
1	The big picture	3
	 1.1 Importance of ultra-low-power electronics 1.2 The power-efficient subthreshold regime of transistor Operation 1.3 Information, energy, and power 1.4 The Optimum point for digitization in a mixed-signal system 1.5 Examples of biomedical application contexts 1.6 Principles for ultra-low-power design 1.7 Ultra-low-power information processing in biology 1.8 Neuromorphic system example: the RF cochlea 1.9 Cytomorphic electronics 1.10 Energy sources 1.11 An overview of the book's chapters and organization 1.12 Some final notes 	5 7 9 10 14 17 18 19 22 23 24 26
2	Feedback systems: fundamentals, benefits, and root-locus analysis	28
	 2.1 Feedback is universal 2.2 The basic linear feedback loop 2.3 Connections between feedback loops and circuits 2.4 The seven benefits of feedback 2.5 Root-locus techniques 2.6 Eight root-locus rules 2.7 Example of a root-locus plot 2.8 The zeros of a closed-loop system 2.9 Farewell to feedback systems 	29 32 35 36 44 46 53 55 55
3	MOS device physics: general treatment	57
	3.1 Intuitive description of MOS transistor Operation3.2 Intuitive model of MOS transistor Operation	60 63

	3.3 Intuitive energy viewpoint for MOS transistor operation	65
	3.4 The MOS capacitor (MOSCAP)	68
	3.5 Quantitative discussion of the MOSCAP	71
	3.6 Determining $(Q/ + Qdep)$ in a MOSCAP for a given tifs	73
	3.7 Equating the gate charge and bulk charge	76
	3.8 Quantitative discussion of the MOSFET	79
	3.9 Summary of physical insights	82
4	MOS device physics: practical treatment	84
	4.1 The <i>K</i> approximation	85
	4.2 Charge-based current models with the κ approximation	92
	4.3 Derivation of current in weak inversion	93
	4.4 Derivation of current in strong inversion	95
	4.5 Source-referenced model for strong inversion	97
	4.6 Moderate inversion	101
5	MOS device physics: small _signal operation	103
	5.1 Weak-inversion small-signal models	104
	5.2 Strong-inversion small-signal models	108
	5.3 Small-signal capacitance models in strong inversion	113
	5.4 Extrinsic or parasitic capacitances	120
	5.5 Small-signal capacitance models in weak inversion	122
	5.6 The transit time	123
	5.7 The `beta' of an MOS transistor	125
6	Deep submicron effects in MOS transistors	
	6.1 The dimensionless EKV model	130
	6.2 Velocity saturation	133
	6.3 Drain induced barrier lowering (DIBL)	140
	6.4 Vertical-field effects	143
	6.5 Effect on the intuitive model	145
	6.6 High-frequency transistor models	146
	6.7 Ballistic transport	147
	6.8 Transport in nanoscale MOSFETs	149
	6.9 Tunneling	151
	6.10 Scaling of transistors in the future	152
7	Noise in devices	155
	7.1 The mathematics of noise	155
	7.2 Noise in subthreshold MOS transistors	161
	7.3 Noise in resistors	165
	7.4 Unity between thermal noise and shot noise	167

7.5 Noise in above-threshold MOS transistors	168
7.6 Input-referred gate noise	169
7.7 1/f or flicker noise in MOS transistors	170
7.8 Some notes on 1 /f noise	173
7.9 Thermal noise in short-channel devices	176
7.10 Thermal noise in moderate inversion	179
7.11 Induced gate noise	181
7.12 Some caveats about noise	182
Noise in electrical and non electrical circuits	184
8.1 Noise in an RC lowpass-filter circuit	185
8.2 A subthreshold photoreceptor circuit	187
8.3 The equipartition theorem	190
8.4 Noise in a subthreshold transconductance amplifier	193
8.5 Noise in general circuits	200
8.6 An ultra-low-noise MEMS capacitance sensor	201
Feedback systems	212
9.1 The Nyquist criterion for stability	212
9.2 Nyquist-based criteria for robustness: Gain margin	
and phase margin	216
9.3 Compensation techniques	219
9.4 The closed-loop two-pole T-and-Q rules for feedback	
systems	228
9.5 Conditional stability	229
9.6 Describing-function analysis of nonlinear feedback systems	231
9.7 Positive feedback	232
9.8 Feedback in small-signal circuits	233
9.9 The Take label' circuit-analysis trick	235
9.10 A circuit example	235
Return_ratio analysis	240
10.1 Return ratio for a dependent generator	241
10.2 Return ratio for a passive impedance	243
10.3 Transfer function modification with the return ratio	244
10.4 Robustness analysis with the return ratio	249
10.5 Examples of return-ratio analysis	250
10.6 Blackman's impedance formula	256
10.7 Driving-point transistor impedances with Blackman's	
formula	258
10.8 Middlebrook's extra-element theorem	261
10.9 Thevenin's theorem as a special case of return-ratio analysis	264

8

9

10

ix

Contents

	10.10) Two final examples of return-ratio analysis	265		
	10.11	l Summary of key results	270		
Sectio	n II Low-J	power analog and biomedical circuits	273		
11	Low-p	power transimpedance amplifiers and photoreceptors	275		
	11.1	Transimpedance amplifiers	275		
	11.2	Phototransduction in silicon	278		
	11.3	A transimpedance-amplifier-based photoreceptor	283		
	11.4	Feedback analysis of photoreceptor	286		
	11.5	Noise analysis of photoreceptor	292		
	11.6	The adaptation resistor RA	294		
	11.7 I	Experimental measurements of the photoreceptor	296		
	11.8	Adaptive biasing of 1A for energy efficiency	297		
	11.9	Zeros in the feedback path	298		
12	Low-p	Low-power transconductance amplifiers and scaling laws			
	for po	wer in analog circuits	301		
	12.1 <i>I</i>	A simple ordinary transconductance amplifier (OTA)	302		
	12.2 /	A low-power wide-linear-range transconductance amplifier:			
	10.0	the big picture	303		
	12.3	WLR small-signal and linear-range analysis	305		
	12.4 N	WLR dc characteristics	310		
	12.5 1	Dynamic characteristics of the WLK	31/		
	12.0 12.7	Noise analysis Distantion analysis	202		
	12.7 12.9	Distortion analysis	322		
	12.0	Signal-to-hoise ratio and power analysis	323 325		
	12.9	Scaling laws for power in analog circuits	323		
	12.10	analog decign	326		
	12.11	Robust Operation of subthreshold circuits	329		
13	l ow-n	nower filters and resonators	330		
	10.1		550		
	13.1	G,,,C filter synthesis	331		
	13.2	Gyrators	333		
	13.3	Introduction to second-order systems	334		
	13.4	A nelvoir of a second-order G ni—C filter	33/		
	13.3	Analysis of a second-order Gnt—C filter	559		
	13.0	Higher order C = C filter design	542 247		
	13.7	A s^2 plane geometry for analyzing the frequency response.	34/		
	13.0	of linear systems	217		
		or micar systems	34/		

14	Low-po	ower current-mode circuits	354
	14.1	Voltage versus current	355
	14.2	Static translinear circuits	356
	14.3	Dynamic translinear lowpass filters	359
	14.4	Dynamic translinear integrators and high-order filters	365
	14.5	Biasing of current-mode filters	367
	14.6 N	loise, SNR, and dynamic range of log-domain filters	370
	14.7	Log-domain vs. Gni-C filters	372
	14.8	Winner-take-all circuits	373
	14.9	Large-signal Operation of the winner-take-all circuit	379
	14.10	Distributed-feedback circuits	380
15	Ultra-lo	ow-power and neuron-inspired analog-to-digital conversion	
	for bio	medical systems	385
	15.1	Review of ADC topologies	389
	15.2 A	neuron-inspired ADC for biomedical applications	395
	15.3 C	omputational ADCs and time-to-digital ADCs	408
	15.4 A	time-based EA ADC	410
	15.5 Pi	ipelined ADCs with comparators	411
	15.6 A	diabatic charging and energy-efficient comparators in ADCs	412
	15.7	Digital correction of analog errors	415
	15.8 N	leurons and ADCs	416
Section	III Low-p	oower RF and energy-harvesting circuits for biomedical systems	419
16	Wireles	ss inductive power links for medical implants	421
	16.1	Theory of linear inductive links	422
	16.2	Experimental system design	441
	16.3 E	xperimental measurements	448
17	Energy	r-harvesting RF antenna power links	454
	17.1	Intuitive understanding of Maxwell's equations	455
	17.2	The non-lossy, one-dimensional transmission line	456
	17.3 T	he impedance of free space	459
	17.4	Thevenin-equivalent circuit models of antennas	459
	17.5	Near-field coupling	463
	17.6	Far-field coupling: the `monopole' antenna	463
	17.7	Far-field coupling: basics of dipole antennas	465
	17.8	Directional radiation and antenna gain	467
	17.9	Derivation of far-field transfer impedance or Z12	469
	17.10	Impedance matching: the Bode-Fano criterion	471
	17.11 N	Making the antenna and the load part of the matching network	474

	17.12 Rectifier basics	477
	17.13 Rectifier analysis and optimization	481
	17.14 Output voltage ripple in rectifiers	482
	17.15 Latchup in CMOS rectifiers	483
	17.16 Rectifier modeling	483
	17.17 Experimental measurements	486
	17.18 Summary	488
18	Low-power RF telemetry in biomedical implants	489
	18.1 Impedance modulation in coupled parallel resonators	493
	18.2 Impedance-modulation transceiver	495
	18.3 Pulse-width modulation receiver	503
	18.4 Dynamic effects in impedance modulation	505
	18.5 Experimental results for a complete transceiver	508
	18.6 Energy efficiency of the uplink and downlink	511
	18.7 Scaling laws for power consumption	
	in impedance-modulation links	511
	18.8 The energy per bit in impedance-modulation links	518
	18.9 Incoherent versus coherent RF receivers	522
	18.10 Radiated emissions and FCC regulations	523
	18.11 Seven considerations in choosing a carrier frequency	524
	18.12 RF antenna links for implants	525
	18.13 The skin depth of biological tissue	525
Sectio	n IV Biomedical electronic systems	529
19	Ultra-low-power implantable medical electronics	531
	19.1 Cochlear implants or bionic ears	534
	19.2 An ultra-low-power programmable analog bionic ear processor	537
	19.3 Low-power electrode stimulation	558
	19.4 Highly miniature electrode-stimulation circuits	562
	19.5 Brain-machine interfaces for the blind	565
	19.6 Brain-machine interfaces for paralysis, speech,	
	and other disorders	572
	19.7 Summary	575
20	Ultra_low_power noninvasive medical electronics	579
	20.1 Analog integrated-circuit switched-capacitor model of the heart	581
	20.2 The electrocardiogram	585
	20.3 A micropower electrocardiogram amplifier	590
	20.4 Low-power pulse oximetry	595
	20.5 Battery-free tags for body sensor networks	601

	20.6 Intra-body galvanic communication networks20.7 Biomolecular sensing	604 605
Section V	Principles for ultra-low-power analog and digital design	615
21	Principles for ultra-low-power digital design	617
	21.1 Subthreshold CMOS-inverter basics	618
	21.2 Sizing and topologies for robust subthreshold Operation	622
	21.3 Types of power dissipation in digital circuits	623
	21.4 Energy efficiency in digital systems	630
	21.5 Optimization of energy efficiency in the subthreshold regime	632
	21.6 Optimization of energy efficiency in all regimes of Operation	635
	21.7 Varying the power-supply voltage and threshold voltage	641
	21.8 Gated clocks	641
	21.9 Basics of adiabatic computing	642
	21.10 Adiabatic clocks 21.11 Architectures and algorithms for improving energy efficiency	645 647
	21.11 memberedies and algorithms for improving chergy efficiency	017
22	Principles for ultra $_$ low $_$ power analog and mixed $_$ signal design	651
	22.1 Power consumption in analog and digital systems	653
	22.2 The low-power hand	661
	22.3 The Optimum point for digitization in a mixed-signal system	663
	22.4 Common themes in low-power analog and digital design	669
	22.5 The Shannon limit for energy efficiency	671
	22.6 Collective analog or hybrid computation	674
	22.7 HSMs: general-purpose mixed-signal systems with feedback	679
	22.8 General principles for low-power mixed-signal system design	683
	22.9 The evolution of low-power design	602
	22.10 Sensors and actuators	092
Section VI	Bio-inspired systems	695
23	Neuromorphic electronics	697
	23.1 Transmission-line theory	705
	23.2 The cochlea: biology, motivations, theory, and RF-eochlea design	706
	23.3 Integrated-circuit unidirectional and bidirectional RF cochleas	721
	23.4 Audio cochleas and bio-inspired noise-robust spectral analysis	725
	23.5 A bio-inspired analog vocal tract	728
	23.6 Bio-inspired vision architectures	733
	23.7 Hybrid analog-digital computation in the brain	739
	23.8 Spike-based hybrid computers	741
	23.9 Collective analog or hybrid systems	743

	23.10 En	ergy efficiency in neurobiological systems	743
	23.11 Ot	ther work	747
	23.12 Ap	ppendix: Power and computation in the brain, eye, ear,	
	a	nd body	747
24	Cytomorp	hic electronics: cell-inspired electronics for systems	
	and synth	etic biology	753
	24.1 E	lectronic analogies of chemical reactions	755
	24.2 Log	-domain current-mode models of chemical reactions	
	a	nd protein-protein networks	759
	24.3 Ana	log circuit models of gene-protein dynamics	766
	24.4 L	ogic-like operations in gene-protein circuits	769
	24.5 S	tochastics in DNA-protein circuits	772
	24.6 An e	example of a simple DNA-protein circuit	
	24.7 Circ	uits-and-feedback techniques for systems and synthetic bio	ology 776
	24.8 Hyb	rid analog-digital computation in cells and neurons \checkmark	83
Section	VII Energy s	sources	787
25	Batteries	and electrochemistry	789
	25.1 B	asic Operation of a battery	789
	25.2 Exa	mple mechanism for battery Operation	791
	25.3 C	hemical reaction kinetics and electrode current	793
	25.4 N	lass-transport limitations	796
	25.5 L	arge-signal equivalent circuit of a battery	799
	25.6 B	attery voltage degradation with decreasing state of charge	802
	25.7 S	mall-signal equivalent circuit of a battery and of electrodes	806
	25.8 O	peration of a lithium-ion battery	812
	25.9 O	peration of a zinc-air battery	815
	25.10 Ba	sic Operation of fuel cells	816
	25.11 En	ergy density, power density, and system cost	817
26	Energy ha	rvesting and the future of energy	822
	26.1 S	ources of energy	824
	26.2 E	lectrical circuit models of mechanical systems	825
	26.3 Ener	rgy harvesting of body motion	827
	26.4 E	nergy harvesting of body heat	831
	26.5 Pow	er consumption of the world	835
	26.6 A ci	rcuit model for car power consumption	836
	26.7 E	lectric cars versus gasoline cars	841
	26.8 C	ars versus animals	844
	26.9 P	rinciples of low-power design in transportation	846

26.10 Solar electricity generation	848
26.11 Biofuels	854
26.12 Energy use and energy generation	855
Epilogue	859
Bibliography	860
Index	879